1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7int sched_rr_timeslice = RR_TIMESLICE;
8/* More than 4 hours if BW_SHIFT equals 20. */
9static const u64 max_rt_runtime = MAX_BW;
10
11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13struct rt_bandwidth def_rt_bandwidth;
14
15/*
16 * period over which we measure -rt task CPU usage in us.
17 * default: 1s
18 */
19int sysctl_sched_rt_period = 1000000;
20
21/*
22 * part of the period that we allow rt tasks to run in us.
23 * default: 0.95s
24 */
25int sysctl_sched_rt_runtime = 950000;
26
27#ifdef CONFIG_SYSCTL
28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30		size_t *lenp, loff_t *ppos);
31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32		size_t *lenp, loff_t *ppos);
33static struct ctl_table sched_rt_sysctls[] = {
34	{
35		.procname       = "sched_rt_period_us",
36		.data           = &sysctl_sched_rt_period,
37		.maxlen         = sizeof(int),
38		.mode           = 0644,
39		.proc_handler   = sched_rt_handler,
40		.extra1         = SYSCTL_ONE,
41		.extra2         = SYSCTL_INT_MAX,
42	},
43	{
44		.procname       = "sched_rt_runtime_us",
45		.data           = &sysctl_sched_rt_runtime,
46		.maxlen         = sizeof(int),
47		.mode           = 0644,
48		.proc_handler   = sched_rt_handler,
49		.extra1         = SYSCTL_NEG_ONE,
50		.extra2         = (void *)&sysctl_sched_rt_period,
51	},
52	{
53		.procname       = "sched_rr_timeslice_ms",
54		.data           = &sysctl_sched_rr_timeslice,
55		.maxlen         = sizeof(int),
56		.mode           = 0644,
57		.proc_handler   = sched_rr_handler,
58	},
59};
60
61static int __init sched_rt_sysctl_init(void)
62{
63	register_sysctl_init("kernel", sched_rt_sysctls);
64	return 0;
65}
66late_initcall(sched_rt_sysctl_init);
67#endif
68
69static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
70{
71	struct rt_bandwidth *rt_b =
72		container_of(timer, struct rt_bandwidth, rt_period_timer);
73	int idle = 0;
74	int overrun;
75
76	raw_spin_lock(&rt_b->rt_runtime_lock);
77	for (;;) {
78		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
79		if (!overrun)
80			break;
81
82		raw_spin_unlock(&rt_b->rt_runtime_lock);
83		idle = do_sched_rt_period_timer(rt_b, overrun);
84		raw_spin_lock(&rt_b->rt_runtime_lock);
85	}
86	if (idle)
87		rt_b->rt_period_active = 0;
88	raw_spin_unlock(&rt_b->rt_runtime_lock);
89
90	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
91}
92
93void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
94{
95	rt_b->rt_period = ns_to_ktime(period);
96	rt_b->rt_runtime = runtime;
97
98	raw_spin_lock_init(&rt_b->rt_runtime_lock);
99
100	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
101		     HRTIMER_MODE_REL_HARD);
102	rt_b->rt_period_timer.function = sched_rt_period_timer;
103}
104
105static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
106{
107	raw_spin_lock(&rt_b->rt_runtime_lock);
108	if (!rt_b->rt_period_active) {
109		rt_b->rt_period_active = 1;
110		/*
111		 * SCHED_DEADLINE updates the bandwidth, as a run away
112		 * RT task with a DL task could hog a CPU. But DL does
113		 * not reset the period. If a deadline task was running
114		 * without an RT task running, it can cause RT tasks to
115		 * throttle when they start up. Kick the timer right away
116		 * to update the period.
117		 */
118		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
119		hrtimer_start_expires(&rt_b->rt_period_timer,
120				      HRTIMER_MODE_ABS_PINNED_HARD);
121	}
122	raw_spin_unlock(&rt_b->rt_runtime_lock);
123}
124
125static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
126{
127	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
128		return;
129
130	do_start_rt_bandwidth(rt_b);
131}
132
133void init_rt_rq(struct rt_rq *rt_rq)
134{
135	struct rt_prio_array *array;
136	int i;
137
138	array = &rt_rq->active;
139	for (i = 0; i < MAX_RT_PRIO; i++) {
140		INIT_LIST_HEAD(array->queue + i);
141		__clear_bit(i, array->bitmap);
142	}
143	/* delimiter for bitsearch: */
144	__set_bit(MAX_RT_PRIO, array->bitmap);
145
146#if defined CONFIG_SMP
147	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
148	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
149	rt_rq->overloaded = 0;
150	plist_head_init(&rt_rq->pushable_tasks);
151#endif /* CONFIG_SMP */
152	/* We start is dequeued state, because no RT tasks are queued */
153	rt_rq->rt_queued = 0;
154
155	rt_rq->rt_time = 0;
156	rt_rq->rt_throttled = 0;
157	rt_rq->rt_runtime = 0;
158	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
159}
160
161#ifdef CONFIG_RT_GROUP_SCHED
162static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
163{
164	hrtimer_cancel(&rt_b->rt_period_timer);
165}
166
167#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
168
169static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
170{
171#ifdef CONFIG_SCHED_DEBUG
172	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
173#endif
174	return container_of(rt_se, struct task_struct, rt);
175}
176
177static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
178{
179	return rt_rq->rq;
180}
181
182static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
183{
184	return rt_se->rt_rq;
185}
186
187static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
188{
189	struct rt_rq *rt_rq = rt_se->rt_rq;
190
191	return rt_rq->rq;
192}
193
194void unregister_rt_sched_group(struct task_group *tg)
195{
196	if (tg->rt_se)
197		destroy_rt_bandwidth(&tg->rt_bandwidth);
198
199}
200
201void free_rt_sched_group(struct task_group *tg)
202{
203	int i;
204
205	for_each_possible_cpu(i) {
206		if (tg->rt_rq)
207			kfree(tg->rt_rq[i]);
208		if (tg->rt_se)
209			kfree(tg->rt_se[i]);
210	}
211
212	kfree(tg->rt_rq);
213	kfree(tg->rt_se);
214}
215
216void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
217		struct sched_rt_entity *rt_se, int cpu,
218		struct sched_rt_entity *parent)
219{
220	struct rq *rq = cpu_rq(cpu);
221
222	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
223	rt_rq->rt_nr_boosted = 0;
224	rt_rq->rq = rq;
225	rt_rq->tg = tg;
226
227	tg->rt_rq[cpu] = rt_rq;
228	tg->rt_se[cpu] = rt_se;
229
230	if (!rt_se)
231		return;
232
233	if (!parent)
234		rt_se->rt_rq = &rq->rt;
235	else
236		rt_se->rt_rq = parent->my_q;
237
238	rt_se->my_q = rt_rq;
239	rt_se->parent = parent;
240	INIT_LIST_HEAD(&rt_se->run_list);
241}
242
243int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
244{
245	struct rt_rq *rt_rq;
246	struct sched_rt_entity *rt_se;
247	int i;
248
249	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
250	if (!tg->rt_rq)
251		goto err;
252	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
253	if (!tg->rt_se)
254		goto err;
255
256	init_rt_bandwidth(&tg->rt_bandwidth,
257			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
258
259	for_each_possible_cpu(i) {
260		rt_rq = kzalloc_node(sizeof(struct rt_rq),
261				     GFP_KERNEL, cpu_to_node(i));
262		if (!rt_rq)
263			goto err;
264
265		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
266				     GFP_KERNEL, cpu_to_node(i));
267		if (!rt_se)
268			goto err_free_rq;
269
270		init_rt_rq(rt_rq);
271		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
272		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
273	}
274
275	return 1;
276
277err_free_rq:
278	kfree(rt_rq);
279err:
280	return 0;
281}
282
283#else /* CONFIG_RT_GROUP_SCHED */
284
285#define rt_entity_is_task(rt_se) (1)
286
287static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
288{
289	return container_of(rt_se, struct task_struct, rt);
290}
291
292static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
293{
294	return container_of(rt_rq, struct rq, rt);
295}
296
297static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
298{
299	struct task_struct *p = rt_task_of(rt_se);
300
301	return task_rq(p);
302}
303
304static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
305{
306	struct rq *rq = rq_of_rt_se(rt_se);
307
308	return &rq->rt;
309}
310
311void unregister_rt_sched_group(struct task_group *tg) { }
312
313void free_rt_sched_group(struct task_group *tg) { }
314
315int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
316{
317	return 1;
318}
319#endif /* CONFIG_RT_GROUP_SCHED */
320
321#ifdef CONFIG_SMP
322
323static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
324{
325	/* Try to pull RT tasks here if we lower this rq's prio */
326	return rq->online && rq->rt.highest_prio.curr > prev->prio;
327}
328
329static inline int rt_overloaded(struct rq *rq)
330{
331	return atomic_read(&rq->rd->rto_count);
332}
333
334static inline void rt_set_overload(struct rq *rq)
335{
336	if (!rq->online)
337		return;
338
339	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
340	/*
341	 * Make sure the mask is visible before we set
342	 * the overload count. That is checked to determine
343	 * if we should look at the mask. It would be a shame
344	 * if we looked at the mask, but the mask was not
345	 * updated yet.
346	 *
347	 * Matched by the barrier in pull_rt_task().
348	 */
349	smp_wmb();
350	atomic_inc(&rq->rd->rto_count);
351}
352
353static inline void rt_clear_overload(struct rq *rq)
354{
355	if (!rq->online)
356		return;
357
358	/* the order here really doesn't matter */
359	atomic_dec(&rq->rd->rto_count);
360	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
361}
362
363static inline int has_pushable_tasks(struct rq *rq)
364{
365	return !plist_head_empty(&rq->rt.pushable_tasks);
366}
367
368static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
369static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
370
371static void push_rt_tasks(struct rq *);
372static void pull_rt_task(struct rq *);
373
374static inline void rt_queue_push_tasks(struct rq *rq)
375{
376	if (!has_pushable_tasks(rq))
377		return;
378
379	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
380}
381
382static inline void rt_queue_pull_task(struct rq *rq)
383{
384	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
385}
386
387static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
388{
389	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390	plist_node_init(&p->pushable_tasks, p->prio);
391	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393	/* Update the highest prio pushable task */
394	if (p->prio < rq->rt.highest_prio.next)
395		rq->rt.highest_prio.next = p->prio;
396
397	if (!rq->rt.overloaded) {
398		rt_set_overload(rq);
399		rq->rt.overloaded = 1;
400	}
401}
402
403static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
404{
405	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
406
407	/* Update the new highest prio pushable task */
408	if (has_pushable_tasks(rq)) {
409		p = plist_first_entry(&rq->rt.pushable_tasks,
410				      struct task_struct, pushable_tasks);
411		rq->rt.highest_prio.next = p->prio;
412	} else {
413		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
414
415		if (rq->rt.overloaded) {
416			rt_clear_overload(rq);
417			rq->rt.overloaded = 0;
418		}
419	}
420}
421
422#else
423
424static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
425{
426}
427
428static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
429{
430}
431
432static inline void rt_queue_push_tasks(struct rq *rq)
433{
434}
435#endif /* CONFIG_SMP */
436
437static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
438static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
439
440static inline int on_rt_rq(struct sched_rt_entity *rt_se)
441{
442	return rt_se->on_rq;
443}
444
445#ifdef CONFIG_UCLAMP_TASK
446/*
447 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
448 * settings.
