1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/kernel/reboot.c
4 *
5 *  Copyright (C) 2013  Linus Torvalds
6 */
7
8#define pr_fmt(fmt)	"reboot: " fmt
9
10#include <linux/atomic.h>
11#include <linux/ctype.h>
12#include <linux/export.h>
13#include <linux/kexec.h>
14#include <linux/kmod.h>
15#include <linux/kmsg_dump.h>
16#include <linux/reboot.h>
17#include <linux/suspend.h>
18#include <linux/syscalls.h>
19#include <linux/syscore_ops.h>
20#include <linux/uaccess.h>
21
22/*
23 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24 */
25
26static int C_A_D = 1;
27struct pid *cad_pid;
28EXPORT_SYMBOL(cad_pid);
29
30#if defined(CONFIG_ARM)
31#define DEFAULT_REBOOT_MODE		= REBOOT_HARD
32#else
33#define DEFAULT_REBOOT_MODE
34#endif
35enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36EXPORT_SYMBOL_GPL(reboot_mode);
37enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38
39/*
40 * This variable is used privately to keep track of whether or not
41 * reboot_type is still set to its default value (i.e., reboot= hasn't
42 * been set on the command line).  This is needed so that we can
43 * suppress DMI scanning for reboot quirks.  Without it, it's
44 * impossible to override a faulty reboot quirk without recompiling.
45 */
46int reboot_default = 1;
47int reboot_cpu;
48enum reboot_type reboot_type = BOOT_ACPI;
49int reboot_force;
50
51struct sys_off_handler {
52	struct notifier_block nb;
53	int (*sys_off_cb)(struct sys_off_data *data);
54	void *cb_data;
55	enum sys_off_mode mode;
56	bool blocking;
57	void *list;
58	struct device *dev;
59};
60
61/*
62 * This variable is used to indicate if a halt was initiated instead of a
63 * reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but
64 * the system cannot be powered off. This allowes kernel_halt() to notify users
65 * of that.
66 */
67static bool poweroff_fallback_to_halt;
68
69/*
70 * Temporary stub that prevents linkage failure while we're in process
71 * of removing all uses of legacy pm_power_off() around the kernel.
72 */
73void __weak (*pm_power_off)(void);
74
75/**
76 *	emergency_restart - reboot the system
77 *
78 *	Without shutting down any hardware or taking any locks
79 *	reboot the system.  This is called when we know we are in
80 *	trouble so this is our best effort to reboot.  This is
81 *	safe to call in interrupt context.
82 */
83void emergency_restart(void)
84{
85	kmsg_dump(KMSG_DUMP_EMERG);
86	system_state = SYSTEM_RESTART;
87	machine_emergency_restart();
88}
89EXPORT_SYMBOL_GPL(emergency_restart);
90
91void kernel_restart_prepare(char *cmd)
92{
93	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
94	system_state = SYSTEM_RESTART;
95	usermodehelper_disable();
96	device_shutdown();
97}
98
99/**
100 *	register_reboot_notifier - Register function to be called at reboot time
101 *	@nb: Info about notifier function to be called
102 *
103 *	Registers a function with the list of functions
104 *	to be called at reboot time.
105 *
106 *	Currently always returns zero, as blocking_notifier_chain_register()
107 *	always returns zero.
108 */
109int register_reboot_notifier(struct notifier_block *nb)
110{
111	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
112}
113EXPORT_SYMBOL(register_reboot_notifier);
114
115/**
116 *	unregister_reboot_notifier - Unregister previously registered reboot notifier
117 *	@nb: Hook to be unregistered
118 *
119 *	Unregisters a previously registered reboot
120 *	notifier function.
121 *
122 *	Returns zero on success, or %-ENOENT on failure.
123 */
124int unregister_reboot_notifier(struct notifier_block *nb)
125{
126	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
127}
128EXPORT_SYMBOL(unregister_reboot_notifier);
129
130static void devm_unregister_reboot_notifier(struct device *dev, void *res)
131{
132	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
133}
134
135int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
136{
137	struct notifier_block **rcnb;
138	int ret;
139
140	rcnb = devres_alloc(devm_unregister_reboot_notifier,
141			    sizeof(*rcnb), GFP_KERNEL);
142	if (!rcnb)
143		return -ENOMEM;
144
145	ret = register_reboot_notifier(nb);
146	if (!ret) {
147		*rcnb = nb;
148		devres_add(dev, rcnb);
149	} else {
150		devres_free(rcnb);
151	}
152
153	return ret;
154}
155EXPORT_SYMBOL(devm_register_reboot_notifier);
156
157/*
158 *	Notifier list for kernel code which wants to be called
159 *	to restart the system.
160 */
161static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
162
163/**
164 *	register_restart_handler - Register function to be called to reset
165 *				   the system
166 *	@nb: Info about handler function to be called
167 *	@nb->priority:	Handler priority. Handlers should follow the
168 *			following guidelines for setting priorities.
