1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4 *
5 *  Swap reorganised 29.12.95, Stephen Tweedie.
6 *  kswapd added: 7.1.96  sct
7 *  Removed kswapd_ctl limits, and swap out as many pages as needed
8 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 *  Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/mm.h>
16#include <linux/sched/mm.h>
17#include <linux/module.h>
18#include <linux/gfp.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
24#include <linux/vmpressure.h>
25#include <linux/vmstat.h>
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30#include <linux/mm_inline.h>
31#include <linux/backing-dev.h>
32#include <linux/rmap.h>
33#include <linux/topology.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/compaction.h>
37#include <linux/notifier.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/migrate.h>
43#include <linux/delayacct.h>
44#include <linux/sysctl.h>
45#include <linux/memory-tiers.h>
46#include <linux/oom.h>
47#include <linux/pagevec.h>
48#include <linux/prefetch.h>
49#include <linux/printk.h>
50#include <linux/dax.h>
51#include <linux/psi.h>
52#include <linux/pagewalk.h>
53#include <linux/shmem_fs.h>
54#include <linux/ctype.h>
55#include <linux/debugfs.h>
56#include <linux/khugepaged.h>
57#include <linux/rculist_nulls.h>
58#include <linux/random.h>
59
60#include <asm/tlbflush.h>
61#include <asm/div64.h>
62
63#include <linux/swapops.h>
64#include <linux/balloon_compaction.h>
65#include <linux/sched/sysctl.h>
66
67#include "internal.h"
68#include "swap.h"
69
70#define CREATE_TRACE_POINTS
71#include <trace/events/vmscan.h>
72
73struct scan_control {
74	/* How many pages shrink_list() should reclaim */
75	unsigned long nr_to_reclaim;
76
77	/*
78	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79	 * are scanned.
80	 */
81	nodemask_t	*nodemask;
82
83	/*
84	 * The memory cgroup that hit its limit and as a result is the
85	 * primary target of this reclaim invocation.
86	 */
87	struct mem_cgroup *target_mem_cgroup;
88
89	/*
90	 * Scan pressure balancing between anon and file LRUs
91	 */
92	unsigned long	anon_cost;
93	unsigned long	file_cost;
94
95	/* Can active folios be deactivated as part of reclaim? */
96#define DEACTIVATE_ANON 1
97#define DEACTIVATE_FILE 2
98	unsigned int may_deactivate:2;
99	unsigned int force_deactivate:1;
100	unsigned int skipped_deactivate:1;
101
102	/* Writepage batching in laptop mode; RECLAIM_WRITE */
103	unsigned int may_writepage:1;
104
105	/* Can mapped folios be reclaimed? */
106	unsigned int may_unmap:1;
107
108	/* Can folios be swapped as part of reclaim? */
109	unsigned int may_swap:1;
110
111	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
112	unsigned int no_cache_trim_mode:1;
113
114	/* Has cache_trim_mode failed at least once? */
115	unsigned int cache_trim_mode_failed:1;
116
117	/* Proactive reclaim invoked by userspace through memory.reclaim */
118	unsigned int proactive:1;
119
120	/*
121	 * Cgroup memory below memory.low is protected as long as we
122	 * don't threaten to OOM. If any cgroup is reclaimed at
123	 * reduced force or passed over entirely due to its memory.low
124	 * setting (memcg_low_skipped), and nothing is reclaimed as a
125	 * result, then go back for one more cycle that reclaims the protected
126	 * memory (memcg_low_reclaim) to avert OOM.
127	 */
128	unsigned int memcg_low_reclaim:1;
129	unsigned int memcg_low_skipped:1;
130
131	unsigned int hibernation_mode:1;
132
133	/* One of the zones is ready for compaction */
134	unsigned int compaction_ready:1;
135
136	/* There is easily reclaimable cold cache in the current node */
137	unsigned int cache_trim_mode:1;
138
139	/* The file folios on the current node are dangerously low */
140	unsigned int file_is_tiny:1;
141
142	/* Always discard instead of demoting to lower tier memory */
143	unsigned int no_demotion:1;
144
145	/* Allocation order */
146	s8 order;
147
148	/* Scan (total_size >> priority) pages at once */
149	s8 priority;
150
151	/* The highest zone to isolate folios for reclaim from */
152	s8 reclaim_idx;
153
154	/* This context's GFP mask */
155	gfp_t gfp_mask;
156
157	/* Incremented by the number of inactive pages that were scanned */
158	unsigned long nr_scanned;
159
160	/* Number of pages freed so far during a call to shrink_zones() */
161	unsigned long nr_reclaimed;
162
163	struct {
164		unsigned int dirty;
165		unsigned int unqueued_dirty;
166		unsigned int congested;
167		unsigned int writeback;
168		unsigned int immediate;
169		unsigned int file_taken;
170		unsigned int taken;
171	} nr;
172
173	/* for recording the reclaimed slab by now */
174	struct reclaim_state reclaim_state;
175};
176
177#ifdef ARCH_HAS_PREFETCHW
178#define prefetchw_prev_lru_folio(_folio, _base, _field)			\
179	do {								\
180		if ((_folio)->lru.prev != _base) {			\
181			struct folio *prev;				\
182									\
183			prev = lru_to_folio(&(_folio->lru));		\
184			prefetchw(&prev->_field);			\
185		}							\
186	} while (0)
187#else
188#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
189#endif
190
191/*
192 * From 0 .. 200.  Higher means more swappy.
193 */
194int vm_swappiness = 60;
195
196#ifdef CONFIG_MEMCG
197
198/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
199static bool cgroup_reclaim(struct scan_control *sc)
200{
201	return sc->target_mem_cgroup;
202}
203
204/*
205 * Returns true for reclaim on the root cgroup. This is true for direct
206 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
207 */
208static bool root_reclaim(struct scan_control *sc)
209{
210	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
211}
212
213/**
214 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
215 * @sc: scan_control in question
216 *
217 * The normal page dirty throttling mechanism in balance_dirty_pages() is
218 * completely broken with the legacy memcg and direct stalling in
219 * shrink_folio_list() is used for throttling instead, which lacks all the
220 * niceties such as fairness, adaptive pausing, bandwidth proportional
221 * allocation and configurability.
222 *
223 * This function tests whether the vmscan currently in progress can assume
224 * that the normal dirty throttling mechanism is operational.
225 */
226static bool writeback_throttling_sane(struct scan_control *sc)
227{
228	if (!cgroup_reclaim(sc))
229		return true;
230#ifdef CONFIG_CGROUP_WRITEBACK
231	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
232		return true;
233#endif
234	return false;
235}
236#else
237static bool cgroup_reclaim(struct scan_control *sc)
238{
239	return false;
240}
241
242static bool root_reclaim(struct scan_control *sc)
243{
244	return true;
245}
246
247static bool writeback_throttling_sane(struct scan_control *sc)
248{
249	return true;
250}
251#endif
252
253static void set_task_reclaim_state(struct task_struct *task,
254				   struct reclaim_state *rs)
255{
256	/* Check for an overwrite */
257	WARN_ON_ONCE(rs && task->reclaim_state);
258
259	/* Check for the nulling of an already-nulled member */
260	WARN_ON_ONCE(!rs && !task->reclaim_state);
261
262	task->reclaim_state = rs;
263}
264
265/*
266 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
267 * scan_control->nr_reclaimed.
268 */
269static void flush_reclaim_state(struct scan_control *sc)
270{
271	/*
272	 * Currently, reclaim_state->reclaimed includes three types of pages
273	 * freed outside of vmscan:
274	 * (1) Slab pages.
275	 * (2) Clean file pages from pruned inodes (on highmem systems).
276	 * (3) XFS freed buffer pages.
277	 *
278	 * For all of these cases, we cannot universally link the pages to a
279	 * single memcg. For example, a memcg-aware shrinker can free one object
280	 * charged to the target memcg, causing an entire page to be freed.
281	 * If we count the entire page as reclaimed from the memcg, we end up
282	 * overestimating the reclaimed amount (potentially under-reclaiming).
283	 *
284	 * Only count such pages for global reclaim to prevent under-reclaiming
285	 * from the target memcg; preventing unnecessary retries during memcg
286	 * charging and false positives from proactive reclaim.
287	 *
288	 * For uncommon cases where the freed pages were actually mostly
289	 * charged to the target memcg, we end up underestimating the reclaimed
290	 * amount. This should be fine. The freed pages will be uncharged
291	 * anyway, even if they are not counted here properly, and we will be
292	 * able to make forward progress in charging (which is usually in a
293	 * retry loop).
294	 *
295	 * We can go one step further, and report the uncharged objcg pages in
296	 * memcg reclaim, to make reporting more accurate and reduce
297	 * underestimation, but it's probably not worth the complexity for now.
298	 */
299	if (current->reclaim_state && root_reclaim(sc)) {
300		sc->nr_reclaimed += current->reclaim_state->reclaimed;
301		current->reclaim_state->reclaimed = 0;
302	}
303}
304
305static bool can_demote(int nid, struct scan_control *sc)
306{
307	if (!numa_demotion_enabled)
308		return false;
309	if (sc && sc->no_demotion)
310		return false;
311	if (next_demotion_node(nid) == NUMA_NO_NODE)
312		return false;
313
314	return true;
315}
316
317static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
318					  int nid,
319					  struct scan_control *sc)
320{
321	if (memcg == NULL) {
322		/*
323		 * For non-memcg reclaim, is there
324		 * space in any swap device?
325		 */
326		if (get_nr_swap_pages() > 0)
327			return true;
328	} else {
329		/* Is the memcg below its swap limit? */
330		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
331			return true;
332	}
333
334	/*
335	 * The page can not be swapped.
336	 *
337	 * Can it be reclaimed from this node via demotion?
338	 */
339	return can_demote(nid, sc);
340}
341
342/*
343 * This misses isolated folios which are not accounted for to save counters.
344 * As the data only determines if reclaim or compaction continues, it is
345 * not expected that isolated folios will be a dominating factor.
346 */
347unsigned long zone_reclaimable_pages(struct zone *zone)
348{
349	unsigned long nr;
350
351	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
352		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
353	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
354		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
355			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
356
357	return nr;
358}
359
360/**
361 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
362 * @lruvec: lru vector
363 * @lru: lru to use
364 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
365 */
366static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
367				     int zone_idx)
368{
369	unsigned long size = 0;
370	int zid;
371
372	for (zid = 0; zid <= zone_idx; zid++) {
373		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
374
375		if (!managed_zone(zone))
376			continue;
377
378		if (!mem_cgroup_disabled())
379			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
380		else
381			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
382	}
383	return size;
384}
385
386static unsigned long drop_slab_node(int nid)
387{
388	unsigned long freed = 0;
389	struct mem_cgroup *memcg = NULL;
390
391	memcg = mem_cgroup_iter(NULL, NULL, NULL);
392	do {
393		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
394	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
395
396	return freed;
397}
398
399void drop_slab(void)
400{
401	int nid;
402	int shift = 0;
403	unsigned long freed;
404
405	do {
406		freed = 0;
407		for_each_online_node(nid) {
408			if (fatal_signal_pending(current))
409				return;
410
411			freed += drop_slab_node(nid);
412		}
413	} while ((freed >> shift++) > 1);
414}
415
416static int reclaimer_offset(void)
417{
418	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
419			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
420	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
421			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
422	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
423			PGSCAN_DIRECT - PGSCAN_KSWAPD);
424	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
425			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
426
427	if (current_is_kswapd())
428		return 0;
429	if (current_is_khugepaged())
430		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
431	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
432}
433
434static inline int is_page_cache_freeable(struct folio *folio)
435{
436	/*
437	 * A freeable page cache folio is referenced only by the caller
438	 * that isolated the folio, the page cache and optional filesystem
439	 * private data at folio->private.
440	 */
441	return folio_ref_count(folio) - folio_test_private(folio) ==
442		1 + folio_nr_pages(folio);
443}
444
445/*
446 * We detected a synchronous write error writing a folio out.  Probably
447 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
448 * fsync(), msync() or close().
449 *
450 * The tricky part is that after writepage we cannot touch the mapping: nothing
451 * prevents it from being freed up.  But we have a ref on the folio and once
452 * that folio is locked, the mapping is pinned.
453 *
454 * We're allowed to run sleeping folio_lock() here because we know the caller has
455 * __GFP_FS.
456 */
457static void handle_write_error(struct address_space *mapping,
458				struct folio *folio, int error)
459{
460	folio_lock(folio);
461	if (folio_mapping(folio) == mapping)
462		mapping_set_error(mapping, error);
463	folio_unlock(folio);
464}
465
466static bool skip_throttle_noprogress(pg_data_t *pgdat)
467{
468	int reclaimable = 0, write_pending = 0;
469	int i;
470
471	/*
472	 * If kswapd is disabled, reschedule if necessary but do not
473	 * throttle as the system is likely near OOM.
474	 */
475	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
476		return true;
477
478	/*
479	 * If there are a lot of dirty/writeback folios then do not
480	 * throttle as throttling will occur when the folios cycle
481	 * towards the end of the LRU if still under writeback.
482	 */
483	for (i = 0; i < MAX_NR_ZONES; i++) {
484		struct zone *zone = pgdat->node_zones + i;
485
486		if (!managed_zone(zone))
487			continue;
488
489		reclaimable += zone_reclaimable_pages(zone);
490		write_pending += zone_page_state_snapshot(zone,
491						  NR_ZONE_WRITE_PENDING);
492	}
493	if (2 * write_pending <= reclaimable)
494		return true;
495
496	return false;
497}
498
499void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
500{
501	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
502	long timeout, ret;
503	DEFINE_WAIT(wait);
504
505	/*
506	 * Do not throttle user workers, kthreads other than kswapd or
507	 * workqueues. They may be required for reclaim to make
508	 * forward progress (e.g. journalling workqueues or kthreads).
509	 */
510	if (!current_is_kswapd() &&
511	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
512		cond_resched();
513		return;
514	}
515
516	/*
517	 * These figures are pulled out of thin air.
518	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
519	 * parallel reclaimers which is a short-lived event so the timeout is
520	 * short. Failing to make progress or waiting on writeback are
521	 * potentially long-lived events so use a longer timeout. This is shaky
522	 * logic as a failure to make progress could be due to anything from
523	 * writeback to a slow device to excessive referenced folios at the tail
524	 * of the inactive LRU.
525	 */
526	switch(reason) {
527	case VMSCAN_THROTTLE_WRITEBACK:
528		timeout = HZ/10;
529
530		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
531			WRITE_ONCE(pgdat->nr_reclaim_start,
532				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
533		}
534
535		break;
536	case VMSCAN_THROTTLE_CONGESTED:
537		fallthrough;
538	case VMSCAN_THROTTLE_NOPROGRESS:
539		if (skip_throttle_noprogress(pgdat)) {
540			cond_resched();
541			return;
542		}
543
544		timeout = 1;
545
546		break;
547	case VMSCAN_THROTTLE_ISOLATED:
548		timeout = HZ/50;
549		break;
550	default:
551		WARN_ON_ONCE(1);
552		timeout = HZ;
553		break;
554	}
555
556	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
557	ret = schedule_timeout(timeout);
558	finish_wait(wqh, &wait);
559
560	if (reason == VMSCAN_THROTTLE_WRITEBACK)
561		atomic_dec(&pgdat->nr_writeback_throttled);
562
563	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
564				jiffies_to_usecs(timeout - ret),
565				reason);
566}
567
568/*
569 * Account for folios written if tasks are throttled waiting on dirty
570 * folios to clean. If enough folios have been cleaned since throttling
571 * started then wakeup the throttled tasks.
572 */
573void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
574							int nr_throttled)
575{
576	unsigned long nr_written;
577
578	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
579
580	/*
581	 * This is an inaccurate read as the per-cpu deltas may not
582	 * be synchronised. However, given that the system is
583	 * writeback throttled, it is not worth taking the penalty
584	 * of getting an accurate count. At worst, the throttle
585	 * timeout guarantees forward progress.
586	 */
587	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
588		READ_ONCE(pgdat->nr_reclaim_start);
589
590	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
591		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
592}
593
594/* possible outcome of pageout() */
595typedef enum {
596	/* failed to write folio out, folio is locked */
597	PAGE_KEEP,
598	/* move folio to the active list, folio is locked */
599	PAGE_ACTIVATE,
600	/* folio has been sent to the disk successfully, folio is unlocked */
601	PAGE_SUCCESS,
602	/* folio is clean and locked */
603	PAGE_CLEAN,
604} pageout_t;
605
606/*
607 * pageout is called by shrink_folio_list() for each dirty folio.
608 * Calls ->writepage().
609 */
610static pageout_t pageout(struct folio *folio, struct address_space *mapping,
611			 struct swap_iocb **plug)
612{
613	/*
614	 * If the folio is dirty, only perform writeback if that write
615	 * will be non-blocking.  To prevent this allocation from being
616	 * stalled by pagecache activity.  But note that there may be
617	 * stalls if we need to run get_block().  We could test
618	 * PagePrivate for that.
619	 *
620	 * If this process is currently in __generic_file_write_iter() against
621	 * this folio's queue, we can perform writeback even if that
622	 * will block.
623	 *
624	 * If the folio is swapcache, write it back even if that would
625	 * block, for some throttling. This happens by accident, because
626	 * swap_backing_dev_info is bust: it doesn't reflect the
627	 * congestion state of the swapdevs.  Easy to fix, if needed.
628	 */
629	if (!is_page_cache_freeable(folio))
630		return PAGE_KEEP;
631	if (!mapping) {
632		/*
633		 * Some data journaling orphaned folios can have
634		 * folio->mapping == NULL while being dirty with clean buffers.
635		 */
636		if (folio_test_private(folio)) {
637			if (try_to_free_buffers(folio)) {
638				folio_clear_dirty(folio);
639				pr_info("%s: orphaned folio\n", __func__);
640				return PAGE_CLEAN;
641			}
642		}
643		return PAGE_KEEP;
644	}
645	if (mapping->a_ops->writepage == NULL)
646		return PAGE_ACTIVATE;
647
648	if (folio_clear_dirty_for_io(folio)) {
649		int res;
650		struct writeback_control wbc = {
651			.sync_mode = WB_SYNC_NONE,
652			.nr_to_write = SWAP_CLUSTER_MAX,
653			.range_start = 0,
654			.range_end = LLONG_MAX,
655			.for_reclaim = 1,
656			.swap_plug = plug,
657		};
658
659		folio_set_reclaim(folio);
660		res = mapping->a_ops->writepage(&folio->page, &wbc);
661		if (res < 0)
662			handle_write_error(mapping, folio, res);
663		if (res == AOP_WRITEPAGE_ACTIVATE) {
664			folio_clear_reclaim(folio);
665			return PAGE_ACTIVATE;
666		}
667
668		if (!folio_test_writeback(folio)) {
669			/* synchronous write or broken a_ops? */
670			folio_clear_reclaim(folio);
671		}
672		trace_mm_vmscan_write_folio(folio);
673		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
674		return PAGE_SUCCESS;
675	}
676
677	return PAGE_CLEAN;
678}
679
680/*
681 * Same as remove_mapping, but if the folio is removed from the mapping, it
682 * gets returned with a refcount of 0.
683 */
684static int __remove_mapping(struct address_space *mapping, struct folio *folio,
685			    bool reclaimed, struct mem_cgroup *target_memcg)
686{
687	int refcount;
688	void *shadow = NULL;
689
690	BUG_ON(!folio_test_locked(folio));
691	BUG_ON(mapping != folio_mapping(folio));
692
693	if (!folio_test_swapcache(folio))
694		spin_lock(&mapping->host->i_lock);
695	xa_lock_irq(&mapping->i_pages);
696	/*
697	 * The non racy check for a busy folio.
698	 *
699	 * Must be careful with the order of the tests. When someone has
700	 * a ref to the folio, it may be possible that they dirty it then
701	 * drop the reference. So if the dirty flag is tested before the
702	 * refcount here, then the following race may occur:
703	 *
704	 * get_user_pages(&page);
705	 * [user mapping goes away]
706	 * write_to(page);
707	 *				!folio_test_dirty(folio)    [good]
708	 * folio_set_dirty(folio);
709	 * folio_put(folio);
710	 *				!refcount(folio)   [good, discard it]
711	 *
712	 * [oops, our write_to data is lost]
713	 *
714	 * Reversing the order of the tests ensures such a situation cannot
715	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
716	 * load is not satisfied before that of folio->_refcount.
717	 *
718	 * Note that if the dirty flag is always set via folio_mark_dirty,
719	 * and thus under the i_pages lock, then this ordering is not required.
720	 */
721	refcount = 1 + folio_nr_pages(folio);
722	if (!folio_ref_freeze(folio, refcount))
723		goto cannot_free;
724	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
725	if (unlikely(folio_test_dirty(folio))) {
726		folio_ref_unfreeze(folio, refcount);
727		goto cannot_free;
728	}
729
730	if (folio_test_swapcache(folio)) {
731		swp_entry_t swap = folio->swap;
732
733		if (reclaimed && !mapping_exiting(mapping))
734			shadow = workingset_eviction(folio, target_memcg);
735		__delete_from_swap_cache(folio, swap, shadow);
736		mem_cgroup_swapout(folio, swap);
737		xa_unlock_irq(&mapping->i_pages);
738		put_swap_folio(folio, swap);
739	} else {
740		void (*free_folio)(struct folio *);
741
742		free_folio = mapping->a_ops->free_folio;
743		/*
744		 * Remember a shadow entry for reclaimed file cache in
745		 * order to detect refaults, thus thrashing, later on.
746		 *
747		 * But don't store shadows in an address space that is
748		 * already exiting.  This is not just an optimization,
749		 * inode reclaim needs to empty out the radix tree or
750		 * the nodes are lost.  Don't plant shadows behind its
751		 * back.
752		 *
753		 * We also don't store shadows for DAX mappings because the
754		 * only page cache folios found in these are zero pages
755		 * covering holes, and because we don't want to mix DAX
756		 * exceptional entries and shadow exceptional entries in the
757		 * same address_space.
758		 */
759		if (reclaimed && folio_is_file_lru(folio) &&
760		    !mapping_exiting(mapping) && !dax_mapping(mapping))
761			shadow = workingset_eviction(folio, target_memcg);
762		__filemap_remove_folio(folio, shadow);
763		xa_unlock_irq(&mapping->i_pages);
764		if (mapping_shrinkable(mapping))
765			inode_add_lru(mapping->host);
766		spin_unlock(&mapping->host->i_lock);
767
768		if (free_folio)
769			free_folio(folio);
770	}
771
772	return 1;
773
774cannot_free:
775	xa_unlock_irq(&mapping->i_pages);
776	if (!folio_test_swapcache(folio))
777		spin_unlock(&mapping->host->i_lock);
778	return 0;
779}
780
781/**
782 * remove_mapping() - Attempt to remove a folio from its mapping.
783 * @mapping: The address space.
784 * @folio: The folio to remove.
785 *
786 * If the folio is dirty, under writeback or if someone else has a ref
787 * on it, removal will fail.
788 * Return: The number of pages removed from the mapping.  0 if the folio
789 * could not be removed.
790 * Context: The caller should have a single refcount on the folio and
791 * hold its lock.
792 */
793long remove_mapping(struct address_space *mapping, struct folio *folio)
794{
795	if (__remove_mapping(mapping, folio, false, NULL)) {
796		/*
797		 * Unfreezing the refcount with 1 effectively
798		 * drops the pagecache ref for us without requiring another
799		 * atomic operation.
800		 */
801		folio_ref_unfreeze(folio, 1);
802		return folio_nr_pages(folio);
803	}
804	return 0;
805}
806
807/**
808 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
809 * @folio: Folio to be returned to an LRU list.
810 *
811 * Add previously isolated @folio to appropriate LRU list.
812 * The folio may still be unevictable for other reasons.
813 *
814 * Context: lru_lock must not be held, interrupts must be enabled.
815 */
816void folio_putback_lru(struct folio *folio)
817{
818	folio_add_lru(folio);
819	folio_put(folio);		/* drop ref from isolate */
820}
821
822enum folio_references {
823	FOLIOREF_RECLAIM,
824	FOLIOREF_RECLAIM_CLEAN,
825	FOLIOREF_KEEP,
826	FOLIOREF_ACTIVATE,
827};
828
829static enum folio_references folio_check_references(struct folio *folio,
830						  struct scan_control *sc)
831{
832	int referenced_ptes, referenced_folio;
833	unsigned long vm_flags;
834
835	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
836					   &vm_flags);
837	referenced_folio = folio_test_clear_referenced(folio);
838
839	/*
840	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
841	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
842	 */
843	if (vm_flags & VM_LOCKED)
844		return FOLIOREF_ACTIVATE;
845
846	/* rmap lock contention: rotate */
847	if (referenced_ptes == -1)
848		return FOLIOREF_KEEP;
849
850	if (referenced_ptes) {
851		/*
852		 * All mapped folios start out with page table
853		 * references from the instantiating fault, so we need
854		 * to look twice if a mapped file/anon folio is used more
855		 * than once.
856		 *
857		 * Mark it and spare it for another trip around the
858		 * inactive list.  Another page table reference will
859		 * lead to its activation.
860		 *
861		 * Note: the mark is set for activated folios as well
862		 * so that recently deactivated but used folios are
863		 * quickly recovered.
864		 */
865		folio_set_referenced(folio);
866
867		if (referenced_folio || referenced_ptes > 1)
868			return FOLIOREF_ACTIVATE;
869
870		/*
871		 * Activate file-backed executable folios after first usage.
872		 */
873		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
874			return FOLIOREF_ACTIVATE;
875
876		return FOLIOREF_KEEP;
877	}
878
879	/* Reclaim if clean, defer dirty folios to writeback */
880	if (referenced_folio && folio_is_file_lru(folio))
881		return FOLIOREF_RECLAIM_CLEAN;
882
883	return FOLIOREF_RECLAIM;
884}
885
886/* Check if a folio is dirty or under writeback */
887static void folio_check_dirty_writeback(struct folio *folio,
888				       bool *dirty, bool *writeback)
889{
890	struct address_space *mapping;
891
892	/*
893	 * Anonymous folios are not handled by flushers and must be written
894	 * from reclaim context. Do not stall reclaim based on them.
895	 * MADV_FREE anonymous folios are put into inactive file list too.
896	 * They could be mistakenly treated as file lru. So further anon
897	 * test is needed.
898	 */
899	if (!folio_is_file_lru(folio) ||
900	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
901		*dirty = false;
902		*writeback = false;
903		return;
904	}
905
906	/* By default assume that the folio flags are accurate */
907	*dirty = folio_test_dirty(folio);
908	*writeback = folio_test_writeback(folio);
909
910	/* Verify dirty/writeback state if the filesystem supports it */
911	if (!folio_test_private(folio))
912		return;
913
914	mapping = folio_mapping(folio);
915	if (mapping && mapping->a_ops->is_dirty_writeback)
916		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
917}
918
919static struct folio *alloc_demote_folio(struct folio *src,
920		unsigned long private)
921{
922	struct folio *dst;
923	nodemask_t *allowed_mask;
924	struct migration_target_control *mtc;
925
926	mtc = (struct migration_target_control *)private;
927
928	allowed_mask = mtc->nmask;
929	/*
930	 * make sure we allocate from the target node first also trying to
931	 * demote or reclaim pages from the target node via kswapd if we are
932	 * low on free memory on target node. If we don't do this and if
933	 * we have free memory on the slower(lower) memtier, we would start
934	 * allocating pages from slower(lower) memory tiers without even forcing
935	 * a demotion of cold pages from the target memtier. This can result
936	 * in the kernel placing hot pages in slower(lower) memory tiers.
