1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002		Ingo Molnar
6 *
7 *   Derived from the taskqueue/keventd code by:
8 *     David Woodhouse <dwmw2@infradead.org>
9 *     Andrew Morton
10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 *     Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010		SUSE Linux Products GmbH
16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism.  Work items as are
19 * executed in process context.  The worker pool is shared and
20 * automatically managed.  There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/signal.h>
34#include <linux/completion.h>
35#include <linux/workqueue.h>
36#include <linux/slab.h>
37#include <linux/cpu.h>
38#include <linux/notifier.h>
39#include <linux/kthread.h>
40#include <linux/hardirq.h>
41#include <linux/mempolicy.h>
42#include <linux/freezer.h>
43#include <linux/debug_locks.h>
44#include <linux/lockdep.h>
45#include <linux/idr.h>
46#include <linux/jhash.h>
47#include <linux/hashtable.h>
48#include <linux/rculist.h>
49#include <linux/nodemask.h>
50#include <linux/moduleparam.h>
51#include <linux/uaccess.h>
52#include <linux/sched/isolation.h>
53#include <linux/sched/debug.h>
54#include <linux/nmi.h>
55#include <linux/kvm_para.h>
56#include <linux/delay.h>
57#include <linux/irq_work.h>
58
59#include "workqueue_internal.h"
60
61enum worker_pool_flags {
62	/*
63	 * worker_pool flags
64	 *
65	 * A bound pool is either associated or disassociated with its CPU.
66	 * While associated (!DISASSOCIATED), all workers are bound to the
67	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68	 * is in effect.
69	 *
70	 * While DISASSOCIATED, the cpu may be offline and all workers have
71	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72	 * be executing on any CPU.  The pool behaves as an unbound one.
73	 *
74	 * Note that DISASSOCIATED should be flipped only while holding
75	 * wq_pool_attach_mutex to avoid changing binding state while
76	 * worker_attach_to_pool() is in progress.
77	 *
78	 * As there can only be one concurrent BH execution context per CPU, a
79	 * BH pool is per-CPU and always DISASSOCIATED.
80	 */
81	POOL_BH			= 1 << 0,	/* is a BH pool */
82	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85};
86
87enum worker_flags {
88	/* worker flags */
89	WORKER_DIE		= 1 << 1,	/* die die die */
90	WORKER_IDLE		= 1 << 2,	/* is idle */
91	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95
96	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97				  WORKER_UNBOUND | WORKER_REBOUND,
98};
99
100enum work_cancel_flags {
101	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103};
104
105enum wq_internal_consts {
106	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107
108	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110
111	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113
114	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115						/* call for help after 10ms
116						   (min two ticks) */
117	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119
120	/*
121	 * Rescue workers are used only on emergencies and shared by
122	 * all cpus.  Give MIN_NICE.
123	 */
124	RESCUER_NICE_LEVEL	= MIN_NICE,
125	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126
127	WQ_NAME_LEN		= 32,
128};
129
130/*
131 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
132 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
133 * msecs_to_jiffies() can't be an initializer.
134 */
135#define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
136#define BH_WORKER_RESTARTS	10
137
138/*
139 * Structure fields follow one of the following exclusion rules.
140 *
141 * I: Modifiable by initialization/destruction paths and read-only for
142 *    everyone else.
143 *
144 * P: Preemption protected.  Disabling preemption is enough and should
145 *    only be modified and accessed from the local cpu.
146 *
147 * L: pool->lock protected.  Access with pool->lock held.
148 *
149 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
150 *     reads.
151 *
152 * K: Only modified by worker while holding pool->lock. Can be safely read by
153 *    self, while holding pool->lock or from IRQ context if %current is the
154 *    kworker.
155 *
156 * S: Only modified by worker self.
157 *
158 * A: wq_pool_attach_mutex protected.
159 *
160 * PL: wq_pool_mutex protected.
161 *
162 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
163 *
164 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
165 *
166 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
167 *      RCU for reads.
168 *
169 * WQ: wq->mutex protected.
170 *
171 * WR: wq->mutex protected for writes.  RCU protected for reads.
172 *
173 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
174 *     with READ_ONCE() without locking.
175 *
176 * MD: wq_mayday_lock protected.
177 *
178 * WD: Used internally by the watchdog.
179 */
180
181/* struct worker is defined in workqueue_internal.h */
182
183struct worker_pool {
184	raw_spinlock_t		lock;		/* the pool lock */
185	int			cpu;		/* I: the associated cpu */
186	int			node;		/* I: the associated node ID */
187	int			id;		/* I: pool ID */
188	unsigned int		flags;		/* L: flags */
189
190	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
191	bool			cpu_stall;	/* WD: stalled cpu bound pool */
192
193	/*
194	 * The counter is incremented in a process context on the associated CPU
195	 * w/ preemption disabled, and decremented or reset in the same context
196	 * but w/ pool->lock held. The readers grab pool->lock and are
197	 * guaranteed to see if the counter reached zero.
198	 */
199	int			nr_running;
200
201	struct list_head	worklist;	/* L: list of pending works */
202
203	int			nr_workers;	/* L: total number of workers */
204	int			nr_idle;	/* L: currently idle workers */
205
206	struct list_head	idle_list;	/* L: list of idle workers */
207	struct timer_list	idle_timer;	/* L: worker idle timeout */
208	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
209
210	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
211
212	/* a workers is either on busy_hash or idle_list, or the manager */
213	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
214						/* L: hash of busy workers */
215
216	struct worker		*manager;	/* L: purely informational */
217	struct list_head	workers;	/* A: attached workers */
218	struct list_head        dying_workers;  /* A: workers about to die */
219	struct completion	*detach_completion; /* all workers detached */
220
221	struct ida		worker_ida;	/* worker IDs for task name */
222
223	struct workqueue_attrs	*attrs;		/* I: worker attributes */
224	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
225	int			refcnt;		/* PL: refcnt for unbound pools */
226
227	/*
228	 * Destruction of pool is RCU protected to allow dereferences
229	 * from get_work_pool().
230	 */
231	struct rcu_head		rcu;
232};
233
234/*
235 * Per-pool_workqueue statistics. These can be monitored using
236 * tools/workqueue/wq_monitor.py.
237 */
238enum pool_workqueue_stats {
239	PWQ_STAT_STARTED,	/* work items started execution */
240	PWQ_STAT_COMPLETED,	/* work items completed execution */
241	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
242	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
243	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
244	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
245	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
246	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
247
248	PWQ_NR_STATS,
249};
250
251/*
252 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
253 * of work_struct->data are used for flags and the remaining high bits
254 * point to the pwq; thus, pwqs need to be aligned at two's power of the
255 * number of flag bits.
256 */
257struct pool_workqueue {
258	struct worker_pool	*pool;		/* I: the associated pool */
259	struct workqueue_struct *wq;		/* I: the owning workqueue */
260	int			work_color;	/* L: current color */
261	int			flush_color;	/* L: flushing color */
262	int			refcnt;		/* L: reference count */
263	int			nr_in_flight[WORK_NR_COLORS];
264						/* L: nr of in_flight works */
265	bool			plugged;	/* L: execution suspended */
266
267	/*
268	 * nr_active management and WORK_STRUCT_INACTIVE:
269	 *
270	 * When pwq->nr_active >= max_active, new work item is queued to
271	 * pwq->inactive_works instead of pool->worklist and marked with
272	 * WORK_STRUCT_INACTIVE.
273	 *
274	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
275	 * nr_active and all work items in pwq->inactive_works are marked with
276	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
277	 * in pwq->inactive_works. Some of them are ready to run in
278	 * pool->worklist or worker->scheduled. Those work itmes are only struct
279	 * wq_barrier which is used for flush_work() and should not participate
280	 * in nr_active. For non-barrier work item, it is marked with
281	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
282	 */
283	int			nr_active;	/* L: nr of active works */
284	struct list_head	inactive_works;	/* L: inactive works */
285	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
286	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
287	struct list_head	mayday_node;	/* MD: node on wq->maydays */
288
289	u64			stats[PWQ_NR_STATS];
290
291	/*
292	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
293	 * and pwq_release_workfn() for details. pool_workqueue itself is also
294	 * RCU protected so that the first pwq can be determined without
295	 * grabbing wq->mutex.
296	 */
297	struct kthread_work	release_work;
298	struct rcu_head		rcu;
299} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
300
301/*
302 * Structure used to wait for workqueue flush.
303 */
304struct wq_flusher {
305	struct list_head	list;		/* WQ: list of flushers */
306	int			flush_color;	/* WQ: flush color waiting for */
307	struct completion	done;		/* flush completion */
308};
309
310struct wq_device;
311
312/*
313 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
314 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
315 * As sharing a single nr_active across multiple sockets can be very expensive,
316 * the counting and enforcement is per NUMA node.
317 *
318 * The following struct is used to enforce per-node max_active. When a pwq wants
319 * to start executing a work item, it should increment ->nr using
320 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
321 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
322 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
323 * round-robin order.
324 */
325struct wq_node_nr_active {
326	int			max;		/* per-node max_active */
327	atomic_t		nr;		/* per-node nr_active */
328	raw_spinlock_t		lock;		/* nests inside pool locks */
329	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
330};
331
332/*
333 * The externally visible workqueue.  It relays the issued work items to
334 * the appropriate worker_pool through its pool_workqueues.
335 */
336struct workqueue_struct {
337	struct list_head	pwqs;		/* WR: all pwqs of this wq */
338	struct list_head	list;		/* PR: list of all workqueues */
339
340	struct mutex		mutex;		/* protects this wq */
341	int			work_color;	/* WQ: current work color */
342	int			flush_color;	/* WQ: current flush color */
343	atomic_t		nr_pwqs_to_flush; /* flush in progress */
344	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
345	struct list_head	flusher_queue;	/* WQ: flush waiters */
346	struct list_head	flusher_overflow; /* WQ: flush overflow list */
347
348	struct list_head	maydays;	/* MD: pwqs requesting rescue */
349	struct worker		*rescuer;	/* MD: rescue worker */
350
351	int			nr_drainers;	/* WQ: drain in progress */
352
353	/* See alloc_workqueue() function comment for info on min/max_active */
354	int			max_active;	/* WO: max active works */
355	int			min_active;	/* WO: min active works */
356	int			saved_max_active; /* WQ: saved max_active */
357	int			saved_min_active; /* WQ: saved min_active */
358
359	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
360	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
361
362#ifdef CONFIG_SYSFS
363	struct wq_device	*wq_dev;	/* I: for sysfs interface */
364#endif
365#ifdef CONFIG_LOCKDEP
366	char			*lock_name;
367	struct lock_class_key	key;
368	struct lockdep_map	lockdep_map;
369#endif
370	char			name[WQ_NAME_LEN]; /* I: workqueue name */
371
372	/*
373	 * Destruction of workqueue_struct is RCU protected to allow walking
374	 * the workqueues list without grabbing wq_pool_mutex.
375	 * This is used to dump all workqueues from sysrq.
376	 */
377	struct rcu_head		rcu;
378
379	/* hot fields used during command issue, aligned to cacheline */
380	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
381	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
382	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383};
384
385/*
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
388 */
389struct wq_pod_type {
390	int			nr_pods;	/* number of pods */
391	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
392	int			*pod_node;	/* pod -> node */
393	int			*cpu_pod;	/* cpu -> pod */
394};
395
396struct work_offq_data {
397	u32			pool_id;
398	u32			disable;
399	u32			flags;
400};
401
402static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403	[WQ_AFFN_DFL]		= "default",
404	[WQ_AFFN_CPU]		= "cpu",
405	[WQ_AFFN_SMT]		= "smt",
406	[WQ_AFFN_CACHE]		= "cache",
407	[WQ_AFFN_NUMA]		= "numa",
408	[WQ_AFFN_SYSTEM]	= "system",
409};
410
411/*
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
417 */
418static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421static unsigned int wq_cpu_intensive_warning_thresh = 4;
422module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423#endif
424
425/* see the comment above the definition of WQ_POWER_EFFICIENT */
426static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428
429static bool wq_online;			/* can kworkers be created yet? */
430static bool wq_topo_initialized __read_mostly = false;
431
432static struct kmem_cache *pwq_cache;
433
434static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436
437/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438static struct workqueue_attrs *wq_update_pod_attrs_buf;
439
440static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
441static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
443/* wait for manager to go away */
444static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445
446static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
447static bool workqueue_freezing;		/* PL: have wqs started freezing? */
448
449/* PL&A: allowable cpus for unbound wqs and work items */
450static cpumask_var_t wq_unbound_cpumask;
451
452/* PL: user requested unbound cpumask via sysfs */
453static cpumask_var_t wq_requested_unbound_cpumask;
454
455/* PL: isolated cpumask to be excluded from unbound cpumask */
456static cpumask_var_t wq_isolated_cpumask;
457
458/* for further constrain wq_unbound_cpumask by cmdline parameter*/
459static struct cpumask wq_cmdline_cpumask __initdata;
460
461/* CPU where unbound work was last round robin scheduled from this CPU */
462static DEFINE_PER_CPU(int, wq_rr_cpu_last);
463
464/*
465 * Local execution of unbound work items is no longer guaranteed.  The
466 * following always forces round-robin CPU selection on unbound work items
467 * to uncover usages which depend on it.
468 */
469#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
470static bool wq_debug_force_rr_cpu = true;
471#else
472static bool wq_debug_force_rr_cpu = false;
473#endif
474module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
475
476/* to raise softirq for the BH worker pools on other CPUs */
477static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
478				     bh_pool_irq_works);
479
480/* the BH worker pools */
481static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
482				     bh_worker_pools);
483
484/* the per-cpu worker pools */
485static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
486				     cpu_worker_pools);
487
488static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
489
490/* PL: hash of all unbound pools keyed by pool->attrs */
491static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492
493/* I: attributes used when instantiating standard unbound pools on demand */
494static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495
496/* I: attributes used when instantiating ordered pools on demand */
497static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498
499/*
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
503 */
504static struct kthread_worker *pwq_release_worker __ro_after_init;
505
506struct workqueue_struct *system_wq __ro_after_init;
507EXPORT_SYMBOL(system_wq);
508struct workqueue_struct *system_highpri_wq __ro_after_init;
509EXPORT_SYMBOL_GPL(system_highpri_wq);
510struct workqueue_struct *system_long_wq __ro_after_init;
511EXPORT_SYMBOL_GPL(system_long_wq);
512struct workqueue_struct *system_unbound_wq __ro_after_init;
513EXPORT_SYMBOL_GPL(system_unbound_wq);
514struct workqueue_struct *system_freezable_wq __ro_after_init;
515EXPORT_SYMBOL_GPL(system_freezable_wq);
516struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520struct workqueue_struct *system_bh_wq;
521EXPORT_SYMBOL_GPL(system_bh_wq);
522struct workqueue_struct *system_bh_highpri_wq;
523EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524
525static int worker_thread(void *__worker);
526static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527static void show_pwq(struct pool_workqueue *pwq);
528static void show_one_worker_pool(struct worker_pool *pool);
529
530#define CREATE_TRACE_POINTS
531#include <trace/events/workqueue.h>
532
533#define assert_rcu_or_pool_mutex()					\
534	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
535			 !lockdep_is_held(&wq_pool_mutex),		\
536			 "RCU or wq_pool_mutex should be held")
537
538#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
539	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
540			 !lockdep_is_held(&wq->mutex) &&		\
541			 !lockdep_is_held(&wq_pool_mutex),		\
542			 "RCU, wq->mutex or wq_pool_mutex should be held")
543
544#define for_each_bh_worker_pool(pool, cpu)				\
545	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
546	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547	     (pool)++)
548
549#define for_each_cpu_worker_pool(pool, cpu)				\
550	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
551	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552	     (pool)++)
553
554/**
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
557 * @pi: integer used for iteration
558 *
559 * This must be called either with wq_pool_mutex held or RCU read
560 * locked.  If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
562 *
563 * The if/else clause exists only for the lockdep assertion and can be
564 * ignored.
565 */
566#define for_each_pool(pool, pi)						\
567	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
568		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
569		else
570
571/**
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
574 * @pool: worker_pool to iterate workers of
575 *
576 * This must be called with wq_pool_attach_mutex.
577 *
578 * The if/else clause exists only for the lockdep assertion and can be
579 * ignored.
580 */
581#define for_each_pool_worker(worker, pool)				\
582	list_for_each_entry((worker), &(pool)->workers, node)		\
583		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584		else
585
586/**
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
590 *
591 * This must be called either with wq->mutex held or RCU read locked.
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
594 *
595 * The if/else clause exists only for the lockdep assertion and can be
596 * ignored.
597 */
598#define for_each_pwq(pwq, wq)						\
599	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
600				 lockdep_is_held(&(wq->mutex)))
601
602#ifdef CONFIG_DEBUG_OBJECTS_WORK
603
604static const struct debug_obj_descr work_debug_descr;
605
606static void *work_debug_hint(void *addr)
607{
608	return ((struct work_struct *) addr)->func;
609}
610
611static bool work_is_static_object(void *addr)
612{
613	struct work_struct *work = addr;
614
615	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616}
617
618/*
619 * fixup_init is called when:
620 * - an active object is initialized
621 */
622static bool work_fixup_init(void *addr, enum debug_obj_state state)
623{
624	struct work_struct *work = addr;
625
626	switch (state) {
627	case ODEBUG_STATE_ACTIVE:
628		cancel_work_sync(work);
629		debug_object_init(work, &work_debug_descr);
630		return true;
631	default:
632		return false;
633	}
634}
635
636/*
637 * fixup_free is called when:
638 * - an active object is freed
639 */
640static bool work_fixup_free(void *addr, enum debug_obj_state state)
641{
642	struct work_struct *work = addr;
643
644	switch (state) {
645	case ODEBUG_STATE_ACTIVE:
646		cancel_work_sync(work);
647		debug_object_free(work, &work_debug_descr);
648		return true;
649	default:
650		return false;
651	}
652}
653
654static const struct debug_obj_descr work_debug_descr = {
655	.name		= "work_struct",
656	.debug_hint	= work_debug_hint,
657	.is_static_object = work_is_static_object,
658	.fixup_init	= work_fixup_init,
659	.fixup_free	= work_fixup_free,
660};
661
662static inline void debug_work_activate(struct work_struct *work)
663{
664	debug_object_activate(work, &work_debug_descr);
665}
666
667static inline void debug_work_deactivate(struct work_struct *work)
668{
669	debug_object_deactivate(work, &work_debug_descr);
670}
671
672void __init_work(struct work_struct *work, int onstack)
673{
674	if (onstack)
675		debug_object_init_on_stack(work, &work_debug_descr);
676	else
677		debug_object_init(work, &work_debug_descr);
678}
679EXPORT_SYMBOL_GPL(__init_work);
680
681void destroy_work_on_stack(struct work_struct *work)
682{
683	debug_object_free(work, &work_debug_descr);
684}
685EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686
687void destroy_delayed_work_on_stack(struct delayed_work *work)
688{
689	destroy_timer_on_stack(&work->timer);
690	debug_object_free(&work->work, &work_debug_descr);
691}
692EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693
694#else
695static inline void debug_work_activate(struct work_struct *work) { }
696static inline void debug_work_deactivate(struct work_struct *work) { }
697#endif
698
699/**
700 * worker_pool_assign_id - allocate ID and assign it to @pool
701 * @pool: the pool pointer of interest
702 *
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
705 */
706static int worker_pool_assign_id(struct worker_pool *pool)
707{
708	int ret;
709
710	lockdep_assert_held(&wq_pool_mutex);
711
712	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713			GFP_KERNEL);
714	if (ret >= 0) {
715		pool->id = ret;
716		return 0;
717	}
718	return ret;
719}
720
721static struct pool_workqueue __rcu **
722unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723{
724       if (cpu >= 0)
725               return per_cpu_ptr(wq->cpu_pwq, cpu);
726       else
727               return &wq->dfl_pwq;
728}
729
730/* @cpu < 0 for dfl_pwq */
731static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732{
733	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734				     lockdep_is_held(&wq_pool_mutex) ||
735				     lockdep_is_held(&wq->mutex));
736}
737
738/**
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
741 *
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
745 */
746static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747{
748	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749}
750
751static unsigned int work_color_to_flags(int color)
752{
753	return color << WORK_STRUCT_COLOR_SHIFT;
754}
755
756static int get_work_color(unsigned long work_data)
757{
758	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759		((1 << WORK_STRUCT_COLOR_BITS) - 1);
760}
761
762static int work_next_color(int color)
763{
764	return (color + 1) % WORK_NR_COLORS;
765}
766
767static unsigned long pool_offq_flags(struct worker_pool *pool)
768{
769	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770}
771
772/*
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq.  Once execution starts, the flag
775 * is cleared and the high bits contain OFFQ flags and pool ID.
776 *
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
780 *
781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782 * corresponding to a work.  Pool is available once the work has been
783 * queued anywhere after initialization until it is sync canceled.  pwq is
784 * available only while the work item is queued.
785 */
786static inline void set_work_data(struct work_struct *work, unsigned long data)
787{
788	WARN_ON_ONCE(!work_pending(work));
789	atomic_long_set(&work->data, data | work_static(work));
790}
791
792static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793			 unsigned long flags)
794{
795	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796		      WORK_STRUCT_PWQ | flags);
797}
798
799static void set_work_pool_and_keep_pending(struct work_struct *work,
800					   int pool_id, unsigned long flags)
801{
802	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803		      WORK_STRUCT_PENDING | flags);
804}
805
806static void set_work_pool_and_clear_pending(struct work_struct *work,
807					    int pool_id, unsigned long flags)
808{
809	/*
810	 * The following wmb is paired with the implied mb in
811	 * test_and_set_bit(PENDING) and ensures all updates to @work made
812	 * here are visible to and precede any updates by the next PENDING
813	 * owner.
814	 */
815	smp_wmb();
816	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817		      flags);
818	/*
819	 * The following mb guarantees that previous clear of a PENDING bit
820	 * will not be reordered with any speculative LOADS or STORES from
821	 * work->current_func, which is executed afterwards.  This possible
822	 * reordering can lead to a missed execution on attempt to queue
823	 * the same @work.  E.g. consider this case:
824	 *
825	 *   CPU#0                         CPU#1
826	 *   ----------------------------  --------------------------------
827	 *
828	 * 1  STORE event_indicated
829	 * 2  queue_work_on() {
830	 * 3    test_and_set_bit(PENDING)
831	 * 4 }                             set_..._and_clear_pending() {
832	 * 5                                 set_work_data() # clear bit
833	 * 6                                 smp_mb()
834	 * 7                               work->current_func() {
835	 * 8				      LOAD event_indicated
836	 *				   }
837	 *
838	 * Without an explicit full barrier speculative LOAD on line 8 can
839	 * be executed before CPU#0 does STORE on line 1.  If that happens,
840	 * CPU#0 observes the PENDING bit is still set and new execution of
841	 * a @work is not queued in a hope, that CPU#1 will eventually
842	 * finish the queued @work.  Meanwhile CPU#1 does not see
843	 * event_indicated is set, because speculative LOAD was executed
844	 * before actual STORE.
845	 */
846	smp_mb();
847}
848
849static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850{
851	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852}
853
854static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855{
856	unsigned long data = atomic_long_read(&work->data);
857
858	if (data & WORK_STRUCT_PWQ)
859		return work_struct_pwq(data);
860	else
861		return NULL;
862}
863
864/**
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
867 *
868 * Pools are created and destroyed under wq_pool_mutex, and allows read
869 * access under RCU read lock.  As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871 *
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect.  If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
876 *
877 * Return: The worker_pool @work was last associated with.  %NULL if none.
878 */
879static struct worker_pool *get_work_pool(struct work_struct *work)
880{
881	unsigned long data = atomic_long_read(&work->data);
882	int pool_id;
883
884	assert_rcu_or_pool_mutex();
885
886	if (data & WORK_STRUCT_PWQ)
887		return work_struct_pwq(data)->pool;
888
889	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890	if (pool_id == WORK_OFFQ_POOL_NONE)
891		return NULL;
892
893	return idr_find(&worker_pool_idr, pool_id);
894}
895
896static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897{
898	return (v >> shift) & ((1 << bits) - 1);
899}
900
901static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902{
903	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904
905	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906					WORK_OFFQ_POOL_BITS);
907	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908					WORK_OFFQ_DISABLE_BITS);
909	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910}
911
912static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913{
914	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915		((unsigned long)offqd->flags);
916}
917
918/*
919 * Policy functions.  These define the policies on how the global worker
920 * pools are managed.  Unless noted otherwise, these functions assume that
921 * they're being called with pool->lock held.
922 */
923
924/*
925 * Need to wake up a worker?  Called from anything but currently
926 * running workers.
927 *
928 * Note that, because unbound workers never contribute to nr_running, this
929 * function will always return %true for unbound pools as long as the
930 * worklist isn't empty.
931 */
932static bool need_more_worker(struct worker_pool *pool)
933{
934	return !list_empty(&pool->worklist) && !pool->nr_running;
935}
936
937/* Can I start working?  Called from busy but !running workers. */
938static bool may_start_working(struct worker_pool *pool)
939{
940	return pool->nr_idle;
941}
942
943/* Do I need to keep working?  Called from currently running workers. */
944static bool keep_working(struct worker_pool *pool)
945{
946	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947}
948
949/* Do we need a new worker?  Called from manager. */
950static bool need_to_create_worker(struct worker_pool *pool)
951{
952	return need_more_worker(pool) && !may_start_working(pool);
953}
954
955/* Do we have too many workers and should some go away? */
956static bool too_many_workers(struct worker_pool *pool)
957{
958	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960	int nr_busy = pool->nr_workers - nr_idle;
961
962	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963}
964
965/**
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to set
969 *
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
971 */
972static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973{
974	struct worker_pool *pool = worker->pool;
975
976	lockdep_assert_held(&pool->lock);
977
978	/* If transitioning into NOT_RUNNING, adjust nr_running. */
979	if ((flags & WORKER_NOT_RUNNING) &&
980	    !(worker->flags & WORKER_NOT_RUNNING)) {
981		pool->nr_running--;
982	}
983
984	worker->flags |= flags;
985}
986
987/**
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989 * @worker: self
990 * @flags: flags to clear
991 *
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
993 */
994static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995{
996	struct worker_pool *pool = worker->pool;
997	unsigned int oflags = worker->flags;
998
999	lockdep_assert_held(&pool->lock);
1000
1001	worker->flags &= ~flags;
1002
1003	/*
1004	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006	 * of multiple flags, not a single flag.
1007	 */
1008	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009		if (!(worker->flags & WORKER_NOT_RUNNING))
1010			pool->nr_running++;
1011}
1012
1013/* Return the first idle worker.  Called with pool->lock held. */
1014static struct worker *first_idle_worker(struct worker_pool *pool)
1015{
1016	if (unlikely(list_empty(&pool->idle_list)))
1017		return NULL;
1018
1019	return list_first_entry(&pool->idle_list, struct worker, entry);
1020}
1021
1022/**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state.  Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
1032static void worker_enter_idle(struct worker *worker)
1033{
1034	struct worker_pool *pool = worker->pool;
1035
1036	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038			 (worker->hentry.next || worker->hentry.pprev)))
1039		return;
1040
1041	/* can't use worker_set_flags(), also called from create_worker() */
1042	worker->flags |= WORKER_IDLE;
1043	pool->nr_idle++;
1044	worker->last_active = jiffies;
1045
1046	/* idle_list is LIFO */
1047	list_add(&worker->entry, &pool->idle_list);
1048
1049	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052	/* Sanity check nr_running. */
1053	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054}
1055
1056/**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state.  Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
1065static void worker_leave_idle(struct worker *worker)
1066{
1067	struct worker_pool *pool = worker->pool;
1068
1069	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070		return;
1071	worker_clr_flags(worker, WORKER_IDLE);
1072	pool->nr_idle--;
1073	list_del_init(&worker->entry);
1074}
1075
1076/**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function.  This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky.  A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item.  If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives.  Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item.  Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
1109static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110						 struct work_struct *work)
1111{
1112	struct worker *worker;
1113
1114	hash_for_each_possible(pool->busy_hash, worker, hentry,
1115			       (unsigned long)work)
1116		if (worker->current_work == work &&
1117		    worker->current_func == work->func)
1118			return worker;
1119
1120	return NULL;
1121}
1122
1123/**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
1137static void move_linked_works(struct work_struct *work, struct list_head *head,
1138			      struct work_struct **nextp)
1139{
1140	struct work_struct *n;
1141
1142	/*
1143	 * Linked worklist will always end before the end of the list,
1144	 * use NULL for list head.
1145	 */
1146	list_for_each_entry_safe_from(work, n, NULL, entry) {
1147		list_move_tail(&work->entry, head);
1148		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149			break;
1150	}
1151
1152	/*
1153	 * If we're already inside safe list traversal and have moved
1154	 * multiple works to the scheduled queue, the next position
1155	 * needs to be updated.
