1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 *                    Juri Lelli <juri.lelli@gmail.com>,
15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
16 *                    Fabio Checconi <fchecconi@gmail.com>
17 */
18
19#include <linux/cpuset.h>
20
21/*
22 * Default limits for DL period; on the top end we guard against small util
23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
24 * guard against timer DoS.
25 */
26static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28#ifdef CONFIG_SYSCTL
29static struct ctl_table sched_dl_sysctls[] = {
30	{
31		.procname       = "sched_deadline_period_max_us",
32		.data           = &sysctl_sched_dl_period_max,
33		.maxlen         = sizeof(unsigned int),
34		.mode           = 0644,
35		.proc_handler   = proc_douintvec_minmax,
36		.extra1         = (void *)&sysctl_sched_dl_period_min,
37	},
38	{
39		.procname       = "sched_deadline_period_min_us",
40		.data           = &sysctl_sched_dl_period_min,
41		.maxlen         = sizeof(unsigned int),
42		.mode           = 0644,
43		.proc_handler   = proc_douintvec_minmax,
44		.extra2         = (void *)&sysctl_sched_dl_period_max,
45	},
46};
47
48static int __init sched_dl_sysctl_init(void)
49{
50	register_sysctl_init("kernel", sched_dl_sysctls);
51	return 0;
52}
53late_initcall(sched_dl_sysctl_init);
54#endif
55
56static bool dl_server(struct sched_dl_entity *dl_se)
57{
58	return dl_se->dl_server;
59}
60
61static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62{
63	BUG_ON(dl_server(dl_se));
64	return container_of(dl_se, struct task_struct, dl);
65}
66
67static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68{
69	return container_of(dl_rq, struct rq, dl);
70}
71
72static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73{
74	struct rq *rq = dl_se->rq;
75
76	if (!dl_server(dl_se))
77		rq = task_rq(dl_task_of(dl_se));
78
79	return rq;
80}
81
82static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83{
84	return &rq_of_dl_se(dl_se)->dl;
85}
86
87static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88{
89	return !RB_EMPTY_NODE(&dl_se->rb_node);
90}
91
92#ifdef CONFIG_RT_MUTEXES
93static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94{
95	return dl_se->pi_se;
96}
97
98static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99{
100	return pi_of(dl_se) != dl_se;
101}
102#else
103static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104{
105	return dl_se;
106}
107
108static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109{
110	return false;
111}
112#endif
113
114#ifdef CONFIG_SMP
115static inline struct dl_bw *dl_bw_of(int i)
116{
117	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118			 "sched RCU must be held");
119	return &cpu_rq(i)->rd->dl_bw;
120}
121
122static inline int dl_bw_cpus(int i)
123{
124	struct root_domain *rd = cpu_rq(i)->rd;
125	int cpus;
126
127	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128			 "sched RCU must be held");
129
130	if (cpumask_subset(rd->span, cpu_active_mask))
131		return cpumask_weight(rd->span);
132
133	cpus = 0;
134
135	for_each_cpu_and(i, rd->span, cpu_active_mask)
136		cpus++;
137
138	return cpus;
139}
140
141static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142{
143	unsigned long cap = 0;
144	int i;
145
146	for_each_cpu_and(i, mask, cpu_active_mask)
147		cap += arch_scale_cpu_capacity(i);
148
149	return cap;
150}
151
152/*
153 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154 * of the CPU the task is running on rather rd's \Sum CPU capacity.
155 */
156static inline unsigned long dl_bw_capacity(int i)
157{
158	if (!sched_asym_cpucap_active() &&
159	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161	} else {
162		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163				 "sched RCU must be held");
164
165		return __dl_bw_capacity(cpu_rq(i)->rd->span);
166	}
167}
168
169static inline bool dl_bw_visited(int cpu, u64 gen)
170{
171	struct root_domain *rd = cpu_rq(cpu)->rd;
172
173	if (rd->visit_gen == gen)
174		return true;
175
176	rd->visit_gen = gen;
177	return false;
178}
179
180static inline
181void __dl_update(struct dl_bw *dl_b, s64 bw)
182{
183	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184	int i;
185
186	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187			 "sched RCU must be held");
188	for_each_cpu_and(i, rd->span, cpu_active_mask) {
189		struct rq *rq = cpu_rq(i);
190
191		rq->dl.extra_bw += bw;
192	}
193}
194#else
195static inline struct dl_bw *dl_bw_of(int i)
196{
197	return &cpu_rq(i)->dl.dl_bw;
198}
199
200static inline int dl_bw_cpus(int i)
201{
202	return 1;
203}
204
205static inline unsigned long dl_bw_capacity(int i)
206{
207	return SCHED_CAPACITY_SCALE;
208}
209
210static inline bool dl_bw_visited(int cpu, u64 gen)
211{
212	return false;
213}
214
215static inline
216void __dl_update(struct dl_bw *dl_b, s64 bw)
217{
218	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219
220	dl->extra_bw += bw;
221}
222#endif
223
224static inline
225void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226{
227	dl_b->total_bw -= tsk_bw;
228	__dl_update(dl_b, (s32)tsk_bw / cpus);
229}
230
231static inline
232void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233{
234	dl_b->total_bw += tsk_bw;
235	__dl_update(dl_b, -((s32)tsk_bw / cpus));
236}
237
238static inline bool
239__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240{
241	return dl_b->bw != -1 &&
242	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243}
244
245static inline
246void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247{
248	u64 old = dl_rq->running_bw;
249
250	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251	dl_rq->running_bw += dl_bw;
252	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
253	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
254	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256}
257
258static inline
259void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260{
261	u64 old = dl_rq->running_bw;
262
263	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264	dl_rq->running_bw -= dl_bw;
265	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
266	if (dl_rq->running_bw > old)
267		dl_rq->running_bw = 0;
268	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
269	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270}
271
272static inline
273void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274{
275	u64 old = dl_rq->this_bw;
276
277	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278	dl_rq->this_bw += dl_bw;
279	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
280}
281
282static inline
283void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284{
285	u64 old = dl_rq->this_bw;
286
287	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288	dl_rq->this_bw -= dl_bw;
289	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
290	if (dl_rq->this_bw > old)
291		dl_rq->this_bw = 0;
292	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
293}
294
295static inline
296void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297{
298	if (!dl_entity_is_special(dl_se))
299		__add_rq_bw(dl_se->dl_bw, dl_rq);
300}
301
302static inline
303void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304{
305	if (!dl_entity_is_special(dl_se))
306		__sub_rq_bw(dl_se->dl_bw, dl_rq);
307}
308
309static inline
310void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311{
312	if (!dl_entity_is_special(dl_se))
313		__add_running_bw(dl_se->dl_bw, dl_rq);
314}
315
316static inline
317void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318{
319	if (!dl_entity_is_special(dl_se))
320		__sub_running_bw(dl_se->dl_bw, dl_rq);
321}
322
323static void dl_change_utilization(struct task_struct *p, u64 new_bw)
324{
325	struct rq *rq;
326
327	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
328
329	if (task_on_rq_queued(p))
330		return;
331
332	rq = task_rq(p);
333	if (p->dl.dl_non_contending) {
334		sub_running_bw(&p->dl, &rq->dl);
335		p->dl.dl_non_contending = 0;
336		/*
337		 * If the timer handler is currently running and the
338		 * timer cannot be canceled, inactive_task_timer()
339		 * will see that dl_not_contending is not set, and
340		 * will not touch the rq's active utilization,
341		 * so we are still safe.
342		 */
343		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
344			put_task_struct(p);
345	}
346	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
347	__add_rq_bw(new_bw, &rq->dl);
348}
349
350static void __dl_clear_params(struct sched_dl_entity *dl_se);
351
352/*
353 * The utilization of a task cannot be immediately removed from
354 * the rq active utilization (running_bw) when the task blocks.
355 * Instead, we have to wait for the so called "0-lag time".
356 *
357 * If a task blocks before the "0-lag time", a timer (the inactive
358 * timer) is armed, and running_bw is decreased when the timer
359 * fires.
360 *
361 * If the task wakes up again before the inactive timer fires,
362 * the timer is canceled, whereas if the task wakes up after the
363 * inactive timer fired (and running_bw has been decreased) the
364 * task's utilization has to be added to running_bw again.
365 * A flag in the deadline scheduling entity (dl_non_contending)
366 * is used to avoid race conditions between the inactive timer handler
367 * and task wakeups.
368 *
369 * The following diagram shows how running_bw is updated. A task is
370 * "ACTIVE" when its utilization contributes to running_bw; an
371 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
372 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
373 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
374 * time already passed, which does not contribute to running_bw anymore.
375 *                              +------------------+
376 *             wakeup           |    ACTIVE        |
377 *          +------------------>+   contending     |
378 *          | add_running_bw    |                  |
379 *          |                   +----+------+------+
380 *          |                        |      ^
381 *          |                dequeue |      |
382 * +--------+-------+                |      |
383 * |                |   t >= 0-lag   |      | wakeup
384 * |    INACTIVE    |<---------------+      |
385 * |                | sub_running_bw |      |
386 * +--------+-------+                |      |
387 *          ^                        |      |
388 *          |              t < 0-lag |      |
389 *          |                        |      |
390 *          |                        V      |
391 *          |                   +----+------+------+
392 *          | sub_running_bw    |    ACTIVE        |
393 *          +-------------------+                  |
394 *            inactive timer    |  non contending  |
395 *            fired             +------------------+
396 *
397 * The task_non_contending() function is invoked when a task
398 * blocks, and checks if the 0-lag time already passed or
399 * not (in the first case, it directly updates running_bw;
400 * in the second case, it arms the inactive timer).
401 *
402 * The task_contending() function is invoked when a task wakes
403 * up, and checks if the task is still in the "ACTIVE non contending"
404 * state or not (in the second case, it updates running_bw).
405 */
406static void task_non_contending(struct sched_dl_entity *dl_se)
407{
408	struct hrtimer *timer = &dl_se->inactive_timer;
409	struct rq *rq = rq_of_dl_se(dl_se);
410	struct dl_rq *dl_rq = &rq->dl;
411	s64 zerolag_time;
412
413	/*
414	 * If this is a non-deadline task that has been boosted,
415	 * do nothing
416	 */
417	if (dl_se->dl_runtime == 0)
418		return;
419
420	if (dl_entity_is_special(dl_se))
421		return;
422
423	WARN_ON(dl_se->dl_non_contending);
424
425	zerolag_time = dl_se->deadline -
426		 div64_long((dl_se->runtime * dl_se->dl_period),
427			dl_se->dl_runtime);
428
429	/*
430	 * Using relative times instead of the absolute "0-lag time"
431	 * allows to simplify the code
432	 */
433	zerolag_time -= rq_clock(rq);
434
435	/*
436	 * If the "0-lag time" already passed, decrease the active
437	 * utilization now, instead of starting a timer
438	 */
439	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
440		if (dl_server(dl_se)) {
441			sub_running_bw(dl_se, dl_rq);
442		} else {
443			struct task_struct *p = dl_task_of(dl_se);
444
445			if (dl_task(p))
446				sub_running_bw(dl_se, dl_rq);
447
448			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
449				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
450
451				if (READ_ONCE(p->__state) == TASK_DEAD)
452					sub_rq_bw(dl_se, &rq->dl);
453				raw_spin_lock(&dl_b->lock);
454				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
455				raw_spin_unlock(&dl_b->lock);
456				__dl_clear_params(dl_se);
457			}
458		}
459
460		return;
461	}
462
463	dl_se->dl_non_contending = 1;
464	if (!dl_server(dl_se))
465		get_task_struct(dl_task_of(dl_se));
466
467	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
468}
469
470static void task_contending(struct sched_dl_entity *dl_se, int flags)
471{
472	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
473
474	/*
475	 * If this is a non-deadline task that has been boosted,
476	 * do nothing
477	 */
478	if (dl_se->dl_runtime == 0)
479		return;
480
481	if (flags & ENQUEUE_MIGRATED)
482		add_rq_bw(dl_se, dl_rq);
483
484	if (dl_se->dl_non_contending) {
485		dl_se->dl_non_contending = 0;
486		/*
487		 * If the timer handler is currently running and the
488		 * timer cannot be canceled, inactive_task_timer()
489		 * will see that dl_not_contending is not set, and
490		 * will not touch the rq's active utilization,
491		 * so we are still safe.