937	 */
938	mtc->nmask = NULL;
939	mtc->gfp_mask |= __GFP_THISNODE;
940	dst = alloc_migration_target(src, (unsigned long)mtc);
941	if (dst)
942		return dst;
943
944	mtc->gfp_mask &= ~__GFP_THISNODE;
945	mtc->nmask = allowed_mask;
946
947	return alloc_migration_target(src, (unsigned long)mtc);
948}
949
950/*
951 * Take folios on @demote_folios and attempt to demote them to another node.
952 * Folios which are not demoted are left on @demote_folios.
953 */
954static unsigned int demote_folio_list(struct list_head *demote_folios,
955				     struct pglist_data *pgdat)
956{
957	int target_nid = next_demotion_node(pgdat->node_id);
958	unsigned int nr_succeeded;
959	nodemask_t allowed_mask;
960
961	struct migration_target_control mtc = {
962		/*
963		 * Allocate from 'node', or fail quickly and quietly.
964		 * When this happens, 'page' will likely just be discarded
965		 * instead of migrated.
966		 */
967		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
968			__GFP_NOMEMALLOC | GFP_NOWAIT,
969		.nid = target_nid,
970		.nmask = &allowed_mask,
971		.reason = MR_DEMOTION,
972	};
973
974	if (list_empty(demote_folios))
975		return 0;
976
977	if (target_nid == NUMA_NO_NODE)
978		return 0;
979
980	node_get_allowed_targets(pgdat, &allowed_mask);
981
982	/* Demotion ignores all cpuset and mempolicy settings */
983	migrate_pages(demote_folios, alloc_demote_folio, NULL,
984		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
985		      &nr_succeeded);
986
987	mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
988			    nr_succeeded);
989
990	return nr_succeeded;
991}
992
993static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
994{
995	if (gfp_mask & __GFP_FS)
996		return true;
997	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
998		return false;
999	/*
1000	 * We can "enter_fs" for swap-cache with only __GFP_IO
1001	 * providing this isn't SWP_FS_OPS.
1002	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1003	 * but that will never affect SWP_FS_OPS, so the data_race
1004	 * is safe.
1005	 */
1006	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1007}
1008
1009/*
1010 * shrink_folio_list() returns the number of reclaimed pages
1011 */
1012static unsigned int shrink_folio_list(struct list_head *folio_list,
1013		struct pglist_data *pgdat, struct scan_control *sc,
1014		struct reclaim_stat *stat, bool ignore_references)
1015{
1016	struct folio_batch free_folios;
1017	LIST_HEAD(ret_folios);
1018	LIST_HEAD(demote_folios);
1019	unsigned int nr_reclaimed = 0;
1020	unsigned int pgactivate = 0;
1021	bool do_demote_pass;
1022	struct swap_iocb *plug = NULL;
1023
1024	folio_batch_init(&free_folios);
1025	memset(stat, 0, sizeof(*stat));
1026	cond_resched();
1027	do_demote_pass = can_demote(pgdat->node_id, sc);
1028
1029retry:
1030	while (!list_empty(folio_list)) {
1031		struct address_space *mapping;
1032		struct folio *folio;
1033		enum folio_references references = FOLIOREF_RECLAIM;
1034		bool dirty, writeback;
1035		unsigned int nr_pages;
1036
1037		cond_resched();
1038
1039		folio = lru_to_folio(folio_list);
1040		list_del(&folio->lru);
1041
1042		if (!folio_trylock(folio))
1043			goto keep;
1044
1045		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1046
1047		nr_pages = folio_nr_pages(folio);
1048
1049		/* Account the number of base pages */
1050		sc->nr_scanned += nr_pages;
1051
1052		if (unlikely(!folio_evictable(folio)))
1053			goto activate_locked;
1054
1055		if (!sc->may_unmap && folio_mapped(folio))
1056			goto keep_locked;
1057
1058		/* folio_update_gen() tried to promote this page? */
1059		if (lru_gen_enabled() && !ignore_references &&
1060		    folio_mapped(folio) && folio_test_referenced(folio))
1061			goto keep_locked;
1062
1063		/*
1064		 * The number of dirty pages determines if a node is marked
1065		 * reclaim_congested. kswapd will stall and start writing
1066		 * folios if the tail of the LRU is all dirty unqueued folios.
1067		 */
1068		folio_check_dirty_writeback(folio, &dirty, &writeback);
1069		if (dirty || writeback)
1070			stat->nr_dirty += nr_pages;
1071
1072		if (dirty && !writeback)
1073			stat->nr_unqueued_dirty += nr_pages;
1074
1075		/*
1076		 * Treat this folio as congested if folios are cycling
1077		 * through the LRU so quickly that the folios marked
1078		 * for immediate reclaim are making it to the end of
1079		 * the LRU a second time.
1080		 */
1081		if (writeback && folio_test_reclaim(folio))
1082			stat->nr_congested += nr_pages;
1083
1084		/*
1085		 * If a folio at the tail of the LRU is under writeback, there
1086		 * are three cases to consider.
1087		 *
1088		 * 1) If reclaim is encountering an excessive number
1089		 *    of folios under writeback and this folio has both
1090		 *    the writeback and reclaim flags set, then it
1091		 *    indicates that folios are being queued for I/O but
1092		 *    are being recycled through the LRU before the I/O
1093		 *    can complete. Waiting on the folio itself risks an
1094		 *    indefinite stall if it is impossible to writeback
1095		 *    the folio due to I/O error or disconnected storage
1096		 *    so instead note that the LRU is being scanned too
1097		 *    quickly and the caller can stall after the folio
1098		 *    list has been processed.
1099		 *
1100		 * 2) Global or new memcg reclaim encounters a folio that is
1101		 *    not marked for immediate reclaim, or the caller does not
1102		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1103		 *    not to fs). In this case mark the folio for immediate
1104		 *    reclaim and continue scanning.
1105		 *
1106		 *    Require may_enter_fs() because we would wait on fs, which
1107		 *    may not have submitted I/O yet. And the loop driver might
1108		 *    enter reclaim, and deadlock if it waits on a folio for
1109		 *    which it is needed to do the write (loop masks off
1110		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1111		 *    would probably show more reasons.
1112		 *
1113		 * 3) Legacy memcg encounters a folio that already has the
1114		 *    reclaim flag set. memcg does not have any dirty folio
1115		 *    throttling so we could easily OOM just because too many
1116		 *    folios are in writeback and there is nothing else to
1117		 *    reclaim. Wait for the writeback to complete.
1118		 *
1119		 * In cases 1) and 2) we activate the folios to get them out of
1120		 * the way while we continue scanning for clean folios on the
1121		 * inactive list and refilling from the active list. The
1122		 * observation here is that waiting for disk writes is more
1123		 * expensive than potentially causing reloads down the line.
1124		 * Since they're marked for immediate reclaim, they won't put
1125		 * memory pressure on the cache working set any longer than it
1126		 * takes to write them to disk.
1127		 */
1128		if (folio_test_writeback(folio)) {
1129			/* Case 1 above */
1130			if (current_is_kswapd() &&
1131			    folio_test_reclaim(folio) &&
1132			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1133				stat->nr_immediate += nr_pages;
1134				goto activate_locked;
1135
1136			/* Case 2 above */
1137			} else if (writeback_throttling_sane(sc) ||
1138			    !folio_test_reclaim(folio) ||
1139			    !may_enter_fs(folio, sc->gfp_mask)) {
1140				/*
1141				 * This is slightly racy -
1142				 * folio_end_writeback() might have
1143				 * just cleared the reclaim flag, then
1144				 * setting the reclaim flag here ends up
1145				 * interpreted as the readahead flag - but
1146				 * that does not matter enough to care.
1147				 * What we do want is for this folio to
1148				 * have the reclaim flag set next time
1149				 * memcg reclaim reaches the tests above,
1150				 * so it will then wait for writeback to
1151				 * avoid OOM; and it's also appropriate
1152				 * in global reclaim.
1153				 */
1154				folio_set_reclaim(folio);
1155				stat->nr_writeback += nr_pages;
1156				goto activate_locked;
1157
1158			/* Case 3 above */
1159			} else {
1160				folio_unlock(folio);
1161				folio_wait_writeback(folio);
1162				/* then go back and try same folio again */
1163				list_add_tail(&folio->lru, folio_list);
1164				continue;
1165			}
1166		}
1167
1168		if (!ignore_references)
1169			references = folio_check_references(folio, sc);
1170
1171		switch (references) {
1172		case FOLIOREF_ACTIVATE:
1173			goto activate_locked;
1174		case FOLIOREF_KEEP:
1175			stat->nr_ref_keep += nr_pages;
1176			goto keep_locked;
1177		case FOLIOREF_RECLAIM:
1178		case FOLIOREF_RECLAIM_CLEAN:
1179			; /* try to reclaim the folio below */
1180		}
1181
1182		/*
1183		 * Before reclaiming the folio, try to relocate
1184		 * its contents to another node.
1185		 */
1186		if (do_demote_pass &&
1187		    (thp_migration_supported() || !folio_test_large(folio))) {
1188			list_add(&folio->lru, &demote_folios);
1189			folio_unlock(folio);
1190			continue;
1191		}
1192
1193		/*
1194		 * Anonymous process memory has backing store?
1195		 * Try to allocate it some swap space here.
1196		 * Lazyfree folio could be freed directly
1197		 */
1198		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1199			if (!folio_test_swapcache(folio)) {
1200				if (!(sc->gfp_mask & __GFP_IO))
1201					goto keep_locked;
1202				if (folio_maybe_dma_pinned(folio))
1203					goto keep_locked;
1204				if (folio_test_large(folio)) {
1205					/* cannot split folio, skip it */
1206					if (!can_split_folio(folio, NULL))
1207						goto activate_locked;
1208					/*
1209					 * Split partially mapped folios right away.
1210					 * We can free the unmapped pages without IO.
1211					 */
1212					if (data_race(!list_empty(&folio->_deferred_list)) &&
1213					    split_folio_to_list(folio, folio_list))
1214						goto activate_locked;
1215				}
1216				if (!add_to_swap(folio)) {
1217					int __maybe_unused order = folio_order(folio);
1218
1219					if (!folio_test_large(folio))
1220						goto activate_locked_split;
1221					/* Fallback to swap normal pages */
1222					if (split_folio_to_list(folio, folio_list))
1223						goto activate_locked;
1224#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1225					if (nr_pages >= HPAGE_PMD_NR) {
1226						count_memcg_folio_events(folio,
1227							THP_SWPOUT_FALLBACK, 1);
1228						count_vm_event(THP_SWPOUT_FALLBACK);
1229					}
1230					count_mthp_stat(order, MTHP_STAT_ANON_SWPOUT_FALLBACK);
1231#endif
1232					if (!add_to_swap(folio))
1233						goto activate_locked_split;
1234				}
1235			}
1236		} else if (folio_test_swapbacked(folio) &&
1237			   folio_test_large(folio)) {
1238			/* Split shmem folio */
1239			if (split_folio_to_list(folio, folio_list))
1240				goto keep_locked;
1241		}
1242
1243		/*
1244		 * If the folio was split above, the tail pages will make
1245		 * their own pass through this function and be accounted
1246		 * then.
1247		 */
1248		if ((nr_pages > 1) && !folio_test_large(folio)) {
1249			sc->nr_scanned -= (nr_pages - 1);
1250			nr_pages = 1;
1251		}
1252
1253		/*
1254		 * The folio is mapped into the page tables of one or more
1255		 * processes. Try to unmap it here.
1256		 */
1257		if (folio_mapped(folio)) {
1258			enum ttu_flags flags = TTU_BATCH_FLUSH;
1259			bool was_swapbacked = folio_test_swapbacked(folio);
1260
1261			if (folio_test_pmd_mappable(folio))
1262				flags |= TTU_SPLIT_HUGE_PMD;
1263			/*
1264			 * Without TTU_SYNC, try_to_unmap will only begin to
1265			 * hold PTL from the first present PTE within a large
1266			 * folio. Some initial PTEs might be skipped due to
1267			 * races with parallel PTE writes in which PTEs can be
1268			 * cleared temporarily before being written new present
1269			 * values. This will lead to a large folio is still
1270			 * mapped while some subpages have been partially
1271			 * unmapped after try_to_unmap; TTU_SYNC helps
1272			 * try_to_unmap acquire PTL from the first PTE,
1273			 * eliminating the influence of temporary PTE values.
1274			 */
1275			if (folio_test_large(folio) && list_empty(&folio->_deferred_list))
1276				flags |= TTU_SYNC;
1277
1278			try_to_unmap(folio, flags);
1279			if (folio_mapped(folio)) {
1280				stat->nr_unmap_fail += nr_pages;
1281				if (!was_swapbacked &&
1282				    folio_test_swapbacked(folio))
1283					stat->nr_lazyfree_fail += nr_pages;
1284				goto activate_locked;
1285			}
1286		}
1287
1288		/*
1289		 * Folio is unmapped now so it cannot be newly pinned anymore.
1290		 * No point in trying to reclaim folio if it is pinned.
1291		 * Furthermore we don't want to reclaim underlying fs metadata
1292		 * if the folio is pinned and thus potentially modified by the
1293		 * pinning process as that may upset the filesystem.
1294		 */
1295		if (folio_maybe_dma_pinned(folio))
1296			goto activate_locked;
1297
1298		mapping = folio_mapping(folio);
1299		if (folio_test_dirty(folio)) {
1300			/*
1301			 * Only kswapd can writeback filesystem folios
1302			 * to avoid risk of stack overflow. But avoid
1303			 * injecting inefficient single-folio I/O into
1304			 * flusher writeback as much as possible: only
1305			 * write folios when we've encountered many
1306			 * dirty folios, and when we've already scanned
1307			 * the rest of the LRU for clean folios and see
1308			 * the same dirty folios again (with the reclaim
1309			 * flag set).
1310			 */
1311			if (folio_is_file_lru(folio) &&
1312			    (!current_is_kswapd() ||
1313			     !folio_test_reclaim(folio) ||
1314			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1315				/*
1316				 * Immediately reclaim when written back.
1317				 * Similar in principle to folio_deactivate()
1318				 * except we already have the folio isolated
1319				 * and know it's dirty
1320				 */
1321				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1322						nr_pages);
1323				folio_set_reclaim(folio);
1324
1325				goto activate_locked;
1326			}
1327
1328			if (references == FOLIOREF_RECLAIM_CLEAN)
1329				goto keep_locked;
1330			if (!may_enter_fs(folio, sc->gfp_mask))
1331				goto keep_locked;
1332			if (!sc->may_writepage)
1333				goto keep_locked;
1334
1335			/*
1336			 * Folio is dirty. Flush the TLB if a writable entry
1337			 * potentially exists to avoid CPU writes after I/O
1338			 * starts and then write it out here.
1339			 */
1340			try_to_unmap_flush_dirty();
1341			switch (pageout(folio, mapping, &plug)) {
1342			case PAGE_KEEP:
1343				goto keep_locked;
1344			case PAGE_ACTIVATE:
1345				goto activate_locked;
1346			case PAGE_SUCCESS:
1347				stat->nr_pageout += nr_pages;
1348
1349				if (folio_test_writeback(folio))
1350					goto keep;
1351				if (folio_test_dirty(folio))
1352					goto keep;
1353
1354				/*
1355				 * A synchronous write - probably a ramdisk.  Go
1356				 * ahead and try to reclaim the folio.
1357				 */
1358				if (!folio_trylock(folio))
1359					goto keep;
1360				if (folio_test_dirty(folio) ||
1361				    folio_test_writeback(folio))
1362					goto keep_locked;
1363				mapping = folio_mapping(folio);
1364				fallthrough;
1365			case PAGE_CLEAN:
1366				; /* try to free the folio below */
1367			}
1368		}
1369
1370		/*
1371		 * If the folio has buffers, try to free the buffer
1372		 * mappings associated with this folio. If we succeed
1373		 * we try to free the folio as well.
1374		 *
1375		 * We do this even if the folio is dirty.
1376		 * filemap_release_folio() does not perform I/O, but it
1377		 * is possible for a folio to have the dirty flag set,
1378		 * but it is actually clean (all its buffers are clean).
1379		 * This happens if the buffers were written out directly,
1380		 * with submit_bh(). ext3 will do this, as well as
1381		 * the blockdev mapping.  filemap_release_folio() will
1382		 * discover that cleanness and will drop the buffers
1383		 * and mark the folio clean - it can be freed.
1384		 *
1385		 * Rarely, folios can have buffers and no ->mapping.
1386		 * These are the folios which were not successfully
1387		 * invalidated in truncate_cleanup_folio().  We try to
1388		 * drop those buffers here and if that worked, and the
1389		 * folio is no longer mapped into process address space
1390		 * (refcount == 1) it can be freed.  Otherwise, leave
1391		 * the folio on the LRU so it is swappable.
1392		 */
1393		if (folio_needs_release(folio)) {
1394			if (!filemap_release_folio(folio, sc->gfp_mask))
1395				goto activate_locked;
1396			if (!mapping && folio_ref_count(folio) == 1) {
1397				folio_unlock(folio);
1398				if (folio_put_testzero(folio))
1399					goto free_it;
1400				else {
1401					/*
1402					 * rare race with speculative reference.
1403					 * the speculative reference will free
1404					 * this folio shortly, so we may
1405					 * increment nr_reclaimed here (and
1406					 * leave it off the LRU).
1407					 */
1408					nr_reclaimed += nr_pages;
1409					continue;
1410				}
1411			}
1412		}
1413
1414		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1415			/* follow __remove_mapping for reference */
1416			if (!folio_ref_freeze(folio, 1))
1417				goto keep_locked;
1418			/*
1419			 * The folio has only one reference left, which is
1420			 * from the isolation. After the caller puts the
1421			 * folio back on the lru and drops the reference, the
1422			 * folio will be freed anyway. It doesn't matter
1423			 * which lru it goes on. So we don't bother checking
1424			 * the dirty flag here.
1425			 */
1426			count_vm_events(PGLAZYFREED, nr_pages);
1427			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1428		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1429							 sc->target_mem_cgroup))
1430			goto keep_locked;
1431
1432		folio_unlock(folio);
1433free_it:
1434		/*
1435		 * Folio may get swapped out as a whole, need to account
1436		 * all pages in it.
1437		 */
1438		nr_reclaimed += nr_pages;
1439
1440		if (folio_test_large(folio) &&
1441		    folio_test_large_rmappable(folio))
1442			folio_undo_large_rmappable(folio);
1443		if (folio_batch_add(&free_folios, folio) == 0) {
1444			mem_cgroup_uncharge_folios(&free_folios);
1445			try_to_unmap_flush();
1446			free_unref_folios(&free_folios);
1447		}
1448		continue;
1449
1450activate_locked_split:
1451		/*
1452		 * The tail pages that are failed to add into swap cache
1453		 * reach here.  Fixup nr_scanned and nr_pages.
1454		 */
1455		if (nr_pages > 1) {
1456			sc->nr_scanned -= (nr_pages - 1);
1457			nr_pages = 1;
1458		}
1459activate_locked:
1460		/* Not a candidate for swapping, so reclaim swap space. */
1461		if (folio_test_swapcache(folio) &&
1462		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1463			folio_free_swap(folio);
1464		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1465		if (!folio_test_mlocked(folio)) {
1466			int type = folio_is_file_lru(folio);
1467			folio_set_active(folio);
1468			stat->nr_activate[type] += nr_pages;
1469			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1470		}
1471keep_locked:
1472		folio_unlock(folio);
1473keep:
1474		list_add(&folio->lru, &ret_folios);
1475		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1476				folio_test_unevictable(folio), folio);
1477	}
1478	/* 'folio_list' is always empty here */
1479
1480	/* Migrate folios selected for demotion */
1481	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1482	/* Folios that could not be demoted are still in @demote_folios */
1483	if (!list_empty(&demote_folios)) {
1484		/* Folios which weren't demoted go back on @folio_list */
1485		list_splice_init(&demote_folios, folio_list);
1486
1487		/*
1488		 * goto retry to reclaim the undemoted folios in folio_list if
1489		 * desired.
1490		 *
1491		 * Reclaiming directly from top tier nodes is not often desired
1492		 * due to it breaking the LRU ordering: in general memory
1493		 * should be reclaimed from lower tier nodes and demoted from
1494		 * top tier nodes.
1495		 *
1496		 * However, disabling reclaim from top tier nodes entirely
1497		 * would cause ooms in edge scenarios where lower tier memory
1498		 * is unreclaimable for whatever reason, eg memory being
1499		 * mlocked or too hot to reclaim. We can disable reclaim
1500		 * from top tier nodes in proactive reclaim though as that is
1501		 * not real memory pressure.
1502		 */
1503		if (!sc->proactive) {
1504			do_demote_pass = false;
1505			goto retry;
1506		}
1507	}
1508
1509	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1510
1511	mem_cgroup_uncharge_folios(&free_folios);
1512	try_to_unmap_flush();
1513	free_unref_folios(&free_folios);
1514
1515	list_splice(&ret_folios, folio_list);
1516	count_vm_events(PGACTIVATE, pgactivate);
1517
1518	if (plug)
1519		swap_write_unplug(plug);
1520	return nr_reclaimed;
1521}
1522
1523unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1524					   struct list_head *folio_list)
1525{
1526	struct scan_control sc = {
1527		.gfp_mask = GFP_KERNEL,
1528		.may_unmap = 1,
1529	};
1530	struct reclaim_stat stat;
1531	unsigned int nr_reclaimed;
1532	struct folio *folio, *next;
1533	LIST_HEAD(clean_folios);
1534	unsigned int noreclaim_flag;
1535
1536	list_for_each_entry_safe(folio, next, folio_list, lru) {
1537		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1538		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1539		    !folio_test_unevictable(folio)) {
1540			folio_clear_active(folio);
1541			list_move(&folio->lru, &clean_folios);
1542		}
1543	}
1544
1545	/*
1546	 * We should be safe here since we are only dealing with file pages and
1547	 * we are not kswapd and therefore cannot write dirty file pages. But
1548	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1549	 * change in the future.
1550	 */
1551	noreclaim_flag = memalloc_noreclaim_save();
1552	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1553					&stat, true);
1554	memalloc_noreclaim_restore(noreclaim_flag);
1555
1556	list_splice(&clean_folios, folio_list);
1557	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1558			    -(long)nr_reclaimed);
1559	/*
1560	 * Since lazyfree pages are isolated from file LRU from the beginning,
1561	 * they will rotate back to anonymous LRU in the end if it failed to
1562	 * discard so isolated count will be mismatched.
1563	 * Compensate the isolated count for both LRU lists.
1564	 */
1565	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1566			    stat.nr_lazyfree_fail);
1567	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1568			    -(long)stat.nr_lazyfree_fail);
1569	return nr_reclaimed;
1570}
1571
1572/*
1573 * Update LRU sizes after isolating pages. The LRU size updates must
1574 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1575 */
1576static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1577			enum lru_list lru, unsigned long *nr_zone_taken)
1578{
1579	int zid;
1580
1581	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1582		if (!nr_zone_taken[zid])
1583			continue;
1584
1585		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1586	}
1587
1588}
1589
1590#ifdef CONFIG_CMA
1591/*
1592 * It is waste of effort to scan and reclaim CMA pages if it is not available
1593 * for current allocation context. Kswapd can not be enrolled as it can not
1594 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1595 */
1596static bool skip_cma(struct folio *folio, struct scan_control *sc)
1597{
1598	return !current_is_kswapd() &&
1599			gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1600			folio_migratetype(folio) == MIGRATE_CMA;
1601}
1602#else
1603static bool skip_cma(struct folio *folio, struct scan_control *sc)
1604{
1605	return false;
1606}
1607#endif
1608
1609/*
1610 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1611 *
1612 * lruvec->lru_lock is heavily contended.  Some of the functions that
1613 * shrink the lists perform better by taking out a batch of pages
1614 * and working on them outside the LRU lock.
1615 *
1616 * For pagecache intensive workloads, this function is the hottest
1617 * spot in the kernel (apart from copy_*_user functions).
1618 *
1619 * Lru_lock must be held before calling this function.
1620 *
1621 * @nr_to_scan:	The number of eligible pages to look through on the list.
1622 * @lruvec:	The LRU vector to pull pages from.
1623 * @dst:	The temp list to put pages on to.
1624 * @nr_scanned:	The number of pages that were scanned.
1625 * @sc:		The scan_control struct for this reclaim session
1626 * @lru:	LRU list id for isolating
1627 *
1628 * returns how many pages were moved onto *@dst.
1629 */
1630static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1631		struct lruvec *lruvec, struct list_head *dst,
1632		unsigned long *nr_scanned, struct scan_control *sc,
1633		enum lru_list lru)
1634{
1635	struct list_head *src = &lruvec->lists[lru];
1636	unsigned long nr_taken = 0;
1637	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1638	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1639	unsigned long skipped = 0;
1640	unsigned long scan, total_scan, nr_pages;
1641	LIST_HEAD(folios_skipped);
1642
1643	total_scan = 0;
1644	scan = 0;
1645	while (scan < nr_to_scan && !list_empty(src)) {
1646		struct list_head *move_to = src;
1647		struct folio *folio;
1648
1649		folio = lru_to_folio(src);
1650		prefetchw_prev_lru_folio(folio, src, flags);
1651
1652		nr_pages = folio_nr_pages(folio);
1653		total_scan += nr_pages;
1654
1655		if (folio_zonenum(folio) > sc->reclaim_idx ||
1656				skip_cma(folio, sc)) {
1657			nr_skipped[folio_zonenum(folio)] += nr_pages;
1658			move_to = &folios_skipped;
1659			goto move;
1660		}
1661
1662		/*
1663		 * Do not count skipped folios because that makes the function
1664		 * return with no isolated folios if the LRU mostly contains
1665		 * ineligible folios.  This causes the VM to not reclaim any
1666		 * folios, triggering a premature OOM.
1667		 * Account all pages in a folio.
1668		 */
1669		scan += nr_pages;
1670
1671		if (!folio_test_lru(folio))
1672			goto move;
1673		if (!sc->may_unmap && folio_mapped(folio))
1674			goto move;
1675
1676		/*
1677		 * Be careful not to clear the lru flag until after we're
1678		 * sure the folio is not being freed elsewhere -- the
1679		 * folio release code relies on it.
1680		 */
1681		if (unlikely(!folio_try_get(folio)))
1682			goto move;
1683
1684		if (!folio_test_clear_lru(folio)) {
1685			/* Another thread is already isolating this folio */
1686			folio_put(folio);
1687			goto move;
1688		}
1689
1690		nr_taken += nr_pages;
1691		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1692		move_to = dst;
1693move:
1694		list_move(&folio->lru, move_to);
1695	}
1696
1697	/*
1698	 * Splice any skipped folios to the start of the LRU list. Note that
1699	 * this disrupts the LRU order when reclaiming for lower zones but
1700	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1701	 * scanning would soon rescan the same folios to skip and waste lots
1702	 * of cpu cycles.