169 *			0:	Restart handler of last resort,
170 *				with limited restart capabilities
171 *			128:	Default restart handler; use if no other
172 *				restart handler is expected to be available,
173 *				and/or if restart functionality is
174 *				sufficient to restart the entire system
175 *			255:	Highest priority restart handler, will
176 *				preempt all other restart handlers
177 *
178 *	Registers a function with code to be called to restart the
179 *	system.
180 *
181 *	Registered functions will be called from machine_restart as last
182 *	step of the restart sequence (if the architecture specific
183 *	machine_restart function calls do_kernel_restart - see below
184 *	for details).
185 *	Registered functions are expected to restart the system immediately.
186 *	If more than one function is registered, the restart handler priority
187 *	selects which function will be called first.
188 *
189 *	Restart handlers are expected to be registered from non-architecture
190 *	code, typically from drivers. A typical use case would be a system
191 *	where restart functionality is provided through a watchdog. Multiple
192 *	restart handlers may exist; for example, one restart handler might
193 *	restart the entire system, while another only restarts the CPU.
194 *	In such cases, the restart handler which only restarts part of the
195 *	hardware is expected to register with low priority to ensure that
196 *	it only runs if no other means to restart the system is available.
197 *
198 *	Currently always returns zero, as atomic_notifier_chain_register()
199 *	always returns zero.
200 */
201int register_restart_handler(struct notifier_block *nb)
202{
203	return atomic_notifier_chain_register(&restart_handler_list, nb);
204}
205EXPORT_SYMBOL(register_restart_handler);
206
207/**
208 *	unregister_restart_handler - Unregister previously registered
209 *				     restart handler
210 *	@nb: Hook to be unregistered
211 *
212 *	Unregisters a previously registered restart handler function.
213 *
214 *	Returns zero on success, or %-ENOENT on failure.
215 */
216int unregister_restart_handler(struct notifier_block *nb)
217{
218	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
219}
220EXPORT_SYMBOL(unregister_restart_handler);
221
222/**
223 *	do_kernel_restart - Execute kernel restart handler call chain
224 *
225 *	Calls functions registered with register_restart_handler.
226 *
227 *	Expected to be called from machine_restart as last step of the restart
228 *	sequence.
229 *
230 *	Restarts the system immediately if a restart handler function has been
231 *	registered. Otherwise does nothing.
232 */
233void do_kernel_restart(char *cmd)
234{
235	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
236}
237
238void migrate_to_reboot_cpu(void)
239{
240	/* The boot cpu is always logical cpu 0 */
241	int cpu = reboot_cpu;
242
243	cpu_hotplug_disable();
244
245	/* Make certain the cpu I'm about to reboot on is online */
246	if (!cpu_online(cpu))
247		cpu = cpumask_first(cpu_online_mask);
248
249	/* Prevent races with other tasks migrating this task */
250	current->flags |= PF_NO_SETAFFINITY;
251
252	/* Make certain I only run on the appropriate processor */
253	set_cpus_allowed_ptr(current, cpumask_of(cpu));
254}
255
256/*
257 *	Notifier list for kernel code which wants to be called
258 *	to prepare system for restart.
259 */
260static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
261
262static void do_kernel_restart_prepare(void)
263{
264	blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
265}
266
267/**
268 *	kernel_restart - reboot the system
269 *	@cmd: pointer to buffer containing command to execute for restart
270 *		or %NULL
271 *
272 *	Shutdown everything and perform a clean reboot.
273 *	This is not safe to call in interrupt context.
274 */
275void kernel_restart(char *cmd)
276{
277	kernel_restart_prepare(cmd);
278	do_kernel_restart_prepare();
279	migrate_to_reboot_cpu();
280	syscore_shutdown();
281	if (!cmd)
282		pr_emerg("Restarting system\n");
283	else
284		pr_emerg("Restarting system with command '%s'\n", cmd);
285	kmsg_dump(KMSG_DUMP_SHUTDOWN);
286	machine_restart(cmd);
287}
288EXPORT_SYMBOL_GPL(kernel_restart);
289
290static void kernel_shutdown_prepare(enum system_states state)
291{
292	blocking_notifier_call_chain(&reboot_notifier_list,
293		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
294	system_state = state;
295	usermodehelper_disable();
296	device_shutdown();
297}
298/**
299 *	kernel_halt - halt the system
300 *
301 *	Shutdown everything and perform a clean system halt.
302 */
303void kernel_halt(void)
304{
305	kernel_shutdown_prepare(SYSTEM_HALT);
306	migrate_to_reboot_cpu();
307	syscore_shutdown();
308	if (poweroff_fallback_to_halt)
309		pr_emerg("Power off not available: System halted instead\n");
310	else
311		pr_emerg("System halted\n");
312	kmsg_dump(KMSG_DUMP_SHUTDOWN);
313	machine_halt();
314}
315EXPORT_SYMBOL_GPL(kernel_halt);
316
317/*
318 *	Notifier list for kernel code which wants to be called
319 *	to prepare system for power off.