492		 */
493		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
494			if (!dl_server(dl_se))
495				put_task_struct(dl_task_of(dl_se));
496		}
497	} else {
498		/*
499		 * Since "dl_non_contending" is not set, the
500		 * task's utilization has already been removed from
501		 * active utilization (either when the task blocked,
502		 * when the "inactive timer" fired).
503		 * So, add it back.
504		 */
505		add_running_bw(dl_se, dl_rq);
506	}
507}
508
509static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
510{
511	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
512}
513
514static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
515
516void init_dl_bw(struct dl_bw *dl_b)
517{
518	raw_spin_lock_init(&dl_b->lock);
519	if (global_rt_runtime() == RUNTIME_INF)
520		dl_b->bw = -1;
521	else
522		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
523	dl_b->total_bw = 0;
524}
525
526void init_dl_rq(struct dl_rq *dl_rq)
527{
528	dl_rq->root = RB_ROOT_CACHED;
529
530#ifdef CONFIG_SMP
531	/* zero means no -deadline tasks */
532	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
533
534	dl_rq->overloaded = 0;
535	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
536#else
537	init_dl_bw(&dl_rq->dl_bw);
538#endif
539
540	dl_rq->running_bw = 0;
541	dl_rq->this_bw = 0;
542	init_dl_rq_bw_ratio(dl_rq);
543}
544
545#ifdef CONFIG_SMP
546
547static inline int dl_overloaded(struct rq *rq)
548{
549	return atomic_read(&rq->rd->dlo_count);
550}
551
552static inline void dl_set_overload(struct rq *rq)
553{
554	if (!rq->online)
555		return;
556
557	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
558	/*
559	 * Must be visible before the overload count is
560	 * set (as in sched_rt.c).
561	 *
562	 * Matched by the barrier in pull_dl_task().
563	 */
564	smp_wmb();
565	atomic_inc(&rq->rd->dlo_count);
566}
567
568static inline void dl_clear_overload(struct rq *rq)
569{
570	if (!rq->online)
571		return;
572
573	atomic_dec(&rq->rd->dlo_count);
574	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
575}
576
577#define __node_2_pdl(node) \
578	rb_entry((node), struct task_struct, pushable_dl_tasks)
579
580static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
581{
582	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
583}
584
585static inline int has_pushable_dl_tasks(struct rq *rq)
586{
587	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
588}
589
590/*
591 * The list of pushable -deadline task is not a plist, like in
592 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
593 */
594static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
595{
596	struct rb_node *leftmost;
597
598	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
599
600	leftmost = rb_add_cached(&p->pushable_dl_tasks,
601				 &rq->dl.pushable_dl_tasks_root,
602				 __pushable_less);
603	if (leftmost)
604		rq->dl.earliest_dl.next = p->dl.deadline;
605
606	if (!rq->dl.overloaded) {
607		dl_set_overload(rq);
608		rq->dl.overloaded = 1;
609	}
610}
611
612static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
613{
614	struct dl_rq *dl_rq = &rq->dl;
615	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
616	struct rb_node *leftmost;
617
618	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
619		return;
620
621	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
622	if (leftmost)
623		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
624
625	RB_CLEAR_NODE(&p->pushable_dl_tasks);
626
627	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
628		dl_clear_overload(rq);
629		rq->dl.overloaded = 0;
630	}
631}
632
633static int push_dl_task(struct rq *rq);
634
635static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
636{
637	return rq->online && dl_task(prev);
638}
639
640static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
641static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
642
643static void push_dl_tasks(struct rq *);
644static void pull_dl_task(struct rq *);
645
646static inline void deadline_queue_push_tasks(struct rq *rq)
647{
648	if (!has_pushable_dl_tasks(rq))
649		return;
650
651	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
652}
653
654static inline void deadline_queue_pull_task(struct rq *rq)
655{
656	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
657}
658
659static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
660
661static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
662{
663	struct rq *later_rq = NULL;
664	struct dl_bw *dl_b;
665
666	later_rq = find_lock_later_rq(p, rq);
667	if (!later_rq) {
668		int cpu;
669
670		/*
671		 * If we cannot preempt any rq, fall back to pick any
672		 * online CPU:
673		 */
674		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
675		if (cpu >= nr_cpu_ids) {
676			/*
677			 * Failed to find any suitable CPU.
678			 * The task will never come back!
679			 */
680			WARN_ON_ONCE(dl_bandwidth_enabled());
681
682			/*
683			 * If admission control is disabled we
684			 * try a little harder to let the task
685			 * run.
686			 */
687			cpu = cpumask_any(cpu_active_mask);
688		}
689		later_rq = cpu_rq(cpu);
690		double_lock_balance(rq, later_rq);
691	}
692
693	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
694		/*
695		 * Inactive timer is armed (or callback is running, but
696		 * waiting for us to release rq locks). In any case, when it
697		 * will fire (or continue), it will see running_bw of this
698		 * task migrated to later_rq (and correctly handle it).
699		 */
700		sub_running_bw(&p->dl, &rq->dl);
701		sub_rq_bw(&p->dl, &rq->dl);
702
703		add_rq_bw(&p->dl, &later_rq->dl);
704		add_running_bw(&p->dl, &later_rq->dl);
705	} else {
706		sub_rq_bw(&p->dl, &rq->dl);
707		add_rq_bw(&p->dl, &later_rq->dl);
708	}
709
710	/*
711	 * And we finally need to fixup root_domain(s) bandwidth accounting,
712	 * since p is still hanging out in the old (now moved to default) root
713	 * domain.
714	 */
715	dl_b = &rq->rd->dl_bw;
716	raw_spin_lock(&dl_b->lock);
717	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
718	raw_spin_unlock(&dl_b->lock);
719
720	dl_b = &later_rq->rd->dl_bw;
721	raw_spin_lock(&dl_b->lock);
722	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
723	raw_spin_unlock(&dl_b->lock);
724
725	set_task_cpu(p, later_rq->cpu);
726	double_unlock_balance(later_rq, rq);
727
728	return later_rq;
729}
730
731#else
732
733static inline
734void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
735{
736}
737
738static inline
739void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740{
741}
742
743static inline
744void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
745{
746}
747
748static inline
749void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750{
751}
752
753static inline void deadline_queue_push_tasks(struct rq *rq)
754{
755}
756
757static inline void deadline_queue_pull_task(struct rq *rq)
758{
759}
760#endif /* CONFIG_SMP */
761
762static void
763enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
764static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
765static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
766static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
767
768static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
769					    struct rq *rq)
770{
771	/* for non-boosted task, pi_of(dl_se) == dl_se */
772	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
773	dl_se->runtime = pi_of(dl_se)->dl_runtime;
774}
775
776/*
777 * We are being explicitly informed that a new instance is starting,
778 * and this means that:
779 *  - the absolute deadline of the entity has to be placed at
780 *    current time + relative deadline;
781 *  - the runtime of the entity has to be set to the maximum value.
782 *
783 * The capability of specifying such event is useful whenever a -deadline
784 * entity wants to (try to!) synchronize its behaviour with the scheduler's
785 * one, and to (try to!) reconcile itself with its own scheduling
786 * parameters.
787 */
788static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
789{
790	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
791	struct rq *rq = rq_of_dl_rq(dl_rq);
792
793	WARN_ON(is_dl_boosted(dl_se));
794	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
795
796	/*
797	 * We are racing with the deadline timer. So, do nothing because
798	 * the deadline timer handler will take care of properly recharging
799	 * the runtime and postponing the deadline
800	 */
801	if (dl_se->dl_throttled)
802		return;
803
804	/*
805	 * We use the regular wall clock time to set deadlines in the
806	 * future; in fact, we must consider execution overheads (time
807	 * spent on hardirq context, etc.).
808	 */
809	replenish_dl_new_period(dl_se, rq);
810}
811
812/*
813 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
814 * possibility of a entity lasting more than what it declared, and thus
815 * exhausting its runtime.
816 *
817 * Here we are interested in making runtime overrun possible, but we do
818 * not want a entity which is misbehaving to affect the scheduling of all
819 * other entities.
820 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
821 * is used, in order to confine each entity within its own bandwidth.
822 *
823 * This function deals exactly with that, and ensures that when the runtime
824 * of a entity is replenished, its deadline is also postponed. That ensures
825 * the overrunning entity can't interfere with other entity in the system and
826 * can't make them miss their deadlines. Reasons why this kind of overruns
827 * could happen are, typically, a entity voluntarily trying to overcome its
828 * runtime, or it just underestimated it during sched_setattr().
829 */
830static void replenish_dl_entity(struct sched_dl_entity *dl_se)
831{
832	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
833	struct rq *rq = rq_of_dl_rq(dl_rq);
834
835	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
836
837	/*
838	 * This could be the case for a !-dl task that is boosted.
839	 * Just go with full inherited parameters.
840	 */
841	if (dl_se->dl_deadline == 0)
842		replenish_dl_new_period(dl_se, rq);
843
844	if (dl_se->dl_yielded && dl_se->runtime > 0)
845		dl_se->runtime = 0;
846
847	/*
848	 * We keep moving the deadline away until we get some
849	 * available runtime for the entity. This ensures correct
850	 * handling of situations where the runtime overrun is
851	 * arbitrary large.
852	 */
853	while (dl_se->runtime <= 0) {
854		dl_se->deadline += pi_of(dl_se)->dl_period;
855		dl_se->runtime += pi_of(dl_se)->dl_runtime;
856	}
857
858	/*
859	 * At this point, the deadline really should be "in
860	 * the future" with respect to rq->clock. If it's
861	 * not, we are, for some reason, lagging too much!
862	 * Anyway, after having warn userspace abut that,
863	 * we still try to keep the things running by
864	 * resetting the deadline and the budget of the
865	 * entity.
866	 */
867	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
868		printk_deferred_once("sched: DL replenish lagged too much\n");
869		replenish_dl_new_period(dl_se, rq);
870	}
871
872	if (dl_se->dl_yielded)
873		dl_se->dl_yielded = 0;
874	if (dl_se->dl_throttled)
875		dl_se->dl_throttled = 0;
876}
877
878/*
879 * Here we check if --at time t-- an entity (which is probably being
880 * [re]activated or, in general, enqueued) can use its remaining runtime
881 * and its current deadline _without_ exceeding the bandwidth it is
882 * assigned (function returns true if it can't). We are in fact applying
883 * one of the CBS rules: when a task wakes up, if the residual runtime
884 * over residual deadline fits within the allocated bandwidth, then we
885 * can keep the current (absolute) deadline and residual budget without
886 * disrupting the schedulability of the system. Otherwise, we should
887 * refill the runtime and set the deadline a period in the future,
888 * because keeping the current (absolute) deadline of the task would
889 * result in breaking guarantees promised to other tasks (refer to
890 * Documentation/scheduler/sched-deadline.rst for more information).