1703	 */
1704	if (!list_empty(&folios_skipped)) {
1705		int zid;
1706
1707		list_splice(&folios_skipped, src);
1708		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1709			if (!nr_skipped[zid])
1710				continue;
1711
1712			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1713			skipped += nr_skipped[zid];
1714		}
1715	}
1716	*nr_scanned = total_scan;
1717	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1718				    total_scan, skipped, nr_taken, lru);
1719	update_lru_sizes(lruvec, lru, nr_zone_taken);
1720	return nr_taken;
1721}
1722
1723/**
1724 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1725 * @folio: Folio to isolate from its LRU list.
1726 *
1727 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1728 * corresponding to whatever LRU list the folio was on.
1729 *
1730 * The folio will have its LRU flag cleared.  If it was found on the
1731 * active list, it will have the Active flag set.  If it was found on the
1732 * unevictable list, it will have the Unevictable flag set.  These flags
1733 * may need to be cleared by the caller before letting the page go.
1734 *
1735 * Context:
1736 *
1737 * (1) Must be called with an elevated refcount on the folio. This is a
1738 *     fundamental difference from isolate_lru_folios() (which is called
1739 *     without a stable reference).
1740 * (2) The lru_lock must not be held.
1741 * (3) Interrupts must be enabled.
1742 *
1743 * Return: true if the folio was removed from an LRU list.
1744 * false if the folio was not on an LRU list.
1745 */
1746bool folio_isolate_lru(struct folio *folio)
1747{
1748	bool ret = false;
1749
1750	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1751
1752	if (folio_test_clear_lru(folio)) {
1753		struct lruvec *lruvec;
1754
1755		folio_get(folio);
1756		lruvec = folio_lruvec_lock_irq(folio);
1757		lruvec_del_folio(lruvec, folio);
1758		unlock_page_lruvec_irq(lruvec);
1759		ret = true;
1760	}
1761
1762	return ret;
1763}
1764
1765/*
1766 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1767 * then get rescheduled. When there are massive number of tasks doing page
1768 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1769 * the LRU list will go small and be scanned faster than necessary, leading to
1770 * unnecessary swapping, thrashing and OOM.
1771 */
1772static bool too_many_isolated(struct pglist_data *pgdat, int file,
1773		struct scan_control *sc)
1774{
1775	unsigned long inactive, isolated;
1776	bool too_many;
1777
1778	if (current_is_kswapd())
1779		return false;
1780
1781	if (!writeback_throttling_sane(sc))
1782		return false;
1783
1784	if (file) {
1785		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1786		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1787	} else {
1788		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1789		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1790	}
1791
1792	/*
1793	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1794	 * won't get blocked by normal direct-reclaimers, forming a circular
1795	 * deadlock.
1796	 */
1797	if (gfp_has_io_fs(sc->gfp_mask))
1798		inactive >>= 3;
1799
1800	too_many = isolated > inactive;
1801
1802	/* Wake up tasks throttled due to too_many_isolated. */
1803	if (!too_many)
1804		wake_throttle_isolated(pgdat);
1805
1806	return too_many;
1807}
1808
1809/*
1810 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1811 *
1812 * Returns the number of pages moved to the given lruvec.
1813 */
1814static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1815		struct list_head *list)
1816{
1817	int nr_pages, nr_moved = 0;
1818	struct folio_batch free_folios;
1819
1820	folio_batch_init(&free_folios);
1821	while (!list_empty(list)) {
1822		struct folio *folio = lru_to_folio(list);
1823
1824		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1825		list_del(&folio->lru);
1826		if (unlikely(!folio_evictable(folio))) {
1827			spin_unlock_irq(&lruvec->lru_lock);
1828			folio_putback_lru(folio);
1829			spin_lock_irq(&lruvec->lru_lock);
1830			continue;
1831		}
1832
1833		/*
1834		 * The folio_set_lru needs to be kept here for list integrity.
1835		 * Otherwise:
1836		 *   #0 move_folios_to_lru             #1 release_pages
1837		 *   if (!folio_put_testzero())
1838		 *				      if (folio_put_testzero())
1839		 *				        !lru //skip lru_lock
1840		 *     folio_set_lru()
1841		 *     list_add(&folio->lru,)
1842		 *                                        list_add(&folio->lru,)
1843		 */
1844		folio_set_lru(folio);
1845
1846		if (unlikely(folio_put_testzero(folio))) {
1847			__folio_clear_lru_flags(folio);
1848
1849			if (folio_test_large(folio) &&
1850			    folio_test_large_rmappable(folio))
1851				folio_undo_large_rmappable(folio);
1852			if (folio_batch_add(&free_folios, folio) == 0) {
1853				spin_unlock_irq(&lruvec->lru_lock);
1854				mem_cgroup_uncharge_folios(&free_folios);
1855				free_unref_folios(&free_folios);
1856				spin_lock_irq(&lruvec->lru_lock);
1857			}
1858
1859			continue;
1860		}
1861
1862		/*
1863		 * All pages were isolated from the same lruvec (and isolation
1864		 * inhibits memcg migration).
1865		 */
1866		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1867		lruvec_add_folio(lruvec, folio);
1868		nr_pages = folio_nr_pages(folio);
1869		nr_moved += nr_pages;
1870		if (folio_test_active(folio))
1871			workingset_age_nonresident(lruvec, nr_pages);
1872	}
1873
1874	if (free_folios.nr) {
1875		spin_unlock_irq(&lruvec->lru_lock);
1876		mem_cgroup_uncharge_folios(&free_folios);
1877		free_unref_folios(&free_folios);
1878		spin_lock_irq(&lruvec->lru_lock);
1879	}
1880
1881	return nr_moved;
1882}
1883
1884/*
1885 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1886 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1887 * we should not throttle.  Otherwise it is safe to do so.
1888 */
1889static int current_may_throttle(void)
1890{
1891	return !(current->flags & PF_LOCAL_THROTTLE);
1892}
1893
1894/*
1895 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1896 * of reclaimed pages
1897 */
1898static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1899		struct lruvec *lruvec, struct scan_control *sc,
1900		enum lru_list lru)
1901{
1902	LIST_HEAD(folio_list);
1903	unsigned long nr_scanned;
1904	unsigned int nr_reclaimed = 0;
1905	unsigned long nr_taken;
1906	struct reclaim_stat stat;
1907	bool file = is_file_lru(lru);
1908	enum vm_event_item item;
1909	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1910	bool stalled = false;
1911
1912	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1913		if (stalled)
1914			return 0;
1915
1916		/* wait a bit for the reclaimer. */
1917		stalled = true;
1918		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1919
1920		/* We are about to die and free our memory. Return now. */
1921		if (fatal_signal_pending(current))
1922			return SWAP_CLUSTER_MAX;
1923	}
1924
1925	lru_add_drain();
1926
1927	spin_lock_irq(&lruvec->lru_lock);
1928
1929	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1930				     &nr_scanned, sc, lru);
1931
1932	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1933	item = PGSCAN_KSWAPD + reclaimer_offset();
1934	if (!cgroup_reclaim(sc))
1935		__count_vm_events(item, nr_scanned);
1936	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1937	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1938
1939	spin_unlock_irq(&lruvec->lru_lock);
1940
1941	if (nr_taken == 0)
1942		return 0;
1943
1944	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1945
1946	spin_lock_irq(&lruvec->lru_lock);
1947	move_folios_to_lru(lruvec, &folio_list);
1948
1949	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1950	item = PGSTEAL_KSWAPD + reclaimer_offset();
1951	if (!cgroup_reclaim(sc))
1952		__count_vm_events(item, nr_reclaimed);
1953	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1954	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1955	spin_unlock_irq(&lruvec->lru_lock);
1956
1957	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1958
1959	/*
1960	 * If dirty folios are scanned that are not queued for IO, it
1961	 * implies that flushers are not doing their job. This can
1962	 * happen when memory pressure pushes dirty folios to the end of
1963	 * the LRU before the dirty limits are breached and the dirty
1964	 * data has expired. It can also happen when the proportion of
1965	 * dirty folios grows not through writes but through memory
1966	 * pressure reclaiming all the clean cache. And in some cases,
1967	 * the flushers simply cannot keep up with the allocation
1968	 * rate. Nudge the flusher threads in case they are asleep.
1969	 */
1970	if (stat.nr_unqueued_dirty == nr_taken) {
1971		wakeup_flusher_threads(WB_REASON_VMSCAN);
1972		/*
1973		 * For cgroupv1 dirty throttling is achieved by waking up
1974		 * the kernel flusher here and later waiting on folios
1975		 * which are in writeback to finish (see shrink_folio_list()).
1976		 *
1977		 * Flusher may not be able to issue writeback quickly
1978		 * enough for cgroupv1 writeback throttling to work
1979		 * on a large system.
1980		 */
1981		if (!writeback_throttling_sane(sc))
1982			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1983	}
1984
1985	sc->nr.dirty += stat.nr_dirty;
1986	sc->nr.congested += stat.nr_congested;
1987	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1988	sc->nr.writeback += stat.nr_writeback;
1989	sc->nr.immediate += stat.nr_immediate;
1990	sc->nr.taken += nr_taken;
1991	if (file)
1992		sc->nr.file_taken += nr_taken;
1993
1994	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1995			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1996	return nr_reclaimed;
1997}
1998
1999/*
2000 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2001 *
2002 * We move them the other way if the folio is referenced by one or more
2003 * processes.
2004 *
2005 * If the folios are mostly unmapped, the processing is fast and it is
2006 * appropriate to hold lru_lock across the whole operation.  But if
2007 * the folios are mapped, the processing is slow (folio_referenced()), so
2008 * we should drop lru_lock around each folio.  It's impossible to balance
2009 * this, so instead we remove the folios from the LRU while processing them.
2010 * It is safe to rely on the active flag against the non-LRU folios in here
2011 * because nobody will play with that bit on a non-LRU folio.
2012 *
2013 * The downside is that we have to touch folio->_refcount against each folio.
2014 * But we had to alter folio->flags anyway.
2015 */
2016static void shrink_active_list(unsigned long nr_to_scan,
2017			       struct lruvec *lruvec,
2018			       struct scan_control *sc,
2019			       enum lru_list lru)
2020{
2021	unsigned long nr_taken;
2022	unsigned long nr_scanned;
2023	unsigned long vm_flags;
2024	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2025	LIST_HEAD(l_active);
2026	LIST_HEAD(l_inactive);
2027	unsigned nr_deactivate, nr_activate;
2028	unsigned nr_rotated = 0;
2029	bool file = is_file_lru(lru);
2030	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2031
2032	lru_add_drain();
2033
2034	spin_lock_irq(&lruvec->lru_lock);
2035
2036	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2037				     &nr_scanned, sc, lru);
2038
2039	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2040
2041	if (!cgroup_reclaim(sc))
2042		__count_vm_events(PGREFILL, nr_scanned);
2043	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2044
2045	spin_unlock_irq(&lruvec->lru_lock);
2046
2047	while (!list_empty(&l_hold)) {
2048		struct folio *folio;
2049
2050		cond_resched();
2051		folio = lru_to_folio(&l_hold);
2052		list_del(&folio->lru);
2053
2054		if (unlikely(!folio_evictable(folio))) {
2055			folio_putback_lru(folio);
2056			continue;
2057		}
2058
2059		if (unlikely(buffer_heads_over_limit)) {
2060			if (folio_needs_release(folio) &&
2061			    folio_trylock(folio)) {
2062				filemap_release_folio(folio, 0);
2063				folio_unlock(folio);
2064			}
2065		}
2066
2067		/* Referenced or rmap lock contention: rotate */
2068		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2069				     &vm_flags) != 0) {
2070			/*
2071			 * Identify referenced, file-backed active folios and
2072			 * give them one more trip around the active list. So
2073			 * that executable code get better chances to stay in
2074			 * memory under moderate memory pressure.  Anon folios
2075			 * are not likely to be evicted by use-once streaming
2076			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2077			 * so we ignore them here.
2078			 */
2079			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2080				nr_rotated += folio_nr_pages(folio);
2081				list_add(&folio->lru, &l_active);
2082				continue;
2083			}
2084		}
2085
2086		folio_clear_active(folio);	/* we are de-activating */
2087		folio_set_workingset(folio);
2088		list_add(&folio->lru, &l_inactive);
2089	}
2090
2091	/*
2092	 * Move folios back to the lru list.
2093	 */
2094	spin_lock_irq(&lruvec->lru_lock);
2095
2096	nr_activate = move_folios_to_lru(lruvec, &l_active);
2097	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2098
2099	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2100	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2101
2102	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2103	spin_unlock_irq(&lruvec->lru_lock);
2104
2105	if (nr_rotated)
2106		lru_note_cost(lruvec, file, 0, nr_rotated);
2107	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2108			nr_deactivate, nr_rotated, sc->priority, file);
2109}
2110
2111static unsigned int reclaim_folio_list(struct list_head *folio_list,
2112				      struct pglist_data *pgdat)
2113{
2114	struct reclaim_stat dummy_stat;
2115	unsigned int nr_reclaimed;
2116	struct folio *folio;
2117	struct scan_control sc = {
2118		.gfp_mask = GFP_KERNEL,
2119		.may_writepage = 1,
2120		.may_unmap = 1,
2121		.may_swap = 1,
2122		.no_demotion = 1,
2123	};
2124
2125	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true);
2126	while (!list_empty(folio_list)) {
2127		folio = lru_to_folio(folio_list);
2128		list_del(&folio->lru);
2129		folio_putback_lru(folio);
2130	}
2131
2132	return nr_reclaimed;
2133}
2134
2135unsigned long reclaim_pages(struct list_head *folio_list)
2136{
2137	int nid;
2138	unsigned int nr_reclaimed = 0;
2139	LIST_HEAD(node_folio_list);
2140	unsigned int noreclaim_flag;
2141
2142	if (list_empty(folio_list))
2143		return nr_reclaimed;
2144
2145	noreclaim_flag = memalloc_noreclaim_save();
2146
2147	nid = folio_nid(lru_to_folio(folio_list));
2148	do {
2149		struct folio *folio = lru_to_folio(folio_list);
2150
2151		if (nid == folio_nid(folio)) {
2152			folio_clear_active(folio);
2153			list_move(&folio->lru, &node_folio_list);
2154			continue;
2155		}
2156
2157		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2158		nid = folio_nid(lru_to_folio(folio_list));
2159	} while (!list_empty(folio_list));
2160
2161	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2162
2163	memalloc_noreclaim_restore(noreclaim_flag);
2164
2165	return nr_reclaimed;
2166}
2167
2168static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2169				 struct lruvec *lruvec, struct scan_control *sc)
2170{
2171	if (is_active_lru(lru)) {
2172		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2173			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2174		else
2175			sc->skipped_deactivate = 1;
2176		return 0;
2177	}
2178
2179	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2180}
2181
2182/*
2183 * The inactive anon list should be small enough that the VM never has
2184 * to do too much work.
2185 *
2186 * The inactive file list should be small enough to leave most memory
2187 * to the established workingset on the scan-resistant active list,
2188 * but large enough to avoid thrashing the aggregate readahead window.
2189 *
2190 * Both inactive lists should also be large enough that each inactive
2191 * folio has a chance to be referenced again before it is reclaimed.
2192 *
2193 * If that fails and refaulting is observed, the inactive list grows.
2194 *
2195 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2196 * on this LRU, maintained by the pageout code. An inactive_ratio
2197 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2198 *
2199 * total     target    max
2200 * memory    ratio     inactive
2201 * -------------------------------------
2202 *   10MB       1         5MB
2203 *  100MB       1        50MB
2204 *    1GB       3       250MB
2205 *   10GB      10       0.9GB
2206 *  100GB      31         3GB
2207 *    1TB     101        10GB
2208 *   10TB     320        32GB
2209 */
2210static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2211{
2212	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2213	unsigned long inactive, active;
2214	unsigned long inactive_ratio;
2215	unsigned long gb;
2216
2217	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2218	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2219
2220	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2221	if (gb)
2222		inactive_ratio = int_sqrt(10 * gb);
2223	else
2224		inactive_ratio = 1;
2225
2226	return inactive * inactive_ratio < active;
2227}
2228
2229enum scan_balance {
2230	SCAN_EQUAL,
2231	SCAN_FRACT,
2232	SCAN_ANON,
2233	SCAN_FILE,
2234};
2235
2236static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2237{
2238	unsigned long file;
2239	struct lruvec *target_lruvec;
2240
2241	if (lru_gen_enabled())
2242		return;
2243
2244	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2245
2246	/*
2247	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2248	 * lruvec stats for heuristics.
2249	 */
2250	mem_cgroup_flush_stats(sc->target_mem_cgroup);
2251
2252	/*
2253	 * Determine the scan balance between anon and file LRUs.
2254	 */
2255	spin_lock_irq(&target_lruvec->lru_lock);
2256	sc->anon_cost = target_lruvec->anon_cost;
2257	sc->file_cost = target_lruvec->file_cost;
2258	spin_unlock_irq(&target_lruvec->lru_lock);
2259
2260	/*
2261	 * Target desirable inactive:active list ratios for the anon
2262	 * and file LRU lists.
2263	 */
2264	if (!sc->force_deactivate) {
2265		unsigned long refaults;
2266
2267		/*
2268		 * When refaults are being observed, it means a new
2269		 * workingset is being established. Deactivate to get
2270		 * rid of any stale active pages quickly.
2271		 */
2272		refaults = lruvec_page_state(target_lruvec,
2273				WORKINGSET_ACTIVATE_ANON);
2274		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2275			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2276			sc->may_deactivate |= DEACTIVATE_ANON;
2277		else
2278			sc->may_deactivate &= ~DEACTIVATE_ANON;
2279
2280		refaults = lruvec_page_state(target_lruvec,
2281				WORKINGSET_ACTIVATE_FILE);
2282		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2283		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2284			sc->may_deactivate |= DEACTIVATE_FILE;
2285		else
2286			sc->may_deactivate &= ~DEACTIVATE_FILE;
2287	} else
2288		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2289
2290	/*
2291	 * If we have plenty of inactive file pages that aren't
2292	 * thrashing, try to reclaim those first before touching
2293	 * anonymous pages.
2294	 */
2295	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2296	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2297	    !sc->no_cache_trim_mode)
2298		sc->cache_trim_mode = 1;
2299	else
2300		sc->cache_trim_mode = 0;
2301
2302	/*
2303	 * Prevent the reclaimer from falling into the cache trap: as
2304	 * cache pages start out inactive, every cache fault will tip
2305	 * the scan balance towards the file LRU.  And as the file LRU
2306	 * shrinks, so does the window for rotation from references.
2307	 * This means we have a runaway feedback loop where a tiny
2308	 * thrashing file LRU becomes infinitely more attractive than
2309	 * anon pages.  Try to detect this based on file LRU size.
2310	 */
2311	if (!cgroup_reclaim(sc)) {
2312		unsigned long total_high_wmark = 0;
2313		unsigned long free, anon;
2314		int z;
2315
2316		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2317		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2318			   node_page_state(pgdat, NR_INACTIVE_FILE);
2319
2320		for (z = 0; z < MAX_NR_ZONES; z++) {
2321			struct zone *zone = &pgdat->node_zones[z];
2322
2323			if (!managed_zone(zone))
2324				continue;
2325
2326			total_high_wmark += high_wmark_pages(zone);
2327		}
2328
2329		/*
2330		 * Consider anon: if that's low too, this isn't a
2331		 * runaway file reclaim problem, but rather just
2332		 * extreme pressure. Reclaim as per usual then.
2333		 */
2334		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2335
2336		sc->file_is_tiny =
2337			file + free <= total_high_wmark &&
2338			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2339			anon >> sc->priority;
2340	}
2341}
2342
2343/*
2344 * Determine how aggressively the anon and file LRU lists should be
2345 * scanned.
2346 *
2347 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2348 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2349 */
2350static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2351			   unsigned long *nr)
2352{
2353	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2354	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2355	unsigned long anon_cost, file_cost, total_cost;
2356	int swappiness = mem_cgroup_swappiness(memcg);
2357	u64 fraction[ANON_AND_FILE];
2358	u64 denominator = 0;	/* gcc */
2359	enum scan_balance scan_balance;
2360	unsigned long ap, fp;
2361	enum lru_list lru;
2362
2363	/* If we have no swap space, do not bother scanning anon folios. */
2364	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2365		scan_balance = SCAN_FILE;
2366		goto out;
2367	}
2368
2369	/*
2370	 * Global reclaim will swap to prevent OOM even with no
2371	 * swappiness, but memcg users want to use this knob to
2372	 * disable swapping for individual groups completely when
2373	 * using the memory controller's swap limit feature would be
2374	 * too expensive.
2375	 */
2376	if (cgroup_reclaim(sc) && !swappiness) {
2377		scan_balance = SCAN_FILE;
2378		goto out;
2379	}
2380
2381	/*
2382	 * Do not apply any pressure balancing cleverness when the
2383	 * system is close to OOM, scan both anon and file equally
2384	 * (unless the swappiness setting disagrees with swapping).
2385	 */
2386	if (!sc->priority && swappiness) {
2387		scan_balance = SCAN_EQUAL;
2388		goto out;
2389	}
2390
2391	/*
2392	 * If the system is almost out of file pages, force-scan anon.
2393	 */
2394	if (sc->file_is_tiny) {
2395		scan_balance = SCAN_ANON;
2396		goto out;
2397	}
2398
2399	/*
2400	 * If there is enough inactive page cache, we do not reclaim
2401	 * anything from the anonymous working right now.
2402	 */
2403	if (sc->cache_trim_mode) {
2404		scan_balance = SCAN_FILE;
2405		goto out;
2406	}
2407
2408	scan_balance = SCAN_FRACT;
2409	/*
2410	 * Calculate the pressure balance between anon and file pages.
2411	 *
2412	 * The amount of pressure we put on each LRU is inversely
2413	 * proportional to the cost of reclaiming each list, as
2414	 * determined by the share of pages that are refaulting, times
2415	 * the relative IO cost of bringing back a swapped out
2416	 * anonymous page vs reloading a filesystem page (swappiness).
2417	 *
2418	 * Although we limit that influence to ensure no list gets
2419	 * left behind completely: at least a third of the pressure is
2420	 * applied, before swappiness.
2421	 *
2422	 * With swappiness at 100, anon and file have equal IO cost.
2423	 */
2424	total_cost = sc->anon_cost + sc->file_cost;
2425	anon_cost = total_cost + sc->anon_cost;
2426	file_cost = total_cost + sc->file_cost;
2427	total_cost = anon_cost + file_cost;
2428
2429	ap = swappiness * (total_cost + 1);
2430	ap /= anon_cost + 1;
2431
2432	fp = (200 - swappiness) * (total_cost + 1);
2433	fp /= file_cost + 1;
2434
2435	fraction[0] = ap;
2436	fraction[1] = fp;
2437	denominator = ap + fp;
2438out:
2439	for_each_evictable_lru(lru) {
2440		bool file = is_file_lru(lru);
2441		unsigned long lruvec_size;
2442		unsigned long low, min;
2443		unsigned long scan;
2444
2445		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2446		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2447				      &min, &low);
2448
2449		if (min || low) {
2450			/*
2451			 * Scale a cgroup's reclaim pressure by proportioning
2452			 * its current usage to its memory.low or memory.min
2453			 * setting.
2454			 *
2455			 * This is important, as otherwise scanning aggression
2456			 * becomes extremely binary -- from nothing as we
2457			 * approach the memory protection threshold, to totally
2458			 * nominal as we exceed it.  This results in requiring
2459			 * setting extremely liberal protection thresholds. It
2460			 * also means we simply get no protection at all if we
2461			 * set it too low, which is not ideal.
2462			 *
2463			 * If there is any protection in place, we reduce scan
2464			 * pressure by how much of the total memory used is
2465			 * within protection thresholds.
2466			 *
2467			 * There is one special case: in the first reclaim pass,
2468			 * we skip over all groups that are within their low
2469			 * protection. If that fails to reclaim enough pages to
2470			 * satisfy the reclaim goal, we come back and override
2471			 * the best-effort low protection. However, we still
2472			 * ideally want to honor how well-behaved groups are in
2473			 * that case instead of simply punishing them all
2474			 * equally. As such, we reclaim them based on how much
2475			 * memory they are using, reducing the scan pressure
2476			 * again by how much of the total memory used is under
2477			 * hard protection.
2478			 */
2479			unsigned long cgroup_size = mem_cgroup_size(memcg);
2480			unsigned long protection;
2481
2482			/* memory.low scaling, make sure we retry before OOM */
2483			if (!sc->memcg_low_reclaim && low > min) {
2484				protection = low;
2485				sc->memcg_low_skipped = 1;
2486			} else {
2487				protection = min;
2488			}
2489
2490			/* Avoid TOCTOU with earlier protection check */
2491			cgroup_size = max(cgroup_size, protection);
2492
2493			scan = lruvec_size - lruvec_size * protection /
2494				(cgroup_size + 1);
2495
2496			/*
2497			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2498			 * reclaim moving forwards, avoiding decrementing
2499			 * sc->priority further than desirable.
2500			 */
2501			scan = max(scan, SWAP_CLUSTER_MAX);
2502		} else {
2503			scan = lruvec_size;
2504		}
2505
2506		scan >>= sc->priority;
2507
2508		/*
2509		 * If the cgroup's already been deleted, make sure to
2510		 * scrape out the remaining cache.
2511		 */
2512		if (!scan && !mem_cgroup_online(memcg))
2513			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2514
2515		switch (scan_balance) {
2516		case SCAN_EQUAL:
2517			/* Scan lists relative to size */
2518			break;
2519		case SCAN_FRACT:
2520			/*
2521			 * Scan types proportional to swappiness and
2522			 * their relative recent reclaim efficiency.
2523			 * Make sure we don't miss the last page on
2524			 * the offlined memory cgroups because of a
2525			 * round-off error.
2526			 */
2527			scan = mem_cgroup_online(memcg) ?
2528			       div64_u64(scan * fraction[file], denominator) :
2529			       DIV64_U64_ROUND_UP(scan * fraction[file],
2530						  denominator);
2531			break;
2532		case SCAN_FILE:
2533		case SCAN_ANON:
2534			/* Scan one type exclusively */
2535			if ((scan_balance == SCAN_FILE) != file)
2536				scan = 0;
2537			break;
2538		default:
2539			/* Look ma, no brain */
2540			BUG();
2541		}
2542
2543		nr[lru] = scan;
2544	}
2545}
2546
2547/*
2548 * Anonymous LRU management is a waste if there is
2549 * ultimately no way to reclaim the memory.