1156	 */
1157	if (nextp)
1158		*nextp = n;
1159}
1160
1161/**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
1177static bool assign_work(struct work_struct *work, struct worker *worker,
1178			struct work_struct **nextp)
1179{
1180	struct worker_pool *pool = worker->pool;
1181	struct worker *collision;
1182
1183	lockdep_assert_held(&pool->lock);
1184
1185	/*
1186	 * A single work shouldn't be executed concurrently by multiple workers.
1187	 * __queue_work() ensures that @work doesn't jump to a different pool
1188	 * while still running in the previous pool. Here, we should ensure that
1189	 * @work is not executed concurrently by multiple workers from the same
1190	 * pool. Check whether anyone is already processing the work. If so,
1191	 * defer the work to the currently executing one.
1192	 */
1193	collision = find_worker_executing_work(pool, work);
1194	if (unlikely(collision)) {
1195		move_linked_works(work, &collision->scheduled, nextp);
1196		return false;
1197	}
1198
1199	move_linked_works(work, &worker->scheduled, nextp);
1200	return true;
1201}
1202
1203static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204{
1205	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208}
1209
1210static void kick_bh_pool(struct worker_pool *pool)
1211{
1212#ifdef CONFIG_SMP
1213	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1214	if (unlikely(pool->cpu != smp_processor_id() &&
1215		     !(pool->flags & POOL_BH_DRAINING))) {
1216		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217		return;
1218	}
1219#endif
1220	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221		raise_softirq_irqoff(HI_SOFTIRQ);
1222	else
1223		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224}
1225
1226/**
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
1229 *
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
1232 */
1233static bool kick_pool(struct worker_pool *pool)
1234{
1235	struct worker *worker = first_idle_worker(pool);
1236	struct task_struct *p;
1237
1238	lockdep_assert_held(&pool->lock);
1239
1240	if (!need_more_worker(pool) || !worker)
1241		return false;
1242
1243	if (pool->flags & POOL_BH) {
1244		kick_bh_pool(pool);
1245		return true;
1246	}
1247
1248	p = worker->task;
1249
1250#ifdef CONFIG_SMP
1251	/*
1252	 * Idle @worker is about to execute @work and waking up provides an
1253	 * opportunity to migrate @worker at a lower cost by setting the task's
1254	 * wake_cpu field. Let's see if we want to move @worker to improve
1255	 * execution locality.
1256	 *
1257	 * We're waking the worker that went idle the latest and there's some
1258	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260	 * optimization and the race window is narrow, let's leave as-is for
1261	 * now. If this becomes pronounced, we can skip over workers which are
1262	 * still on cpu when picking an idle worker.
1263	 *
1264	 * If @pool has non-strict affinity, @worker might have ended up outside
1265	 * its affinity scope. Repatriate.
1266	 */
1267	if (!pool->attrs->affn_strict &&
1268	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269		struct work_struct *work = list_first_entry(&pool->worklist,
1270						struct work_struct, entry);
1271		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272							  cpu_online_mask);
1273		if (wake_cpu < nr_cpu_ids) {
1274			p->wake_cpu = wake_cpu;
1275			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276		}
1277	}
1278#endif
1279	wake_up_process(p);
1280	return true;
1281}
1282
1283#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284
1285/*
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1291 *
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1296 */
1297#define WCI_MAX_ENTS 128
1298
1299struct wci_ent {
1300	work_func_t		func;
1301	atomic64_t		cnt;
1302	struct hlist_node	hash_node;
1303};
1304
1305static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306static int wci_nr_ents;
1307static DEFINE_RAW_SPINLOCK(wci_lock);
1308static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309
1310static struct wci_ent *wci_find_ent(work_func_t func)
1311{
1312	struct wci_ent *ent;
1313
1314	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315				   (unsigned long)func) {
1316		if (ent->func == func)
1317			return ent;
1318	}
1319	return NULL;
1320}
1321
1322static void wq_cpu_intensive_report(work_func_t func)
1323{
1324	struct wci_ent *ent;
1325
1326restart:
1327	ent = wci_find_ent(func);
1328	if (ent) {
1329		u64 cnt;
1330
1331		/*
1332		 * Start reporting from the warning_thresh and back off
1333		 * exponentially.
1334		 */
1335		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336		if (wq_cpu_intensive_warning_thresh &&
1337		    cnt >= wq_cpu_intensive_warning_thresh &&
1338		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340					ent->func, wq_cpu_intensive_thresh_us,
1341					atomic64_read(&ent->cnt));
1342		return;
1343	}
1344
1345	/*
1346	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347	 * is exhausted, something went really wrong and we probably made enough
1348	 * noise already.
1349	 */
1350	if (wci_nr_ents >= WCI_MAX_ENTS)
1351		return;
1352
1353	raw_spin_lock(&wci_lock);
1354
1355	if (wci_nr_ents >= WCI_MAX_ENTS) {
1356		raw_spin_unlock(&wci_lock);
1357		return;
1358	}
1359
1360	if (wci_find_ent(func)) {
1361		raw_spin_unlock(&wci_lock);
1362		goto restart;
1363	}
1364
1365	ent = &wci_ents[wci_nr_ents++];
1366	ent->func = func;
1367	atomic64_set(&ent->cnt, 0);
1368	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369
1370	raw_spin_unlock(&wci_lock);
1371
1372	goto restart;
1373}
1374
1375#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1376static void wq_cpu_intensive_report(work_func_t func) {}
1377#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378
1379/**
1380 * wq_worker_running - a worker is running again
1381 * @task: task waking up
1382 *
1383 * This function is called when a worker returns from schedule()
1384 */
1385void wq_worker_running(struct task_struct *task)
1386{
1387	struct worker *worker = kthread_data(task);
1388
1389	if (!READ_ONCE(worker->sleeping))
1390		return;
1391
1392	/*
1393	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394	 * and the nr_running increment below, we may ruin the nr_running reset
1395	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396	 * pool. Protect against such race.
1397	 */
1398	preempt_disable();
1399	if (!(worker->flags & WORKER_NOT_RUNNING))
1400		worker->pool->nr_running++;
1401	preempt_enable();
1402
1403	/*
1404	 * CPU intensive auto-detection cares about how long a work item hogged
1405	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406	 */
1407	worker->current_at = worker->task->se.sum_exec_runtime;
1408
1409	WRITE_ONCE(worker->sleeping, 0);
1410}
1411
1412/**
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
1415 *
1416 * This function is called from schedule() when a busy worker is
1417 * going to sleep.
1418 */
1419void wq_worker_sleeping(struct task_struct *task)
1420{
1421	struct worker *worker = kthread_data(task);
1422	struct worker_pool *pool;
1423
1424	/*
1425	 * Rescuers, which may not have all the fields set up like normal
1426	 * workers, also reach here, let's not access anything before
1427	 * checking NOT_RUNNING.
1428	 */
1429	if (worker->flags & WORKER_NOT_RUNNING)
1430		return;
1431
1432	pool = worker->pool;
1433
1434	/* Return if preempted before wq_worker_running() was reached */
1435	if (READ_ONCE(worker->sleeping))
1436		return;
1437
1438	WRITE_ONCE(worker->sleeping, 1);
1439	raw_spin_lock_irq(&pool->lock);
1440
1441	/*
1442	 * Recheck in case unbind_workers() preempted us. We don't
1443	 * want to decrement nr_running after the worker is unbound
1444	 * and nr_running has been reset.
1445	 */
1446	if (worker->flags & WORKER_NOT_RUNNING) {
1447		raw_spin_unlock_irq(&pool->lock);
1448		return;
1449	}
1450
1451	pool->nr_running--;
1452	if (kick_pool(pool))
1453		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454
1455	raw_spin_unlock_irq(&pool->lock);
1456}
1457
1458/**
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1461 *
1462 * Called from sched_tick(). We're in the IRQ context and the current
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1464 */
1465void wq_worker_tick(struct task_struct *task)
1466{
1467	struct worker *worker = kthread_data(task);
1468	struct pool_workqueue *pwq = worker->current_pwq;
1469	struct worker_pool *pool = worker->pool;
1470
1471	if (!pwq)
1472		return;
1473
1474	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475
1476	if (!wq_cpu_intensive_thresh_us)
1477		return;
1478
1479	/*
1480	 * If the current worker is concurrency managed and hogged the CPU for
1481	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483	 *
1484	 * Set @worker->sleeping means that @worker is in the process of
1485	 * switching out voluntarily and won't be contributing to
1486	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489	 * We probably want to make this prettier in the future.
1490	 */
1491	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492	    worker->task->se.sum_exec_runtime - worker->current_at <
1493	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494		return;
1495
1496	raw_spin_lock(&pool->lock);
1497
1498	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499	wq_cpu_intensive_report(worker->current_func);
1500	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501
1502	if (kick_pool(pool))
1503		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504
1505	raw_spin_unlock(&pool->lock);
1506}
1507
1508/**
1509 * wq_worker_last_func - retrieve worker's last work function
1510 * @task: Task to retrieve last work function of.
1511 *
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1514 *
1515 * CONTEXT:
1516 * raw_spin_lock_irq(rq->lock)
1517 *
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1522 *
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1527 *
1528 * Return:
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1531 */
1532work_func_t wq_worker_last_func(struct task_struct *task)
1533{
1534	struct worker *worker = kthread_data(task);
1535
1536	return worker->last_func;
1537}
1538
1539/**
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1543 *
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545 *
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547 *
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549 *
1550 * - Otherwise, node_nr_active[@node].
1551 */
1552static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553						   int node)
1554{
1555	if (!(wq->flags & WQ_UNBOUND))
1556		return NULL;
1557
1558	if (node == NUMA_NO_NODE)
1559		node = nr_node_ids;
1560
1561	return wq->node_nr_active[node];
1562}
1563
1564/**
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568 *
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1572 */
1573static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574{
1575	struct cpumask *effective = unbound_effective_cpumask(wq);
1576	int min_active = READ_ONCE(wq->min_active);
1577	int max_active = READ_ONCE(wq->max_active);
1578	int total_cpus, node;
1579
1580	lockdep_assert_held(&wq->mutex);
1581
1582	if (!wq_topo_initialized)
1583		return;
1584
1585	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586		off_cpu = -1;
1587
1588	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589	if (off_cpu >= 0)
1590		total_cpus--;
1591
1592	/* If all CPUs of the wq get offline, use the default values */
1593	if (unlikely(!total_cpus)) {
1594		for_each_node(node)
1595			wq_node_nr_active(wq, node)->max = min_active;
1596
1597		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598		return;
1599	}
1600
1601	for_each_node(node) {
1602		int node_cpus;
1603
1604		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606			node_cpus--;
1607
1608		wq_node_nr_active(wq, node)->max =
1609			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610			      min_active, max_active);
1611	}
1612
1613	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614}
1615
1616/**
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1619 *
1620 * Obtain an extra reference on @pwq.  The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1622 */
1623static void get_pwq(struct pool_workqueue *pwq)
1624{
1625	lockdep_assert_held(&pwq->pool->lock);
1626	WARN_ON_ONCE(pwq->refcnt <= 0);
1627	pwq->refcnt++;
1628}
1629
1630/**
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1633 *
1634 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1635 * destruction.  The caller should be holding the matching pool->lock.
1636 */
1637static void put_pwq(struct pool_workqueue *pwq)
1638{
1639	lockdep_assert_held(&pwq->pool->lock);
1640	if (likely(--pwq->refcnt))
1641		return;
1642	/*
1643	 * @pwq can't be released under pool->lock, bounce to a dedicated
1644	 * kthread_worker to avoid A-A deadlocks.
1645	 */
1646	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647}
1648
1649/**
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1652 *
1653 * put_pwq() with locking.  This function also allows %NULL @pwq.
1654 */
1655static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656{
1657	if (pwq) {
1658		/*
1659		 * As both pwqs and pools are RCU protected, the
1660		 * following lock operations are safe.
1661		 */
1662		raw_spin_lock_irq(&pwq->pool->lock);
1663		put_pwq(pwq);
1664		raw_spin_unlock_irq(&pwq->pool->lock);
1665	}
1666}
1667
1668static bool pwq_is_empty(struct pool_workqueue *pwq)
1669{
1670	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671}
1672
1673static void __pwq_activate_work(struct pool_workqueue *pwq,
1674				struct work_struct *work)
1675{
1676	unsigned long *wdb = work_data_bits(work);
1677
1678	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679	trace_workqueue_activate_work(work);
1680	if (list_empty(&pwq->pool->worklist))
1681		pwq->pool->watchdog_ts = jiffies;
1682	move_linked_works(work, &pwq->pool->worklist, NULL);
1683	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684}
1685
1686/**
1687 * pwq_activate_work - Activate a work item if inactive
1688 * @pwq: pool_workqueue @work belongs to
1689 * @work: work item to activate
1690 *
1691 * Returns %true if activated. %false if already active.
1692 */
1693static bool pwq_activate_work(struct pool_workqueue *pwq,
1694			      struct work_struct *work)
1695{
1696	struct worker_pool *pool = pwq->pool;
1697	struct wq_node_nr_active *nna;
1698
1699	lockdep_assert_held(&pool->lock);
1700
1701	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1702		return false;
1703
1704	nna = wq_node_nr_active(pwq->wq, pool->node);
1705	if (nna)
1706		atomic_inc(&nna->nr);
1707
1708	pwq->nr_active++;
1709	__pwq_activate_work(pwq, work);
1710	return true;
1711}
1712
1713static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1714{
1715	int max = READ_ONCE(nna->max);
1716
1717	while (true) {
1718		int old, tmp;
1719
1720		old = atomic_read(&nna->nr);
1721		if (old >= max)
1722			return false;
1723		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1724		if (tmp == old)
1725			return true;
1726	}
1727}
1728
1729/**
1730 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1731 * @pwq: pool_workqueue of interest
1732 * @fill: max_active may have increased, try to increase concurrency level
1733 *
1734 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1735 * successfully obtained. %false otherwise.
1736 */
1737static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1738{
1739	struct workqueue_struct *wq = pwq->wq;
1740	struct worker_pool *pool = pwq->pool;
1741	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1742	bool obtained = false;
1743
1744	lockdep_assert_held(&pool->lock);
1745
1746	if (!nna) {
1747		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1748		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1749		goto out;
1750	}
1751
1752	if (unlikely(pwq->plugged))
1753		return false;
1754
1755	/*
1756	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1757	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1758	 * concurrency level. Don't jump the line.
1759	 *
1760	 * We need to ignore the pending test after max_active has increased as
1761	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1762	 * increase it. This is indicated by @fill.
1763	 */
1764	if (!list_empty(&pwq->pending_node) && likely(!fill))
1765		goto out;
1766
1767	obtained = tryinc_node_nr_active(nna);
1768	if (obtained)
1769		goto out;
1770
1771	/*
1772	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1773	 * and try again. The smp_mb() is paired with the implied memory barrier
1774	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1775	 * we see the decremented $nna->nr or they see non-empty
1776	 * $nna->pending_pwqs.
1777	 */
1778	raw_spin_lock(&nna->lock);
1779
1780	if (list_empty(&pwq->pending_node))
1781		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1782	else if (likely(!fill))
1783		goto out_unlock;
1784
1785	smp_mb();
1786
1787	obtained = tryinc_node_nr_active(nna);
1788
1789	/*
1790	 * If @fill, @pwq might have already been pending. Being spuriously
1791	 * pending in cold paths doesn't affect anything. Let's leave it be.
1792	 */
1793	if (obtained && likely(!fill))
1794		list_del_init(&pwq->pending_node);
1795
1796out_unlock:
1797	raw_spin_unlock(&nna->lock);
1798out:
1799	if (obtained)
1800		pwq->nr_active++;
1801	return obtained;
1802}
1803
1804/**
1805 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1806 * @pwq: pool_workqueue of interest
1807 * @fill: max_active may have increased, try to increase concurrency level
1808 *
1809 * Activate the first inactive work item of @pwq if available and allowed by
1810 * max_active limit.
1811 *
1812 * Returns %true if an inactive work item has been activated. %false if no
1813 * inactive work item is found or max_active limit is reached.
1814 */
1815static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1816{
1817	struct work_struct *work =
1818		list_first_entry_or_null(&pwq->inactive_works,
1819					 struct work_struct, entry);
1820
1821	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1822		__pwq_activate_work(pwq, work);
1823		return true;
1824	} else {
1825		return false;
1826	}
1827}
1828
1829/**
1830 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1831 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1832 *
1833 * This function should only be called for ordered workqueues where only the
1834 * oldest pwq is unplugged, the others are plugged to suspend execution to
1835 * ensure proper work item ordering::
1836 *
1837 *    dfl_pwq --------------+     [P] - plugged
1838 *                          |
1839 *                          v
1840 *    pwqs -> A -> B [P] -> C [P] (newest)
1841 *            |    |        |
1842 *            1    3        5
1843 *            |    |        |
1844 *            2    4        6
1845 *
1846 * When the oldest pwq is drained and removed, this function should be called
1847 * to unplug the next oldest one to start its work item execution. Note that
1848 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1849 * the list is the oldest.
1850 */
1851static void unplug_oldest_pwq(struct workqueue_struct *wq)
1852{
1853	struct pool_workqueue *pwq;
1854
1855	lockdep_assert_held(&wq->mutex);
1856
1857	/* Caller should make sure that pwqs isn't empty before calling */
1858	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1859				       pwqs_node);
1860	raw_spin_lock_irq(&pwq->pool->lock);
1861	if (pwq->plugged) {
1862		pwq->plugged = false;
1863		if (pwq_activate_first_inactive(pwq, true))
1864			kick_pool(pwq->pool);
1865	}
1866	raw_spin_unlock_irq(&pwq->pool->lock);
1867}
1868
1869/**
1870 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1871 * @nna: wq_node_nr_active to activate a pending pwq for
1872 * @caller_pool: worker_pool the caller is locking
1873 *
1874 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1875 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1876 */
1877static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1878				      struct worker_pool *caller_pool)
1879{
1880	struct worker_pool *locked_pool = caller_pool;
1881	struct pool_workqueue *pwq;
1882	struct work_struct *work;
1883
1884	lockdep_assert_held(&caller_pool->lock);
1885
1886	raw_spin_lock(&nna->lock);
1887retry:
1888	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1889				       struct pool_workqueue, pending_node);
1890	if (!pwq)
1891		goto out_unlock;
1892
1893	/*
1894	 * If @pwq is for a different pool than @locked_pool, we need to lock
1895	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1896	 * / lock dance. For that, we also need to release @nna->lock as it's
1897	 * nested inside pool locks.
1898	 */
1899	if (pwq->pool != locked_pool) {
1900		raw_spin_unlock(&locked_pool->lock);
1901		locked_pool = pwq->pool;
1902		if (!raw_spin_trylock(&locked_pool->lock)) {
1903			raw_spin_unlock(&nna->lock);
1904			raw_spin_lock(&locked_pool->lock);
1905			raw_spin_lock(&nna->lock);
1906			goto retry;
1907		}
1908	}
1909
1910	/*
1911	 * $pwq may not have any inactive work items due to e.g. cancellations.
1912	 * Drop it from pending_pwqs and see if there's another one.
1913	 */
1914	work = list_first_entry_or_null(&pwq->inactive_works,
1915					struct work_struct, entry);
1916	if (!work) {
1917		list_del_init(&pwq->pending_node);
1918		goto retry;
1919	}
1920
1921	/*
1922	 * Acquire an nr_active count and activate the inactive work item. If
1923	 * $pwq still has inactive work items, rotate it to the end of the
1924	 * pending_pwqs so that we round-robin through them. This means that
1925	 * inactive work items are not activated in queueing order which is fine
1926	 * given that there has never been any ordering across different pwqs.
1927	 */
1928	if (likely(tryinc_node_nr_active(nna))) {
1929		pwq->nr_active++;
1930		__pwq_activate_work(pwq, work);
1931
1932		if (list_empty(&pwq->inactive_works))
1933			list_del_init(&pwq->pending_node);
1934		else
1935			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1936
1937		/* if activating a foreign pool, make sure it's running */
1938		if (pwq->pool != caller_pool)
1939			kick_pool(pwq->pool);
1940	}
1941
1942out_unlock:
1943	raw_spin_unlock(&nna->lock);
1944	if (locked_pool != caller_pool) {
1945		raw_spin_unlock(&locked_pool->lock);
1946		raw_spin_lock(&caller_pool->lock);
1947	}
1948}
1949
1950/**
1951 * pwq_dec_nr_active - Retire an active count
1952 * @pwq: pool_workqueue of interest
1953 *
1954 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1955 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1956 */
1957static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1958{
1959	struct worker_pool *pool = pwq->pool;
1960	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1961
1962	lockdep_assert_held(&pool->lock);
1963
1964	/*
1965	 * @pwq->nr_active should be decremented for both percpu and unbound
1966	 * workqueues.
1967	 */
1968	pwq->nr_active--;
1969
1970	/*
1971	 * For a percpu workqueue, it's simple. Just need to kick the first
1972	 * inactive work item on @pwq itself.
1973	 */
1974	if (!nna) {
1975		pwq_activate_first_inactive(pwq, false);
1976		return;
1977	}
1978
1979	/*
1980	 * If @pwq is for an unbound workqueue, it's more complicated because
1981	 * multiple pwqs and pools may be sharing the nr_active count. When a
1982	 * pwq needs to wait for an nr_active count, it puts itself on
1983	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1984	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1985	 * guarantee that either we see non-empty pending_pwqs or they see
1986	 * decremented $nna->nr.
1987	 *
1988	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1989	 * max_active gets updated. However, it is guaranteed to be equal to or
1990	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1991	 * This maintains the forward progress guarantee.
1992	 */
1993	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1994		return;
1995
1996	if (!list_empty(&nna->pending_pwqs))
1997		node_activate_pending_pwq(nna, pool);
1998}
1999
2000/**
2001 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
2002 * @pwq: pwq of interest
2003 * @work_data: work_data of work which left the queue
2004 *
2005 * A work either has completed or is removed from pending queue,
2006 * decrement nr_in_flight of its pwq and handle workqueue flushing.
2007 *
2008 * NOTE:
2009 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2010 * and thus should be called after all other state updates for the in-flight
2011 * work item is complete.
2012 *
2013 * CONTEXT:
2014 * raw_spin_lock_irq(pool->lock).
2015 */
2016static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2017{
2018	int color = get_work_color(work_data);
2019
2020	if (!(work_data & WORK_STRUCT_INACTIVE))
2021		pwq_dec_nr_active(pwq);
2022
2023	pwq->nr_in_flight[color]--;
2024
2025	/* is flush in progress and are we at the flushing tip? */
2026	if (likely(pwq->flush_color != color))
2027		goto out_put;
2028
2029	/* are there still in-flight works? */
2030	if (pwq->nr_in_flight[color])
2031		goto out_put;
2032
2033	/* this pwq is done, clear flush_color */
2034	pwq->flush_color = -1;
2035
2036	/*
2037	 * If this was the last pwq, wake up the first flusher.  It
2038	 * will handle the rest.
2039	 */
2040	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2041		complete(&pwq->wq->first_flusher->done);
2042out_put:
2043	put_pwq(pwq);
2044}
2045
2046/**
2047 * try_to_grab_pending - steal work item from worklist and disable irq
2048 * @work: work item to steal
2049 * @cflags: %WORK_CANCEL_ flags
2050 * @irq_flags: place to store irq state
2051 *
2052 * Try to grab PENDING bit of @work.  This function can handle @work in any
2053 * stable state - idle, on timer or on worklist.
2054 *
2055 * Return:
2056 *
2057 *  ========	================================================================
2058 *  1		if @work was pending and we successfully stole PENDING
2059 *  0		if @work was idle and we claimed PENDING
2060 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2061 *  ========	================================================================
2062 *
2063 * Note:
2064 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2065 * interrupted while holding PENDING and @work off queue, irq must be
2066 * disabled on entry.  This, combined with delayed_work->timer being
2067 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2068 *
2069 * On successful return, >= 0, irq is disabled and the caller is
2070 * responsible for releasing it using local_irq_restore(*@irq_flags).
2071 *
2072 * This function is safe to call from any context including IRQ handler.
2073 */
2074static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2075			       unsigned long *irq_flags)
2076{
2077	struct worker_pool *pool;
2078	struct pool_workqueue *pwq;
2079
2080	local_irq_save(*irq_flags);
2081
2082	/* try to steal the timer if it exists */
2083	if (cflags & WORK_CANCEL_DELAYED) {
2084		struct delayed_work *dwork = to_delayed_work(work);
2085
2086		/*
2087		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2088		 * guaranteed that the timer is not queued anywhere and not
2089		 * running on the local CPU.
2090		 */
2091		if (likely(del_timer(&dwork->timer)))
2092			return 1;
2093	}
2094
2095	/* try to claim PENDING the normal way */
2096	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2097		return 0;
2098
2099	rcu_read_lock();
2100	/*
2101	 * The queueing is in progress, or it is already queued. Try to
2102	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2103	 */
2104	pool = get_work_pool(work);
2105	if (!pool)
2106		goto fail;
2107
2108	raw_spin_lock(&pool->lock);
2109	/*
2110	 * work->data is guaranteed to point to pwq only while the work
2111	 * item is queued on pwq->wq, and both updating work->data to point
2112	 * to pwq on queueing and to pool on dequeueing are done under
2113	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2114	 * points to pwq which is associated with a locked pool, the work
2115	 * item is currently queued on that pool.
2116	 */
2117	pwq = get_work_pwq(work);
2118	if (pwq && pwq->pool == pool) {
2119		unsigned long work_data;
2120
2121		debug_work_deactivate(work);
2122
2123		/*
2124		 * A cancelable inactive work item must be in the
2125		 * pwq->inactive_works since a queued barrier can't be
2126		 * canceled (see the comments in insert_wq_barrier()).
2127		 *
2128		 * An inactive work item cannot be grabbed directly because
2129		 * it might have linked barrier work items which, if left
2130		 * on the inactive_works list, will confuse pwq->nr_active
2131		 * management later on and cause stall.  Make sure the work
2132		 * item is activated before grabbing.
2133		 */
2134		pwq_activate_work(pwq, work);
2135
2136		list_del_init(&work->entry);
2137
2138		/*
2139		 * work->data points to pwq iff queued. Let's point to pool. As
2140		 * this destroys work->data needed by the next step, stash it.
2141		 */
2142		work_data = *work_data_bits(work);
2143		set_work_pool_and_keep_pending(work, pool->id,
2144					       pool_offq_flags(pool));
2145
2146		/* must be the last step, see the function comment */
2147		pwq_dec_nr_in_flight(pwq, work_data);
2148
2149		raw_spin_unlock(&pool->lock);
2150		rcu_read_unlock();
2151		return 1;
2152	}
2153	raw_spin_unlock(&pool->lock);
2154fail:
2155	rcu_read_unlock();
2156	local_irq_restore(*irq_flags);
2157	return -EAGAIN;
2158}
2159
2160/**
2161 * work_grab_pending - steal work item from worklist and disable irq
2162 * @work: work item to steal
2163 * @cflags: %WORK_CANCEL_ flags
2164 * @irq_flags: place to store IRQ state
2165 *
2166 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2167 * or on worklist.
2168 *
2169 * Can be called from any context. IRQ is disabled on return with IRQ state
2170 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2171 * local_irq_restore().
2172 *
2173 * Returns %true if @work was pending. %false if idle.
2174 */
2175static bool work_grab_pending(struct work_struct *work, u32 cflags,
2176			      unsigned long *irq_flags)
2177{
2178	int ret;
2179
2180	while (true) {
2181		ret = try_to_grab_pending(work, cflags, irq_flags);
2182		if (ret >= 0)
2183			return ret;
2184		cpu_relax();
2185	}
2186}
2187
2188/**
2189 * insert_work - insert a work into a pool
2190 * @pwq: pwq @work belongs to
2191 * @work: work to insert
2192 * @head: insertion point
2193 * @extra_flags: extra WORK_STRUCT_* flags to set
2194 *
2195 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2196 * work_struct flags.
2197 *
2198 * CONTEXT:
2199 * raw_spin_lock_irq(pool->lock).
2200 */
2201static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2202			struct list_head *head, unsigned int extra_flags)
2203{
2204	debug_work_activate(work);
2205
2206	/* record the work call stack in order to print it in KASAN reports */
2207	kasan_record_aux_stack_noalloc(work);
2208
2209	/* we own @work, set data and link */
2210	set_work_pwq(work, pwq, extra_flags);
2211	list_add_tail(&work->entry, head);
2212	get_pwq(pwq);
2213}
2214
2215/*
2216 * Test whether @work is being queued from another work executing on the
2217 * same workqueue.