449 *
450 * This check is only important for heterogeneous systems where uclamp_min value
451 * is higher than the capacity of a @cpu. For non-heterogeneous system this
452 * function will always return true.
453 *
454 * The function will return true if the capacity of the @cpu is >= the
455 * uclamp_min and false otherwise.
456 *
457 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
458 * > uclamp_max.
459 */
460static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
461{
462	unsigned int min_cap;
463	unsigned int max_cap;
464	unsigned int cpu_cap;
465
466	/* Only heterogeneous systems can benefit from this check */
467	if (!sched_asym_cpucap_active())
468		return true;
469
470	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
471	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
472
473	cpu_cap = arch_scale_cpu_capacity(cpu);
474
475	return cpu_cap >= min(min_cap, max_cap);
476}
477#else
478static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
479{
480	return true;
481}
482#endif
483
484#ifdef CONFIG_RT_GROUP_SCHED
485
486static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
487{
488	if (!rt_rq->tg)
489		return RUNTIME_INF;
490
491	return rt_rq->rt_runtime;
492}
493
494static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495{
496	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
497}
498
499typedef struct task_group *rt_rq_iter_t;
500
501static inline struct task_group *next_task_group(struct task_group *tg)
502{
503	do {
504		tg = list_entry_rcu(tg->list.next,
505			typeof(struct task_group), list);
506	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
507
508	if (&tg->list == &task_groups)
509		tg = NULL;
510
511	return tg;
512}
513
514#define for_each_rt_rq(rt_rq, iter, rq)					\
515	for (iter = container_of(&task_groups, typeof(*iter), list);	\
516		(iter = next_task_group(iter)) &&			\
517		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
518
519#define for_each_sched_rt_entity(rt_se) \
520	for (; rt_se; rt_se = rt_se->parent)
521
522static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
523{
524	return rt_se->my_q;
525}
526
527static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
528static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529
530static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
531{
532	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
533	struct rq *rq = rq_of_rt_rq(rt_rq);
534	struct sched_rt_entity *rt_se;
535
536	int cpu = cpu_of(rq);
537
538	rt_se = rt_rq->tg->rt_se[cpu];
539
540	if (rt_rq->rt_nr_running) {
541		if (!rt_se)
542			enqueue_top_rt_rq(rt_rq);
543		else if (!on_rt_rq(rt_se))
544			enqueue_rt_entity(rt_se, 0);
545
546		if (rt_rq->highest_prio.curr < curr->prio)
547			resched_curr(rq);
548	}
549}
550
551static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
552{
553	struct sched_rt_entity *rt_se;
554	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
555
556	rt_se = rt_rq->tg->rt_se[cpu];
557
558	if (!rt_se) {
559		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
560		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
561		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
562	}
563	else if (on_rt_rq(rt_se))
564		dequeue_rt_entity(rt_se, 0);
565}
566
567static inline int rt_rq_throttled(struct rt_rq *rt_rq)
568{
569	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
570}
571
572static int rt_se_boosted(struct sched_rt_entity *rt_se)
573{
574	struct rt_rq *rt_rq = group_rt_rq(rt_se);
575	struct task_struct *p;
576
577	if (rt_rq)
578		return !!rt_rq->rt_nr_boosted;
579
580	p = rt_task_of(rt_se);
581	return p->prio != p->normal_prio;
582}
583
584#ifdef CONFIG_SMP
585static inline const struct cpumask *sched_rt_period_mask(void)
586{
587	return this_rq()->rd->span;
588}
589#else
590static inline const struct cpumask *sched_rt_period_mask(void)
591{
592	return cpu_online_mask;
593}
594#endif
595
596static inline
597struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
598{
599	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
600}
601
602static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
603{
604	return &rt_rq->tg->rt_bandwidth;
605}
606
607#else /* !CONFIG_RT_GROUP_SCHED */
608
609static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
610{
611	return rt_rq->rt_runtime;
612}
613
614static inline u64 sched_rt_period(struct rt_rq *rt_rq)
615{
616	return ktime_to_ns(def_rt_bandwidth.rt_period);
617}
618
619typedef struct rt_rq *rt_rq_iter_t;
620
621#define for_each_rt_rq(rt_rq, iter, rq) \
622	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
623
624#define for_each_sched_rt_entity(rt_se) \
625	for (; rt_se; rt_se = NULL)
626
627static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
628{
629	return NULL;
630}
631
632static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
633{
634	struct rq *rq = rq_of_rt_rq(rt_rq);
635
636	if (!rt_rq->rt_nr_running)
637		return;
638
639	enqueue_top_rt_rq(rt_rq);
640	resched_curr(rq);
641}
642
643static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
644{
645	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
646}
647
648static inline int rt_rq_throttled(struct rt_rq *rt_rq)
649{
650	return rt_rq->rt_throttled;
651}
652
653static inline const struct cpumask *sched_rt_period_mask(void)
654{
655	return cpu_online_mask;
656}
657
658static inline
659struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
660{
661	return &cpu_rq(cpu)->rt;
662}
663
664static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
665{
666	return &def_rt_bandwidth;
667}
668
669#endif /* CONFIG_RT_GROUP_SCHED */
670
671bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
672{
673	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
674
675	return (hrtimer_active(&rt_b->rt_period_timer) ||
676		rt_rq->rt_time < rt_b->rt_runtime);
677}
678
679#ifdef CONFIG_SMP
680/*
681 * We ran out of runtime, see if we can borrow some from our neighbours.
682 */
683static void do_balance_runtime(struct rt_rq *rt_rq)
684{
685	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
686	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
687	int i, weight;
688	u64 rt_period;
689
690	weight = cpumask_weight(rd->span);
691
692	raw_spin_lock(&rt_b->rt_runtime_lock);
693	rt_period = ktime_to_ns(rt_b->rt_period);
694	for_each_cpu(i, rd->span) {
695		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
696		s64 diff;
697
698		if (iter == rt_rq)
699			continue;
700
701		raw_spin_lock(&iter->rt_runtime_lock);
702		/*
703		 * Either all rqs have inf runtime and there's nothing to steal
704		 * or __disable_runtime() below sets a specific rq to inf to
705		 * indicate its been disabled and disallow stealing.
706		 */
707		if (iter->rt_runtime == RUNTIME_INF)
708			goto next;
709
710		/*
711		 * From runqueues with spare time, take 1/n part of their
712		 * spare time, but no more than our period.
713		 */
714		diff = iter->rt_runtime - iter->rt_time;
715		if (diff > 0) {
716			diff = div_u64((u64)diff, weight);
717			if (rt_rq->rt_runtime + diff > rt_period)
718				diff = rt_period - rt_rq->rt_runtime;
719			iter->rt_runtime -= diff;
720			rt_rq->rt_runtime += diff;
721			if (rt_rq->rt_runtime == rt_period) {
722				raw_spin_unlock(&iter->rt_runtime_lock);
723				break;
724			}
725		}
726next:
727		raw_spin_unlock(&iter->rt_runtime_lock);
728	}
729	raw_spin_unlock(&rt_b->rt_runtime_lock);
730}
731
732/*
733 * Ensure this RQ takes back all the runtime it lend to its neighbours.
734 */
735static void __disable_runtime(struct rq *rq)
736{
737	struct root_domain *rd = rq->rd;
738	rt_rq_iter_t iter;
739	struct rt_rq *rt_rq;
740
741	if (unlikely(!scheduler_running))
742		return;
743
744	for_each_rt_rq(rt_rq, iter, rq) {
745		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
746		s64 want;
747		int i;
748
749		raw_spin_lock(&rt_b->rt_runtime_lock);
750		raw_spin_lock(&rt_rq->rt_runtime_lock);
751		/*
752		 * Either we're all inf and nobody needs to borrow, or we're
753		 * already disabled and thus have nothing to do, or we have
754		 * exactly the right amount of runtime to take out.
755		 */
756		if (rt_rq->rt_runtime == RUNTIME_INF ||
757				rt_rq->rt_runtime == rt_b->rt_runtime)
758			goto balanced;
759		raw_spin_unlock(&rt_rq->rt_runtime_lock);
760
761		/*
762		 * Calculate the difference between what we started out with
763		 * and what we current have, that's the amount of runtime
764		 * we lend and now have to reclaim.
765		 */
766		want = rt_b->rt_runtime - rt_rq->rt_runtime;
767
768		/*
769		 * Greedy reclaim, take back as much as we can.
770		 */
771		for_each_cpu(i, rd->span) {
772			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
773			s64 diff;
774
775			/*
776			 * Can't reclaim from ourselves or disabled runqueues.
777			 */
778			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
779				continue;
780
781			raw_spin_lock(&iter->rt_runtime_lock);
782			if (want > 0) {
783				diff = min_t(s64, iter->rt_runtime, want);
784				iter->rt_runtime -= diff;
785				want -= diff;
786			} else {
787				iter->rt_runtime -= want;
788				want -= want;
789			}
790			raw_spin_unlock(&iter->rt_runtime_lock);
791
792			if (!want)
793				break;
794		}
795
796		raw_spin_lock(&rt_rq->rt_runtime_lock);
797		/*
798		 * We cannot be left wanting - that would mean some runtime
799		 * leaked out of the system.
800		 */
801		WARN_ON_ONCE(want);
802balanced:
803		/*
804		 * Disable all the borrow logic by pretending we have inf
805		 * runtime - in which case borrowing doesn't make sense.