2550 */
2551static bool can_age_anon_pages(struct pglist_data *pgdat,
2552			       struct scan_control *sc)
2553{
2554	/* Aging the anon LRU is valuable if swap is present: */
2555	if (total_swap_pages > 0)
2556		return true;
2557
2558	/* Also valuable if anon pages can be demoted: */
2559	return can_demote(pgdat->node_id, sc);
2560}
2561
2562#ifdef CONFIG_LRU_GEN
2563
2564#ifdef CONFIG_LRU_GEN_ENABLED
2565DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2566#define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2567#else
2568DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2569#define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2570#endif
2571
2572static bool should_walk_mmu(void)
2573{
2574	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2575}
2576
2577static bool should_clear_pmd_young(void)
2578{
2579	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2580}
2581
2582/******************************************************************************
2583 *                          shorthand helpers
2584 ******************************************************************************/
2585
2586#define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
2587
2588#define DEFINE_MAX_SEQ(lruvec)						\
2589	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2590
2591#define DEFINE_MIN_SEQ(lruvec)						\
2592	unsigned long min_seq[ANON_AND_FILE] = {			\
2593		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2594		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2595	}
2596
2597#define for_each_gen_type_zone(gen, type, zone)				\
2598	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2599		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2600			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2601
2602#define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2603#define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2604
2605static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2606{
2607	struct pglist_data *pgdat = NODE_DATA(nid);
2608
2609#ifdef CONFIG_MEMCG
2610	if (memcg) {
2611		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2612
2613		/* see the comment in mem_cgroup_lruvec() */
2614		if (!lruvec->pgdat)
2615			lruvec->pgdat = pgdat;
2616
2617		return lruvec;
2618	}
2619#endif
2620	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2621
2622	return &pgdat->__lruvec;
2623}
2624
2625static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2626{
2627	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2628	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2629
2630	if (!sc->may_swap)
2631		return 0;
2632
2633	if (!can_demote(pgdat->node_id, sc) &&
2634	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2635		return 0;
2636
2637	return mem_cgroup_swappiness(memcg);
2638}
2639
2640static int get_nr_gens(struct lruvec *lruvec, int type)
2641{
2642	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2643}
2644
2645static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2646{
2647	/* see the comment on lru_gen_folio */
2648	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2649	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2650	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2651}
2652
2653/******************************************************************************
2654 *                          Bloom filters
2655 ******************************************************************************/
2656
2657/*
2658 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2659 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2660 * bits in a bitmap, k is the number of hash functions and n is the number of
2661 * inserted items.
2662 *
2663 * Page table walkers use one of the two filters to reduce their search space.
2664 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2665 * aging uses the double-buffering technique to flip to the other filter each
2666 * time it produces a new generation. For non-leaf entries that have enough
2667 * leaf entries, the aging carries them over to the next generation in
2668 * walk_pmd_range(); the eviction also report them when walking the rmap
2669 * in lru_gen_look_around().
2670 *
2671 * For future optimizations:
2672 * 1. It's not necessary to keep both filters all the time. The spare one can be
2673 *    freed after the RCU grace period and reallocated if needed again.
2674 * 2. And when reallocating, it's worth scaling its size according to the number
2675 *    of inserted entries in the other filter, to reduce the memory overhead on
2676 *    small systems and false positives on large systems.
2677 * 3. Jenkins' hash function is an alternative to Knuth's.
2678 */
2679#define BLOOM_FILTER_SHIFT	15
2680
2681static inline int filter_gen_from_seq(unsigned long seq)
2682{
2683	return seq % NR_BLOOM_FILTERS;
2684}
2685
2686static void get_item_key(void *item, int *key)
2687{
2688	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2689
2690	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2691
2692	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2693	key[1] = hash >> BLOOM_FILTER_SHIFT;
2694}
2695
2696static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2697			      void *item)
2698{
2699	int key[2];
2700	unsigned long *filter;
2701	int gen = filter_gen_from_seq(seq);
2702
2703	filter = READ_ONCE(mm_state->filters[gen]);
2704	if (!filter)
2705		return true;
2706
2707	get_item_key(item, key);
2708
2709	return test_bit(key[0], filter) && test_bit(key[1], filter);
2710}
2711
2712static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2713				void *item)
2714{
2715	int key[2];
2716	unsigned long *filter;
2717	int gen = filter_gen_from_seq(seq);
2718
2719	filter = READ_ONCE(mm_state->filters[gen]);
2720	if (!filter)
2721		return;
2722
2723	get_item_key(item, key);
2724
2725	if (!test_bit(key[0], filter))
2726		set_bit(key[0], filter);
2727	if (!test_bit(key[1], filter))
2728		set_bit(key[1], filter);
2729}
2730
2731static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2732{
2733	unsigned long *filter;
2734	int gen = filter_gen_from_seq(seq);
2735
2736	filter = mm_state->filters[gen];
2737	if (filter) {
2738		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2739		return;
2740	}
2741
2742	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2743			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2744	WRITE_ONCE(mm_state->filters[gen], filter);
2745}
2746
2747/******************************************************************************
2748 *                          mm_struct list
2749 ******************************************************************************/
2750
2751#ifdef CONFIG_LRU_GEN_WALKS_MMU
2752
2753static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2754{
2755	static struct lru_gen_mm_list mm_list = {
2756		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2757		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2758	};
2759
2760#ifdef CONFIG_MEMCG
2761	if (memcg)
2762		return &memcg->mm_list;
2763#endif
2764	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2765
2766	return &mm_list;
2767}
2768
2769static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2770{
2771	return &lruvec->mm_state;
2772}
2773
2774static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2775{
2776	int key;
2777	struct mm_struct *mm;
2778	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2779	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2780
2781	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2782	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2783
2784	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2785		return NULL;
2786
2787	clear_bit(key, &mm->lru_gen.bitmap);
2788
2789	return mmget_not_zero(mm) ? mm : NULL;
2790}
2791
2792void lru_gen_add_mm(struct mm_struct *mm)
2793{
2794	int nid;
2795	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2796	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2797
2798	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2799#ifdef CONFIG_MEMCG
2800	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2801	mm->lru_gen.memcg = memcg;
2802#endif
2803	spin_lock(&mm_list->lock);
2804
2805	for_each_node_state(nid, N_MEMORY) {
2806		struct lruvec *lruvec = get_lruvec(memcg, nid);
2807		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2808
2809		/* the first addition since the last iteration */
2810		if (mm_state->tail == &mm_list->fifo)
2811			mm_state->tail = &mm->lru_gen.list;
2812	}
2813
2814	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2815
2816	spin_unlock(&mm_list->lock);
2817}
2818
2819void lru_gen_del_mm(struct mm_struct *mm)
2820{
2821	int nid;
2822	struct lru_gen_mm_list *mm_list;
2823	struct mem_cgroup *memcg = NULL;
2824
2825	if (list_empty(&mm->lru_gen.list))
2826		return;
2827
2828#ifdef CONFIG_MEMCG
2829	memcg = mm->lru_gen.memcg;
2830#endif
2831	mm_list = get_mm_list(memcg);
2832
2833	spin_lock(&mm_list->lock);
2834
2835	for_each_node(nid) {
2836		struct lruvec *lruvec = get_lruvec(memcg, nid);
2837		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2838
2839		/* where the current iteration continues after */
2840		if (mm_state->head == &mm->lru_gen.list)
2841			mm_state->head = mm_state->head->prev;
2842
2843		/* where the last iteration ended before */
2844		if (mm_state->tail == &mm->lru_gen.list)
2845			mm_state->tail = mm_state->tail->next;
2846	}
2847
2848	list_del_init(&mm->lru_gen.list);
2849
2850	spin_unlock(&mm_list->lock);
2851
2852#ifdef CONFIG_MEMCG
2853	mem_cgroup_put(mm->lru_gen.memcg);
2854	mm->lru_gen.memcg = NULL;
2855#endif
2856}
2857
2858#ifdef CONFIG_MEMCG
2859void lru_gen_migrate_mm(struct mm_struct *mm)
2860{
2861	struct mem_cgroup *memcg;
2862	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2863
2864	VM_WARN_ON_ONCE(task->mm != mm);
2865	lockdep_assert_held(&task->alloc_lock);
2866
2867	/* for mm_update_next_owner() */
2868	if (mem_cgroup_disabled())
2869		return;
2870
2871	/* migration can happen before addition */
2872	if (!mm->lru_gen.memcg)
2873		return;
2874
2875	rcu_read_lock();
2876	memcg = mem_cgroup_from_task(task);
2877	rcu_read_unlock();
2878	if (memcg == mm->lru_gen.memcg)
2879		return;
2880
2881	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2882
2883	lru_gen_del_mm(mm);
2884	lru_gen_add_mm(mm);
2885}
2886#endif
2887
2888#else /* !CONFIG_LRU_GEN_WALKS_MMU */
2889
2890static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2891{
2892	return NULL;
2893}
2894
2895static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2896{
2897	return NULL;
2898}
2899
2900static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2901{
2902	return NULL;
2903}
2904
2905#endif
2906
2907static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2908{
2909	int i;
2910	int hist;
2911	struct lruvec *lruvec = walk->lruvec;
2912	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2913
2914	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2915
2916	hist = lru_hist_from_seq(walk->seq);
2917
2918	for (i = 0; i < NR_MM_STATS; i++) {
2919		WRITE_ONCE(mm_state->stats[hist][i],
2920			   mm_state->stats[hist][i] + walk->mm_stats[i]);
2921		walk->mm_stats[i] = 0;
2922	}
2923
2924	if (NR_HIST_GENS > 1 && last) {
2925		hist = lru_hist_from_seq(walk->seq + 1);
2926
2927		for (i = 0; i < NR_MM_STATS; i++)
2928			WRITE_ONCE(mm_state->stats[hist][i], 0);
2929	}
2930}
2931
2932static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2933{
2934	bool first = false;
2935	bool last = false;
2936	struct mm_struct *mm = NULL;
2937	struct lruvec *lruvec = walk->lruvec;
2938	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2939	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2940	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2941
2942	/*
2943	 * mm_state->seq is incremented after each iteration of mm_list. There
2944	 * are three interesting cases for this page table walker:
2945	 * 1. It tries to start a new iteration with a stale max_seq: there is
2946	 *    nothing left to do.
2947	 * 2. It started the next iteration: it needs to reset the Bloom filter
2948	 *    so that a fresh set of PTE tables can be recorded.
2949	 * 3. It ended the current iteration: it needs to reset the mm stats
2950	 *    counters and tell its caller to increment max_seq.
2951	 */
2952	spin_lock(&mm_list->lock);
2953
2954	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2955
2956	if (walk->seq <= mm_state->seq)
2957		goto done;
2958
2959	if (!mm_state->head)
2960		mm_state->head = &mm_list->fifo;
2961
2962	if (mm_state->head == &mm_list->fifo)
2963		first = true;
2964
2965	do {
2966		mm_state->head = mm_state->head->next;
2967		if (mm_state->head == &mm_list->fifo) {
2968			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2969			last = true;
2970			break;
2971		}
2972
2973		/* force scan for those added after the last iteration */
2974		if (!mm_state->tail || mm_state->tail == mm_state->head) {
2975			mm_state->tail = mm_state->head->next;
2976			walk->force_scan = true;
2977		}
2978	} while (!(mm = get_next_mm(walk)));
2979done:
2980	if (*iter || last)
2981		reset_mm_stats(walk, last);
2982
2983	spin_unlock(&mm_list->lock);
2984
2985	if (mm && first)
2986		reset_bloom_filter(mm_state, walk->seq + 1);
2987
2988	if (*iter)
2989		mmput_async(*iter);
2990
2991	*iter = mm;
2992
2993	return last;
2994}
2995
2996static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
2997{
2998	bool success = false;
2999	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3000	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3001	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3002
3003	spin_lock(&mm_list->lock);
3004
3005	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3006
3007	if (seq > mm_state->seq) {
3008		mm_state->head = NULL;
3009		mm_state->tail = NULL;
3010		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3011		success = true;
3012	}
3013
3014	spin_unlock(&mm_list->lock);
3015
3016	return success;
3017}
3018
3019/******************************************************************************
3020 *                          PID controller
3021 ******************************************************************************/
3022
3023/*
3024 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3025 *
3026 * The P term is refaulted/(evicted+protected) from a tier in the generation
3027 * currently being evicted; the I term is the exponential moving average of the
3028 * P term over the generations previously evicted, using the smoothing factor
3029 * 1/2; the D term isn't supported.
3030 *
3031 * The setpoint (SP) is always the first tier of one type; the process variable
3032 * (PV) is either any tier of the other type or any other tier of the same
3033 * type.
3034 *
3035 * The error is the difference between the SP and the PV; the correction is to
3036 * turn off protection when SP>PV or turn on protection when SP<PV.
3037 *
3038 * For future optimizations:
3039 * 1. The D term may discount the other two terms over time so that long-lived
3040 *    generations can resist stale information.
3041 */
3042struct ctrl_pos {
3043	unsigned long refaulted;
3044	unsigned long total;
3045	int gain;
3046};
3047
3048static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3049			  struct ctrl_pos *pos)
3050{
3051	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3052	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3053
3054	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3055			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3056	pos->total = lrugen->avg_total[type][tier] +
3057		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3058	if (tier)
3059		pos->total += lrugen->protected[hist][type][tier - 1];
3060	pos->gain = gain;
3061}
3062
3063static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3064{
3065	int hist, tier;
3066	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3067	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3068	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3069
3070	lockdep_assert_held(&lruvec->lru_lock);
3071
3072	if (!carryover && !clear)
3073		return;
3074
3075	hist = lru_hist_from_seq(seq);
3076
3077	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3078		if (carryover) {
3079			unsigned long sum;
3080
3081			sum = lrugen->avg_refaulted[type][tier] +
3082			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3083			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3084
3085			sum = lrugen->avg_total[type][tier] +
3086			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3087			if (tier)
3088				sum += lrugen->protected[hist][type][tier - 1];
3089			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3090		}
3091
3092		if (clear) {
3093			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3094			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3095			if (tier)
3096				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3097		}
3098	}
3099}
3100
3101static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3102{
3103	/*
3104	 * Return true if the PV has a limited number of refaults or a lower
3105	 * refaulted/total than the SP.
3106	 */
3107	return pv->refaulted < MIN_LRU_BATCH ||
3108	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3109	       (sp->refaulted + 1) * pv->total * pv->gain;
3110}
3111
3112/******************************************************************************
3113 *                          the aging
3114 ******************************************************************************/
3115
3116/* promote pages accessed through page tables */
3117static int folio_update_gen(struct folio *folio, int gen)
3118{
3119	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3120
3121	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3122	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3123
3124	do {
3125		/* lru_gen_del_folio() has isolated this page? */
3126		if (!(old_flags & LRU_GEN_MASK)) {
3127			/* for shrink_folio_list() */
3128			new_flags = old_flags | BIT(PG_referenced);
3129			continue;
3130		}
3131
3132		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3133		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3134	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3135
3136	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3137}
3138
3139/* protect pages accessed multiple times through file descriptors */
3140static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3141{
3142	int type = folio_is_file_lru(folio);
3143	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3144	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3145	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3146
3147	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3148
3149	do {
3150		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3151		/* folio_update_gen() has promoted this page? */
3152		if (new_gen >= 0 && new_gen != old_gen)
3153			return new_gen;
3154
3155		new_gen = (old_gen + 1) % MAX_NR_GENS;
3156
3157		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3158		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3159		/* for folio_end_writeback() */
3160		if (reclaiming)
3161			new_flags |= BIT(PG_reclaim);
3162	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3163
3164	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3165
3166	return new_gen;
3167}
3168
3169static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3170			      int old_gen, int new_gen)
3171{
3172	int type = folio_is_file_lru(folio);
3173	int zone = folio_zonenum(folio);
3174	int delta = folio_nr_pages(folio);
3175
3176	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3177	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3178
3179	walk->batched++;
3180
3181	walk->nr_pages[old_gen][type][zone] -= delta;
3182	walk->nr_pages[new_gen][type][zone] += delta;
3183}
3184
3185static void reset_batch_size(struct lru_gen_mm_walk *walk)
3186{
3187	int gen, type, zone;
3188	struct lruvec *lruvec = walk->lruvec;
3189	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3190
3191	walk->batched = 0;
3192
3193	for_each_gen_type_zone(gen, type, zone) {
3194		enum lru_list lru = type * LRU_INACTIVE_FILE;
3195		int delta = walk->nr_pages[gen][type][zone];
3196
3197		if (!delta)
3198			continue;
3199
3200		walk->nr_pages[gen][type][zone] = 0;
3201		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3202			   lrugen->nr_pages[gen][type][zone] + delta);
3203
3204		if (lru_gen_is_active(lruvec, gen))
3205			lru += LRU_ACTIVE;
3206		__update_lru_size(lruvec, lru, zone, delta);
3207	}
3208}
3209
3210static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3211{
3212	struct address_space *mapping;
3213	struct vm_area_struct *vma = args->vma;
3214	struct lru_gen_mm_walk *walk = args->private;
3215
3216	if (!vma_is_accessible(vma))
3217		return true;
3218
3219	if (is_vm_hugetlb_page(vma))
3220		return true;
3221
3222	if (!vma_has_recency(vma))
3223		return true;
3224
3225	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3226		return true;
3227
3228	if (vma == get_gate_vma(vma->vm_mm))
3229		return true;
3230
3231	if (vma_is_anonymous(vma))
3232		return !walk->can_swap;
3233
3234	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3235		return true;
3236
3237	mapping = vma->vm_file->f_mapping;
3238	if (mapping_unevictable(mapping))
3239		return true;
3240
3241	if (shmem_mapping(mapping))
3242		return !walk->can_swap;
3243
3244	/* to exclude special mappings like dax, etc. */
3245	return !mapping->a_ops->read_folio;
3246}
3247
3248/*
3249 * Some userspace memory allocators map many single-page VMAs. Instead of
3250 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3251 * table to reduce zigzags and improve cache performance.
3252 */
3253static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3254			 unsigned long *vm_start, unsigned long *vm_end)
3255{
3256	unsigned long start = round_up(*vm_end, size);
3257	unsigned long end = (start | ~mask) + 1;
3258	VMA_ITERATOR(vmi, args->mm, start);
3259
3260	VM_WARN_ON_ONCE(mask & size);
3261	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3262
3263	for_each_vma(vmi, args->vma) {
3264		if (end && end <= args->vma->vm_start)
3265			return false;
3266
3267		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3268			continue;
3269
3270		*vm_start = max(start, args->vma->vm_start);
3271		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3272
3273		return true;
3274	}
3275
3276	return false;
3277}
3278
3279static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3280{
3281	unsigned long pfn = pte_pfn(pte);
3282
3283	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3284
3285	if (!pte_present(pte) || is_zero_pfn(pfn))
3286		return -1;
3287
3288	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3289		return -1;
3290
3291	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3292		return -1;
3293
3294	return pfn;
3295}
3296
3297static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3298{
3299	unsigned long pfn = pmd_pfn(pmd);
3300
3301	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3302
3303	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3304		return -1;
3305
3306	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3307		return -1;
3308
3309	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3310		return -1;
3311
3312	return pfn;
3313}
3314
3315static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3316				   struct pglist_data *pgdat, bool can_swap)
3317{
3318	struct folio *folio;
3319
3320	/* try to avoid unnecessary memory loads */
3321	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3322		return NULL;
3323
3324	folio = pfn_folio(pfn);
3325	if (folio_nid(folio) != pgdat->node_id)
3326		return NULL;
3327
3328	if (folio_memcg_rcu(folio) != memcg)
3329		return NULL;
3330
3331	/* file VMAs can contain anon pages from COW */
3332	if (!folio_is_file_lru(folio) && !can_swap)
3333		return NULL;
3334
3335	return folio;
3336}
3337
3338static bool suitable_to_scan(int total, int young)
3339{
3340	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3341
3342	/* suitable if the average number of young PTEs per cacheline is >=1 */
3343	return young * n >= total;
3344}
3345
3346static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3347			   struct mm_walk *args)
3348{
3349	int i;
3350	pte_t *pte;
3351	spinlock_t *ptl;
3352	unsigned long addr;
3353	int total = 0;
3354	int young = 0;
3355	struct lru_gen_mm_walk *walk = args->private;
3356	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3357	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3358	DEFINE_MAX_SEQ(walk->lruvec);
3359	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3360
3361	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3362	if (!pte)
3363		return false;
3364	if (!spin_trylock(ptl)) {
3365		pte_unmap(pte);
3366		return false;
3367	}
3368
3369	arch_enter_lazy_mmu_mode();
3370restart:
3371	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3372		unsigned long pfn;
3373		struct folio *folio;
3374		pte_t ptent = ptep_get(pte + i);
3375
3376		total++;
3377		walk->mm_stats[MM_LEAF_TOTAL]++;
3378
3379		pfn = get_pte_pfn(ptent, args->vma, addr);
3380		if (pfn == -1)
3381			continue;
3382
3383		if (!pte_young(ptent)) {
3384			walk->mm_stats[MM_LEAF_OLD]++;
3385			continue;
3386		}
3387
3388		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3389		if (!folio)
3390			continue;
3391
3392		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3393			VM_WARN_ON_ONCE(true);
3394
3395		young++;
3396		walk->mm_stats[MM_LEAF_YOUNG]++;
3397
3398		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3399		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3400		      !folio_test_swapcache(folio)))
3401			folio_mark_dirty(folio);
3402
3403		old_gen = folio_update_gen(folio, new_gen);
3404		if (old_gen >= 0 && old_gen != new_gen)
3405			update_batch_size(walk, folio, old_gen, new_gen);
3406	}
3407
3408	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3409		goto restart;
3410
3411	arch_leave_lazy_mmu_mode();
3412	pte_unmap_unlock(pte, ptl);
3413
3414	return suitable_to_scan(total, young);
3415}
3416
3417static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3418				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3419{
3420	int i;
3421	pmd_t *pmd;
3422	spinlock_t *ptl;
3423	struct lru_gen_mm_walk *walk = args->private;
3424	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3425	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3426	DEFINE_MAX_SEQ(walk->lruvec);
3427	int old_gen, new_gen = lru_gen_from_seq(max_seq);
3428
3429	VM_WARN_ON_ONCE(pud_leaf(*pud));
3430
3431	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3432	if (*first == -1) {
3433		*first = addr;
3434		bitmap_zero(bitmap, MIN_LRU_BATCH);
3435		return;
3436	}
3437
3438	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3439	if (i && i <= MIN_LRU_BATCH) {
3440		__set_bit(i - 1, bitmap);
3441		return;
3442	}
3443
3444	pmd = pmd_offset(pud, *first);
3445
3446	ptl = pmd_lockptr(args->mm, pmd);
3447	if (!spin_trylock(ptl))
3448		goto done;
3449
3450	arch_enter_lazy_mmu_mode();
3451
3452	do {
3453		unsigned long pfn;
3454		struct folio *folio;
3455
3456		/* don't round down the first address */
3457		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3458
3459		pfn = get_pmd_pfn(pmd[i], vma, addr);
3460		if (pfn == -1)
3461			goto next;
3462
3463		if (!pmd_trans_huge(pmd[i])) {
3464			if (should_clear_pmd_young())
3465				pmdp_test_and_clear_young(vma, addr, pmd + i);
3466			goto next;
3467		}
3468
3469		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3470		if (!folio)
3471			goto next;
3472
3473		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3474			goto next;
3475
3476		walk->mm_stats[MM_LEAF_YOUNG]++;
3477
3478		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3479		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3480		      !folio_test_swapcache(folio)))
3481			folio_mark_dirty(folio);
3482
3483		old_gen = folio_update_gen(folio, new_gen);
3484		if (old_gen >= 0 && old_gen != new_gen)
3485			update_batch_size(walk, folio, old_gen, new_gen);
3486next:
3487		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3488	} while (i <= MIN_LRU_BATCH);
3489
3490	arch_leave_lazy_mmu_mode();
3491	spin_unlock(ptl);
3492done:
3493	*first = -1;
3494}
3495
3496static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3497			   struct mm_walk *args)
3498{
3499	int i;
3500	pmd_t *pmd;
3501	unsigned long next;
3502	unsigned long addr;
3503	struct vm_area_struct *vma;
3504	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3505	unsigned long first = -1;
3506	struct lru_gen_mm_walk *walk = args->private;
3507	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3508
3509	VM_WARN_ON_ONCE(pud_leaf(*pud));
3510
3511	/*
3512	 * Finish an entire PMD in two passes: the first only reaches to PTE
3513	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3514	 * the PMD lock to clear the accessed bit in PMD entries.