2218 */
2219static bool is_chained_work(struct workqueue_struct *wq)
2220{
2221	struct worker *worker;
2222
2223	worker = current_wq_worker();
2224	/*
2225	 * Return %true iff I'm a worker executing a work item on @wq.  If
2226	 * I'm @worker, it's safe to dereference it without locking.
2227	 */
2228	return worker && worker->current_pwq->wq == wq;
2229}
2230
2231/*
2232 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2233 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2234 * avoid perturbing sensitive tasks.
2235 */
2236static int wq_select_unbound_cpu(int cpu)
2237{
2238	int new_cpu;
2239
2240	if (likely(!wq_debug_force_rr_cpu)) {
2241		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2242			return cpu;
2243	} else {
2244		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2245	}
2246
2247	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2248	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2249	if (unlikely(new_cpu >= nr_cpu_ids)) {
2250		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2251		if (unlikely(new_cpu >= nr_cpu_ids))
2252			return cpu;
2253	}
2254	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2255
2256	return new_cpu;
2257}
2258
2259static void __queue_work(int cpu, struct workqueue_struct *wq,
2260			 struct work_struct *work)
2261{
2262	struct pool_workqueue *pwq;
2263	struct worker_pool *last_pool, *pool;
2264	unsigned int work_flags;
2265	unsigned int req_cpu = cpu;
2266
2267	/*
2268	 * While a work item is PENDING && off queue, a task trying to
2269	 * steal the PENDING will busy-loop waiting for it to either get
2270	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2271	 * happen with IRQ disabled.
2272	 */
2273	lockdep_assert_irqs_disabled();
2274
2275	/*
2276	 * For a draining wq, only works from the same workqueue are
2277	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2278	 * queues a new work item to a wq after destroy_workqueue(wq).
2279	 */
2280	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2281		     WARN_ON_ONCE(!is_chained_work(wq))))
2282		return;
2283	rcu_read_lock();
2284retry:
2285	/* pwq which will be used unless @work is executing elsewhere */
2286	if (req_cpu == WORK_CPU_UNBOUND) {
2287		if (wq->flags & WQ_UNBOUND)
2288			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2289		else
2290			cpu = raw_smp_processor_id();
2291	}
2292
2293	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2294	pool = pwq->pool;
2295
2296	/*
2297	 * If @work was previously on a different pool, it might still be
2298	 * running there, in which case the work needs to be queued on that
2299	 * pool to guarantee non-reentrancy.
2300	 */
2301	last_pool = get_work_pool(work);
2302	if (last_pool && last_pool != pool) {
2303		struct worker *worker;
2304
2305		raw_spin_lock(&last_pool->lock);
2306
2307		worker = find_worker_executing_work(last_pool, work);
2308
2309		if (worker && worker->current_pwq->wq == wq) {
2310			pwq = worker->current_pwq;
2311			pool = pwq->pool;
2312			WARN_ON_ONCE(pool != last_pool);
2313		} else {
2314			/* meh... not running there, queue here */
2315			raw_spin_unlock(&last_pool->lock);
2316			raw_spin_lock(&pool->lock);
2317		}
2318	} else {
2319		raw_spin_lock(&pool->lock);
2320	}
2321
2322	/*
2323	 * pwq is determined and locked. For unbound pools, we could have raced
2324	 * with pwq release and it could already be dead. If its refcnt is zero,
2325	 * repeat pwq selection. Note that unbound pwqs never die without
2326	 * another pwq replacing it in cpu_pwq or while work items are executing
2327	 * on it, so the retrying is guaranteed to make forward-progress.
2328	 */
2329	if (unlikely(!pwq->refcnt)) {
2330		if (wq->flags & WQ_UNBOUND) {
2331			raw_spin_unlock(&pool->lock);
2332			cpu_relax();
2333			goto retry;
2334		}
2335		/* oops */
2336		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2337			  wq->name, cpu);
2338	}
2339
2340	/* pwq determined, queue */
2341	trace_workqueue_queue_work(req_cpu, pwq, work);
2342
2343	if (WARN_ON(!list_empty(&work->entry)))
2344		goto out;
2345
2346	pwq->nr_in_flight[pwq->work_color]++;
2347	work_flags = work_color_to_flags(pwq->work_color);
2348
2349	/*
2350	 * Limit the number of concurrently active work items to max_active.
2351	 * @work must also queue behind existing inactive work items to maintain
2352	 * ordering when max_active changes. See wq_adjust_max_active().
2353	 */
2354	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2355		if (list_empty(&pool->worklist))
2356			pool->watchdog_ts = jiffies;
2357
2358		trace_workqueue_activate_work(work);
2359		insert_work(pwq, work, &pool->worklist, work_flags);
2360		kick_pool(pool);
2361	} else {
2362		work_flags |= WORK_STRUCT_INACTIVE;
2363		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2364	}
2365
2366out:
2367	raw_spin_unlock(&pool->lock);
2368	rcu_read_unlock();
2369}
2370
2371static bool clear_pending_if_disabled(struct work_struct *work)
2372{
2373	unsigned long data = *work_data_bits(work);
2374	struct work_offq_data offqd;
2375
2376	if (likely((data & WORK_STRUCT_PWQ) ||
2377		   !(data & WORK_OFFQ_DISABLE_MASK)))
2378		return false;
2379
2380	work_offqd_unpack(&offqd, data);
2381	set_work_pool_and_clear_pending(work, offqd.pool_id,
2382					work_offqd_pack_flags(&offqd));
2383	return true;
2384}
2385
2386/**
2387 * queue_work_on - queue work on specific cpu
2388 * @cpu: CPU number to execute work on
2389 * @wq: workqueue to use
2390 * @work: work to queue
2391 *
2392 * We queue the work to a specific CPU, the caller must ensure it
2393 * can't go away.  Callers that fail to ensure that the specified
2394 * CPU cannot go away will execute on a randomly chosen CPU.
2395 * But note well that callers specifying a CPU that never has been
2396 * online will get a splat.
2397 *
2398 * Return: %false if @work was already on a queue, %true otherwise.
2399 */
2400bool queue_work_on(int cpu, struct workqueue_struct *wq,
2401		   struct work_struct *work)
2402{
2403	bool ret = false;
2404	unsigned long irq_flags;
2405
2406	local_irq_save(irq_flags);
2407
2408	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2409	    !clear_pending_if_disabled(work)) {
2410		__queue_work(cpu, wq, work);
2411		ret = true;
2412	}
2413
2414	local_irq_restore(irq_flags);
2415	return ret;
2416}
2417EXPORT_SYMBOL(queue_work_on);
2418
2419/**
2420 * select_numa_node_cpu - Select a CPU based on NUMA node
2421 * @node: NUMA node ID that we want to select a CPU from
2422 *
2423 * This function will attempt to find a "random" cpu available on a given
2424 * node. If there are no CPUs available on the given node it will return
2425 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2426 * available CPU if we need to schedule this work.
2427 */
2428static int select_numa_node_cpu(int node)
2429{
2430	int cpu;
2431
2432	/* Delay binding to CPU if node is not valid or online */
2433	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2434		return WORK_CPU_UNBOUND;
2435
2436	/* Use local node/cpu if we are already there */
2437	cpu = raw_smp_processor_id();
2438	if (node == cpu_to_node(cpu))
2439		return cpu;
2440
2441	/* Use "random" otherwise know as "first" online CPU of node */
2442	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2443
2444	/* If CPU is valid return that, otherwise just defer */
2445	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2446}
2447
2448/**
2449 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2450 * @node: NUMA node that we are targeting the work for
2451 * @wq: workqueue to use
2452 * @work: work to queue
2453 *
2454 * We queue the work to a "random" CPU within a given NUMA node. The basic
2455 * idea here is to provide a way to somehow associate work with a given
2456 * NUMA node.
2457 *
2458 * This function will only make a best effort attempt at getting this onto
2459 * the right NUMA node. If no node is requested or the requested node is
2460 * offline then we just fall back to standard queue_work behavior.
2461 *
2462 * Currently the "random" CPU ends up being the first available CPU in the
2463 * intersection of cpu_online_mask and the cpumask of the node, unless we
2464 * are running on the node. In that case we just use the current CPU.
2465 *
2466 * Return: %false if @work was already on a queue, %true otherwise.
2467 */
2468bool queue_work_node(int node, struct workqueue_struct *wq,
2469		     struct work_struct *work)
2470{
2471	unsigned long irq_flags;
2472	bool ret = false;
2473
2474	/*
2475	 * This current implementation is specific to unbound workqueues.
2476	 * Specifically we only return the first available CPU for a given
2477	 * node instead of cycling through individual CPUs within the node.
2478	 *
2479	 * If this is used with a per-cpu workqueue then the logic in
2480	 * workqueue_select_cpu_near would need to be updated to allow for
2481	 * some round robin type logic.
2482	 */
2483	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2484
2485	local_irq_save(irq_flags);
2486
2487	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2488	    !clear_pending_if_disabled(work)) {
2489		int cpu = select_numa_node_cpu(node);
2490
2491		__queue_work(cpu, wq, work);
2492		ret = true;
2493	}
2494
2495	local_irq_restore(irq_flags);
2496	return ret;
2497}
2498EXPORT_SYMBOL_GPL(queue_work_node);
2499
2500void delayed_work_timer_fn(struct timer_list *t)
2501{
2502	struct delayed_work *dwork = from_timer(dwork, t, timer);
2503
2504	/* should have been called from irqsafe timer with irq already off */
2505	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2506}
2507EXPORT_SYMBOL(delayed_work_timer_fn);
2508
2509static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2510				struct delayed_work *dwork, unsigned long delay)
2511{
2512	struct timer_list *timer = &dwork->timer;
2513	struct work_struct *work = &dwork->work;
2514
2515	WARN_ON_ONCE(!wq);
2516	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2517	WARN_ON_ONCE(timer_pending(timer));
2518	WARN_ON_ONCE(!list_empty(&work->entry));
2519
2520	/*
2521	 * If @delay is 0, queue @dwork->work immediately.  This is for
2522	 * both optimization and correctness.  The earliest @timer can
2523	 * expire is on the closest next tick and delayed_work users depend
2524	 * on that there's no such delay when @delay is 0.
2525	 */
2526	if (!delay) {
2527		__queue_work(cpu, wq, &dwork->work);
2528		return;
2529	}
2530
2531	dwork->wq = wq;
2532	dwork->cpu = cpu;
2533	timer->expires = jiffies + delay;
2534
2535	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2536		/* If the current cpu is a housekeeping cpu, use it. */
2537		cpu = smp_processor_id();
2538		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2539			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2540		add_timer_on(timer, cpu);
2541	} else {
2542		if (likely(cpu == WORK_CPU_UNBOUND))
2543			add_timer_global(timer);
2544		else
2545			add_timer_on(timer, cpu);
2546	}
2547}
2548
2549/**
2550 * queue_delayed_work_on - queue work on specific CPU after delay
2551 * @cpu: CPU number to execute work on
2552 * @wq: workqueue to use
2553 * @dwork: work to queue
2554 * @delay: number of jiffies to wait before queueing
2555 *
2556 * Return: %false if @work was already on a queue, %true otherwise.  If
2557 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2558 * execution.
2559 */
2560bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2561			   struct delayed_work *dwork, unsigned long delay)
2562{
2563	struct work_struct *work = &dwork->work;
2564	bool ret = false;
2565	unsigned long irq_flags;
2566
2567	/* read the comment in __queue_work() */
2568	local_irq_save(irq_flags);
2569
2570	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2571	    !clear_pending_if_disabled(work)) {
2572		__queue_delayed_work(cpu, wq, dwork, delay);
2573		ret = true;
2574	}
2575
2576	local_irq_restore(irq_flags);
2577	return ret;
2578}
2579EXPORT_SYMBOL(queue_delayed_work_on);
2580
2581/**
2582 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2583 * @cpu: CPU number to execute work on
2584 * @wq: workqueue to use
2585 * @dwork: work to queue
2586 * @delay: number of jiffies to wait before queueing
2587 *
2588 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2589 * modify @dwork's timer so that it expires after @delay.  If @delay is
2590 * zero, @work is guaranteed to be scheduled immediately regardless of its
2591 * current state.
2592 *
2593 * Return: %false if @dwork was idle and queued, %true if @dwork was
2594 * pending and its timer was modified.
2595 *
2596 * This function is safe to call from any context including IRQ handler.
2597 * See try_to_grab_pending() for details.
2598 */
2599bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2600			 struct delayed_work *dwork, unsigned long delay)
2601{
2602	unsigned long irq_flags;
2603	bool ret;
2604
2605	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2606
2607	if (!clear_pending_if_disabled(&dwork->work))
2608		__queue_delayed_work(cpu, wq, dwork, delay);
2609
2610	local_irq_restore(irq_flags);
2611	return ret;
2612}
2613EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2614
2615static void rcu_work_rcufn(struct rcu_head *rcu)
2616{
2617	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2618
2619	/* read the comment in __queue_work() */
2620	local_irq_disable();
2621	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2622	local_irq_enable();
2623}
2624
2625/**
2626 * queue_rcu_work - queue work after a RCU grace period
2627 * @wq: workqueue to use
2628 * @rwork: work to queue
2629 *
2630 * Return: %false if @rwork was already pending, %true otherwise.  Note
2631 * that a full RCU grace period is guaranteed only after a %true return.
2632 * While @rwork is guaranteed to be executed after a %false return, the
2633 * execution may happen before a full RCU grace period has passed.
2634 */
2635bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2636{
2637	struct work_struct *work = &rwork->work;
2638
2639	/*
2640	 * rcu_work can't be canceled or disabled. Warn if the user reached
2641	 * inside @rwork and disabled the inner work.
2642	 */
2643	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2644	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2645		rwork->wq = wq;
2646		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2647		return true;
2648	}
2649
2650	return false;
2651}
2652EXPORT_SYMBOL(queue_rcu_work);
2653
2654static struct worker *alloc_worker(int node)
2655{
2656	struct worker *worker;
2657
2658	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2659	if (worker) {
2660		INIT_LIST_HEAD(&worker->entry);
2661		INIT_LIST_HEAD(&worker->scheduled);
2662		INIT_LIST_HEAD(&worker->node);
2663		/* on creation a worker is in !idle && prep state */
2664		worker->flags = WORKER_PREP;
2665	}
2666	return worker;
2667}
2668
2669static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2670{
2671	if (pool->cpu < 0 && pool->attrs->affn_strict)
2672		return pool->attrs->__pod_cpumask;
2673	else
2674		return pool->attrs->cpumask;
2675}
2676
2677/**
2678 * worker_attach_to_pool() - attach a worker to a pool
2679 * @worker: worker to be attached
2680 * @pool: the target pool
2681 *
2682 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2683 * cpu-binding of @worker are kept coordinated with the pool across
2684 * cpu-[un]hotplugs.
2685 */
2686static void worker_attach_to_pool(struct worker *worker,
2687				  struct worker_pool *pool)
2688{
2689	mutex_lock(&wq_pool_attach_mutex);
2690
2691	/*
2692	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2693	 * across this function. See the comments above the flag definition for
2694	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2695	 */
2696	if (pool->flags & POOL_DISASSOCIATED) {
2697		worker->flags |= WORKER_UNBOUND;
2698	} else {
2699		WARN_ON_ONCE(pool->flags & POOL_BH);
2700		kthread_set_per_cpu(worker->task, pool->cpu);
2701	}
2702
2703	if (worker->rescue_wq)
2704		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2705
2706	list_add_tail(&worker->node, &pool->workers);
2707	worker->pool = pool;
2708
2709	mutex_unlock(&wq_pool_attach_mutex);
2710}
2711
2712/**
2713 * worker_detach_from_pool() - detach a worker from its pool
2714 * @worker: worker which is attached to its pool
2715 *
2716 * Undo the attaching which had been done in worker_attach_to_pool().  The
2717 * caller worker shouldn't access to the pool after detached except it has
2718 * other reference to the pool.
2719 */
2720static void worker_detach_from_pool(struct worker *worker)
2721{
2722	struct worker_pool *pool = worker->pool;
2723	struct completion *detach_completion = NULL;
2724
2725	/* there is one permanent BH worker per CPU which should never detach */
2726	WARN_ON_ONCE(pool->flags & POOL_BH);
2727
2728	mutex_lock(&wq_pool_attach_mutex);
2729
2730	kthread_set_per_cpu(worker->task, -1);
2731	list_del(&worker->node);
2732	worker->pool = NULL;
2733
2734	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2735		detach_completion = pool->detach_completion;
2736	mutex_unlock(&wq_pool_attach_mutex);
2737
2738	/* clear leftover flags without pool->lock after it is detached */
2739	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2740
2741	if (detach_completion)
2742		complete(detach_completion);
2743}
2744
2745/**
2746 * create_worker - create a new workqueue worker
2747 * @pool: pool the new worker will belong to
2748 *
2749 * Create and start a new worker which is attached to @pool.
2750 *
2751 * CONTEXT:
2752 * Might sleep.  Does GFP_KERNEL allocations.
2753 *
2754 * Return:
2755 * Pointer to the newly created worker.
2756 */
2757static struct worker *create_worker(struct worker_pool *pool)
2758{
2759	struct worker *worker;
2760	int id;
2761	char id_buf[23];
2762
2763	/* ID is needed to determine kthread name */
2764	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2765	if (id < 0) {
2766		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2767			    ERR_PTR(id));
2768		return NULL;
2769	}
2770
2771	worker = alloc_worker(pool->node);
2772	if (!worker) {
2773		pr_err_once("workqueue: Failed to allocate a worker\n");
2774		goto fail;
2775	}
2776
2777	worker->id = id;
2778
2779	if (!(pool->flags & POOL_BH)) {
2780		if (pool->cpu >= 0)
2781			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2782				 pool->attrs->nice < 0  ? "H" : "");
2783		else
2784			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2785
2786		worker->task = kthread_create_on_node(worker_thread, worker,
2787					pool->node, "kworker/%s", id_buf);
2788		if (IS_ERR(worker->task)) {
2789			if (PTR_ERR(worker->task) == -EINTR) {
2790				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2791				       id_buf);
2792			} else {
2793				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2794					    worker->task);
2795			}
2796			goto fail;
2797		}
2798
2799		set_user_nice(worker->task, pool->attrs->nice);
2800		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2801	}
2802
2803	/* successful, attach the worker to the pool */
2804	worker_attach_to_pool(worker, pool);
2805
2806	/* start the newly created worker */
2807	raw_spin_lock_irq(&pool->lock);
2808
2809	worker->pool->nr_workers++;
2810	worker_enter_idle(worker);
2811
2812	/*
2813	 * @worker is waiting on a completion in kthread() and will trigger hung
2814	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2815	 * wake it up explicitly.
2816	 */
2817	if (worker->task)
2818		wake_up_process(worker->task);
2819
2820	raw_spin_unlock_irq(&pool->lock);
2821
2822	return worker;
2823
2824fail:
2825	ida_free(&pool->worker_ida, id);
2826	kfree(worker);
2827	return NULL;
2828}
2829
2830static void unbind_worker(struct worker *worker)
2831{
2832	lockdep_assert_held(&wq_pool_attach_mutex);
2833
2834	kthread_set_per_cpu(worker->task, -1);
2835	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2836		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2837	else
2838		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2839}
2840
2841static void wake_dying_workers(struct list_head *cull_list)
2842{
2843	struct worker *worker, *tmp;
2844
2845	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2846		list_del_init(&worker->entry);
2847		unbind_worker(worker);
2848		/*
2849		 * If the worker was somehow already running, then it had to be
2850		 * in pool->idle_list when set_worker_dying() happened or we
2851		 * wouldn't have gotten here.
2852		 *
2853		 * Thus, the worker must either have observed the WORKER_DIE
2854		 * flag, or have set its state to TASK_IDLE. Either way, the
2855		 * below will be observed by the worker and is safe to do
2856		 * outside of pool->lock.
2857		 */
2858		wake_up_process(worker->task);
2859	}
2860}
2861
2862/**
2863 * set_worker_dying - Tag a worker for destruction
2864 * @worker: worker to be destroyed
2865 * @list: transfer worker away from its pool->idle_list and into list
2866 *
2867 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2868 * should be idle.
2869 *
2870 * CONTEXT:
2871 * raw_spin_lock_irq(pool->lock).
2872 */
2873static void set_worker_dying(struct worker *worker, struct list_head *list)
2874{
2875	struct worker_pool *pool = worker->pool;
2876
2877	lockdep_assert_held(&pool->lock);
2878	lockdep_assert_held(&wq_pool_attach_mutex);
2879
2880	/* sanity check frenzy */
2881	if (WARN_ON(worker->current_work) ||
2882	    WARN_ON(!list_empty(&worker->scheduled)) ||
2883	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2884		return;
2885
2886	pool->nr_workers--;
2887	pool->nr_idle--;
2888
2889	worker->flags |= WORKER_DIE;
2890
2891	list_move(&worker->entry, list);
2892	list_move(&worker->node, &pool->dying_workers);
2893}
2894
2895/**
2896 * idle_worker_timeout - check if some idle workers can now be deleted.
2897 * @t: The pool's idle_timer that just expired
2898 *
2899 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2900 * worker_leave_idle(), as a worker flicking between idle and active while its
2901 * pool is at the too_many_workers() tipping point would cause too much timer
2902 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2903 * it expire and re-evaluate things from there.
2904 */
2905static void idle_worker_timeout(struct timer_list *t)
2906{
2907	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2908	bool do_cull = false;
2909
2910	if (work_pending(&pool->idle_cull_work))
2911		return;
2912
2913	raw_spin_lock_irq(&pool->lock);
2914
2915	if (too_many_workers(pool)) {
2916		struct worker *worker;
2917		unsigned long expires;
2918
2919		/* idle_list is kept in LIFO order, check the last one */
2920		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2921		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2922		do_cull = !time_before(jiffies, expires);
2923
2924		if (!do_cull)
2925			mod_timer(&pool->idle_timer, expires);
2926	}
2927	raw_spin_unlock_irq(&pool->lock);
2928
2929	if (do_cull)
2930		queue_work(system_unbound_wq, &pool->idle_cull_work);
2931}
2932
2933/**
2934 * idle_cull_fn - cull workers that have been idle for too long.
2935 * @work: the pool's work for handling these idle workers
2936 *
2937 * This goes through a pool's idle workers and gets rid of those that have been
2938 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2939 *
2940 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2941 * culled, so this also resets worker affinity. This requires a sleepable
2942 * context, hence the split between timer callback and work item.
2943 */
2944static void idle_cull_fn(struct work_struct *work)
2945{
2946	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2947	LIST_HEAD(cull_list);
2948
2949	/*
2950	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2951	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2952	 * path. This is required as a previously-preempted worker could run after
2953	 * set_worker_dying() has happened but before wake_dying_workers() did.
2954	 */
2955	mutex_lock(&wq_pool_attach_mutex);
2956	raw_spin_lock_irq(&pool->lock);
2957
2958	while (too_many_workers(pool)) {
2959		struct worker *worker;
2960		unsigned long expires;
2961
2962		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2963		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2964
2965		if (time_before(jiffies, expires)) {
2966			mod_timer(&pool->idle_timer, expires);
2967			break;
2968		}
2969
2970		set_worker_dying(worker, &cull_list);
2971	}
2972
2973	raw_spin_unlock_irq(&pool->lock);
2974	wake_dying_workers(&cull_list);
2975	mutex_unlock(&wq_pool_attach_mutex);
2976}
2977
2978static void send_mayday(struct work_struct *work)
2979{
2980	struct pool_workqueue *pwq = get_work_pwq(work);
2981	struct workqueue_struct *wq = pwq->wq;
2982
2983	lockdep_assert_held(&wq_mayday_lock);
2984
2985	if (!wq->rescuer)
2986		return;
2987
2988	/* mayday mayday mayday */
2989	if (list_empty(&pwq->mayday_node)) {
2990		/*
2991		 * If @pwq is for an unbound wq, its base ref may be put at
2992		 * any time due to an attribute change.  Pin @pwq until the
2993		 * rescuer is done with it.
2994		 */
2995		get_pwq(pwq);
2996		list_add_tail(&pwq->mayday_node, &wq->maydays);
2997		wake_up_process(wq->rescuer->task);
2998		pwq->stats[PWQ_STAT_MAYDAY]++;
2999	}
3000}
3001
3002static void pool_mayday_timeout(struct timer_list *t)
3003{
3004	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3005	struct work_struct *work;
3006
3007	raw_spin_lock_irq(&pool->lock);
3008	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3009
3010	if (need_to_create_worker(pool)) {
3011		/*
3012		 * We've been trying to create a new worker but
3013		 * haven't been successful.  We might be hitting an
3014		 * allocation deadlock.  Send distress signals to
3015		 * rescuers.
3016		 */
3017		list_for_each_entry(work, &pool->worklist, entry)
3018			send_mayday(work);
3019	}
3020
3021	raw_spin_unlock(&wq_mayday_lock);
3022	raw_spin_unlock_irq(&pool->lock);
3023
3024	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3025}
3026
3027/**
3028 * maybe_create_worker - create a new worker if necessary
3029 * @pool: pool to create a new worker for
3030 *
3031 * Create a new worker for @pool if necessary.  @pool is guaranteed to
3032 * have at least one idle worker on return from this function.  If
3033 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3034 * sent to all rescuers with works scheduled on @pool to resolve
3035 * possible allocation deadlock.
3036 *
3037 * On return, need_to_create_worker() is guaranteed to be %false and
3038 * may_start_working() %true.
3039 *
3040 * LOCKING:
3041 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3042 * multiple times.  Does GFP_KERNEL allocations.  Called only from
3043 * manager.
3044 */
3045static void maybe_create_worker(struct worker_pool *pool)
3046__releases(&pool->lock)
3047__acquires(&pool->lock)
3048{
3049restart:
3050	raw_spin_unlock_irq(&pool->lock);
3051
3052	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3053	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3054
3055	while (true) {
3056		if (create_worker(pool) || !need_to_create_worker(pool))
3057			break;
3058
3059		schedule_timeout_interruptible(CREATE_COOLDOWN);
3060
3061		if (!need_to_create_worker(pool))
3062			break;
3063	}
3064
3065	del_timer_sync(&pool->mayday_timer);
3066	raw_spin_lock_irq(&pool->lock);
3067	/*
3068	 * This is necessary even after a new worker was just successfully
3069	 * created as @pool->lock was dropped and the new worker might have
3070	 * already become busy.
3071	 */
3072	if (need_to_create_worker(pool))
3073		goto restart;
3074}
3075
3076/**
3077 * manage_workers - manage worker pool
3078 * @worker: self
3079 *
3080 * Assume the manager role and manage the worker pool @worker belongs
3081 * to.  At any given time, there can be only zero or one manager per
3082 * pool.  The exclusion is handled automatically by this function.
3083 *
3084 * The caller can safely start processing works on false return.  On
3085 * true return, it's guaranteed that need_to_create_worker() is false
3086 * and may_start_working() is true.
3087 *
3088 * CONTEXT:
3089 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3090 * multiple times.  Does GFP_KERNEL allocations.
3091 *
3092 * Return:
3093 * %false if the pool doesn't need management and the caller can safely
3094 * start processing works, %true if management function was performed and
3095 * the conditions that the caller verified before calling the function may
3096 * no longer be true.
3097 */
3098static bool manage_workers(struct worker *worker)
3099{
3100	struct worker_pool *pool = worker->pool;
3101
3102	if (pool->flags & POOL_MANAGER_ACTIVE)
3103		return false;
3104
3105	pool->flags |= POOL_MANAGER_ACTIVE;
3106	pool->manager = worker;
3107
3108	maybe_create_worker(pool);
3109
3110	pool->manager = NULL;
3111	pool->flags &= ~POOL_MANAGER_ACTIVE;
3112	rcuwait_wake_up(&manager_wait);
3113	return true;
3114}
3115
3116/**
3117 * process_one_work - process single work
3118 * @worker: self
3119 * @work: work to process
3120 *
3121 * Process @work.  This function contains all the logics necessary to
3122 * process a single work including synchronization against and
3123 * interaction with other workers on the same cpu, queueing and
3124 * flushing.  As long as context requirement is met, any worker can
3125 * call this function to process a work.
3126 *
3127 * CONTEXT:
3128 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3129 */
3130static void process_one_work(struct worker *worker, struct work_struct *work)
3131__releases(&pool->lock)
3132__acquires(&pool->lock)
3133{
3134	struct pool_workqueue *pwq = get_work_pwq(work);
3135	struct worker_pool *pool = worker->pool;
3136	unsigned long work_data;
3137	int lockdep_start_depth, rcu_start_depth;
3138	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3139#ifdef CONFIG_LOCKDEP
3140	/*
3141	 * It is permissible to free the struct work_struct from
3142	 * inside the function that is called from it, this we need to
3143	 * take into account for lockdep too.  To avoid bogus "held
3144	 * lock freed" warnings as well as problems when looking into
3145	 * work->lockdep_map, make a copy and use that here.