806		 */
807		rt_rq->rt_runtime = RUNTIME_INF;
808		rt_rq->rt_throttled = 0;
809		raw_spin_unlock(&rt_rq->rt_runtime_lock);
810		raw_spin_unlock(&rt_b->rt_runtime_lock);
811
812		/* Make rt_rq available for pick_next_task() */
813		sched_rt_rq_enqueue(rt_rq);
814	}
815}
816
817static void __enable_runtime(struct rq *rq)
818{
819	rt_rq_iter_t iter;
820	struct rt_rq *rt_rq;
821
822	if (unlikely(!scheduler_running))
823		return;
824
825	/*
826	 * Reset each runqueue's bandwidth settings
827	 */
828	for_each_rt_rq(rt_rq, iter, rq) {
829		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
830
831		raw_spin_lock(&rt_b->rt_runtime_lock);
832		raw_spin_lock(&rt_rq->rt_runtime_lock);
833		rt_rq->rt_runtime = rt_b->rt_runtime;
834		rt_rq->rt_time = 0;
835		rt_rq->rt_throttled = 0;
836		raw_spin_unlock(&rt_rq->rt_runtime_lock);
837		raw_spin_unlock(&rt_b->rt_runtime_lock);
838	}
839}
840
841static void balance_runtime(struct rt_rq *rt_rq)
842{
843	if (!sched_feat(RT_RUNTIME_SHARE))
844		return;
845
846	if (rt_rq->rt_time > rt_rq->rt_runtime) {
847		raw_spin_unlock(&rt_rq->rt_runtime_lock);
848		do_balance_runtime(rt_rq);
849		raw_spin_lock(&rt_rq->rt_runtime_lock);
850	}
851}
852#else /* !CONFIG_SMP */
853static inline void balance_runtime(struct rt_rq *rt_rq) {}
854#endif /* CONFIG_SMP */
855
856static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
857{
858	int i, idle = 1, throttled = 0;
859	const struct cpumask *span;
860
861	span = sched_rt_period_mask();
862#ifdef CONFIG_RT_GROUP_SCHED
863	/*
864	 * FIXME: isolated CPUs should really leave the root task group,
865	 * whether they are isolcpus or were isolated via cpusets, lest
866	 * the timer run on a CPU which does not service all runqueues,
867	 * potentially leaving other CPUs indefinitely throttled.  If
868	 * isolation is really required, the user will turn the throttle
869	 * off to kill the perturbations it causes anyway.  Meanwhile,
870	 * this maintains functionality for boot and/or troubleshooting.
871	 */
872	if (rt_b == &root_task_group.rt_bandwidth)
873		span = cpu_online_mask;
874#endif
875	for_each_cpu(i, span) {
876		int enqueue = 0;
877		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
878		struct rq *rq = rq_of_rt_rq(rt_rq);
879		struct rq_flags rf;
880		int skip;
881
882		/*
883		 * When span == cpu_online_mask, taking each rq->lock
884		 * can be time-consuming. Try to avoid it when possible.
885		 */
886		raw_spin_lock(&rt_rq->rt_runtime_lock);
887		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
888			rt_rq->rt_runtime = rt_b->rt_runtime;
889		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
890		raw_spin_unlock(&rt_rq->rt_runtime_lock);
891		if (skip)
892			continue;
893
894		rq_lock(rq, &rf);
895		update_rq_clock(rq);
896
897		if (rt_rq->rt_time) {
898			u64 runtime;
899
900			raw_spin_lock(&rt_rq->rt_runtime_lock);
901			if (rt_rq->rt_throttled)
902				balance_runtime(rt_rq);
903			runtime = rt_rq->rt_runtime;
904			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
905			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
906				rt_rq->rt_throttled = 0;
907				enqueue = 1;
908
909				/*
910				 * When we're idle and a woken (rt) task is
911				 * throttled wakeup_preempt() will set
912				 * skip_update and the time between the wakeup
913				 * and this unthrottle will get accounted as
914				 * 'runtime'.
915				 */
916				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
917					rq_clock_cancel_skipupdate(rq);
918			}
919			if (rt_rq->rt_time || rt_rq->rt_nr_running)
920				idle = 0;
921			raw_spin_unlock(&rt_rq->rt_runtime_lock);
922		} else if (rt_rq->rt_nr_running) {
923			idle = 0;
924			if (!rt_rq_throttled(rt_rq))
925				enqueue = 1;
926		}
927		if (rt_rq->rt_throttled)
928			throttled = 1;
929
930		if (enqueue)
931			sched_rt_rq_enqueue(rt_rq);
932		rq_unlock(rq, &rf);
933	}
934
935	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
936		return 1;
937
938	return idle;
939}
940
941static inline int rt_se_prio(struct sched_rt_entity *rt_se)
942{
943#ifdef CONFIG_RT_GROUP_SCHED
944	struct rt_rq *rt_rq = group_rt_rq(rt_se);
945
946	if (rt_rq)
947		return rt_rq->highest_prio.curr;
948#endif
949
950	return rt_task_of(rt_se)->prio;
951}
952
953static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
954{
955	u64 runtime = sched_rt_runtime(rt_rq);
956
957	if (rt_rq->rt_throttled)
958		return rt_rq_throttled(rt_rq);
959
960	if (runtime >= sched_rt_period(rt_rq))
961		return 0;
962
963	balance_runtime(rt_rq);
964	runtime = sched_rt_runtime(rt_rq);
965	if (runtime == RUNTIME_INF)
966		return 0;
967
968	if (rt_rq->rt_time > runtime) {
969		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
970
971		/*
972		 * Don't actually throttle groups that have no runtime assigned
973		 * but accrue some time due to boosting.
974		 */
975		if (likely(rt_b->rt_runtime)) {
976			rt_rq->rt_throttled = 1;
977			printk_deferred_once("sched: RT throttling activated\n");
978		} else {
979			/*
980			 * In case we did anyway, make it go away,
981			 * replenishment is a joke, since it will replenish us
982			 * with exactly 0 ns.
983			 */
984			rt_rq->rt_time = 0;
985		}
986
987		if (rt_rq_throttled(rt_rq)) {
988			sched_rt_rq_dequeue(rt_rq);
989			return 1;
990		}
991	}
992
993	return 0;
994}
995
996/*
997 * Update the current task's runtime statistics. Skip current tasks that
998 * are not in our scheduling class.
999 */
1000static void update_curr_rt(struct rq *rq)
1001{
1002	struct task_struct *curr = rq->curr;
1003	struct sched_rt_entity *rt_se = &curr->rt;
1004	s64 delta_exec;
1005
1006	if (curr->sched_class != &rt_sched_class)
1007		return;
1008
1009	delta_exec = update_curr_common(rq);
1010	if (unlikely(delta_exec <= 0))
1011		return;
1012
1013	if (!rt_bandwidth_enabled())
1014		return;
1015
1016	for_each_sched_rt_entity(rt_se) {
1017		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1018		int exceeded;
1019
1020		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1021			raw_spin_lock(&rt_rq->rt_runtime_lock);
1022			rt_rq->rt_time += delta_exec;
1023			exceeded = sched_rt_runtime_exceeded(rt_rq);
1024			if (exceeded)
1025				resched_curr(rq);
1026			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1027			if (exceeded)
1028				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1029		}
1030	}
1031}
1032
1033static void
1034dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1035{
1036	struct rq *rq = rq_of_rt_rq(rt_rq);
1037
1038	BUG_ON(&rq->rt != rt_rq);
1039
1040	if (!rt_rq->rt_queued)
1041		return;
1042
1043	BUG_ON(!rq->nr_running);
1044
1045	sub_nr_running(rq, count);
1046	rt_rq->rt_queued = 0;
1047
1048}
1049
1050static void
1051enqueue_top_rt_rq(struct rt_rq *rt_rq)
1052{
1053	struct rq *rq = rq_of_rt_rq(rt_rq);
1054
1055	BUG_ON(&rq->rt != rt_rq);
1056
1057	if (rt_rq->rt_queued)
1058		return;
1059
1060	if (rt_rq_throttled(rt_rq))
1061		return;
1062
1063	if (rt_rq->rt_nr_running) {
1064		add_nr_running(rq, rt_rq->rt_nr_running);
1065		rt_rq->rt_queued = 1;
1066	}
1067
1068	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1069	cpufreq_update_util(rq, 0);
1070}
1071
1072#if defined CONFIG_SMP
1073
1074static void
1075inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1076{
1077	struct rq *rq = rq_of_rt_rq(rt_rq);
1078
1079#ifdef CONFIG_RT_GROUP_SCHED
1080	/*
1081	 * Change rq's cpupri only if rt_rq is the top queue.
1082	 */
1083	if (&rq->rt != rt_rq)
1084		return;
1085#endif
1086	if (rq->online && prio < prev_prio)
1087		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1088}
1089
1090static void
1091dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1092{
1093	struct rq *rq = rq_of_rt_rq(rt_rq);
1094
1095#ifdef CONFIG_RT_GROUP_SCHED
1096	/*
1097	 * Change rq's cpupri only if rt_rq is the top queue.