891 *
892 * This function returns true if:
893 *
894 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
895 *
896 * IOW we can't recycle current parameters.
897 *
898 * Notice that the bandwidth check is done against the deadline. For
899 * task with deadline equal to period this is the same of using
900 * dl_period instead of dl_deadline in the equation above.
901 */
902static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
903{
904	u64 left, right;
905
906	/*
907	 * left and right are the two sides of the equation above,
908	 * after a bit of shuffling to use multiplications instead
909	 * of divisions.
910	 *
911	 * Note that none of the time values involved in the two
912	 * multiplications are absolute: dl_deadline and dl_runtime
913	 * are the relative deadline and the maximum runtime of each
914	 * instance, runtime is the runtime left for the last instance
915	 * and (deadline - t), since t is rq->clock, is the time left
916	 * to the (absolute) deadline. Even if overflowing the u64 type
917	 * is very unlikely to occur in both cases, here we scale down
918	 * as we want to avoid that risk at all. Scaling down by 10
919	 * means that we reduce granularity to 1us. We are fine with it,
920	 * since this is only a true/false check and, anyway, thinking
921	 * of anything below microseconds resolution is actually fiction
922	 * (but still we want to give the user that illusion >;).
923	 */
924	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
925	right = ((dl_se->deadline - t) >> DL_SCALE) *
926		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
927
928	return dl_time_before(right, left);
929}
930
931/*
932 * Revised wakeup rule [1]: For self-suspending tasks, rather then
933 * re-initializing task's runtime and deadline, the revised wakeup
934 * rule adjusts the task's runtime to avoid the task to overrun its
935 * density.
936 *
937 * Reasoning: a task may overrun the density if:
938 *    runtime / (deadline - t) > dl_runtime / dl_deadline
939 *
940 * Therefore, runtime can be adjusted to:
941 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
942 *
943 * In such way that runtime will be equal to the maximum density
944 * the task can use without breaking any rule.
945 *
946 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
947 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
948 */
949static void
950update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
951{
952	u64 laxity = dl_se->deadline - rq_clock(rq);
953
954	/*
955	 * If the task has deadline < period, and the deadline is in the past,
956	 * it should already be throttled before this check.
957	 *
958	 * See update_dl_entity() comments for further details.
959	 */
960	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
961
962	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
963}
964
965/*
966 * Regarding the deadline, a task with implicit deadline has a relative
967 * deadline == relative period. A task with constrained deadline has a
968 * relative deadline <= relative period.
969 *
970 * We support constrained deadline tasks. However, there are some restrictions
971 * applied only for tasks which do not have an implicit deadline. See
972 * update_dl_entity() to know more about such restrictions.
973 *
974 * The dl_is_implicit() returns true if the task has an implicit deadline.
975 */
976static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
977{
978	return dl_se->dl_deadline == dl_se->dl_period;
979}
980
981/*
982 * When a deadline entity is placed in the runqueue, its runtime and deadline
983 * might need to be updated. This is done by a CBS wake up rule. There are two
984 * different rules: 1) the original CBS; and 2) the Revisited CBS.
985 *
986 * When the task is starting a new period, the Original CBS is used. In this
987 * case, the runtime is replenished and a new absolute deadline is set.
988 *
989 * When a task is queued before the begin of the next period, using the
990 * remaining runtime and deadline could make the entity to overflow, see
991 * dl_entity_overflow() to find more about runtime overflow. When such case
992 * is detected, the runtime and deadline need to be updated.
993 *
994 * If the task has an implicit deadline, i.e., deadline == period, the Original
995 * CBS is applied. the runtime is replenished and a new absolute deadline is
996 * set, as in the previous cases.
997 *
998 * However, the Original CBS does not work properly for tasks with
999 * deadline < period, which are said to have a constrained deadline. By
1000 * applying the Original CBS, a constrained deadline task would be able to run
1001 * runtime/deadline in a period. With deadline < period, the task would
1002 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1003 *
1004 * In order to prevent this misbehave, the Revisited CBS is used for
1005 * constrained deadline tasks when a runtime overflow is detected. In the
1006 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1007 * the remaining runtime of the task is reduced to avoid runtime overflow.
1008 * Please refer to the comments update_dl_revised_wakeup() function to find
1009 * more about the Revised CBS rule.
1010 */
1011static void update_dl_entity(struct sched_dl_entity *dl_se)
1012{
1013	struct rq *rq = rq_of_dl_se(dl_se);
1014
1015	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1016	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1017
1018		if (unlikely(!dl_is_implicit(dl_se) &&
1019			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1020			     !is_dl_boosted(dl_se))) {
1021			update_dl_revised_wakeup(dl_se, rq);
1022			return;
1023		}
1024
1025		replenish_dl_new_period(dl_se, rq);
1026	}
1027}
1028
1029static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1030{
1031	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1032}
1033
1034/*
1035 * If the entity depleted all its runtime, and if we want it to sleep
1036 * while waiting for some new execution time to become available, we
1037 * set the bandwidth replenishment timer to the replenishment instant
1038 * and try to activate it.
1039 *
1040 * Notice that it is important for the caller to know if the timer
1041 * actually started or not (i.e., the replenishment instant is in
1042 * the future or in the past).
1043 */
1044static int start_dl_timer(struct sched_dl_entity *dl_se)
1045{
1046	struct hrtimer *timer = &dl_se->dl_timer;
1047	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1048	struct rq *rq = rq_of_dl_rq(dl_rq);
1049	ktime_t now, act;
1050	s64 delta;
1051
1052	lockdep_assert_rq_held(rq);
1053
1054	/*
1055	 * We want the timer to fire at the deadline, but considering
1056	 * that it is actually coming from rq->clock and not from
1057	 * hrtimer's time base reading.
1058	 */
1059	act = ns_to_ktime(dl_next_period(dl_se));
1060	now = hrtimer_cb_get_time(timer);
1061	delta = ktime_to_ns(now) - rq_clock(rq);
1062	act = ktime_add_ns(act, delta);
1063
1064	/*
1065	 * If the expiry time already passed, e.g., because the value
1066	 * chosen as the deadline is too small, don't even try to
1067	 * start the timer in the past!
1068	 */
1069	if (ktime_us_delta(act, now) < 0)
1070		return 0;
1071
1072	/*
1073	 * !enqueued will guarantee another callback; even if one is already in
1074	 * progress. This ensures a balanced {get,put}_task_struct().
1075	 *
1076	 * The race against __run_timer() clearing the enqueued state is
1077	 * harmless because we're holding task_rq()->lock, therefore the timer
1078	 * expiring after we've done the check will wait on its task_rq_lock()
1079	 * and observe our state.
1080	 */
1081	if (!hrtimer_is_queued(timer)) {
1082		if (!dl_server(dl_se))
1083			get_task_struct(dl_task_of(dl_se));
1084		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1085	}
1086
1087	return 1;
1088}
1089
1090static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1091{
1092#ifdef CONFIG_SMP
1093	/*
1094	 * Queueing this task back might have overloaded rq, check if we need
1095	 * to kick someone away.
1096	 */
1097	if (has_pushable_dl_tasks(rq)) {
1098		/*
1099		 * Nothing relies on rq->lock after this, so its safe to drop
1100		 * rq->lock.
1101		 */
1102		rq_unpin_lock(rq, rf);
1103		push_dl_task(rq);
1104		rq_repin_lock(rq, rf);
1105	}
1106#endif
1107}
1108
1109/*
1110 * This is the bandwidth enforcement timer callback. If here, we know
1111 * a task is not on its dl_rq, since the fact that the timer was running
1112 * means the task is throttled and needs a runtime replenishment.
1113 *
1114 * However, what we actually do depends on the fact the task is active,
1115 * (it is on its rq) or has been removed from there by a call to
1116 * dequeue_task_dl(). In the former case we must issue the runtime
1117 * replenishment and add the task back to the dl_rq; in the latter, we just
1118 * do nothing but clearing dl_throttled, so that runtime and deadline
1119 * updating (and the queueing back to dl_rq) will be done by the
1120 * next call to enqueue_task_dl().
1121 */
1122static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1123{
1124	struct sched_dl_entity *dl_se = container_of(timer,
1125						     struct sched_dl_entity,
1126						     dl_timer);
1127	struct task_struct *p;
1128	struct rq_flags rf;
1129	struct rq *rq;
1130
1131	if (dl_server(dl_se)) {
1132		struct rq *rq = rq_of_dl_se(dl_se);
1133		struct rq_flags rf;
1134
1135		rq_lock(rq, &rf);
1136		if (dl_se->dl_throttled) {
1137			sched_clock_tick();
1138			update_rq_clock(rq);
1139
1140			if (dl_se->server_has_tasks(dl_se)) {
1141				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1142				resched_curr(rq);
1143				__push_dl_task(rq, &rf);
1144			} else {
1145				replenish_dl_entity(dl_se);
1146			}
1147
1148		}
1149		rq_unlock(rq, &rf);
1150
1151		return HRTIMER_NORESTART;
1152	}
1153
1154	p = dl_task_of(dl_se);
1155	rq = task_rq_lock(p, &rf);
1156
1157	/*
1158	 * The task might have changed its scheduling policy to something
1159	 * different than SCHED_DEADLINE (through switched_from_dl()).
1160	 */
1161	if (!dl_task(p))
1162		goto unlock;
1163
1164	/*
1165	 * The task might have been boosted by someone else and might be in the
1166	 * boosting/deboosting path, its not throttled.
1167	 */
1168	if (is_dl_boosted(dl_se))
1169		goto unlock;
1170
1171	/*
1172	 * Spurious timer due to start_dl_timer() race; or we already received
1173	 * a replenishment from rt_mutex_setprio().
1174	 */
1175	if (!dl_se->dl_throttled)
1176		goto unlock;
1177
1178	sched_clock_tick();
1179	update_rq_clock(rq);
1180
1181	/*
1182	 * If the throttle happened during sched-out; like:
1183	 *
1184	 *   schedule()
1185	 *     deactivate_task()
1186	 *       dequeue_task_dl()
1187	 *         update_curr_dl()
1188	 *           start_dl_timer()
1189	 *         __dequeue_task_dl()
1190	 *     prev->on_rq = 0;
1191	 *
1192	 * We can be both throttled and !queued. Replenish the counter
1193	 * but do not enqueue -- wait for our wakeup to do that.
1194	 */
1195	if (!task_on_rq_queued(p)) {
1196		replenish_dl_entity(dl_se);
1197		goto unlock;
1198	}
1199
1200#ifdef CONFIG_SMP
1201	if (unlikely(!rq->online)) {
1202		/*
1203		 * If the runqueue is no longer available, migrate the
1204		 * task elsewhere. This necessarily changes rq.
1205		 */
1206		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1207		rq = dl_task_offline_migration(rq, p);
1208		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1209		update_rq_clock(rq);
1210
1211		/*
1212		 * Now that the task has been migrated to the new RQ and we
1213		 * have that locked, proceed as normal and enqueue the task
1214		 * there.
1215		 */
1216	}
1217#endif
1218
1219	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1220	if (dl_task(rq->curr))
1221		wakeup_preempt_dl(rq, p, 0);
1222	else
1223		resched_curr(rq);
1224
1225	__push_dl_task(rq, &rf);
1226
1227unlock:
1228	task_rq_unlock(rq, p, &rf);
1229
1230	/*
1231	 * This can free the task_struct, including this hrtimer, do not touch
1232	 * anything related to that after this.