320 */
321static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
322
323/*
324 *	Notifier list for kernel code which wants to be called
325 *	to power off system.
326 */
327static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
328
329static int sys_off_notify(struct notifier_block *nb,
330			  unsigned long mode, void *cmd)
331{
332	struct sys_off_handler *handler;
333	struct sys_off_data data = {};
334
335	handler = container_of(nb, struct sys_off_handler, nb);
336	data.cb_data = handler->cb_data;
337	data.mode = mode;
338	data.cmd = cmd;
339	data.dev = handler->dev;
340
341	return handler->sys_off_cb(&data);
342}
343
344static struct sys_off_handler platform_sys_off_handler;
345
346static struct sys_off_handler *alloc_sys_off_handler(int priority)
347{
348	struct sys_off_handler *handler;
349	gfp_t flags;
350
351	/*
352	 * Platforms like m68k can't allocate sys_off handler dynamically
353	 * at the early boot time because memory allocator isn't available yet.
354	 */
355	if (priority == SYS_OFF_PRIO_PLATFORM) {
356		handler = &platform_sys_off_handler;
357		if (handler->cb_data)
358			return ERR_PTR(-EBUSY);
359	} else {
360		if (system_state > SYSTEM_RUNNING)
361			flags = GFP_ATOMIC;
362		else
363			flags = GFP_KERNEL;
364
365		handler = kzalloc(sizeof(*handler), flags);
366		if (!handler)
367			return ERR_PTR(-ENOMEM);
368	}
369
370	return handler;
371}
372
373static void free_sys_off_handler(struct sys_off_handler *handler)
374{
375	if (handler == &platform_sys_off_handler)
376		memset(handler, 0, sizeof(*handler));
377	else
378		kfree(handler);
379}
380
381/**
382 *	register_sys_off_handler - Register sys-off handler
383 *	@mode: Sys-off mode
384 *	@priority: Handler priority
385 *	@callback: Callback function
386 *	@cb_data: Callback argument
387 *
388 *	Registers system power-off or restart handler that will be invoked
389 *	at the step corresponding to the given sys-off mode. Handler's callback
390 *	should return NOTIFY_DONE to permit execution of the next handler in
391 *	the call chain or NOTIFY_STOP to break the chain (in error case for
392 *	example).
393 *
394 *	Multiple handlers can be registered at the default priority level.
395 *
396 *	Only one handler can be registered at the non-default priority level,
397 *	otherwise ERR_PTR(-EBUSY) is returned.
398 *
399 *	Returns a new instance of struct sys_off_handler on success, or
400 *	an ERR_PTR()-encoded error code otherwise.
401 */
402struct sys_off_handler *
403register_sys_off_handler(enum sys_off_mode mode,
404			 int priority,
405			 int (*callback)(struct sys_off_data *data),
406			 void *cb_data)
407{
408	struct sys_off_handler *handler;
409	int err;
410
411	handler = alloc_sys_off_handler(priority);
412	if (IS_ERR(handler))
413		return handler;
414
415	switch (mode) {
416	case SYS_OFF_MODE_POWER_OFF_PREPARE:
417		handler->list = &power_off_prep_handler_list;
418		handler->blocking = true;
419		break;
420
421	case SYS_OFF_MODE_POWER_OFF:
422		handler->list = &power_off_handler_list;
423		break;
424
425	case SYS_OFF_MODE_RESTART_PREPARE:
426		handler->list = &restart_prep_handler_list;
427		handler->blocking = true;
428		break;
429
430	case SYS_OFF_MODE_RESTART:
431		handler->list = &restart_handler_list;
432		break;
433
434	default:
435		free_sys_off_handler(handler);
436		return ERR_PTR(-EINVAL);
437	}
438
439	handler->nb.notifier_call = sys_off_notify;
440	handler->nb.priority = priority;
441	handler->sys_off_cb = callback;
442	handler->cb_data = cb_data;
443	handler->mode = mode;
444
445	if (handler->blocking) {
446		if (priority == SYS_OFF_PRIO_DEFAULT)
447			err = blocking_notifier_chain_register(handler->list,
448							       &handler->nb);
449		else
450			err = blocking_notifier_chain_register_unique_prio(handler->list,
451									   &handler->nb);
452	} else {
453		if (priority == SYS_OFF_PRIO_DEFAULT)
454			err = atomic_notifier_chain_register(handler->list,
455							     &handler->nb);
456		else
457			err = atomic_notifier_chain_register_unique_prio(handler->list,
458									 &handler->nb);
459	}
460
461	if (err) {
462		free_sys_off_handler(handler);
463		return ERR_PTR(err);
464	}
465
466	return handler;
467}
468EXPORT_SYMBOL_GPL(register_sys_off_handler);
469
470/**
471 *	unregister_sys_off_handler - Unregister sys-off handler
472 *	@handler: Sys-off handler
473 *
474 *	Unregisters given sys-off handler.
