1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 *		Probes initial implementation (includes suggestions from
9 *		Rusty Russell).
10 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 *		hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 *		interface to access function arguments.
14 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 *		exceptions notifier to be first on the priority list.
16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 *		<prasanna@in.ibm.com> added function-return probes.
19 */
20
21#define pr_fmt(fmt) "kprobes: " fmt
22
23#include <linux/kprobes.h>
24#include <linux/hash.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/stddef.h>
28#include <linux/export.h>
29#include <linux/kallsyms.h>
30#include <linux/freezer.h>
31#include <linux/seq_file.h>
32#include <linux/debugfs.h>
33#include <linux/sysctl.h>
34#include <linux/kdebug.h>
35#include <linux/memory.h>
36#include <linux/ftrace.h>
37#include <linux/cpu.h>
38#include <linux/jump_label.h>
39#include <linux/static_call.h>
40#include <linux/perf_event.h>
41#include <linux/execmem.h>
42
43#include <asm/sections.h>
44#include <asm/cacheflush.h>
45#include <asm/errno.h>
46#include <linux/uaccess.h>
47
48#define KPROBE_HASH_BITS 6
49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52#define kprobe_sysctls_init() do { } while (0)
53#endif
54
55static int kprobes_initialized;
56/* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58 * Or
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60 */
61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63/* NOTE: change this value only with 'kprobe_mutex' held */
64static bool kprobes_all_disarmed;
65
66/* This protects 'kprobe_table' and 'optimizing_list' */
67static DEFINE_MUTEX(kprobe_mutex);
68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71					unsigned int __unused)
72{
73	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74}
75
76/*
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
79 */
80static LIST_HEAD(kprobe_blacklist);
81
82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83/*
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89struct kprobe_insn_page {
90	struct list_head list;
91	kprobe_opcode_t *insns;		/* Page of instruction slots */
92	struct kprobe_insn_cache *cache;
93	int nused;
94	int ngarbage;
95	char slot_used[];
96};
97
98#define KPROBE_INSN_PAGE_SIZE(slots)			\
99	(offsetof(struct kprobe_insn_page, slot_used) +	\
100	 (sizeof(char) * (slots)))
101
102static int slots_per_page(struct kprobe_insn_cache *c)
103{
104	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105}
106
107enum kprobe_slot_state {
108	SLOT_CLEAN = 0,
109	SLOT_DIRTY = 1,
110	SLOT_USED = 2,
111};
112
113void __weak *alloc_insn_page(void)
114{
115	/*
116	 * Use execmem_alloc() so this page is within +/- 2GB of where the
117	 * kernel image and loaded module images reside. This is required
118	 * for most of the architectures.
119	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120	 */
121	return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
122}
123
124static void free_insn_page(void *page)
125{
126	execmem_free(page);
127}
128
129struct kprobe_insn_cache kprobe_insn_slots = {
130	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131	.alloc = alloc_insn_page,
132	.free = free_insn_page,
133	.sym = KPROBE_INSN_PAGE_SYM,
134	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135	.insn_size = MAX_INSN_SIZE,
136	.nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146	struct kprobe_insn_page *kip;
147	kprobe_opcode_t *slot = NULL;
148
149	/* Since the slot array is not protected by rcu, we need a mutex */
150	mutex_lock(&c->mutex);
151 retry:
152	rcu_read_lock();
153	list_for_each_entry_rcu(kip, &c->pages, list) {
154		if (kip->nused < slots_per_page(c)) {
155			int i;
156
157			for (i = 0; i < slots_per_page(c); i++) {
158				if (kip->slot_used[i] == SLOT_CLEAN) {
159					kip->slot_used[i] = SLOT_USED;
160					kip->nused++;
161					slot = kip->insns + (i * c->insn_size);
162					rcu_read_unlock();
163					goto out;
164				}
165			}
166			/* kip->nused is broken. Fix it. */
167			kip->nused = slots_per_page(c);
168			WARN_ON(1);
169		}
170	}
171	rcu_read_unlock();
172
173	/* If there are any garbage slots, collect it and try again. */
174	if (c->nr_garbage && collect_garbage_slots(c) == 0)
175		goto retry;
176
177	/* All out of space.  Need to allocate a new page. */
178	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179	if (!kip)
180		goto out;
181
182	kip->insns = c->alloc();
183	if (!kip->insns) {
184		kfree(kip);
185		goto out;
186	}
187	INIT_LIST_HEAD(&kip->list);
188	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189	kip->slot_used[0] = SLOT_USED;
190	kip->nused = 1;
191	kip->ngarbage = 0;
192	kip->cache = c;
193	list_add_rcu(&kip->list, &c->pages);
194	slot = kip->insns;
195
196	/* Record the perf ksymbol register event after adding the page */
197	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198			   PAGE_SIZE, false, c->sym);
199out:
200	mutex_unlock(&c->mutex);
201	return slot;
202}
203
204/* Return true if all garbages are collected, otherwise false. */
205static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207	kip->slot_used[idx] = SLOT_CLEAN;
208	kip->nused--;
209	if (kip->nused == 0) {
210		/*
211		 * Page is no longer in use.  Free it unless
212		 * it's the last one.  We keep the last one
213		 * so as not to have to set it up again the
214		 * next time somebody inserts a probe.
215		 */
216		if (!list_is_singular(&kip->list)) {
217			/*
218			 * Record perf ksymbol unregister event before removing
219			 * the page.
220			 */
221			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222					   (unsigned long)kip->insns, PAGE_SIZE, true,
223					   kip->cache->sym);
224			list_del_rcu(&kip->list);
225			synchronize_rcu();
226			kip->cache->free(kip->insns);
227			kfree(kip);
228		}
229		return true;
230	}
231	return false;
232}
233
234static int collect_garbage_slots(struct kprobe_insn_cache *c)
235{
236	struct kprobe_insn_page *kip, *next;
237
238	/* Ensure no-one is interrupted on the garbages */
239	synchronize_rcu();
240
241	list_for_each_entry_safe(kip, next, &c->pages, list) {
242		int i;
243
244		if (kip->ngarbage == 0)
245			continue;
246		kip->ngarbage = 0;	/* we will collect all garbages */
247		for (i = 0; i < slots_per_page(c); i++) {
248			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249				break;
250		}
251	}
252	c->nr_garbage = 0;
253	return 0;
254}
255
256void __free_insn_slot(struct kprobe_insn_cache *c,
257		      kprobe_opcode_t *slot, int dirty)
258{
259	struct kprobe_insn_page *kip;
260	long idx;
261
262	mutex_lock(&c->mutex);
263	rcu_read_lock();
264	list_for_each_entry_rcu(kip, &c->pages, list) {
265		idx = ((long)slot - (long)kip->insns) /
266			(c->insn_size * sizeof(kprobe_opcode_t));
267		if (idx >= 0 && idx < slots_per_page(c))
268			goto out;
269	}
270	/* Could not find this slot. */
271	WARN_ON(1);
272	kip = NULL;
273out:
274	rcu_read_unlock();
275	/* Mark and sweep: this may sleep */
276	if (kip) {
277		/* Check double free */
278		WARN_ON(kip->slot_used[idx] != SLOT_USED);
279		if (dirty) {
280			kip->slot_used[idx] = SLOT_DIRTY;
281			kip->ngarbage++;
282			if (++c->nr_garbage > slots_per_page(c))
283				collect_garbage_slots(c);
284		} else {
285			collect_one_slot(kip, idx);
286		}
287	}
288	mutex_unlock(&c->mutex);
289}
290
291/*
292 * Check given address is on the page of kprobe instruction slots.
293 * This will be used for checking whether the address on a stack
294 * is on a text area or not.