1098	 */
1099	if (&rq->rt != rt_rq)
1100		return;
1101#endif
1102	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1103		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1104}
1105
1106#else /* CONFIG_SMP */
1107
1108static inline
1109void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1110static inline
1111void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1112
1113#endif /* CONFIG_SMP */
1114
1115#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1116static void
1117inc_rt_prio(struct rt_rq *rt_rq, int prio)
1118{
1119	int prev_prio = rt_rq->highest_prio.curr;
1120
1121	if (prio < prev_prio)
1122		rt_rq->highest_prio.curr = prio;
1123
1124	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1125}
1126
1127static void
1128dec_rt_prio(struct rt_rq *rt_rq, int prio)
1129{
1130	int prev_prio = rt_rq->highest_prio.curr;
1131
1132	if (rt_rq->rt_nr_running) {
1133
1134		WARN_ON(prio < prev_prio);
1135
1136		/*
1137		 * This may have been our highest task, and therefore
1138		 * we may have some recomputation to do
1139		 */
1140		if (prio == prev_prio) {
1141			struct rt_prio_array *array = &rt_rq->active;
1142
1143			rt_rq->highest_prio.curr =
1144				sched_find_first_bit(array->bitmap);
1145		}
1146
1147	} else {
1148		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1149	}
1150
1151	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1152}
1153
1154#else
1155
1156static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1157static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158
1159#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1160
1161#ifdef CONFIG_RT_GROUP_SCHED
1162
1163static void
1164inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165{
1166	if (rt_se_boosted(rt_se))
1167		rt_rq->rt_nr_boosted++;
1168
1169	if (rt_rq->tg)
1170		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1171}
1172
1173static void
1174dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175{
1176	if (rt_se_boosted(rt_se))
1177		rt_rq->rt_nr_boosted--;
1178
1179	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1180}
1181
1182#else /* CONFIG_RT_GROUP_SCHED */
1183
1184static void
1185inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186{
1187	start_rt_bandwidth(&def_rt_bandwidth);
1188}
1189
1190static inline
1191void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1192
1193#endif /* CONFIG_RT_GROUP_SCHED */
1194
1195static inline
1196unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1197{
1198	struct rt_rq *group_rq = group_rt_rq(rt_se);
1199
1200	if (group_rq)
1201		return group_rq->rt_nr_running;
1202	else
1203		return 1;
1204}
1205
1206static inline
1207unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1208{
1209	struct rt_rq *group_rq = group_rt_rq(rt_se);
1210	struct task_struct *tsk;
1211
1212	if (group_rq)
1213		return group_rq->rr_nr_running;
1214
1215	tsk = rt_task_of(rt_se);
1216
1217	return (tsk->policy == SCHED_RR) ? 1 : 0;
1218}
1219
1220static inline
1221void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1222{
1223	int prio = rt_se_prio(rt_se);
1224
1225	WARN_ON(!rt_prio(prio));
1226	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1227	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1228
1229	inc_rt_prio(rt_rq, prio);
1230	inc_rt_group(rt_se, rt_rq);
1231}
1232
1233static inline
1234void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1235{
1236	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1237	WARN_ON(!rt_rq->rt_nr_running);
1238	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1239	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1240
1241	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1242	dec_rt_group(rt_se, rt_rq);
1243}
1244
1245/*
1246 * Change rt_se->run_list location unless SAVE && !MOVE
1247 *
1248 * assumes ENQUEUE/DEQUEUE flags match
1249 */
1250static inline bool move_entity(unsigned int flags)
1251{
1252	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1253		return false;
1254
1255	return true;
1256}
1257
1258static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1259{
1260	list_del_init(&rt_se->run_list);
1261
1262	if (list_empty(array->queue + rt_se_prio(rt_se)))
1263		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1264
1265	rt_se->on_list = 0;
1266}
1267
1268static inline struct sched_statistics *
1269__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1270{
1271#ifdef CONFIG_RT_GROUP_SCHED
1272	/* schedstats is not supported for rt group. */
1273	if (!rt_entity_is_task(rt_se))
1274		return NULL;
1275#endif
1276
1277	return &rt_task_of(rt_se)->stats;
1278}
1279
1280static inline void
1281update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1282{
1283	struct sched_statistics *stats;
1284	struct task_struct *p = NULL;
1285
1286	if (!schedstat_enabled())
1287		return;
1288
1289	if (rt_entity_is_task(rt_se))
1290		p = rt_task_of(rt_se);
1291
1292	stats = __schedstats_from_rt_se(rt_se);
1293	if (!stats)
1294		return;
1295
1296	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1297}
1298
1299static inline void
1300update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1301{
1302	struct sched_statistics *stats;
1303	struct task_struct *p = NULL;
1304
1305	if (!schedstat_enabled())
1306		return;
1307
1308	if (rt_entity_is_task(rt_se))
1309		p = rt_task_of(rt_se);
1310
1311	stats = __schedstats_from_rt_se(rt_se);
1312	if (!stats)
1313		return;
1314
1315	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1316}
1317
1318static inline void
1319update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1320			int flags)
1321{
1322	if (!schedstat_enabled())
1323		return;
1324
1325	if (flags & ENQUEUE_WAKEUP)
1326		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1327}
1328
1329static inline void
1330update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1331{
1332	struct sched_statistics *stats;
1333	struct task_struct *p = NULL;
1334
1335	if (!schedstat_enabled())
1336		return;
1337
1338	if (rt_entity_is_task(rt_se))
1339		p = rt_task_of(rt_se);
1340
1341	stats = __schedstats_from_rt_se(rt_se);
1342	if (!stats)
1343		return;
1344
1345	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1346}
1347
1348static inline void
1349update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1350			int flags)
1351{
1352	struct task_struct *p = NULL;
1353
1354	if (!schedstat_enabled())
1355		return;
1356
1357	if (rt_entity_is_task(rt_se))
1358		p = rt_task_of(rt_se);
1359
1360	if ((flags & DEQUEUE_SLEEP) && p) {
1361		unsigned int state;
1362
1363		state = READ_ONCE(p->__state);
1364		if (state & TASK_INTERRUPTIBLE)
1365			__schedstat_set(p->stats.sleep_start,
1366					rq_clock(rq_of_rt_rq(rt_rq)));
1367
1368		if (state & TASK_UNINTERRUPTIBLE)
1369			__schedstat_set(p->stats.block_start,
1370					rq_clock(rq_of_rt_rq(rt_rq)));
1371	}
1372}
1373
1374static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1375{
1376	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1377	struct rt_prio_array *array = &rt_rq->active;
1378	struct rt_rq *group_rq = group_rt_rq(rt_se);
1379	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1380
1381	/*
1382	 * Don't enqueue the group if its throttled, or when empty.
1383	 * The latter is a consequence of the former when a child group
1384	 * get throttled and the current group doesn't have any other
1385	 * active members.
1386	 */
1387	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1388		if (rt_se->on_list)
1389			__delist_rt_entity(rt_se, array);
1390		return;
1391	}
1392
1393	if (move_entity(flags)) {
1394		WARN_ON_ONCE(rt_se->on_list);
1395		if (flags & ENQUEUE_HEAD)
1396			list_add(&rt_se->run_list, queue);
1397		else
1398			list_add_tail(&rt_se->run_list, queue);
1399
1400		__set_bit(rt_se_prio(rt_se), array->bitmap);
1401		rt_se->on_list = 1;
1402	}
1403	rt_se->on_rq = 1;
1404
1405	inc_rt_tasks(rt_se, rt_rq);
1406}
1407
1408static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1409{
1410	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1411	struct rt_prio_array *array = &rt_rq->active;
1412
1413	if (move_entity(flags)) {
1414		WARN_ON_ONCE(!rt_se->on_list);
1415		__delist_rt_entity(rt_se, array);
1416	}
1417	rt_se->on_rq = 0;
1418
1419	dec_rt_tasks(rt_se, rt_rq);
1420}
1421
1422/*
1423 * Because the prio of an upper entry depends on the lower
1424 * entries, we must remove entries top - down.
1425 */
1426static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1427{
1428	struct sched_rt_entity *back = NULL;
1429	unsigned int rt_nr_running;
1430
1431	for_each_sched_rt_entity(rt_se) {
1432		rt_se->back = back;
1433		back = rt_se;
1434	}
1435
1436	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1437
1438	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1439		if (on_rt_rq(rt_se))
1440			__dequeue_rt_entity(rt_se, flags);
1441	}
1442
1443	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1444}
1445
1446static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1447{
1448	struct rq *rq = rq_of_rt_se(rt_se);
1449
1450	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1451
1452	dequeue_rt_stack(rt_se, flags);
1453	for_each_sched_rt_entity(rt_se)
1454		__enqueue_rt_entity(rt_se, flags);
1455	enqueue_top_rt_rq(&rq->rt);
1456}
1457
1458static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1459{
1460	struct rq *rq = rq_of_rt_se(rt_se);
1461
1462	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1463
1464	dequeue_rt_stack(rt_se, flags);
1465
1466	for_each_sched_rt_entity(rt_se) {
1467		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1468
1469		if (rt_rq && rt_rq->rt_nr_running)
1470			__enqueue_rt_entity(rt_se, flags);
1471	}
1472	enqueue_top_rt_rq(&rq->rt);
1473}
1474
1475/*
1476 * Adding/removing a task to/from a priority array:
1477 */
1478static void
1479enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1480{
1481	struct sched_rt_entity *rt_se = &p->rt;
1482
1483	if (flags & ENQUEUE_WAKEUP)
1484		rt_se->timeout = 0;
1485
1486	check_schedstat_required();
1487	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1488
1489	enqueue_rt_entity(rt_se, flags);
1490
1491	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1492		enqueue_pushable_task(rq, p);
1493}
1494
1495static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1496{
1497	struct sched_rt_entity *rt_se = &p->rt;
1498
1499	update_curr_rt(rq);
1500	dequeue_rt_entity(rt_se, flags);
1501
1502	dequeue_pushable_task(rq, p);
1503}
1504
1505/*
1506 * Put task to the head or the end of the run list without the overhead of
1507 * dequeue followed by enqueue.
1508 */
1509static void
1510requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1511{
1512	if (on_rt_rq(rt_se)) {
1513		struct rt_prio_array *array = &rt_rq->active;
1514		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1515
1516		if (head)
1517			list_move(&rt_se->run_list, queue);
1518		else
1519			list_move_tail(&rt_se->run_list, queue);
1520	}
1521}
1522
1523static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1524{
1525	struct sched_rt_entity *rt_se = &p->rt;
1526	struct rt_rq *rt_rq;
1527
1528	for_each_sched_rt_entity(rt_se) {
1529		rt_rq = rt_rq_of_se(rt_se);
1530		requeue_rt_entity(rt_rq, rt_se, head);
1531	}
1532}
1533
1534static void yield_task_rt(struct rq *rq)
1535{
1536	requeue_task_rt(rq, rq->curr, 0);
1537}
1538
1539#ifdef CONFIG_SMP
1540static int find_lowest_rq(struct task_struct *task);
1541
1542static int
1543select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1544{
1545	struct task_struct *curr;
1546	struct rq *rq;
1547	bool test;
1548
1549	/* For anything but wake ups, just return the task_cpu */
1550	if (!(flags & (WF_TTWU | WF_FORK)))
1551		goto out;
1552
1553	rq = cpu_rq(cpu);
1554
1555	rcu_read_lock();
1556	curr = READ_ONCE(rq->curr); /* unlocked access */
1557
1558	/*
1559	 * If the current task on @p's runqueue is an RT task, then
1560	 * try to see if we can wake this RT task up on another
1561	 * runqueue. Otherwise simply start this RT task
1562	 * on its current runqueue.
1563	 *
1564	 * We want to avoid overloading runqueues. If the woken
1565	 * task is a higher priority, then it will stay on this CPU
1566	 * and the lower prio task should be moved to another CPU.
1567	 * Even though this will probably make the lower prio task
1568	 * lose its cache, we do not want to bounce a higher task
1569	 * around just because it gave up its CPU, perhaps for a
1570	 * lock?
1571	 *
1572	 * For equal prio tasks, we just let the scheduler sort it out.
1573	 *
1574	 * Otherwise, just let it ride on the affined RQ and the
1575	 * post-schedule router will push the preempted task away
1576	 *
1577	 * This test is optimistic, if we get it wrong the load-balancer
1578	 * will have to sort it out.
1579	 *
1580	 * We take into account the capacity of the CPU to ensure it fits the
1581	 * requirement of the task - which is only important on heterogeneous
1582	 * systems like big.LITTLE.