1233	 */
1234	put_task_struct(p);
1235
1236	return HRTIMER_NORESTART;
1237}
1238
1239static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1240{
1241	struct hrtimer *timer = &dl_se->dl_timer;
1242
1243	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1244	timer->function = dl_task_timer;
1245}
1246
1247/*
1248 * During the activation, CBS checks if it can reuse the current task's
1249 * runtime and period. If the deadline of the task is in the past, CBS
1250 * cannot use the runtime, and so it replenishes the task. This rule
1251 * works fine for implicit deadline tasks (deadline == period), and the
1252 * CBS was designed for implicit deadline tasks. However, a task with
1253 * constrained deadline (deadline < period) might be awakened after the
1254 * deadline, but before the next period. In this case, replenishing the
1255 * task would allow it to run for runtime / deadline. As in this case
1256 * deadline < period, CBS enables a task to run for more than the
1257 * runtime / period. In a very loaded system, this can cause a domino
1258 * effect, making other tasks miss their deadlines.
1259 *
1260 * To avoid this problem, in the activation of a constrained deadline
1261 * task after the deadline but before the next period, throttle the
1262 * task and set the replenishing timer to the begin of the next period,
1263 * unless it is boosted.
1264 */
1265static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1266{
1267	struct rq *rq = rq_of_dl_se(dl_se);
1268
1269	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1270	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1271		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1272			return;
1273		dl_se->dl_throttled = 1;
1274		if (dl_se->runtime > 0)
1275			dl_se->runtime = 0;
1276	}
1277}
1278
1279static
1280int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1281{
1282	return (dl_se->runtime <= 0);
1283}
1284
1285/*
1286 * This function implements the GRUB accounting rule. According to the
1287 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1288 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1289 * where u is the utilization of the task, Umax is the maximum reclaimable
1290 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1291 * as the difference between the "total runqueue utilization" and the
1292 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1293 * reclaimable utilization.
1294 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1295 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1296 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1297 * is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1298 * Since delta is a 64 bit variable, to have an overflow its value should be
1299 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1300 * not an issue here.
1301 */
1302static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1303{
1304	u64 u_act;
1305	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1306
1307	/*
1308	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1309	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1310	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1311	 * negative leading to wrong results.
1312	 */
1313	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1314		u_act = dl_se->dl_bw;
1315	else
1316		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1317
1318	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1319	return (delta * u_act) >> BW_SHIFT;
1320}
1321
1322static inline void
1323update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1324                        int flags);
1325static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1326{
1327	s64 scaled_delta_exec;
1328
1329	if (unlikely(delta_exec <= 0)) {
1330		if (unlikely(dl_se->dl_yielded))
1331			goto throttle;
1332		return;
1333	}
1334
1335	if (dl_entity_is_special(dl_se))
1336		return;
1337
1338	/*
1339	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1340	 * spare reclaimed bandwidth is used to clock down frequency.
1341	 *
1342	 * For the others, we still need to scale reservation parameters
1343	 * according to current frequency and CPU maximum capacity.
1344	 */
1345	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1346		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1347	} else {
1348		int cpu = cpu_of(rq);
1349		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1350		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1351
1352		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1353		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1354	}
1355
1356	dl_se->runtime -= scaled_delta_exec;
1357
1358throttle:
1359	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1360		dl_se->dl_throttled = 1;
1361
1362		/* If requested, inform the user about runtime overruns. */
1363		if (dl_runtime_exceeded(dl_se) &&
1364		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1365			dl_se->dl_overrun = 1;
1366
1367		dequeue_dl_entity(dl_se, 0);
1368		if (!dl_server(dl_se)) {
1369			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1370			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1371		}
1372
1373		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1374			if (dl_server(dl_se))
1375				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1376			else
1377				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1378		}
1379
1380		if (!is_leftmost(dl_se, &rq->dl))
1381			resched_curr(rq);
1382	}
1383
1384	/*
1385	 * Because -- for now -- we share the rt bandwidth, we need to
1386	 * account our runtime there too, otherwise actual rt tasks
1387	 * would be able to exceed the shared quota.
1388	 *
1389	 * Account to the root rt group for now.
1390	 *
1391	 * The solution we're working towards is having the RT groups scheduled
1392	 * using deadline servers -- however there's a few nasties to figure
1393	 * out before that can happen.
1394	 */
1395	if (rt_bandwidth_enabled()) {
1396		struct rt_rq *rt_rq = &rq->rt;
1397
1398		raw_spin_lock(&rt_rq->rt_runtime_lock);
1399		/*
1400		 * We'll let actual RT tasks worry about the overflow here, we
1401		 * have our own CBS to keep us inline; only account when RT
1402		 * bandwidth is relevant.
1403		 */
1404		if (sched_rt_bandwidth_account(rt_rq))
1405			rt_rq->rt_time += delta_exec;
1406		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1407	}
1408}
1409
1410void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1411{
1412	update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1413}
1414
1415void dl_server_start(struct sched_dl_entity *dl_se)
1416{
1417	if (!dl_server(dl_se)) {
1418		dl_se->dl_server = 1;
1419		setup_new_dl_entity(dl_se);
1420	}
1421	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1422}
1423
1424void dl_server_stop(struct sched_dl_entity *dl_se)
1425{
1426	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1427}
1428
1429void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1430		    dl_server_has_tasks_f has_tasks,
1431		    dl_server_pick_f pick)
1432{
1433	dl_se->rq = rq;
1434	dl_se->server_has_tasks = has_tasks;
1435	dl_se->server_pick = pick;
1436}
1437
1438/*
1439 * Update the current task's runtime statistics (provided it is still
1440 * a -deadline task and has not been removed from the dl_rq).
1441 */
1442static void update_curr_dl(struct rq *rq)
1443{
1444	struct task_struct *curr = rq->curr;
1445	struct sched_dl_entity *dl_se = &curr->dl;
1446	s64 delta_exec;
1447
1448	if (!dl_task(curr) || !on_dl_rq(dl_se))
1449		return;
1450
1451	/*
1452	 * Consumed budget is computed considering the time as
1453	 * observed by schedulable tasks (excluding time spent
1454	 * in hardirq context, etc.). Deadlines are instead
1455	 * computed using hard walltime. This seems to be the more
1456	 * natural solution, but the full ramifications of this
1457	 * approach need further study.
1458	 */
1459	delta_exec = update_curr_common(rq);
1460	update_curr_dl_se(rq, dl_se, delta_exec);
1461}
1462
1463static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1464{
1465	struct sched_dl_entity *dl_se = container_of(timer,
1466						     struct sched_dl_entity,
1467						     inactive_timer);
1468	struct task_struct *p = NULL;
1469	struct rq_flags rf;
1470	struct rq *rq;
1471
1472	if (!dl_server(dl_se)) {
1473		p = dl_task_of(dl_se);
1474		rq = task_rq_lock(p, &rf);
1475	} else {
1476		rq = dl_se->rq;
1477		rq_lock(rq, &rf);
1478	}
1479
1480	sched_clock_tick();
1481	update_rq_clock(rq);
1482
1483	if (dl_server(dl_se))
1484		goto no_task;
1485
1486	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1487		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1488
1489		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1490			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1491			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1492			dl_se->dl_non_contending = 0;
1493		}
1494
1495		raw_spin_lock(&dl_b->lock);
1496		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1497		raw_spin_unlock(&dl_b->lock);
1498		__dl_clear_params(dl_se);
1499
1500		goto unlock;
1501	}
1502
1503no_task:
1504	if (dl_se->dl_non_contending == 0)
1505		goto unlock;
1506
1507	sub_running_bw(dl_se, &rq->dl);
1508	dl_se->dl_non_contending = 0;
1509unlock:
1510
1511	if (!dl_server(dl_se)) {
1512		task_rq_unlock(rq, p, &rf);
1513		put_task_struct(p);
1514	} else {
1515		rq_unlock(rq, &rf);
1516	}
1517
1518	return HRTIMER_NORESTART;
1519}
1520
1521static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1522{
1523	struct hrtimer *timer = &dl_se->inactive_timer;
1524
1525	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1526	timer->function = inactive_task_timer;
1527}
1528
1529#define __node_2_dle(node) \
1530	rb_entry((node), struct sched_dl_entity, rb_node)
1531
1532#ifdef CONFIG_SMP
1533
1534static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1535{
1536	struct rq *rq = rq_of_dl_rq(dl_rq);
1537
1538	if (dl_rq->earliest_dl.curr == 0 ||
1539	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1540		if (dl_rq->earliest_dl.curr == 0)
1541			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1542		dl_rq->earliest_dl.curr = deadline;
1543		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1544	}
1545}
1546
1547static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1548{
1549	struct rq *rq = rq_of_dl_rq(dl_rq);
1550
1551	/*
1552	 * Since we may have removed our earliest (and/or next earliest)
1553	 * task we must recompute them.
1554	 */
1555	if (!dl_rq->dl_nr_running) {
1556		dl_rq->earliest_dl.curr = 0;
1557		dl_rq->earliest_dl.next = 0;
1558		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1559		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1560	} else {
1561		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1562		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1563
1564		dl_rq->earliest_dl.curr = entry->deadline;
1565		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1566	}
1567}
1568
1569#else
1570
1571static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1572static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1573
1574#endif /* CONFIG_SMP */
1575
1576static inline
1577void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1578{
1579	u64 deadline = dl_se->deadline;
1580
1581	dl_rq->dl_nr_running++;
1582	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1583
1584	inc_dl_deadline(dl_rq, deadline);
1585}
1586
1587static inline
1588void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1589{
1590	WARN_ON(!dl_rq->dl_nr_running);
1591	dl_rq->dl_nr_running--;
1592	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1593
1594	dec_dl_deadline(dl_rq, dl_se->deadline);
1595}
1596
1597static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1598{
1599	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1600}
1601
1602static inline struct sched_statistics *
1603__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1604{
1605	return &dl_task_of(dl_se)->stats;
1606}
1607
1608static inline void
1609update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1610{
1611	struct sched_statistics *stats;
1612
1613	if (!schedstat_enabled())
1614		return;
1615
1616	stats = __schedstats_from_dl_se(dl_se);
1617	__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1618}
1619
1620static inline void
1621update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1622{
1623	struct sched_statistics *stats;
1624
1625	if (!schedstat_enabled())
1626		return;
1627
1628	stats = __schedstats_from_dl_se(dl_se);
1629	__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1630}
1631
1632static inline void
1633update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1634{
1635	struct sched_statistics *stats;
1636
1637	if (!schedstat_enabled())
1638		return;
1639
1640	stats = __schedstats_from_dl_se(dl_se);
1641	__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1642}
1643
1644static inline void
1645update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1646			int flags)
1647{
1648	if (!schedstat_enabled())
1649		return;
1650
1651	if (flags & ENQUEUE_WAKEUP)
1652		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1653}
1654
1655static inline void
1656update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1657			int flags)
1658{
1659	struct task_struct *p = dl_task_of(dl_se);
1660
1661	if (!schedstat_enabled())
1662		return;
1663
1664	if ((flags & DEQUEUE_SLEEP)) {
1665		unsigned int state;
1666
1667		state = READ_ONCE(p->__state);
1668		if (state & TASK_INTERRUPTIBLE)
1669			__schedstat_set(p->stats.sleep_start,
1670					rq_clock(rq_of_dl_rq(dl_rq)));
1671
1672		if (state & TASK_UNINTERRUPTIBLE)
1673			__schedstat_set(p->stats.block_start,
1674					rq_clock(rq_of_dl_rq(dl_rq)));
1675	}
1676}
1677
1678static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1679{
1680	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1681
1682	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1683
1684	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1685
1686	inc_dl_tasks(dl_se, dl_rq);
1687}
1688
1689static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1690{
1691	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1692
1693	if (RB_EMPTY_NODE(&dl_se->rb_node))
1694		return;
1695
1696	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1697
1698	RB_CLEAR_NODE(&dl_se->rb_node);
1699
1700	dec_dl_tasks(dl_se, dl_rq);
1701}
1702
1703static void
1704enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1705{
1706	WARN_ON_ONCE(on_dl_rq(dl_se));
1707
1708	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1709
1710	/*
1711	 * Check if a constrained deadline task was activated
1712	 * after the deadline but before the next period.