3515	 */
3516	pmd = pmd_offset(pud, start & PUD_MASK);
3517restart:
3518	/* walk_pte_range() may call get_next_vma() */
3519	vma = args->vma;
3520	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3521		pmd_t val = pmdp_get_lockless(pmd + i);
3522
3523		next = pmd_addr_end(addr, end);
3524
3525		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3526			walk->mm_stats[MM_LEAF_TOTAL]++;
3527			continue;
3528		}
3529
3530		if (pmd_trans_huge(val)) {
3531			unsigned long pfn = pmd_pfn(val);
3532			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3533
3534			walk->mm_stats[MM_LEAF_TOTAL]++;
3535
3536			if (!pmd_young(val)) {
3537				walk->mm_stats[MM_LEAF_OLD]++;
3538				continue;
3539			}
3540
3541			/* try to avoid unnecessary memory loads */
3542			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3543				continue;
3544
3545			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3546			continue;
3547		}
3548
3549		walk->mm_stats[MM_NONLEAF_TOTAL]++;
3550
3551		if (should_clear_pmd_young()) {
3552			if (!pmd_young(val))
3553				continue;
3554
3555			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3556		}
3557
3558		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3559			continue;
3560
3561		walk->mm_stats[MM_NONLEAF_FOUND]++;
3562
3563		if (!walk_pte_range(&val, addr, next, args))
3564			continue;
3565
3566		walk->mm_stats[MM_NONLEAF_ADDED]++;
3567
3568		/* carry over to the next generation */
3569		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3570	}
3571
3572	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3573
3574	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3575		goto restart;
3576}
3577
3578static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3579			  struct mm_walk *args)
3580{
3581	int i;
3582	pud_t *pud;
3583	unsigned long addr;
3584	unsigned long next;
3585	struct lru_gen_mm_walk *walk = args->private;
3586
3587	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3588
3589	pud = pud_offset(p4d, start & P4D_MASK);
3590restart:
3591	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3592		pud_t val = READ_ONCE(pud[i]);
3593
3594		next = pud_addr_end(addr, end);
3595
3596		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3597			continue;
3598
3599		walk_pmd_range(&val, addr, next, args);
3600
3601		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3602			end = (addr | ~PUD_MASK) + 1;
3603			goto done;
3604		}
3605	}
3606
3607	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3608		goto restart;
3609
3610	end = round_up(end, P4D_SIZE);
3611done:
3612	if (!end || !args->vma)
3613		return 1;
3614
3615	walk->next_addr = max(end, args->vma->vm_start);
3616
3617	return -EAGAIN;
3618}
3619
3620static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3621{
3622	static const struct mm_walk_ops mm_walk_ops = {
3623		.test_walk = should_skip_vma,
3624		.p4d_entry = walk_pud_range,
3625		.walk_lock = PGWALK_RDLOCK,
3626	};
3627
3628	int err;
3629	struct lruvec *lruvec = walk->lruvec;
3630	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3631
3632	walk->next_addr = FIRST_USER_ADDRESS;
3633
3634	do {
3635		DEFINE_MAX_SEQ(lruvec);
3636
3637		err = -EBUSY;
3638
3639		/* another thread might have called inc_max_seq() */
3640		if (walk->seq != max_seq)
3641			break;
3642
3643		/* folio_update_gen() requires stable folio_memcg() */
3644		if (!mem_cgroup_trylock_pages(memcg))
3645			break;
3646
3647		/* the caller might be holding the lock for write */
3648		if (mmap_read_trylock(mm)) {
3649			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3650
3651			mmap_read_unlock(mm);
3652		}
3653
3654		mem_cgroup_unlock_pages();
3655
3656		if (walk->batched) {
3657			spin_lock_irq(&lruvec->lru_lock);
3658			reset_batch_size(walk);
3659			spin_unlock_irq(&lruvec->lru_lock);
3660		}
3661
3662		cond_resched();
3663	} while (err == -EAGAIN);
3664}
3665
3666static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3667{
3668	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3669
3670	if (pgdat && current_is_kswapd()) {
3671		VM_WARN_ON_ONCE(walk);
3672
3673		walk = &pgdat->mm_walk;
3674	} else if (!walk && force_alloc) {
3675		VM_WARN_ON_ONCE(current_is_kswapd());
3676
3677		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3678	}
3679
3680	current->reclaim_state->mm_walk = walk;
3681
3682	return walk;
3683}
3684
3685static void clear_mm_walk(void)
3686{
3687	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3688
3689	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3690	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3691
3692	current->reclaim_state->mm_walk = NULL;
3693
3694	if (!current_is_kswapd())
3695		kfree(walk);
3696}
3697
3698static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3699{
3700	int zone;
3701	int remaining = MAX_LRU_BATCH;
3702	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3703	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3704
3705	if (type == LRU_GEN_ANON && !can_swap)
3706		goto done;
3707
3708	/* prevent cold/hot inversion if force_scan is true */
3709	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3710		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3711
3712		while (!list_empty(head)) {
3713			struct folio *folio = lru_to_folio(head);
3714
3715			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3716			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3717			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3718			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3719
3720			new_gen = folio_inc_gen(lruvec, folio, false);
3721			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3722
3723			if (!--remaining)
3724				return false;
3725		}
3726	}
3727done:
3728	reset_ctrl_pos(lruvec, type, true);
3729	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3730
3731	return true;
3732}
3733
3734static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3735{
3736	int gen, type, zone;
3737	bool success = false;
3738	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3739	DEFINE_MIN_SEQ(lruvec);
3740
3741	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3742
3743	/* find the oldest populated generation */
3744	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3745		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3746			gen = lru_gen_from_seq(min_seq[type]);
3747
3748			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3749				if (!list_empty(&lrugen->folios[gen][type][zone]))
3750					goto next;
3751			}
3752
3753			min_seq[type]++;
3754		}
3755next:
3756		;
3757	}
3758
3759	/* see the comment on lru_gen_folio */
3760	if (can_swap) {
3761		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3762		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3763	}
3764
3765	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3766		if (min_seq[type] == lrugen->min_seq[type])
3767			continue;
3768
3769		reset_ctrl_pos(lruvec, type, true);
3770		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3771		success = true;
3772	}
3773
3774	return success;
3775}
3776
3777static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3778			bool can_swap, bool force_scan)
3779{
3780	bool success;
3781	int prev, next;
3782	int type, zone;
3783	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3784restart:
3785	if (seq < READ_ONCE(lrugen->max_seq))
3786		return false;
3787
3788	spin_lock_irq(&lruvec->lru_lock);
3789
3790	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3791
3792	success = seq == lrugen->max_seq;
3793	if (!success)
3794		goto unlock;
3795
3796	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3797		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3798			continue;
3799
3800		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3801
3802		if (inc_min_seq(lruvec, type, can_swap))
3803			continue;
3804
3805		spin_unlock_irq(&lruvec->lru_lock);
3806		cond_resched();
3807		goto restart;
3808	}
3809
3810	/*
3811	 * Update the active/inactive LRU sizes for compatibility. Both sides of
3812	 * the current max_seq need to be covered, since max_seq+1 can overlap
3813	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3814	 * overlap, cold/hot inversion happens.
3815	 */
3816	prev = lru_gen_from_seq(lrugen->max_seq - 1);
3817	next = lru_gen_from_seq(lrugen->max_seq + 1);
3818
3819	for (type = 0; type < ANON_AND_FILE; type++) {
3820		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3821			enum lru_list lru = type * LRU_INACTIVE_FILE;
3822			long delta = lrugen->nr_pages[prev][type][zone] -
3823				     lrugen->nr_pages[next][type][zone];
3824
3825			if (!delta)
3826				continue;
3827
3828			__update_lru_size(lruvec, lru, zone, delta);
3829			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3830		}
3831	}
3832
3833	for (type = 0; type < ANON_AND_FILE; type++)
3834		reset_ctrl_pos(lruvec, type, false);
3835
3836	WRITE_ONCE(lrugen->timestamps[next], jiffies);
3837	/* make sure preceding modifications appear */
3838	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3839unlock:
3840	spin_unlock_irq(&lruvec->lru_lock);
3841
3842	return success;
3843}
3844
3845static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3846			       bool can_swap, bool force_scan)
3847{
3848	bool success;
3849	struct lru_gen_mm_walk *walk;
3850	struct mm_struct *mm = NULL;
3851	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3852	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3853
3854	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3855
3856	if (!mm_state)
3857		return inc_max_seq(lruvec, seq, can_swap, force_scan);
3858
3859	/* see the comment in iterate_mm_list() */
3860	if (seq <= READ_ONCE(mm_state->seq))
3861		return false;
3862
3863	/*
3864	 * If the hardware doesn't automatically set the accessed bit, fallback
3865	 * to lru_gen_look_around(), which only clears the accessed bit in a
3866	 * handful of PTEs. Spreading the work out over a period of time usually
3867	 * is less efficient, but it avoids bursty page faults.
3868	 */
3869	if (!should_walk_mmu()) {
3870		success = iterate_mm_list_nowalk(lruvec, seq);
3871		goto done;
3872	}
3873
3874	walk = set_mm_walk(NULL, true);
3875	if (!walk) {
3876		success = iterate_mm_list_nowalk(lruvec, seq);
3877		goto done;
3878	}
3879
3880	walk->lruvec = lruvec;
3881	walk->seq = seq;
3882	walk->can_swap = can_swap;
3883	walk->force_scan = force_scan;
3884
3885	do {
3886		success = iterate_mm_list(walk, &mm);
3887		if (mm)
3888			walk_mm(mm, walk);
3889	} while (mm);
3890done:
3891	if (success) {
3892		success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3893		WARN_ON_ONCE(!success);
3894	}
3895
3896	return success;
3897}
3898
3899/******************************************************************************
3900 *                          working set protection
3901 ******************************************************************************/
3902
3903static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3904{
3905	int gen, type, zone;
3906	unsigned long total = 0;
3907	bool can_swap = get_swappiness(lruvec, sc);
3908	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3909	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3910	DEFINE_MAX_SEQ(lruvec);
3911	DEFINE_MIN_SEQ(lruvec);
3912
3913	for (type = !can_swap; type < ANON_AND_FILE; type++) {
3914		unsigned long seq;
3915
3916		for (seq = min_seq[type]; seq <= max_seq; seq++) {
3917			gen = lru_gen_from_seq(seq);
3918
3919			for (zone = 0; zone < MAX_NR_ZONES; zone++)
3920				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3921		}
3922	}
3923
3924	/* whether the size is big enough to be helpful */
3925	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3926}
3927
3928static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3929				  unsigned long min_ttl)
3930{
3931	int gen;
3932	unsigned long birth;
3933	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3934	DEFINE_MIN_SEQ(lruvec);
3935
3936	/* see the comment on lru_gen_folio */
3937	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3938	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3939
3940	if (time_is_after_jiffies(birth + min_ttl))
3941		return false;
3942
3943	if (!lruvec_is_sizable(lruvec, sc))
3944		return false;
3945
3946	mem_cgroup_calculate_protection(NULL, memcg);
3947
3948	return !mem_cgroup_below_min(NULL, memcg);
3949}
3950
3951/* to protect the working set of the last N jiffies */
3952static unsigned long lru_gen_min_ttl __read_mostly;
3953
3954static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3955{
3956	struct mem_cgroup *memcg;
3957	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3958
3959	VM_WARN_ON_ONCE(!current_is_kswapd());
3960
3961	/* check the order to exclude compaction-induced reclaim */
3962	if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3963		return;
3964
3965	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3966	do {
3967		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3968
3969		if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3970			mem_cgroup_iter_break(NULL, memcg);
3971			return;
3972		}
3973
3974		cond_resched();
3975	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3976
3977	/*
3978	 * The main goal is to OOM kill if every generation from all memcgs is
3979	 * younger than min_ttl. However, another possibility is all memcgs are
3980	 * either too small or below min.
3981	 */
3982	if (mutex_trylock(&oom_lock)) {
3983		struct oom_control oc = {
3984			.gfp_mask = sc->gfp_mask,
3985		};
3986
3987		out_of_memory(&oc);
3988
3989		mutex_unlock(&oom_lock);
3990	}
3991}
3992
3993/******************************************************************************
3994 *                          rmap/PT walk feedback
3995 ******************************************************************************/
3996
3997/*
3998 * This function exploits spatial locality when shrink_folio_list() walks the
3999 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4000 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4001 * the PTE table to the Bloom filter. This forms a feedback loop between the
4002 * eviction and the aging.
4003 */
4004void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4005{
4006	int i;
4007	unsigned long start;
4008	unsigned long end;
4009	struct lru_gen_mm_walk *walk;
4010	int young = 0;
4011	pte_t *pte = pvmw->pte;
4012	unsigned long addr = pvmw->address;
4013	struct vm_area_struct *vma = pvmw->vma;
4014	struct folio *folio = pfn_folio(pvmw->pfn);
4015	bool can_swap = !folio_is_file_lru(folio);
4016	struct mem_cgroup *memcg = folio_memcg(folio);
4017	struct pglist_data *pgdat = folio_pgdat(folio);
4018	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4019	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4020	DEFINE_MAX_SEQ(lruvec);
4021	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4022
4023	lockdep_assert_held(pvmw->ptl);
4024	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4025
4026	if (spin_is_contended(pvmw->ptl))
4027		return;
4028
4029	/* exclude special VMAs containing anon pages from COW */
4030	if (vma->vm_flags & VM_SPECIAL)
4031		return;
4032
4033	/* avoid taking the LRU lock under the PTL when possible */
4034	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4035
4036	start = max(addr & PMD_MASK, vma->vm_start);
4037	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4038
4039	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4040		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4041			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4042		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4043			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4044		else {
4045			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4046			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4047		}
4048	}
4049
4050	/* folio_update_gen() requires stable folio_memcg() */
4051	if (!mem_cgroup_trylock_pages(memcg))
4052		return;
4053
4054	arch_enter_lazy_mmu_mode();
4055
4056	pte -= (addr - start) / PAGE_SIZE;
4057
4058	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4059		unsigned long pfn;
4060		pte_t ptent = ptep_get(pte + i);
4061
4062		pfn = get_pte_pfn(ptent, vma, addr);
4063		if (pfn == -1)
4064			continue;
4065
4066		if (!pte_young(ptent))
4067			continue;
4068
4069		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4070		if (!folio)
4071			continue;
4072
4073		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4074			VM_WARN_ON_ONCE(true);
4075
4076		young++;
4077
4078		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4079		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4080		      !folio_test_swapcache(folio)))
4081			folio_mark_dirty(folio);
4082
4083		if (walk) {
4084			old_gen = folio_update_gen(folio, new_gen);
4085			if (old_gen >= 0 && old_gen != new_gen)
4086				update_batch_size(walk, folio, old_gen, new_gen);
4087
4088			continue;
4089		}
4090
4091		old_gen = folio_lru_gen(folio);
4092		if (old_gen < 0)
4093			folio_set_referenced(folio);
4094		else if (old_gen != new_gen)
4095			folio_activate(folio);
4096	}
4097
4098	arch_leave_lazy_mmu_mode();
4099	mem_cgroup_unlock_pages();
4100
4101	/* feedback from rmap walkers to page table walkers */
4102	if (mm_state && suitable_to_scan(i, young))
4103		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4104}
4105
4106/******************************************************************************
4107 *                          memcg LRU
4108 ******************************************************************************/
4109
4110/* see the comment on MEMCG_NR_GENS */
4111enum {
4112	MEMCG_LRU_NOP,
4113	MEMCG_LRU_HEAD,
4114	MEMCG_LRU_TAIL,
4115	MEMCG_LRU_OLD,
4116	MEMCG_LRU_YOUNG,
4117};
4118
4119static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4120{
4121	int seg;
4122	int old, new;
4123	unsigned long flags;
4124	int bin = get_random_u32_below(MEMCG_NR_BINS);
4125	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4126
4127	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4128
4129	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4130
4131	seg = 0;
4132	new = old = lruvec->lrugen.gen;
4133
4134	/* see the comment on MEMCG_NR_GENS */
4135	if (op == MEMCG_LRU_HEAD)
4136		seg = MEMCG_LRU_HEAD;
4137	else if (op == MEMCG_LRU_TAIL)
4138		seg = MEMCG_LRU_TAIL;
4139	else if (op == MEMCG_LRU_OLD)
4140		new = get_memcg_gen(pgdat->memcg_lru.seq);
4141	else if (op == MEMCG_LRU_YOUNG)
4142		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4143	else
4144		VM_WARN_ON_ONCE(true);
4145
4146	WRITE_ONCE(lruvec->lrugen.seg, seg);
4147	WRITE_ONCE(lruvec->lrugen.gen, new);
4148
4149	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4150
4151	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4152		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4153	else
4154		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4155
4156	pgdat->memcg_lru.nr_memcgs[old]--;
4157	pgdat->memcg_lru.nr_memcgs[new]++;
4158
4159	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4160		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4161
4162	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4163}
4164
4165#ifdef CONFIG_MEMCG
4166
4167void lru_gen_online_memcg(struct mem_cgroup *memcg)
4168{
4169	int gen;
4170	int nid;
4171	int bin = get_random_u32_below(MEMCG_NR_BINS);
4172
4173	for_each_node(nid) {
4174		struct pglist_data *pgdat = NODE_DATA(nid);
4175		struct lruvec *lruvec = get_lruvec(memcg, nid);
4176
4177		spin_lock_irq(&pgdat->memcg_lru.lock);
4178
4179		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4180
4181		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4182
4183		lruvec->lrugen.gen = gen;
4184
4185		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4186		pgdat->memcg_lru.nr_memcgs[gen]++;
4187
4188		spin_unlock_irq(&pgdat->memcg_lru.lock);
4189	}
4190}
4191
4192void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4193{
4194	int nid;
4195
4196	for_each_node(nid) {
4197		struct lruvec *lruvec = get_lruvec(memcg, nid);
4198
4199		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4200	}
4201}
4202
4203void lru_gen_release_memcg(struct mem_cgroup *memcg)
4204{
4205	int gen;
4206	int nid;
4207
4208	for_each_node(nid) {
4209		struct pglist_data *pgdat = NODE_DATA(nid);
4210		struct lruvec *lruvec = get_lruvec(memcg, nid);
4211
4212		spin_lock_irq(&pgdat->memcg_lru.lock);
4213
4214		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4215			goto unlock;
4216
4217		gen = lruvec->lrugen.gen;
4218
4219		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4220		pgdat->memcg_lru.nr_memcgs[gen]--;
4221
4222		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4223			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4224unlock:
4225		spin_unlock_irq(&pgdat->memcg_lru.lock);
4226	}
4227}
4228
4229void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4230{
4231	struct lruvec *lruvec = get_lruvec(memcg, nid);
4232
4233	/* see the comment on MEMCG_NR_GENS */
4234	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4235		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4236}
4237
4238#endif /* CONFIG_MEMCG */
4239
4240/******************************************************************************
4241 *                          the eviction
4242 ******************************************************************************/
4243
4244static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4245		       int tier_idx)
4246{
4247	bool success;
4248	int gen = folio_lru_gen(folio);
4249	int type = folio_is_file_lru(folio);
4250	int zone = folio_zonenum(folio);
4251	int delta = folio_nr_pages(folio);
4252	int refs = folio_lru_refs(folio);
4253	int tier = lru_tier_from_refs(refs);
4254	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4255
4256	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4257
4258	/* unevictable */
4259	if (!folio_evictable(folio)) {
4260		success = lru_gen_del_folio(lruvec, folio, true);
4261		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4262		folio_set_unevictable(folio);
4263		lruvec_add_folio(lruvec, folio);
4264		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4265		return true;
4266	}
4267
4268	/* dirty lazyfree */
4269	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4270		success = lru_gen_del_folio(lruvec, folio, true);
4271		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4272		folio_set_swapbacked(folio);
4273		lruvec_add_folio_tail(lruvec, folio);
4274		return true;
4275	}
4276
4277	/* promoted */
4278	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4279		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4280		return true;
4281	}
4282
4283	/* protected */
4284	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4285		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4286
4287		gen = folio_inc_gen(lruvec, folio, false);
4288		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4289
4290		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4291			   lrugen->protected[hist][type][tier - 1] + delta);
4292		return true;
4293	}
4294
4295	/* ineligible */
4296	if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4297		gen = folio_inc_gen(lruvec, folio, false);
4298		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4299		return true;
4300	}
4301
4302	/* waiting for writeback */
4303	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4304	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4305		gen = folio_inc_gen(lruvec, folio, true);
4306		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4307		return true;
4308	}
4309
4310	return false;
4311}
4312
4313static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4314{
4315	bool success;
4316
4317	/* swap constrained */
4318	if (!(sc->gfp_mask & __GFP_IO) &&
4319	    (folio_test_dirty(folio) ||
4320	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4321		return false;
4322
4323	/* raced with release_pages() */
4324	if (!folio_try_get(folio))
4325		return false;
4326
4327	/* raced with another isolation */
4328	if (!folio_test_clear_lru(folio)) {
4329		folio_put(folio);
4330		return false;
4331	}
4332
4333	/* see the comment on MAX_NR_TIERS */
4334	if (!folio_test_referenced(folio))
4335		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4336
4337	/* for shrink_folio_list() */
4338	folio_clear_reclaim(folio);
4339	folio_clear_referenced(folio);
4340
4341	success = lru_gen_del_folio(lruvec, folio, true);
4342	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4343
4344	return true;
4345}
4346
4347static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4348		       int type, int tier, struct list_head *list)
4349{
4350	int i;
4351	int gen;
4352	enum vm_event_item item;
4353	int sorted = 0;
4354	int scanned = 0;
4355	int isolated = 0;
4356	int skipped = 0;
4357	int remaining = MAX_LRU_BATCH;
4358	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4359	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4360
4361	VM_WARN_ON_ONCE(!list_empty(list));
4362
4363	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4364		return 0;
4365
4366	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4367
4368	for (i = MAX_NR_ZONES; i > 0; i--) {
4369		LIST_HEAD(moved);
4370		int skipped_zone = 0;
4371		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4372		struct list_head *head = &lrugen->folios[gen][type][zone];
4373
4374		while (!list_empty(head)) {
4375			struct folio *folio = lru_to_folio(head);
4376			int delta = folio_nr_pages(folio);
4377
4378			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4379			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4380			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4381			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4382
4383			scanned += delta;
4384
4385			if (sort_folio(lruvec, folio, sc, tier))
4386				sorted += delta;
4387			else if (isolate_folio(lruvec, folio, sc)) {
4388				list_add(&folio->lru, list);
4389				isolated += delta;
4390			} else {
4391				list_move(&folio->lru, &moved);
4392				skipped_zone += delta;
4393			}
4394
4395			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4396				break;
4397		}
4398
4399		if (skipped_zone) {
4400			list_splice(&moved, head);
4401			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4402			skipped += skipped_zone;
4403		}
4404
4405		if (!remaining || isolated >= MIN_LRU_BATCH)
4406			break;
4407	}
4408
4409	item = PGSCAN_KSWAPD + reclaimer_offset();
4410	if (!cgroup_reclaim(sc)) {
4411		__count_vm_events(item, isolated);
4412		__count_vm_events(PGREFILL, sorted);
4413	}
4414	__count_memcg_events(memcg, item, isolated);
4415	__count_memcg_events(memcg, PGREFILL, sorted);
4416	__count_vm_events(PGSCAN_ANON + type, isolated);
4417	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4418				scanned, skipped, isolated,
4419				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4420
4421	/*
4422	 * There might not be eligible folios due to reclaim_idx. Check the
4423	 * remaining to prevent livelock if it's not making progress.
4424	 */
4425	return isolated || !remaining ? scanned : 0;
4426}
4427
4428static int get_tier_idx(struct lruvec *lruvec, int type)
4429{
4430	int tier;
4431	struct ctrl_pos sp, pv;
4432
4433	/*
4434	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4435	 * This value is chosen because any other tier would have at least twice
4436	 * as many refaults as the first tier.
4437	 */
4438	read_ctrl_pos(lruvec, type, 0, 1, &sp);
4439	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4440		read_ctrl_pos(lruvec, type, tier, 2, &pv);
4441		if (!positive_ctrl_err(&sp, &pv))
4442			break;
4443	}
4444
4445	return tier - 1;
4446}
4447
4448static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4449{
4450	int type, tier;
4451	struct ctrl_pos sp, pv;
4452	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4453
4454	/*
4455	 * Compare the first tier of anon with that of file to determine which
4456	 * type to scan. Also need to compare other tiers of the selected type
4457	 * with the first tier of the other type to determine the last tier (of
4458	 * the selected type) to evict.
4459	 */
4460	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4461	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4462	type = positive_ctrl_err(&sp, &pv);
4463
4464	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4465	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4466		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4467		if (!positive_ctrl_err(&sp, &pv))
4468			break;
4469	}
4470
4471	*tier_idx = tier - 1;
4472
4473	return type;
4474}
4475
4476static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4477			  int *type_scanned, struct list_head *list)
4478{
4479	int i;
4480	int type;
4481	int scanned;
4482	int tier = -1;
4483	DEFINE_MIN_SEQ(lruvec);
4484
4485	/*
4486	 * Try to make the obvious choice first, and if anon and file are both
4487	 * available from the same generation,
4488	 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4489	 *    first.
4490	 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4491	 *    exist than clean swapcache.
4492	 */
4493	if (!swappiness)
4494		type = LRU_GEN_FILE;
4495	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4496		type = LRU_GEN_ANON;
4497	else if (swappiness == 1)
4498		type = LRU_GEN_FILE;
4499	else if (swappiness == 200)
4500		type = LRU_GEN_ANON;
4501	else if (!(sc->gfp_mask & __GFP_IO))
4502		type = LRU_GEN_FILE;
4503	else
4504		type = get_type_to_scan(lruvec, swappiness, &tier);
4505
4506	for (i = !swappiness; i < ANON_AND_FILE; i++) {
4507		if (tier < 0)
4508			tier = get_tier_idx(lruvec, type);
4509
4510		scanned = scan_folios(lruvec, sc, type, tier, list);
4511		if (scanned)
4512			break;
4513
4514		type = !type;
4515		tier = -1;
4516	}
4517
4518	*type_scanned = type;
4519
4520	return scanned;
4521}
4522
4523static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4524{
4525	int type;
4526	int scanned;
4527	int reclaimed;
4528	LIST_HEAD(list);
4529	LIST_HEAD(clean);
4530	struct folio *folio;
4531	struct folio *next;
4532	enum vm_event_item item;
4533	struct reclaim_stat stat;
4534	struct lru_gen_mm_walk *walk;
4535	bool skip_retry = false;
4536	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4537	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4538
4539	spin_lock_irq(&lruvec->lru_lock);
4540
4541	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4542
4543	scanned += try_to_inc_min_seq(lruvec, swappiness);
4544
4545	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4546		scanned = 0;
4547
4548	spin_unlock_irq(&lruvec->lru_lock);
4549
4550	if (list_empty(&list))
4551		return scanned;
4552retry:
4553	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4554	sc->nr_reclaimed += reclaimed;
4555	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4556			scanned, reclaimed, &stat, sc->priority,
4557			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4558
4559	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4560		if (!folio_evictable(folio)) {
4561			list_del(&folio->lru);
4562			folio_putback_lru(folio);
4563			continue;
4564		}
4565
4566		if (folio_test_reclaim(folio) &&
4567		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4568			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4569			if (folio_test_workingset(folio))
4570				folio_set_referenced(folio);
4571			continue;
4572		}
4573
4574		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4575		    folio_mapped(folio) || folio_test_locked(folio) ||
4576		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
4577			/* don't add rejected folios to the oldest generation */
4578			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4579				      BIT(PG_active));
4580			continue;
4581		}
4582
4583		/* retry folios that may have missed folio_rotate_reclaimable() */
4584		list_move(&folio->lru, &clean);
4585		sc->nr_scanned -= folio_nr_pages(folio);
4586	}
4587
4588	spin_lock_irq(&lruvec->lru_lock);
4589
4590	move_folios_to_lru(lruvec, &list);
4591
4592	walk = current->reclaim_state->mm_walk;
4593	if (walk && walk->batched) {
4594		walk->lruvec = lruvec;
4595		reset_batch_size(walk);
4596	}
4597
4598	item = PGSTEAL_KSWAPD + reclaimer_offset();
4599	if (!cgroup_reclaim(sc))
4600		__count_vm_events(item, reclaimed);
4601	__count_memcg_events(memcg, item, reclaimed);
4602	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4603
4604	spin_unlock_irq(&lruvec->lru_lock);
4605
4606	list_splice_init(&clean, &list);
4607
4608	if (!list_empty(&list)) {
4609		skip_retry = true;
4610		goto retry;
4611	}
4612
4613	return scanned;
4614}
4615
4616static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4617			     bool can_swap, unsigned long *nr_to_scan)
4618{
4619	int gen, type, zone;
4620	unsigned long old = 0;
4621	unsigned long young = 0;
4622	unsigned long total = 0;
4623	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4624	DEFINE_MIN_SEQ(lruvec);
4625
4626	/* whether this lruvec is completely out of cold folios */
4627	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4628		*nr_to_scan = 0;
4629		return true;
4630	}
4631
4632	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4633		unsigned long seq;
4634
4635		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4636			unsigned long size = 0;
4637
4638			gen = lru_gen_from_seq(seq);
4639
4640			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4641				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4642
4643			total += size;
4644			if (seq == max_seq)
4645				young += size;
4646			else if (seq + MIN_NR_GENS == max_seq)
4647				old += size;
4648		}
4649	}
4650
4651	*nr_to_scan = total;
4652
4653	/*
4654	 * The aging tries to be lazy to reduce the overhead, while the eviction
4655	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4656	 * ideal number of generations is MIN_NR_GENS+1.
4657	 */
4658	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4659		return false;
4660
4661	/*
4662	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4663	 * of the total number of pages for each generation. A reasonable range
4664	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4665	 * aging cares about the upper bound of hot pages, while the eviction
4666	 * cares about the lower bound of cold pages.
4667	 */
4668	if (young * MIN_NR_GENS > total)
4669		return true;
4670	if (old * (MIN_NR_GENS + 2) < total)
4671		return true;
4672
4673	return false;
4674}
4675
4676/*
4677 * For future optimizations:
4678 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4679 *    reclaim.
