1217309Snwhitehorn/*
2217309Snwhitehorn * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3217309Snwhitehorn *
4217309Snwhitehorn * This software is available to you under a choice of one of two
5217309Snwhitehorn * licenses.  You may choose to be licensed under the terms of the GNU
6217309Snwhitehorn * General Public License (GPL) Version 2, available from the file
7217309Snwhitehorn * COPYING in the main directory of this source tree, or the
8217309Snwhitehorn * OpenIB.org BSD license below:
9217309Snwhitehorn *
10217309Snwhitehorn *     Redistribution and use in source and binary forms, with or
11217309Snwhitehorn *     without modification, are permitted provided that the following
12217309Snwhitehorn *     conditions are met:
13217309Snwhitehorn *
14217309Snwhitehorn *      - Redistributions of source code must retain the above
15217309Snwhitehorn *        copyright notice, this list of conditions and the following
16217309Snwhitehorn *        disclaimer.
17217309Snwhitehorn *
18217309Snwhitehorn *      - Redistributions in binary form must reproduce the above
19217309Snwhitehorn *        copyright notice, this list of conditions and the following
20217309Snwhitehorn *        disclaimer in the documentation and/or other materials
21217309Snwhitehorn *        provided with the distribution.
22217309Snwhitehorn *
23217309Snwhitehorn * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24217309Snwhitehorn * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25217309Snwhitehorn * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26217309Snwhitehorn * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27217309Snwhitehorn * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28217309Snwhitehorn * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29217309Snwhitehorn * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30217309Snwhitehorn * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/gfp.h>
35#include <linux/in.h>
36#include <net/tcp.h>
37#include <trace/events/sock.h>
38
39#include "rds.h"
40#include "tcp.h"
41
42void rds_tcp_keepalive(struct socket *sock)
43{
44	/* values below based on xs_udp_default_timeout */
45	int keepidle = 5; /* send a probe 'keepidle' secs after last data */
46	int keepcnt = 5; /* number of unack'ed probes before declaring dead */
47
48	sock_set_keepalive(sock->sk);
49	tcp_sock_set_keepcnt(sock->sk, keepcnt);
50	tcp_sock_set_keepidle(sock->sk, keepidle);
51	/* KEEPINTVL is the interval between successive probes. We follow
52	 * the model in xs_tcp_finish_connecting() and re-use keepidle.
53	 */
54	tcp_sock_set_keepintvl(sock->sk, keepidle);
55}
56
57/* rds_tcp_accept_one_path(): if accepting on cp_index > 0, make sure the
58 * client's ipaddr < server's ipaddr. Otherwise, close the accepted
59 * socket and force a reconneect from smaller -> larger ip addr. The reason
60 * we special case cp_index 0 is to allow the rds probe ping itself to itself
61 * get through efficiently.
62 * Since reconnects are only initiated from the node with the numerically
63 * smaller ip address, we recycle conns in RDS_CONN_ERROR on the passive side
64 * by moving them to CONNECTING in this function.
65 */
66static
67struct rds_tcp_connection *rds_tcp_accept_one_path(struct rds_connection *conn)
68{
69	int i;
70	int npaths = max_t(int, 1, conn->c_npaths);
71
72	/* for mprds, all paths MUST be initiated by the peer
73	 * with the smaller address.
74	 */
75	if (rds_addr_cmp(&conn->c_faddr, &conn->c_laddr) >= 0) {
76		/* Make sure we initiate at least one path if this
77		 * has not already been done; rds_start_mprds() will
78		 * take care of additional paths, if necessary.
79		 */
80		if (npaths == 1)
81			rds_conn_path_connect_if_down(&conn->c_path[0]);
82		return NULL;
83	}
84
85	for (i = 0; i < npaths; i++) {
86		struct rds_conn_path *cp = &conn->c_path[i];
87
88		if (rds_conn_path_transition(cp, RDS_CONN_DOWN,
89					     RDS_CONN_CONNECTING) ||
90		    rds_conn_path_transition(cp, RDS_CONN_ERROR,
91					     RDS_CONN_CONNECTING)) {
92			return cp->cp_transport_data;
93		}
94	}
95	return NULL;
96}
97
98int rds_tcp_accept_one(struct socket *sock)
99{
100	struct socket *new_sock = NULL;
101	struct rds_connection *conn;
102	int ret;
103	struct inet_sock *inet;
104	struct rds_tcp_connection *rs_tcp = NULL;
105	int conn_state;
106	struct rds_conn_path *cp;
107	struct in6_addr *my_addr, *peer_addr;
108	struct proto_accept_arg arg = {
109		.flags = O_NONBLOCK,
110		.kern = true,
111	};
112#if !IS_ENABLED(CONFIG_IPV6)
113	struct in6_addr saddr, daddr;
114#endif
115	int dev_if = 0;
116
117	if (!sock) /* module unload or netns delete in progress */
118		return -ENETUNREACH;
119
120	ret = sock_create_lite(sock->sk->sk_family,
121			       sock->sk->sk_type, sock->sk->sk_protocol,
122			       &new_sock);
123	if (ret)
124		goto out;
125
126	ret = sock->ops->accept(sock, new_sock, &arg);
127	if (ret < 0)
128		goto out;
129
130	/* sock_create_lite() does not get a hold on the owner module so we
131	 * need to do it here.  Note that sock_release() uses sock->ops to
132	 * determine if it needs to decrement the reference count.  So set
133	 * sock->ops after calling accept() in case that fails.  And there's
134	 * no need to do try_module_get() as the listener should have a hold
135	 * already.