3146	 */
3147	struct lockdep_map lockdep_map;
3148
3149	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3150#endif
3151	/* ensure we're on the correct CPU */
3152	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3153		     raw_smp_processor_id() != pool->cpu);
3154
3155	/* claim and dequeue */
3156	debug_work_deactivate(work);
3157	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3158	worker->current_work = work;
3159	worker->current_func = work->func;
3160	worker->current_pwq = pwq;
3161	if (worker->task)
3162		worker->current_at = worker->task->se.sum_exec_runtime;
3163	work_data = *work_data_bits(work);
3164	worker->current_color = get_work_color(work_data);
3165
3166	/*
3167	 * Record wq name for cmdline and debug reporting, may get
3168	 * overridden through set_worker_desc().
3169	 */
3170	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3171
3172	list_del_init(&work->entry);
3173
3174	/*
3175	 * CPU intensive works don't participate in concurrency management.
3176	 * They're the scheduler's responsibility.  This takes @worker out
3177	 * of concurrency management and the next code block will chain
3178	 * execution of the pending work items.
3179	 */
3180	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3181		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3182
3183	/*
3184	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3185	 * since nr_running would always be >= 1 at this point. This is used to
3186	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3187	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3188	 */
3189	kick_pool(pool);
3190
3191	/*
3192	 * Record the last pool and clear PENDING which should be the last
3193	 * update to @work.  Also, do this inside @pool->lock so that
3194	 * PENDING and queued state changes happen together while IRQ is
3195	 * disabled.
3196	 */
3197	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3198
3199	pwq->stats[PWQ_STAT_STARTED]++;
3200	raw_spin_unlock_irq(&pool->lock);
3201
3202	rcu_start_depth = rcu_preempt_depth();
3203	lockdep_start_depth = lockdep_depth(current);
3204	/* see drain_dead_softirq_workfn() */
3205	if (!bh_draining)
3206		lock_map_acquire(&pwq->wq->lockdep_map);
3207	lock_map_acquire(&lockdep_map);
3208	/*
3209	 * Strictly speaking we should mark the invariant state without holding
3210	 * any locks, that is, before these two lock_map_acquire()'s.
3211	 *
3212	 * However, that would result in:
3213	 *
3214	 *   A(W1)
3215	 *   WFC(C)
3216	 *		A(W1)
3217	 *		C(C)
3218	 *
3219	 * Which would create W1->C->W1 dependencies, even though there is no
3220	 * actual deadlock possible. There are two solutions, using a
3221	 * read-recursive acquire on the work(queue) 'locks', but this will then
3222	 * hit the lockdep limitation on recursive locks, or simply discard
3223	 * these locks.
3224	 *
3225	 * AFAICT there is no possible deadlock scenario between the
3226	 * flush_work() and complete() primitives (except for single-threaded
3227	 * workqueues), so hiding them isn't a problem.
3228	 */
3229	lockdep_invariant_state(true);
3230	trace_workqueue_execute_start(work);
3231	worker->current_func(work);
3232	/*
3233	 * While we must be careful to not use "work" after this, the trace
3234	 * point will only record its address.
3235	 */
3236	trace_workqueue_execute_end(work, worker->current_func);
3237	pwq->stats[PWQ_STAT_COMPLETED]++;
3238	lock_map_release(&lockdep_map);
3239	if (!bh_draining)
3240		lock_map_release(&pwq->wq->lockdep_map);
3241
3242	if (unlikely((worker->task && in_atomic()) ||
3243		     lockdep_depth(current) != lockdep_start_depth ||
3244		     rcu_preempt_depth() != rcu_start_depth)) {
3245		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3246		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3247		       current->comm, task_pid_nr(current), preempt_count(),
3248		       lockdep_start_depth, lockdep_depth(current),
3249		       rcu_start_depth, rcu_preempt_depth(),
3250		       worker->current_func);
3251		debug_show_held_locks(current);
3252		dump_stack();
3253	}
3254
3255	/*
3256	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3257	 * kernels, where a requeueing work item waiting for something to
3258	 * happen could deadlock with stop_machine as such work item could
3259	 * indefinitely requeue itself while all other CPUs are trapped in
3260	 * stop_machine. At the same time, report a quiescent RCU state so
3261	 * the same condition doesn't freeze RCU.
3262	 */
3263	if (worker->task)
3264		cond_resched();
3265
3266	raw_spin_lock_irq(&pool->lock);
3267
3268	/*
3269	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3270	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3271	 * wq_cpu_intensive_thresh_us. Clear it.
3272	 */
3273	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3274
3275	/* tag the worker for identification in schedule() */
3276	worker->last_func = worker->current_func;
3277
3278	/* we're done with it, release */
3279	hash_del(&worker->hentry);
3280	worker->current_work = NULL;
3281	worker->current_func = NULL;
3282	worker->current_pwq = NULL;
3283	worker->current_color = INT_MAX;
3284
3285	/* must be the last step, see the function comment */
3286	pwq_dec_nr_in_flight(pwq, work_data);
3287}
3288
3289/**
3290 * process_scheduled_works - process scheduled works
3291 * @worker: self
3292 *
3293 * Process all scheduled works.  Please note that the scheduled list
3294 * may change while processing a work, so this function repeatedly
3295 * fetches a work from the top and executes it.
3296 *
3297 * CONTEXT:
3298 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3299 * multiple times.
3300 */
3301static void process_scheduled_works(struct worker *worker)
3302{
3303	struct work_struct *work;
3304	bool first = true;
3305
3306	while ((work = list_first_entry_or_null(&worker->scheduled,
3307						struct work_struct, entry))) {
3308		if (first) {
3309			worker->pool->watchdog_ts = jiffies;
3310			first = false;
3311		}
3312		process_one_work(worker, work);
3313	}
3314}
3315
3316static void set_pf_worker(bool val)
3317{
3318	mutex_lock(&wq_pool_attach_mutex);
3319	if (val)
3320		current->flags |= PF_WQ_WORKER;
3321	else
3322		current->flags &= ~PF_WQ_WORKER;
3323	mutex_unlock(&wq_pool_attach_mutex);
3324}
3325
3326/**
3327 * worker_thread - the worker thread function
3328 * @__worker: self
3329 *
3330 * The worker thread function.  All workers belong to a worker_pool -
3331 * either a per-cpu one or dynamic unbound one.  These workers process all
3332 * work items regardless of their specific target workqueue.  The only
3333 * exception is work items which belong to workqueues with a rescuer which
3334 * will be explained in rescuer_thread().
3335 *
3336 * Return: 0
3337 */
3338static int worker_thread(void *__worker)
3339{
3340	struct worker *worker = __worker;
3341	struct worker_pool *pool = worker->pool;
3342
3343	/* tell the scheduler that this is a workqueue worker */
3344	set_pf_worker(true);
3345woke_up:
3346	raw_spin_lock_irq(&pool->lock);
3347
3348	/* am I supposed to die? */
3349	if (unlikely(worker->flags & WORKER_DIE)) {
3350		raw_spin_unlock_irq(&pool->lock);
3351		set_pf_worker(false);
3352
3353		set_task_comm(worker->task, "kworker/dying");
3354		ida_free(&pool->worker_ida, worker->id);
3355		worker_detach_from_pool(worker);
3356		WARN_ON_ONCE(!list_empty(&worker->entry));
3357		kfree(worker);
3358		return 0;
3359	}
3360
3361	worker_leave_idle(worker);
3362recheck:
3363	/* no more worker necessary? */
3364	if (!need_more_worker(pool))
3365		goto sleep;
3366
3367	/* do we need to manage? */
3368	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3369		goto recheck;
3370
3371	/*
3372	 * ->scheduled list can only be filled while a worker is
3373	 * preparing to process a work or actually processing it.
3374	 * Make sure nobody diddled with it while I was sleeping.
3375	 */
3376	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3377
3378	/*
3379	 * Finish PREP stage.  We're guaranteed to have at least one idle
3380	 * worker or that someone else has already assumed the manager
3381	 * role.  This is where @worker starts participating in concurrency
3382	 * management if applicable and concurrency management is restored
3383	 * after being rebound.  See rebind_workers() for details.
3384	 */
3385	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3386
3387	do {
3388		struct work_struct *work =
3389			list_first_entry(&pool->worklist,
3390					 struct work_struct, entry);
3391
3392		if (assign_work(work, worker, NULL))
3393			process_scheduled_works(worker);
3394	} while (keep_working(pool));
3395
3396	worker_set_flags(worker, WORKER_PREP);
3397sleep:
3398	/*
3399	 * pool->lock is held and there's no work to process and no need to
3400	 * manage, sleep.  Workers are woken up only while holding
3401	 * pool->lock or from local cpu, so setting the current state
3402	 * before releasing pool->lock is enough to prevent losing any
3403	 * event.
3404	 */
3405	worker_enter_idle(worker);
3406	__set_current_state(TASK_IDLE);
3407	raw_spin_unlock_irq(&pool->lock);
3408	schedule();
3409	goto woke_up;
3410}
3411
3412/**
3413 * rescuer_thread - the rescuer thread function
3414 * @__rescuer: self
3415 *
3416 * Workqueue rescuer thread function.  There's one rescuer for each
3417 * workqueue which has WQ_MEM_RECLAIM set.
3418 *
3419 * Regular work processing on a pool may block trying to create a new
3420 * worker which uses GFP_KERNEL allocation which has slight chance of
3421 * developing into deadlock if some works currently on the same queue
3422 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3423 * the problem rescuer solves.
3424 *
3425 * When such condition is possible, the pool summons rescuers of all
3426 * workqueues which have works queued on the pool and let them process
3427 * those works so that forward progress can be guaranteed.
3428 *
3429 * This should happen rarely.
3430 *
3431 * Return: 0
3432 */
3433static int rescuer_thread(void *__rescuer)
3434{
3435	struct worker *rescuer = __rescuer;
3436	struct workqueue_struct *wq = rescuer->rescue_wq;
3437	bool should_stop;
3438
3439	set_user_nice(current, RESCUER_NICE_LEVEL);
3440
3441	/*
3442	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3443	 * doesn't participate in concurrency management.
3444	 */
3445	set_pf_worker(true);
3446repeat:
3447	set_current_state(TASK_IDLE);
3448
3449	/*
3450	 * By the time the rescuer is requested to stop, the workqueue
3451	 * shouldn't have any work pending, but @wq->maydays may still have
3452	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3453	 * all the work items before the rescuer got to them.  Go through
3454	 * @wq->maydays processing before acting on should_stop so that the
3455	 * list is always empty on exit.
3456	 */
3457	should_stop = kthread_should_stop();
3458
3459	/* see whether any pwq is asking for help */
3460	raw_spin_lock_irq(&wq_mayday_lock);
3461
3462	while (!list_empty(&wq->maydays)) {
3463		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3464					struct pool_workqueue, mayday_node);
3465		struct worker_pool *pool = pwq->pool;
3466		struct work_struct *work, *n;
3467
3468		__set_current_state(TASK_RUNNING);
3469		list_del_init(&pwq->mayday_node);
3470
3471		raw_spin_unlock_irq(&wq_mayday_lock);
3472
3473		worker_attach_to_pool(rescuer, pool);
3474
3475		raw_spin_lock_irq(&pool->lock);
3476
3477		/*
3478		 * Slurp in all works issued via this workqueue and
3479		 * process'em.
3480		 */
3481		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3482		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3483			if (get_work_pwq(work) == pwq &&
3484			    assign_work(work, rescuer, &n))
3485				pwq->stats[PWQ_STAT_RESCUED]++;
3486		}
3487
3488		if (!list_empty(&rescuer->scheduled)) {
3489			process_scheduled_works(rescuer);
3490
3491			/*
3492			 * The above execution of rescued work items could
3493			 * have created more to rescue through
3494			 * pwq_activate_first_inactive() or chained
3495			 * queueing.  Let's put @pwq back on mayday list so
3496			 * that such back-to-back work items, which may be
3497			 * being used to relieve memory pressure, don't
3498			 * incur MAYDAY_INTERVAL delay inbetween.
3499			 */
3500			if (pwq->nr_active && need_to_create_worker(pool)) {
3501				raw_spin_lock(&wq_mayday_lock);
3502				/*
3503				 * Queue iff we aren't racing destruction
3504				 * and somebody else hasn't queued it already.
3505				 */
3506				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3507					get_pwq(pwq);
3508					list_add_tail(&pwq->mayday_node, &wq->maydays);
3509				}
3510				raw_spin_unlock(&wq_mayday_lock);
3511			}
3512		}
3513
3514		/*
3515		 * Put the reference grabbed by send_mayday().  @pool won't
3516		 * go away while we're still attached to it.
3517		 */
3518		put_pwq(pwq);
3519
3520		/*
3521		 * Leave this pool. Notify regular workers; otherwise, we end up
3522		 * with 0 concurrency and stalling the execution.
3523		 */
3524		kick_pool(pool);
3525
3526		raw_spin_unlock_irq(&pool->lock);
3527
3528		worker_detach_from_pool(rescuer);
3529
3530		raw_spin_lock_irq(&wq_mayday_lock);
3531	}
3532
3533	raw_spin_unlock_irq(&wq_mayday_lock);
3534
3535	if (should_stop) {
3536		__set_current_state(TASK_RUNNING);
3537		set_pf_worker(false);
3538		return 0;
3539	}
3540
3541	/* rescuers should never participate in concurrency management */
3542	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3543	schedule();
3544	goto repeat;
3545}
3546
3547static void bh_worker(struct worker *worker)
3548{
3549	struct worker_pool *pool = worker->pool;
3550	int nr_restarts = BH_WORKER_RESTARTS;
3551	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3552
3553	raw_spin_lock_irq(&pool->lock);
3554	worker_leave_idle(worker);
3555
3556	/*
3557	 * This function follows the structure of worker_thread(). See there for
3558	 * explanations on each step.
3559	 */
3560	if (!need_more_worker(pool))
3561		goto done;
3562
3563	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3564	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3565
3566	do {
3567		struct work_struct *work =
3568			list_first_entry(&pool->worklist,
3569					 struct work_struct, entry);
3570
3571		if (assign_work(work, worker, NULL))
3572			process_scheduled_works(worker);
3573	} while (keep_working(pool) &&
3574		 --nr_restarts && time_before(jiffies, end));
3575
3576	worker_set_flags(worker, WORKER_PREP);
3577done:
3578	worker_enter_idle(worker);
3579	kick_pool(pool);
3580	raw_spin_unlock_irq(&pool->lock);
3581}
3582
3583/*
3584 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3585 *
3586 * This is currently called from tasklet[_hi]action() and thus is also called
3587 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3588 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3589 * can be dropped.
3590 *
3591 * After full conversion, we'll add worker->softirq_action, directly use the
3592 * softirq action and obtain the worker pointer from the softirq_action pointer.
3593 */
3594void workqueue_softirq_action(bool highpri)
3595{
3596	struct worker_pool *pool =
3597		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3598	if (need_more_worker(pool))
3599		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3600}
3601
3602struct wq_drain_dead_softirq_work {
3603	struct work_struct	work;
3604	struct worker_pool	*pool;
3605	struct completion	done;
3606};
3607
3608static void drain_dead_softirq_workfn(struct work_struct *work)
3609{
3610	struct wq_drain_dead_softirq_work *dead_work =
3611		container_of(work, struct wq_drain_dead_softirq_work, work);
3612	struct worker_pool *pool = dead_work->pool;
3613	bool repeat;
3614
3615	/*
3616	 * @pool's CPU is dead and we want to execute its still pending work
3617	 * items from this BH work item which is running on a different CPU. As
3618	 * its CPU is dead, @pool can't be kicked and, as work execution path
3619	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3620	 * @pool with %POOL_BH_DRAINING for the special treatments.
3621	 */
3622	raw_spin_lock_irq(&pool->lock);
3623	pool->flags |= POOL_BH_DRAINING;
3624	raw_spin_unlock_irq(&pool->lock);
3625
3626	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3627
3628	raw_spin_lock_irq(&pool->lock);
3629	pool->flags &= ~POOL_BH_DRAINING;
3630	repeat = need_more_worker(pool);
3631	raw_spin_unlock_irq(&pool->lock);
3632
3633	/*
3634	 * bh_worker() might hit consecutive execution limit and bail. If there
3635	 * still are pending work items, reschedule self and return so that we
3636	 * don't hog this CPU's BH.
3637	 */
3638	if (repeat) {
3639		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3640			queue_work(system_bh_highpri_wq, work);
3641		else
3642			queue_work(system_bh_wq, work);
3643	} else {
3644		complete(&dead_work->done);
3645	}
3646}
3647
3648/*
3649 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3650 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3651 * have to worry about draining overlapping with CPU coming back online or
3652 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3653 * on). Let's keep it simple and drain them synchronously. These are BH work
3654 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3655 */
3656void workqueue_softirq_dead(unsigned int cpu)
3657{
3658	int i;
3659
3660	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3661		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3662		struct wq_drain_dead_softirq_work dead_work;
3663
3664		if (!need_more_worker(pool))
3665			continue;
3666
3667		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3668		dead_work.pool = pool;
3669		init_completion(&dead_work.done);
3670
3671		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3672			queue_work(system_bh_highpri_wq, &dead_work.work);
3673		else
3674			queue_work(system_bh_wq, &dead_work.work);
3675
3676		wait_for_completion(&dead_work.done);
3677		destroy_work_on_stack(&dead_work.work);
3678	}
3679}
3680
3681/**
3682 * check_flush_dependency - check for flush dependency sanity
3683 * @target_wq: workqueue being flushed
3684 * @target_work: work item being flushed (NULL for workqueue flushes)
3685 *
3686 * %current is trying to flush the whole @target_wq or @target_work on it.
3687 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3688 * reclaiming memory or running on a workqueue which doesn't have
3689 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3690 * a deadlock.
3691 */
3692static void check_flush_dependency(struct workqueue_struct *target_wq,
3693				   struct work_struct *target_work)
3694{
3695	work_func_t target_func = target_work ? target_work->func : NULL;
3696	struct worker *worker;
3697
3698	if (target_wq->flags & WQ_MEM_RECLAIM)
3699		return;
3700
3701	worker = current_wq_worker();
3702
3703	WARN_ONCE(current->flags & PF_MEMALLOC,
3704		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3705		  current->pid, current->comm, target_wq->name, target_func);
3706	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3707			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3708		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3709		  worker->current_pwq->wq->name, worker->current_func,
3710		  target_wq->name, target_func);
3711}
3712
3713struct wq_barrier {
3714	struct work_struct	work;
3715	struct completion	done;
3716	struct task_struct	*task;	/* purely informational */
3717};
3718
3719static void wq_barrier_func(struct work_struct *work)
3720{
3721	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3722	complete(&barr->done);
3723}
3724
3725/**
3726 * insert_wq_barrier - insert a barrier work
3727 * @pwq: pwq to insert barrier into
3728 * @barr: wq_barrier to insert
3729 * @target: target work to attach @barr to
3730 * @worker: worker currently executing @target, NULL if @target is not executing
3731 *
3732 * @barr is linked to @target such that @barr is completed only after
3733 * @target finishes execution.  Please note that the ordering
3734 * guarantee is observed only with respect to @target and on the local
3735 * cpu.
3736 *
3737 * Currently, a queued barrier can't be canceled.  This is because
3738 * try_to_grab_pending() can't determine whether the work to be
3739 * grabbed is at the head of the queue and thus can't clear LINKED
3740 * flag of the previous work while there must be a valid next work
3741 * after a work with LINKED flag set.
3742 *
3743 * Note that when @worker is non-NULL, @target may be modified
3744 * underneath us, so we can't reliably determine pwq from @target.
3745 *
3746 * CONTEXT:
3747 * raw_spin_lock_irq(pool->lock).
3748 */
3749static void insert_wq_barrier(struct pool_workqueue *pwq,
3750			      struct wq_barrier *barr,
3751			      struct work_struct *target, struct worker *worker)
3752{
3753	static __maybe_unused struct lock_class_key bh_key, thr_key;
3754	unsigned int work_flags = 0;
3755	unsigned int work_color;
3756	struct list_head *head;
3757
3758	/*
3759	 * debugobject calls are safe here even with pool->lock locked
3760	 * as we know for sure that this will not trigger any of the
3761	 * checks and call back into the fixup functions where we
3762	 * might deadlock.
3763	 *
3764	 * BH and threaded workqueues need separate lockdep keys to avoid
3765	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3766	 * usage".
3767	 */
3768	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3769			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3770	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3771
3772	init_completion_map(&barr->done, &target->lockdep_map);
3773
3774	barr->task = current;
3775
3776	/* The barrier work item does not participate in nr_active. */
3777	work_flags |= WORK_STRUCT_INACTIVE;
3778
3779	/*
3780	 * If @target is currently being executed, schedule the
3781	 * barrier to the worker; otherwise, put it after @target.
3782	 */
3783	if (worker) {
3784		head = worker->scheduled.next;
3785		work_color = worker->current_color;
3786	} else {
3787		unsigned long *bits = work_data_bits(target);
3788
3789		head = target->entry.next;
3790		/* there can already be other linked works, inherit and set */
3791		work_flags |= *bits & WORK_STRUCT_LINKED;
3792		work_color = get_work_color(*bits);
3793		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3794	}
3795
3796	pwq->nr_in_flight[work_color]++;
3797	work_flags |= work_color_to_flags(work_color);
3798
3799	insert_work(pwq, &barr->work, head, work_flags);
3800}
3801
3802/**
3803 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3804 * @wq: workqueue being flushed
3805 * @flush_color: new flush color, < 0 for no-op
3806 * @work_color: new work color, < 0 for no-op
3807 *
3808 * Prepare pwqs for workqueue flushing.
3809 *
3810 * If @flush_color is non-negative, flush_color on all pwqs should be
3811 * -1.  If no pwq has in-flight commands at the specified color, all
3812 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3813 * has in flight commands, its pwq->flush_color is set to
3814 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3815 * wakeup logic is armed and %true is returned.
3816 *
3817 * The caller should have initialized @wq->first_flusher prior to
3818 * calling this function with non-negative @flush_color.  If
3819 * @flush_color is negative, no flush color update is done and %false
3820 * is returned.
3821 *
3822 * If @work_color is non-negative, all pwqs should have the same
3823 * work_color which is previous to @work_color and all will be
3824 * advanced to @work_color.
3825 *
3826 * CONTEXT:
3827 * mutex_lock(wq->mutex).
3828 *
3829 * Return:
3830 * %true if @flush_color >= 0 and there's something to flush.  %false
3831 * otherwise.
3832 */
3833static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3834				      int flush_color, int work_color)
3835{
3836	bool wait = false;
3837	struct pool_workqueue *pwq;
3838
3839	if (flush_color >= 0) {
3840		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3841		atomic_set(&wq->nr_pwqs_to_flush, 1);
3842	}
3843
3844	for_each_pwq(pwq, wq) {
3845		struct worker_pool *pool = pwq->pool;
3846
3847		raw_spin_lock_irq(&pool->lock);
3848
3849		if (flush_color >= 0) {
3850			WARN_ON_ONCE(pwq->flush_color != -1);
3851
3852			if (pwq->nr_in_flight[flush_color]) {
3853				pwq->flush_color = flush_color;
3854				atomic_inc(&wq->nr_pwqs_to_flush);
3855				wait = true;
3856			}
3857		}
3858
3859		if (work_color >= 0) {
3860			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3861			pwq->work_color = work_color;
3862		}
3863
3864		raw_spin_unlock_irq(&pool->lock);
3865	}
3866
3867	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3868		complete(&wq->first_flusher->done);
3869
3870	return wait;
3871}
3872
3873static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3874{
3875#ifdef CONFIG_LOCKDEP
3876	if (wq->flags & WQ_BH)
3877		local_bh_disable();
3878
3879	lock_map_acquire(&wq->lockdep_map);
3880	lock_map_release(&wq->lockdep_map);
3881
3882	if (wq->flags & WQ_BH)
3883		local_bh_enable();
3884#endif
3885}
3886
3887static void touch_work_lockdep_map(struct work_struct *work,
3888				   struct workqueue_struct *wq)
3889{
3890#ifdef CONFIG_LOCKDEP
3891	if (wq->flags & WQ_BH)
3892		local_bh_disable();
3893
3894	lock_map_acquire(&work->lockdep_map);
3895	lock_map_release(&work->lockdep_map);
3896
3897	if (wq->flags & WQ_BH)
3898		local_bh_enable();
3899#endif
3900}
3901
3902/**
3903 * __flush_workqueue - ensure that any scheduled work has run to completion.
3904 * @wq: workqueue to flush
3905 *
3906 * This function sleeps until all work items which were queued on entry
3907 * have finished execution, but it is not livelocked by new incoming ones.
3908 */
3909void __flush_workqueue(struct workqueue_struct *wq)
3910{
3911	struct wq_flusher this_flusher = {
3912		.list = LIST_HEAD_INIT(this_flusher.list),
3913		.flush_color = -1,
3914		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3915	};
3916	int next_color;
3917
3918	if (WARN_ON(!wq_online))
3919		return;
3920
3921	touch_wq_lockdep_map(wq);
3922
3923	mutex_lock(&wq->mutex);
3924
3925	/*
3926	 * Start-to-wait phase
3927	 */
3928	next_color = work_next_color(wq->work_color);
3929
3930	if (next_color != wq->flush_color) {
3931		/*
3932		 * Color space is not full.  The current work_color
3933		 * becomes our flush_color and work_color is advanced
3934		 * by one.
3935		 */
3936		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3937		this_flusher.flush_color = wq->work_color;
3938		wq->work_color = next_color;
3939
3940		if (!wq->first_flusher) {
3941			/* no flush in progress, become the first flusher */
3942			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3943
3944			wq->first_flusher = &this_flusher;
3945
3946			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3947						       wq->work_color)) {
3948				/* nothing to flush, done */
3949				wq->flush_color = next_color;
3950				wq->first_flusher = NULL;
3951				goto out_unlock;
3952			}
3953		} else {
3954			/* wait in queue */
3955			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3956			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3957			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3958		}
3959	} else {
3960		/*
3961		 * Oops, color space is full, wait on overflow queue.
3962		 * The next flush completion will assign us
3963		 * flush_color and transfer to flusher_queue.
3964		 */
3965		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3966	}
3967
3968	check_flush_dependency(wq, NULL);
3969
3970	mutex_unlock(&wq->mutex);
3971
3972	wait_for_completion(&this_flusher.done);
3973
3974	/*
3975	 * Wake-up-and-cascade phase
3976	 *
3977	 * First flushers are responsible for cascading flushes and
3978	 * handling overflow.  Non-first flushers can simply return.
3979	 */
3980	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3981		return;
3982
3983	mutex_lock(&wq->mutex);
3984
3985	/* we might have raced, check again with mutex held */
3986	if (wq->first_flusher != &this_flusher)
3987		goto out_unlock;
3988
3989	WRITE_ONCE(wq->first_flusher, NULL);
3990
3991	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3992	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3993
3994	while (true) {
3995		struct wq_flusher *next, *tmp;
3996
3997		/* complete all the flushers sharing the current flush color */
3998		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3999			if (next->flush_color != wq->flush_color)
4000				break;
4001			list_del_init(&next->list);
4002			complete(&next->done);
4003		}
4004
4005		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4006			     wq->flush_color != work_next_color(wq->work_color));
4007
4008		/* this flush_color is finished, advance by one */
4009		wq->flush_color = work_next_color(wq->flush_color);
4010
4011		/* one color has been freed, handle overflow queue */
4012		if (!list_empty(&wq->flusher_overflow)) {
4013			/*
4014			 * Assign the same color to all overflowed
4015			 * flushers, advance work_color and append to
4016			 * flusher_queue.  This is the start-to-wait
4017			 * phase for these overflowed flushers.
4018			 */
4019			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4020				tmp->flush_color = wq->work_color;
4021
4022			wq->work_color = work_next_color(wq->work_color);
4023
4024			list_splice_tail_init(&wq->flusher_overflow,
4025					      &wq->flusher_queue);
4026			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4027		}
4028
4029		if (list_empty(&wq->flusher_queue)) {
4030			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4031			break;
4032		}
4033
4034		/*
4035		 * Need to flush more colors.  Make the next flusher
4036		 * the new first flusher and arm pwqs.
4037		 */
4038		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4039		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4040
4041		list_del_init(&next->list);
4042		wq->first_flusher = next;
4043
4044		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4045			break;
4046
4047		/*
4048		 * Meh... this color is already done, clear first
4049		 * flusher and repeat cascading.