1583	 */
1584	test = curr &&
1585	       unlikely(rt_task(curr)) &&
1586	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1587
1588	if (test || !rt_task_fits_capacity(p, cpu)) {
1589		int target = find_lowest_rq(p);
1590
1591		/*
1592		 * Bail out if we were forcing a migration to find a better
1593		 * fitting CPU but our search failed.
1594		 */
1595		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1596			goto out_unlock;
1597
1598		/*
1599		 * Don't bother moving it if the destination CPU is
1600		 * not running a lower priority task.
1601		 */
1602		if (target != -1 &&
1603		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1604			cpu = target;
1605	}
1606
1607out_unlock:
1608	rcu_read_unlock();
1609
1610out:
1611	return cpu;
1612}
1613
1614static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1615{
1616	/*
1617	 * Current can't be migrated, useless to reschedule,
1618	 * let's hope p can move out.
1619	 */
1620	if (rq->curr->nr_cpus_allowed == 1 ||
1621	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1622		return;
1623
1624	/*
1625	 * p is migratable, so let's not schedule it and
1626	 * see if it is pushed or pulled somewhere else.
1627	 */
1628	if (p->nr_cpus_allowed != 1 &&
1629	    cpupri_find(&rq->rd->cpupri, p, NULL))
1630		return;
1631
1632	/*
1633	 * There appear to be other CPUs that can accept
1634	 * the current task but none can run 'p', so lets reschedule
1635	 * to try and push the current task away:
1636	 */
1637	requeue_task_rt(rq, p, 1);
1638	resched_curr(rq);
1639}
1640
1641static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1642{
1643	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1644		/*
1645		 * This is OK, because current is on_cpu, which avoids it being
1646		 * picked for load-balance and preemption/IRQs are still
1647		 * disabled avoiding further scheduler activity on it and we've
1648		 * not yet started the picking loop.
1649		 */
1650		rq_unpin_lock(rq, rf);
1651		pull_rt_task(rq);
1652		rq_repin_lock(rq, rf);
1653	}
1654
1655	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1656}
1657#endif /* CONFIG_SMP */
1658
1659/*
1660 * Preempt the current task with a newly woken task if needed:
1661 */
1662static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1663{
1664	if (p->prio < rq->curr->prio) {
1665		resched_curr(rq);
1666		return;
1667	}
1668
1669#ifdef CONFIG_SMP
1670	/*
1671	 * If:
1672	 *
1673	 * - the newly woken task is of equal priority to the current task
1674	 * - the newly woken task is non-migratable while current is migratable
1675	 * - current will be preempted on the next reschedule
1676	 *
1677	 * we should check to see if current can readily move to a different
1678	 * cpu.  If so, we will reschedule to allow the push logic to try
1679	 * to move current somewhere else, making room for our non-migratable
1680	 * task.
1681	 */
1682	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1683		check_preempt_equal_prio(rq, p);
1684#endif
1685}
1686
1687static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1688{
1689	struct sched_rt_entity *rt_se = &p->rt;
1690	struct rt_rq *rt_rq = &rq->rt;
1691
1692	p->se.exec_start = rq_clock_task(rq);
1693	if (on_rt_rq(&p->rt))
1694		update_stats_wait_end_rt(rt_rq, rt_se);
1695
1696	/* The running task is never eligible for pushing */
1697	dequeue_pushable_task(rq, p);
1698
1699	if (!first)
1700		return;
1701
1702	/*
1703	 * If prev task was rt, put_prev_task() has already updated the
1704	 * utilization. We only care of the case where we start to schedule a
1705	 * rt task
1706	 */
1707	if (rq->curr->sched_class != &rt_sched_class)
1708		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1709
1710	rt_queue_push_tasks(rq);
1711}
1712
1713static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1714{
1715	struct rt_prio_array *array = &rt_rq->active;
1716	struct sched_rt_entity *next = NULL;
1717	struct list_head *queue;
1718	int idx;
1719
1720	idx = sched_find_first_bit(array->bitmap);
1721	BUG_ON(idx >= MAX_RT_PRIO);
1722
1723	queue = array->queue + idx;
1724	if (SCHED_WARN_ON(list_empty(queue)))
1725		return NULL;
1726	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1727
1728	return next;
1729}
1730
1731static struct task_struct *_pick_next_task_rt(struct rq *rq)
1732{
1733	struct sched_rt_entity *rt_se;
1734	struct rt_rq *rt_rq  = &rq->rt;
1735
1736	do {
1737		rt_se = pick_next_rt_entity(rt_rq);
1738		if (unlikely(!rt_se))
1739			return NULL;
1740		rt_rq = group_rt_rq(rt_se);
1741	} while (rt_rq);
1742
1743	return rt_task_of(rt_se);
1744}
1745
1746static struct task_struct *pick_task_rt(struct rq *rq)
1747{
1748	struct task_struct *p;
1749
1750	if (!sched_rt_runnable(rq))
1751		return NULL;
1752
1753	p = _pick_next_task_rt(rq);
1754
1755	return p;
1756}
1757
1758static struct task_struct *pick_next_task_rt(struct rq *rq)
1759{
1760	struct task_struct *p = pick_task_rt(rq);
1761
1762	if (p)
1763		set_next_task_rt(rq, p, true);
1764
1765	return p;
1766}
1767
1768static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1769{
1770	struct sched_rt_entity *rt_se = &p->rt;
1771	struct rt_rq *rt_rq = &rq->rt;
1772
1773	if (on_rt_rq(&p->rt))
1774		update_stats_wait_start_rt(rt_rq, rt_se);
1775
1776	update_curr_rt(rq);
1777
1778	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1779
1780	/*
1781	 * The previous task needs to be made eligible for pushing
1782	 * if it is still active
1783	 */
1784	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1785		enqueue_pushable_task(rq, p);
1786}
1787
1788#ifdef CONFIG_SMP
1789
1790/* Only try algorithms three times */
1791#define RT_MAX_TRIES 3
1792
1793static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1794{
1795	if (!task_on_cpu(rq, p) &&
1796	    cpumask_test_cpu(cpu, &p->cpus_mask))
1797		return 1;
1798
1799	return 0;
1800}
1801
1802/*
1803 * Return the highest pushable rq's task, which is suitable to be executed
1804 * on the CPU, NULL otherwise
1805 */
1806static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1807{
1808	struct plist_head *head = &rq->rt.pushable_tasks;
1809	struct task_struct *p;
1810
1811	if (!has_pushable_tasks(rq))
1812		return NULL;
1813
1814	plist_for_each_entry(p, head, pushable_tasks) {
1815		if (pick_rt_task(rq, p, cpu))
1816			return p;
1817	}
1818
1819	return NULL;
1820}
1821
1822static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1823
1824static int find_lowest_rq(struct task_struct *task)
1825{
1826	struct sched_domain *sd;
1827	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1828	int this_cpu = smp_processor_id();
1829	int cpu      = task_cpu(task);
1830	int ret;
1831
1832	/* Make sure the mask is initialized first */
1833	if (unlikely(!lowest_mask))
1834		return -1;
1835
1836	if (task->nr_cpus_allowed == 1)
1837		return -1; /* No other targets possible */
1838
1839	/*
1840	 * If we're on asym system ensure we consider the different capacities
1841	 * of the CPUs when searching for the lowest_mask.
1842	 */
1843	if (sched_asym_cpucap_active()) {
1844
1845		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1846					  task, lowest_mask,
1847					  rt_task_fits_capacity);
1848	} else {
1849
1850		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1851				  task, lowest_mask);
1852	}
1853
1854	if (!ret)
1855		return -1; /* No targets found */
1856
1857	/*
1858	 * At this point we have built a mask of CPUs representing the
1859	 * lowest priority tasks in the system.  Now we want to elect
1860	 * the best one based on our affinity and topology.
1861	 *
1862	 * We prioritize the last CPU that the task executed on since
1863	 * it is most likely cache-hot in that location.
1864	 */
1865	if (cpumask_test_cpu(cpu, lowest_mask))
1866		return cpu;
1867
1868	/*
1869	 * Otherwise, we consult the sched_domains span maps to figure
1870	 * out which CPU is logically closest to our hot cache data.
1871	 */
1872	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1873		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1874
1875	rcu_read_lock();
1876	for_each_domain(cpu, sd) {
1877		if (sd->flags & SD_WAKE_AFFINE) {
1878			int best_cpu;
1879
1880			/*
1881			 * "this_cpu" is cheaper to preempt than a
1882			 * remote processor.
1883			 */
1884			if (this_cpu != -1 &&
1885			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1886				rcu_read_unlock();
1887				return this_cpu;
1888			}
1889
1890			best_cpu = cpumask_any_and_distribute(lowest_mask,
1891							      sched_domain_span(sd));
1892			if (best_cpu < nr_cpu_ids) {
1893				rcu_read_unlock();
1894				return best_cpu;
1895			}
1896		}
1897	}
1898	rcu_read_unlock();
1899
1900	/*
1901	 * And finally, if there were no matches within the domains
1902	 * just give the caller *something* to work with from the compatible
1903	 * locations.
1904	 */
1905	if (this_cpu != -1)
1906		return this_cpu;
1907
1908	cpu = cpumask_any_distribute(lowest_mask);
1909	if (cpu < nr_cpu_ids)
1910		return cpu;
1911
1912	return -1;
1913}
1914
1915/* Will lock the rq it finds */
1916static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1917{
1918	struct rq *lowest_rq = NULL;
1919	int tries;
1920	int cpu;
1921
1922	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1923		cpu = find_lowest_rq(task);
1924
1925		if ((cpu == -1) || (cpu == rq->cpu))
1926			break;
1927
1928		lowest_rq = cpu_rq(cpu);
1929
1930		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1931			/*
1932			 * Target rq has tasks of equal or higher priority,
1933			 * retrying does not release any lock and is unlikely
1934			 * to yield a different result.
1935			 */
1936			lowest_rq = NULL;
1937			break;
1938		}
1939
1940		/* if the prio of this runqueue changed, try again */
1941		if (double_lock_balance(rq, lowest_rq)) {
1942			/*
1943			 * We had to unlock the run queue. In
1944			 * the mean time, task could have
1945			 * migrated already or had its affinity changed.
1946			 * Also make sure that it wasn't scheduled on its rq.
1947			 * It is possible the task was scheduled, set
1948			 * "migrate_disabled" and then got preempted, so we must
1949			 * check the task migration disable flag here too.