475 */
476void unregister_sys_off_handler(struct sys_off_handler *handler)
477{
478	int err;
479
480	if (IS_ERR_OR_NULL(handler))
481		return;
482
483	if (handler->blocking)
484		err = blocking_notifier_chain_unregister(handler->list,
485							 &handler->nb);
486	else
487		err = atomic_notifier_chain_unregister(handler->list,
488						       &handler->nb);
489
490	/* sanity check, shall never happen */
491	WARN_ON(err);
492
493	free_sys_off_handler(handler);
494}
495EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
496
497static void devm_unregister_sys_off_handler(void *data)
498{
499	struct sys_off_handler *handler = data;
500
501	unregister_sys_off_handler(handler);
502}
503
504/**
505 *	devm_register_sys_off_handler - Register sys-off handler
506 *	@dev: Device that registers handler
507 *	@mode: Sys-off mode
508 *	@priority: Handler priority
509 *	@callback: Callback function
510 *	@cb_data: Callback argument
511 *
512 *	Registers resource-managed sys-off handler.
513 *
514 *	Returns zero on success, or error code on failure.
515 */
516int devm_register_sys_off_handler(struct device *dev,
517				  enum sys_off_mode mode,
518				  int priority,
519				  int (*callback)(struct sys_off_data *data),
520				  void *cb_data)
521{
522	struct sys_off_handler *handler;
523
524	handler = register_sys_off_handler(mode, priority, callback, cb_data);
525	if (IS_ERR(handler))
526		return PTR_ERR(handler);
527	handler->dev = dev;
528
529	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
530					handler);
531}
532EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
533
534/**
535 *	devm_register_power_off_handler - Register power-off handler
536 *	@dev: Device that registers callback
537 *	@callback: Callback function
538 *	@cb_data: Callback's argument
539 *
540 *	Registers resource-managed sys-off handler with a default priority
541 *	and using power-off mode.
542 *
543 *	Returns zero on success, or error code on failure.
544 */
545int devm_register_power_off_handler(struct device *dev,
546				    int (*callback)(struct sys_off_data *data),
547				    void *cb_data)
548{
549	return devm_register_sys_off_handler(dev,
550					     SYS_OFF_MODE_POWER_OFF,
551					     SYS_OFF_PRIO_DEFAULT,
552					     callback, cb_data);
553}
554EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
555
556/**
557 *	devm_register_restart_handler - Register restart handler
558 *	@dev: Device that registers callback
559 *	@callback: Callback function
560 *	@cb_data: Callback's argument
561 *
562 *	Registers resource-managed sys-off handler with a default priority
563 *	and using restart mode.
564 *
565 *	Returns zero on success, or error code on failure.
566 */
567int devm_register_restart_handler(struct device *dev,
568				  int (*callback)(struct sys_off_data *data),
569				  void *cb_data)
570{
571	return devm_register_sys_off_handler(dev,
572					     SYS_OFF_MODE_RESTART,
573					     SYS_OFF_PRIO_DEFAULT,
574					     callback, cb_data);
575}
576EXPORT_SYMBOL_GPL(devm_register_restart_handler);
577
578static struct sys_off_handler *platform_power_off_handler;
579
580static int platform_power_off_notify(struct sys_off_data *data)
581{
582	void (*platform_power_power_off_cb)(void) = data->cb_data;
583
584	platform_power_power_off_cb();
585
586	return NOTIFY_DONE;
587}
588
589/**
590 *	register_platform_power_off - Register platform-level power-off callback
591 *	@power_off: Power-off callback
592 *
593 *	Registers power-off callback that will be called as last step
594 *	of the power-off sequence. This callback is expected to be invoked
595 *	for the last resort. Only one platform power-off callback is allowed
596 *	to be registered at a time.
597 *
598 *	Returns zero on success, or error code on failure.
599 */
600int register_platform_power_off(void (*power_off)(void))
601{
602	struct sys_off_handler *handler;
603
604	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
605					   SYS_OFF_PRIO_PLATFORM,
606					   platform_power_off_notify,
607					   power_off);
608	if (IS_ERR(handler))
609		return PTR_ERR(handler);
610
611	platform_power_off_handler = handler;
612
613	return 0;
614}
615EXPORT_SYMBOL_GPL(register_platform_power_off);
616
617/**
618 *	unregister_platform_power_off - Unregister platform-level power-off callback
619 *	@power_off: Power-off callback
620 *
621 *	Unregisters previously registered platform power-off callback.
622 */
623void unregister_platform_power_off(void (*power_off)(void))
624{
625	if (platform_power_off_handler &&
626	    platform_power_off_handler->cb_data == power_off) {
627		unregister_sys_off_handler(platform_power_off_handler);
628		platform_power_off_handler = NULL;
629	}
630}
631EXPORT_SYMBOL_GPL(unregister_platform_power_off);
632
633static int legacy_pm_power_off(struct sys_off_data *data)
634{
635	if (pm_power_off)
636		pm_power_off();
637
638	return NOTIFY_DONE;
639}
640
641static void do_kernel_power_off_prepare(void)
642{
643	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
644}
645
646/**
647 *	do_kernel_power_off - Execute kernel power-off handler call chain
648 *
649 *	Expected to be called as last step of the power-off sequence.