4050		 */
4051		wq->first_flusher = NULL;
4052	}
4053
4054out_unlock:
4055	mutex_unlock(&wq->mutex);
4056}
4057EXPORT_SYMBOL(__flush_workqueue);
4058
4059/**
4060 * drain_workqueue - drain a workqueue
4061 * @wq: workqueue to drain
4062 *
4063 * Wait until the workqueue becomes empty.  While draining is in progress,
4064 * only chain queueing is allowed.  IOW, only currently pending or running
4065 * work items on @wq can queue further work items on it.  @wq is flushed
4066 * repeatedly until it becomes empty.  The number of flushing is determined
4067 * by the depth of chaining and should be relatively short.  Whine if it
4068 * takes too long.
4069 */
4070void drain_workqueue(struct workqueue_struct *wq)
4071{
4072	unsigned int flush_cnt = 0;
4073	struct pool_workqueue *pwq;
4074
4075	/*
4076	 * __queue_work() needs to test whether there are drainers, is much
4077	 * hotter than drain_workqueue() and already looks at @wq->flags.
4078	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4079	 */
4080	mutex_lock(&wq->mutex);
4081	if (!wq->nr_drainers++)
4082		wq->flags |= __WQ_DRAINING;
4083	mutex_unlock(&wq->mutex);
4084reflush:
4085	__flush_workqueue(wq);
4086
4087	mutex_lock(&wq->mutex);
4088
4089	for_each_pwq(pwq, wq) {
4090		bool drained;
4091
4092		raw_spin_lock_irq(&pwq->pool->lock);
4093		drained = pwq_is_empty(pwq);
4094		raw_spin_unlock_irq(&pwq->pool->lock);
4095
4096		if (drained)
4097			continue;
4098
4099		if (++flush_cnt == 10 ||
4100		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4101			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4102				wq->name, __func__, flush_cnt);
4103
4104		mutex_unlock(&wq->mutex);
4105		goto reflush;
4106	}
4107
4108	if (!--wq->nr_drainers)
4109		wq->flags &= ~__WQ_DRAINING;
4110	mutex_unlock(&wq->mutex);
4111}
4112EXPORT_SYMBOL_GPL(drain_workqueue);
4113
4114static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4115			     bool from_cancel)
4116{
4117	struct worker *worker = NULL;
4118	struct worker_pool *pool;
4119	struct pool_workqueue *pwq;
4120	struct workqueue_struct *wq;
4121
4122	rcu_read_lock();
4123	pool = get_work_pool(work);
4124	if (!pool) {
4125		rcu_read_unlock();
4126		return false;
4127	}
4128
4129	raw_spin_lock_irq(&pool->lock);
4130	/* see the comment in try_to_grab_pending() with the same code */
4131	pwq = get_work_pwq(work);
4132	if (pwq) {
4133		if (unlikely(pwq->pool != pool))
4134			goto already_gone;
4135	} else {
4136		worker = find_worker_executing_work(pool, work);
4137		if (!worker)
4138			goto already_gone;
4139		pwq = worker->current_pwq;
4140	}
4141
4142	wq = pwq->wq;
4143	check_flush_dependency(wq, work);
4144
4145	insert_wq_barrier(pwq, barr, work, worker);
4146	raw_spin_unlock_irq(&pool->lock);
4147
4148	touch_work_lockdep_map(work, wq);
4149
4150	/*
4151	 * Force a lock recursion deadlock when using flush_work() inside a
4152	 * single-threaded or rescuer equipped workqueue.
4153	 *
4154	 * For single threaded workqueues the deadlock happens when the work
4155	 * is after the work issuing the flush_work(). For rescuer equipped
4156	 * workqueues the deadlock happens when the rescuer stalls, blocking
4157	 * forward progress.
4158	 */
4159	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4160		touch_wq_lockdep_map(wq);
4161
4162	rcu_read_unlock();
4163	return true;
4164already_gone:
4165	raw_spin_unlock_irq(&pool->lock);
4166	rcu_read_unlock();
4167	return false;
4168}
4169
4170static bool __flush_work(struct work_struct *work, bool from_cancel)
4171{
4172	struct wq_barrier barr;
4173	unsigned long data;
4174
4175	if (WARN_ON(!wq_online))
4176		return false;
4177
4178	if (WARN_ON(!work->func))
4179		return false;
4180
4181	if (!start_flush_work(work, &barr, from_cancel))
4182		return false;
4183
4184	/*
4185	 * start_flush_work() returned %true. If @from_cancel is set, we know
4186	 * that @work must have been executing during start_flush_work() and
4187	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4188	 * was queued on a BH workqueue, we also know that it was running in the
4189	 * BH context and thus can be busy-waited.
4190	 */
4191	data = *work_data_bits(work);
4192	if (from_cancel &&
4193	    !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
4194		/*
4195		 * On RT, prevent a live lock when %current preempted soft
4196		 * interrupt processing or prevents ksoftirqd from running by
4197		 * keeping flipping BH. If the BH work item runs on a different
4198		 * CPU then this has no effect other than doing the BH
4199		 * disable/enable dance for nothing. This is copied from
4200		 * kernel/softirq.c::tasklet_unlock_spin_wait().
4201		 */
4202		while (!try_wait_for_completion(&barr.done)) {
4203			if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4204				local_bh_disable();
4205				local_bh_enable();
4206			} else {
4207				cpu_relax();
4208			}
4209		}
4210	} else {
4211		wait_for_completion(&barr.done);
4212	}
4213
4214	destroy_work_on_stack(&barr.work);
4215	return true;
4216}
4217
4218/**
4219 * flush_work - wait for a work to finish executing the last queueing instance
4220 * @work: the work to flush
4221 *
4222 * Wait until @work has finished execution.  @work is guaranteed to be idle
4223 * on return if it hasn't been requeued since flush started.
4224 *
4225 * Return:
4226 * %true if flush_work() waited for the work to finish execution,
4227 * %false if it was already idle.
4228 */
4229bool flush_work(struct work_struct *work)
4230{
4231	might_sleep();
4232	return __flush_work(work, false);
4233}
4234EXPORT_SYMBOL_GPL(flush_work);
4235
4236/**
4237 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4238 * @dwork: the delayed work to flush
4239 *
4240 * Delayed timer is cancelled and the pending work is queued for
4241 * immediate execution.  Like flush_work(), this function only
4242 * considers the last queueing instance of @dwork.
4243 *
4244 * Return:
4245 * %true if flush_work() waited for the work to finish execution,
4246 * %false if it was already idle.
4247 */
4248bool flush_delayed_work(struct delayed_work *dwork)
4249{
4250	local_irq_disable();
4251	if (del_timer_sync(&dwork->timer))
4252		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4253	local_irq_enable();
4254	return flush_work(&dwork->work);
4255}
4256EXPORT_SYMBOL(flush_delayed_work);
4257
4258/**
4259 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4260 * @rwork: the rcu work to flush
4261 *
4262 * Return:
4263 * %true if flush_rcu_work() waited for the work to finish execution,
4264 * %false if it was already idle.
4265 */
4266bool flush_rcu_work(struct rcu_work *rwork)
4267{
4268	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4269		rcu_barrier();
4270		flush_work(&rwork->work);
4271		return true;
4272	} else {
4273		return flush_work(&rwork->work);
4274	}
4275}
4276EXPORT_SYMBOL(flush_rcu_work);
4277
4278static void work_offqd_disable(struct work_offq_data *offqd)
4279{
4280	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4281
4282	if (likely(offqd->disable < max))
4283		offqd->disable++;
4284	else
4285		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4286}
4287
4288static void work_offqd_enable(struct work_offq_data *offqd)
4289{
4290	if (likely(offqd->disable > 0))
4291		offqd->disable--;
4292	else
4293		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4294}
4295
4296static bool __cancel_work(struct work_struct *work, u32 cflags)
4297{
4298	struct work_offq_data offqd;
4299	unsigned long irq_flags;
4300	int ret;
4301
4302	ret = work_grab_pending(work, cflags, &irq_flags);
4303
4304	work_offqd_unpack(&offqd, *work_data_bits(work));
4305
4306	if (cflags & WORK_CANCEL_DISABLE)
4307		work_offqd_disable(&offqd);
4308
4309	set_work_pool_and_clear_pending(work, offqd.pool_id,
4310					work_offqd_pack_flags(&offqd));
4311	local_irq_restore(irq_flags);
4312	return ret;
4313}
4314
4315static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4316{
4317	bool ret;
4318
4319	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4320
4321	if (*work_data_bits(work) & WORK_OFFQ_BH)
4322		WARN_ON_ONCE(in_hardirq());
4323	else
4324		might_sleep();
4325
4326	/*
4327	 * Skip __flush_work() during early boot when we know that @work isn't
4328	 * executing. This allows canceling during early boot.
4329	 */
4330	if (wq_online)
4331		__flush_work(work, true);
4332
4333	if (!(cflags & WORK_CANCEL_DISABLE))
4334		enable_work(work);
4335
4336	return ret;
4337}
4338
4339/*
4340 * See cancel_delayed_work()
4341 */
4342bool cancel_work(struct work_struct *work)
4343{
4344	return __cancel_work(work, 0);
4345}
4346EXPORT_SYMBOL(cancel_work);
4347
4348/**
4349 * cancel_work_sync - cancel a work and wait for it to finish
4350 * @work: the work to cancel
4351 *
4352 * Cancel @work and wait for its execution to finish. This function can be used
4353 * even if the work re-queues itself or migrates to another workqueue. On return
4354 * from this function, @work is guaranteed to be not pending or executing on any
4355 * CPU as long as there aren't racing enqueues.
4356 *
4357 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4358 * Use cancel_delayed_work_sync() instead.
4359 *
4360 * Must be called from a sleepable context if @work was last queued on a non-BH
4361 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4362 * if @work was last queued on a BH workqueue.
4363 *
4364 * Returns %true if @work was pending, %false otherwise.
4365 */
4366bool cancel_work_sync(struct work_struct *work)
4367{
4368	return __cancel_work_sync(work, 0);
4369}
4370EXPORT_SYMBOL_GPL(cancel_work_sync);
4371
4372/**
4373 * cancel_delayed_work - cancel a delayed work
4374 * @dwork: delayed_work to cancel
4375 *
4376 * Kill off a pending delayed_work.
4377 *
4378 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4379 * pending.
4380 *
4381 * Note:
4382 * The work callback function may still be running on return, unless
4383 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4384 * use cancel_delayed_work_sync() to wait on it.
4385 *
4386 * This function is safe to call from any context including IRQ handler.
4387 */
4388bool cancel_delayed_work(struct delayed_work *dwork)
4389{
4390	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4391}
4392EXPORT_SYMBOL(cancel_delayed_work);
4393
4394/**
4395 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4396 * @dwork: the delayed work cancel
4397 *
4398 * This is cancel_work_sync() for delayed works.
4399 *
4400 * Return:
4401 * %true if @dwork was pending, %false otherwise.
4402 */
4403bool cancel_delayed_work_sync(struct delayed_work *dwork)
4404{
4405	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4406}
4407EXPORT_SYMBOL(cancel_delayed_work_sync);
4408
4409/**
4410 * disable_work - Disable and cancel a work item
4411 * @work: work item to disable
4412 *
4413 * Disable @work by incrementing its disable count and cancel it if currently
4414 * pending. As long as the disable count is non-zero, any attempt to queue @work
4415 * will fail and return %false. The maximum supported disable depth is 2 to the
4416 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4417 *
4418 * Can be called from any context. Returns %true if @work was pending, %false
4419 * otherwise.
4420 */
4421bool disable_work(struct work_struct *work)
4422{
4423	return __cancel_work(work, WORK_CANCEL_DISABLE);
4424}
4425EXPORT_SYMBOL_GPL(disable_work);
4426
4427/**
4428 * disable_work_sync - Disable, cancel and drain a work item
4429 * @work: work item to disable
4430 *
4431 * Similar to disable_work() but also wait for @work to finish if currently
4432 * executing.
4433 *
4434 * Must be called from a sleepable context if @work was last queued on a non-BH
4435 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4436 * if @work was last queued on a BH workqueue.
4437 *
4438 * Returns %true if @work was pending, %false otherwise.
4439 */
4440bool disable_work_sync(struct work_struct *work)
4441{
4442	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4443}
4444EXPORT_SYMBOL_GPL(disable_work_sync);
4445
4446/**
4447 * enable_work - Enable a work item
4448 * @work: work item to enable
4449 *
4450 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4451 * only be queued if its disable count is 0.
4452 *
4453 * Can be called from any context. Returns %true if the disable count reached 0.
4454 * Otherwise, %false.
4455 */
4456bool enable_work(struct work_struct *work)
4457{
4458	struct work_offq_data offqd;
4459	unsigned long irq_flags;
4460
4461	work_grab_pending(work, 0, &irq_flags);
4462
4463	work_offqd_unpack(&offqd, *work_data_bits(work));
4464	work_offqd_enable(&offqd);
4465	set_work_pool_and_clear_pending(work, offqd.pool_id,
4466					work_offqd_pack_flags(&offqd));
4467	local_irq_restore(irq_flags);
4468
4469	return !offqd.disable;
4470}
4471EXPORT_SYMBOL_GPL(enable_work);
4472
4473/**
4474 * disable_delayed_work - Disable and cancel a delayed work item
4475 * @dwork: delayed work item to disable
4476 *
4477 * disable_work() for delayed work items.
4478 */
4479bool disable_delayed_work(struct delayed_work *dwork)
4480{
4481	return __cancel_work(&dwork->work,
4482			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4483}
4484EXPORT_SYMBOL_GPL(disable_delayed_work);
4485
4486/**
4487 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4488 * @dwork: delayed work item to disable
4489 *
4490 * disable_work_sync() for delayed work items.
4491 */
4492bool disable_delayed_work_sync(struct delayed_work *dwork)
4493{
4494	return __cancel_work_sync(&dwork->work,
4495				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4496}
4497EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4498
4499/**
4500 * enable_delayed_work - Enable a delayed work item
4501 * @dwork: delayed work item to enable
4502 *
4503 * enable_work() for delayed work items.
4504 */
4505bool enable_delayed_work(struct delayed_work *dwork)
4506{
4507	return enable_work(&dwork->work);
4508}
4509EXPORT_SYMBOL_GPL(enable_delayed_work);
4510
4511/**
4512 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4513 * @func: the function to call
4514 *
4515 * schedule_on_each_cpu() executes @func on each online CPU using the
4516 * system workqueue and blocks until all CPUs have completed.
4517 * schedule_on_each_cpu() is very slow.
4518 *
4519 * Return:
4520 * 0 on success, -errno on failure.
4521 */
4522int schedule_on_each_cpu(work_func_t func)
4523{
4524	int cpu;
4525	struct work_struct __percpu *works;
4526
4527	works = alloc_percpu(struct work_struct);
4528	if (!works)
4529		return -ENOMEM;
4530
4531	cpus_read_lock();
4532
4533	for_each_online_cpu(cpu) {
4534		struct work_struct *work = per_cpu_ptr(works, cpu);
4535
4536		INIT_WORK(work, func);
4537		schedule_work_on(cpu, work);
4538	}
4539
4540	for_each_online_cpu(cpu)
4541		flush_work(per_cpu_ptr(works, cpu));
4542
4543	cpus_read_unlock();
4544	free_percpu(works);
4545	return 0;
4546}
4547
4548/**
4549 * execute_in_process_context - reliably execute the routine with user context
4550 * @fn:		the function to execute
4551 * @ew:		guaranteed storage for the execute work structure (must
4552 *		be available when the work executes)
4553 *
4554 * Executes the function immediately if process context is available,
4555 * otherwise schedules the function for delayed execution.
4556 *
4557 * Return:	0 - function was executed
4558 *		1 - function was scheduled for execution
4559 */
4560int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4561{
4562	if (!in_interrupt()) {
4563		fn(&ew->work);
4564		return 0;
4565	}
4566
4567	INIT_WORK(&ew->work, fn);
4568	schedule_work(&ew->work);
4569
4570	return 1;
4571}
4572EXPORT_SYMBOL_GPL(execute_in_process_context);
4573
4574/**
4575 * free_workqueue_attrs - free a workqueue_attrs
4576 * @attrs: workqueue_attrs to free
4577 *
4578 * Undo alloc_workqueue_attrs().
4579 */
4580void free_workqueue_attrs(struct workqueue_attrs *attrs)
4581{
4582	if (attrs) {
4583		free_cpumask_var(attrs->cpumask);
4584		free_cpumask_var(attrs->__pod_cpumask);
4585		kfree(attrs);
4586	}
4587}
4588
4589/**
4590 * alloc_workqueue_attrs - allocate a workqueue_attrs
4591 *
4592 * Allocate a new workqueue_attrs, initialize with default settings and
4593 * return it.
4594 *
4595 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4596 */
4597struct workqueue_attrs *alloc_workqueue_attrs(void)
4598{
4599	struct workqueue_attrs *attrs;
4600
4601	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4602	if (!attrs)
4603		goto fail;
4604	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4605		goto fail;
4606	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4607		goto fail;
4608
4609	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4610	attrs->affn_scope = WQ_AFFN_DFL;
4611	return attrs;
4612fail:
4613	free_workqueue_attrs(attrs);
4614	return NULL;
4615}
4616
4617static void copy_workqueue_attrs(struct workqueue_attrs *to,
4618				 const struct workqueue_attrs *from)
4619{
4620	to->nice = from->nice;
4621	cpumask_copy(to->cpumask, from->cpumask);
4622	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4623	to->affn_strict = from->affn_strict;
4624
4625	/*
4626	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4627	 * fields as copying is used for both pool and wq attrs. Instead,
4628	 * get_unbound_pool() explicitly clears the fields.
4629	 */
4630	to->affn_scope = from->affn_scope;
4631	to->ordered = from->ordered;
4632}
4633
4634/*
4635 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4636 * comments in 'struct workqueue_attrs' definition.
4637 */
4638static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4639{
4640	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4641	attrs->ordered = false;
4642	if (attrs->affn_strict)
4643		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4644}
4645
4646/* hash value of the content of @attr */
4647static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4648{
4649	u32 hash = 0;
4650
4651	hash = jhash_1word(attrs->nice, hash);
4652	hash = jhash_1word(attrs->affn_strict, hash);
4653	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4654		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4655	if (!attrs->affn_strict)
4656		hash = jhash(cpumask_bits(attrs->cpumask),
4657			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4658	return hash;
4659}
4660
4661/* content equality test */
4662static bool wqattrs_equal(const struct workqueue_attrs *a,
4663			  const struct workqueue_attrs *b)
4664{
4665	if (a->nice != b->nice)
4666		return false;
4667	if (a->affn_strict != b->affn_strict)
4668		return false;
4669	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4670		return false;
4671	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4672		return false;
4673	return true;
4674}
4675
4676/* Update @attrs with actually available CPUs */
4677static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4678				      const cpumask_t *unbound_cpumask)
4679{
4680	/*
4681	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4682	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4683	 * @unbound_cpumask.
4684	 */
4685	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4686	if (unlikely(cpumask_empty(attrs->cpumask)))
4687		cpumask_copy(attrs->cpumask, unbound_cpumask);
4688}
4689
4690/* find wq_pod_type to use for @attrs */
4691static const struct wq_pod_type *
4692wqattrs_pod_type(const struct workqueue_attrs *attrs)
4693{
4694	enum wq_affn_scope scope;
4695	struct wq_pod_type *pt;
4696
4697	/* to synchronize access to wq_affn_dfl */
4698	lockdep_assert_held(&wq_pool_mutex);
4699
4700	if (attrs->affn_scope == WQ_AFFN_DFL)
4701		scope = wq_affn_dfl;
4702	else
4703		scope = attrs->affn_scope;
4704
4705	pt = &wq_pod_types[scope];
4706
4707	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4708	    likely(pt->nr_pods))
4709		return pt;
4710
4711	/*
4712	 * Before workqueue_init_topology(), only SYSTEM is available which is
4713	 * initialized in workqueue_init_early().
4714	 */
4715	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4716	BUG_ON(!pt->nr_pods);
4717	return pt;
4718}
4719
4720/**
4721 * init_worker_pool - initialize a newly zalloc'd worker_pool
4722 * @pool: worker_pool to initialize
4723 *
4724 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4725 *
4726 * Return: 0 on success, -errno on failure.  Even on failure, all fields
4727 * inside @pool proper are initialized and put_unbound_pool() can be called
4728 * on @pool safely to release it.
4729 */
4730static int init_worker_pool(struct worker_pool *pool)
4731{
4732	raw_spin_lock_init(&pool->lock);
4733	pool->id = -1;
4734	pool->cpu = -1;
4735	pool->node = NUMA_NO_NODE;
4736	pool->flags |= POOL_DISASSOCIATED;
4737	pool->watchdog_ts = jiffies;
4738	INIT_LIST_HEAD(&pool->worklist);
4739	INIT_LIST_HEAD(&pool->idle_list);
4740	hash_init(pool->busy_hash);
4741
4742	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4743	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4744
4745	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4746
4747	INIT_LIST_HEAD(&pool->workers);
4748	INIT_LIST_HEAD(&pool->dying_workers);
4749
4750	ida_init(&pool->worker_ida);
4751	INIT_HLIST_NODE(&pool->hash_node);
4752	pool->refcnt = 1;
4753
4754	/* shouldn't fail above this point */
4755	pool->attrs = alloc_workqueue_attrs();
4756	if (!pool->attrs)
4757		return -ENOMEM;
4758
4759	wqattrs_clear_for_pool(pool->attrs);
4760
4761	return 0;
4762}
4763
4764#ifdef CONFIG_LOCKDEP
4765static void wq_init_lockdep(struct workqueue_struct *wq)
4766{
4767	char *lock_name;
4768
4769	lockdep_register_key(&wq->key);
4770	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4771	if (!lock_name)
4772		lock_name = wq->name;
4773
4774	wq->lock_name = lock_name;
4775	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4776}
4777
4778static void wq_unregister_lockdep(struct workqueue_struct *wq)
4779{
4780	lockdep_unregister_key(&wq->key);
4781}
4782
4783static void wq_free_lockdep(struct workqueue_struct *wq)
4784{
4785	if (wq->lock_name != wq->name)
4786		kfree(wq->lock_name);
4787}
4788#else
4789static void wq_init_lockdep(struct workqueue_struct *wq)
4790{
4791}
4792
4793static void wq_unregister_lockdep(struct workqueue_struct *wq)
4794{
4795}
4796
4797static void wq_free_lockdep(struct workqueue_struct *wq)
4798{
4799}
4800#endif
4801
4802static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4803{
4804	int node;
4805
4806	for_each_node(node) {
4807		kfree(nna_ar[node]);
4808		nna_ar[node] = NULL;
4809	}
4810
4811	kfree(nna_ar[nr_node_ids]);
4812	nna_ar[nr_node_ids] = NULL;
4813}
4814
4815static void init_node_nr_active(struct wq_node_nr_active *nna)
4816{
4817	nna->max = WQ_DFL_MIN_ACTIVE;
4818	atomic_set(&nna->nr, 0);
4819	raw_spin_lock_init(&nna->lock);
4820	INIT_LIST_HEAD(&nna->pending_pwqs);
4821}
4822
4823/*
4824 * Each node's nr_active counter will be accessed mostly from its own node and
4825 * should be allocated in the node.
4826 */
4827static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4828{
4829	struct wq_node_nr_active *nna;
4830	int node;
4831
4832	for_each_node(node) {
4833		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4834		if (!nna)
4835			goto err_free;
4836		init_node_nr_active(nna);
4837		nna_ar[node] = nna;
4838	}
4839
4840	/* [nr_node_ids] is used as the fallback */
4841	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4842	if (!nna)
4843		goto err_free;
4844	init_node_nr_active(nna);
4845	nna_ar[nr_node_ids] = nna;
4846
4847	return 0;
4848
4849err_free:
4850	free_node_nr_active(nna_ar);
4851	return -ENOMEM;
4852}
4853
4854static void rcu_free_wq(struct rcu_head *rcu)
4855{
4856	struct workqueue_struct *wq =
4857		container_of(rcu, struct workqueue_struct, rcu);
4858
4859	if (wq->flags & WQ_UNBOUND)
4860		free_node_nr_active(wq->node_nr_active);
4861
4862	wq_free_lockdep(wq);
4863	free_percpu(wq->cpu_pwq);
4864	free_workqueue_attrs(wq->unbound_attrs);
4865	kfree(wq);
4866}
4867
4868static void rcu_free_pool(struct rcu_head *rcu)
4869{
4870	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4871
4872	ida_destroy(&pool->worker_ida);
4873	free_workqueue_attrs(pool->attrs);
4874	kfree(pool);
4875}
4876
4877/**
4878 * put_unbound_pool - put a worker_pool
4879 * @pool: worker_pool to put
4880 *
4881 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4882 * safe manner.  get_unbound_pool() calls this function on its failure path
4883 * and this function should be able to release pools which went through,
4884 * successfully or not, init_worker_pool().
4885 *
4886 * Should be called with wq_pool_mutex held.
4887 */
4888static void put_unbound_pool(struct worker_pool *pool)
4889{
4890	DECLARE_COMPLETION_ONSTACK(detach_completion);
4891	struct worker *worker;
4892	LIST_HEAD(cull_list);
4893
4894	lockdep_assert_held(&wq_pool_mutex);
4895
4896	if (--pool->refcnt)
4897		return;
4898
4899	/* sanity checks */
4900	if (WARN_ON(!(pool->cpu < 0)) ||
4901	    WARN_ON(!list_empty(&pool->worklist)))
4902		return;
4903
4904	/* release id and unhash */
4905	if (pool->id >= 0)
4906		idr_remove(&worker_pool_idr, pool->id);
4907	hash_del(&pool->hash_node);
4908
4909	/*
4910	 * Become the manager and destroy all workers.  This prevents
4911	 * @pool's workers from blocking on attach_mutex.  We're the last
4912	 * manager and @pool gets freed with the flag set.
4913	 *
4914	 * Having a concurrent manager is quite unlikely to happen as we can
4915	 * only get here with
4916	 *   pwq->refcnt == pool->refcnt == 0
4917	 * which implies no work queued to the pool, which implies no worker can
4918	 * become the manager. However a worker could have taken the role of
4919	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4920	 * drops pool->lock
4921	 */
4922	while (true) {
4923		rcuwait_wait_event(&manager_wait,
4924				   !(pool->flags & POOL_MANAGER_ACTIVE),
4925				   TASK_UNINTERRUPTIBLE);
4926
4927		mutex_lock(&wq_pool_attach_mutex);
4928		raw_spin_lock_irq(&pool->lock);
4929		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4930			pool->flags |= POOL_MANAGER_ACTIVE;
4931			break;
4932		}
4933		raw_spin_unlock_irq(&pool->lock);
4934		mutex_unlock(&wq_pool_attach_mutex);
4935	}
4936
4937	while ((worker = first_idle_worker(pool)))
4938		set_worker_dying(worker, &cull_list);
4939	WARN_ON(pool->nr_workers || pool->nr_idle);
4940	raw_spin_unlock_irq(&pool->lock);
4941
4942	wake_dying_workers(&cull_list);
4943
4944	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4945		pool->detach_completion = &detach_completion;
4946	mutex_unlock(&wq_pool_attach_mutex);
4947
4948	if (pool->detach_completion)
4949		wait_for_completion(pool->detach_completion);
4950
4951	/* shut down the timers */
4952	del_timer_sync(&pool->idle_timer);
4953	cancel_work_sync(&pool->idle_cull_work);
4954	del_timer_sync(&pool->mayday_timer);
4955
4956	/* RCU protected to allow dereferences from get_work_pool() */
4957	call_rcu(&pool->rcu, rcu_free_pool);
4958}
4959
4960/**
4961 * get_unbound_pool - get a worker_pool with the specified attributes
4962 * @attrs: the attributes of the worker_pool to get
4963 *
4964 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4965 * reference count and return it.  If there already is a matching
4966 * worker_pool, it will be used; otherwise, this function attempts to
4967 * create a new one.
4968 *
4969 * Should be called with wq_pool_mutex held.
4970 *
4971 * Return: On success, a worker_pool with the same attributes as @attrs.
4972 * On failure, %NULL.
4973 */
4974static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4975{
4976	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4977	u32 hash = wqattrs_hash(attrs);
4978	struct worker_pool *pool;
4979	int pod, node = NUMA_NO_NODE;
4980
4981	lockdep_assert_held(&wq_pool_mutex);
4982
4983	/* do we already have a matching pool? */
4984	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4985		if (wqattrs_equal(pool->attrs, attrs)) {
4986			pool->refcnt++;
4987			return pool;
4988		}
4989	}
4990
4991	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4992	for (pod = 0; pod < pt->nr_pods; pod++) {
4993		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4994			node = pt->pod_node[pod];
4995			break;
4996		}
4997	}
4998
4999	/* nope, create a new one */
5000	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5001	if (!pool || init_worker_pool(pool) < 0)
5002		goto fail;
5003
5004	pool->node = node;
5005	copy_workqueue_attrs(pool->attrs, attrs);
5006	wqattrs_clear_for_pool(pool->attrs);
5007
5008	if (worker_pool_assign_id(pool) < 0)
5009		goto fail;
5010
5011	/* create and start the initial worker */
5012	if (wq_online && !create_worker(pool))
5013		goto fail;
5014
5015	/* install */
5016	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5017
5018	return pool;
5019fail:
5020	if (pool)
5021		put_unbound_pool(pool);
5022	return NULL;
5023}
5024
5025static void rcu_free_pwq(struct rcu_head *rcu)
5026{
5027	kmem_cache_free(pwq_cache,
5028			container_of(rcu, struct pool_workqueue, rcu));
5029}
5030
5031/*
5032 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5033 * refcnt and needs to be destroyed.