4680 */
4681static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4682{
4683	bool success;
4684	unsigned long nr_to_scan;
4685	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4686	DEFINE_MAX_SEQ(lruvec);
4687
4688	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4689		return -1;
4690
4691	success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4692
4693	/* try to scrape all its memory if this memcg was deleted */
4694	if (nr_to_scan && !mem_cgroup_online(memcg))
4695		return nr_to_scan;
4696
4697	/* try to get away with not aging at the default priority */
4698	if (!success || sc->priority == DEF_PRIORITY)
4699		return nr_to_scan >> sc->priority;
4700
4701	/* stop scanning this lruvec as it's low on cold folios */
4702	return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4703}
4704
4705static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4706{
4707	int i;
4708	enum zone_watermarks mark;
4709
4710	/* don't abort memcg reclaim to ensure fairness */
4711	if (!root_reclaim(sc))
4712		return false;
4713
4714	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4715		return true;
4716
4717	/* check the order to exclude compaction-induced reclaim */
4718	if (!current_is_kswapd() || sc->order)
4719		return false;
4720
4721	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4722	       WMARK_PROMO : WMARK_HIGH;
4723
4724	for (i = 0; i <= sc->reclaim_idx; i++) {
4725		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4726		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4727
4728		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4729			return false;
4730	}
4731
4732	/* kswapd should abort if all eligible zones are safe */
4733	return true;
4734}
4735
4736static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4737{
4738	long nr_to_scan;
4739	unsigned long scanned = 0;
4740	int swappiness = get_swappiness(lruvec, sc);
4741
4742	while (true) {
4743		int delta;
4744
4745		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4746		if (nr_to_scan <= 0)
4747			break;
4748
4749		delta = evict_folios(lruvec, sc, swappiness);
4750		if (!delta)
4751			break;
4752
4753		scanned += delta;
4754		if (scanned >= nr_to_scan)
4755			break;
4756
4757		if (should_abort_scan(lruvec, sc))
4758			break;
4759
4760		cond_resched();
4761	}
4762
4763	/* whether this lruvec should be rotated */
4764	return nr_to_scan < 0;
4765}
4766
4767static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4768{
4769	bool success;
4770	unsigned long scanned = sc->nr_scanned;
4771	unsigned long reclaimed = sc->nr_reclaimed;
4772	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4773	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4774
4775	mem_cgroup_calculate_protection(NULL, memcg);
4776
4777	if (mem_cgroup_below_min(NULL, memcg))
4778		return MEMCG_LRU_YOUNG;
4779
4780	if (mem_cgroup_below_low(NULL, memcg)) {
4781		/* see the comment on MEMCG_NR_GENS */
4782		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4783			return MEMCG_LRU_TAIL;
4784
4785		memcg_memory_event(memcg, MEMCG_LOW);
4786	}
4787
4788	success = try_to_shrink_lruvec(lruvec, sc);
4789
4790	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4791
4792	if (!sc->proactive)
4793		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4794			   sc->nr_reclaimed - reclaimed);
4795
4796	flush_reclaim_state(sc);
4797
4798	if (success && mem_cgroup_online(memcg))
4799		return MEMCG_LRU_YOUNG;
4800
4801	if (!success && lruvec_is_sizable(lruvec, sc))
4802		return 0;
4803
4804	/* one retry if offlined or too small */
4805	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4806	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4807}
4808
4809static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4810{
4811	int op;
4812	int gen;
4813	int bin;
4814	int first_bin;
4815	struct lruvec *lruvec;
4816	struct lru_gen_folio *lrugen;
4817	struct mem_cgroup *memcg;
4818	struct hlist_nulls_node *pos;
4819
4820	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4821	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4822restart:
4823	op = 0;
4824	memcg = NULL;
4825
4826	rcu_read_lock();
4827
4828	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4829		if (op) {
4830			lru_gen_rotate_memcg(lruvec, op);
4831			op = 0;
4832		}
4833
4834		mem_cgroup_put(memcg);
4835		memcg = NULL;
4836
4837		if (gen != READ_ONCE(lrugen->gen))
4838			continue;
4839
4840		lruvec = container_of(lrugen, struct lruvec, lrugen);
4841		memcg = lruvec_memcg(lruvec);
4842
4843		if (!mem_cgroup_tryget(memcg)) {
4844			lru_gen_release_memcg(memcg);
4845			memcg = NULL;
4846			continue;
4847		}
4848
4849		rcu_read_unlock();
4850
4851		op = shrink_one(lruvec, sc);
4852
4853		rcu_read_lock();
4854
4855		if (should_abort_scan(lruvec, sc))
4856			break;
4857	}
4858
4859	rcu_read_unlock();
4860
4861	if (op)
4862		lru_gen_rotate_memcg(lruvec, op);
4863
4864	mem_cgroup_put(memcg);
4865
4866	if (!is_a_nulls(pos))
4867		return;
4868
4869	/* restart if raced with lru_gen_rotate_memcg() */
4870	if (gen != get_nulls_value(pos))
4871		goto restart;
4872
4873	/* try the rest of the bins of the current generation */
4874	bin = get_memcg_bin(bin + 1);
4875	if (bin != first_bin)
4876		goto restart;
4877}
4878
4879static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4880{
4881	struct blk_plug plug;
4882
4883	VM_WARN_ON_ONCE(root_reclaim(sc));
4884	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4885
4886	lru_add_drain();
4887
4888	blk_start_plug(&plug);
4889
4890	set_mm_walk(NULL, sc->proactive);
4891
4892	if (try_to_shrink_lruvec(lruvec, sc))
4893		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4894
4895	clear_mm_walk();
4896
4897	blk_finish_plug(&plug);
4898}
4899
4900static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4901{
4902	int priority;
4903	unsigned long reclaimable;
4904
4905	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4906		return;
4907	/*
4908	 * Determine the initial priority based on
4909	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4910	 * where reclaimed_to_scanned_ratio = inactive / total.
4911	 */
4912	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4913	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4914		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4915
4916	/* round down reclaimable and round up sc->nr_to_reclaim */
4917	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4918
4919	sc->priority = clamp(priority, 0, DEF_PRIORITY);
4920}
4921
4922static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4923{
4924	struct blk_plug plug;
4925	unsigned long reclaimed = sc->nr_reclaimed;
4926
4927	VM_WARN_ON_ONCE(!root_reclaim(sc));
4928
4929	/*
4930	 * Unmapped clean folios are already prioritized. Scanning for more of
4931	 * them is likely futile and can cause high reclaim latency when there
4932	 * is a large number of memcgs.
4933	 */
4934	if (!sc->may_writepage || !sc->may_unmap)
4935		goto done;
4936
4937	lru_add_drain();
4938
4939	blk_start_plug(&plug);
4940
4941	set_mm_walk(pgdat, sc->proactive);
4942
4943	set_initial_priority(pgdat, sc);
4944
4945	if (current_is_kswapd())
4946		sc->nr_reclaimed = 0;
4947
4948	if (mem_cgroup_disabled())
4949		shrink_one(&pgdat->__lruvec, sc);
4950	else
4951		shrink_many(pgdat, sc);
4952
4953	if (current_is_kswapd())
4954		sc->nr_reclaimed += reclaimed;
4955
4956	clear_mm_walk();
4957
4958	blk_finish_plug(&plug);
4959done:
4960	/* kswapd should never fail */
4961	pgdat->kswapd_failures = 0;
4962}
4963
4964/******************************************************************************
4965 *                          state change
4966 ******************************************************************************/
4967
4968static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4969{
4970	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4971
4972	if (lrugen->enabled) {
4973		enum lru_list lru;
4974
4975		for_each_evictable_lru(lru) {
4976			if (!list_empty(&lruvec->lists[lru]))
4977				return false;
4978		}
4979	} else {
4980		int gen, type, zone;
4981
4982		for_each_gen_type_zone(gen, type, zone) {
4983			if (!list_empty(&lrugen->folios[gen][type][zone]))
4984				return false;
4985		}
4986	}
4987
4988	return true;
4989}
4990
4991static bool fill_evictable(struct lruvec *lruvec)
4992{
4993	enum lru_list lru;
4994	int remaining = MAX_LRU_BATCH;
4995
4996	for_each_evictable_lru(lru) {
4997		int type = is_file_lru(lru);
4998		bool active = is_active_lru(lru);
4999		struct list_head *head = &lruvec->lists[lru];
5000
5001		while (!list_empty(head)) {
5002			bool success;
5003			struct folio *folio = lru_to_folio(head);
5004
5005			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5006			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5007			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5008			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5009
5010			lruvec_del_folio(lruvec, folio);
5011			success = lru_gen_add_folio(lruvec, folio, false);
5012			VM_WARN_ON_ONCE(!success);
5013
5014			if (!--remaining)
5015				return false;
5016		}
5017	}
5018
5019	return true;
5020}
5021
5022static bool drain_evictable(struct lruvec *lruvec)
5023{
5024	int gen, type, zone;
5025	int remaining = MAX_LRU_BATCH;
5026
5027	for_each_gen_type_zone(gen, type, zone) {
5028		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5029
5030		while (!list_empty(head)) {
5031			bool success;
5032			struct folio *folio = lru_to_folio(head);
5033
5034			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5035			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5036			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5037			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5038
5039			success = lru_gen_del_folio(lruvec, folio, false);
5040			VM_WARN_ON_ONCE(!success);
5041			lruvec_add_folio(lruvec, folio);
5042
5043			if (!--remaining)
5044				return false;
5045		}
5046	}
5047
5048	return true;
5049}
5050
5051static void lru_gen_change_state(bool enabled)
5052{
5053	static DEFINE_MUTEX(state_mutex);
5054
5055	struct mem_cgroup *memcg;
5056
5057	cgroup_lock();
5058	cpus_read_lock();
5059	get_online_mems();
5060	mutex_lock(&state_mutex);
5061
5062	if (enabled == lru_gen_enabled())
5063		goto unlock;
5064
5065	if (enabled)
5066		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5067	else
5068		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5069
5070	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5071	do {
5072		int nid;
5073
5074		for_each_node(nid) {
5075			struct lruvec *lruvec = get_lruvec(memcg, nid);
5076
5077			spin_lock_irq(&lruvec->lru_lock);
5078
5079			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5080			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5081
5082			lruvec->lrugen.enabled = enabled;
5083
5084			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5085				spin_unlock_irq(&lruvec->lru_lock);
5086				cond_resched();
5087				spin_lock_irq(&lruvec->lru_lock);
5088			}
5089
5090			spin_unlock_irq(&lruvec->lru_lock);
5091		}
5092
5093		cond_resched();
5094	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5095unlock:
5096	mutex_unlock(&state_mutex);
5097	put_online_mems();
5098	cpus_read_unlock();
5099	cgroup_unlock();
5100}
5101
5102/******************************************************************************
5103 *                          sysfs interface
5104 ******************************************************************************/
5105
5106static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5107{
5108	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5109}
5110
5111/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5112static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5113				const char *buf, size_t len)
5114{
5115	unsigned int msecs;
5116
5117	if (kstrtouint(buf, 0, &msecs))
5118		return -EINVAL;
5119
5120	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5121
5122	return len;
5123}
5124
5125static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5126
5127static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5128{
5129	unsigned int caps = 0;
5130
5131	if (get_cap(LRU_GEN_CORE))
5132		caps |= BIT(LRU_GEN_CORE);
5133
5134	if (should_walk_mmu())
5135		caps |= BIT(LRU_GEN_MM_WALK);
5136
5137	if (should_clear_pmd_young())
5138		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5139
5140	return sysfs_emit(buf, "0x%04x\n", caps);
5141}
5142
5143/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5144static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5145			     const char *buf, size_t len)
5146{
5147	int i;
5148	unsigned int caps;
5149
5150	if (tolower(*buf) == 'n')
5151		caps = 0;
5152	else if (tolower(*buf) == 'y')
5153		caps = -1;
5154	else if (kstrtouint(buf, 0, &caps))
5155		return -EINVAL;
5156
5157	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5158		bool enabled = caps & BIT(i);
5159
5160		if (i == LRU_GEN_CORE)
5161			lru_gen_change_state(enabled);
5162		else if (enabled)
5163			static_branch_enable(&lru_gen_caps[i]);
5164		else
5165			static_branch_disable(&lru_gen_caps[i]);
5166	}
5167
5168	return len;
5169}
5170
5171static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5172
5173static struct attribute *lru_gen_attrs[] = {
5174	&lru_gen_min_ttl_attr.attr,
5175	&lru_gen_enabled_attr.attr,
5176	NULL
5177};
5178
5179static const struct attribute_group lru_gen_attr_group = {
5180	.name = "lru_gen",
5181	.attrs = lru_gen_attrs,
5182};
5183
5184/******************************************************************************
5185 *                          debugfs interface
5186 ******************************************************************************/
5187
5188static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5189{
5190	struct mem_cgroup *memcg;
5191	loff_t nr_to_skip = *pos;
5192
5193	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5194	if (!m->private)
5195		return ERR_PTR(-ENOMEM);
5196
5197	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5198	do {
5199		int nid;
5200
5201		for_each_node_state(nid, N_MEMORY) {
5202			if (!nr_to_skip--)
5203				return get_lruvec(memcg, nid);
5204		}
5205	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5206
5207	return NULL;
5208}
5209
5210static void lru_gen_seq_stop(struct seq_file *m, void *v)
5211{
5212	if (!IS_ERR_OR_NULL(v))
5213		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5214
5215	kvfree(m->private);
5216	m->private = NULL;
5217}
5218
5219static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5220{
5221	int nid = lruvec_pgdat(v)->node_id;
5222	struct mem_cgroup *memcg = lruvec_memcg(v);
5223
5224	++*pos;
5225
5226	nid = next_memory_node(nid);
5227	if (nid == MAX_NUMNODES) {
5228		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5229		if (!memcg)
5230			return NULL;
5231
5232		nid = first_memory_node;
5233	}
5234
5235	return get_lruvec(memcg, nid);
5236}
5237
5238static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5239				  unsigned long max_seq, unsigned long *min_seq,
5240				  unsigned long seq)
5241{
5242	int i;
5243	int type, tier;
5244	int hist = lru_hist_from_seq(seq);
5245	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5246	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5247
5248	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5249		seq_printf(m, "            %10d", tier);
5250		for (type = 0; type < ANON_AND_FILE; type++) {
5251			const char *s = "   ";
5252			unsigned long n[3] = {};
5253
5254			if (seq == max_seq) {
5255				s = "RT ";
5256				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5257				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5258			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5259				s = "rep";
5260				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5261				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5262				if (tier)
5263					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5264			}
5265
5266			for (i = 0; i < 3; i++)
5267				seq_printf(m, " %10lu%c", n[i], s[i]);
5268		}
5269		seq_putc(m, '\n');
5270	}
5271
5272	if (!mm_state)
5273		return;
5274
5275	seq_puts(m, "                      ");
5276	for (i = 0; i < NR_MM_STATS; i++) {
5277		const char *s = "      ";
5278		unsigned long n = 0;
5279
5280		if (seq == max_seq && NR_HIST_GENS == 1) {
5281			s = "LOYNFA";
5282			n = READ_ONCE(mm_state->stats[hist][i]);
5283		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5284			s = "loynfa";
5285			n = READ_ONCE(mm_state->stats[hist][i]);
5286		}
5287
5288		seq_printf(m, " %10lu%c", n, s[i]);
5289	}
5290	seq_putc(m, '\n');
5291}
5292
5293/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5294static int lru_gen_seq_show(struct seq_file *m, void *v)
5295{
5296	unsigned long seq;
5297	bool full = !debugfs_real_fops(m->file)->write;
5298	struct lruvec *lruvec = v;
5299	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5300	int nid = lruvec_pgdat(lruvec)->node_id;
5301	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5302	DEFINE_MAX_SEQ(lruvec);
5303	DEFINE_MIN_SEQ(lruvec);
5304
5305	if (nid == first_memory_node) {
5306		const char *path = memcg ? m->private : "";
5307
5308#ifdef CONFIG_MEMCG
5309		if (memcg)
5310			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5311#endif
5312		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5313	}
5314
5315	seq_printf(m, " node %5d\n", nid);
5316
5317	if (!full)
5318		seq = min_seq[LRU_GEN_ANON];
5319	else if (max_seq >= MAX_NR_GENS)
5320		seq = max_seq - MAX_NR_GENS + 1;
5321	else
5322		seq = 0;
5323
5324	for (; seq <= max_seq; seq++) {
5325		int type, zone;
5326		int gen = lru_gen_from_seq(seq);
5327		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5328
5329		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5330
5331		for (type = 0; type < ANON_AND_FILE; type++) {
5332			unsigned long size = 0;
5333			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5334
5335			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5336				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5337
5338			seq_printf(m, " %10lu%c", size, mark);
5339		}
5340
5341		seq_putc(m, '\n');
5342
5343		if (full)
5344			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5345	}
5346
5347	return 0;
5348}
5349
5350static const struct seq_operations lru_gen_seq_ops = {
5351	.start = lru_gen_seq_start,
5352	.stop = lru_gen_seq_stop,
5353	.next = lru_gen_seq_next,
5354	.show = lru_gen_seq_show,
5355};
5356
5357static int run_aging(struct lruvec *lruvec, unsigned long seq,
5358		     bool can_swap, bool force_scan)
5359{
5360	DEFINE_MAX_SEQ(lruvec);
5361	DEFINE_MIN_SEQ(lruvec);
5362
5363	if (seq < max_seq)
5364		return 0;
5365
5366	if (seq > max_seq)
5367		return -EINVAL;
5368
5369	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5370		return -ERANGE;
5371
5372	try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5373
5374	return 0;
5375}
5376
5377static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5378			int swappiness, unsigned long nr_to_reclaim)
5379{
5380	DEFINE_MAX_SEQ(lruvec);
5381
5382	if (seq + MIN_NR_GENS > max_seq)
5383		return -EINVAL;
5384
5385	sc->nr_reclaimed = 0;
5386
5387	while (!signal_pending(current)) {
5388		DEFINE_MIN_SEQ(lruvec);
5389
5390		if (seq < min_seq[!swappiness])
5391			return 0;
5392
5393		if (sc->nr_reclaimed >= nr_to_reclaim)
5394			return 0;
5395
5396		if (!evict_folios(lruvec, sc, swappiness))
5397			return 0;
5398
5399		cond_resched();
5400	}
5401
5402	return -EINTR;
5403}
5404
5405static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5406		   struct scan_control *sc, int swappiness, unsigned long opt)
5407{
5408	struct lruvec *lruvec;
5409	int err = -EINVAL;
5410	struct mem_cgroup *memcg = NULL;
5411
5412	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5413		return -EINVAL;
5414
5415	if (!mem_cgroup_disabled()) {
5416		rcu_read_lock();
5417
5418		memcg = mem_cgroup_from_id(memcg_id);
5419		if (!mem_cgroup_tryget(memcg))
5420			memcg = NULL;
5421
5422		rcu_read_unlock();
5423
5424		if (!memcg)
5425			return -EINVAL;
5426	}
5427
5428	if (memcg_id != mem_cgroup_id(memcg))
5429		goto done;
5430
5431	lruvec = get_lruvec(memcg, nid);
5432
5433	if (swappiness < 0)
5434		swappiness = get_swappiness(lruvec, sc);
5435	else if (swappiness > 200)
5436		goto done;
5437
5438	switch (cmd) {
5439	case '+':
5440		err = run_aging(lruvec, seq, swappiness, opt);
5441		break;
5442	case '-':
5443		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5444		break;
5445	}
5446done:
5447	mem_cgroup_put(memcg);
5448
5449	return err;
5450}
5451
5452/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5453static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5454				 size_t len, loff_t *pos)
5455{
5456	void *buf;
5457	char *cur, *next;
5458	unsigned int flags;
5459	struct blk_plug plug;
5460	int err = -EINVAL;
5461	struct scan_control sc = {
5462		.may_writepage = true,
5463		.may_unmap = true,
5464		.may_swap = true,
5465		.reclaim_idx = MAX_NR_ZONES - 1,
5466		.gfp_mask = GFP_KERNEL,
5467	};
5468
5469	buf = kvmalloc(len + 1, GFP_KERNEL);
5470	if (!buf)
5471		return -ENOMEM;
5472
5473	if (copy_from_user(buf, src, len)) {
5474		kvfree(buf);
5475		return -EFAULT;
5476	}
5477
5478	set_task_reclaim_state(current, &sc.reclaim_state);
5479	flags = memalloc_noreclaim_save();
5480	blk_start_plug(&plug);
5481	if (!set_mm_walk(NULL, true)) {
5482		err = -ENOMEM;
5483		goto done;
5484	}
5485
5486	next = buf;
5487	next[len] = '\0';
5488
5489	while ((cur = strsep(&next, ",;\n"))) {
5490		int n;
5491		int end;
5492		char cmd;
5493		unsigned int memcg_id;
5494		unsigned int nid;
5495		unsigned long seq;
5496		unsigned int swappiness = -1;
5497		unsigned long opt = -1;
5498
5499		cur = skip_spaces(cur);
5500		if (!*cur)
5501			continue;
5502
5503		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5504			   &seq, &end, &swappiness, &end, &opt, &end);
5505		if (n < 4 || cur[end]) {
5506			err = -EINVAL;
5507			break;
5508		}
5509
5510		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5511		if (err)
5512			break;
5513	}
5514done:
5515	clear_mm_walk();
5516	blk_finish_plug(&plug);
5517	memalloc_noreclaim_restore(flags);
5518	set_task_reclaim_state(current, NULL);
5519
5520	kvfree(buf);
5521
5522	return err ? : len;
5523}
5524
5525static int lru_gen_seq_open(struct inode *inode, struct file *file)
5526{
5527	return seq_open(file, &lru_gen_seq_ops);
5528}
5529
5530static const struct file_operations lru_gen_rw_fops = {
5531	.open = lru_gen_seq_open,
5532	.read = seq_read,
5533	.write = lru_gen_seq_write,
5534	.llseek = seq_lseek,
5535	.release = seq_release,
5536};
5537
5538static const struct file_operations lru_gen_ro_fops = {
5539	.open = lru_gen_seq_open,
5540	.read = seq_read,
5541	.llseek = seq_lseek,
5542	.release = seq_release,
5543};
5544
5545/******************************************************************************
5546 *                          initialization
5547 ******************************************************************************/
5548
5549void lru_gen_init_pgdat(struct pglist_data *pgdat)
5550{
5551	int i, j;
5552
5553	spin_lock_init(&pgdat->memcg_lru.lock);
5554
5555	for (i = 0; i < MEMCG_NR_GENS; i++) {
5556		for (j = 0; j < MEMCG_NR_BINS; j++)
5557			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5558	}
5559}
5560
5561void lru_gen_init_lruvec(struct lruvec *lruvec)
5562{
5563	int i;
5564	int gen, type, zone;
5565	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5566	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5567
5568	lrugen->max_seq = MIN_NR_GENS + 1;
5569	lrugen->enabled = lru_gen_enabled();
5570
5571	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5572		lrugen->timestamps[i] = jiffies;
5573
5574	for_each_gen_type_zone(gen, type, zone)
5575		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5576
5577	if (mm_state)
5578		mm_state->seq = MIN_NR_GENS;
5579}
5580
5581#ifdef CONFIG_MEMCG
5582
5583void lru_gen_init_memcg(struct mem_cgroup *memcg)
5584{
5585	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5586
5587	if (!mm_list)
5588		return;
5589
5590	INIT_LIST_HEAD(&mm_list->fifo);
5591	spin_lock_init(&mm_list->lock);
5592}
5593
5594void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5595{
5596	int i;
5597	int nid;
5598	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5599
5600	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5601
5602	for_each_node(nid) {
5603		struct lruvec *lruvec = get_lruvec(memcg, nid);
5604		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5605
5606		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5607					   sizeof(lruvec->lrugen.nr_pages)));
5608
5609		lruvec->lrugen.list.next = LIST_POISON1;
5610
5611		if (!mm_state)
5612			continue;
5613
5614		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5615			bitmap_free(mm_state->filters[i]);
5616			mm_state->filters[i] = NULL;
5617		}
5618	}
5619}
5620
5621#endif /* CONFIG_MEMCG */
5622
5623static int __init init_lru_gen(void)
5624{
5625	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5626	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5627
5628	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5629		pr_err("lru_gen: failed to create sysfs group\n");
5630
5631	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5632	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5633
5634	return 0;
5635};
5636late_initcall(init_lru_gen);
5637
5638#else /* !CONFIG_LRU_GEN */
5639
5640static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5641{
5642	BUILD_BUG();
5643}
5644
5645static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5646{
5647	BUILD_BUG();
5648}
5649
5650static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5651{
5652	BUILD_BUG();
5653}
5654
5655#endif /* CONFIG_LRU_GEN */
5656
5657static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5658{
5659	unsigned long nr[NR_LRU_LISTS];
5660	unsigned long targets[NR_LRU_LISTS];
5661	unsigned long nr_to_scan;
5662	enum lru_list lru;
5663	unsigned long nr_reclaimed = 0;
5664	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5665	bool proportional_reclaim;
5666	struct blk_plug plug;
5667
5668	if (lru_gen_enabled() && !root_reclaim(sc)) {
5669		lru_gen_shrink_lruvec(lruvec, sc);
5670		return;
5671	}
5672
5673	get_scan_count(lruvec, sc, nr);
5674
5675	/* Record the original scan target for proportional adjustments later */
5676	memcpy(targets, nr, sizeof(nr));
5677
5678	/*
5679	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5680	 * event that can occur when there is little memory pressure e.g.
5681	 * multiple streaming readers/writers. Hence, we do not abort scanning
5682	 * when the requested number of pages are reclaimed when scanning at
5683	 * DEF_PRIORITY on the assumption that the fact we are direct
5684	 * reclaiming implies that kswapd is not keeping up and it is best to
5685	 * do a batch of work at once. For memcg reclaim one check is made to
5686	 * abort proportional reclaim if either the file or anon lru has already
5687	 * dropped to zero at the first pass.
5688	 */
5689	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5690				sc->priority == DEF_PRIORITY);
5691
5692	blk_start_plug(&plug);
5693	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5694					nr[LRU_INACTIVE_FILE]) {
5695		unsigned long nr_anon, nr_file, percentage;
5696		unsigned long nr_scanned;
5697
5698		for_each_evictable_lru(lru) {
5699			if (nr[lru]) {
5700				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5701				nr[lru] -= nr_to_scan;
5702
5703				nr_reclaimed += shrink_list(lru, nr_to_scan,
5704							    lruvec, sc);
5705			}
5706		}
5707
5708		cond_resched();
5709
5710		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5711			continue;
5712
5713		/*
5714		 * For kswapd and memcg, reclaim at least the number of pages
5715		 * requested. Ensure that the anon and file LRUs are scanned
5716		 * proportionally what was requested by get_scan_count(). We
5717		 * stop reclaiming one LRU and reduce the amount scanning
5718		 * proportional to the original scan target.
5719		 */
5720		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5721		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5722
5723		/*
5724		 * It's just vindictive to attack the larger once the smaller
5725		 * has gone to zero.  And given the way we stop scanning the
5726		 * smaller below, this makes sure that we only make one nudge
5727		 * towards proportionality once we've got nr_to_reclaim.