136	 */
137	new_sock->ops = sock->ops;
138	__module_get(new_sock->ops->owner);
139
140	rds_tcp_keepalive(new_sock);
141	if (!rds_tcp_tune(new_sock)) {
142		ret = -EINVAL;
143		goto out;
144	}
145
146	inet = inet_sk(new_sock->sk);
147
148#if IS_ENABLED(CONFIG_IPV6)
149	my_addr = &new_sock->sk->sk_v6_rcv_saddr;
150	peer_addr = &new_sock->sk->sk_v6_daddr;
151#else
152	ipv6_addr_set_v4mapped(inet->inet_saddr, &saddr);
153	ipv6_addr_set_v4mapped(inet->inet_daddr, &daddr);
154	my_addr = &saddr;
155	peer_addr = &daddr;
156#endif
157	rdsdebug("accepted family %d tcp %pI6c:%u -> %pI6c:%u\n",
158		 sock->sk->sk_family,
159		 my_addr, ntohs(inet->inet_sport),
160		 peer_addr, ntohs(inet->inet_dport));
161
162#if IS_ENABLED(CONFIG_IPV6)
163	/* sk_bound_dev_if is not set if the peer address is not link local
164	 * address.  In this case, it happens that mcast_oif is set.  So
165	 * just use it.
166	 */
167	if ((ipv6_addr_type(my_addr) & IPV6_ADDR_LINKLOCAL) &&
168	    !(ipv6_addr_type(peer_addr) & IPV6_ADDR_LINKLOCAL)) {
169		struct ipv6_pinfo *inet6;
170
171		inet6 = inet6_sk(new_sock->sk);
172		dev_if = READ_ONCE(inet6->mcast_oif);
173	} else {
174		dev_if = new_sock->sk->sk_bound_dev_if;
175	}
176#endif
177
178	if (!rds_tcp_laddr_check(sock_net(sock->sk), peer_addr, dev_if)) {
179		/* local address connection is only allowed via loopback */
180		ret = -EOPNOTSUPP;
181		goto out;
182	}
183
184	conn = rds_conn_create(sock_net(sock->sk),
185			       my_addr, peer_addr,
186			       &rds_tcp_transport, 0, GFP_KERNEL, dev_if);
187
188	if (IS_ERR(conn)) {
189		ret = PTR_ERR(conn);
190		goto out;
191	}
192	/* An incoming SYN request came in, and TCP just accepted it.
193	 *
194	 * If the client reboots, this conn will need to be cleaned up.
195	 * rds_tcp_state_change() will do that cleanup
196	 */
197	rs_tcp = rds_tcp_accept_one_path(conn);
198	if (!rs_tcp)
199		goto rst_nsk;
200	mutex_lock(&rs_tcp->t_conn_path_lock);
201	cp = rs_tcp->t_cpath;
202	conn_state = rds_conn_path_state(cp);
203	WARN_ON(conn_state == RDS_CONN_UP);
204	if (conn_state != RDS_CONN_CONNECTING && conn_state != RDS_CONN_ERROR)
205		goto rst_nsk;
206	if (rs_tcp->t_sock) {
207		/* Duelling SYN has been handled in rds_tcp_accept_one() */
208		rds_tcp_reset_callbacks(new_sock, cp);
209		/* rds_connect_path_complete() marks RDS_CONN_UP */
210		rds_connect_path_complete(cp, RDS_CONN_RESETTING);
211	} else {
212		rds_tcp_set_callbacks(new_sock, cp);
213		rds_connect_path_complete(cp, RDS_CONN_CONNECTING);
214	}
215	new_sock = NULL;
216	ret = 0;
217	if (conn->c_npaths == 0)
218		rds_send_ping(cp->cp_conn, cp->cp_index);
219	goto out;
220rst_nsk:
221	/* reset the newly returned accept sock and bail.