5034 */
5035static void pwq_release_workfn(struct kthread_work *work)
5036{
5037	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5038						  release_work);
5039	struct workqueue_struct *wq = pwq->wq;
5040	struct worker_pool *pool = pwq->pool;
5041	bool is_last = false;
5042
5043	/*
5044	 * When @pwq is not linked, it doesn't hold any reference to the
5045	 * @wq, and @wq is invalid to access.
5046	 */
5047	if (!list_empty(&pwq->pwqs_node)) {
5048		mutex_lock(&wq->mutex);
5049		list_del_rcu(&pwq->pwqs_node);
5050		is_last = list_empty(&wq->pwqs);
5051
5052		/*
5053		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5054		 */
5055		if (!is_last && (wq->flags & __WQ_ORDERED))
5056			unplug_oldest_pwq(wq);
5057
5058		mutex_unlock(&wq->mutex);
5059	}
5060
5061	if (wq->flags & WQ_UNBOUND) {
5062		mutex_lock(&wq_pool_mutex);
5063		put_unbound_pool(pool);
5064		mutex_unlock(&wq_pool_mutex);
5065	}
5066
5067	if (!list_empty(&pwq->pending_node)) {
5068		struct wq_node_nr_active *nna =
5069			wq_node_nr_active(pwq->wq, pwq->pool->node);
5070
5071		raw_spin_lock_irq(&nna->lock);
5072		list_del_init(&pwq->pending_node);
5073		raw_spin_unlock_irq(&nna->lock);
5074	}
5075
5076	call_rcu(&pwq->rcu, rcu_free_pwq);
5077
5078	/*
5079	 * If we're the last pwq going away, @wq is already dead and no one
5080	 * is gonna access it anymore.  Schedule RCU free.
5081	 */
5082	if (is_last) {
5083		wq_unregister_lockdep(wq);
5084		call_rcu(&wq->rcu, rcu_free_wq);
5085	}
5086}
5087
5088/* initialize newly allocated @pwq which is associated with @wq and @pool */
5089static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5090		     struct worker_pool *pool)
5091{
5092	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5093
5094	memset(pwq, 0, sizeof(*pwq));
5095
5096	pwq->pool = pool;
5097	pwq->wq = wq;
5098	pwq->flush_color = -1;
5099	pwq->refcnt = 1;
5100	INIT_LIST_HEAD(&pwq->inactive_works);
5101	INIT_LIST_HEAD(&pwq->pending_node);
5102	INIT_LIST_HEAD(&pwq->pwqs_node);
5103	INIT_LIST_HEAD(&pwq->mayday_node);
5104	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5105}
5106
5107/* sync @pwq with the current state of its associated wq and link it */
5108static void link_pwq(struct pool_workqueue *pwq)
5109{
5110	struct workqueue_struct *wq = pwq->wq;
5111
5112	lockdep_assert_held(&wq->mutex);
5113
5114	/* may be called multiple times, ignore if already linked */
5115	if (!list_empty(&pwq->pwqs_node))
5116		return;
5117
5118	/* set the matching work_color */
5119	pwq->work_color = wq->work_color;
5120
5121	/* link in @pwq */
5122	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5123}
5124
5125/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5126static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5127					const struct workqueue_attrs *attrs)
5128{
5129	struct worker_pool *pool;
5130	struct pool_workqueue *pwq;
5131
5132	lockdep_assert_held(&wq_pool_mutex);
5133
5134	pool = get_unbound_pool(attrs);
5135	if (!pool)
5136		return NULL;
5137
5138	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5139	if (!pwq) {
5140		put_unbound_pool(pool);
5141		return NULL;
5142	}
5143
5144	init_pwq(pwq, wq, pool);
5145	return pwq;
5146}
5147
5148/**
5149 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5150 * @attrs: the wq_attrs of the default pwq of the target workqueue
5151 * @cpu: the target CPU
5152 * @cpu_going_down: if >= 0, the CPU to consider as offline
5153 *
5154 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5155 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5156 * The result is stored in @attrs->__pod_cpumask.
5157 *
5158 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5159 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5160 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5161 *
5162 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5163 */
5164static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5165				int cpu_going_down)
5166{
5167	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5168	int pod = pt->cpu_pod[cpu];
5169
5170	/* does @pod have any online CPUs @attrs wants? */
5171	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5172	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5173	if (cpu_going_down >= 0)
5174		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5175
5176	if (cpumask_empty(attrs->__pod_cpumask)) {
5177		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5178		return;
5179	}
5180
5181	/* yeap, return possible CPUs in @pod that @attrs wants */
5182	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5183
5184	if (cpumask_empty(attrs->__pod_cpumask))
5185		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5186				"possible intersect\n");
5187}
5188
5189/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5190static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5191					int cpu, struct pool_workqueue *pwq)
5192{
5193	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5194	struct pool_workqueue *old_pwq;
5195
5196	lockdep_assert_held(&wq_pool_mutex);
5197	lockdep_assert_held(&wq->mutex);
5198
5199	/* link_pwq() can handle duplicate calls */
5200	link_pwq(pwq);
5201
5202	old_pwq = rcu_access_pointer(*slot);
5203	rcu_assign_pointer(*slot, pwq);
5204	return old_pwq;
5205}
5206
5207/* context to store the prepared attrs & pwqs before applying */
5208struct apply_wqattrs_ctx {
5209	struct workqueue_struct	*wq;		/* target workqueue */
5210	struct workqueue_attrs	*attrs;		/* attrs to apply */
5211	struct list_head	list;		/* queued for batching commit */
5212	struct pool_workqueue	*dfl_pwq;
5213	struct pool_workqueue	*pwq_tbl[];
5214};
5215
5216/* free the resources after success or abort */
5217static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5218{
5219	if (ctx) {
5220		int cpu;
5221
5222		for_each_possible_cpu(cpu)
5223			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5224		put_pwq_unlocked(ctx->dfl_pwq);
5225
5226		free_workqueue_attrs(ctx->attrs);
5227
5228		kfree(ctx);
5229	}
5230}
5231
5232/* allocate the attrs and pwqs for later installation */
5233static struct apply_wqattrs_ctx *
5234apply_wqattrs_prepare(struct workqueue_struct *wq,
5235		      const struct workqueue_attrs *attrs,
5236		      const cpumask_var_t unbound_cpumask)
5237{
5238	struct apply_wqattrs_ctx *ctx;
5239	struct workqueue_attrs *new_attrs;
5240	int cpu;
5241
5242	lockdep_assert_held(&wq_pool_mutex);
5243
5244	if (WARN_ON(attrs->affn_scope < 0 ||
5245		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5246		return ERR_PTR(-EINVAL);
5247
5248	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5249
5250	new_attrs = alloc_workqueue_attrs();
5251	if (!ctx || !new_attrs)
5252		goto out_free;
5253
5254	/*
5255	 * If something goes wrong during CPU up/down, we'll fall back to
5256	 * the default pwq covering whole @attrs->cpumask.  Always create
5257	 * it even if we don't use it immediately.
5258	 */
5259	copy_workqueue_attrs(new_attrs, attrs);
5260	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5261	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5262	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5263	if (!ctx->dfl_pwq)
5264		goto out_free;
5265
5266	for_each_possible_cpu(cpu) {
5267		if (new_attrs->ordered) {
5268			ctx->dfl_pwq->refcnt++;
5269			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5270		} else {
5271			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5272			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5273			if (!ctx->pwq_tbl[cpu])
5274				goto out_free;
5275		}
5276	}
5277
5278	/* save the user configured attrs and sanitize it. */
5279	copy_workqueue_attrs(new_attrs, attrs);
5280	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5281	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5282	ctx->attrs = new_attrs;
5283
5284	/*
5285	 * For initialized ordered workqueues, there should only be one pwq
5286	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5287	 * of newly queued work items until execution of older work items in
5288	 * the old pwq's have completed.
5289	 */
5290	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5291		ctx->dfl_pwq->plugged = true;
5292
5293	ctx->wq = wq;
5294	return ctx;
5295
5296out_free:
5297	free_workqueue_attrs(new_attrs);
5298	apply_wqattrs_cleanup(ctx);
5299	return ERR_PTR(-ENOMEM);
5300}
5301
5302/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5303static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5304{
5305	int cpu;
5306
5307	/* all pwqs have been created successfully, let's install'em */
5308	mutex_lock(&ctx->wq->mutex);
5309
5310	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5311
5312	/* save the previous pwqs and install the new ones */
5313	for_each_possible_cpu(cpu)
5314		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5315							ctx->pwq_tbl[cpu]);
5316	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5317
5318	/* update node_nr_active->max */
5319	wq_update_node_max_active(ctx->wq, -1);
5320
5321	/* rescuer needs to respect wq cpumask changes */
5322	if (ctx->wq->rescuer)
5323		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5324				     unbound_effective_cpumask(ctx->wq));
5325
5326	mutex_unlock(&ctx->wq->mutex);
5327}
5328
5329static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5330					const struct workqueue_attrs *attrs)
5331{
5332	struct apply_wqattrs_ctx *ctx;
5333
5334	/* only unbound workqueues can change attributes */
5335	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5336		return -EINVAL;
5337
5338	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5339	if (IS_ERR(ctx))
5340		return PTR_ERR(ctx);
5341
5342	/* the ctx has been prepared successfully, let's commit it */
5343	apply_wqattrs_commit(ctx);
5344	apply_wqattrs_cleanup(ctx);
5345
5346	return 0;
5347}
5348
5349/**
5350 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5351 * @wq: the target workqueue
5352 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5353 *
5354 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5355 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5356 * work items are affine to the pod it was issued on. Older pwqs are released as
5357 * in-flight work items finish. Note that a work item which repeatedly requeues
5358 * itself back-to-back will stay on its current pwq.
5359 *
5360 * Performs GFP_KERNEL allocations.
5361 *
5362 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5363 *
5364 * Return: 0 on success and -errno on failure.
5365 */
5366int apply_workqueue_attrs(struct workqueue_struct *wq,
5367			  const struct workqueue_attrs *attrs)
5368{
5369	int ret;
5370
5371	lockdep_assert_cpus_held();
5372
5373	mutex_lock(&wq_pool_mutex);
5374	ret = apply_workqueue_attrs_locked(wq, attrs);
5375	mutex_unlock(&wq_pool_mutex);
5376
5377	return ret;
5378}
5379
5380/**
5381 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5382 * @wq: the target workqueue
5383 * @cpu: the CPU to update pool association for
5384 * @hotplug_cpu: the CPU coming up or going down
5385 * @online: whether @cpu is coming up or going down
5386 *
5387 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5388 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5389 * @wq accordingly.
5390 *
5391 *
5392 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5393 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5394 *
5395 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5396 * with a cpumask spanning multiple pods, the workers which were already
5397 * executing the work items for the workqueue will lose their CPU affinity and
5398 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5399 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5400 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5401 */
5402static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5403			  int hotplug_cpu, bool online)
5404{
5405	int off_cpu = online ? -1 : hotplug_cpu;
5406	struct pool_workqueue *old_pwq = NULL, *pwq;
5407	struct workqueue_attrs *target_attrs;
5408
5409	lockdep_assert_held(&wq_pool_mutex);
5410
5411	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5412		return;
5413
5414	/*
5415	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5416	 * Let's use a preallocated one.  The following buf is protected by
5417	 * CPU hotplug exclusion.
5418	 */
5419	target_attrs = wq_update_pod_attrs_buf;
5420
5421	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5422	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5423
5424	/* nothing to do if the target cpumask matches the current pwq */
5425	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5426	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5427		return;
5428
5429	/* create a new pwq */
5430	pwq = alloc_unbound_pwq(wq, target_attrs);
5431	if (!pwq) {
5432		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5433			wq->name);
5434		goto use_dfl_pwq;
5435	}
5436
5437	/* Install the new pwq. */
5438	mutex_lock(&wq->mutex);
5439	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5440	goto out_unlock;
5441
5442use_dfl_pwq:
5443	mutex_lock(&wq->mutex);
5444	pwq = unbound_pwq(wq, -1);
5445	raw_spin_lock_irq(&pwq->pool->lock);
5446	get_pwq(pwq);
5447	raw_spin_unlock_irq(&pwq->pool->lock);
5448	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5449out_unlock:
5450	mutex_unlock(&wq->mutex);
5451	put_pwq_unlocked(old_pwq);
5452}
5453
5454static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5455{
5456	bool highpri = wq->flags & WQ_HIGHPRI;
5457	int cpu, ret;
5458
5459	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5460	if (!wq->cpu_pwq)
5461		goto enomem;
5462
5463	if (!(wq->flags & WQ_UNBOUND)) {
5464		for_each_possible_cpu(cpu) {
5465			struct pool_workqueue **pwq_p;
5466			struct worker_pool __percpu *pools;
5467			struct worker_pool *pool;
5468
5469			if (wq->flags & WQ_BH)
5470				pools = bh_worker_pools;
5471			else
5472				pools = cpu_worker_pools;
5473
5474			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5475			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5476
5477			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5478						       pool->node);
5479			if (!*pwq_p)
5480				goto enomem;
5481
5482			init_pwq(*pwq_p, wq, pool);
5483
5484			mutex_lock(&wq->mutex);
5485			link_pwq(*pwq_p);
5486			mutex_unlock(&wq->mutex);
5487		}
5488		return 0;
5489	}
5490
5491	cpus_read_lock();
5492	if (wq->flags & __WQ_ORDERED) {
5493		struct pool_workqueue *dfl_pwq;
5494
5495		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5496		/* there should only be single pwq for ordering guarantee */
5497		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5498		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5499			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5500		     "ordering guarantee broken for workqueue %s\n", wq->name);
5501	} else {
5502		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5503	}
5504	cpus_read_unlock();
5505
5506	/* for unbound pwq, flush the pwq_release_worker ensures that the
5507	 * pwq_release_workfn() completes before calling kfree(wq).
5508	 */
5509	if (ret)
5510		kthread_flush_worker(pwq_release_worker);
5511
5512	return ret;
5513
5514enomem:
5515	if (wq->cpu_pwq) {
5516		for_each_possible_cpu(cpu) {
5517			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5518
5519			if (pwq)
5520				kmem_cache_free(pwq_cache, pwq);
5521		}
5522		free_percpu(wq->cpu_pwq);
5523		wq->cpu_pwq = NULL;
5524	}
5525	return -ENOMEM;
5526}
5527
5528static int wq_clamp_max_active(int max_active, unsigned int flags,
5529			       const char *name)
5530{
5531	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5532		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5533			max_active, name, 1, WQ_MAX_ACTIVE);
5534
5535	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5536}
5537
5538/*
5539 * Workqueues which may be used during memory reclaim should have a rescuer
5540 * to guarantee forward progress.
5541 */
5542static int init_rescuer(struct workqueue_struct *wq)
5543{
5544	struct worker *rescuer;
5545	int ret;
5546
5547	if (!(wq->flags & WQ_MEM_RECLAIM))
5548		return 0;
5549
5550	rescuer = alloc_worker(NUMA_NO_NODE);
5551	if (!rescuer) {
5552		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5553		       wq->name);
5554		return -ENOMEM;
5555	}
5556
5557	rescuer->rescue_wq = wq;
5558	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5559	if (IS_ERR(rescuer->task)) {
5560		ret = PTR_ERR(rescuer->task);
5561		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5562		       wq->name, ERR_PTR(ret));
5563		kfree(rescuer);
5564		return ret;
5565	}
5566
5567	wq->rescuer = rescuer;
5568	if (wq->flags & WQ_UNBOUND)
5569		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5570	else
5571		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5572	wake_up_process(rescuer->task);
5573
5574	return 0;
5575}
5576
5577/**
5578 * wq_adjust_max_active - update a wq's max_active to the current setting
5579 * @wq: target workqueue
5580 *
5581 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5582 * activate inactive work items accordingly. If @wq is freezing, clear
5583 * @wq->max_active to zero.
5584 */
5585static void wq_adjust_max_active(struct workqueue_struct *wq)
5586{
5587	bool activated;
5588	int new_max, new_min;
5589
5590	lockdep_assert_held(&wq->mutex);
5591
5592	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5593		new_max = 0;
5594		new_min = 0;
5595	} else {
5596		new_max = wq->saved_max_active;
5597		new_min = wq->saved_min_active;
5598	}
5599
5600	if (wq->max_active == new_max && wq->min_active == new_min)
5601		return;
5602
5603	/*
5604	 * Update @wq->max/min_active and then kick inactive work items if more
5605	 * active work items are allowed. This doesn't break work item ordering
5606	 * because new work items are always queued behind existing inactive
5607	 * work items if there are any.
5608	 */
5609	WRITE_ONCE(wq->max_active, new_max);
5610	WRITE_ONCE(wq->min_active, new_min);
5611
5612	if (wq->flags & WQ_UNBOUND)
5613		wq_update_node_max_active(wq, -1);
5614
5615	if (new_max == 0)
5616		return;
5617
5618	/*
5619	 * Round-robin through pwq's activating the first inactive work item
5620	 * until max_active is filled.
5621	 */
5622	do {
5623		struct pool_workqueue *pwq;
5624
5625		activated = false;
5626		for_each_pwq(pwq, wq) {
5627			unsigned long irq_flags;
5628
5629			/* can be called during early boot w/ irq disabled */
5630			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5631			if (pwq_activate_first_inactive(pwq, true)) {
5632				activated = true;
5633				kick_pool(pwq->pool);
5634			}
5635			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5636		}
5637	} while (activated);
5638}
5639
5640__printf(1, 4)
5641struct workqueue_struct *alloc_workqueue(const char *fmt,
5642					 unsigned int flags,
5643					 int max_active, ...)
5644{
5645	va_list args;
5646	struct workqueue_struct *wq;
5647	size_t wq_size;
5648	int name_len;
5649
5650	if (flags & WQ_BH) {
5651		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5652			return NULL;
5653		if (WARN_ON_ONCE(max_active))
5654			return NULL;
5655	}
5656
5657	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5658	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5659		flags |= WQ_UNBOUND;
5660
5661	/* allocate wq and format name */
5662	if (flags & WQ_UNBOUND)
5663		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5664	else
5665		wq_size = sizeof(*wq);
5666
5667	wq = kzalloc(wq_size, GFP_KERNEL);
5668	if (!wq)
5669		return NULL;
5670
5671	if (flags & WQ_UNBOUND) {
5672		wq->unbound_attrs = alloc_workqueue_attrs();
5673		if (!wq->unbound_attrs)
5674			goto err_free_wq;
5675	}
5676
5677	va_start(args, max_active);
5678	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5679	va_end(args);
5680
5681	if (name_len >= WQ_NAME_LEN)
5682		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5683			     wq->name);
5684
5685	if (flags & WQ_BH) {
5686		/*
5687		 * BH workqueues always share a single execution context per CPU
5688		 * and don't impose any max_active limit.
5689		 */
5690		max_active = INT_MAX;
5691	} else {
5692		max_active = max_active ?: WQ_DFL_ACTIVE;
5693		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5694	}
5695
5696	/* init wq */
5697	wq->flags = flags;
5698	wq->max_active = max_active;
5699	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5700	wq->saved_max_active = wq->max_active;
5701	wq->saved_min_active = wq->min_active;
5702	mutex_init(&wq->mutex);
5703	atomic_set(&wq->nr_pwqs_to_flush, 0);
5704	INIT_LIST_HEAD(&wq->pwqs);
5705	INIT_LIST_HEAD(&wq->flusher_queue);
5706	INIT_LIST_HEAD(&wq->flusher_overflow);
5707	INIT_LIST_HEAD(&wq->maydays);
5708
5709	wq_init_lockdep(wq);
5710	INIT_LIST_HEAD(&wq->list);
5711
5712	if (flags & WQ_UNBOUND) {
5713		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5714			goto err_unreg_lockdep;
5715	}
5716
5717	if (alloc_and_link_pwqs(wq) < 0)
5718		goto err_free_node_nr_active;
5719
5720	if (wq_online && init_rescuer(wq) < 0)
5721		goto err_destroy;
5722
5723	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5724		goto err_destroy;
5725
5726	/*
5727	 * wq_pool_mutex protects global freeze state and workqueues list.
5728	 * Grab it, adjust max_active and add the new @wq to workqueues
5729	 * list.
5730	 */
5731	mutex_lock(&wq_pool_mutex);
5732
5733	mutex_lock(&wq->mutex);
5734	wq_adjust_max_active(wq);
5735	mutex_unlock(&wq->mutex);
5736
5737	list_add_tail_rcu(&wq->list, &workqueues);
5738
5739	mutex_unlock(&wq_pool_mutex);
5740
5741	return wq;
5742
5743err_free_node_nr_active:
5744	if (wq->flags & WQ_UNBOUND)
5745		free_node_nr_active(wq->node_nr_active);
5746err_unreg_lockdep:
5747	wq_unregister_lockdep(wq);
5748	wq_free_lockdep(wq);
5749err_free_wq:
5750	free_workqueue_attrs(wq->unbound_attrs);
5751	kfree(wq);
5752	return NULL;
5753err_destroy:
5754	destroy_workqueue(wq);
5755	return NULL;
5756}
5757EXPORT_SYMBOL_GPL(alloc_workqueue);
5758
5759static bool pwq_busy(struct pool_workqueue *pwq)
5760{
5761	int i;
5762
5763	for (i = 0; i < WORK_NR_COLORS; i++)
5764		if (pwq->nr_in_flight[i])
5765			return true;
5766
5767	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5768		return true;
5769	if (!pwq_is_empty(pwq))
5770		return true;
5771
5772	return false;
5773}
5774
5775/**
5776 * destroy_workqueue - safely terminate a workqueue
5777 * @wq: target workqueue
5778 *
5779 * Safely destroy a workqueue. All work currently pending will be done first.
5780 */
5781void destroy_workqueue(struct workqueue_struct *wq)
5782{
5783	struct pool_workqueue *pwq;
5784	int cpu;
5785
5786	/*
5787	 * Remove it from sysfs first so that sanity check failure doesn't
5788	 * lead to sysfs name conflicts.
5789	 */
5790	workqueue_sysfs_unregister(wq);
5791
5792	/* mark the workqueue destruction is in progress */
5793	mutex_lock(&wq->mutex);
5794	wq->flags |= __WQ_DESTROYING;
5795	mutex_unlock(&wq->mutex);
5796
5797	/* drain it before proceeding with destruction */
5798	drain_workqueue(wq);
5799
5800	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5801	if (wq->rescuer) {
5802		struct worker *rescuer = wq->rescuer;
5803
5804		/* this prevents new queueing */
5805		raw_spin_lock_irq(&wq_mayday_lock);
5806		wq->rescuer = NULL;
5807		raw_spin_unlock_irq(&wq_mayday_lock);
5808
5809		/* rescuer will empty maydays list before exiting */
5810		kthread_stop(rescuer->task);
5811		kfree(rescuer);
5812	}
5813
5814	/*
5815	 * Sanity checks - grab all the locks so that we wait for all
5816	 * in-flight operations which may do put_pwq().
5817	 */
5818	mutex_lock(&wq_pool_mutex);
5819	mutex_lock(&wq->mutex);
5820	for_each_pwq(pwq, wq) {
5821		raw_spin_lock_irq(&pwq->pool->lock);
5822		if (WARN_ON(pwq_busy(pwq))) {
5823			pr_warn("%s: %s has the following busy pwq\n",
5824				__func__, wq->name);
5825			show_pwq(pwq);
5826			raw_spin_unlock_irq(&pwq->pool->lock);
5827			mutex_unlock(&wq->mutex);
5828			mutex_unlock(&wq_pool_mutex);
5829			show_one_workqueue(wq);
5830			return;
5831		}
5832		raw_spin_unlock_irq(&pwq->pool->lock);
5833	}
5834	mutex_unlock(&wq->mutex);
5835
5836	/*
5837	 * wq list is used to freeze wq, remove from list after
5838	 * flushing is complete in case freeze races us.
5839	 */
5840	list_del_rcu(&wq->list);
5841	mutex_unlock(&wq_pool_mutex);
5842
5843	/*
5844	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5845	 * to put the base refs. @wq will be auto-destroyed from the last
5846	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5847	 */
5848	rcu_read_lock();
5849
5850	for_each_possible_cpu(cpu) {
5851		put_pwq_unlocked(unbound_pwq(wq, cpu));
5852		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5853	}
5854
5855	put_pwq_unlocked(unbound_pwq(wq, -1));
5856	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5857
5858	rcu_read_unlock();
5859}
5860EXPORT_SYMBOL_GPL(destroy_workqueue);
5861
5862/**
5863 * workqueue_set_max_active - adjust max_active of a workqueue
5864 * @wq: target workqueue
5865 * @max_active: new max_active value.
5866 *
5867 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5868 * comment.
5869 *
5870 * CONTEXT:
5871 * Don't call from IRQ context.
5872 */
5873void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5874{
5875	/* max_active doesn't mean anything for BH workqueues */
5876	if (WARN_ON(wq->flags & WQ_BH))
5877		return;
5878	/* disallow meddling with max_active for ordered workqueues */
5879	if (WARN_ON(wq->flags & __WQ_ORDERED))
5880		return;
5881
5882	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5883
5884	mutex_lock(&wq->mutex);
5885
5886	wq->saved_max_active = max_active;
5887	if (wq->flags & WQ_UNBOUND)
5888		wq->saved_min_active = min(wq->saved_min_active, max_active);
5889
5890	wq_adjust_max_active(wq);
5891
5892	mutex_unlock(&wq->mutex);
5893}
5894EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5895
5896/**
5897 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5898 * @wq: target unbound workqueue
5899 * @min_active: new min_active value
5900 *
5901 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5902 * unbound workqueue is not guaranteed to be able to process max_active
5903 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5904 * able to process min_active number of interdependent work items which is
5905 * %WQ_DFL_MIN_ACTIVE by default.
5906 *
5907 * Use this function to adjust the min_active value between 0 and the current
5908 * max_active.
5909 */
5910void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5911{
5912	/* min_active is only meaningful for non-ordered unbound workqueues */
5913	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5914		    WQ_UNBOUND))
5915		return;
5916
5917	mutex_lock(&wq->mutex);
5918	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5919	wq_adjust_max_active(wq);
5920	mutex_unlock(&wq->mutex);
5921}
5922
5923/**
5924 * current_work - retrieve %current task's work struct
5925 *
5926 * Determine if %current task is a workqueue worker and what it's working on.
5927 * Useful to find out the context that the %current task is running in.
5928 *
5929 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5930 */
5931struct work_struct *current_work(void)
5932{
5933	struct worker *worker = current_wq_worker();
5934
5935	return worker ? worker->current_work : NULL;
5936}
5937EXPORT_SYMBOL(current_work);
5938
5939/**
5940 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5941 *
5942 * Determine whether %current is a workqueue rescuer.  Can be used from
5943 * work functions to determine whether it's being run off the rescuer task.
5944 *
5945 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5946 */
5947bool current_is_workqueue_rescuer(void)
5948{
5949	struct worker *worker = current_wq_worker();
5950
5951	return worker && worker->rescue_wq;
5952}
5953
5954/**
5955 * workqueue_congested - test whether a workqueue is congested
5956 * @cpu: CPU in question
5957 * @wq: target workqueue
5958 *
5959 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5960 * no synchronization around this function and the test result is
5961 * unreliable and only useful as advisory hints or for debugging.
5962 *
5963 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5964 *
5965 * With the exception of ordered workqueues, all workqueues have per-cpu
5966 * pool_workqueues, each with its own congested state. A workqueue being
5967 * congested on one CPU doesn't mean that the workqueue is contested on any
5968 * other CPUs.
5969 *
5970 * Return:
5971 * %true if congested, %false otherwise.
5972 */
5973bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5974{
5975	struct pool_workqueue *pwq;
5976	bool ret;
5977
5978	rcu_read_lock();
5979	preempt_disable();
5980
5981	if (cpu == WORK_CPU_UNBOUND)
5982		cpu = smp_processor_id();
5983
5984	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5985	ret = !list_empty(&pwq->inactive_works);
5986
5987	preempt_enable();
5988	rcu_read_unlock();
5989
5990	return ret;
5991}
5992EXPORT_SYMBOL_GPL(workqueue_congested);
5993
5994/**
5995 * work_busy - test whether a work is currently pending or running
5996 * @work: the work to be tested
5997 *
5998 * Test whether @work is currently pending or running.  There is no
5999 * synchronization around this function and the test result is
6000 * unreliable and only useful as advisory hints or for debugging.