1713	 * If that is the case, the task will be throttled and
1714	 * the replenishment timer will be set to the next period.
1715	 */
1716	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1717		dl_check_constrained_dl(dl_se);
1718
1719	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1720		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1721
1722		add_rq_bw(dl_se, dl_rq);
1723		add_running_bw(dl_se, dl_rq);
1724	}
1725
1726	/*
1727	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1728	 * its budget it needs a replenishment and, since it now is on
1729	 * its rq, the bandwidth timer callback (which clearly has not
1730	 * run yet) will take care of this.
1731	 * However, the active utilization does not depend on the fact
1732	 * that the task is on the runqueue or not (but depends on the
1733	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1734	 * In other words, even if a task is throttled its utilization must
1735	 * be counted in the active utilization; hence, we need to call
1736	 * add_running_bw().
1737	 */
1738	if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1739		if (flags & ENQUEUE_WAKEUP)
1740			task_contending(dl_se, flags);
1741
1742		return;
1743	}
1744
1745	/*
1746	 * If this is a wakeup or a new instance, the scheduling
1747	 * parameters of the task might need updating. Otherwise,
1748	 * we want a replenishment of its runtime.
1749	 */
1750	if (flags & ENQUEUE_WAKEUP) {
1751		task_contending(dl_se, flags);
1752		update_dl_entity(dl_se);
1753	} else if (flags & ENQUEUE_REPLENISH) {
1754		replenish_dl_entity(dl_se);
1755	} else if ((flags & ENQUEUE_RESTORE) &&
1756		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
1757		setup_new_dl_entity(dl_se);
1758	}
1759
1760	__enqueue_dl_entity(dl_se);
1761}
1762
1763static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1764{
1765	__dequeue_dl_entity(dl_se);
1766
1767	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
1768		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1769
1770		sub_running_bw(dl_se, dl_rq);
1771		sub_rq_bw(dl_se, dl_rq);
1772	}
1773
1774	/*
1775	 * This check allows to start the inactive timer (or to immediately
1776	 * decrease the active utilization, if needed) in two cases:
1777	 * when the task blocks and when it is terminating
1778	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1779	 * way, because from GRUB's point of view the same thing is happening
1780	 * (the task moves from "active contending" to "active non contending"
1781	 * or "inactive")
1782	 */
1783	if (flags & DEQUEUE_SLEEP)
1784		task_non_contending(dl_se);
1785}
1786
1787static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1788{
1789	if (is_dl_boosted(&p->dl)) {
1790		/*
1791		 * Because of delays in the detection of the overrun of a
1792		 * thread's runtime, it might be the case that a thread
1793		 * goes to sleep in a rt mutex with negative runtime. As
1794		 * a consequence, the thread will be throttled.
1795		 *
1796		 * While waiting for the mutex, this thread can also be
1797		 * boosted via PI, resulting in a thread that is throttled
1798		 * and boosted at the same time.
1799		 *
1800		 * In this case, the boost overrides the throttle.
1801		 */
1802		if (p->dl.dl_throttled) {
1803			/*
1804			 * The replenish timer needs to be canceled. No
1805			 * problem if it fires concurrently: boosted threads
1806			 * are ignored in dl_task_timer().
1807			 */
1808			hrtimer_try_to_cancel(&p->dl.dl_timer);
1809			p->dl.dl_throttled = 0;
1810		}
1811	} else if (!dl_prio(p->normal_prio)) {
1812		/*
1813		 * Special case in which we have a !SCHED_DEADLINE task that is going
1814		 * to be deboosted, but exceeds its runtime while doing so. No point in
1815		 * replenishing it, as it's going to return back to its original
1816		 * scheduling class after this. If it has been throttled, we need to
1817		 * clear the flag, otherwise the task may wake up as throttled after
1818		 * being boosted again with no means to replenish the runtime and clear
1819		 * the throttle.
1820		 */
1821		p->dl.dl_throttled = 0;
1822		if (!(flags & ENQUEUE_REPLENISH))
1823			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
1824					     task_pid_nr(p));
1825
1826		return;
1827	}
1828
1829	check_schedstat_required();
1830	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1831
1832	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1833		flags |= ENQUEUE_MIGRATING;
1834
1835	enqueue_dl_entity(&p->dl, flags);
1836
1837	if (dl_server(&p->dl))
1838		return;
1839
1840	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
1841		enqueue_pushable_dl_task(rq, p);
1842}
1843
1844static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1845{
1846	update_curr_dl(rq);
1847
1848	if (p->on_rq == TASK_ON_RQ_MIGRATING)
1849		flags |= DEQUEUE_MIGRATING;
1850
1851	dequeue_dl_entity(&p->dl, flags);
1852	if (!p->dl.dl_throttled && !dl_server(&p->dl))
1853		dequeue_pushable_dl_task(rq, p);
1854}
1855
1856/*
1857 * Yield task semantic for -deadline tasks is:
1858 *
1859 *   get off from the CPU until our next instance, with
1860 *   a new runtime. This is of little use now, since we
1861 *   don't have a bandwidth reclaiming mechanism. Anyway,
1862 *   bandwidth reclaiming is planned for the future, and
1863 *   yield_task_dl will indicate that some spare budget
1864 *   is available for other task instances to use it.
1865 */
1866static void yield_task_dl(struct rq *rq)
1867{
1868	/*
1869	 * We make the task go to sleep until its current deadline by
1870	 * forcing its runtime to zero. This way, update_curr_dl() stops
1871	 * it and the bandwidth timer will wake it up and will give it
1872	 * new scheduling parameters (thanks to dl_yielded=1).
1873	 */
1874	rq->curr->dl.dl_yielded = 1;
1875
1876	update_rq_clock(rq);
1877	update_curr_dl(rq);
1878	/*
1879	 * Tell update_rq_clock() that we've just updated,
1880	 * so we don't do microscopic update in schedule()
1881	 * and double the fastpath cost.
1882	 */
1883	rq_clock_skip_update(rq);
1884}
1885
1886#ifdef CONFIG_SMP
1887
1888static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
1889						 struct rq *rq)
1890{
1891	return (!rq->dl.dl_nr_running ||
1892		dl_time_before(p->dl.deadline,
1893			       rq->dl.earliest_dl.curr));
1894}
1895
1896static int find_later_rq(struct task_struct *task);
1897
1898static int
1899select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1900{
1901	struct task_struct *curr;
1902	bool select_rq;
1903	struct rq *rq;
1904
1905	if (!(flags & WF_TTWU))
1906		goto out;
1907
1908	rq = cpu_rq(cpu);
1909
1910	rcu_read_lock();
1911	curr = READ_ONCE(rq->curr); /* unlocked access */
1912
1913	/*
1914	 * If we are dealing with a -deadline task, we must
1915	 * decide where to wake it up.
1916	 * If it has a later deadline and the current task
1917	 * on this rq can't move (provided the waking task
1918	 * can!) we prefer to send it somewhere else. On the
1919	 * other hand, if it has a shorter deadline, we
1920	 * try to make it stay here, it might be important.
1921	 */
1922	select_rq = unlikely(dl_task(curr)) &&
1923		    (curr->nr_cpus_allowed < 2 ||
1924		     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1925		    p->nr_cpus_allowed > 1;
1926
1927	/*
1928	 * Take the capacity of the CPU into account to
1929	 * ensure it fits the requirement of the task.
1930	 */
1931	if (sched_asym_cpucap_active())
1932		select_rq |= !dl_task_fits_capacity(p, cpu);
1933
1934	if (select_rq) {
1935		int target = find_later_rq(p);
1936
1937		if (target != -1 &&
1938		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
1939			cpu = target;
1940	}
1941	rcu_read_unlock();
1942
1943out:
1944	return cpu;
1945}
1946
1947static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1948{
1949	struct rq_flags rf;
1950	struct rq *rq;
1951
1952	if (READ_ONCE(p->__state) != TASK_WAKING)
1953		return;
1954
1955	rq = task_rq(p);
1956	/*
1957	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1958	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1959	 * rq->lock is not... So, lock it
1960	 */
1961	rq_lock(rq, &rf);
1962	if (p->dl.dl_non_contending) {
1963		update_rq_clock(rq);
1964		sub_running_bw(&p->dl, &rq->dl);
1965		p->dl.dl_non_contending = 0;
1966		/*
1967		 * If the timer handler is currently running and the
1968		 * timer cannot be canceled, inactive_task_timer()
1969		 * will see that dl_not_contending is not set, and
1970		 * will not touch the rq's active utilization,
1971		 * so we are still safe.
1972		 */
1973		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1974			put_task_struct(p);
1975	}
1976	sub_rq_bw(&p->dl, &rq->dl);
1977	rq_unlock(rq, &rf);
1978}
1979
1980static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1981{
1982	/*
1983	 * Current can't be migrated, useless to reschedule,
1984	 * let's hope p can move out.
1985	 */
1986	if (rq->curr->nr_cpus_allowed == 1 ||
1987	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1988		return;
1989
1990	/*
1991	 * p is migratable, so let's not schedule it and
1992	 * see if it is pushed or pulled somewhere else.
1993	 */
1994	if (p->nr_cpus_allowed != 1 &&
1995	    cpudl_find(&rq->rd->cpudl, p, NULL))
1996		return;
1997
1998	resched_curr(rq);
1999}
2000
2001static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2002{
2003	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2004		/*
2005		 * This is OK, because current is on_cpu, which avoids it being
2006		 * picked for load-balance and preemption/IRQs are still
2007		 * disabled avoiding further scheduler activity on it and we've
2008		 * not yet started the picking loop.
2009		 */
2010		rq_unpin_lock(rq, rf);
2011		pull_dl_task(rq);
2012		rq_repin_lock(rq, rf);
2013	}
2014
2015	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2016}
2017#endif /* CONFIG_SMP */
2018
2019/*
2020 * Only called when both the current and waking task are -deadline
2021 * tasks.
2022 */
2023static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2024				  int flags)
2025{
2026	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
2027		resched_curr(rq);
2028		return;
2029	}
2030
2031#ifdef CONFIG_SMP
2032	/*
2033	 * In the unlikely case current and p have the same deadline
2034	 * let us try to decide what's the best thing to do...