650 *
651 *	Powers off the system immediately if a power-off handler function has
652 *	been registered. Otherwise does nothing.
653 */
654void do_kernel_power_off(void)
655{
656	struct sys_off_handler *sys_off = NULL;
657
658	/*
659	 * Register sys-off handlers for legacy PM callback. This allows
660	 * legacy PM callbacks temporary co-exist with the new sys-off API.
661	 *
662	 * TODO: Remove legacy handlers once all legacy PM users will be
663	 *       switched to the sys-off based APIs.
664	 */
665	if (pm_power_off)
666		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
667						   SYS_OFF_PRIO_DEFAULT,
668						   legacy_pm_power_off, NULL);
669
670	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
671
672	unregister_sys_off_handler(sys_off);
673}
674
675/**
676 *	kernel_can_power_off - check whether system can be powered off
677 *
678 *	Returns true if power-off handler is registered and system can be
679 *	powered off, false otherwise.
680 */
681bool kernel_can_power_off(void)
682{
683	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
684		pm_power_off;
685}
686EXPORT_SYMBOL_GPL(kernel_can_power_off);
687
688/**
689 *	kernel_power_off - power_off the system
690 *
691 *	Shutdown everything and perform a clean system power_off.
692 */
693void kernel_power_off(void)
694{
695	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
696	do_kernel_power_off_prepare();
697	migrate_to_reboot_cpu();
698	syscore_shutdown();
699	pr_emerg("Power down\n");
700	kmsg_dump(KMSG_DUMP_SHUTDOWN);
701	machine_power_off();
702}
703EXPORT_SYMBOL_GPL(kernel_power_off);
704
705DEFINE_MUTEX(system_transition_mutex);
706
707/*
708 * Reboot system call: for obvious reasons only root may call it,
709 * and even root needs to set up some magic numbers in the registers
710 * so that some mistake won't make this reboot the whole machine.
711 * You can also set the meaning of the ctrl-alt-del-key here.
712 *
713 * reboot doesn't sync: do that yourself before calling this.
714 */
715SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
716		void __user *, arg)
717{
718	struct pid_namespace *pid_ns = task_active_pid_ns(current);
719	char buffer[256];
720	int ret = 0;
721
722	/* We only trust the superuser with rebooting the system. */
723	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
724		return -EPERM;
725
726	/* For safety, we require "magic" arguments. */
727	if (magic1 != LINUX_REBOOT_MAGIC1 ||
728			(magic2 != LINUX_REBOOT_MAGIC2 &&
729			magic2 != LINUX_REBOOT_MAGIC2A &&
730			magic2 != LINUX_REBOOT_MAGIC2B &&
731			magic2 != LINUX_REBOOT_MAGIC2C))
732		return -EINVAL;
733
734	/*
735	 * If pid namespaces are enabled and the current task is in a child
736	 * pid_namespace, the command is handled by reboot_pid_ns() which will
737	 * call do_exit().
738	 */
739	ret = reboot_pid_ns(pid_ns, cmd);
740	if (ret)
741		return ret;
742
743	/* Instead of trying to make the power_off code look like
744	 * halt when pm_power_off is not set do it the easy way.
745	 */
746	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) {
747		poweroff_fallback_to_halt = true;
748		cmd = LINUX_REBOOT_CMD_HALT;
749	}
750
751	mutex_lock(&system_transition_mutex);
752	switch (cmd) {
753	case LINUX_REBOOT_CMD_RESTART:
754		kernel_restart(NULL);
755		break;
756
757	case LINUX_REBOOT_CMD_CAD_ON:
758		C_A_D = 1;
759		break;
760
761	case LINUX_REBOOT_CMD_CAD_OFF:
762		C_A_D = 0;
763		break;
764
765	case LINUX_REBOOT_CMD_HALT:
766		kernel_halt();
767		do_exit(0);
768
769	case LINUX_REBOOT_CMD_POWER_OFF:
770		kernel_power_off();
771		do_exit(0);
772		break;
773
774	case LINUX_REBOOT_CMD_RESTART2:
775		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
776		if (ret < 0) {
777			ret = -EFAULT;
778			break;
779		}
780		buffer[sizeof(buffer) - 1] = '\0';
781
782		kernel_restart(buffer);
783		break;
784
785#ifdef CONFIG_KEXEC_CORE
786	case LINUX_REBOOT_CMD_KEXEC:
787		ret = kernel_kexec();
788		break;
789#endif
790
791#ifdef CONFIG_HIBERNATION
792	case LINUX_REBOOT_CMD_SW_SUSPEND:
793		ret = hibernate();
794		break;
795#endif
796
797	default:
798		ret = -EINVAL;
799		break;
800	}
801	mutex_unlock(&system_transition_mutex);
802	return ret;
803}
804
805static void deferred_cad(struct work_struct *dummy)
806{
807	kernel_restart(NULL);
808}
809
810/*
811 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
812 * As it's called within an interrupt, it may NOT sync: the only choice
813 * is whether to reboot at once, or just ignore the ctrl-alt-del.