6001 *
6002 * Return:
6003 * OR'd bitmask of WORK_BUSY_* bits.
6004 */
6005unsigned int work_busy(struct work_struct *work)
6006{
6007	struct worker_pool *pool;
6008	unsigned long irq_flags;
6009	unsigned int ret = 0;
6010
6011	if (work_pending(work))
6012		ret |= WORK_BUSY_PENDING;
6013
6014	rcu_read_lock();
6015	pool = get_work_pool(work);
6016	if (pool) {
6017		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6018		if (find_worker_executing_work(pool, work))
6019			ret |= WORK_BUSY_RUNNING;
6020		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6021	}
6022	rcu_read_unlock();
6023
6024	return ret;
6025}
6026EXPORT_SYMBOL_GPL(work_busy);
6027
6028/**
6029 * set_worker_desc - set description for the current work item
6030 * @fmt: printf-style format string
6031 * @...: arguments for the format string
6032 *
6033 * This function can be called by a running work function to describe what
6034 * the work item is about.  If the worker task gets dumped, this
6035 * information will be printed out together to help debugging.  The
6036 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6037 */
6038void set_worker_desc(const char *fmt, ...)
6039{
6040	struct worker *worker = current_wq_worker();
6041	va_list args;
6042
6043	if (worker) {
6044		va_start(args, fmt);
6045		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6046		va_end(args);
6047	}
6048}
6049EXPORT_SYMBOL_GPL(set_worker_desc);
6050
6051/**
6052 * print_worker_info - print out worker information and description
6053 * @log_lvl: the log level to use when printing
6054 * @task: target task
6055 *
6056 * If @task is a worker and currently executing a work item, print out the
6057 * name of the workqueue being serviced and worker description set with
6058 * set_worker_desc() by the currently executing work item.
6059 *
6060 * This function can be safely called on any task as long as the
6061 * task_struct itself is accessible.  While safe, this function isn't
6062 * synchronized and may print out mixups or garbages of limited length.
6063 */
6064void print_worker_info(const char *log_lvl, struct task_struct *task)
6065{
6066	work_func_t *fn = NULL;
6067	char name[WQ_NAME_LEN] = { };
6068	char desc[WORKER_DESC_LEN] = { };
6069	struct pool_workqueue *pwq = NULL;
6070	struct workqueue_struct *wq = NULL;
6071	struct worker *worker;
6072
6073	if (!(task->flags & PF_WQ_WORKER))
6074		return;
6075
6076	/*
6077	 * This function is called without any synchronization and @task
6078	 * could be in any state.  Be careful with dereferences.
6079	 */
6080	worker = kthread_probe_data(task);
6081
6082	/*
6083	 * Carefully copy the associated workqueue's workfn, name and desc.
6084	 * Keep the original last '\0' in case the original is garbage.
6085	 */
6086	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6087	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6088	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6089	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6090	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6091
6092	if (fn || name[0] || desc[0]) {
6093		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6094		if (strcmp(name, desc))
6095			pr_cont(" (%s)", desc);
6096		pr_cont("\n");
6097	}
6098}
6099
6100static void pr_cont_pool_info(struct worker_pool *pool)
6101{
6102	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6103	if (pool->node != NUMA_NO_NODE)
6104		pr_cont(" node=%d", pool->node);
6105	pr_cont(" flags=0x%x", pool->flags);
6106	if (pool->flags & POOL_BH)
6107		pr_cont(" bh%s",
6108			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6109	else
6110		pr_cont(" nice=%d", pool->attrs->nice);
6111}
6112
6113static void pr_cont_worker_id(struct worker *worker)
6114{
6115	struct worker_pool *pool = worker->pool;
6116
6117	if (pool->flags & WQ_BH)
6118		pr_cont("bh%s",
6119			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6120	else
6121		pr_cont("%d%s", task_pid_nr(worker->task),
6122			worker->rescue_wq ? "(RESCUER)" : "");
6123}
6124
6125struct pr_cont_work_struct {
6126	bool comma;
6127	work_func_t func;
6128	long ctr;
6129};
6130
6131static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6132{
6133	if (!pcwsp->ctr)
6134		goto out_record;
6135	if (func == pcwsp->func) {
6136		pcwsp->ctr++;
6137		return;
6138	}
6139	if (pcwsp->ctr == 1)
6140		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6141	else
6142		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6143	pcwsp->ctr = 0;
6144out_record:
6145	if ((long)func == -1L)
6146		return;
6147	pcwsp->comma = comma;
6148	pcwsp->func = func;
6149	pcwsp->ctr = 1;
6150}
6151
6152static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6153{
6154	if (work->func == wq_barrier_func) {
6155		struct wq_barrier *barr;
6156
6157		barr = container_of(work, struct wq_barrier, work);
6158
6159		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6160		pr_cont("%s BAR(%d)", comma ? "," : "",
6161			task_pid_nr(barr->task));
6162	} else {
6163		if (!comma)
6164			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6165		pr_cont_work_flush(comma, work->func, pcwsp);
6166	}
6167}
6168
6169static void show_pwq(struct pool_workqueue *pwq)
6170{
6171	struct pr_cont_work_struct pcws = { .ctr = 0, };
6172	struct worker_pool *pool = pwq->pool;
6173	struct work_struct *work;
6174	struct worker *worker;
6175	bool has_in_flight = false, has_pending = false;
6176	int bkt;
6177
6178	pr_info("  pwq %d:", pool->id);
6179	pr_cont_pool_info(pool);
6180
6181	pr_cont(" active=%d refcnt=%d%s\n",
6182		pwq->nr_active, pwq->refcnt,
6183		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6184
6185	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6186		if (worker->current_pwq == pwq) {
6187			has_in_flight = true;
6188			break;
6189		}
6190	}
6191	if (has_in_flight) {
6192		bool comma = false;
6193
6194		pr_info("    in-flight:");
6195		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6196			if (worker->current_pwq != pwq)
6197				continue;
6198
6199			pr_cont(" %s", comma ? "," : "");
6200			pr_cont_worker_id(worker);
6201			pr_cont(":%ps", worker->current_func);
6202			list_for_each_entry(work, &worker->scheduled, entry)
6203				pr_cont_work(false, work, &pcws);
6204			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6205			comma = true;
6206		}
6207		pr_cont("\n");
6208	}
6209
6210	list_for_each_entry(work, &pool->worklist, entry) {
6211		if (get_work_pwq(work) == pwq) {
6212			has_pending = true;
6213			break;
6214		}
6215	}
6216	if (has_pending) {
6217		bool comma = false;
6218
6219		pr_info("    pending:");
6220		list_for_each_entry(work, &pool->worklist, entry) {
6221			if (get_work_pwq(work) != pwq)
6222				continue;
6223
6224			pr_cont_work(comma, work, &pcws);
6225			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6226		}
6227		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6228		pr_cont("\n");
6229	}
6230
6231	if (!list_empty(&pwq->inactive_works)) {
6232		bool comma = false;
6233
6234		pr_info("    inactive:");
6235		list_for_each_entry(work, &pwq->inactive_works, entry) {
6236			pr_cont_work(comma, work, &pcws);
6237			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6238		}
6239		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6240		pr_cont("\n");
6241	}
6242}
6243
6244/**
6245 * show_one_workqueue - dump state of specified workqueue
6246 * @wq: workqueue whose state will be printed
6247 */
6248void show_one_workqueue(struct workqueue_struct *wq)
6249{
6250	struct pool_workqueue *pwq;
6251	bool idle = true;
6252	unsigned long irq_flags;
6253
6254	for_each_pwq(pwq, wq) {
6255		if (!pwq_is_empty(pwq)) {
6256			idle = false;
6257			break;
6258		}
6259	}
6260	if (idle) /* Nothing to print for idle workqueue */
6261		return;
6262
6263	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6264
6265	for_each_pwq(pwq, wq) {
6266		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6267		if (!pwq_is_empty(pwq)) {
6268			/*
6269			 * Defer printing to avoid deadlocks in console
6270			 * drivers that queue work while holding locks
6271			 * also taken in their write paths.
6272			 */
6273			printk_deferred_enter();
6274			show_pwq(pwq);
6275			printk_deferred_exit();
6276		}
6277		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6278		/*
6279		 * We could be printing a lot from atomic context, e.g.
6280		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6281		 * hard lockup.
6282		 */
6283		touch_nmi_watchdog();
6284	}
6285
6286}
6287
6288/**
6289 * show_one_worker_pool - dump state of specified worker pool
6290 * @pool: worker pool whose state will be printed
6291 */
6292static void show_one_worker_pool(struct worker_pool *pool)
6293{
6294	struct worker *worker;
6295	bool first = true;
6296	unsigned long irq_flags;
6297	unsigned long hung = 0;
6298
6299	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6300	if (pool->nr_workers == pool->nr_idle)
6301		goto next_pool;
6302
6303	/* How long the first pending work is waiting for a worker. */
6304	if (!list_empty(&pool->worklist))
6305		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6306
6307	/*
6308	 * Defer printing to avoid deadlocks in console drivers that
6309	 * queue work while holding locks also taken in their write
6310	 * paths.
6311	 */
6312	printk_deferred_enter();
6313	pr_info("pool %d:", pool->id);
6314	pr_cont_pool_info(pool);
6315	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6316	if (pool->manager)
6317		pr_cont(" manager: %d",
6318			task_pid_nr(pool->manager->task));
6319	list_for_each_entry(worker, &pool->idle_list, entry) {
6320		pr_cont(" %s", first ? "idle: " : "");
6321		pr_cont_worker_id(worker);
6322		first = false;
6323	}
6324	pr_cont("\n");
6325	printk_deferred_exit();
6326next_pool:
6327	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6328	/*
6329	 * We could be printing a lot from atomic context, e.g.
6330	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6331	 * hard lockup.
6332	 */
6333	touch_nmi_watchdog();
6334
6335}
6336
6337/**
6338 * show_all_workqueues - dump workqueue state
6339 *
6340 * Called from a sysrq handler and prints out all busy workqueues and pools.
6341 */
6342void show_all_workqueues(void)
6343{
6344	struct workqueue_struct *wq;
6345	struct worker_pool *pool;
6346	int pi;
6347
6348	rcu_read_lock();
6349
6350	pr_info("Showing busy workqueues and worker pools:\n");
6351
6352	list_for_each_entry_rcu(wq, &workqueues, list)
6353		show_one_workqueue(wq);
6354
6355	for_each_pool(pool, pi)
6356		show_one_worker_pool(pool);
6357
6358	rcu_read_unlock();
6359}
6360
6361/**
6362 * show_freezable_workqueues - dump freezable workqueue state
6363 *
6364 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6365 * still busy.
6366 */
6367void show_freezable_workqueues(void)
6368{
6369	struct workqueue_struct *wq;
6370
6371	rcu_read_lock();
6372
6373	pr_info("Showing freezable workqueues that are still busy:\n");
6374
6375	list_for_each_entry_rcu(wq, &workqueues, list) {
6376		if (!(wq->flags & WQ_FREEZABLE))
6377			continue;
6378		show_one_workqueue(wq);
6379	}
6380
6381	rcu_read_unlock();
6382}
6383
6384/* used to show worker information through /proc/PID/{comm,stat,status} */
6385void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6386{
6387	int off;
6388
6389	/* always show the actual comm */
6390	off = strscpy(buf, task->comm, size);
6391	if (off < 0)
6392		return;
6393
6394	/* stabilize PF_WQ_WORKER and worker pool association */
6395	mutex_lock(&wq_pool_attach_mutex);
6396
6397	if (task->flags & PF_WQ_WORKER) {
6398		struct worker *worker = kthread_data(task);
6399		struct worker_pool *pool = worker->pool;
6400
6401		if (pool) {
6402			raw_spin_lock_irq(&pool->lock);
6403			/*
6404			 * ->desc tracks information (wq name or
6405			 * set_worker_desc()) for the latest execution.  If
6406			 * current, prepend '+', otherwise '-'.
6407			 */
6408			if (worker->desc[0] != '\0') {
6409				if (worker->current_work)
6410					scnprintf(buf + off, size - off, "+%s",
6411						  worker->desc);
6412				else
6413					scnprintf(buf + off, size - off, "-%s",
6414						  worker->desc);
6415			}
6416			raw_spin_unlock_irq(&pool->lock);
6417		}
6418	}
6419
6420	mutex_unlock(&wq_pool_attach_mutex);
6421}
6422
6423#ifdef CONFIG_SMP
6424
6425/*
6426 * CPU hotplug.
6427 *
6428 * There are two challenges in supporting CPU hotplug.  Firstly, there
6429 * are a lot of assumptions on strong associations among work, pwq and
6430 * pool which make migrating pending and scheduled works very
6431 * difficult to implement without impacting hot paths.  Secondly,
6432 * worker pools serve mix of short, long and very long running works making
6433 * blocked draining impractical.
6434 *
6435 * This is solved by allowing the pools to be disassociated from the CPU
6436 * running as an unbound one and allowing it to be reattached later if the
6437 * cpu comes back online.
6438 */
6439
6440static void unbind_workers(int cpu)
6441{
6442	struct worker_pool *pool;
6443	struct worker *worker;
6444
6445	for_each_cpu_worker_pool(pool, cpu) {
6446		mutex_lock(&wq_pool_attach_mutex);
6447		raw_spin_lock_irq(&pool->lock);
6448
6449		/*
6450		 * We've blocked all attach/detach operations. Make all workers
6451		 * unbound and set DISASSOCIATED.  Before this, all workers
6452		 * must be on the cpu.  After this, they may become diasporas.
6453		 * And the preemption disabled section in their sched callbacks
6454		 * are guaranteed to see WORKER_UNBOUND since the code here
6455		 * is on the same cpu.
6456		 */
6457		for_each_pool_worker(worker, pool)
6458			worker->flags |= WORKER_UNBOUND;
6459
6460		pool->flags |= POOL_DISASSOCIATED;
6461
6462		/*
6463		 * The handling of nr_running in sched callbacks are disabled
6464		 * now.  Zap nr_running.  After this, nr_running stays zero and
6465		 * need_more_worker() and keep_working() are always true as
6466		 * long as the worklist is not empty.  This pool now behaves as
6467		 * an unbound (in terms of concurrency management) pool which
6468		 * are served by workers tied to the pool.
6469		 */
6470		pool->nr_running = 0;
6471
6472		/*
6473		 * With concurrency management just turned off, a busy
6474		 * worker blocking could lead to lengthy stalls.  Kick off
6475		 * unbound chain execution of currently pending work items.
6476		 */
6477		kick_pool(pool);
6478
6479		raw_spin_unlock_irq(&pool->lock);
6480
6481		for_each_pool_worker(worker, pool)
6482			unbind_worker(worker);
6483
6484		mutex_unlock(&wq_pool_attach_mutex);
6485	}
6486}
6487
6488/**
6489 * rebind_workers - rebind all workers of a pool to the associated CPU
6490 * @pool: pool of interest
6491 *
6492 * @pool->cpu is coming online.  Rebind all workers to the CPU.
6493 */
6494static void rebind_workers(struct worker_pool *pool)
6495{
6496	struct worker *worker;
6497
6498	lockdep_assert_held(&wq_pool_attach_mutex);
6499
6500	/*
6501	 * Restore CPU affinity of all workers.  As all idle workers should
6502	 * be on the run-queue of the associated CPU before any local
6503	 * wake-ups for concurrency management happen, restore CPU affinity
6504	 * of all workers first and then clear UNBOUND.  As we're called
6505	 * from CPU_ONLINE, the following shouldn't fail.
6506	 */
6507	for_each_pool_worker(worker, pool) {
6508		kthread_set_per_cpu(worker->task, pool->cpu);
6509		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6510						  pool_allowed_cpus(pool)) < 0);
6511	}
6512
6513	raw_spin_lock_irq(&pool->lock);
6514
6515	pool->flags &= ~POOL_DISASSOCIATED;
6516
6517	for_each_pool_worker(worker, pool) {
6518		unsigned int worker_flags = worker->flags;
6519
6520		/*
6521		 * We want to clear UNBOUND but can't directly call
6522		 * worker_clr_flags() or adjust nr_running.  Atomically
6523		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6524		 * @worker will clear REBOUND using worker_clr_flags() when
6525		 * it initiates the next execution cycle thus restoring
6526		 * concurrency management.  Note that when or whether
6527		 * @worker clears REBOUND doesn't affect correctness.
6528		 *
6529		 * WRITE_ONCE() is necessary because @worker->flags may be
6530		 * tested without holding any lock in
6531		 * wq_worker_running().  Without it, NOT_RUNNING test may
6532		 * fail incorrectly leading to premature concurrency
6533		 * management operations.
6534		 */
6535		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6536		worker_flags |= WORKER_REBOUND;
6537		worker_flags &= ~WORKER_UNBOUND;
6538		WRITE_ONCE(worker->flags, worker_flags);
6539	}
6540
6541	raw_spin_unlock_irq(&pool->lock);
6542}
6543
6544/**
6545 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6546 * @pool: unbound pool of interest
6547 * @cpu: the CPU which is coming up
6548 *
6549 * An unbound pool may end up with a cpumask which doesn't have any online
6550 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6551 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6552 * online CPU before, cpus_allowed of all its workers should be restored.
6553 */
6554static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6555{
6556	static cpumask_t cpumask;
6557	struct worker *worker;
6558
6559	lockdep_assert_held(&wq_pool_attach_mutex);
6560
6561	/* is @cpu allowed for @pool? */
6562	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6563		return;
6564
6565	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6566
6567	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6568	for_each_pool_worker(worker, pool)
6569		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6570}
6571
6572int workqueue_prepare_cpu(unsigned int cpu)
6573{
6574	struct worker_pool *pool;
6575
6576	for_each_cpu_worker_pool(pool, cpu) {
6577		if (pool->nr_workers)
6578			continue;
6579		if (!create_worker(pool))
6580			return -ENOMEM;
6581	}
6582	return 0;
6583}
6584
6585int workqueue_online_cpu(unsigned int cpu)
6586{
6587	struct worker_pool *pool;
6588	struct workqueue_struct *wq;
6589	int pi;
6590
6591	mutex_lock(&wq_pool_mutex);
6592
6593	for_each_pool(pool, pi) {
6594		/* BH pools aren't affected by hotplug */
6595		if (pool->flags & POOL_BH)
6596			continue;
6597
6598		mutex_lock(&wq_pool_attach_mutex);
6599		if (pool->cpu == cpu)
6600			rebind_workers(pool);
6601		else if (pool->cpu < 0)
6602			restore_unbound_workers_cpumask(pool, cpu);
6603		mutex_unlock(&wq_pool_attach_mutex);
6604	}
6605
6606	/* update pod affinity of unbound workqueues */
6607	list_for_each_entry(wq, &workqueues, list) {
6608		struct workqueue_attrs *attrs = wq->unbound_attrs;
6609
6610		if (attrs) {
6611			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6612			int tcpu;
6613
6614			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6615				wq_update_pod(wq, tcpu, cpu, true);
6616
6617			mutex_lock(&wq->mutex);
6618			wq_update_node_max_active(wq, -1);
6619			mutex_unlock(&wq->mutex);
6620		}
6621	}
6622
6623	mutex_unlock(&wq_pool_mutex);
6624	return 0;
6625}
6626
6627int workqueue_offline_cpu(unsigned int cpu)
6628{
6629	struct workqueue_struct *wq;
6630
6631	/* unbinding per-cpu workers should happen on the local CPU */
6632	if (WARN_ON(cpu != smp_processor_id()))
6633		return -1;
6634
6635	unbind_workers(cpu);
6636
6637	/* update pod affinity of unbound workqueues */
6638	mutex_lock(&wq_pool_mutex);
6639	list_for_each_entry(wq, &workqueues, list) {
6640		struct workqueue_attrs *attrs = wq->unbound_attrs;
6641
6642		if (attrs) {
6643			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6644			int tcpu;
6645
6646			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6647				wq_update_pod(wq, tcpu, cpu, false);
6648
6649			mutex_lock(&wq->mutex);
6650			wq_update_node_max_active(wq, cpu);
6651			mutex_unlock(&wq->mutex);
6652		}
6653	}
6654	mutex_unlock(&wq_pool_mutex);
6655
6656	return 0;
6657}
6658
6659struct work_for_cpu {
6660	struct work_struct work;
6661	long (*fn)(void *);
6662	void *arg;
6663	long ret;
6664};
6665
6666static void work_for_cpu_fn(struct work_struct *work)
6667{
6668	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6669
6670	wfc->ret = wfc->fn(wfc->arg);
6671}
6672
6673/**
6674 * work_on_cpu_key - run a function in thread context on a particular cpu
6675 * @cpu: the cpu to run on
6676 * @fn: the function to run
6677 * @arg: the function arg
6678 * @key: The lock class key for lock debugging purposes
6679 *
6680 * It is up to the caller to ensure that the cpu doesn't go offline.
6681 * The caller must not hold any locks which would prevent @fn from completing.
6682 *
6683 * Return: The value @fn returns.
6684 */
6685long work_on_cpu_key(int cpu, long (*fn)(void *),
6686		     void *arg, struct lock_class_key *key)
6687{
6688	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6689
6690	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6691	schedule_work_on(cpu, &wfc.work);
6692	flush_work(&wfc.work);
6693	destroy_work_on_stack(&wfc.work);
6694	return wfc.ret;
6695}
6696EXPORT_SYMBOL_GPL(work_on_cpu_key);
6697
6698/**
6699 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6700 * @cpu: the cpu to run on
6701 * @fn:  the function to run
6702 * @arg: the function argument
6703 * @key: The lock class key for lock debugging purposes
6704 *
6705 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6706 * any locks which would prevent @fn from completing.
6707 *
6708 * Return: The value @fn returns.
6709 */
6710long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6711			  void *arg, struct lock_class_key *key)
6712{
6713	long ret = -ENODEV;
6714
6715	cpus_read_lock();
6716	if (cpu_online(cpu))
6717		ret = work_on_cpu_key(cpu, fn, arg, key);
6718	cpus_read_unlock();
6719	return ret;
6720}
6721EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6722#endif /* CONFIG_SMP */
6723
6724#ifdef CONFIG_FREEZER
6725
6726/**
6727 * freeze_workqueues_begin - begin freezing workqueues
6728 *
6729 * Start freezing workqueues.  After this function returns, all freezable
6730 * workqueues will queue new works to their inactive_works list instead of
6731 * pool->worklist.
6732 *
6733 * CONTEXT:
6734 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6735 */
6736void freeze_workqueues_begin(void)
6737{
6738	struct workqueue_struct *wq;
6739
6740	mutex_lock(&wq_pool_mutex);
6741
6742	WARN_ON_ONCE(workqueue_freezing);
6743	workqueue_freezing = true;
6744
6745	list_for_each_entry(wq, &workqueues, list) {
6746		mutex_lock(&wq->mutex);
6747		wq_adjust_max_active(wq);
6748		mutex_unlock(&wq->mutex);
6749	}
6750
6751	mutex_unlock(&wq_pool_mutex);
6752}
6753
6754/**
6755 * freeze_workqueues_busy - are freezable workqueues still busy?
6756 *
6757 * Check whether freezing is complete.  This function must be called
6758 * between freeze_workqueues_begin() and thaw_workqueues().
6759 *
6760 * CONTEXT:
6761 * Grabs and releases wq_pool_mutex.
6762 *
6763 * Return:
6764 * %true if some freezable workqueues are still busy.  %false if freezing
6765 * is complete.
6766 */
6767bool freeze_workqueues_busy(void)
6768{
6769	bool busy = false;
6770	struct workqueue_struct *wq;
6771	struct pool_workqueue *pwq;
6772
6773	mutex_lock(&wq_pool_mutex);
6774
6775	WARN_ON_ONCE(!workqueue_freezing);
6776
6777	list_for_each_entry(wq, &workqueues, list) {
6778		if (!(wq->flags & WQ_FREEZABLE))
6779			continue;
6780		/*
6781		 * nr_active is monotonically decreasing.  It's safe
6782		 * to peek without lock.
6783		 */
6784		rcu_read_lock();
6785		for_each_pwq(pwq, wq) {
6786			WARN_ON_ONCE(pwq->nr_active < 0);
6787			if (pwq->nr_active) {
6788				busy = true;
6789				rcu_read_unlock();
6790				goto out_unlock;
6791			}
6792		}
6793		rcu_read_unlock();
6794	}
6795out_unlock:
6796	mutex_unlock(&wq_pool_mutex);
6797	return busy;
6798}
6799
6800/**
6801 * thaw_workqueues - thaw workqueues
6802 *
6803 * Thaw workqueues.  Normal queueing is restored and all collected
6804 * frozen works are transferred to their respective pool worklists.
6805 *
6806 * CONTEXT:
6807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6808 */
6809void thaw_workqueues(void)
6810{
6811	struct workqueue_struct *wq;
6812
6813	mutex_lock(&wq_pool_mutex);
6814
6815	if (!workqueue_freezing)
6816		goto out_unlock;
6817
6818	workqueue_freezing = false;
6819
6820	/* restore max_active and repopulate worklist */
6821	list_for_each_entry(wq, &workqueues, list) {
6822		mutex_lock(&wq->mutex);
6823		wq_adjust_max_active(wq);
6824		mutex_unlock(&wq->mutex);
6825	}
6826
6827out_unlock:
6828	mutex_unlock(&wq_pool_mutex);
6829}
6830#endif /* CONFIG_FREEZER */
6831
6832static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6833{
6834	LIST_HEAD(ctxs);
6835	int ret = 0;
6836	struct workqueue_struct *wq;
6837	struct apply_wqattrs_ctx *ctx, *n;
6838
6839	lockdep_assert_held(&wq_pool_mutex);
6840
6841	list_for_each_entry(wq, &workqueues, list) {
6842		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6843			continue;
6844
6845		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6846		if (IS_ERR(ctx)) {
6847			ret = PTR_ERR(ctx);
6848			break;
6849		}
6850
6851		list_add_tail(&ctx->list, &ctxs);
6852	}
6853
6854	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6855		if (!ret)
6856			apply_wqattrs_commit(ctx);
6857		apply_wqattrs_cleanup(ctx);
6858	}
6859
6860	if (!ret) {
6861		mutex_lock(&wq_pool_attach_mutex);
6862		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6863		mutex_unlock(&wq_pool_attach_mutex);
6864	}
6865	return ret;
6866}
6867
6868/**
6869 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6870 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6871 *
6872 * This function can be called from cpuset code to provide a set of isolated
6873 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6874 * either cpus_read_lock or cpus_write_lock.
6875 */
6876int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6877{
6878	cpumask_var_t cpumask;
6879	int ret = 0;
6880
6881	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6882		return -ENOMEM;
6883
6884	lockdep_assert_cpus_held();
6885	mutex_lock(&wq_pool_mutex);
6886
6887	/* Save the current isolated cpumask & export it via sysfs */
6888	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6889
6890	/*
6891	 * If the operation fails, it will fall back to
6892	 * wq_requested_unbound_cpumask which is initially set to
6893	 * (HK_TYPE_WQ ��� HK_TYPE_DOMAIN) house keeping mask and rewritten
6894	 * by any subsequent write to workqueue/cpumask sysfs file.
6895	 */
6896	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6897		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6898	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6899		ret = workqueue_apply_unbound_cpumask(cpumask);
6900
6901	mutex_unlock(&wq_pool_mutex);
6902	free_cpumask_var(cpumask);
6903	return ret;
6904}
6905
6906static int parse_affn_scope(const char *val)
6907{
6908	int i;
6909
6910	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6911		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6912			return i;
6913	}
6914	return -EINVAL;
6915}
6916
6917static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6918{
6919	struct workqueue_struct *wq;
6920	int affn, cpu;
6921
6922	affn = parse_affn_scope(val);
6923	if (affn < 0)
6924		return affn;
6925	if (affn == WQ_AFFN_DFL)
6926		return -EINVAL;
6927
6928	cpus_read_lock();
6929	mutex_lock(&wq_pool_mutex);
6930
6931	wq_affn_dfl = affn;
6932
6933	list_for_each_entry(wq, &workqueues, list) {
6934		for_each_online_cpu(cpu) {
6935			wq_update_pod(wq, cpu, cpu, true);
6936		}
6937	}
6938
6939	mutex_unlock(&wq_pool_mutex);
6940	cpus_read_unlock();
6941
6942	return 0;
6943}
6944
6945static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6946{
6947	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6948}
6949
6950static const struct kernel_param_ops wq_affn_dfl_ops = {
6951	.set	= wq_affn_dfl_set,
6952	.get	= wq_affn_dfl_get,
6953};
6954
6955module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6956
6957#ifdef CONFIG_SYSFS
6958/*
6959 * Workqueues with WQ_SYSFS flag set is visible to userland via
6960 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6961 * following attributes.