5728		 */
5729		if (!nr_file || !nr_anon)
5730			break;
5731
5732		if (nr_file > nr_anon) {
5733			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5734						targets[LRU_ACTIVE_ANON] + 1;
5735			lru = LRU_BASE;
5736			percentage = nr_anon * 100 / scan_target;
5737		} else {
5738			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5739						targets[LRU_ACTIVE_FILE] + 1;
5740			lru = LRU_FILE;
5741			percentage = nr_file * 100 / scan_target;
5742		}
5743
5744		/* Stop scanning the smaller of the LRU */
5745		nr[lru] = 0;
5746		nr[lru + LRU_ACTIVE] = 0;
5747
5748		/*
5749		 * Recalculate the other LRU scan count based on its original
5750		 * scan target and the percentage scanning already complete
5751		 */
5752		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5753		nr_scanned = targets[lru] - nr[lru];
5754		nr[lru] = targets[lru] * (100 - percentage) / 100;
5755		nr[lru] -= min(nr[lru], nr_scanned);
5756
5757		lru += LRU_ACTIVE;
5758		nr_scanned = targets[lru] - nr[lru];
5759		nr[lru] = targets[lru] * (100 - percentage) / 100;
5760		nr[lru] -= min(nr[lru], nr_scanned);
5761	}
5762	blk_finish_plug(&plug);
5763	sc->nr_reclaimed += nr_reclaimed;
5764
5765	/*
5766	 * Even if we did not try to evict anon pages at all, we want to
5767	 * rebalance the anon lru active/inactive ratio.
5768	 */
5769	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5770	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5771		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5772				   sc, LRU_ACTIVE_ANON);
5773}
5774
5775/* Use reclaim/compaction for costly allocs or under memory pressure */
5776static bool in_reclaim_compaction(struct scan_control *sc)
5777{
5778	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5779			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5780			 sc->priority < DEF_PRIORITY - 2))
5781		return true;
5782
5783	return false;
5784}
5785
5786/*
5787 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5788 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5789 * true if more pages should be reclaimed such that when the page allocator
5790 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5791 * It will give up earlier than that if there is difficulty reclaiming pages.
5792 */
5793static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5794					unsigned long nr_reclaimed,
5795					struct scan_control *sc)
5796{
5797	unsigned long pages_for_compaction;
5798	unsigned long inactive_lru_pages;
5799	int z;
5800
5801	/* If not in reclaim/compaction mode, stop */
5802	if (!in_reclaim_compaction(sc))
5803		return false;
5804
5805	/*
5806	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5807	 * number of pages that were scanned. This will return to the caller
5808	 * with the risk reclaim/compaction and the resulting allocation attempt
5809	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5810	 * allocations through requiring that the full LRU list has been scanned
5811	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5812	 * scan, but that approximation was wrong, and there were corner cases
5813	 * where always a non-zero amount of pages were scanned.
5814	 */
5815	if (!nr_reclaimed)
5816		return false;
5817
5818	/* If compaction would go ahead or the allocation would succeed, stop */
5819	for (z = 0; z <= sc->reclaim_idx; z++) {
5820		struct zone *zone = &pgdat->node_zones[z];
5821		if (!managed_zone(zone))
5822			continue;
5823
5824		/* Allocation can already succeed, nothing to do */
5825		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5826				      sc->reclaim_idx, 0))
5827			return false;
5828
5829		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5830			return false;
5831	}
5832
5833	/*
5834	 * If we have not reclaimed enough pages for compaction and the
5835	 * inactive lists are large enough, continue reclaiming
5836	 */
5837	pages_for_compaction = compact_gap(sc->order);
5838	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5839	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5840		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5841
5842	return inactive_lru_pages > pages_for_compaction;
5843}
5844
5845static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5846{
5847	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5848	struct mem_cgroup *memcg;
5849
5850	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5851	do {
5852		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5853		unsigned long reclaimed;
5854		unsigned long scanned;
5855
5856		/*
5857		 * This loop can become CPU-bound when target memcgs
5858		 * aren't eligible for reclaim - either because they
5859		 * don't have any reclaimable pages, or because their
5860		 * memory is explicitly protected. Avoid soft lockups.
5861		 */
5862		cond_resched();
5863
5864		mem_cgroup_calculate_protection(target_memcg, memcg);
5865
5866		if (mem_cgroup_below_min(target_memcg, memcg)) {
5867			/*
5868			 * Hard protection.
5869			 * If there is no reclaimable memory, OOM.
5870			 */
5871			continue;
5872		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
5873			/*
5874			 * Soft protection.
5875			 * Respect the protection only as long as
5876			 * there is an unprotected supply
5877			 * of reclaimable memory from other cgroups.
5878			 */
5879			if (!sc->memcg_low_reclaim) {
5880				sc->memcg_low_skipped = 1;
5881				continue;
5882			}
5883			memcg_memory_event(memcg, MEMCG_LOW);
5884		}
5885
5886		reclaimed = sc->nr_reclaimed;
5887		scanned = sc->nr_scanned;
5888
5889		shrink_lruvec(lruvec, sc);
5890
5891		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5892			    sc->priority);
5893
5894		/* Record the group's reclaim efficiency */
5895		if (!sc->proactive)
5896			vmpressure(sc->gfp_mask, memcg, false,
5897				   sc->nr_scanned - scanned,
5898				   sc->nr_reclaimed - reclaimed);
5899
5900	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5901}
5902
5903static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5904{
5905	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5906	struct lruvec *target_lruvec;
5907	bool reclaimable = false;
5908
5909	if (lru_gen_enabled() && root_reclaim(sc)) {
5910		lru_gen_shrink_node(pgdat, sc);
5911		return;
5912	}
5913
5914	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5915
5916again:
5917	memset(&sc->nr, 0, sizeof(sc->nr));
5918
5919	nr_reclaimed = sc->nr_reclaimed;
5920	nr_scanned = sc->nr_scanned;
5921
5922	prepare_scan_control(pgdat, sc);
5923
5924	shrink_node_memcgs(pgdat, sc);
5925
5926	flush_reclaim_state(sc);
5927
5928	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5929
5930	/* Record the subtree's reclaim efficiency */
5931	if (!sc->proactive)
5932		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5933			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5934
5935	if (nr_node_reclaimed)
5936		reclaimable = true;
5937
5938	if (current_is_kswapd()) {
5939		/*
5940		 * If reclaim is isolating dirty pages under writeback,
5941		 * it implies that the long-lived page allocation rate
5942		 * is exceeding the page laundering rate. Either the
5943		 * global limits are not being effective at throttling
5944		 * processes due to the page distribution throughout
5945		 * zones or there is heavy usage of a slow backing
5946		 * device. The only option is to throttle from reclaim
5947		 * context which is not ideal as there is no guarantee
5948		 * the dirtying process is throttled in the same way
5949		 * balance_dirty_pages() manages.
5950		 *
5951		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5952		 * count the number of pages under pages flagged for
5953		 * immediate reclaim and stall if any are encountered
5954		 * in the nr_immediate check below.
5955		 */
5956		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5957			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5958
5959		/* Allow kswapd to start writing pages during reclaim.*/
5960		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5961			set_bit(PGDAT_DIRTY, &pgdat->flags);
5962
5963		/*
5964		 * If kswapd scans pages marked for immediate
5965		 * reclaim and under writeback (nr_immediate), it
5966		 * implies that pages are cycling through the LRU
5967		 * faster than they are written so forcibly stall
5968		 * until some pages complete writeback.
5969		 */
5970		if (sc->nr.immediate)
5971			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5972	}
5973
5974	/*
5975	 * Tag a node/memcg as congested if all the dirty pages were marked
5976	 * for writeback and immediate reclaim (counted in nr.congested).
5977	 *
5978	 * Legacy memcg will stall in page writeback so avoid forcibly
5979	 * stalling in reclaim_throttle().
5980	 */
5981	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5982		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5983			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5984
5985		if (current_is_kswapd())
5986			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5987	}
5988
5989	/*
5990	 * Stall direct reclaim for IO completions if the lruvec is
5991	 * node is congested. Allow kswapd to continue until it
5992	 * starts encountering unqueued dirty pages or cycling through
5993	 * the LRU too quickly.
5994	 */
5995	if (!current_is_kswapd() && current_may_throttle() &&
5996	    !sc->hibernation_mode &&
5997	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5998	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5999		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6000
6001	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6002		goto again;
6003
6004	/*
6005	 * Kswapd gives up on balancing particular nodes after too
6006	 * many failures to reclaim anything from them and goes to
6007	 * sleep. On reclaim progress, reset the failure counter. A
6008	 * successful direct reclaim run will revive a dormant kswapd.
6009	 */
6010	if (reclaimable)
6011		pgdat->kswapd_failures = 0;
6012	else if (sc->cache_trim_mode)
6013		sc->cache_trim_mode_failed = 1;
6014}
6015
6016/*
6017 * Returns true if compaction should go ahead for a costly-order request, or
6018 * the allocation would already succeed without compaction. Return false if we
6019 * should reclaim first.
6020 */
6021static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6022{
6023	unsigned long watermark;
6024
6025	if (!gfp_compaction_allowed(sc->gfp_mask))
6026		return false;
6027
6028	/* Allocation can already succeed, nothing to do */
6029	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6030			      sc->reclaim_idx, 0))
6031		return true;
6032
6033	/* Compaction cannot yet proceed. Do reclaim. */
6034	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6035		return false;
6036
6037	/*
6038	 * Compaction is already possible, but it takes time to run and there
6039	 * are potentially other callers using the pages just freed. So proceed
6040	 * with reclaim to make a buffer of free pages available to give
6041	 * compaction a reasonable chance of completing and allocating the page.
6042	 * Note that we won't actually reclaim the whole buffer in one attempt
6043	 * as the target watermark in should_continue_reclaim() is lower. But if
6044	 * we are already above the high+gap watermark, don't reclaim at all.
6045	 */
6046	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6047
6048	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6049}
6050
6051static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6052{
6053	/*
6054	 * If reclaim is making progress greater than 12% efficiency then
6055	 * wake all the NOPROGRESS throttled tasks.
6056	 */
6057	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6058		wait_queue_head_t *wqh;
6059
6060		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6061		if (waitqueue_active(wqh))
6062			wake_up(wqh);
6063
6064		return;
6065	}
6066
6067	/*
6068	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6069	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6070	 * under writeback and marked for immediate reclaim at the tail of the
6071	 * LRU.
6072	 */
6073	if (current_is_kswapd() || cgroup_reclaim(sc))
6074		return;
6075
6076	/* Throttle if making no progress at high prioities. */
6077	if (sc->priority == 1 && !sc->nr_reclaimed)
6078		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6079}
6080
6081/*
6082 * This is the direct reclaim path, for page-allocating processes.  We only
6083 * try to reclaim pages from zones which will satisfy the caller's allocation
6084 * request.
6085 *
6086 * If a zone is deemed to be full of pinned pages then just give it a light
6087 * scan then give up on it.
6088 */
6089static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6090{
6091	struct zoneref *z;
6092	struct zone *zone;
6093	unsigned long nr_soft_reclaimed;
6094	unsigned long nr_soft_scanned;
6095	gfp_t orig_mask;
6096	pg_data_t *last_pgdat = NULL;
6097	pg_data_t *first_pgdat = NULL;
6098
6099	/*
6100	 * If the number of buffer_heads in the machine exceeds the maximum
6101	 * allowed level, force direct reclaim to scan the highmem zone as
6102	 * highmem pages could be pinning lowmem pages storing buffer_heads
6103	 */
6104	orig_mask = sc->gfp_mask;
6105	if (buffer_heads_over_limit) {
6106		sc->gfp_mask |= __GFP_HIGHMEM;
6107		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6108	}
6109
6110	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6111					sc->reclaim_idx, sc->nodemask) {
6112		/*
6113		 * Take care memory controller reclaiming has small influence
6114		 * to global LRU.
6115		 */
6116		if (!cgroup_reclaim(sc)) {
6117			if (!cpuset_zone_allowed(zone,
6118						 GFP_KERNEL | __GFP_HARDWALL))
6119				continue;
6120
6121			/*
6122			 * If we already have plenty of memory free for
6123			 * compaction in this zone, don't free any more.
6124			 * Even though compaction is invoked for any
6125			 * non-zero order, only frequent costly order
6126			 * reclamation is disruptive enough to become a
6127			 * noticeable problem, like transparent huge
6128			 * page allocations.
6129			 */
6130			if (IS_ENABLED(CONFIG_COMPACTION) &&
6131			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6132			    compaction_ready(zone, sc)) {
6133				sc->compaction_ready = true;
6134				continue;
6135			}
6136
6137			/*
6138			 * Shrink each node in the zonelist once. If the
6139			 * zonelist is ordered by zone (not the default) then a
6140			 * node may be shrunk multiple times but in that case
6141			 * the user prefers lower zones being preserved.
6142			 */
6143			if (zone->zone_pgdat == last_pgdat)
6144				continue;
6145
6146			/*
6147			 * This steals pages from memory cgroups over softlimit
6148			 * and returns the number of reclaimed pages and
6149			 * scanned pages. This works for global memory pressure
6150			 * and balancing, not for a memcg's limit.
6151			 */
6152			nr_soft_scanned = 0;
6153			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6154						sc->order, sc->gfp_mask,
6155						&nr_soft_scanned);
6156			sc->nr_reclaimed += nr_soft_reclaimed;
6157			sc->nr_scanned += nr_soft_scanned;
6158			/* need some check for avoid more shrink_zone() */
6159		}
6160
6161		if (!first_pgdat)
6162			first_pgdat = zone->zone_pgdat;
6163
6164		/* See comment about same check for global reclaim above */
6165		if (zone->zone_pgdat == last_pgdat)
6166			continue;
6167		last_pgdat = zone->zone_pgdat;
6168		shrink_node(zone->zone_pgdat, sc);
6169	}
6170
6171	if (first_pgdat)
6172		consider_reclaim_throttle(first_pgdat, sc);
6173
6174	/*
6175	 * Restore to original mask to avoid the impact on the caller if we
6176	 * promoted it to __GFP_HIGHMEM.
6177	 */
6178	sc->gfp_mask = orig_mask;
6179}
6180
6181static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6182{
6183	struct lruvec *target_lruvec;
6184	unsigned long refaults;
6185
6186	if (lru_gen_enabled())
6187		return;
6188
6189	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6190	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6191	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6192	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6193	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6194}
6195
6196/*
6197 * This is the main entry point to direct page reclaim.
6198 *
6199 * If a full scan of the inactive list fails to free enough memory then we
6200 * are "out of memory" and something needs to be killed.
6201 *
6202 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6203 * high - the zone may be full of dirty or under-writeback pages, which this
6204 * caller can't do much about.  We kick the writeback threads and take explicit
6205 * naps in the hope that some of these pages can be written.  But if the
6206 * allocating task holds filesystem locks which prevent writeout this might not
6207 * work, and the allocation attempt will fail.
6208 *
6209 * returns:	0, if no pages reclaimed
6210 * 		else, the number of pages reclaimed
6211 */
6212static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6213					  struct scan_control *sc)
6214{
6215	int initial_priority = sc->priority;
6216	pg_data_t *last_pgdat;
6217	struct zoneref *z;
6218	struct zone *zone;
6219retry:
6220	delayacct_freepages_start();
6221
6222	if (!cgroup_reclaim(sc))
6223		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6224
6225	do {
6226		if (!sc->proactive)
6227			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6228					sc->priority);
6229		sc->nr_scanned = 0;
6230		shrink_zones(zonelist, sc);
6231
6232		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6233			break;
6234
6235		if (sc->compaction_ready)
6236			break;
6237
6238		/*
6239		 * If we're getting trouble reclaiming, start doing
6240		 * writepage even in laptop mode.
6241		 */
6242		if (sc->priority < DEF_PRIORITY - 2)
6243			sc->may_writepage = 1;
6244	} while (--sc->priority >= 0);
6245
6246	last_pgdat = NULL;
6247	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6248					sc->nodemask) {
6249		if (zone->zone_pgdat == last_pgdat)
6250			continue;
6251		last_pgdat = zone->zone_pgdat;
6252
6253		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6254
6255		if (cgroup_reclaim(sc)) {
6256			struct lruvec *lruvec;
6257
6258			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6259						   zone->zone_pgdat);
6260			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6261		}
6262	}
6263
6264	delayacct_freepages_end();
6265
6266	if (sc->nr_reclaimed)
6267		return sc->nr_reclaimed;
6268
6269	/* Aborted reclaim to try compaction? don't OOM, then */
6270	if (sc->compaction_ready)
6271		return 1;
6272
6273	/*
6274	 * We make inactive:active ratio decisions based on the node's
6275	 * composition of memory, but a restrictive reclaim_idx or a
6276	 * memory.low cgroup setting can exempt large amounts of
6277	 * memory from reclaim. Neither of which are very common, so
6278	 * instead of doing costly eligibility calculations of the
6279	 * entire cgroup subtree up front, we assume the estimates are
6280	 * good, and retry with forcible deactivation if that fails.
6281	 */
6282	if (sc->skipped_deactivate) {
6283		sc->priority = initial_priority;
6284		sc->force_deactivate = 1;
6285		sc->skipped_deactivate = 0;
6286		goto retry;
6287	}
6288
6289	/* Untapped cgroup reserves?  Don't OOM, retry. */
6290	if (sc->memcg_low_skipped) {
6291		sc->priority = initial_priority;
6292		sc->force_deactivate = 0;
6293		sc->memcg_low_reclaim = 1;
6294		sc->memcg_low_skipped = 0;
6295		goto retry;
6296	}
6297
6298	return 0;
6299}
6300
6301static bool allow_direct_reclaim(pg_data_t *pgdat)
6302{
6303	struct zone *zone;
6304	unsigned long pfmemalloc_reserve = 0;
6305	unsigned long free_pages = 0;
6306	int i;
6307	bool wmark_ok;
6308
6309	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6310		return true;
6311
6312	for (i = 0; i <= ZONE_NORMAL; i++) {
6313		zone = &pgdat->node_zones[i];
6314		if (!managed_zone(zone))
6315			continue;
6316
6317		if (!zone_reclaimable_pages(zone))
6318			continue;
6319
6320		pfmemalloc_reserve += min_wmark_pages(zone);
6321		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6322	}
6323
6324	/* If there are no reserves (unexpected config) then do not throttle */
6325	if (!pfmemalloc_reserve)
6326		return true;
6327
6328	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6329
6330	/* kswapd must be awake if processes are being throttled */
6331	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6332		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6333			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6334
6335		wake_up_interruptible(&pgdat->kswapd_wait);
6336	}
6337
6338	return wmark_ok;
6339}
6340
6341/*
6342 * Throttle direct reclaimers if backing storage is backed by the network
6343 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6344 * depleted. kswapd will continue to make progress and wake the processes
6345 * when the low watermark is reached.
6346 *
6347 * Returns true if a fatal signal was delivered during throttling. If this
6348 * happens, the page allocator should not consider triggering the OOM killer.
6349 */
6350static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6351					nodemask_t *nodemask)
6352{
6353	struct zoneref *z;
6354	struct zone *zone;
6355	pg_data_t *pgdat = NULL;
6356
6357	/*
6358	 * Kernel threads should not be throttled as they may be indirectly
6359	 * responsible for cleaning pages necessary for reclaim to make forward
6360	 * progress. kjournald for example may enter direct reclaim while
6361	 * committing a transaction where throttling it could forcing other
6362	 * processes to block on log_wait_commit().
6363	 */
6364	if (current->flags & PF_KTHREAD)
6365		goto out;
6366
6367	/*
6368	 * If a fatal signal is pending, this process should not throttle.
6369	 * It should return quickly so it can exit and free its memory
6370	 */
6371	if (fatal_signal_pending(current))
6372		goto out;
6373
6374	/*
6375	 * Check if the pfmemalloc reserves are ok by finding the first node
6376	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6377	 * GFP_KERNEL will be required for allocating network buffers when
6378	 * swapping over the network so ZONE_HIGHMEM is unusable.
6379	 *
6380	 * Throttling is based on the first usable node and throttled processes
6381	 * wait on a queue until kswapd makes progress and wakes them. There
6382	 * is an affinity then between processes waking up and where reclaim
6383	 * progress has been made assuming the process wakes on the same node.
6384	 * More importantly, processes running on remote nodes will not compete
6385	 * for remote pfmemalloc reserves and processes on different nodes
6386	 * should make reasonable progress.
6387	 */
6388	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6389					gfp_zone(gfp_mask), nodemask) {
6390		if (zone_idx(zone) > ZONE_NORMAL)
6391			continue;
6392
6393		/* Throttle based on the first usable node */
6394		pgdat = zone->zone_pgdat;
6395		if (allow_direct_reclaim(pgdat))
6396			goto out;
6397		break;
6398	}
6399
6400	/* If no zone was usable by the allocation flags then do not throttle */
6401	if (!pgdat)
6402		goto out;
6403
6404	/* Account for the throttling */
6405	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6406
6407	/*
6408	 * If the caller cannot enter the filesystem, it's possible that it
6409	 * is due to the caller holding an FS lock or performing a journal
6410	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6411	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6412	 * blocked waiting on the same lock. Instead, throttle for up to a
6413	 * second before continuing.
6414	 */
6415	if (!(gfp_mask & __GFP_FS))
6416		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6417			allow_direct_reclaim(pgdat), HZ);
6418	else
6419		/* Throttle until kswapd wakes the process */
6420		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6421			allow_direct_reclaim(pgdat));
6422
6423	if (fatal_signal_pending(current))
6424		return true;
6425
6426out:
6427	return false;
6428}
6429
6430unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6431				gfp_t gfp_mask, nodemask_t *nodemask)
6432{
6433	unsigned long nr_reclaimed;
6434	struct scan_control sc = {
6435		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6436		.gfp_mask = current_gfp_context(gfp_mask),
6437		.reclaim_idx = gfp_zone(gfp_mask),
6438		.order = order,
6439		.nodemask = nodemask,
6440		.priority = DEF_PRIORITY,
6441		.may_writepage = !laptop_mode,
6442		.may_unmap = 1,
6443		.may_swap = 1,
6444	};
6445
6446	/*
6447	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6448	 * Confirm they are large enough for max values.
6449	 */
6450	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6451	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6452	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6453
6454	/*
6455	 * Do not enter reclaim if fatal signal was delivered while throttled.
6456	 * 1 is returned so that the page allocator does not OOM kill at this
6457	 * point.
6458	 */
6459	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6460		return 1;
6461
6462	set_task_reclaim_state(current, &sc.reclaim_state);
6463	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6464
6465	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6466
6467	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6468	set_task_reclaim_state(current, NULL);
6469
6470	return nr_reclaimed;
6471}
6472
6473#ifdef CONFIG_MEMCG
6474
6475/* Only used by soft limit reclaim. Do not reuse for anything else. */
6476unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6477						gfp_t gfp_mask, bool noswap,
6478						pg_data_t *pgdat,
6479						unsigned long *nr_scanned)
6480{
6481	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6482	struct scan_control sc = {
6483		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6484		.target_mem_cgroup = memcg,
6485		.may_writepage = !laptop_mode,
6486		.may_unmap = 1,
6487		.reclaim_idx = MAX_NR_ZONES - 1,
6488		.may_swap = !noswap,
6489	};
6490
6491	WARN_ON_ONCE(!current->reclaim_state);
6492
6493	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6494			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6495
6496	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6497						      sc.gfp_mask);
6498
6499	/*
6500	 * NOTE: Although we can get the priority field, using it
6501	 * here is not a good idea, since it limits the pages we can scan.
6502	 * if we don't reclaim here, the shrink_node from balance_pgdat
6503	 * will pick up pages from other mem cgroup's as well. We hack
6504	 * the priority and make it zero.
6505	 */
6506	shrink_lruvec(lruvec, &sc);
6507
6508	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6509
6510	*nr_scanned = sc.nr_scanned;
6511
6512	return sc.nr_reclaimed;
6513}
6514
6515unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6516					   unsigned long nr_pages,
6517					   gfp_t gfp_mask,
6518					   unsigned int reclaim_options)
6519{
6520	unsigned long nr_reclaimed;
6521	unsigned int noreclaim_flag;
6522	struct scan_control sc = {
6523		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6524		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6525				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6526		.reclaim_idx = MAX_NR_ZONES - 1,
6527		.target_mem_cgroup = memcg,
6528		.priority = DEF_PRIORITY,
6529		.may_writepage = !laptop_mode,
6530		.may_unmap = 1,
6531		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6532		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6533	};
6534	/*
6535	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6536	 * equal pressure on all the nodes. This is based on the assumption that
6537	 * the reclaim does not bail out early.
6538	 */
6539	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6540
6541	set_task_reclaim_state(current, &sc.reclaim_state);
6542	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6543	noreclaim_flag = memalloc_noreclaim_save();
6544
6545	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6546
6547	memalloc_noreclaim_restore(noreclaim_flag);
6548	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6549	set_task_reclaim_state(current, NULL);
6550
6551	return nr_reclaimed;
6552}
6553#endif
6554
6555static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6556{
6557	struct mem_cgroup *memcg;
6558	struct lruvec *lruvec;
6559
6560	if (lru_gen_enabled()) {
6561		lru_gen_age_node(pgdat, sc);
6562		return;
6563	}
6564
6565	if (!can_age_anon_pages(pgdat, sc))
6566		return;
6567
6568	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6569	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6570		return;
6571
6572	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6573	do {
6574		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6575		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6576				   sc, LRU_ACTIVE_ANON);
6577		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6578	} while (memcg);
6579}
6580
6581static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6582{
6583	int i;
6584	struct zone *zone;
6585
6586	/*
6587	 * Check for watermark boosts top-down as the higher zones
6588	 * are more likely to be boosted. Both watermarks and boosts
6589	 * should not be checked at the same time as reclaim would
6590	 * start prematurely when there is no boosting and a lower
6591	 * zone is balanced.
6592	 */
6593	for (i = highest_zoneidx; i >= 0; i--) {
6594		zone = pgdat->node_zones + i;
6595		if (!managed_zone(zone))
6596			continue;
6597
6598		if (zone->watermark_boost)
6599			return true;
6600	}
6601
6602	return false;
6603}
6604
6605/*
6606 * Returns true if there is an eligible zone balanced for the request order
6607 * and highest_zoneidx
6608 */
6609static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6610{
6611	int i;
6612	unsigned long mark = -1;
6613	struct zone *zone;
6614
6615	/*
6616	 * Check watermarks bottom-up as lower zones are more likely to
6617	 * meet watermarks.
6618	 */
6619	for (i = 0; i <= highest_zoneidx; i++) {
6620		zone = pgdat->node_zones + i;
6621
6622		if (!managed_zone(zone))
6623			continue;
6624
6625		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6626			mark = wmark_pages(zone, WMARK_PROMO);
6627		else
6628			mark = high_wmark_pages(zone);
6629		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6630			return true;
6631	}
6632
6633	/*
6634	 * If a node has no managed zone within highest_zoneidx, it does not
6635	 * need balancing by definition. This can happen if a zone-restricted
6636	 * allocation tries to wake a remote kswapd.
6637	 */
6638	if (mark == -1)
6639		return true;
6640
6641	return false;
6642}
6643
6644/* Clear pgdat state for congested, dirty or under writeback. */
6645static void clear_pgdat_congested(pg_data_t *pgdat)
6646{
6647	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6648
6649	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6650	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6651	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6652	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6653}
6654
6655/*
6656 * Prepare kswapd for sleeping. This verifies that there are no processes
6657 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6658 *
6659 * Returns true if kswapd is ready to sleep
6660 */
6661static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6662				int highest_zoneidx)
6663{
6664	/*
6665	 * The throttled processes are normally woken up in balance_pgdat() as
6666	 * soon as allow_direct_reclaim() is true. But there is a potential
6667	 * race between when kswapd checks the watermarks and a process gets
6668	 * throttled. There is also a potential race if processes get
6669	 * throttled, kswapd wakes, a large process exits thereby balancing the
6670	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6671	 * the wake up checks. If kswapd is going to sleep, no process should
6672	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6673	 * the wake up is premature, processes will wake kswapd and get
6674	 * throttled again. The difference from wake ups in balance_pgdat() is
6675	 * that here we are under prepare_to_wait().