1950			 */
1951			if (unlikely(task_rq(task) != rq ||
1952				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1953				     task_on_cpu(rq, task) ||
1954				     !rt_task(task) ||
1955				     is_migration_disabled(task) ||
1956				     !task_on_rq_queued(task))) {
1957
1958				double_unlock_balance(rq, lowest_rq);
1959				lowest_rq = NULL;
1960				break;
1961			}
1962		}
1963
1964		/* If this rq is still suitable use it. */
1965		if (lowest_rq->rt.highest_prio.curr > task->prio)
1966			break;
1967
1968		/* try again */
1969		double_unlock_balance(rq, lowest_rq);
1970		lowest_rq = NULL;
1971	}
1972
1973	return lowest_rq;
1974}
1975
1976static struct task_struct *pick_next_pushable_task(struct rq *rq)
1977{
1978	struct task_struct *p;
1979
1980	if (!has_pushable_tasks(rq))
1981		return NULL;
1982
1983	p = plist_first_entry(&rq->rt.pushable_tasks,
1984			      struct task_struct, pushable_tasks);
1985
1986	BUG_ON(rq->cpu != task_cpu(p));
1987	BUG_ON(task_current(rq, p));
1988	BUG_ON(p->nr_cpus_allowed <= 1);
1989
1990	BUG_ON(!task_on_rq_queued(p));
1991	BUG_ON(!rt_task(p));
1992
1993	return p;
1994}
1995
1996/*
1997 * If the current CPU has more than one RT task, see if the non
1998 * running task can migrate over to a CPU that is running a task
1999 * of lesser priority.
2000 */
2001static int push_rt_task(struct rq *rq, bool pull)
2002{
2003	struct task_struct *next_task;
2004	struct rq *lowest_rq;
2005	int ret = 0;
2006
2007	if (!rq->rt.overloaded)
2008		return 0;
2009
2010	next_task = pick_next_pushable_task(rq);
2011	if (!next_task)
2012		return 0;
2013
2014retry:
2015	/*
2016	 * It's possible that the next_task slipped in of
2017	 * higher priority than current. If that's the case
2018	 * just reschedule current.
2019	 */
2020	if (unlikely(next_task->prio < rq->curr->prio)) {
2021		resched_curr(rq);
2022		return 0;
2023	}
2024
2025	if (is_migration_disabled(next_task)) {
2026		struct task_struct *push_task = NULL;
2027		int cpu;
2028
2029		if (!pull || rq->push_busy)
2030			return 0;
2031
2032		/*
2033		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2034		 * make sense. Per the above priority check, curr has to
2035		 * be of higher priority than next_task, so no need to
2036		 * reschedule when bailing out.
2037		 *
2038		 * Note that the stoppers are masqueraded as SCHED_FIFO
2039		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2040		 */
2041		if (rq->curr->sched_class != &rt_sched_class)
2042			return 0;
2043
2044		cpu = find_lowest_rq(rq->curr);
2045		if (cpu == -1 || cpu == rq->cpu)
2046			return 0;
2047
2048		/*
2049		 * Given we found a CPU with lower priority than @next_task,
2050		 * therefore it should be running. However we cannot migrate it
2051		 * to this other CPU, instead attempt to push the current
2052		 * running task on this CPU away.
2053		 */
2054		push_task = get_push_task(rq);
2055		if (push_task) {
2056			preempt_disable();
2057			raw_spin_rq_unlock(rq);
2058			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2059					    push_task, &rq->push_work);
2060			preempt_enable();
2061			raw_spin_rq_lock(rq);
2062		}
2063
2064		return 0;
2065	}
2066
2067	if (WARN_ON(next_task == rq->curr))
2068		return 0;
2069
2070	/* We might release rq lock */
2071	get_task_struct(next_task);
2072
2073	/* find_lock_lowest_rq locks the rq if found */
2074	lowest_rq = find_lock_lowest_rq(next_task, rq);
2075	if (!lowest_rq) {
2076		struct task_struct *task;
2077		/*
2078		 * find_lock_lowest_rq releases rq->lock
2079		 * so it is possible that next_task has migrated.
2080		 *
2081		 * We need to make sure that the task is still on the same
2082		 * run-queue and is also still the next task eligible for
2083		 * pushing.
2084		 */
2085		task = pick_next_pushable_task(rq);
2086		if (task == next_task) {
2087			/*
2088			 * The task hasn't migrated, and is still the next
2089			 * eligible task, but we failed to find a run-queue
2090			 * to push it to.  Do not retry in this case, since
2091			 * other CPUs will pull from us when ready.
2092			 */
2093			goto out;
2094		}
2095
2096		if (!task)
2097			/* No more tasks, just exit */
2098			goto out;
2099
2100		/*
2101		 * Something has shifted, try again.
2102		 */
2103		put_task_struct(next_task);
2104		next_task = task;
2105		goto retry;
2106	}
2107
2108	deactivate_task(rq, next_task, 0);
2109	set_task_cpu(next_task, lowest_rq->cpu);
2110	activate_task(lowest_rq, next_task, 0);
2111	resched_curr(lowest_rq);
2112	ret = 1;
2113
2114	double_unlock_balance(rq, lowest_rq);
2115out:
2116	put_task_struct(next_task);
2117
2118	return ret;
2119}
2120
2121static void push_rt_tasks(struct rq *rq)
2122{
2123	/* push_rt_task will return true if it moved an RT */
2124	while (push_rt_task(rq, false))
2125		;
2126}
2127
2128#ifdef HAVE_RT_PUSH_IPI
2129
2130/*
2131 * When a high priority task schedules out from a CPU and a lower priority
2132 * task is scheduled in, a check is made to see if there's any RT tasks
2133 * on other CPUs that are waiting to run because a higher priority RT task
2134 * is currently running on its CPU. In this case, the CPU with multiple RT
2135 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2136 * up that may be able to run one of its non-running queued RT tasks.
2137 *
2138 * All CPUs with overloaded RT tasks need to be notified as there is currently
2139 * no way to know which of these CPUs have the highest priority task waiting
2140 * to run. Instead of trying to take a spinlock on each of these CPUs,
2141 * which has shown to cause large latency when done on machines with many
2142 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2143 * RT tasks waiting to run.
2144 *
2145 * Just sending an IPI to each of the CPUs is also an issue, as on large
2146 * count CPU machines, this can cause an IPI storm on a CPU, especially
2147 * if its the only CPU with multiple RT tasks queued, and a large number
2148 * of CPUs scheduling a lower priority task at the same time.
2149 *
2150 * Each root domain has its own irq work function that can iterate over
2151 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2152 * task must be checked if there's one or many CPUs that are lowering
2153 * their priority, there's a single irq work iterator that will try to
2154 * push off RT tasks that are waiting to run.
2155 *
2156 * When a CPU schedules a lower priority task, it will kick off the
2157 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2158 * As it only takes the first CPU that schedules a lower priority task
2159 * to start the process, the rto_start variable is incremented and if
2160 * the atomic result is one, then that CPU will try to take the rto_lock.
2161 * This prevents high contention on the lock as the process handles all
2162 * CPUs scheduling lower priority tasks.
2163 *
2164 * All CPUs that are scheduling a lower priority task will increment the
2165 * rt_loop_next variable. This will make sure that the irq work iterator
2166 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2167 * priority task, even if the iterator is in the middle of a scan. Incrementing
2168 * the rt_loop_next will cause the iterator to perform another scan.
2169 *
2170 */
2171static int rto_next_cpu(struct root_domain *rd)
2172{
2173	int next;
2174	int cpu;
2175
2176	/*
2177	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2178	 * rt_next_cpu() will simply return the first CPU found in
2179	 * the rto_mask.
2180	 *
2181	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2182	 * will return the next CPU found in the rto_mask.
2183	 *
2184	 * If there are no more CPUs left in the rto_mask, then a check is made
2185	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2186	 * the rto_lock held, but any CPU may increment the rto_loop_next
2187	 * without any locking.
2188	 */
2189	for (;;) {
2190
2191		/* When rto_cpu is -1 this acts like cpumask_first() */
2192		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2193
2194		rd->rto_cpu = cpu;
2195
2196		if (cpu < nr_cpu_ids)
2197			return cpu;
2198
2199		rd->rto_cpu = -1;
2200
2201		/*
2202		 * ACQUIRE ensures we see the @rto_mask changes
2203		 * made prior to the @next value observed.
2204		 *
2205		 * Matches WMB in rt_set_overload().
2206		 */
2207		next = atomic_read_acquire(&rd->rto_loop_next);
2208
2209		if (rd->rto_loop == next)
2210			break;
2211
2212		rd->rto_loop = next;
2213	}
2214
2215	return -1;
2216}
2217
2218static inline bool rto_start_trylock(atomic_t *v)
2219{
2220	return !atomic_cmpxchg_acquire(v, 0, 1);
2221}
2222
2223static inline void rto_start_unlock(atomic_t *v)
2224{
2225	atomic_set_release(v, 0);
2226}
2227
2228static void tell_cpu_to_push(struct rq *rq)
2229{
2230	int cpu = -1;
2231
2232	/* Keep the loop going if the IPI is currently active */
2233	atomic_inc(&rq->rd->rto_loop_next);
2234
2235	/* Only one CPU can initiate a loop at a time */
2236	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2237		return;
2238
2239	raw_spin_lock(&rq->rd->rto_lock);
2240
2241	/*
2242	 * The rto_cpu is updated under the lock, if it has a valid CPU
2243	 * then the IPI is still running and will continue due to the
2244	 * update to loop_next, and nothing needs to be done here.
2245	 * Otherwise it is finishing up and an ipi needs to be sent.
2246	 */
2247	if (rq->rd->rto_cpu < 0)
2248		cpu = rto_next_cpu(rq->rd);
2249
2250	raw_spin_unlock(&rq->rd->rto_lock);
2251
2252	rto_start_unlock(&rq->rd->rto_loop_start);
2253
2254	if (cpu >= 0) {
2255		/* Make sure the rd does not get freed while pushing */
2256		sched_get_rd(rq->rd);
2257		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2258	}
2259}
2260
2261/* Called from hardirq context */
2262void rto_push_irq_work_func(struct irq_work *work)
2263{
2264	struct root_domain *rd =
2265		container_of(work, struct root_domain, rto_push_work);
2266	struct rq *rq;
2267	int cpu;
2268
2269	rq = this_rq();
2270
2271	/*
2272	 * We do not need to grab the lock to check for has_pushable_tasks.
2273	 * When it gets updated, a check is made if a push is possible.