2035	 */
2036	if ((p->dl.deadline == rq->curr->dl.deadline) &&
2037	    !test_tsk_need_resched(rq->curr))
2038		check_preempt_equal_dl(rq, p);
2039#endif /* CONFIG_SMP */
2040}
2041
2042#ifdef CONFIG_SCHED_HRTICK
2043static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2044{
2045	hrtick_start(rq, dl_se->runtime);
2046}
2047#else /* !CONFIG_SCHED_HRTICK */
2048static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2049{
2050}
2051#endif
2052
2053static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2054{
2055	struct sched_dl_entity *dl_se = &p->dl;
2056	struct dl_rq *dl_rq = &rq->dl;
2057
2058	p->se.exec_start = rq_clock_task(rq);
2059	if (on_dl_rq(&p->dl))
2060		update_stats_wait_end_dl(dl_rq, dl_se);
2061
2062	/* You can't push away the running task */
2063	dequeue_pushable_dl_task(rq, p);
2064
2065	if (!first)
2066		return;
2067
2068	if (rq->curr->sched_class != &dl_sched_class)
2069		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2070
2071	deadline_queue_push_tasks(rq);
2072}
2073
2074static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2075{
2076	struct rb_node *left = rb_first_cached(&dl_rq->root);
2077
2078	if (!left)
2079		return NULL;
2080
2081	return __node_2_dle(left);
2082}
2083
2084static struct task_struct *pick_task_dl(struct rq *rq)
2085{
2086	struct sched_dl_entity *dl_se;
2087	struct dl_rq *dl_rq = &rq->dl;
2088	struct task_struct *p;
2089
2090again:
2091	if (!sched_dl_runnable(rq))
2092		return NULL;
2093
2094	dl_se = pick_next_dl_entity(dl_rq);
2095	WARN_ON_ONCE(!dl_se);
2096
2097	if (dl_server(dl_se)) {
2098		p = dl_se->server_pick(dl_se);
2099		if (!p) {
2100			WARN_ON_ONCE(1);
2101			dl_se->dl_yielded = 1;
2102			update_curr_dl_se(rq, dl_se, 0);
2103			goto again;
2104		}
2105		p->dl_server = dl_se;
2106	} else {
2107		p = dl_task_of(dl_se);
2108	}
2109
2110	return p;
2111}
2112
2113static struct task_struct *pick_next_task_dl(struct rq *rq)
2114{
2115	struct task_struct *p;
2116
2117	p = pick_task_dl(rq);
2118	if (!p)
2119		return p;
2120
2121	if (!p->dl_server)
2122		set_next_task_dl(rq, p, true);
2123
2124	if (hrtick_enabled(rq))
2125		start_hrtick_dl(rq, &p->dl);
2126
2127	return p;
2128}
2129
2130static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
2131{
2132	struct sched_dl_entity *dl_se = &p->dl;
2133	struct dl_rq *dl_rq = &rq->dl;
2134
2135	if (on_dl_rq(&p->dl))
2136		update_stats_wait_start_dl(dl_rq, dl_se);
2137
2138	update_curr_dl(rq);
2139
2140	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2141	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2142		enqueue_pushable_dl_task(rq, p);
2143}
2144
2145/*
2146 * scheduler tick hitting a task of our scheduling class.
2147 *
2148 * NOTE: This function can be called remotely by the tick offload that
2149 * goes along full dynticks. Therefore no local assumption can be made
2150 * and everything must be accessed through the @rq and @curr passed in
2151 * parameters.
2152 */
2153static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2154{
2155	update_curr_dl(rq);
2156
2157	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2158	/*
2159	 * Even when we have runtime, update_curr_dl() might have resulted in us
2160	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2161	 * be set and schedule() will start a new hrtick for the next task.
2162	 */
2163	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2164	    is_leftmost(&p->dl, &rq->dl))
2165		start_hrtick_dl(rq, &p->dl);
2166}
2167
2168static void task_fork_dl(struct task_struct *p)
2169{
2170	/*
2171	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2172	 * sched_fork()
2173	 */
2174}
2175
2176#ifdef CONFIG_SMP
2177
2178/* Only try algorithms three times */
2179#define DL_MAX_TRIES 3
2180
2181static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2182{
2183	if (!task_on_cpu(rq, p) &&
2184	    cpumask_test_cpu(cpu, &p->cpus_mask))
2185		return 1;
2186	return 0;
2187}
2188
2189/*
2190 * Return the earliest pushable rq's task, which is suitable to be executed
2191 * on the CPU, NULL otherwise:
2192 */
2193static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2194{
2195	struct task_struct *p = NULL;
2196	struct rb_node *next_node;
2197
2198	if (!has_pushable_dl_tasks(rq))
2199		return NULL;
2200
2201	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2202
2203next_node:
2204	if (next_node) {
2205		p = __node_2_pdl(next_node);
2206
2207		if (pick_dl_task(rq, p, cpu))
2208			return p;
2209
2210		next_node = rb_next(next_node);
2211		goto next_node;
2212	}
2213
2214	return NULL;
2215}
2216
2217static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2218
2219static int find_later_rq(struct task_struct *task)
2220{
2221	struct sched_domain *sd;
2222	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2223	int this_cpu = smp_processor_id();
2224	int cpu = task_cpu(task);
2225
2226	/* Make sure the mask is initialized first */
2227	if (unlikely(!later_mask))
2228		return -1;
2229
2230	if (task->nr_cpus_allowed == 1)
2231		return -1;
2232
2233	/*
2234	 * We have to consider system topology and task affinity
2235	 * first, then we can look for a suitable CPU.
2236	 */
2237	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2238		return -1;
2239
2240	/*
2241	 * If we are here, some targets have been found, including
2242	 * the most suitable which is, among the runqueues where the
2243	 * current tasks have later deadlines than the task's one, the
2244	 * rq with the latest possible one.
2245	 *
2246	 * Now we check how well this matches with task's
2247	 * affinity and system topology.
2248	 *
2249	 * The last CPU where the task run is our first
2250	 * guess, since it is most likely cache-hot there.
2251	 */
2252	if (cpumask_test_cpu(cpu, later_mask))
2253		return cpu;
2254	/*
2255	 * Check if this_cpu is to be skipped (i.e., it is
2256	 * not in the mask) or not.
2257	 */
2258	if (!cpumask_test_cpu(this_cpu, later_mask))
2259		this_cpu = -1;
2260
2261	rcu_read_lock();
2262	for_each_domain(cpu, sd) {
2263		if (sd->flags & SD_WAKE_AFFINE) {
2264			int best_cpu;
2265
2266			/*
2267			 * If possible, preempting this_cpu is
2268			 * cheaper than migrating.
2269			 */
2270			if (this_cpu != -1 &&
2271			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2272				rcu_read_unlock();
2273				return this_cpu;
2274			}
2275
2276			best_cpu = cpumask_any_and_distribute(later_mask,
2277							      sched_domain_span(sd));
2278			/*
2279			 * Last chance: if a CPU being in both later_mask
2280			 * and current sd span is valid, that becomes our
2281			 * choice. Of course, the latest possible CPU is
2282			 * already under consideration through later_mask.
2283			 */
2284			if (best_cpu < nr_cpu_ids) {
2285				rcu_read_unlock();
2286				return best_cpu;
2287			}
2288		}
2289	}
2290	rcu_read_unlock();
2291
2292	/*
2293	 * At this point, all our guesses failed, we just return
2294	 * 'something', and let the caller sort the things out.
2295	 */
2296	if (this_cpu != -1)
2297		return this_cpu;
2298
2299	cpu = cpumask_any_distribute(later_mask);
2300	if (cpu < nr_cpu_ids)
2301		return cpu;
2302
2303	return -1;
2304}
2305
2306/* Locks the rq it finds */
2307static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2308{
2309	struct rq *later_rq = NULL;
2310	int tries;
2311	int cpu;
2312
2313	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2314		cpu = find_later_rq(task);
2315
2316		if ((cpu == -1) || (cpu == rq->cpu))
2317			break;
2318
2319		later_rq = cpu_rq(cpu);
2320
2321		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2322			/*
2323			 * Target rq has tasks of equal or earlier deadline,
2324			 * retrying does not release any lock and is unlikely
2325			 * to yield a different result.
2326			 */
2327			later_rq = NULL;
2328			break;
2329		}
2330
2331		/* Retry if something changed. */
2332		if (double_lock_balance(rq, later_rq)) {
2333			if (unlikely(task_rq(task) != rq ||
2334				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2335				     task_on_cpu(rq, task) ||
2336				     !dl_task(task) ||
2337				     is_migration_disabled(task) ||
2338				     !task_on_rq_queued(task))) {
2339				double_unlock_balance(rq, later_rq);
2340				later_rq = NULL;
2341				break;
2342			}
2343		}
2344
2345		/*
2346		 * If the rq we found has no -deadline task, or
2347		 * its earliest one has a later deadline than our
2348		 * task, the rq is a good one.
2349		 */
2350		if (dl_task_is_earliest_deadline(task, later_rq))
2351			break;
2352
2353		/* Otherwise we try again. */
2354		double_unlock_balance(rq, later_rq);
2355		later_rq = NULL;
2356	}
2357
2358	return later_rq;
2359}
2360
2361static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2362{
2363	struct task_struct *p;
2364
2365	if (!has_pushable_dl_tasks(rq))
2366		return NULL;
2367
2368	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2369
2370	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2371	WARN_ON_ONCE(task_current(rq, p));
2372	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2373
2374	WARN_ON_ONCE(!task_on_rq_queued(p));
2375	WARN_ON_ONCE(!dl_task(p));
2376
2377	return p;
2378}
2379
2380/*
2381 * See if the non running -deadline tasks on this rq
2382 * can be sent to some other CPU where they can preempt
2383 * and start executing.
2384 */
2385static int push_dl_task(struct rq *rq)
2386{
2387	struct task_struct *next_task;
2388	struct rq *later_rq;
2389	int ret = 0;
2390
2391	next_task = pick_next_pushable_dl_task(rq);
2392	if (!next_task)
2393		return 0;
2394
2395retry:
2396	/*
2397	 * If next_task preempts rq->curr, and rq->curr
2398	 * can move away, it makes sense to just reschedule
2399	 * without going further in pushing next_task.
2400	 */
2401	if (dl_task(rq->curr) &&
2402	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2403	    rq->curr->nr_cpus_allowed > 1) {
2404		resched_curr(rq);
2405		return 0;
2406	}
2407
2408	if (is_migration_disabled(next_task))
2409		return 0;
2410
2411	if (WARN_ON(next_task == rq->curr))
2412		return 0;
2413
2414	/* We might release rq lock */
2415	get_task_struct(next_task);
2416
2417	/* Will lock the rq it'll find */
2418	later_rq = find_lock_later_rq(next_task, rq);
2419	if (!later_rq) {
2420		struct task_struct *task;
2421
2422		/*
2423		 * We must check all this again, since
2424		 * find_lock_later_rq releases rq->lock and it is
2425		 * then possible that next_task has migrated.
2426		 */
2427		task = pick_next_pushable_dl_task(rq);
2428		if (task == next_task) {
2429			/*
2430			 * The task is still there. We don't try
2431			 * again, some other CPU will pull it when ready.
2432			 */
2433			goto out;
2434		}
2435
2436		if (!task)
2437			/* No more tasks */
2438			goto out;
2439
2440		put_task_struct(next_task);
2441		next_task = task;
2442		goto retry;
2443	}
2444
2445	deactivate_task(rq, next_task, 0);
2446	set_task_cpu(next_task, later_rq->cpu);
2447	activate_task(later_rq, next_task, 0);
2448	ret = 1;
2449
2450	resched_curr(later_rq);
2451
2452	double_unlock_balance(rq, later_rq);
2453
2454out:
2455	put_task_struct(next_task);
2456
2457	return ret;
2458}
2459
2460static void push_dl_tasks(struct rq *rq)
2461{
2462	/* push_dl_task() will return true if it moved a -deadline task */
2463	while (push_dl_task(rq))
2464		;
2465}
2466
2467static void pull_dl_task(struct rq *this_rq)
2468{
2469	int this_cpu = this_rq->cpu, cpu;
2470	struct task_struct *p, *push_task;
2471	bool resched = false;
2472	struct rq *src_rq;
2473	u64 dmin = LONG_MAX;
2474
2475	if (likely(!dl_overloaded(this_rq)))
2476		return;
2477
2478	/*
2479	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2480	 * see overloaded we must also see the dlo_mask bit.