222	 * It is safe to set linger on new_sock because the RDS connection
223	 * has not been brought up on new_sock, so no RDS-level data could
224	 * be pending on it. By setting linger, we achieve the side-effect
225	 * of avoiding TIME_WAIT state on new_sock.
226	 */
227	sock_no_linger(new_sock->sk);
228	kernel_sock_shutdown(new_sock, SHUT_RDWR);
229	ret = 0;
230out:
231	if (rs_tcp)
232		mutex_unlock(&rs_tcp->t_conn_path_lock);
233	if (new_sock)
234		sock_release(new_sock);
235	return ret;
236}
237
238void rds_tcp_listen_data_ready(struct sock *sk)
239{
240	void (*ready)(struct sock *sk);
241
242	trace_sk_data_ready(sk);
243	rdsdebug("listen data ready sk %p\n", sk);
244
245	read_lock_bh(&sk->sk_callback_lock);
246	ready = sk->sk_user_data;
247	if (!ready) { /* check for teardown race */
248		ready = sk->sk_data_ready;
249		goto out;
250	}
251
252	/*
253	 * ->sk_data_ready is also called for a newly established child socket
254	 * before it has been accepted and the accepter has set up their
255	 * data_ready.. we only want to queue listen work for our listening
256	 * socket
257	 *
258	 * (*ready)() may be null if we are racing with netns delete, and
259	 * the listen socket is being torn down.
260	 */
261	if (sk->sk_state == TCP_LISTEN)
262		rds_tcp_accept_work(sk);
263	else
264		ready = rds_tcp_listen_sock_def_readable(sock_net(sk));
265
266out:
267	read_unlock_bh(&sk->sk_callback_lock);
268	if (ready)
269		ready(sk);
270}
271
272struct socket *rds_tcp_listen_init(struct net *net, bool isv6)
273{
274	struct socket *sock = NULL;
275	struct sockaddr_storage ss;
276	struct sockaddr_in6 *sin6;
277	struct sockaddr_in *sin;
278	int addr_len;
279	int ret;
280
281	ret = sock_create_kern(net, isv6 ? PF_INET6 : PF_INET, SOCK_STREAM,
282			       IPPROTO_TCP, &sock);
283	if (ret < 0) {
284		rdsdebug("could not create %s listener socket: %d\n",
285			 isv6 ? "IPv6" : "IPv4", ret);
286		goto out;
287	}
288
289	sock->sk->sk_reuse = SK_CAN_REUSE;
290	tcp_sock_set_nodelay(sock->sk);
291
292	write_lock_bh(&sock->sk->sk_callback_lock);
293	sock->sk->sk_user_data = sock->sk->sk_data_ready;
294	sock->sk->sk_data_ready = rds_tcp_listen_data_ready;
295	write_unlock_bh(&sock->sk->sk_callback_lock);
296
297	if (isv6) {
298		sin6 = (struct sockaddr_in6 *)&ss;
299		sin6->sin6_family = PF_INET6;
300		sin6->sin6_addr = in6addr_any;
301		sin6->sin6_port = (__force u16)htons(RDS_TCP_PORT);
302		sin6->sin6_scope_id = 0;
303		sin6->sin6_flowinfo = 0;
304		addr_len = sizeof(*sin6);
305	} else {
306		sin = (struct sockaddr_in *)&ss;
307		sin->sin_family = PF_INET;
308		sin->sin_addr.s_addr = INADDR_ANY;
309		sin->sin_port = (__force u16)htons(RDS_TCP_PORT);
310		addr_len = sizeof(*sin);
311	}
312
313	ret = kernel_bind(sock, (struct sockaddr *)&ss, addr_len);
314	if (ret < 0) {
315		rdsdebug("could not bind %s listener socket: %d\n",
316			 isv6 ? "IPv6" : "IPv4", ret);
317		goto out;
318	}
319
320	ret = sock->ops->listen(sock, 64);
321	if (ret < 0)
322		goto out;
323
324	return sock;
325out:
326	if (sock)
327		sock_release(sock);
328	return NULL;
329}
330
331void rds_tcp_listen_stop(struct socket *sock, struct work_struct *acceptor)
332{
333	struct sock *sk;
334
335	if (!sock)
336		return;
337
338	sk = sock->sk;
339
340	/* serialize with and prevent further callbacks */
341	lock_sock(sk);
342	write_lock_bh(&sk->sk_callback_lock);
343	if (sk->sk_user_data) {
344		sk->sk_data_ready = sk->sk_user_data;
345		sk->sk_user_data = NULL;
346	}
347	write_unlock_bh(&sk->sk_callback_lock);
348	release_sock(sk);
349
350	/* wait for accepts to stop and close the socket */
351	flush_workqueue(rds_wq);
352	flush_work(acceptor);
353	sock_release(sock);
354}
355