2274	 */
2275	if (has_pushable_tasks(rq)) {
2276		raw_spin_rq_lock(rq);
2277		while (push_rt_task(rq, true))
2278			;
2279		raw_spin_rq_unlock(rq);
2280	}
2281
2282	raw_spin_lock(&rd->rto_lock);
2283
2284	/* Pass the IPI to the next rt overloaded queue */
2285	cpu = rto_next_cpu(rd);
2286
2287	raw_spin_unlock(&rd->rto_lock);
2288
2289	if (cpu < 0) {
2290		sched_put_rd(rd);
2291		return;
2292	}
2293
2294	/* Try the next RT overloaded CPU */
2295	irq_work_queue_on(&rd->rto_push_work, cpu);
2296}
2297#endif /* HAVE_RT_PUSH_IPI */
2298
2299static void pull_rt_task(struct rq *this_rq)
2300{
2301	int this_cpu = this_rq->cpu, cpu;
2302	bool resched = false;
2303	struct task_struct *p, *push_task;
2304	struct rq *src_rq;
2305	int rt_overload_count = rt_overloaded(this_rq);
2306
2307	if (likely(!rt_overload_count))
2308		return;
2309
2310	/*
2311	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2312	 * see overloaded we must also see the rto_mask bit.
2313	 */
2314	smp_rmb();
2315
2316	/* If we are the only overloaded CPU do nothing */
2317	if (rt_overload_count == 1 &&
2318	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2319		return;
2320
2321#ifdef HAVE_RT_PUSH_IPI
2322	if (sched_feat(RT_PUSH_IPI)) {
2323		tell_cpu_to_push(this_rq);
2324		return;
2325	}
2326#endif
2327
2328	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2329		if (this_cpu == cpu)
2330			continue;
2331
2332		src_rq = cpu_rq(cpu);
2333
2334		/*
2335		 * Don't bother taking the src_rq->lock if the next highest
2336		 * task is known to be lower-priority than our current task.
2337		 * This may look racy, but if this value is about to go
2338		 * logically higher, the src_rq will push this task away.
2339		 * And if its going logically lower, we do not care
2340		 */
2341		if (src_rq->rt.highest_prio.next >=
2342		    this_rq->rt.highest_prio.curr)
2343			continue;
2344
2345		/*
2346		 * We can potentially drop this_rq's lock in
2347		 * double_lock_balance, and another CPU could
2348		 * alter this_rq
2349		 */
2350		push_task = NULL;
2351		double_lock_balance(this_rq, src_rq);
2352
2353		/*
2354		 * We can pull only a task, which is pushable
2355		 * on its rq, and no others.
2356		 */
2357		p = pick_highest_pushable_task(src_rq, this_cpu);
2358
2359		/*
2360		 * Do we have an RT task that preempts
2361		 * the to-be-scheduled task?
2362		 */
2363		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2364			WARN_ON(p == src_rq->curr);
2365			WARN_ON(!task_on_rq_queued(p));
2366
2367			/*
2368			 * There's a chance that p is higher in priority
2369			 * than what's currently running on its CPU.
2370			 * This is just that p is waking up and hasn't
2371			 * had a chance to schedule. We only pull
2372			 * p if it is lower in priority than the
2373			 * current task on the run queue
2374			 */
2375			if (p->prio < src_rq->curr->prio)
2376				goto skip;
2377
2378			if (is_migration_disabled(p)) {
2379				push_task = get_push_task(src_rq);
2380			} else {
2381				deactivate_task(src_rq, p, 0);
2382				set_task_cpu(p, this_cpu);
2383				activate_task(this_rq, p, 0);
2384				resched = true;
2385			}
2386			/*
2387			 * We continue with the search, just in
2388			 * case there's an even higher prio task
2389			 * in another runqueue. (low likelihood
2390			 * but possible)
2391			 */
2392		}
2393skip:
2394		double_unlock_balance(this_rq, src_rq);
2395
2396		if (push_task) {
2397			preempt_disable();
2398			raw_spin_rq_unlock(this_rq);
2399			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2400					    push_task, &src_rq->push_work);
2401			preempt_enable();
2402			raw_spin_rq_lock(this_rq);
2403		}
2404	}
2405
2406	if (resched)
2407		resched_curr(this_rq);
2408}
2409
2410/*
2411 * If we are not running and we are not going to reschedule soon, we should
2412 * try to push tasks away now
2413 */
2414static void task_woken_rt(struct rq *rq, struct task_struct *p)
2415{
2416	bool need_to_push = !task_on_cpu(rq, p) &&
2417			    !test_tsk_need_resched(rq->curr) &&
2418			    p->nr_cpus_allowed > 1 &&
2419			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2420			    (rq->curr->nr_cpus_allowed < 2 ||
2421			     rq->curr->prio <= p->prio);
2422
2423	if (need_to_push)
2424		push_rt_tasks(rq);
2425}
2426
2427/* Assumes rq->lock is held */
2428static void rq_online_rt(struct rq *rq)
2429{
2430	if (rq->rt.overloaded)
2431		rt_set_overload(rq);
2432
2433	__enable_runtime(rq);
2434
2435	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2436}
2437
2438/* Assumes rq->lock is held */
2439static void rq_offline_rt(struct rq *rq)
2440{
2441	if (rq->rt.overloaded)
2442		rt_clear_overload(rq);
2443
2444	__disable_runtime(rq);
2445
2446	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2447}
2448
2449/*
2450 * When switch from the rt queue, we bring ourselves to a position
2451 * that we might want to pull RT tasks from other runqueues.
2452 */
2453static void switched_from_rt(struct rq *rq, struct task_struct *p)
2454{
2455	/*
2456	 * If there are other RT tasks then we will reschedule
2457	 * and the scheduling of the other RT tasks will handle
2458	 * the balancing. But if we are the last RT task
2459	 * we may need to handle the pulling of RT tasks
2460	 * now.
2461	 */
2462	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2463		return;
2464
2465	rt_queue_pull_task(rq);
2466}
2467
2468void __init init_sched_rt_class(void)
2469{
2470	unsigned int i;
2471
2472	for_each_possible_cpu(i) {
2473		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2474					GFP_KERNEL, cpu_to_node(i));
2475	}
2476}
2477#endif /* CONFIG_SMP */
2478
2479/*
2480 * When switching a task to RT, we may overload the runqueue
2481 * with RT tasks. In this case we try to push them off to
2482 * other runqueues.
2483 */
2484static void switched_to_rt(struct rq *rq, struct task_struct *p)
2485{
2486	/*
2487	 * If we are running, update the avg_rt tracking, as the running time
2488	 * will now on be accounted into the latter.
2489	 */
2490	if (task_current(rq, p)) {
2491		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2492		return;
2493	}
2494
2495	/*
2496	 * If we are not running we may need to preempt the current
2497	 * running task. If that current running task is also an RT task
2498	 * then see if we can move to another run queue.
2499	 */
2500	if (task_on_rq_queued(p)) {
2501#ifdef CONFIG_SMP
2502		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2503			rt_queue_push_tasks(rq);
2504#endif /* CONFIG_SMP */
2505		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2506			resched_curr(rq);
2507	}
2508}
2509
2510/*
2511 * Priority of the task has changed. This may cause
2512 * us to initiate a push or pull.
2513 */
2514static void
2515prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2516{
2517	if (!task_on_rq_queued(p))
2518		return;
2519
2520	if (task_current(rq, p)) {
2521#ifdef CONFIG_SMP
2522		/*
2523		 * If our priority decreases while running, we
2524		 * may need to pull tasks to this runqueue.
2525		 */
2526		if (oldprio < p->prio)
2527			rt_queue_pull_task(rq);
2528
2529		/*
2530		 * If there's a higher priority task waiting to run
2531		 * then reschedule.
2532		 */
2533		if (p->prio > rq->rt.highest_prio.curr)
2534			resched_curr(rq);
2535#else
2536		/* For UP simply resched on drop of prio */
2537		if (oldprio < p->prio)
2538			resched_curr(rq);
2539#endif /* CONFIG_SMP */
2540	} else {
2541		/*
2542		 * This task is not running, but if it is
2543		 * greater than the current running task
2544		 * then reschedule.
2545		 */
2546		if (p->prio < rq->curr->prio)
2547			resched_curr(rq);
2548	}
2549}
2550
2551#ifdef CONFIG_POSIX_TIMERS
2552static void watchdog(struct rq *rq, struct task_struct *p)
2553{
2554	unsigned long soft, hard;
2555
2556	/* max may change after cur was read, this will be fixed next tick */
2557	soft = task_rlimit(p, RLIMIT_RTTIME);
2558	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2559
2560	if (soft != RLIM_INFINITY) {
2561		unsigned long next;
2562
2563		if (p->rt.watchdog_stamp != jiffies) {
2564			p->rt.timeout++;
2565			p->rt.watchdog_stamp = jiffies;
2566		}
2567
2568		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2569		if (p->rt.timeout > next) {
2570			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2571						    p->se.sum_exec_runtime);
2572		}
2573	}
2574}
2575#else
2576static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2577#endif
2578
2579/*
2580 * scheduler tick hitting a task of our scheduling class.
2581 *
2582 * NOTE: This function can be called remotely by the tick offload that
2583 * goes along full dynticks. Therefore no local assumption can be made
2584 * and everything must be accessed through the @rq and @curr passed in
2585 * parameters.
2586 */
2587static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2588{
2589	struct sched_rt_entity *rt_se = &p->rt;
2590
2591	update_curr_rt(rq);
2592	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2593
2594	watchdog(rq, p);
2595
2596	/*
2597	 * RR tasks need a special form of timeslice management.
2598	 * FIFO tasks have no timeslices.