295 */
296bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297{
298	struct kprobe_insn_page *kip;
299	bool ret = false;
300
301	rcu_read_lock();
302	list_for_each_entry_rcu(kip, &c->pages, list) {
303		if (addr >= (unsigned long)kip->insns &&
304		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
305			ret = true;
306			break;
307		}
308	}
309	rcu_read_unlock();
310
311	return ret;
312}
313
314int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315			     unsigned long *value, char *type, char *sym)
316{
317	struct kprobe_insn_page *kip;
318	int ret = -ERANGE;
319
320	rcu_read_lock();
321	list_for_each_entry_rcu(kip, &c->pages, list) {
322		if ((*symnum)--)
323			continue;
324		strscpy(sym, c->sym, KSYM_NAME_LEN);
325		*type = 't';
326		*value = (unsigned long)kip->insns;
327		ret = 0;
328		break;
329	}
330	rcu_read_unlock();
331
332	return ret;
333}
334
335#ifdef CONFIG_OPTPROBES
336void __weak *alloc_optinsn_page(void)
337{
338	return alloc_insn_page();
339}
340
341void __weak free_optinsn_page(void *page)
342{
343	free_insn_page(page);
344}
345
346/* For optimized_kprobe buffer */
347struct kprobe_insn_cache kprobe_optinsn_slots = {
348	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349	.alloc = alloc_optinsn_page,
350	.free = free_optinsn_page,
351	.sym = KPROBE_OPTINSN_PAGE_SYM,
352	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353	/* .insn_size is initialized later */
354	.nr_garbage = 0,
355};
356#endif
357#endif
358
359/* We have preemption disabled.. so it is safe to use __ versions */
360static inline void set_kprobe_instance(struct kprobe *kp)
361{
362	__this_cpu_write(kprobe_instance, kp);
363}
364
365static inline void reset_kprobe_instance(void)
366{
367	__this_cpu_write(kprobe_instance, NULL);
368}
369
370/*
371 * This routine is called either:
372 *	- under the 'kprobe_mutex' - during kprobe_[un]register().
373 *				OR
374 *	- with preemption disabled - from architecture specific code.
375 */
376struct kprobe *get_kprobe(void *addr)
377{
378	struct hlist_head *head;
379	struct kprobe *p;
380
381	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382	hlist_for_each_entry_rcu(p, head, hlist,
383				 lockdep_is_held(&kprobe_mutex)) {
384		if (p->addr == addr)
385			return p;
386	}
387
388	return NULL;
389}
390NOKPROBE_SYMBOL(get_kprobe);
391
392static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394/* Return true if 'p' is an aggregator */
395static inline bool kprobe_aggrprobe(struct kprobe *p)
396{
397	return p->pre_handler == aggr_pre_handler;
398}
399
400/* Return true if 'p' is unused */
401static inline bool kprobe_unused(struct kprobe *p)
402{
403	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404	       list_empty(&p->list);
405}
406
407/* Keep all fields in the kprobe consistent. */
408static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409{
410	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412}
413
414#ifdef CONFIG_OPTPROBES
415/* NOTE: This is protected by 'kprobe_mutex'. */
416static bool kprobes_allow_optimization;
417
418/*
419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420 * This must be called from arch-dep optimized caller.
421 */
422void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423{
424	struct kprobe *kp;
425
426	list_for_each_entry_rcu(kp, &p->list, list) {
427		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428			set_kprobe_instance(kp);
429			kp->pre_handler(kp, regs);
430		}
431		reset_kprobe_instance();
432	}
433}
434NOKPROBE_SYMBOL(opt_pre_handler);
435
436/* Free optimized instructions and optimized_kprobe */
437static void free_aggr_kprobe(struct kprobe *p)
438{
439	struct optimized_kprobe *op;
440
441	op = container_of(p, struct optimized_kprobe, kp);
442	arch_remove_optimized_kprobe(op);
443	arch_remove_kprobe(p);
444	kfree(op);
445}
446
447/* Return true if the kprobe is ready for optimization. */
448static inline int kprobe_optready(struct kprobe *p)
449{
450	struct optimized_kprobe *op;
451
452	if (kprobe_aggrprobe(p)) {
453		op = container_of(p, struct optimized_kprobe, kp);
454		return arch_prepared_optinsn(&op->optinsn);
455	}
456
457	return 0;
458}
459
460/* Return true if the kprobe is disarmed. Note: p must be on hash list */
461bool kprobe_disarmed(struct kprobe *p)
462{
463	struct optimized_kprobe *op;
464
465	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466	if (!kprobe_aggrprobe(p))
467		return kprobe_disabled(p);
468
469	op = container_of(p, struct optimized_kprobe, kp);
470
471	return kprobe_disabled(p) && list_empty(&op->list);
472}
473
474/* Return true if the probe is queued on (un)optimizing lists */
475static bool kprobe_queued(struct kprobe *p)
476{
477	struct optimized_kprobe *op;
478
479	if (kprobe_aggrprobe(p)) {
480		op = container_of(p, struct optimized_kprobe, kp);
481		if (!list_empty(&op->list))
482			return true;
483	}
484	return false;
485}
486
487/*
488 * Return an optimized kprobe whose optimizing code replaces
489 * instructions including 'addr' (exclude breakpoint).
490 */
491static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492{
493	int i;
494	struct kprobe *p = NULL;
495	struct optimized_kprobe *op;
496
497	/* Don't check i == 0, since that is a breakpoint case. */
498	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499		p = get_kprobe(addr - i);
500
501	if (p && kprobe_optready(p)) {
502		op = container_of(p, struct optimized_kprobe, kp);
503		if (arch_within_optimized_kprobe(op, addr))
504			return p;
505	}
506
507	return NULL;
508}
509
510/* Optimization staging list, protected by 'kprobe_mutex' */
511static LIST_HEAD(optimizing_list);
512static LIST_HEAD(unoptimizing_list);
513static LIST_HEAD(freeing_list);
514
515static void kprobe_optimizer(struct work_struct *work);
516static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517#define OPTIMIZE_DELAY 5
518
519/*
520 * Optimize (replace a breakpoint with a jump) kprobes listed on
521 * 'optimizing_list'.
522 */
523static void do_optimize_kprobes(void)
524{
525	lockdep_assert_held(&text_mutex);
526	/*
527	 * The optimization/unoptimization refers 'online_cpus' via
528	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530	 * This combination can cause a deadlock (cpu-hotplug tries to lock
531	 * 'text_mutex' but stop_machine() can not be done because
532	 * the 'online_cpus' has been changed)
533	 * To avoid this deadlock, caller must have locked cpu-hotplug
534	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535	 */
536	lockdep_assert_cpus_held();
537
538	/* Optimization never be done when disarmed */
539	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540	    list_empty(&optimizing_list))
541		return;
542
543	arch_optimize_kprobes(&optimizing_list);
544}
545
546/*
547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548 * if need) kprobes listed on 'unoptimizing_list'.
549 */
550static void do_unoptimize_kprobes(void)
551{
552	struct optimized_kprobe *op, *tmp;
553
554	lockdep_assert_held(&text_mutex);
555	/* See comment in do_optimize_kprobes() */
556	lockdep_assert_cpus_held();
557
558	if (!list_empty(&unoptimizing_list))
559		arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560
561	/* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
562	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
563		/* Switching from detour code to origin */
564		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
565		/* Disarm probes if marked disabled and not gone */
566		if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
567			arch_disarm_kprobe(&op->kp);
568		if (kprobe_unused(&op->kp)) {
569			/*
570			 * Remove unused probes from hash list. After waiting
571			 * for synchronization, these probes are reclaimed.
572			 * (reclaiming is done by do_free_cleaned_kprobes().)
573			 */
574			hlist_del_rcu(&op->kp.hlist);
575		} else
576			list_del_init(&op->list);
577	}
578}
579
580/* Reclaim all kprobes on the 'freeing_list' */
581static void do_free_cleaned_kprobes(void)
582{
583	struct optimized_kprobe *op, *tmp;
584
585	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
586		list_del_init(&op->list);
587		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
588			/*
589			 * This must not happen, but if there is a kprobe
590			 * still in use, keep it on kprobes hash list.