6676	 */
6677	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6678		wake_up_all(&pgdat->pfmemalloc_wait);
6679
6680	/* Hopeless node, leave it to direct reclaim */
6681	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6682		return true;
6683
6684	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6685		clear_pgdat_congested(pgdat);
6686		return true;
6687	}
6688
6689	return false;
6690}
6691
6692/*
6693 * kswapd shrinks a node of pages that are at or below the highest usable
6694 * zone that is currently unbalanced.
6695 *
6696 * Returns true if kswapd scanned at least the requested number of pages to
6697 * reclaim or if the lack of progress was due to pages under writeback.
6698 * This is used to determine if the scanning priority needs to be raised.
6699 */
6700static bool kswapd_shrink_node(pg_data_t *pgdat,
6701			       struct scan_control *sc)
6702{
6703	struct zone *zone;
6704	int z;
6705
6706	/* Reclaim a number of pages proportional to the number of zones */
6707	sc->nr_to_reclaim = 0;
6708	for (z = 0; z <= sc->reclaim_idx; z++) {
6709		zone = pgdat->node_zones + z;
6710		if (!managed_zone(zone))
6711			continue;
6712
6713		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6714	}
6715
6716	/*
6717	 * Historically care was taken to put equal pressure on all zones but
6718	 * now pressure is applied based on node LRU order.
6719	 */
6720	shrink_node(pgdat, sc);
6721
6722	/*
6723	 * Fragmentation may mean that the system cannot be rebalanced for
6724	 * high-order allocations. If twice the allocation size has been
6725	 * reclaimed then recheck watermarks only at order-0 to prevent
6726	 * excessive reclaim. Assume that a process requested a high-order
6727	 * can direct reclaim/compact.
6728	 */
6729	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6730		sc->order = 0;
6731
6732	return sc->nr_scanned >= sc->nr_to_reclaim;
6733}
6734
6735/* Page allocator PCP high watermark is lowered if reclaim is active. */
6736static inline void
6737update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6738{
6739	int i;
6740	struct zone *zone;
6741
6742	for (i = 0; i <= highest_zoneidx; i++) {
6743		zone = pgdat->node_zones + i;
6744
6745		if (!managed_zone(zone))
6746			continue;
6747
6748		if (active)
6749			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6750		else
6751			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6752	}
6753}
6754
6755static inline void
6756set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6757{
6758	update_reclaim_active(pgdat, highest_zoneidx, true);
6759}
6760
6761static inline void
6762clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6763{
6764	update_reclaim_active(pgdat, highest_zoneidx, false);
6765}
6766
6767/*
6768 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6769 * that are eligible for use by the caller until at least one zone is
6770 * balanced.
6771 *
6772 * Returns the order kswapd finished reclaiming at.
6773 *
6774 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6775 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6776 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6777 * or lower is eligible for reclaim until at least one usable zone is
6778 * balanced.
6779 */
6780static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6781{
6782	int i;
6783	unsigned long nr_soft_reclaimed;
6784	unsigned long nr_soft_scanned;
6785	unsigned long pflags;
6786	unsigned long nr_boost_reclaim;
6787	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6788	bool boosted;
6789	struct zone *zone;
6790	struct scan_control sc = {
6791		.gfp_mask = GFP_KERNEL,
6792		.order = order,
6793		.may_unmap = 1,
6794	};
6795
6796	set_task_reclaim_state(current, &sc.reclaim_state);
6797	psi_memstall_enter(&pflags);
6798	__fs_reclaim_acquire(_THIS_IP_);
6799
6800	count_vm_event(PAGEOUTRUN);
6801
6802	/*
6803	 * Account for the reclaim boost. Note that the zone boost is left in
6804	 * place so that parallel allocations that are near the watermark will
6805	 * stall or direct reclaim until kswapd is finished.
6806	 */
6807	nr_boost_reclaim = 0;
6808	for (i = 0; i <= highest_zoneidx; i++) {
6809		zone = pgdat->node_zones + i;
6810		if (!managed_zone(zone))
6811			continue;
6812
6813		nr_boost_reclaim += zone->watermark_boost;
6814		zone_boosts[i] = zone->watermark_boost;
6815	}
6816	boosted = nr_boost_reclaim;
6817
6818restart:
6819	set_reclaim_active(pgdat, highest_zoneidx);
6820	sc.priority = DEF_PRIORITY;
6821	do {
6822		unsigned long nr_reclaimed = sc.nr_reclaimed;
6823		bool raise_priority = true;
6824		bool balanced;
6825		bool ret;
6826		bool was_frozen;
6827
6828		sc.reclaim_idx = highest_zoneidx;
6829
6830		/*
6831		 * If the number of buffer_heads exceeds the maximum allowed
6832		 * then consider reclaiming from all zones. This has a dual
6833		 * purpose -- on 64-bit systems it is expected that
6834		 * buffer_heads are stripped during active rotation. On 32-bit
6835		 * systems, highmem pages can pin lowmem memory and shrinking
6836		 * buffers can relieve lowmem pressure. Reclaim may still not
6837		 * go ahead if all eligible zones for the original allocation
6838		 * request are balanced to avoid excessive reclaim from kswapd.
6839		 */
6840		if (buffer_heads_over_limit) {
6841			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6842				zone = pgdat->node_zones + i;
6843				if (!managed_zone(zone))
6844					continue;
6845
6846				sc.reclaim_idx = i;
6847				break;
6848			}
6849		}
6850
6851		/*
6852		 * If the pgdat is imbalanced then ignore boosting and preserve
6853		 * the watermarks for a later time and restart. Note that the
6854		 * zone watermarks will be still reset at the end of balancing
6855		 * on the grounds that the normal reclaim should be enough to
6856		 * re-evaluate if boosting is required when kswapd next wakes.
6857		 */
6858		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6859		if (!balanced && nr_boost_reclaim) {
6860			nr_boost_reclaim = 0;
6861			goto restart;
6862		}
6863
6864		/*
6865		 * If boosting is not active then only reclaim if there are no
6866		 * eligible zones. Note that sc.reclaim_idx is not used as
6867		 * buffer_heads_over_limit may have adjusted it.
6868		 */
6869		if (!nr_boost_reclaim && balanced)
6870			goto out;
6871
6872		/* Limit the priority of boosting to avoid reclaim writeback */
6873		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6874			raise_priority = false;
6875
6876		/*
6877		 * Do not writeback or swap pages for boosted reclaim. The
6878		 * intent is to relieve pressure not issue sub-optimal IO
6879		 * from reclaim context. If no pages are reclaimed, the
6880		 * reclaim will be aborted.
6881		 */
6882		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6883		sc.may_swap = !nr_boost_reclaim;
6884
6885		/*
6886		 * Do some background aging, to give pages a chance to be
6887		 * referenced before reclaiming. All pages are rotated
6888		 * regardless of classzone as this is about consistent aging.
6889		 */
6890		kswapd_age_node(pgdat, &sc);
6891
6892		/*
6893		 * If we're getting trouble reclaiming, start doing writepage
6894		 * even in laptop mode.
6895		 */
6896		if (sc.priority < DEF_PRIORITY - 2)
6897			sc.may_writepage = 1;
6898
6899		/* Call soft limit reclaim before calling shrink_node. */
6900		sc.nr_scanned = 0;
6901		nr_soft_scanned = 0;
6902		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6903						sc.gfp_mask, &nr_soft_scanned);
6904		sc.nr_reclaimed += nr_soft_reclaimed;
6905
6906		/*
6907		 * There should be no need to raise the scanning priority if
6908		 * enough pages are already being scanned that that high
6909		 * watermark would be met at 100% efficiency.
6910		 */
6911		if (kswapd_shrink_node(pgdat, &sc))
6912			raise_priority = false;
6913
6914		/*
6915		 * If the low watermark is met there is no need for processes
6916		 * to be throttled on pfmemalloc_wait as they should not be
6917		 * able to safely make forward progress. Wake them
6918		 */
6919		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6920				allow_direct_reclaim(pgdat))
6921			wake_up_all(&pgdat->pfmemalloc_wait);
6922
6923		/* Check if kswapd should be suspending */
6924		__fs_reclaim_release(_THIS_IP_);
6925		ret = kthread_freezable_should_stop(&was_frozen);
6926		__fs_reclaim_acquire(_THIS_IP_);
6927		if (was_frozen || ret)
6928			break;
6929
6930		/*
6931		 * Raise priority if scanning rate is too low or there was no
6932		 * progress in reclaiming pages
6933		 */
6934		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6935		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6936
6937		/*
6938		 * If reclaim made no progress for a boost, stop reclaim as
6939		 * IO cannot be queued and it could be an infinite loop in
6940		 * extreme circumstances.
6941		 */
6942		if (nr_boost_reclaim && !nr_reclaimed)
6943			break;
6944
6945		if (raise_priority || !nr_reclaimed)
6946			sc.priority--;
6947	} while (sc.priority >= 1);
6948
6949	/*
6950	 * Restart only if it went through the priority loop all the way,
6951	 * but cache_trim_mode didn't work.
6952	 */
6953	if (!sc.nr_reclaimed && sc.priority < 1 &&
6954	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
6955		sc.no_cache_trim_mode = 1;
6956		goto restart;
6957	}
6958
6959	if (!sc.nr_reclaimed)
6960		pgdat->kswapd_failures++;
6961
6962out:
6963	clear_reclaim_active(pgdat, highest_zoneidx);
6964
6965	/* If reclaim was boosted, account for the reclaim done in this pass */
6966	if (boosted) {
6967		unsigned long flags;
6968
6969		for (i = 0; i <= highest_zoneidx; i++) {
6970			if (!zone_boosts[i])
6971				continue;
6972
6973			/* Increments are under the zone lock */
6974			zone = pgdat->node_zones + i;
6975			spin_lock_irqsave(&zone->lock, flags);
6976			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6977			spin_unlock_irqrestore(&zone->lock, flags);
6978		}
6979
6980		/*
6981		 * As there is now likely space, wakeup kcompact to defragment
6982		 * pageblocks.
6983		 */
6984		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6985	}
6986
6987	snapshot_refaults(NULL, pgdat);
6988	__fs_reclaim_release(_THIS_IP_);
6989	psi_memstall_leave(&pflags);
6990	set_task_reclaim_state(current, NULL);
6991
6992	/*
6993	 * Return the order kswapd stopped reclaiming at as
6994	 * prepare_kswapd_sleep() takes it into account. If another caller
6995	 * entered the allocator slow path while kswapd was awake, order will
6996	 * remain at the higher level.
6997	 */
6998	return sc.order;
6999}
7000
7001/*
7002 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7003 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7004 * not a valid index then either kswapd runs for first time or kswapd couldn't
7005 * sleep after previous reclaim attempt (node is still unbalanced). In that
7006 * case return the zone index of the previous kswapd reclaim cycle.
7007 */
7008static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7009					   enum zone_type prev_highest_zoneidx)
7010{
7011	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7012
7013	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7014}
7015
7016static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7017				unsigned int highest_zoneidx)
7018{
7019	long remaining = 0;
7020	DEFINE_WAIT(wait);
7021
7022	if (freezing(current) || kthread_should_stop())
7023		return;
7024
7025	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7026
7027	/*
7028	 * Try to sleep for a short interval. Note that kcompactd will only be
7029	 * woken if it is possible to sleep for a short interval. This is
7030	 * deliberate on the assumption that if reclaim cannot keep an
7031	 * eligible zone balanced that it's also unlikely that compaction will
7032	 * succeed.
7033	 */
7034	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7035		/*
7036		 * Compaction records what page blocks it recently failed to
7037		 * isolate pages from and skips them in the future scanning.
7038		 * When kswapd is going to sleep, it is reasonable to assume
7039		 * that pages and compaction may succeed so reset the cache.
7040		 */
7041		reset_isolation_suitable(pgdat);
7042
7043		/*
7044		 * We have freed the memory, now we should compact it to make
7045		 * allocation of the requested order possible.
7046		 */
7047		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7048
7049		remaining = schedule_timeout(HZ/10);
7050
7051		/*
7052		 * If woken prematurely then reset kswapd_highest_zoneidx and
7053		 * order. The values will either be from a wakeup request or
7054		 * the previous request that slept prematurely.
7055		 */
7056		if (remaining) {
7057			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7058					kswapd_highest_zoneidx(pgdat,
7059							highest_zoneidx));
7060
7061			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7062				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7063		}
7064
7065		finish_wait(&pgdat->kswapd_wait, &wait);
7066		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7067	}
7068
7069	/*
7070	 * After a short sleep, check if it was a premature sleep. If not, then
7071	 * go fully to sleep until explicitly woken up.
7072	 */
7073	if (!remaining &&
7074	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7075		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7076
7077		/*
7078		 * vmstat counters are not perfectly accurate and the estimated
7079		 * value for counters such as NR_FREE_PAGES can deviate from the
7080		 * true value by nr_online_cpus * threshold. To avoid the zone
7081		 * watermarks being breached while under pressure, we reduce the
7082		 * per-cpu vmstat threshold while kswapd is awake and restore
7083		 * them before going back to sleep.
7084		 */
7085		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7086
7087		if (!kthread_should_stop())
7088			schedule();
7089
7090		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7091	} else {
7092		if (remaining)
7093			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7094		else
7095			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7096	}
7097	finish_wait(&pgdat->kswapd_wait, &wait);
7098}
7099
7100/*
7101 * The background pageout daemon, started as a kernel thread
7102 * from the init process.
7103 *
7104 * This basically trickles out pages so that we have _some_
7105 * free memory available even if there is no other activity
7106 * that frees anything up. This is needed for things like routing
7107 * etc, where we otherwise might have all activity going on in
7108 * asynchronous contexts that cannot page things out.
7109 *
7110 * If there are applications that are active memory-allocators
7111 * (most normal use), this basically shouldn't matter.
7112 */
7113static int kswapd(void *p)
7114{
7115	unsigned int alloc_order, reclaim_order;
7116	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7117	pg_data_t *pgdat = (pg_data_t *)p;
7118	struct task_struct *tsk = current;
7119	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7120
7121	if (!cpumask_empty(cpumask))
7122		set_cpus_allowed_ptr(tsk, cpumask);
7123
7124	/*
7125	 * Tell the memory management that we're a "memory allocator",
7126	 * and that if we need more memory we should get access to it
7127	 * regardless (see "__alloc_pages()"). "kswapd" should
7128	 * never get caught in the normal page freeing logic.
7129	 *
7130	 * (Kswapd normally doesn't need memory anyway, but sometimes
7131	 * you need a small amount of memory in order to be able to
7132	 * page out something else, and this flag essentially protects
7133	 * us from recursively trying to free more memory as we're
7134	 * trying to free the first piece of memory in the first place).
7135	 */
7136	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7137	set_freezable();
7138
7139	WRITE_ONCE(pgdat->kswapd_order, 0);
7140	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7141	atomic_set(&pgdat->nr_writeback_throttled, 0);
7142	for ( ; ; ) {
7143		bool was_frozen;
7144
7145		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7146		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7147							highest_zoneidx);
7148
7149kswapd_try_sleep:
7150		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7151					highest_zoneidx);
7152
7153		/* Read the new order and highest_zoneidx */
7154		alloc_order = READ_ONCE(pgdat->kswapd_order);
7155		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7156							highest_zoneidx);
7157		WRITE_ONCE(pgdat->kswapd_order, 0);
7158		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7159
7160		if (kthread_freezable_should_stop(&was_frozen))
7161			break;
7162
7163		/*
7164		 * We can speed up thawing tasks if we don't call balance_pgdat
7165		 * after returning from the refrigerator
7166		 */
7167		if (was_frozen)
7168			continue;
7169
7170		/*
7171		 * Reclaim begins at the requested order but if a high-order
7172		 * reclaim fails then kswapd falls back to reclaiming for
7173		 * order-0. If that happens, kswapd will consider sleeping
7174		 * for the order it finished reclaiming at (reclaim_order)
7175		 * but kcompactd is woken to compact for the original
7176		 * request (alloc_order).
7177		 */
7178		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7179						alloc_order);
7180		reclaim_order = balance_pgdat(pgdat, alloc_order,
7181						highest_zoneidx);
7182		if (reclaim_order < alloc_order)
7183			goto kswapd_try_sleep;
7184	}
7185
7186	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7187
7188	return 0;
7189}
7190
7191/*
7192 * A zone is low on free memory or too fragmented for high-order memory.  If
7193 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7194 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7195 * has failed or is not needed, still wake up kcompactd if only compaction is
7196 * needed.
7197 */
7198void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7199		   enum zone_type highest_zoneidx)
7200{
7201	pg_data_t *pgdat;
7202	enum zone_type curr_idx;
7203
7204	if (!managed_zone(zone))
7205		return;
7206
7207	if (!cpuset_zone_allowed(zone, gfp_flags))
7208		return;
7209
7210	pgdat = zone->zone_pgdat;
7211	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7212
7213	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7214		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7215
7216	if (READ_ONCE(pgdat->kswapd_order) < order)
7217		WRITE_ONCE(pgdat->kswapd_order, order);
7218
7219	if (!waitqueue_active(&pgdat->kswapd_wait))
7220		return;
7221
7222	/* Hopeless node, leave it to direct reclaim if possible */
7223	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7224	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7225	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7226		/*
7227		 * There may be plenty of free memory available, but it's too
7228		 * fragmented for high-order allocations.  Wake up kcompactd
7229		 * and rely on compaction_suitable() to determine if it's
7230		 * needed.  If it fails, it will defer subsequent attempts to
7231		 * ratelimit its work.
7232		 */
7233		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7234			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7235		return;
7236	}
7237
7238	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7239				      gfp_flags);
7240	wake_up_interruptible(&pgdat->kswapd_wait);
7241}
7242
7243#ifdef CONFIG_HIBERNATION
7244/*
7245 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7246 * freed pages.
7247 *
7248 * Rather than trying to age LRUs the aim is to preserve the overall
7249 * LRU order by reclaiming preferentially
7250 * inactive > active > active referenced > active mapped
7251 */
7252unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7253{
7254	struct scan_control sc = {
7255		.nr_to_reclaim = nr_to_reclaim,
7256		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7257		.reclaim_idx = MAX_NR_ZONES - 1,
7258		.priority = DEF_PRIORITY,
7259		.may_writepage = 1,
7260		.may_unmap = 1,
7261		.may_swap = 1,
7262		.hibernation_mode = 1,
7263	};
7264	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7265	unsigned long nr_reclaimed;
7266	unsigned int noreclaim_flag;
7267
7268	fs_reclaim_acquire(sc.gfp_mask);
7269	noreclaim_flag = memalloc_noreclaim_save();
7270	set_task_reclaim_state(current, &sc.reclaim_state);
7271
7272	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7273
7274	set_task_reclaim_state(current, NULL);
7275	memalloc_noreclaim_restore(noreclaim_flag);
7276	fs_reclaim_release(sc.gfp_mask);
7277
7278	return nr_reclaimed;
7279}
7280#endif /* CONFIG_HIBERNATION */
7281
7282/*
7283 * This kswapd start function will be called by init and node-hot-add.
7284 */
7285void __meminit kswapd_run(int nid)
7286{
7287	pg_data_t *pgdat = NODE_DATA(nid);
7288
7289	pgdat_kswapd_lock(pgdat);
7290	if (!pgdat->kswapd) {
7291		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7292		if (IS_ERR(pgdat->kswapd)) {
7293			/* failure at boot is fatal */
7294			pr_err("Failed to start kswapd on node %d���ret=%ld\n",
7295				   nid, PTR_ERR(pgdat->kswapd));
7296			BUG_ON(system_state < SYSTEM_RUNNING);
7297			pgdat->kswapd = NULL;
7298		}
7299	}
7300	pgdat_kswapd_unlock(pgdat);
7301}
7302
7303/*
7304 * Called by memory hotplug when all memory in a node is offlined.  Caller must
7305 * be holding mem_hotplug_begin/done().
7306 */
7307void __meminit kswapd_stop(int nid)
7308{
7309	pg_data_t *pgdat = NODE_DATA(nid);
7310	struct task_struct *kswapd;
7311
7312	pgdat_kswapd_lock(pgdat);
7313	kswapd = pgdat->kswapd;
7314	if (kswapd) {
7315		kthread_stop(kswapd);
7316		pgdat->kswapd = NULL;
7317	}
7318	pgdat_kswapd_unlock(pgdat);
7319}
7320
7321static int __init kswapd_init(void)
7322{
7323	int nid;
7324
7325	swap_setup();
7326	for_each_node_state(nid, N_MEMORY)
7327 		kswapd_run(nid);
7328	return 0;
7329}
7330
7331module_init(kswapd_init)
7332
7333#ifdef CONFIG_NUMA
7334/*
7335 * Node reclaim mode
7336 *
7337 * If non-zero call node_reclaim when the number of free pages falls below
7338 * the watermarks.
7339 */
7340int node_reclaim_mode __read_mostly;
7341
7342/*
7343 * Priority for NODE_RECLAIM. This determines the fraction of pages
7344 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7345 * a zone.
7346 */
7347#define NODE_RECLAIM_PRIORITY 4
7348
7349/*
7350 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7351 * occur.
7352 */
7353int sysctl_min_unmapped_ratio = 1;
7354
7355/*
7356 * If the number of slab pages in a zone grows beyond this percentage then
7357 * slab reclaim needs to occur.
7358 */
7359int sysctl_min_slab_ratio = 5;
7360
7361static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7362{
7363	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7364	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7365		node_page_state(pgdat, NR_ACTIVE_FILE);
7366
7367	/*
7368	 * It's possible for there to be more file mapped pages than
7369	 * accounted for by the pages on the file LRU lists because
7370	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7371	 */
7372	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7373}
7374
7375/* Work out how many page cache pages we can reclaim in this reclaim_mode */
7376static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7377{
7378	unsigned long nr_pagecache_reclaimable;
7379	unsigned long delta = 0;
7380
7381	/*
7382	 * If RECLAIM_UNMAP is set, then all file pages are considered
7383	 * potentially reclaimable. Otherwise, we have to worry about
7384	 * pages like swapcache and node_unmapped_file_pages() provides
7385	 * a better estimate
7386	 */
7387	if (node_reclaim_mode & RECLAIM_UNMAP)
7388		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7389	else
7390		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7391
7392	/* If we can't clean pages, remove dirty pages from consideration */
7393	if (!(node_reclaim_mode & RECLAIM_WRITE))
7394		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7395
7396	/* Watch for any possible underflows due to delta */
7397	if (unlikely(delta > nr_pagecache_reclaimable))
7398		delta = nr_pagecache_reclaimable;
7399
7400	return nr_pagecache_reclaimable - delta;
7401}
7402
7403/*
7404 * Try to free up some pages from this node through reclaim.
7405 */
7406static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7407{
7408	/* Minimum pages needed in order to stay on node */
7409	const unsigned long nr_pages = 1 << order;
7410	struct task_struct *p = current;
7411	unsigned int noreclaim_flag;
7412	struct scan_control sc = {
7413		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7414		.gfp_mask = current_gfp_context(gfp_mask),
7415		.order = order,
7416		.priority = NODE_RECLAIM_PRIORITY,
7417		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7418		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7419		.may_swap = 1,
7420		.reclaim_idx = gfp_zone(gfp_mask),
7421	};
7422	unsigned long pflags;
7423
7424	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7425					   sc.gfp_mask);
7426
7427	cond_resched();
7428	psi_memstall_enter(&pflags);
7429	delayacct_freepages_start();
7430	fs_reclaim_acquire(sc.gfp_mask);
7431	/*
7432	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7433	 */
7434	noreclaim_flag = memalloc_noreclaim_save();
7435	set_task_reclaim_state(p, &sc.reclaim_state);
7436
7437	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7438	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7439		/*
7440		 * Free memory by calling shrink node with increasing
7441		 * priorities until we have enough memory freed.
7442		 */
7443		do {
7444			shrink_node(pgdat, &sc);
7445		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7446	}
7447
7448	set_task_reclaim_state(p, NULL);
7449	memalloc_noreclaim_restore(noreclaim_flag);
7450	fs_reclaim_release(sc.gfp_mask);
7451	psi_memstall_leave(&pflags);
7452	delayacct_freepages_end();
7453
7454	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7455
7456	return sc.nr_reclaimed >= nr_pages;
7457}
7458
7459int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7460{
7461	int ret;
7462
7463	/*
7464	 * Node reclaim reclaims unmapped file backed pages and
7465	 * slab pages if we are over the defined limits.
7466	 *
7467	 * A small portion of unmapped file backed pages is needed for
7468	 * file I/O otherwise pages read by file I/O will be immediately
7469	 * thrown out if the node is overallocated. So we do not reclaim
7470	 * if less than a specified percentage of the node is used by
7471	 * unmapped file backed pages.
7472	 */
7473	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7474	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7475	    pgdat->min_slab_pages)
7476		return NODE_RECLAIM_FULL;
7477
7478	/*
7479	 * Do not scan if the allocation should not be delayed.
7480	 */
7481	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7482		return NODE_RECLAIM_NOSCAN;
7483
7484	/*
7485	 * Only run node reclaim on the local node or on nodes that do not
7486	 * have associated processors. This will favor the local processor
7487	 * over remote processors and spread off node memory allocations
7488	 * as wide as possible.
7489	 */
7490	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7491		return NODE_RECLAIM_NOSCAN;
7492
7493	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7494		return NODE_RECLAIM_NOSCAN;
7495
7496	ret = __node_reclaim(pgdat, gfp_mask, order);
7497	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7498
7499	if (!ret)
7500		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7501
7502	return ret;
7503}
7504#endif
7505
7506/**
7507 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7508 * lru list
7509 * @fbatch: Batch of lru folios to check.
7510 *
7511 * Checks folios for evictability, if an evictable folio is in the unevictable
7512 * lru list, moves it to the appropriate evictable lru list. This function
7513 * should be only used for lru folios.
7514 */
7515void check_move_unevictable_folios(struct folio_batch *fbatch)
7516{
7517	struct lruvec *lruvec = NULL;
7518	int pgscanned = 0;
7519	int pgrescued = 0;
7520	int i;
7521
7522	for (i = 0; i < fbatch->nr; i++) {
7523		struct folio *folio = fbatch->folios[i];
7524		int nr_pages = folio_nr_pages(folio);
7525
7526		pgscanned += nr_pages;
7527
7528		/* block memcg migration while the folio moves between lrus */
7529		if (!folio_test_clear_lru(folio))
7530			continue;
7531
7532		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7533		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7534			lruvec_del_folio(lruvec, folio);
7535			folio_clear_unevictable(folio);
7536			lruvec_add_folio(lruvec, folio);
7537			pgrescued += nr_pages;
7538		}
7539		folio_set_lru(folio);
7540	}
7541
7542	if (lruvec) {
7543		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7544		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7545		unlock_page_lruvec_irq(lruvec);
7546	} else if (pgscanned) {
7547		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7548	}
7549}
7550EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7551