6962 *
6963 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6964 *  max_active		RW int	: maximum number of in-flight work items
6965 *
6966 * Unbound workqueues have the following extra attributes.
6967 *
6968 *  nice		RW int	: nice value of the workers
6969 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6970 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6971 *  affinity_strict	RW bool : worker CPU affinity is strict
6972 */
6973struct wq_device {
6974	struct workqueue_struct		*wq;
6975	struct device			dev;
6976};
6977
6978static struct workqueue_struct *dev_to_wq(struct device *dev)
6979{
6980	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6981
6982	return wq_dev->wq;
6983}
6984
6985static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6986			    char *buf)
6987{
6988	struct workqueue_struct *wq = dev_to_wq(dev);
6989
6990	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6991}
6992static DEVICE_ATTR_RO(per_cpu);
6993
6994static ssize_t max_active_show(struct device *dev,
6995			       struct device_attribute *attr, char *buf)
6996{
6997	struct workqueue_struct *wq = dev_to_wq(dev);
6998
6999	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7000}
7001
7002static ssize_t max_active_store(struct device *dev,
7003				struct device_attribute *attr, const char *buf,
7004				size_t count)
7005{
7006	struct workqueue_struct *wq = dev_to_wq(dev);
7007	int val;
7008
7009	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7010		return -EINVAL;
7011
7012	workqueue_set_max_active(wq, val);
7013	return count;
7014}
7015static DEVICE_ATTR_RW(max_active);
7016
7017static struct attribute *wq_sysfs_attrs[] = {
7018	&dev_attr_per_cpu.attr,
7019	&dev_attr_max_active.attr,
7020	NULL,
7021};
7022ATTRIBUTE_GROUPS(wq_sysfs);
7023
7024static void apply_wqattrs_lock(void)
7025{
7026	/* CPUs should stay stable across pwq creations and installations */
7027	cpus_read_lock();
7028	mutex_lock(&wq_pool_mutex);
7029}
7030
7031static void apply_wqattrs_unlock(void)
7032{
7033	mutex_unlock(&wq_pool_mutex);
7034	cpus_read_unlock();
7035}
7036
7037static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7038			    char *buf)
7039{
7040	struct workqueue_struct *wq = dev_to_wq(dev);
7041	int written;
7042
7043	mutex_lock(&wq->mutex);
7044	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7045	mutex_unlock(&wq->mutex);
7046
7047	return written;
7048}
7049
7050/* prepare workqueue_attrs for sysfs store operations */
7051static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7052{
7053	struct workqueue_attrs *attrs;
7054
7055	lockdep_assert_held(&wq_pool_mutex);
7056
7057	attrs = alloc_workqueue_attrs();
7058	if (!attrs)
7059		return NULL;
7060
7061	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7062	return attrs;
7063}
7064
7065static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7066			     const char *buf, size_t count)
7067{
7068	struct workqueue_struct *wq = dev_to_wq(dev);
7069	struct workqueue_attrs *attrs;
7070	int ret = -ENOMEM;
7071
7072	apply_wqattrs_lock();
7073
7074	attrs = wq_sysfs_prep_attrs(wq);
7075	if (!attrs)
7076		goto out_unlock;
7077
7078	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7079	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7080		ret = apply_workqueue_attrs_locked(wq, attrs);
7081	else
7082		ret = -EINVAL;
7083
7084out_unlock:
7085	apply_wqattrs_unlock();
7086	free_workqueue_attrs(attrs);
7087	return ret ?: count;
7088}
7089
7090static ssize_t wq_cpumask_show(struct device *dev,
7091			       struct device_attribute *attr, char *buf)
7092{
7093	struct workqueue_struct *wq = dev_to_wq(dev);
7094	int written;
7095
7096	mutex_lock(&wq->mutex);
7097	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7098			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7099	mutex_unlock(&wq->mutex);
7100	return written;
7101}
7102
7103static ssize_t wq_cpumask_store(struct device *dev,
7104				struct device_attribute *attr,
7105				const char *buf, size_t count)
7106{
7107	struct workqueue_struct *wq = dev_to_wq(dev);
7108	struct workqueue_attrs *attrs;
7109	int ret = -ENOMEM;
7110
7111	apply_wqattrs_lock();
7112
7113	attrs = wq_sysfs_prep_attrs(wq);
7114	if (!attrs)
7115		goto out_unlock;
7116
7117	ret = cpumask_parse(buf, attrs->cpumask);
7118	if (!ret)
7119		ret = apply_workqueue_attrs_locked(wq, attrs);
7120
7121out_unlock:
7122	apply_wqattrs_unlock();
7123	free_workqueue_attrs(attrs);
7124	return ret ?: count;
7125}
7126
7127static ssize_t wq_affn_scope_show(struct device *dev,
7128				  struct device_attribute *attr, char *buf)
7129{
7130	struct workqueue_struct *wq = dev_to_wq(dev);
7131	int written;
7132
7133	mutex_lock(&wq->mutex);
7134	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7135		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7136				    wq_affn_names[WQ_AFFN_DFL],
7137				    wq_affn_names[wq_affn_dfl]);
7138	else
7139		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7140				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7141	mutex_unlock(&wq->mutex);
7142
7143	return written;
7144}
7145
7146static ssize_t wq_affn_scope_store(struct device *dev,
7147				   struct device_attribute *attr,
7148				   const char *buf, size_t count)
7149{
7150	struct workqueue_struct *wq = dev_to_wq(dev);
7151	struct workqueue_attrs *attrs;
7152	int affn, ret = -ENOMEM;
7153
7154	affn = parse_affn_scope(buf);
7155	if (affn < 0)
7156		return affn;
7157
7158	apply_wqattrs_lock();
7159	attrs = wq_sysfs_prep_attrs(wq);
7160	if (attrs) {
7161		attrs->affn_scope = affn;
7162		ret = apply_workqueue_attrs_locked(wq, attrs);
7163	}
7164	apply_wqattrs_unlock();
7165	free_workqueue_attrs(attrs);
7166	return ret ?: count;
7167}
7168
7169static ssize_t wq_affinity_strict_show(struct device *dev,
7170				       struct device_attribute *attr, char *buf)
7171{
7172	struct workqueue_struct *wq = dev_to_wq(dev);
7173
7174	return scnprintf(buf, PAGE_SIZE, "%d\n",
7175			 wq->unbound_attrs->affn_strict);
7176}
7177
7178static ssize_t wq_affinity_strict_store(struct device *dev,
7179					struct device_attribute *attr,
7180					const char *buf, size_t count)
7181{
7182	struct workqueue_struct *wq = dev_to_wq(dev);
7183	struct workqueue_attrs *attrs;
7184	int v, ret = -ENOMEM;
7185
7186	if (sscanf(buf, "%d", &v) != 1)
7187		return -EINVAL;
7188
7189	apply_wqattrs_lock();
7190	attrs = wq_sysfs_prep_attrs(wq);
7191	if (attrs) {
7192		attrs->affn_strict = (bool)v;
7193		ret = apply_workqueue_attrs_locked(wq, attrs);
7194	}
7195	apply_wqattrs_unlock();
7196	free_workqueue_attrs(attrs);
7197	return ret ?: count;
7198}
7199
7200static struct device_attribute wq_sysfs_unbound_attrs[] = {
7201	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7202	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7203	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7204	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7205	__ATTR_NULL,
7206};
7207
7208static const struct bus_type wq_subsys = {
7209	.name				= "workqueue",
7210	.dev_groups			= wq_sysfs_groups,
7211};
7212
7213/**
7214 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7215 *  @cpumask: the cpumask to set
7216 *
7217 *  The low-level workqueues cpumask is a global cpumask that limits
7218 *  the affinity of all unbound workqueues.  This function check the @cpumask
7219 *  and apply it to all unbound workqueues and updates all pwqs of them.
7220 *
7221 *  Return:	0	- Success
7222 *		-EINVAL	- Invalid @cpumask
7223 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7224 */
7225static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7226{
7227	int ret = -EINVAL;
7228
7229	/*
7230	 * Not excluding isolated cpus on purpose.
7231	 * If the user wishes to include them, we allow that.
7232	 */
7233	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7234	if (!cpumask_empty(cpumask)) {
7235		apply_wqattrs_lock();
7236		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7237		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7238			ret = 0;
7239			goto out_unlock;
7240		}
7241
7242		ret = workqueue_apply_unbound_cpumask(cpumask);
7243
7244out_unlock:
7245		apply_wqattrs_unlock();
7246	}
7247
7248	return ret;
7249}
7250
7251static ssize_t __wq_cpumask_show(struct device *dev,
7252		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7253{
7254	int written;
7255
7256	mutex_lock(&wq_pool_mutex);
7257	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7258	mutex_unlock(&wq_pool_mutex);
7259
7260	return written;
7261}
7262
7263static ssize_t cpumask_requested_show(struct device *dev,
7264		struct device_attribute *attr, char *buf)
7265{
7266	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7267}
7268static DEVICE_ATTR_RO(cpumask_requested);
7269
7270static ssize_t cpumask_isolated_show(struct device *dev,
7271		struct device_attribute *attr, char *buf)
7272{
7273	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7274}
7275static DEVICE_ATTR_RO(cpumask_isolated);
7276
7277static ssize_t cpumask_show(struct device *dev,
7278		struct device_attribute *attr, char *buf)
7279{
7280	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7281}
7282
7283static ssize_t cpumask_store(struct device *dev,
7284		struct device_attribute *attr, const char *buf, size_t count)
7285{
7286	cpumask_var_t cpumask;
7287	int ret;
7288
7289	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7290		return -ENOMEM;
7291
7292	ret = cpumask_parse(buf, cpumask);
7293	if (!ret)
7294		ret = workqueue_set_unbound_cpumask(cpumask);
7295
7296	free_cpumask_var(cpumask);
7297	return ret ? ret : count;
7298}
7299static DEVICE_ATTR_RW(cpumask);
7300
7301static struct attribute *wq_sysfs_cpumask_attrs[] = {
7302	&dev_attr_cpumask.attr,
7303	&dev_attr_cpumask_requested.attr,
7304	&dev_attr_cpumask_isolated.attr,
7305	NULL,
7306};
7307ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7308
7309static int __init wq_sysfs_init(void)
7310{
7311	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7312}
7313core_initcall(wq_sysfs_init);
7314
7315static void wq_device_release(struct device *dev)
7316{
7317	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7318
7319	kfree(wq_dev);
7320}
7321
7322/**
7323 * workqueue_sysfs_register - make a workqueue visible in sysfs
7324 * @wq: the workqueue to register
7325 *
7326 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7327 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7328 * which is the preferred method.
7329 *
7330 * Workqueue user should use this function directly iff it wants to apply
7331 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7332 * apply_workqueue_attrs() may race against userland updating the
7333 * attributes.
7334 *
7335 * Return: 0 on success, -errno on failure.
7336 */
7337int workqueue_sysfs_register(struct workqueue_struct *wq)
7338{
7339	struct wq_device *wq_dev;
7340	int ret;
7341
7342	/*
7343	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7344	 * ordered workqueues.
7345	 */
7346	if (WARN_ON(wq->flags & __WQ_ORDERED))
7347		return -EINVAL;
7348
7349	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7350	if (!wq_dev)
7351		return -ENOMEM;
7352
7353	wq_dev->wq = wq;
7354	wq_dev->dev.bus = &wq_subsys;
7355	wq_dev->dev.release = wq_device_release;
7356	dev_set_name(&wq_dev->dev, "%s", wq->name);
7357
7358	/*
7359	 * unbound_attrs are created separately.  Suppress uevent until
7360	 * everything is ready.
7361	 */
7362	dev_set_uevent_suppress(&wq_dev->dev, true);
7363
7364	ret = device_register(&wq_dev->dev);
7365	if (ret) {
7366		put_device(&wq_dev->dev);
7367		wq->wq_dev = NULL;
7368		return ret;
7369	}
7370
7371	if (wq->flags & WQ_UNBOUND) {
7372		struct device_attribute *attr;
7373
7374		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7375			ret = device_create_file(&wq_dev->dev, attr);
7376			if (ret) {
7377				device_unregister(&wq_dev->dev);
7378				wq->wq_dev = NULL;
7379				return ret;
7380			}
7381		}
7382	}
7383
7384	dev_set_uevent_suppress(&wq_dev->dev, false);
7385	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7386	return 0;
7387}
7388
7389/**
7390 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7391 * @wq: the workqueue to unregister
7392 *
7393 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7394 */
7395static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7396{
7397	struct wq_device *wq_dev = wq->wq_dev;
7398
7399	if (!wq->wq_dev)
7400		return;
7401
7402	wq->wq_dev = NULL;
7403	device_unregister(&wq_dev->dev);
7404}
7405#else	/* CONFIG_SYSFS */
7406static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7407#endif	/* CONFIG_SYSFS */
7408
7409/*
7410 * Workqueue watchdog.
7411 *
7412 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7413 * flush dependency, a concurrency managed work item which stays RUNNING
7414 * indefinitely.  Workqueue stalls can be very difficult to debug as the
7415 * usual warning mechanisms don't trigger and internal workqueue state is
7416 * largely opaque.
7417 *
7418 * Workqueue watchdog monitors all worker pools periodically and dumps
7419 * state if some pools failed to make forward progress for a while where
7420 * forward progress is defined as the first item on ->worklist changing.
7421 *
7422 * This mechanism is controlled through the kernel parameter
7423 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7424 * corresponding sysfs parameter file.
7425 */
7426#ifdef CONFIG_WQ_WATCHDOG
7427
7428static unsigned long wq_watchdog_thresh = 30;
7429static struct timer_list wq_watchdog_timer;
7430
7431static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7432static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7433
7434/*
7435 * Show workers that might prevent the processing of pending work items.
7436 * The only candidates are CPU-bound workers in the running state.
7437 * Pending work items should be handled by another idle worker
7438 * in all other situations.
7439 */
7440static void show_cpu_pool_hog(struct worker_pool *pool)
7441{
7442	struct worker *worker;
7443	unsigned long irq_flags;
7444	int bkt;
7445
7446	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7447
7448	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7449		if (task_is_running(worker->task)) {
7450			/*
7451			 * Defer printing to avoid deadlocks in console
7452			 * drivers that queue work while holding locks
7453			 * also taken in their write paths.
7454			 */
7455			printk_deferred_enter();
7456
7457			pr_info("pool %d:\n", pool->id);
7458			sched_show_task(worker->task);
7459
7460			printk_deferred_exit();
7461		}
7462	}
7463
7464	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7465}
7466
7467static void show_cpu_pools_hogs(void)
7468{
7469	struct worker_pool *pool;
7470	int pi;
7471
7472	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7473
7474	rcu_read_lock();
7475
7476	for_each_pool(pool, pi) {
7477		if (pool->cpu_stall)
7478			show_cpu_pool_hog(pool);
7479
7480	}
7481
7482	rcu_read_unlock();
7483}
7484
7485static void wq_watchdog_reset_touched(void)
7486{
7487	int cpu;
7488
7489	wq_watchdog_touched = jiffies;
7490	for_each_possible_cpu(cpu)
7491		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7492}
7493
7494static void wq_watchdog_timer_fn(struct timer_list *unused)
7495{
7496	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7497	bool lockup_detected = false;
7498	bool cpu_pool_stall = false;
7499	unsigned long now = jiffies;
7500	struct worker_pool *pool;
7501	int pi;
7502
7503	if (!thresh)
7504		return;
7505
7506	rcu_read_lock();
7507
7508	for_each_pool(pool, pi) {
7509		unsigned long pool_ts, touched, ts;
7510
7511		pool->cpu_stall = false;
7512		if (list_empty(&pool->worklist))
7513			continue;
7514
7515		/*
7516		 * If a virtual machine is stopped by the host it can look to
7517		 * the watchdog like a stall.
7518		 */
7519		kvm_check_and_clear_guest_paused();
7520
7521		/* get the latest of pool and touched timestamps */
7522		if (pool->cpu >= 0)
7523			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7524		else
7525			touched = READ_ONCE(wq_watchdog_touched);
7526		pool_ts = READ_ONCE(pool->watchdog_ts);
7527
7528		if (time_after(pool_ts, touched))
7529			ts = pool_ts;
7530		else
7531			ts = touched;
7532
7533		/* did we stall? */
7534		if (time_after(now, ts + thresh)) {
7535			lockup_detected = true;
7536			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7537				pool->cpu_stall = true;
7538				cpu_pool_stall = true;
7539			}
7540			pr_emerg("BUG: workqueue lockup - pool");
7541			pr_cont_pool_info(pool);
7542			pr_cont(" stuck for %us!\n",
7543				jiffies_to_msecs(now - pool_ts) / 1000);
7544		}
7545
7546
7547	}
7548
7549	rcu_read_unlock();
7550
7551	if (lockup_detected)
7552		show_all_workqueues();
7553
7554	if (cpu_pool_stall)
7555		show_cpu_pools_hogs();
7556
7557	wq_watchdog_reset_touched();
7558	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7559}
7560
7561notrace void wq_watchdog_touch(int cpu)
7562{
7563	if (cpu >= 0)
7564		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7565
7566	wq_watchdog_touched = jiffies;
7567}
7568
7569static void wq_watchdog_set_thresh(unsigned long thresh)
7570{
7571	wq_watchdog_thresh = 0;
7572	del_timer_sync(&wq_watchdog_timer);
7573
7574	if (thresh) {
7575		wq_watchdog_thresh = thresh;
7576		wq_watchdog_reset_touched();
7577		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7578	}
7579}
7580
7581static int wq_watchdog_param_set_thresh(const char *val,
7582					const struct kernel_param *kp)
7583{
7584	unsigned long thresh;
7585	int ret;
7586
7587	ret = kstrtoul(val, 0, &thresh);
7588	if (ret)
7589		return ret;
7590
7591	if (system_wq)
7592		wq_watchdog_set_thresh(thresh);
7593	else
7594		wq_watchdog_thresh = thresh;
7595
7596	return 0;
7597}
7598
7599static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7600	.set	= wq_watchdog_param_set_thresh,
7601	.get	= param_get_ulong,
7602};
7603
7604module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7605		0644);
7606
7607static void wq_watchdog_init(void)
7608{
7609	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7610	wq_watchdog_set_thresh(wq_watchdog_thresh);
7611}
7612
7613#else	/* CONFIG_WQ_WATCHDOG */
7614
7615static inline void wq_watchdog_init(void) { }
7616
7617#endif	/* CONFIG_WQ_WATCHDOG */
7618
7619static void bh_pool_kick_normal(struct irq_work *irq_work)
7620{
7621	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7622}
7623
7624static void bh_pool_kick_highpri(struct irq_work *irq_work)
7625{
7626	raise_softirq_irqoff(HI_SOFTIRQ);
7627}
7628
7629static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7630{
7631	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7632		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7633			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7634		return;
7635	}
7636
7637	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7638}
7639
7640static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7641{
7642	BUG_ON(init_worker_pool(pool));
7643	pool->cpu = cpu;
7644	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7645	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7646	pool->attrs->nice = nice;
7647	pool->attrs->affn_strict = true;
7648	pool->node = cpu_to_node(cpu);
7649
7650	/* alloc pool ID */
7651	mutex_lock(&wq_pool_mutex);
7652	BUG_ON(worker_pool_assign_id(pool));
7653	mutex_unlock(&wq_pool_mutex);
7654}
7655
7656/**
7657 * workqueue_init_early - early init for workqueue subsystem
7658 *
7659 * This is the first step of three-staged workqueue subsystem initialization and
7660 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7661 * up. It sets up all the data structures and system workqueues and allows early
7662 * boot code to create workqueues and queue/cancel work items. Actual work item
7663 * execution starts only after kthreads can be created and scheduled right
7664 * before early initcalls.
7665 */
7666void __init workqueue_init_early(void)
7667{
7668	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7669	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7670	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7671						       bh_pool_kick_highpri };
7672	int i, cpu;
7673
7674	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7675
7676	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7677	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7678	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7679
7680	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7681	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7682	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7683	if (!cpumask_empty(&wq_cmdline_cpumask))
7684		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7685
7686	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7687
7688	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7689
7690	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7691	BUG_ON(!wq_update_pod_attrs_buf);
7692
7693	/*
7694	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7695	 * This allows workqueue items to be moved to HK CPUs.
7696	 */
7697	if (housekeeping_enabled(HK_TYPE_TICK))
7698		wq_power_efficient = true;
7699
7700	/* initialize WQ_AFFN_SYSTEM pods */
7701	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7702	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7703	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7704	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7705
7706	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7707
7708	pt->nr_pods = 1;
7709	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7710	pt->pod_node[0] = NUMA_NO_NODE;
7711	pt->cpu_pod[0] = 0;
7712
7713	/* initialize BH and CPU pools */
7714	for_each_possible_cpu(cpu) {
7715		struct worker_pool *pool;
7716
7717		i = 0;
7718		for_each_bh_worker_pool(pool, cpu) {
7719			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7720			pool->flags |= POOL_BH;
7721			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7722			i++;
7723		}
7724
7725		i = 0;
7726		for_each_cpu_worker_pool(pool, cpu)
7727			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7728	}
7729
7730	/* create default unbound and ordered wq attrs */
7731	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7732		struct workqueue_attrs *attrs;
7733
7734		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7735		attrs->nice = std_nice[i];
7736		unbound_std_wq_attrs[i] = attrs;
7737
7738		/*
7739		 * An ordered wq should have only one pwq as ordering is
7740		 * guaranteed by max_active which is enforced by pwqs.
7741		 */
7742		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7743		attrs->nice = std_nice[i];
7744		attrs->ordered = true;
7745		ordered_wq_attrs[i] = attrs;
7746	}
7747
7748	system_wq = alloc_workqueue("events", 0, 0);
7749	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7750	system_long_wq = alloc_workqueue("events_long", 0, 0);
7751	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7752					    WQ_MAX_ACTIVE);
7753	system_freezable_wq = alloc_workqueue("events_freezable",
7754					      WQ_FREEZABLE, 0);
7755	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7756					      WQ_POWER_EFFICIENT, 0);
7757	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7758					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7759					      0);
7760	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7761	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7762					       WQ_BH | WQ_HIGHPRI, 0);
7763	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7764	       !system_unbound_wq || !system_freezable_wq ||
7765	       !system_power_efficient_wq ||
7766	       !system_freezable_power_efficient_wq ||
7767	       !system_bh_wq || !system_bh_highpri_wq);
7768}
7769
7770static void __init wq_cpu_intensive_thresh_init(void)
7771{
7772	unsigned long thresh;
7773	unsigned long bogo;
7774
7775	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7776	BUG_ON(IS_ERR(pwq_release_worker));
7777
7778	/* if the user set it to a specific value, keep it */
7779	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7780		return;
7781
7782	/*
7783	 * The default of 10ms is derived from the fact that most modern (as of
7784	 * 2023) processors can do a lot in 10ms and that it's just below what
7785	 * most consider human-perceivable. However, the kernel also runs on a
7786	 * lot slower CPUs including microcontrollers where the threshold is way
7787	 * too low.
7788	 *
7789	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7790	 * This is by no means accurate but it doesn't have to be. The mechanism
7791	 * is still useful even when the threshold is fully scaled up. Also, as
7792	 * the reports would usually be applicable to everyone, some machines
7793	 * operating on longer thresholds won't significantly diminish their
7794	 * usefulness.
7795	 */
7796	thresh = 10 * USEC_PER_MSEC;
7797
7798	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7799	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7800	if (bogo < 4000)
7801		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7802
7803	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7804		 loops_per_jiffy, bogo, thresh);
7805
7806	wq_cpu_intensive_thresh_us = thresh;
7807}
7808
7809/**
7810 * workqueue_init - bring workqueue subsystem fully online
7811 *
7812 * This is the second step of three-staged workqueue subsystem initialization
7813 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7814 * been created and work items queued on them, but there are no kworkers
7815 * executing the work items yet. Populate the worker pools with the initial
7816 * workers and enable future kworker creations.
7817 */
7818void __init workqueue_init(void)
7819{
7820	struct workqueue_struct *wq;
7821	struct worker_pool *pool;
7822	int cpu, bkt;
7823
7824	wq_cpu_intensive_thresh_init();
7825
7826	mutex_lock(&wq_pool_mutex);
7827
7828	/*
7829	 * Per-cpu pools created earlier could be missing node hint. Fix them
7830	 * up. Also, create a rescuer for workqueues that requested it.
7831	 */
7832	for_each_possible_cpu(cpu) {
7833		for_each_bh_worker_pool(pool, cpu)
7834			pool->node = cpu_to_node(cpu);
7835		for_each_cpu_worker_pool(pool, cpu)
7836			pool->node = cpu_to_node(cpu);
7837	}
7838
7839	list_for_each_entry(wq, &workqueues, list) {
7840		WARN(init_rescuer(wq),
7841		     "workqueue: failed to create early rescuer for %s",
7842		     wq->name);
7843	}
7844
7845	mutex_unlock(&wq_pool_mutex);
7846
7847	/*
7848	 * Create the initial workers. A BH pool has one pseudo worker that
7849	 * represents the shared BH execution context and thus doesn't get
7850	 * affected by hotplug events. Create the BH pseudo workers for all
7851	 * possible CPUs here.
7852	 */
7853	for_each_possible_cpu(cpu)
7854		for_each_bh_worker_pool(pool, cpu)
7855			BUG_ON(!create_worker(pool));
7856
7857	for_each_online_cpu(cpu) {
7858		for_each_cpu_worker_pool(pool, cpu) {
7859			pool->flags &= ~POOL_DISASSOCIATED;
7860			BUG_ON(!create_worker(pool));
7861		}
7862	}
7863
7864	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7865		BUG_ON(!create_worker(pool));
7866
7867	wq_online = true;
7868	wq_watchdog_init();
7869}
7870
7871/*
7872 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7873 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7874 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7875 */
7876static void __init init_pod_type(struct wq_pod_type *pt,
7877				 bool (*cpus_share_pod)(int, int))
7878{
7879	int cur, pre, cpu, pod;
7880
7881	pt->nr_pods = 0;
7882
7883	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7884	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7885	BUG_ON(!pt->cpu_pod);
7886
7887	for_each_possible_cpu(cur) {
7888		for_each_possible_cpu(pre) {
7889			if (pre >= cur) {
7890				pt->cpu_pod[cur] = pt->nr_pods++;
7891				break;
7892			}
7893			if (cpus_share_pod(cur, pre)) {
7894				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7895				break;
7896			}
7897		}
7898	}
7899
7900	/* init the rest to match @pt->cpu_pod[] */
7901	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7902	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7903	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7904
7905	for (pod = 0; pod < pt->nr_pods; pod++)
7906		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7907
7908	for_each_possible_cpu(cpu) {
7909		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7910		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7911	}
7912}
7913
7914static bool __init cpus_dont_share(int cpu0, int cpu1)
7915{
7916	return false;
7917}
7918
7919static bool __init cpus_share_smt(int cpu0, int cpu1)
7920{
7921#ifdef CONFIG_SCHED_SMT
7922	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7923#else
7924	return false;
7925#endif
7926}
7927
7928static bool __init cpus_share_numa(int cpu0, int cpu1)
7929{
7930	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7931}
7932
7933/**
7934 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7935 *
7936 * This is the third step of three-staged workqueue subsystem initialization and
7937 * invoked after SMP and topology information are fully initialized. It
7938 * initializes the unbound CPU pods accordingly.
7939 */
7940void __init workqueue_init_topology(void)
7941{
7942	struct workqueue_struct *wq;
7943	int cpu;
7944
7945	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7946	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7947	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7948	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7949
7950	wq_topo_initialized = true;
7951
7952	mutex_lock(&wq_pool_mutex);
7953
7954	/*
7955	 * Workqueues allocated earlier would have all CPUs sharing the default
7956	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7957	 * combinations to apply per-pod sharing.
7958	 */
7959	list_for_each_entry(wq, &workqueues, list) {
7960		for_each_online_cpu(cpu)
7961			wq_update_pod(wq, cpu, cpu, true);
7962		if (wq->flags & WQ_UNBOUND) {
7963			mutex_lock(&wq->mutex);
7964			wq_update_node_max_active(wq, -1);
7965			mutex_unlock(&wq->mutex);
7966		}
7967	}
7968
7969	mutex_unlock(&wq_pool_mutex);
7970}
7971
7972void __warn_flushing_systemwide_wq(void)
7973{
7974	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7975	dump_stack();
7976}
7977EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7978
7979static int __init workqueue_unbound_cpus_setup(char *str)
7980{
7981	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7982		cpumask_clear(&wq_cmdline_cpumask);
7983		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7984	}
7985
7986	return 1;
7987}
7988__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7989