591			 */
592			continue;
593		}
594		free_aggr_kprobe(&op->kp);
595	}
596}
597
598/* Start optimizer after OPTIMIZE_DELAY passed */
599static void kick_kprobe_optimizer(void)
600{
601	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
602}
603
604/* Kprobe jump optimizer */
605static void kprobe_optimizer(struct work_struct *work)
606{
607	mutex_lock(&kprobe_mutex);
608	cpus_read_lock();
609	mutex_lock(&text_mutex);
610
611	/*
612	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
613	 * kprobes before waiting for quiesence period.
614	 */
615	do_unoptimize_kprobes();
616
617	/*
618	 * Step 2: Wait for quiesence period to ensure all potentially
619	 * preempted tasks to have normally scheduled. Because optprobe
620	 * may modify multiple instructions, there is a chance that Nth
621	 * instruction is preempted. In that case, such tasks can return
622	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
623	 * Note that on non-preemptive kernel, this is transparently converted
624	 * to synchronoze_sched() to wait for all interrupts to have completed.
625	 */
626	synchronize_rcu_tasks();
627
628	/* Step 3: Optimize kprobes after quiesence period */
629	do_optimize_kprobes();
630
631	/* Step 4: Free cleaned kprobes after quiesence period */
632	do_free_cleaned_kprobes();
633
634	mutex_unlock(&text_mutex);
635	cpus_read_unlock();
636
637	/* Step 5: Kick optimizer again if needed */
638	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
639		kick_kprobe_optimizer();
640
641	mutex_unlock(&kprobe_mutex);
642}
643
644/* Wait for completing optimization and unoptimization */
645void wait_for_kprobe_optimizer(void)
646{
647	mutex_lock(&kprobe_mutex);
648
649	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
650		mutex_unlock(&kprobe_mutex);
651
652		/* This will also make 'optimizing_work' execute immmediately */
653		flush_delayed_work(&optimizing_work);
654		/* 'optimizing_work' might not have been queued yet, relax */
655		cpu_relax();
656
657		mutex_lock(&kprobe_mutex);
658	}
659
660	mutex_unlock(&kprobe_mutex);
661}
662
663bool optprobe_queued_unopt(struct optimized_kprobe *op)
664{
665	struct optimized_kprobe *_op;
666
667	list_for_each_entry(_op, &unoptimizing_list, list) {
668		if (op == _op)
669			return true;
670	}
671
672	return false;
673}
674
675/* Optimize kprobe if p is ready to be optimized */
676static void optimize_kprobe(struct kprobe *p)
677{
678	struct optimized_kprobe *op;
679
680	/* Check if the kprobe is disabled or not ready for optimization. */
681	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682	    (kprobe_disabled(p) || kprobes_all_disarmed))
683		return;
684
685	/* kprobes with 'post_handler' can not be optimized */
686	if (p->post_handler)
687		return;
688
689	op = container_of(p, struct optimized_kprobe, kp);
690
691	/* Check there is no other kprobes at the optimized instructions */
692	if (arch_check_optimized_kprobe(op) < 0)
693		return;
694
695	/* Check if it is already optimized. */
696	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697		if (optprobe_queued_unopt(op)) {
698			/* This is under unoptimizing. Just dequeue the probe */
699			list_del_init(&op->list);
700		}
701		return;
702	}
703	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705	/*
706	 * On the 'unoptimizing_list' and 'optimizing_list',
707	 * 'op' must have OPTIMIZED flag
708	 */
709	if (WARN_ON_ONCE(!list_empty(&op->list)))
710		return;
711
712	list_add(&op->list, &optimizing_list);
713	kick_kprobe_optimizer();
714}
715
716/* Short cut to direct unoptimizing */
717static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718{
719	lockdep_assert_cpus_held();
720	arch_unoptimize_kprobe(op);
721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722}
723
724/* Unoptimize a kprobe if p is optimized */
725static void unoptimize_kprobe(struct kprobe *p, bool force)
726{
727	struct optimized_kprobe *op;
728
729	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730		return; /* This is not an optprobe nor optimized */
731
732	op = container_of(p, struct optimized_kprobe, kp);
733	if (!kprobe_optimized(p))
734		return;
735
736	if (!list_empty(&op->list)) {
737		if (optprobe_queued_unopt(op)) {
738			/* Queued in unoptimizing queue */
739			if (force) {
740				/*
741				 * Forcibly unoptimize the kprobe here, and queue it
742				 * in the freeing list for release afterwards.
743				 */
744				force_unoptimize_kprobe(op);
745				list_move(&op->list, &freeing_list);
746			}
747		} else {
748			/* Dequeue from the optimizing queue */
749			list_del_init(&op->list);
750			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751		}
752		return;
753	}
754
755	/* Optimized kprobe case */
756	if (force) {
757		/* Forcibly update the code: this is a special case */
758		force_unoptimize_kprobe(op);
759	} else {
760		list_add(&op->list, &unoptimizing_list);
761		kick_kprobe_optimizer();
762	}
763}
764
765/* Cancel unoptimizing for reusing */
766static int reuse_unused_kprobe(struct kprobe *ap)
767{
768	struct optimized_kprobe *op;
769
770	/*
771	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
772	 * there is still a relative jump) and disabled.
773	 */
774	op = container_of(ap, struct optimized_kprobe, kp);
775	WARN_ON_ONCE(list_empty(&op->list));
776	/* Enable the probe again */
777	ap->flags &= ~KPROBE_FLAG_DISABLED;
778	/* Optimize it again. (remove from 'op->list') */
779	if (!kprobe_optready(ap))
780		return -EINVAL;
781
782	optimize_kprobe(ap);
783	return 0;
784}
785
786/* Remove optimized instructions */
787static void kill_optimized_kprobe(struct kprobe *p)
788{
789	struct optimized_kprobe *op;
790
791	op = container_of(p, struct optimized_kprobe, kp);
792	if (!list_empty(&op->list))
793		/* Dequeue from the (un)optimization queue */
794		list_del_init(&op->list);
795	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797	if (kprobe_unused(p)) {
798		/*
799		 * Unused kprobe is on unoptimizing or freeing list. We move it
800		 * to freeing_list and let the kprobe_optimizer() remove it from
801		 * the kprobe hash list and free it.
802		 */
803		if (optprobe_queued_unopt(op))
804			list_move(&op->list, &freeing_list);
805	}
806
807	/* Don't touch the code, because it is already freed. */
808	arch_remove_optimized_kprobe(op);
809}
810
811static inline
812void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813{
814	if (!kprobe_ftrace(p))
815		arch_prepare_optimized_kprobe(op, p);
816}
817
818/* Try to prepare optimized instructions */
819static void prepare_optimized_kprobe(struct kprobe *p)
820{
821	struct optimized_kprobe *op;
822
823	op = container_of(p, struct optimized_kprobe, kp);
824	__prepare_optimized_kprobe(op, p);
825}
826
827/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
828static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829{
830	struct optimized_kprobe *op;
831
832	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833	if (!op)
834		return NULL;
835
836	INIT_LIST_HEAD(&op->list);
837	op->kp.addr = p->addr;
838	__prepare_optimized_kprobe(op, p);
839
840	return &op->kp;
841}
842
843static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845/*
846 * Prepare an optimized_kprobe and optimize it.
847 * NOTE: 'p' must be a normal registered kprobe.