814 */
815void ctrl_alt_del(void)
816{
817	static DECLARE_WORK(cad_work, deferred_cad);
818
819	if (C_A_D)
820		schedule_work(&cad_work);
821	else
822		kill_cad_pid(SIGINT, 1);
823}
824
825#define POWEROFF_CMD_PATH_LEN  256
826static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
827static const char reboot_cmd[] = "/sbin/reboot";
828
829static int run_cmd(const char *cmd)
830{
831	char **argv;
832	static char *envp[] = {
833		"HOME=/",
834		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
835		NULL
836	};
837	int ret;
838	argv = argv_split(GFP_KERNEL, cmd, NULL);
839	if (argv) {
840		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
841		argv_free(argv);
842	} else {
843		ret = -ENOMEM;
844	}
845
846	return ret;
847}
848
849static int __orderly_reboot(void)
850{
851	int ret;
852
853	ret = run_cmd(reboot_cmd);
854
855	if (ret) {
856		pr_warn("Failed to start orderly reboot: forcing the issue\n");
857		emergency_sync();
858		kernel_restart(NULL);
859	}
860
861	return ret;
862}
863
864static int __orderly_poweroff(bool force)
865{
866	int ret;
867
868	ret = run_cmd(poweroff_cmd);
869
870	if (ret && force) {
871		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
872
873		/*
874		 * I guess this should try to kick off some daemon to sync and
875		 * poweroff asap.  Or not even bother syncing if we're doing an
876		 * emergency shutdown?
877		 */
878		emergency_sync();
879		kernel_power_off();
880	}
881
882	return ret;
883}
884
885static bool poweroff_force;
886
887static void poweroff_work_func(struct work_struct *work)
888{
889	__orderly_poweroff(poweroff_force);
890}
891
892static DECLARE_WORK(poweroff_work, poweroff_work_func);
893
894/**
895 * orderly_poweroff - Trigger an orderly system poweroff
896 * @force: force poweroff if command execution fails
897 *
898 * This may be called from any context to trigger a system shutdown.
899 * If the orderly shutdown fails, it will force an immediate shutdown.
900 */
901void orderly_poweroff(bool force)
902{
903	if (force) /* do not override the pending "true" */
904		poweroff_force = true;
905	schedule_work(&poweroff_work);
906}
907EXPORT_SYMBOL_GPL(orderly_poweroff);
908
909static void reboot_work_func(struct work_struct *work)
910{
911	__orderly_reboot();
912}
913
914static DECLARE_WORK(reboot_work, reboot_work_func);
915
916/**
917 * orderly_reboot - Trigger an orderly system reboot
918 *
919 * This may be called from any context to trigger a system reboot.
920 * If the orderly reboot fails, it will force an immediate reboot.
921 */
922void orderly_reboot(void)
923{
924	schedule_work(&reboot_work);
925}
926EXPORT_SYMBOL_GPL(orderly_reboot);
927
928/**
929 * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
930 * @work: work_struct associated with the emergency poweroff function
931 *
932 * This function is called in very critical situations to force
933 * a kernel poweroff after a configurable timeout value.
934 */
935static void hw_failure_emergency_poweroff_func(struct work_struct *work)
936{
937	/*
938	 * We have reached here after the emergency shutdown waiting period has
939	 * expired. This means orderly_poweroff has not been able to shut off
940	 * the system for some reason.
941	 *
942	 * Try to shut down the system immediately using kernel_power_off
943	 * if populated
944	 */
945	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
946	kernel_power_off();
947
948	/*
949	 * Worst of the worst case trigger emergency restart
950	 */
951	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
952	emergency_restart();
953}
954
955static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
956			    hw_failure_emergency_poweroff_func);
957
958/**
959 * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
960 *
961 * This may be called from any critical situation to trigger a system shutdown
962 * after a given period of time. If time is negative this is not scheduled.
963 */
964static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
965{
966	if (poweroff_delay_ms <= 0)
967		return;
968	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
969			      msecs_to_jiffies(poweroff_delay_ms));
970}
971
972/**
973 * __hw_protection_shutdown - Trigger an emergency system shutdown or reboot
974 *
975 * @reason:		Reason of emergency shutdown or reboot to be printed.
976 * @ms_until_forced:	Time to wait for orderly shutdown or reboot before
977 *			triggering it. Negative value disables the forced
978 *			shutdown or reboot.
979 * @shutdown:		If true, indicates that a shutdown will happen
980 *			after the critical tempeature is reached.
981 *			If false, indicates that a reboot will happen
982 *			after the critical tempeature is reached.