2599	 */
2600	if (p->policy != SCHED_RR)
2601		return;
2602
2603	if (--p->rt.time_slice)
2604		return;
2605
2606	p->rt.time_slice = sched_rr_timeslice;
2607
2608	/*
2609	 * Requeue to the end of queue if we (and all of our ancestors) are not
2610	 * the only element on the queue
2611	 */
2612	for_each_sched_rt_entity(rt_se) {
2613		if (rt_se->run_list.prev != rt_se->run_list.next) {
2614			requeue_task_rt(rq, p, 0);
2615			resched_curr(rq);
2616			return;
2617		}
2618	}
2619}
2620
2621static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2622{
2623	/*
2624	 * Time slice is 0 for SCHED_FIFO tasks
2625	 */
2626	if (task->policy == SCHED_RR)
2627		return sched_rr_timeslice;
2628	else
2629		return 0;
2630}
2631
2632#ifdef CONFIG_SCHED_CORE
2633static int task_is_throttled_rt(struct task_struct *p, int cpu)
2634{
2635	struct rt_rq *rt_rq;
2636
2637#ifdef CONFIG_RT_GROUP_SCHED
2638	rt_rq = task_group(p)->rt_rq[cpu];
2639#else
2640	rt_rq = &cpu_rq(cpu)->rt;
2641#endif
2642
2643	return rt_rq_throttled(rt_rq);
2644}
2645#endif
2646
2647DEFINE_SCHED_CLASS(rt) = {
2648
2649	.enqueue_task		= enqueue_task_rt,
2650	.dequeue_task		= dequeue_task_rt,
2651	.yield_task		= yield_task_rt,
2652
2653	.wakeup_preempt		= wakeup_preempt_rt,
2654
2655	.pick_next_task		= pick_next_task_rt,
2656	.put_prev_task		= put_prev_task_rt,
2657	.set_next_task          = set_next_task_rt,
2658
2659#ifdef CONFIG_SMP
2660	.balance		= balance_rt,
2661	.pick_task		= pick_task_rt,
2662	.select_task_rq		= select_task_rq_rt,
2663	.set_cpus_allowed       = set_cpus_allowed_common,
2664	.rq_online              = rq_online_rt,
2665	.rq_offline             = rq_offline_rt,
2666	.task_woken		= task_woken_rt,
2667	.switched_from		= switched_from_rt,
2668	.find_lock_rq		= find_lock_lowest_rq,
2669#endif
2670
2671	.task_tick		= task_tick_rt,
2672
2673	.get_rr_interval	= get_rr_interval_rt,
2674
2675	.prio_changed		= prio_changed_rt,
2676	.switched_to		= switched_to_rt,
2677
2678	.update_curr		= update_curr_rt,
2679
2680#ifdef CONFIG_SCHED_CORE
2681	.task_is_throttled	= task_is_throttled_rt,
2682#endif
2683
2684#ifdef CONFIG_UCLAMP_TASK
2685	.uclamp_enabled		= 1,
2686#endif
2687};
2688
2689#ifdef CONFIG_RT_GROUP_SCHED
2690/*
2691 * Ensure that the real time constraints are schedulable.
2692 */
2693static DEFINE_MUTEX(rt_constraints_mutex);
2694
2695static inline int tg_has_rt_tasks(struct task_group *tg)
2696{
2697	struct task_struct *task;
2698	struct css_task_iter it;
2699	int ret = 0;
2700
2701	/*
2702	 * Autogroups do not have RT tasks; see autogroup_create().
2703	 */
2704	if (task_group_is_autogroup(tg))
2705		return 0;
2706
2707	css_task_iter_start(&tg->css, 0, &it);
2708	while (!ret && (task = css_task_iter_next(&it)))
2709		ret |= rt_task(task);
2710	css_task_iter_end(&it);
2711
2712	return ret;
2713}
2714
2715struct rt_schedulable_data {
2716	struct task_group *tg;
2717	u64 rt_period;
2718	u64 rt_runtime;
2719};
2720
2721static int tg_rt_schedulable(struct task_group *tg, void *data)
2722{
2723	struct rt_schedulable_data *d = data;
2724	struct task_group *child;
2725	unsigned long total, sum = 0;
2726	u64 period, runtime;
2727
2728	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2729	runtime = tg->rt_bandwidth.rt_runtime;
2730
2731	if (tg == d->tg) {
2732		period = d->rt_period;
2733		runtime = d->rt_runtime;
2734	}
2735
2736	/*
2737	 * Cannot have more runtime than the period.
2738	 */
2739	if (runtime > period && runtime != RUNTIME_INF)
2740		return -EINVAL;
2741
2742	/*
2743	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2744	 */
2745	if (rt_bandwidth_enabled() && !runtime &&
2746	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2747		return -EBUSY;
2748
2749	total = to_ratio(period, runtime);
2750
2751	/*
2752	 * Nobody can have more than the global setting allows.
2753	 */
2754	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2755		return -EINVAL;
2756
2757	/*
2758	 * The sum of our children's runtime should not exceed our own.
2759	 */
2760	list_for_each_entry_rcu(child, &tg->children, siblings) {
2761		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2762		runtime = child->rt_bandwidth.rt_runtime;
2763
2764		if (child == d->tg) {
2765			period = d->rt_period;
2766			runtime = d->rt_runtime;
2767		}
2768
2769		sum += to_ratio(period, runtime);
2770	}
2771
2772	if (sum > total)
2773		return -EINVAL;
2774
2775	return 0;
2776}
2777
2778static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2779{
2780	int ret;
2781
2782	struct rt_schedulable_data data = {
2783		.tg = tg,
2784		.rt_period = period,
2785		.rt_runtime = runtime,
2786	};
2787
2788	rcu_read_lock();
2789	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2790	rcu_read_unlock();
2791
2792	return ret;
2793}
2794
2795static int tg_set_rt_bandwidth(struct task_group *tg,
2796		u64 rt_period, u64 rt_runtime)
2797{
2798	int i, err = 0;
2799
2800	/*
2801	 * Disallowing the root group RT runtime is BAD, it would disallow the
2802	 * kernel creating (and or operating) RT threads.
2803	 */
2804	if (tg == &root_task_group && rt_runtime == 0)
2805		return -EINVAL;
2806
2807	/* No period doesn't make any sense. */
2808	if (rt_period == 0)
2809		return -EINVAL;
2810
2811	/*
2812	 * Bound quota to defend quota against overflow during bandwidth shift.
2813	 */
2814	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2815		return -EINVAL;
2816
2817	mutex_lock(&rt_constraints_mutex);
2818	err = __rt_schedulable(tg, rt_period, rt_runtime);
2819	if (err)
2820		goto unlock;
2821
2822	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2823	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2824	tg->rt_bandwidth.rt_runtime = rt_runtime;
2825
2826	for_each_possible_cpu(i) {
2827		struct rt_rq *rt_rq = tg->rt_rq[i];
2828
2829		raw_spin_lock(&rt_rq->rt_runtime_lock);
2830		rt_rq->rt_runtime = rt_runtime;
2831		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2832	}
2833	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2834unlock:
2835	mutex_unlock(&rt_constraints_mutex);
2836
2837	return err;
2838}
2839
2840int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2841{
2842	u64 rt_runtime, rt_period;
2843
2844	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2845	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2846	if (rt_runtime_us < 0)
2847		rt_runtime = RUNTIME_INF;
2848	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2849		return -EINVAL;
2850
2851	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2852}
2853
2854long sched_group_rt_runtime(struct task_group *tg)
2855{
2856	u64 rt_runtime_us;
2857
2858	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2859		return -1;
2860
2861	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2862	do_div(rt_runtime_us, NSEC_PER_USEC);
2863	return rt_runtime_us;
2864}
2865
2866int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2867{
2868	u64 rt_runtime, rt_period;
2869
2870	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2871		return -EINVAL;
2872
2873	rt_period = rt_period_us * NSEC_PER_USEC;
2874	rt_runtime = tg->rt_bandwidth.rt_runtime;
2875
2876	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2877}
2878
2879long sched_group_rt_period(struct task_group *tg)
2880{
2881	u64 rt_period_us;
2882
2883	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2884	do_div(rt_period_us, NSEC_PER_USEC);
2885	return rt_period_us;
2886}
2887
2888#ifdef CONFIG_SYSCTL
2889static int sched_rt_global_constraints(void)
2890{
2891	int ret = 0;
2892
2893	mutex_lock(&rt_constraints_mutex);
2894	ret = __rt_schedulable(NULL, 0, 0);
2895	mutex_unlock(&rt_constraints_mutex);
2896
2897	return ret;
2898}
2899#endif /* CONFIG_SYSCTL */
2900
2901int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2902{
2903	/* Don't accept realtime tasks when there is no way for them to run */
2904	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2905		return 0;
2906
2907	return 1;
2908}
2909
2910#else /* !CONFIG_RT_GROUP_SCHED */
2911
2912#ifdef CONFIG_SYSCTL
2913static int sched_rt_global_constraints(void)
2914{
2915	unsigned long flags;
2916	int i;
2917
2918	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2919	for_each_possible_cpu(i) {
2920		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2921
2922		raw_spin_lock(&rt_rq->rt_runtime_lock);
2923		rt_rq->rt_runtime = global_rt_runtime();
2924		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2925	}
2926	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2927
2928	return 0;
2929}
2930#endif /* CONFIG_SYSCTL */
2931#endif /* CONFIG_RT_GROUP_SCHED */
2932
2933#ifdef CONFIG_SYSCTL
2934static int sched_rt_global_validate(void)
2935{
2936	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2937		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2938		 ((u64)sysctl_sched_rt_runtime *
2939			NSEC_PER_USEC > max_rt_runtime)))
2940		return -EINVAL;
2941
2942	return 0;
2943}
2944
2945static void sched_rt_do_global(void)
2946{
2947	unsigned long flags;
2948
2949	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2950	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2951	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2952	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2953}
2954
2955static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2956		size_t *lenp, loff_t *ppos)
2957{
2958	int old_period, old_runtime;
2959	static DEFINE_MUTEX(mutex);
2960	int ret;
2961
2962	mutex_lock(&mutex);
2963	old_period = sysctl_sched_rt_period;
2964	old_runtime = sysctl_sched_rt_runtime;
2965
2966	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2967
2968	if (!ret && write) {
2969		ret = sched_rt_global_validate();
2970		if (ret)
2971			goto undo;
2972
2973		ret = sched_dl_global_validate();
2974		if (ret)
2975			goto undo;
2976
2977		ret = sched_rt_global_constraints();
2978		if (ret)
2979			goto undo;
2980
2981		sched_rt_do_global();
2982		sched_dl_do_global();
2983	}
2984	if (0) {
2985undo:
2986		sysctl_sched_rt_period = old_period;
2987		sysctl_sched_rt_runtime = old_runtime;
2988	}
2989	mutex_unlock(&mutex);
2990
2991	return ret;
2992}
2993
2994static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2995		size_t *lenp, loff_t *ppos)
2996{
2997	int ret;
2998	static DEFINE_MUTEX(mutex);
2999
3000	mutex_lock(&mutex);
3001	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3002	/*
3003	 * Make sure that internally we keep jiffies.
3004	 * Also, writing zero resets the timeslice to default:
3005	 */
3006	if (!ret && write) {
3007		sched_rr_timeslice =
3008			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3009			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3010
3011		if (sysctl_sched_rr_timeslice <= 0)
3012			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3013	}
3014	mutex_unlock(&mutex);
3015
3016	return ret;
3017}
3018#endif /* CONFIG_SYSCTL */
3019
3020#ifdef CONFIG_SCHED_DEBUG
3021void print_rt_stats(struct seq_file *m, int cpu)
3022{
3023	rt_rq_iter_t iter;
3024	struct rt_rq *rt_rq;
3025
3026	rcu_read_lock();
3027	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3028		print_rt_rq(m, cpu, rt_rq);
3029	rcu_read_unlock();
3030}
3031#endif /* CONFIG_SCHED_DEBUG */
3032