848 */
849static void try_to_optimize_kprobe(struct kprobe *p)
850{
851	struct kprobe *ap;
852	struct optimized_kprobe *op;
853
854	/* Impossible to optimize ftrace-based kprobe. */
855	if (kprobe_ftrace(p))
856		return;
857
858	/* For preparing optimization, jump_label_text_reserved() is called. */
859	cpus_read_lock();
860	jump_label_lock();
861	mutex_lock(&text_mutex);
862
863	ap = alloc_aggr_kprobe(p);
864	if (!ap)
865		goto out;
866
867	op = container_of(ap, struct optimized_kprobe, kp);
868	if (!arch_prepared_optinsn(&op->optinsn)) {
869		/* If failed to setup optimizing, fallback to kprobe. */
870		arch_remove_optimized_kprobe(op);
871		kfree(op);
872		goto out;
873	}
874
875	init_aggr_kprobe(ap, p);
876	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
877
878out:
879	mutex_unlock(&text_mutex);
880	jump_label_unlock();
881	cpus_read_unlock();
882}
883
884static void optimize_all_kprobes(void)
885{
886	struct hlist_head *head;
887	struct kprobe *p;
888	unsigned int i;
889
890	mutex_lock(&kprobe_mutex);
891	/* If optimization is already allowed, just return. */
892	if (kprobes_allow_optimization)
893		goto out;
894
895	cpus_read_lock();
896	kprobes_allow_optimization = true;
897	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898		head = &kprobe_table[i];
899		hlist_for_each_entry(p, head, hlist)
900			if (!kprobe_disabled(p))
901				optimize_kprobe(p);
902	}
903	cpus_read_unlock();
904	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905out:
906	mutex_unlock(&kprobe_mutex);
907}
908
909#ifdef CONFIG_SYSCTL
910static void unoptimize_all_kprobes(void)
911{
912	struct hlist_head *head;
913	struct kprobe *p;
914	unsigned int i;
915
916	mutex_lock(&kprobe_mutex);
917	/* If optimization is already prohibited, just return. */
918	if (!kprobes_allow_optimization) {
919		mutex_unlock(&kprobe_mutex);
920		return;
921	}
922
923	cpus_read_lock();
924	kprobes_allow_optimization = false;
925	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926		head = &kprobe_table[i];
927		hlist_for_each_entry(p, head, hlist) {
928			if (!kprobe_disabled(p))
929				unoptimize_kprobe(p, false);
930		}
931	}
932	cpus_read_unlock();
933	mutex_unlock(&kprobe_mutex);
934
935	/* Wait for unoptimizing completion. */
936	wait_for_kprobe_optimizer();
937	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938}
939
940static DEFINE_MUTEX(kprobe_sysctl_mutex);
941static int sysctl_kprobes_optimization;
942static int proc_kprobes_optimization_handler(struct ctl_table *table,
943					     int write, void *buffer,
944					     size_t *length, loff_t *ppos)
945{
946	int ret;
947
948	mutex_lock(&kprobe_sysctl_mutex);
949	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951
952	if (sysctl_kprobes_optimization)
953		optimize_all_kprobes();
954	else
955		unoptimize_all_kprobes();
956	mutex_unlock(&kprobe_sysctl_mutex);
957
958	return ret;
959}
960
961static struct ctl_table kprobe_sysctls[] = {
962	{
963		.procname	= "kprobes-optimization",
964		.data		= &sysctl_kprobes_optimization,
965		.maxlen		= sizeof(int),
966		.mode		= 0644,
967		.proc_handler	= proc_kprobes_optimization_handler,
968		.extra1		= SYSCTL_ZERO,
969		.extra2		= SYSCTL_ONE,
970	},
971};
972
973static void __init kprobe_sysctls_init(void)
974{
975	register_sysctl_init("debug", kprobe_sysctls);
976}
977#endif /* CONFIG_SYSCTL */
978
979/* Put a breakpoint for a probe. */
980static void __arm_kprobe(struct kprobe *p)
981{
982	struct kprobe *_p;
983
984	lockdep_assert_held(&text_mutex);
985
986	/* Find the overlapping optimized kprobes. */
987	_p = get_optimized_kprobe(p->addr);
988	if (unlikely(_p))
989		/* Fallback to unoptimized kprobe */
990		unoptimize_kprobe(_p, true);
991
992	arch_arm_kprobe(p);
993	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
994}
995
996/* Remove the breakpoint of a probe. */
997static void __disarm_kprobe(struct kprobe *p, bool reopt)
998{
999	struct kprobe *_p;
1000
1001	lockdep_assert_held(&text_mutex);
1002
1003	/* Try to unoptimize */
1004	unoptimize_kprobe(p, kprobes_all_disarmed);
1005
1006	if (!kprobe_queued(p)) {
1007		arch_disarm_kprobe(p);
1008		/* If another kprobe was blocked, re-optimize it. */
1009		_p = get_optimized_kprobe(p->addr);
1010		if (unlikely(_p) && reopt)
1011			optimize_kprobe(_p);
1012	}
1013	/*
1014	 * TODO: Since unoptimization and real disarming will be done by
1015	 * the worker thread, we can not check whether another probe are
1016	 * unoptimized because of this probe here. It should be re-optimized
1017	 * by the worker thread.
1018	 */
1019}
1020
1021#else /* !CONFIG_OPTPROBES */
1022
1023#define optimize_kprobe(p)			do {} while (0)
1024#define unoptimize_kprobe(p, f)			do {} while (0)
1025#define kill_optimized_kprobe(p)		do {} while (0)
1026#define prepare_optimized_kprobe(p)		do {} while (0)
1027#define try_to_optimize_kprobe(p)		do {} while (0)
1028#define __arm_kprobe(p)				arch_arm_kprobe(p)
1029#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1030#define kprobe_disarmed(p)			kprobe_disabled(p)
1031#define wait_for_kprobe_optimizer()		do {} while (0)
1032
1033static int reuse_unused_kprobe(struct kprobe *ap)
1034{
1035	/*
1036	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1037	 * released at the same time that the last aggregated kprobe is
1038	 * unregistered.
1039	 * Thus there should be no chance to reuse unused kprobe.
1040	 */
1041	WARN_ON_ONCE(1);
1042	return -EINVAL;
1043}
1044
1045static void free_aggr_kprobe(struct kprobe *p)
1046{
1047	arch_remove_kprobe(p);
1048	kfree(p);
1049}
1050
1051static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1052{
1053	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1054}
1055#endif /* CONFIG_OPTPROBES */
1056
1057#ifdef CONFIG_KPROBES_ON_FTRACE
1058static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1059	.func = kprobe_ftrace_handler,
1060	.flags = FTRACE_OPS_FL_SAVE_REGS,
1061};
1062
1063static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1064	.func = kprobe_ftrace_handler,
1065	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1066};
1067
1068static int kprobe_ipmodify_enabled;
1069static int kprobe_ftrace_enabled;
1070bool kprobe_ftrace_disabled;
1071
1072static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073			       int *cnt)
1074{
1075	int ret;
1076
1077	lockdep_assert_held(&kprobe_mutex);
1078
1079	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081		return ret;
1082
1083	if (*cnt == 0) {
1084		ret = register_ftrace_function(ops);
1085		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086			goto err_ftrace;
1087	}
1088
1089	(*cnt)++;
1090	return ret;
1091
1092err_ftrace:
1093	/*
1094	 * At this point, sinec ops is not registered, we should be sefe from
1095	 * registering empty filter.