983 *
984 * Initiate an emergency system shutdown or reboot in order to protect
985 * hardware from further damage. Usage examples include a thermal protection.
986 * NOTE: The request is ignored if protection shutdown or reboot is already
987 * pending even if the previous request has given a large timeout for forced
988 * shutdown/reboot.
989 */
990void __hw_protection_shutdown(const char *reason, int ms_until_forced, bool shutdown)
991{
992	static atomic_t allow_proceed = ATOMIC_INIT(1);
993
994	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
995
996	/* Shutdown should be initiated only once. */
997	if (!atomic_dec_and_test(&allow_proceed))
998		return;
999
1000	/*
1001	 * Queue a backup emergency shutdown in the event of
1002	 * orderly_poweroff failure
1003	 */
1004	hw_failure_emergency_poweroff(ms_until_forced);
1005	if (shutdown)
1006		orderly_poweroff(true);
1007	else
1008		orderly_reboot();
1009}
1010EXPORT_SYMBOL_GPL(__hw_protection_shutdown);
1011
1012static int __init reboot_setup(char *str)
1013{
1014	for (;;) {
1015		enum reboot_mode *mode;
1016
1017		/*
1018		 * Having anything passed on the command line via
1019		 * reboot= will cause us to disable DMI checking
1020		 * below.
1021		 */
1022		reboot_default = 0;
1023
1024		if (!strncmp(str, "panic_", 6)) {
1025			mode = &panic_reboot_mode;
1026			str += 6;
1027		} else {
1028			mode = &reboot_mode;
1029		}
1030
1031		switch (*str) {
1032		case 'w':
1033			*mode = REBOOT_WARM;
1034			break;
1035
1036		case 'c':
1037			*mode = REBOOT_COLD;
1038			break;
1039
1040		case 'h':
1041			*mode = REBOOT_HARD;
1042			break;
1043
1044		case 's':
1045			/*
1046			 * reboot_cpu is s[mp]#### with #### being the processor
1047			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1048			 */
1049			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1050
1051			if (isdigit(str[0])) {
1052				int cpu = simple_strtoul(str, NULL, 0);
1053
1054				if (cpu >= num_possible_cpus()) {
1055					pr_err("Ignoring the CPU number in reboot= option. "
1056					"CPU %d exceeds possible cpu number %d\n",
1057					cpu, num_possible_cpus());
1058					break;
1059				}
1060				reboot_cpu = cpu;
1061			} else
1062				*mode = REBOOT_SOFT;
1063			break;
1064
1065		case 'g':
1066			*mode = REBOOT_GPIO;
1067			break;
1068
1069		case 'b':
1070		case 'a':
1071		case 'k':
1072		case 't':
1073		case 'e':
1074		case 'p':
1075			reboot_type = *str;
1076			break;
1077
1078		case 'f':
1079			reboot_force = 1;
1080			break;
1081		}
1082
1083		str = strchr(str, ',');
1084		if (str)
1085			str++;
1086		else
1087			break;
1088	}
1089	return 1;
1090}
1091__setup("reboot=", reboot_setup);
1092
1093#ifdef CONFIG_SYSFS
1094
1095#define REBOOT_COLD_STR		"cold"
1096#define REBOOT_WARM_STR		"warm"
1097#define REBOOT_HARD_STR		"hard"
1098#define REBOOT_SOFT_STR		"soft"
1099#define REBOOT_GPIO_STR		"gpio"
1100#define REBOOT_UNDEFINED_STR	"undefined"
1101
1102#define BOOT_TRIPLE_STR		"triple"
1103#define BOOT_KBD_STR		"kbd"
1104#define BOOT_BIOS_STR		"bios"
1105#define BOOT_ACPI_STR		"acpi"
1106#define BOOT_EFI_STR		"efi"
1107#define BOOT_PCI_STR		"pci"
1108
1109static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1110{
1111	const char *val;
1112
1113	switch (reboot_mode) {
1114	case REBOOT_COLD:
1115		val = REBOOT_COLD_STR;
1116		break;
1117	case REBOOT_WARM:
1118		val = REBOOT_WARM_STR;
1119		break;
1120	case REBOOT_HARD:
1121		val = REBOOT_HARD_STR;
1122		break;
1123	case REBOOT_SOFT:
1124		val = REBOOT_SOFT_STR;
1125		break;
1126	case REBOOT_GPIO:
1127		val = REBOOT_GPIO_STR;
1128		break;
1129	default:
1130		val = REBOOT_UNDEFINED_STR;
1131	}
1132
1133	return sprintf(buf, "%s\n", val);
1134}
1135static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1136			  const char *buf, size_t count)
1137{
1138	if (!capable(CAP_SYS_BOOT))
1139		return -EPERM;
1140
1141	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1142		reboot_mode = REBOOT_COLD;
1143	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1144		reboot_mode = REBOOT_WARM;
1145	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1146		reboot_mode = REBOOT_HARD;
1147	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1148		reboot_mode = REBOOT_SOFT;
1149	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1150		reboot_mode = REBOOT_GPIO;
1151	else
1152		return -EINVAL;
1153