2481	 */
2482	smp_rmb();
2483
2484	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2485		if (this_cpu == cpu)
2486			continue;
2487
2488		src_rq = cpu_rq(cpu);
2489
2490		/*
2491		 * It looks racy, abd it is! However, as in sched_rt.c,
2492		 * we are fine with this.
2493		 */
2494		if (this_rq->dl.dl_nr_running &&
2495		    dl_time_before(this_rq->dl.earliest_dl.curr,
2496				   src_rq->dl.earliest_dl.next))
2497			continue;
2498
2499		/* Might drop this_rq->lock */
2500		push_task = NULL;
2501		double_lock_balance(this_rq, src_rq);
2502
2503		/*
2504		 * If there are no more pullable tasks on the
2505		 * rq, we're done with it.
2506		 */
2507		if (src_rq->dl.dl_nr_running <= 1)
2508			goto skip;
2509
2510		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2511
2512		/*
2513		 * We found a task to be pulled if:
2514		 *  - it preempts our current (if there's one),
2515		 *  - it will preempt the last one we pulled (if any).
2516		 */
2517		if (p && dl_time_before(p->dl.deadline, dmin) &&
2518		    dl_task_is_earliest_deadline(p, this_rq)) {
2519			WARN_ON(p == src_rq->curr);
2520			WARN_ON(!task_on_rq_queued(p));
2521
2522			/*
2523			 * Then we pull iff p has actually an earlier
2524			 * deadline than the current task of its runqueue.
2525			 */
2526			if (dl_time_before(p->dl.deadline,
2527					   src_rq->curr->dl.deadline))
2528				goto skip;
2529
2530			if (is_migration_disabled(p)) {
2531				push_task = get_push_task(src_rq);
2532			} else {
2533				deactivate_task(src_rq, p, 0);
2534				set_task_cpu(p, this_cpu);
2535				activate_task(this_rq, p, 0);
2536				dmin = p->dl.deadline;
2537				resched = true;
2538			}
2539
2540			/* Is there any other task even earlier? */
2541		}
2542skip:
2543		double_unlock_balance(this_rq, src_rq);
2544
2545		if (push_task) {
2546			preempt_disable();
2547			raw_spin_rq_unlock(this_rq);
2548			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2549					    push_task, &src_rq->push_work);
2550			preempt_enable();
2551			raw_spin_rq_lock(this_rq);
2552		}
2553	}
2554
2555	if (resched)
2556		resched_curr(this_rq);
2557}
2558
2559/*
2560 * Since the task is not running and a reschedule is not going to happen
2561 * anytime soon on its runqueue, we try pushing it away now.
2562 */
2563static void task_woken_dl(struct rq *rq, struct task_struct *p)
2564{
2565	if (!task_on_cpu(rq, p) &&
2566	    !test_tsk_need_resched(rq->curr) &&
2567	    p->nr_cpus_allowed > 1 &&
2568	    dl_task(rq->curr) &&
2569	    (rq->curr->nr_cpus_allowed < 2 ||
2570	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2571		push_dl_tasks(rq);
2572	}
2573}
2574
2575static void set_cpus_allowed_dl(struct task_struct *p,
2576				struct affinity_context *ctx)
2577{
2578	struct root_domain *src_rd;
2579	struct rq *rq;
2580
2581	WARN_ON_ONCE(!dl_task(p));
2582
2583	rq = task_rq(p);
2584	src_rd = rq->rd;
2585	/*
2586	 * Migrating a SCHED_DEADLINE task between exclusive
2587	 * cpusets (different root_domains) entails a bandwidth
2588	 * update. We already made space for us in the destination
2589	 * domain (see cpuset_can_attach()).
2590	 */
2591	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2592		struct dl_bw *src_dl_b;
2593
2594		src_dl_b = dl_bw_of(cpu_of(rq));
2595		/*
2596		 * We now free resources of the root_domain we are migrating
2597		 * off. In the worst case, sched_setattr() may temporary fail
2598		 * until we complete the update.
2599		 */
2600		raw_spin_lock(&src_dl_b->lock);
2601		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2602		raw_spin_unlock(&src_dl_b->lock);
2603	}
2604
2605	set_cpus_allowed_common(p, ctx);
2606}
2607
2608/* Assumes rq->lock is held */
2609static void rq_online_dl(struct rq *rq)
2610{
2611	if (rq->dl.overloaded)
2612		dl_set_overload(rq);
2613
2614	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2615	if (rq->dl.dl_nr_running > 0)
2616		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2617}
2618
2619/* Assumes rq->lock is held */
2620static void rq_offline_dl(struct rq *rq)
2621{
2622	if (rq->dl.overloaded)
2623		dl_clear_overload(rq);
2624
2625	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2626	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2627}
2628
2629void __init init_sched_dl_class(void)
2630{
2631	unsigned int i;
2632
2633	for_each_possible_cpu(i)
2634		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2635					GFP_KERNEL, cpu_to_node(i));
2636}
2637
2638void dl_add_task_root_domain(struct task_struct *p)
2639{
2640	struct rq_flags rf;
2641	struct rq *rq;
2642	struct dl_bw *dl_b;
2643
2644	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2645	if (!dl_task(p)) {
2646		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2647		return;
2648	}
2649
2650	rq = __task_rq_lock(p, &rf);
2651
2652	dl_b = &rq->rd->dl_bw;
2653	raw_spin_lock(&dl_b->lock);
2654
2655	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2656
2657	raw_spin_unlock(&dl_b->lock);
2658
2659	task_rq_unlock(rq, p, &rf);
2660}
2661
2662void dl_clear_root_domain(struct root_domain *rd)
2663{
2664	unsigned long flags;
2665
2666	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2667	rd->dl_bw.total_bw = 0;
2668	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2669}
2670
2671#endif /* CONFIG_SMP */
2672
2673static void switched_from_dl(struct rq *rq, struct task_struct *p)
2674{
2675	/*
2676	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2677	 * time is in the future). If the task switches back to dl before
2678	 * the "inactive timer" fires, it can continue to consume its current
2679	 * runtime using its current deadline. If it stays outside of
2680	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2681	 * will reset the task parameters.
2682	 */
2683	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2684		task_non_contending(&p->dl);
2685
2686	/*
2687	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2688	 * keep track of that on its cpuset (for correct bandwidth tracking).
2689	 */
2690	dec_dl_tasks_cs(p);
2691
2692	if (!task_on_rq_queued(p)) {
2693		/*
2694		 * Inactive timer is armed. However, p is leaving DEADLINE and
2695		 * might migrate away from this rq while continuing to run on
2696		 * some other class. We need to remove its contribution from
2697		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2698		 */
2699		if (p->dl.dl_non_contending)
2700			sub_running_bw(&p->dl, &rq->dl);
2701		sub_rq_bw(&p->dl, &rq->dl);
2702	}
2703
2704	/*
2705	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2706	 * at the 0-lag time, because the task could have been migrated
2707	 * while SCHED_OTHER in the meanwhile.
2708	 */
2709	if (p->dl.dl_non_contending)
2710		p->dl.dl_non_contending = 0;
2711
2712	/*
2713	 * Since this might be the only -deadline task on the rq,
2714	 * this is the right place to try to pull some other one
2715	 * from an overloaded CPU, if any.
2716	 */
2717	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2718		return;
2719
2720	deadline_queue_pull_task(rq);
2721}
2722
2723/*
2724 * When switching to -deadline, we may overload the rq, then
2725 * we try to push someone off, if possible.
2726 */
2727static void switched_to_dl(struct rq *rq, struct task_struct *p)
2728{
2729	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2730		put_task_struct(p);
2731
2732	/*
2733	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
2734	 * track of that on its cpuset (for correct bandwidth tracking).
2735	 */
2736	inc_dl_tasks_cs(p);
2737
2738	/* If p is not queued we will update its parameters at next wakeup. */
2739	if (!task_on_rq_queued(p)) {
2740		add_rq_bw(&p->dl, &rq->dl);
2741
2742		return;
2743	}
2744
2745	if (rq->curr != p) {
2746#ifdef CONFIG_SMP
2747		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2748			deadline_queue_push_tasks(rq);
2749#endif
2750		if (dl_task(rq->curr))
2751			wakeup_preempt_dl(rq, p, 0);
2752		else
2753			resched_curr(rq);
2754	} else {
2755		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2756	}
2757}
2758
2759/*
2760 * If the scheduling parameters of a -deadline task changed,
2761 * a push or pull operation might be needed.
2762 */
2763static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2764			    int oldprio)
2765{
2766	if (!task_on_rq_queued(p))
2767		return;
2768
2769#ifdef CONFIG_SMP
2770	/*
2771	 * This might be too much, but unfortunately
2772	 * we don't have the old deadline value, and
2773	 * we can't argue if the task is increasing
2774	 * or lowering its prio, so...
2775	 */
2776	if (!rq->dl.overloaded)
2777		deadline_queue_pull_task(rq);
2778
2779	if (task_current(rq, p)) {
2780		/*
2781		 * If we now have a earlier deadline task than p,
2782		 * then reschedule, provided p is still on this
2783		 * runqueue.
2784		 */
2785		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2786			resched_curr(rq);
2787	} else {
2788		/*
2789		 * Current may not be deadline in case p was throttled but we
2790		 * have just replenished it (e.g. rt_mutex_setprio()).
2791		 *
2792		 * Otherwise, if p was given an earlier deadline, reschedule.
2793		 */
2794		if (!dl_task(rq->curr) ||
2795		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
2796			resched_curr(rq);
2797	}
2798#else
2799	/*
2800	 * We don't know if p has a earlier or later deadline, so let's blindly
2801	 * set a (maybe not needed) rescheduling point.
2802	 */
2803	resched_curr(rq);
2804#endif
2805}
2806
2807#ifdef CONFIG_SCHED_CORE
2808static int task_is_throttled_dl(struct task_struct *p, int cpu)
2809{
2810	return p->dl.dl_throttled;
2811}
2812#endif
2813
2814DEFINE_SCHED_CLASS(dl) = {
2815
2816	.enqueue_task		= enqueue_task_dl,
2817	.dequeue_task		= dequeue_task_dl,
2818	.yield_task		= yield_task_dl,
2819
2820	.wakeup_preempt		= wakeup_preempt_dl,
2821
2822	.pick_next_task		= pick_next_task_dl,
2823	.put_prev_task		= put_prev_task_dl,
2824	.set_next_task		= set_next_task_dl,
2825
2826#ifdef CONFIG_SMP
2827	.balance		= balance_dl,
2828	.pick_task		= pick_task_dl,
2829	.select_task_rq		= select_task_rq_dl,
2830	.migrate_task_rq	= migrate_task_rq_dl,
2831	.set_cpus_allowed       = set_cpus_allowed_dl,
2832	.rq_online              = rq_online_dl,
2833	.rq_offline             = rq_offline_dl,
2834	.task_woken		= task_woken_dl,
2835	.find_lock_rq		= find_lock_later_rq,
2836#endif
2837
2838	.task_tick		= task_tick_dl,
2839	.task_fork              = task_fork_dl,
2840
2841	.prio_changed           = prio_changed_dl,
2842	.switched_from		= switched_from_dl,
2843	.switched_to		= switched_to_dl,
2844
2845	.update_curr		= update_curr_dl,
2846#ifdef CONFIG_SCHED_CORE
2847	.task_is_throttled	= task_is_throttled_dl,
2848#endif
2849};
2850
2851/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2852static u64 dl_generation;
2853
2854int sched_dl_global_validate(void)
2855{
2856	u64 runtime = global_rt_runtime();
2857	u64 period = global_rt_period();
2858	u64 new_bw = to_ratio(period, runtime);
2859	u64 gen = ++dl_generation;
2860	struct dl_bw *dl_b;
2861	int cpu, cpus, ret = 0;
2862	unsigned long flags;
2863
2864	/*
2865	 * Here we want to check the bandwidth not being set to some
2866	 * value smaller than the currently allocated bandwidth in
2867	 * any of the root_domains.