1096	 */
1097	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098	return ret;
1099}
1100
1101static int arm_kprobe_ftrace(struct kprobe *p)
1102{
1103	bool ipmodify = (p->post_handler != NULL);
1104
1105	return __arm_kprobe_ftrace(p,
1106		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108}
1109
1110static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111				  int *cnt)
1112{
1113	int ret;
1114
1115	lockdep_assert_held(&kprobe_mutex);
1116
1117	if (*cnt == 1) {
1118		ret = unregister_ftrace_function(ops);
1119		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120			return ret;
1121	}
1122
1123	(*cnt)--;
1124
1125	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127		  p->addr, ret);
1128	return ret;
1129}
1130
1131static int disarm_kprobe_ftrace(struct kprobe *p)
1132{
1133	bool ipmodify = (p->post_handler != NULL);
1134
1135	return __disarm_kprobe_ftrace(p,
1136		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138}
1139
1140void kprobe_ftrace_kill(void)
1141{
1142	kprobe_ftrace_disabled = true;
1143}
1144#else	/* !CONFIG_KPROBES_ON_FTRACE */
1145static inline int arm_kprobe_ftrace(struct kprobe *p)
1146{
1147	return -ENODEV;
1148}
1149
1150static inline int disarm_kprobe_ftrace(struct kprobe *p)
1151{
1152	return -ENODEV;
1153}
1154#endif
1155
1156static int prepare_kprobe(struct kprobe *p)
1157{
1158	/* Must ensure p->addr is really on ftrace */
1159	if (kprobe_ftrace(p))
1160		return arch_prepare_kprobe_ftrace(p);
1161
1162	return arch_prepare_kprobe(p);
1163}
1164
1165static int arm_kprobe(struct kprobe *kp)
1166{
1167	if (unlikely(kprobe_ftrace(kp)))
1168		return arm_kprobe_ftrace(kp);
1169
1170	cpus_read_lock();
1171	mutex_lock(&text_mutex);
1172	__arm_kprobe(kp);
1173	mutex_unlock(&text_mutex);
1174	cpus_read_unlock();
1175
1176	return 0;
1177}
1178
1179static int disarm_kprobe(struct kprobe *kp, bool reopt)
1180{
1181	if (unlikely(kprobe_ftrace(kp)))
1182		return disarm_kprobe_ftrace(kp);
1183
1184	cpus_read_lock();
1185	mutex_lock(&text_mutex);
1186	__disarm_kprobe(kp, reopt);
1187	mutex_unlock(&text_mutex);
1188	cpus_read_unlock();
1189
1190	return 0;
1191}
1192
1193/*
1194 * Aggregate handlers for multiple kprobes support - these handlers
1195 * take care of invoking the individual kprobe handlers on p->list
1196 */
1197static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1198{
1199	struct kprobe *kp;
1200
1201	list_for_each_entry_rcu(kp, &p->list, list) {
1202		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1203			set_kprobe_instance(kp);
1204			if (kp->pre_handler(kp, regs))
1205				return 1;
1206		}
1207		reset_kprobe_instance();
1208	}
1209	return 0;
1210}
1211NOKPROBE_SYMBOL(aggr_pre_handler);
1212
1213static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1214			      unsigned long flags)
1215{
1216	struct kprobe *kp;
1217
1218	list_for_each_entry_rcu(kp, &p->list, list) {
1219		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1220			set_kprobe_instance(kp);
1221			kp->post_handler(kp, regs, flags);
1222			reset_kprobe_instance();
1223		}
1224	}
1225}
1226NOKPROBE_SYMBOL(aggr_post_handler);
1227
1228/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1229void kprobes_inc_nmissed_count(struct kprobe *p)
1230{
1231	struct kprobe *kp;
1232
1233	if (!kprobe_aggrprobe(p)) {
1234		p->nmissed++;
1235	} else {
1236		list_for_each_entry_rcu(kp, &p->list, list)
1237			kp->nmissed++;
1238	}
1239}
1240NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1241
1242static struct kprobe kprobe_busy = {
1243	.addr = (void *) get_kprobe,
1244};
1245
1246void kprobe_busy_begin(void)
1247{
1248	struct kprobe_ctlblk *kcb;
1249
1250	preempt_disable();
1251	__this_cpu_write(current_kprobe, &kprobe_busy);
1252	kcb = get_kprobe_ctlblk();
1253	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1254}
1255
1256void kprobe_busy_end(void)
1257{
1258	__this_cpu_write(current_kprobe, NULL);
1259	preempt_enable();
1260}
1261
1262/* Add the new probe to 'ap->list'. */
1263static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1264{
1265	if (p->post_handler)
1266		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1267
1268	list_add_rcu(&p->list, &ap->list);
1269	if (p->post_handler && !ap->post_handler)
1270		ap->post_handler = aggr_post_handler;
1271
1272	return 0;
1273}
1274
1275/*
1276 * Fill in the required fields of the aggregator kprobe. Replace the
1277 * earlier kprobe in the hlist with the aggregator kprobe.
1278 */
1279static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1280{
1281	/* Copy the insn slot of 'p' to 'ap'. */
1282	copy_kprobe(p, ap);
1283	flush_insn_slot(ap);
1284	ap->addr = p->addr;
1285	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1286	ap->pre_handler = aggr_pre_handler;
1287	/* We don't care the kprobe which has gone. */
1288	if (p->post_handler && !kprobe_gone(p))
1289		ap->post_handler = aggr_post_handler;
1290
1291	INIT_LIST_HEAD(&ap->list);
1292	INIT_HLIST_NODE(&ap->hlist);
1293
1294	list_add_rcu(&p->list, &ap->list);
1295	hlist_replace_rcu(&p->hlist, &ap->hlist);
1296}
1297
1298/*
1299 * This registers the second or subsequent kprobe at the same address.
1300 */
1301static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1302{
1303	int ret = 0;
1304	struct kprobe *ap = orig_p;
1305
1306	cpus_read_lock();
1307
1308	/* For preparing optimization, jump_label_text_reserved() is called */
1309	jump_label_lock();
1310	mutex_lock(&text_mutex);
1311
1312	if (!kprobe_aggrprobe(orig_p)) {
1313		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1314		ap = alloc_aggr_kprobe(orig_p);
1315		if (!ap) {
1316			ret = -ENOMEM;
1317			goto out;
1318		}
1319		init_aggr_kprobe(ap, orig_p);
1320	} else if (kprobe_unused(ap)) {
1321		/* This probe is going to die. Rescue it */
1322		ret = reuse_unused_kprobe(ap);
1323		if (ret)
1324			goto out;
1325	}
1326
1327	if (kprobe_gone(ap)) {
1328		/*
1329		 * Attempting to insert new probe at the same location that
1330		 * had a probe in the module vaddr area which already
1331		 * freed. So, the instruction slot has already been
1332		 * released. We need a new slot for the new probe.
1333		 */
1334		ret = arch_prepare_kprobe(ap);
1335		if (ret)
1336			/*
1337			 * Even if fail to allocate new slot, don't need to
1338			 * free the 'ap'. It will be used next time, or
1339			 * freed by unregister_kprobe().
1340			 */
1341			goto out;
1342
1343		/* Prepare optimized instructions if possible. */
1344		prepare_optimized_kprobe(ap);
1345
1346		/*
1347		 * Clear gone flag to prevent allocating new slot again, and
1348		 * set disabled flag because it is not armed yet.
1349		 */
1350		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1351			    | KPROBE_FLAG_DISABLED;
1352	}
1353
1354	/* Copy the insn slot of 'p' to 'ap'. */
1355	copy_kprobe(ap, p);
1356	ret = add_new_kprobe(ap, p);
1357
1358out:
1359	mutex_unlock(&text_mutex);
1360	jump_label_unlock();
1361	cpus_read_unlock();
1362
1363	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1364		ap->flags &= ~KPROBE_FLAG_DISABLED;
1365		if (!kprobes_all_disarmed) {
1366			/* Arm the breakpoint again. */
1367			ret = arm_kprobe(ap);
1368			if (ret) {
1369				ap->flags |= KPROBE_FLAG_DISABLED;
1370				list_del_rcu(&p->list);
1371				synchronize_rcu();
1372			}
1373		}
1374	}
1375	return ret;
1376}
1377
1378bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1379{
1380	/* The '__kprobes' functions and entry code must not be probed. */
1381	return addr >= (unsigned long)__kprobes_text_start &&
1382	       addr < (unsigned long)__kprobes_text_end;
1383}
1384
1385static bool __within_kprobe_blacklist(unsigned long addr)
1386{
1387	struct kprobe_blacklist_entry *ent;
1388
1389	if (arch_within_kprobe_blacklist(addr))
1390		return true;
1391	/*
1392	 * If 'kprobe_blacklist' is defined, check the address and
1393	 * reject any probe registration in the prohibited area.