1154	reboot_default = 0;
1155
1156	return count;
1157}
1158static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1159
1160#ifdef CONFIG_X86
1161static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1162{
1163	return sprintf(buf, "%d\n", reboot_force);
1164}
1165static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1166			  const char *buf, size_t count)
1167{
1168	bool res;
1169
1170	if (!capable(CAP_SYS_BOOT))
1171		return -EPERM;
1172
1173	if (kstrtobool(buf, &res))
1174		return -EINVAL;
1175
1176	reboot_default = 0;
1177	reboot_force = res;
1178
1179	return count;
1180}
1181static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1182
1183static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1184{
1185	const char *val;
1186
1187	switch (reboot_type) {
1188	case BOOT_TRIPLE:
1189		val = BOOT_TRIPLE_STR;
1190		break;
1191	case BOOT_KBD:
1192		val = BOOT_KBD_STR;
1193		break;
1194	case BOOT_BIOS:
1195		val = BOOT_BIOS_STR;
1196		break;
1197	case BOOT_ACPI:
1198		val = BOOT_ACPI_STR;
1199		break;
1200	case BOOT_EFI:
1201		val = BOOT_EFI_STR;
1202		break;
1203	case BOOT_CF9_FORCE:
1204		val = BOOT_PCI_STR;
1205		break;
1206	default:
1207		val = REBOOT_UNDEFINED_STR;
1208	}
1209
1210	return sprintf(buf, "%s\n", val);
1211}
1212static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1213			  const char *buf, size_t count)
1214{
1215	if (!capable(CAP_SYS_BOOT))
1216		return -EPERM;
1217
1218	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1219		reboot_type = BOOT_TRIPLE;
1220	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1221		reboot_type = BOOT_KBD;
1222	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1223		reboot_type = BOOT_BIOS;
1224	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1225		reboot_type = BOOT_ACPI;
1226	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1227		reboot_type = BOOT_EFI;
1228	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1229		reboot_type = BOOT_CF9_FORCE;
1230	else
1231		return -EINVAL;
1232
1233	reboot_default = 0;
1234
1235	return count;
1236}
1237static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1238#endif
1239
1240#ifdef CONFIG_SMP
1241static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1242{
1243	return sprintf(buf, "%d\n", reboot_cpu);
1244}
1245static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1246			  const char *buf, size_t count)
1247{
1248	unsigned int cpunum;
1249	int rc;
1250
1251	if (!capable(CAP_SYS_BOOT))
1252		return -EPERM;
1253
1254	rc = kstrtouint(buf, 0, &cpunum);
1255
1256	if (rc)
1257		return rc;
1258
1259	if (cpunum >= num_possible_cpus())
1260		return -ERANGE;
1261
1262	reboot_default = 0;
1263	reboot_cpu = cpunum;
1264
1265	return count;
1266}
1267static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1268#endif
1269
1270static struct attribute *reboot_attrs[] = {
1271	&reboot_mode_attr.attr,
1272#ifdef CONFIG_X86
1273	&reboot_force_attr.attr,
1274	&reboot_type_attr.attr,
1275#endif
1276#ifdef CONFIG_SMP
1277	&reboot_cpu_attr.attr,
1278#endif
1279	NULL,
1280};
1281
1282#ifdef CONFIG_SYSCTL
1283static struct ctl_table kern_reboot_table[] = {
1284	{
1285		.procname       = "poweroff_cmd",
1286		.data           = &poweroff_cmd,
1287		.maxlen         = POWEROFF_CMD_PATH_LEN,
1288		.mode           = 0644,
1289		.proc_handler   = proc_dostring,
1290	},
1291	{
1292		.procname       = "ctrl-alt-del",
1293		.data           = &C_A_D,
1294		.maxlen         = sizeof(int),
1295		.mode           = 0644,
1296		.proc_handler   = proc_dointvec,
1297	},
1298};
1299
1300static void __init kernel_reboot_sysctls_init(void)
1301{
1302	register_sysctl_init("kernel", kern_reboot_table);
1303}
1304#else
1305#define kernel_reboot_sysctls_init() do { } while (0)
1306#endif /* CONFIG_SYSCTL */
1307
1308static const struct attribute_group reboot_attr_group = {
1309	.attrs = reboot_attrs,
1310};
1311
1312static int __init reboot_ksysfs_init(void)
1313{
1314	struct kobject *reboot_kobj;
1315	int ret;
1316
1317	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1318	if (!reboot_kobj)
1319		return -ENOMEM;
1320
1321	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1322	if (ret) {
1323		kobject_put(reboot_kobj);
1324		return ret;
1325	}
1326
1327	kernel_reboot_sysctls_init();
1328
1329	return 0;
1330}
1331late_initcall(reboot_ksysfs_init);
1332
1333#endif
1334