2868	 */
2869	for_each_possible_cpu(cpu) {
2870		rcu_read_lock_sched();
2871
2872		if (dl_bw_visited(cpu, gen))
2873			goto next;
2874
2875		dl_b = dl_bw_of(cpu);
2876		cpus = dl_bw_cpus(cpu);
2877
2878		raw_spin_lock_irqsave(&dl_b->lock, flags);
2879		if (new_bw * cpus < dl_b->total_bw)
2880			ret = -EBUSY;
2881		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2882
2883next:
2884		rcu_read_unlock_sched();
2885
2886		if (ret)
2887			break;
2888	}
2889
2890	return ret;
2891}
2892
2893static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2894{
2895	if (global_rt_runtime() == RUNTIME_INF) {
2896		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2897		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
2898	} else {
2899		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2900			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2901		dl_rq->max_bw = dl_rq->extra_bw =
2902			to_ratio(global_rt_period(), global_rt_runtime());
2903	}
2904}
2905
2906void sched_dl_do_global(void)
2907{
2908	u64 new_bw = -1;
2909	u64 gen = ++dl_generation;
2910	struct dl_bw *dl_b;
2911	int cpu;
2912	unsigned long flags;
2913
2914	if (global_rt_runtime() != RUNTIME_INF)
2915		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2916
2917	for_each_possible_cpu(cpu) {
2918		rcu_read_lock_sched();
2919
2920		if (dl_bw_visited(cpu, gen)) {
2921			rcu_read_unlock_sched();
2922			continue;
2923		}
2924
2925		dl_b = dl_bw_of(cpu);
2926
2927		raw_spin_lock_irqsave(&dl_b->lock, flags);
2928		dl_b->bw = new_bw;
2929		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2930
2931		rcu_read_unlock_sched();
2932		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2933	}
2934}
2935
2936/*
2937 * We must be sure that accepting a new task (or allowing changing the
2938 * parameters of an existing one) is consistent with the bandwidth
2939 * constraints. If yes, this function also accordingly updates the currently
2940 * allocated bandwidth to reflect the new situation.
2941 *
2942 * This function is called while holding p's rq->lock.
2943 */
2944int sched_dl_overflow(struct task_struct *p, int policy,
2945		      const struct sched_attr *attr)
2946{
2947	u64 period = attr->sched_period ?: attr->sched_deadline;
2948	u64 runtime = attr->sched_runtime;
2949	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2950	int cpus, err = -1, cpu = task_cpu(p);
2951	struct dl_bw *dl_b = dl_bw_of(cpu);
2952	unsigned long cap;
2953
2954	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2955		return 0;
2956
2957	/* !deadline task may carry old deadline bandwidth */
2958	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2959		return 0;
2960
2961	/*
2962	 * Either if a task, enters, leave, or stays -deadline but changes
2963	 * its parameters, we may need to update accordingly the total
2964	 * allocated bandwidth of the container.
2965	 */
2966	raw_spin_lock(&dl_b->lock);
2967	cpus = dl_bw_cpus(cpu);
2968	cap = dl_bw_capacity(cpu);
2969
2970	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2971	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
2972		if (hrtimer_active(&p->dl.inactive_timer))
2973			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2974		__dl_add(dl_b, new_bw, cpus);
2975		err = 0;
2976	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2977		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2978		/*
2979		 * XXX this is slightly incorrect: when the task
2980		 * utilization decreases, we should delay the total
2981		 * utilization change until the task's 0-lag point.
2982		 * But this would require to set the task's "inactive
2983		 * timer" when the task is not inactive.
2984		 */
2985		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2986		__dl_add(dl_b, new_bw, cpus);
2987		dl_change_utilization(p, new_bw);
2988		err = 0;
2989	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2990		/*
2991		 * Do not decrease the total deadline utilization here,
2992		 * switched_from_dl() will take care to do it at the correct
2993		 * (0-lag) time.
2994		 */
2995		err = 0;
2996	}
2997	raw_spin_unlock(&dl_b->lock);
2998
2999	return err;
3000}
3001
3002/*
3003 * This function initializes the sched_dl_entity of a newly becoming
3004 * SCHED_DEADLINE task.
3005 *
3006 * Only the static values are considered here, the actual runtime and the
3007 * absolute deadline will be properly calculated when the task is enqueued
3008 * for the first time with its new policy.
3009 */
3010void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3011{
3012	struct sched_dl_entity *dl_se = &p->dl;
3013
3014	dl_se->dl_runtime = attr->sched_runtime;
3015	dl_se->dl_deadline = attr->sched_deadline;
3016	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3017	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3018	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3019	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3020}
3021
3022void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3023{
3024	struct sched_dl_entity *dl_se = &p->dl;
3025
3026	attr->sched_priority = p->rt_priority;
3027	attr->sched_runtime = dl_se->dl_runtime;
3028	attr->sched_deadline = dl_se->dl_deadline;
3029	attr->sched_period = dl_se->dl_period;
3030	attr->sched_flags &= ~SCHED_DL_FLAGS;
3031	attr->sched_flags |= dl_se->flags;
3032}
3033
3034/*
3035 * This function validates the new parameters of a -deadline task.
3036 * We ask for the deadline not being zero, and greater or equal
3037 * than the runtime, as well as the period of being zero or
3038 * greater than deadline. Furthermore, we have to be sure that
3039 * user parameters are above the internal resolution of 1us (we
3040 * check sched_runtime only since it is always the smaller one) and
3041 * below 2^63 ns (we have to check both sched_deadline and
3042 * sched_period, as the latter can be zero).
3043 */
3044bool __checkparam_dl(const struct sched_attr *attr)
3045{
3046	u64 period, max, min;
3047
3048	/* special dl tasks don't actually use any parameter */
3049	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3050		return true;
3051
3052	/* deadline != 0 */
3053	if (attr->sched_deadline == 0)
3054		return false;
3055
3056	/*
3057	 * Since we truncate DL_SCALE bits, make sure we're at least
3058	 * that big.
3059	 */
3060	if (attr->sched_runtime < (1ULL << DL_SCALE))
3061		return false;
3062
3063	/*
3064	 * Since we use the MSB for wrap-around and sign issues, make
3065	 * sure it's not set (mind that period can be equal to zero).
3066	 */
3067	if (attr->sched_deadline & (1ULL << 63) ||
3068	    attr->sched_period & (1ULL << 63))
3069		return false;
3070
3071	period = attr->sched_period;
3072	if (!period)
3073		period = attr->sched_deadline;
3074
3075	/* runtime <= deadline <= period (if period != 0) */
3076	if (period < attr->sched_deadline ||
3077	    attr->sched_deadline < attr->sched_runtime)
3078		return false;
3079
3080	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3081	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3082
3083	if (period < min || period > max)
3084		return false;
3085
3086	return true;
3087}
3088
3089/*
3090 * This function clears the sched_dl_entity static params.
3091 */
3092static void __dl_clear_params(struct sched_dl_entity *dl_se)
3093{
3094	dl_se->dl_runtime		= 0;
3095	dl_se->dl_deadline		= 0;
3096	dl_se->dl_period		= 0;
3097	dl_se->flags			= 0;
3098	dl_se->dl_bw			= 0;
3099	dl_se->dl_density		= 0;
3100
3101	dl_se->dl_throttled		= 0;
3102	dl_se->dl_yielded		= 0;
3103	dl_se->dl_non_contending	= 0;
3104	dl_se->dl_overrun		= 0;
3105	dl_se->dl_server		= 0;
3106
3107#ifdef CONFIG_RT_MUTEXES
3108	dl_se->pi_se			= dl_se;
3109#endif
3110}
3111
3112void init_dl_entity(struct sched_dl_entity *dl_se)
3113{
3114	RB_CLEAR_NODE(&dl_se->rb_node);
3115	init_dl_task_timer(dl_se);
3116	init_dl_inactive_task_timer(dl_se);
3117	__dl_clear_params(dl_se);
3118}
3119
3120bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3121{
3122	struct sched_dl_entity *dl_se = &p->dl;
3123
3124	if (dl_se->dl_runtime != attr->sched_runtime ||
3125	    dl_se->dl_deadline != attr->sched_deadline ||
3126	    dl_se->dl_period != attr->sched_period ||
3127	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3128		return true;
3129
3130	return false;
3131}
3132
3133#ifdef CONFIG_SMP
3134int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3135				 const struct cpumask *trial)
3136{
3137	unsigned long flags, cap;
3138	struct dl_bw *cur_dl_b;
3139	int ret = 1;
3140
3141	rcu_read_lock_sched();
3142	cur_dl_b = dl_bw_of(cpumask_any(cur));
3143	cap = __dl_bw_capacity(trial);
3144	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3145	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3146		ret = 0;
3147	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3148	rcu_read_unlock_sched();
3149
3150	return ret;
3151}
3152
3153enum dl_bw_request {
3154	dl_bw_req_check_overflow = 0,
3155	dl_bw_req_alloc,
3156	dl_bw_req_free
3157};
3158
3159static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3160{
3161	unsigned long flags;
3162	struct dl_bw *dl_b;
3163	bool overflow = 0;
3164
3165	rcu_read_lock_sched();
3166	dl_b = dl_bw_of(cpu);
3167	raw_spin_lock_irqsave(&dl_b->lock, flags);
3168
3169	if (req == dl_bw_req_free) {
3170		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3171	} else {
3172		unsigned long cap = dl_bw_capacity(cpu);
3173
3174		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3175
3176		if (req == dl_bw_req_alloc && !overflow) {
3177			/*
3178			 * We reserve space in the destination
3179			 * root_domain, as we can't fail after this point.
3180			 * We will free resources in the source root_domain
3181			 * later on (see set_cpus_allowed_dl()).
3182			 */
3183			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3184		}
3185	}
3186
3187	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3188	rcu_read_unlock_sched();
3189
3190	return overflow ? -EBUSY : 0;
3191}
3192
3193int dl_bw_check_overflow(int cpu)
3194{
3195	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3196}
3197
3198int dl_bw_alloc(int cpu, u64 dl_bw)
3199{
3200	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3201}
3202
3203void dl_bw_free(int cpu, u64 dl_bw)
3204{
3205	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3206}
3207#endif
3208
3209#ifdef CONFIG_SCHED_DEBUG
3210void print_dl_stats(struct seq_file *m, int cpu)
3211{
3212	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3213}
3214#endif /* CONFIG_SCHED_DEBUG */
3215