1394	 */
1395	list_for_each_entry(ent, &kprobe_blacklist, list) {
1396		if (addr >= ent->start_addr && addr < ent->end_addr)
1397			return true;
1398	}
1399	return false;
1400}
1401
1402bool within_kprobe_blacklist(unsigned long addr)
1403{
1404	char symname[KSYM_NAME_LEN], *p;
1405
1406	if (__within_kprobe_blacklist(addr))
1407		return true;
1408
1409	/* Check if the address is on a suffixed-symbol */
1410	if (!lookup_symbol_name(addr, symname)) {
1411		p = strchr(symname, '.');
1412		if (!p)
1413			return false;
1414		*p = '\0';
1415		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1416		if (addr)
1417			return __within_kprobe_blacklist(addr);
1418	}
1419	return false;
1420}
1421
1422/*
1423 * arch_adjust_kprobe_addr - adjust the address
1424 * @addr: symbol base address
1425 * @offset: offset within the symbol
1426 * @on_func_entry: was this @addr+@offset on the function entry
1427 *
1428 * Typically returns @addr + @offset, except for special cases where the
1429 * function might be prefixed by a CFI landing pad, in that case any offset
1430 * inside the landing pad is mapped to the first 'real' instruction of the
1431 * symbol.
1432 *
1433 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1434 * instruction at +0.
1435 */
1436kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1437						unsigned long offset,
1438						bool *on_func_entry)
1439{
1440	*on_func_entry = !offset;
1441	return (kprobe_opcode_t *)(addr + offset);
1442}
1443
1444/*
1445 * If 'symbol_name' is specified, look it up and add the 'offset'
1446 * to it. This way, we can specify a relative address to a symbol.
1447 * This returns encoded errors if it fails to look up symbol or invalid
1448 * combination of parameters.
1449 */
1450static kprobe_opcode_t *
1451_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1452	     unsigned long offset, bool *on_func_entry)
1453{
1454	if ((symbol_name && addr) || (!symbol_name && !addr))
1455		goto invalid;
1456
1457	if (symbol_name) {
1458		/*
1459		 * Input: @sym + @offset
1460		 * Output: @addr + @offset
1461		 *
1462		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1463		 *       argument into it's output!
1464		 */
1465		addr = kprobe_lookup_name(symbol_name, offset);
1466		if (!addr)
1467			return ERR_PTR(-ENOENT);
1468	}
1469
1470	/*
1471	 * So here we have @addr + @offset, displace it into a new
1472	 * @addr' + @offset' where @addr' is the symbol start address.
1473	 */
1474	addr = (void *)addr + offset;
1475	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1476		return ERR_PTR(-ENOENT);
1477	addr = (void *)addr - offset;
1478
1479	/*
1480	 * Then ask the architecture to re-combine them, taking care of
1481	 * magical function entry details while telling us if this was indeed
1482	 * at the start of the function.
1483	 */
1484	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1485	if (addr)
1486		return addr;
1487
1488invalid:
1489	return ERR_PTR(-EINVAL);
1490}
1491
1492static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1493{
1494	bool on_func_entry;
1495	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1496}
1497
1498/*
1499 * Check the 'p' is valid and return the aggregator kprobe
1500 * at the same address.
1501 */
1502static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1503{
1504	struct kprobe *ap, *list_p;
1505
1506	lockdep_assert_held(&kprobe_mutex);
1507
1508	ap = get_kprobe(p->addr);
1509	if (unlikely(!ap))
1510		return NULL;
1511
1512	if (p != ap) {
1513		list_for_each_entry(list_p, &ap->list, list)
1514			if (list_p == p)
1515			/* kprobe p is a valid probe */
1516				goto valid;
1517		return NULL;
1518	}
1519valid:
1520	return ap;
1521}
1522
1523/*
1524 * Warn and return error if the kprobe is being re-registered since
1525 * there must be a software bug.
1526 */
1527static inline int warn_kprobe_rereg(struct kprobe *p)
1528{
1529	int ret = 0;
1530
1531	mutex_lock(&kprobe_mutex);
1532	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1533		ret = -EINVAL;
1534	mutex_unlock(&kprobe_mutex);
1535
1536	return ret;
1537}
1538
1539static int check_ftrace_location(struct kprobe *p)
1540{
1541	unsigned long addr = (unsigned long)p->addr;
1542
1543	if (ftrace_location(addr) == addr) {
1544#ifdef CONFIG_KPROBES_ON_FTRACE
1545		p->flags |= KPROBE_FLAG_FTRACE;
1546#else	/* !CONFIG_KPROBES_ON_FTRACE */
1547		return -EINVAL;
1548#endif
1549	}
1550	return 0;
1551}
1552
1553static bool is_cfi_preamble_symbol(unsigned long addr)
1554{
1555	char symbuf[KSYM_NAME_LEN];
1556
1557	if (lookup_symbol_name(addr, symbuf))
1558		return false;
1559
1560	return str_has_prefix("__cfi_", symbuf) ||
1561		str_has_prefix("__pfx_", symbuf);
1562}
1563
1564static int check_kprobe_address_safe(struct kprobe *p,
1565				     struct module **probed_mod)
1566{
1567	int ret;
1568
1569	ret = check_ftrace_location(p);
1570	if (ret)
1571		return ret;
1572	jump_label_lock();
1573	preempt_disable();
1574
1575	/* Ensure the address is in a text area, and find a module if exists. */
1576	*probed_mod = NULL;
1577	if (!core_kernel_text((unsigned long) p->addr)) {
1578		*probed_mod = __module_text_address((unsigned long) p->addr);
1579		if (!(*probed_mod)) {
1580			ret = -EINVAL;
1581			goto out;
1582		}
1583	}
1584	/* Ensure it is not in reserved area. */
1585	if (in_gate_area_no_mm((unsigned long) p->addr) ||
1586	    within_kprobe_blacklist((unsigned long) p->addr) ||
1587	    jump_label_text_reserved(p->addr, p->addr) ||
1588	    static_call_text_reserved(p->addr, p->addr) ||
1589	    find_bug((unsigned long)p->addr) ||
1590	    is_cfi_preamble_symbol((unsigned long)p->addr)) {
1591		ret = -EINVAL;
1592		goto out;
1593	}
1594
1595	/* Get module refcount and reject __init functions for loaded modules. */
1596	if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) {
1597		/*
1598		 * We must hold a refcount of the probed module while updating
1599		 * its code to prohibit unexpected unloading.
1600		 */
1601		if (unlikely(!try_module_get(*probed_mod))) {
1602			ret = -ENOENT;
1603			goto out;
1604		}
1605
1606		/*
1607		 * If the module freed '.init.text', we couldn't insert
1608		 * kprobes in there.
1609		 */
1610		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1611		    !module_is_coming(*probed_mod)) {
1612			module_put(*probed_mod);
1613			*probed_mod = NULL;
1614			ret = -ENOENT;
1615		}
1616	}
1617
1618out:
1619	preempt_enable();
1620	jump_label_unlock();
1621
1622	return ret;
1623}
1624
1625int register_kprobe(struct kprobe *p)
1626{
1627	int ret;
1628	struct kprobe *old_p;
1629	struct module *probed_mod;
1630	kprobe_opcode_t *addr;
1631	bool on_func_entry;
1632
1633	/* Adjust probe address from symbol */
1634	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1635	if (IS_ERR(addr))
1636		return PTR_ERR(addr);
1637	p->addr = addr;
1638
1639	ret = warn_kprobe_rereg(p);
1640	if (ret)
1641		return ret;
1642
1643	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1644	p->flags &= KPROBE_FLAG_DISABLED;
1645	p->nmissed = 0;
1646	INIT_LIST_HEAD(&p->list);
1647
1648	ret = check_kprobe_address_safe(p, &probed_mod);
1649	if (ret)
1650		return ret;
1651
1652	mutex_lock(&kprobe_mutex);
1653
1654	if (on_func_entry)
1655		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1656
1657	old_p = get_kprobe(p->addr);
1658	if (old_p) {
1659		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1660		ret = register_aggr_kprobe(old_p, p);
1661		goto out;
1662	}
1663
1664	cpus_read_lock();
1665	/* Prevent text modification */
1666	mutex_lock(&text_mutex);
1667	ret = prepare_kprobe(p);
1668	mutex_unlock(&text_mutex);
1669	cpus_read_unlock();
1670	if (ret)
1671		goto out;
1672
1673	INIT_HLIST_NODE(&p->hlist);
1674	hlist_add_head_rcu(&p->hlist,
1675		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1676
1677	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1678		ret = arm_kprobe(p);
1679		if (ret) {
1680			hlist_del_rcu(&p->hlist);
1681			synchronize_rcu();
1682			goto out;
1683		}
1684	}
1685
1686	/* Try to optimize kprobe */
1687	try_to_optimize_kprobe(p);
1688out:
1689	mutex_unlock(&kprobe_mutex);
1690
1691	if (probed_mod)
1692		module_put(probed_mod);
1693
1694	return ret;
1695}
1696EXPORT_SYMBOL_GPL(register_kprobe);
1697
1698/* Check if all probes on the 'ap' are disabled. */
1699static bool aggr_kprobe_disabled(struct kprobe *ap)
1700{
1701	struct kprobe *kp;
1702
1703	lockdep_assert_held(&kprobe_mutex);
1704
1705	list_for_each_entry(kp, &ap->list, list)
1706		if (!kprobe_disabled(kp))
1707			/*
1708			 * Since there is an active probe on the list,
1709			 * we can't disable this 'ap'.
1710			 */
1711			return false;
1712
1713	return true;
1714}
1715
1716static struct kprobe *__disable_kprobe(struct kprobe *p)
1717{
1718	struct kprobe *orig_p;
1719	int ret;
1720
1721	lockdep_assert_held(&kprobe_mutex);
1722
1723	/* Get an original kprobe for return */
1724	orig_p = __get_valid_kprobe(p);
1725	if (unlikely(orig_p == NULL))
1726		return ERR_PTR(-EINVAL);
1727
1728	if (!kprobe_disabled(p)) {
1729		/* Disable probe if it is a child probe */
1730		if (p != orig_p)
1731			p->flags |= KPROBE_FLAG_DISABLED;
1732
1733		/* Try to disarm and disable this/parent probe */
1734		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1735			/*
1736			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1737			 * is false, 'orig_p' might not have been armed yet.
1738			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1739			 * on the best effort basis.
1740			 */
1741			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1742				ret = disarm_kprobe(orig_p, true);
1743				if (ret) {
1744					p->flags &= ~KPROBE_FLAG_DISABLED;
1745					return ERR_PTR(ret);
1746				}
1747			}
1748			orig_p->flags |= KPROBE_FLAG_DISABLED;
1749		}
1750	}
1751
1752	return orig_p;
1753}
1754
1755/*
1756 * Unregister a kprobe without a scheduler synchronization.
1757 */
1758static int __unregister_kprobe_top(struct kprobe *p)
1759{
1760	struct kprobe *ap, *list_p;
1761
1762	/* Disable kprobe. This will disarm it if needed. */
1763	ap = __disable_kprobe(p);
1764	if (IS_ERR(ap))
1765		return PTR_ERR(ap);
1766
1767	if (ap == p)
1768		/*
1769		 * This probe is an independent(and non-optimized) kprobe
1770		 * (not an aggrprobe). Remove from the hash list.
1771		 */
1772		goto disarmed;
1773
1774	/* Following process expects this probe is an aggrprobe */
1775	WARN_ON(!kprobe_aggrprobe(ap));
1776
1777	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1778		/*
1779		 * !disarmed could be happen if the probe is under delayed
1780		 * unoptimizing.
1781		 */
1782		goto disarmed;
1783	else {
1784		/* If disabling probe has special handlers, update aggrprobe */
1785		if (p->post_handler && !kprobe_gone(p)) {
1786			list_for_each_entry(list_p, &ap->list, list) {
1787				if ((list_p != p) && (list_p->post_handler))
1788					goto noclean;
1789			}
1790			/*
1791			 * For the kprobe-on-ftrace case, we keep the
1792			 * post_handler setting to identify this aggrprobe
1793			 * armed with kprobe_ipmodify_ops.
1794			 */
1795			if (!kprobe_ftrace(ap))
1796				ap->post_handler = NULL;
1797		}
1798noclean:
1799		/*
1800		 * Remove from the aggrprobe: this path will do nothing in
1801		 * __unregister_kprobe_bottom().
1802		 */
1803		list_del_rcu(&p->list);
1804		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1805			/*
1806			 * Try to optimize this probe again, because post
1807			 * handler may have been changed.
1808			 */
1809			optimize_kprobe(ap);
1810	}
1811	return 0;
1812
1813disarmed:
1814	hlist_del_rcu(&ap->hlist);
1815	return 0;
1816}
1817
1818static void __unregister_kprobe_bottom(struct kprobe *p)
1819{
1820	struct kprobe *ap;
1821
1822	if (list_empty(&p->list))
1823		/* This is an independent kprobe */
1824		arch_remove_kprobe(p);
1825	else if (list_is_singular(&p->list)) {
1826		/* This is the last child of an aggrprobe */
1827		ap = list_entry(p->list.next, struct kprobe, list);
1828		list_del(&p->list);
1829		free_aggr_kprobe(ap);
1830	}
1831	/* Otherwise, do nothing. */
1832}
1833
1834int register_kprobes(struct kprobe **kps, int num)
1835{
1836	int i, ret = 0;
1837
1838	if (num <= 0)
1839		return -EINVAL;
1840	for (i = 0; i < num; i++) {
1841		ret = register_kprobe(kps[i]);
1842		if (ret < 0) {
1843			if (i > 0)
1844				unregister_kprobes(kps, i);
1845			break;
1846		}
1847	}
1848	return ret;
1849}
1850EXPORT_SYMBOL_GPL(register_kprobes);
1851
1852void unregister_kprobe(struct kprobe *p)
1853{
1854	unregister_kprobes(&p, 1);
1855}
1856EXPORT_SYMBOL_GPL(unregister_kprobe);
1857
1858void unregister_kprobes(struct kprobe **kps, int num)
1859{
1860	int i;
1861
1862	if (num <= 0)
1863		return;
1864	mutex_lock(&kprobe_mutex);
1865	for (i = 0; i < num; i++)
1866		if (__unregister_kprobe_top(kps[i]) < 0)
1867			kps[i]->addr = NULL;
1868	mutex_unlock(&kprobe_mutex);
1869
1870	synchronize_rcu();
1871	for (i = 0; i < num; i++)
1872		if (kps[i]->addr)
1873			__unregister_kprobe_bottom(kps[i]);
1874}
1875EXPORT_SYMBOL_GPL(unregister_kprobes);
1876
1877int __weak kprobe_exceptions_notify(struct notifier_block *self,
1878					unsigned long val, void *data)
1879{
1880	return NOTIFY_DONE;
1881}
1882NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1883
1884static struct notifier_block kprobe_exceptions_nb = {
1885	.notifier_call = kprobe_exceptions_notify,
1886	.priority = 0x7fffffff /* we need to be notified first */
1887};
1888
1889#ifdef CONFIG_KRETPROBES
1890
1891#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1892
1893/* callbacks for objpool of kretprobe instances */
1894static int kretprobe_init_inst(void *nod, void *context)
1895{
1896	struct kretprobe_instance *ri = nod;
1897
1898	ri->rph = context;
1899	return 0;
1900}
1901static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1902{
1903	kfree(context);
1904	return 0;
1905}
1906
1907static void free_rp_inst_rcu(struct rcu_head *head)
1908{
1909	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1910	struct kretprobe_holder *rph = ri->rph;
1911
1912	objpool_drop(ri, &rph->pool);
1913}
1914NOKPROBE_SYMBOL(free_rp_inst_rcu);
1915
1916static void recycle_rp_inst(struct kretprobe_instance *ri)
1917{
1918	struct kretprobe *rp = get_kretprobe(ri);
1919
1920	if (likely(rp))
1921		objpool_push(ri, &rp->rph->pool);
1922	else
1923		call_rcu(&ri->rcu, free_rp_inst_rcu);
1924}
1925NOKPROBE_SYMBOL(recycle_rp_inst);
1926
1927/*
1928 * This function is called from delayed_put_task_struct() when a task is
1929 * dead and cleaned up to recycle any kretprobe instances associated with
1930 * this task. These left over instances represent probed functions that
1931 * have been called but will never return.
1932 */
1933void kprobe_flush_task(struct task_struct *tk)
1934{
1935	struct kretprobe_instance *ri;
1936	struct llist_node *node;
1937
1938	/* Early boot, not yet initialized. */
1939	if (unlikely(!kprobes_initialized))
1940		return;
1941
1942	kprobe_busy_begin();
1943
1944	node = __llist_del_all(&tk->kretprobe_instances);
1945	while (node) {
1946		ri = container_of(node, struct kretprobe_instance, llist);
1947		node = node->next;
1948
1949		recycle_rp_inst(ri);
1950	}
1951
1952	kprobe_busy_end();
1953}
1954NOKPROBE_SYMBOL(kprobe_flush_task);
1955
1956static inline void free_rp_inst(struct kretprobe *rp)
1957{
1958	struct kretprobe_holder *rph = rp->rph;
1959
1960	if (!rph)
1961		return;
1962	rp->rph = NULL;
1963	objpool_fini(&rph->pool);
1964}
1965
1966/* This assumes the 'tsk' is the current task or the is not running. */
1967static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1968						  struct llist_node **cur)
1969{
1970	struct kretprobe_instance *ri = NULL;
1971	struct llist_node *node = *cur;
1972
1973	if (!node)
1974		node = tsk->kretprobe_instances.first;
1975	else
1976		node = node->next;
1977
1978	while (node) {
1979		ri = container_of(node, struct kretprobe_instance, llist);
1980		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1981			*cur = node;
1982			return ri->ret_addr;
1983		}
1984		node = node->next;
1985	}
1986	return NULL;
1987}
1988NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1989
1990/**
1991 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1992 * @tsk: Target task
1993 * @fp: A frame pointer
1994 * @cur: a storage of the loop cursor llist_node pointer for next call
1995 *
1996 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1997 * long type. If it finds the return address, this returns that address value,
1998 * or this returns 0.
1999 * The @tsk must be 'current' or a task which is not running. @fp is a hint
2000 * to get the currect return address - which is compared with the
2001 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
2002 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
2003 * first call, but '@cur' itself must NOT NULL.
2004 */
2005unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
2006				      struct llist_node **cur)
2007{
2008	struct kretprobe_instance *ri;
2009	kprobe_opcode_t *ret;
2010
2011	if (WARN_ON_ONCE(!cur))
2012		return 0;
2013
2014	do {
2015		ret = __kretprobe_find_ret_addr(tsk, cur);
2016		if (!ret)
2017			break;
2018		ri = container_of(*cur, struct kretprobe_instance, llist);
2019	} while (ri->fp != fp);
2020
2021	return (unsigned long)ret;
2022}
2023NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2024
2025void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2026					kprobe_opcode_t *correct_ret_addr)
2027{
2028	/*
2029	 * Do nothing by default. Please fill this to update the fake return
2030	 * address on the stack with the correct one on each arch if possible.
2031	 */
2032}
2033
2034unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2035					     void *frame_pointer)
2036{
2037	struct kretprobe_instance *ri = NULL;
2038	struct llist_node *first, *node = NULL;
2039	kprobe_opcode_t *correct_ret_addr;
2040	struct kretprobe *rp;
2041
2042	/* Find correct address and all nodes for this frame. */
2043	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2044	if (!correct_ret_addr) {
2045		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2046		BUG_ON(1);
2047	}
2048
2049	/*
2050	 * Set the return address as the instruction pointer, because if the
2051	 * user handler calls stack_trace_save_regs() with this 'regs',
2052	 * the stack trace will start from the instruction pointer.
2053	 */
2054	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2055
2056	/* Run the user handler of the nodes. */
2057	first = current->kretprobe_instances.first;
2058	while (first) {
2059		ri = container_of(first, struct kretprobe_instance, llist);
2060
2061		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2062			break;
2063
2064		rp = get_kretprobe(ri);
2065		if (rp && rp->handler) {
2066			struct kprobe *prev = kprobe_running();
2067
2068			__this_cpu_write(current_kprobe, &rp->kp);
2069			ri->ret_addr = correct_ret_addr;
2070			rp->handler(ri, regs);
2071			__this_cpu_write(current_kprobe, prev);
2072		}
2073		if (first == node)
2074			break;
2075
2076		first = first->next;
2077	}
2078
2079	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2080
2081	/* Unlink all nodes for this frame. */
2082	first = current->kretprobe_instances.first;
2083	current->kretprobe_instances.first = node->next;
2084	node->next = NULL;
2085
2086	/* Recycle free instances. */
2087	while (first) {
2088		ri = container_of(first, struct kretprobe_instance, llist);
2089		first = first->next;
2090
2091		recycle_rp_inst(ri);
2092	}
2093
2094	return (unsigned long)correct_ret_addr;
2095}
2096NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2097
2098/*
2099 * This kprobe pre_handler is registered with every kretprobe. When probe
2100 * hits it will set up the return probe.
2101 */
2102static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2103{
2104	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2105	struct kretprobe_holder *rph = rp->rph;
2106	struct kretprobe_instance *ri;
2107
2108	ri = objpool_pop(&rph->pool);
2109	if (!ri) {
2110		rp->nmissed++;
2111		return 0;
2112	}
2113
2114	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2115		objpool_push(ri, &rph->pool);
2116		return 0;
2117	}
2118
2119	arch_prepare_kretprobe(ri, regs);
2120
2121	__llist_add(&ri->llist, &current->kretprobe_instances);
2122
2123	return 0;
2124}
2125NOKPROBE_SYMBOL(pre_handler_kretprobe);
2126#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2127/*
2128 * This kprobe pre_handler is registered with every kretprobe. When probe
2129 * hits it will set up the return probe.
2130 */
2131static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2132{
2133	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2134	struct kretprobe_instance *ri;
2135	struct rethook_node *rhn;
2136
2137	rhn = rethook_try_get(rp->rh);
2138	if (!rhn) {
2139		rp->nmissed++;
2140		return 0;
2141	}
2142
2143	ri = container_of(rhn, struct kretprobe_instance, node);
2144
2145	if (rp->entry_handler && rp->entry_handler(ri, regs))
2146		rethook_recycle(rhn);
2147	else
2148		rethook_hook(rhn, regs, kprobe_ftrace(p));
2149
2150	return 0;
2151}
2152NOKPROBE_SYMBOL(pre_handler_kretprobe);
2153
2154static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2155				      unsigned long ret_addr,
2156				      struct pt_regs *regs)
2157{
2158	struct kretprobe *rp = (struct kretprobe *)data;
2159	struct kretprobe_instance *ri;
2160	struct kprobe_ctlblk *kcb;
2161
2162	/* The data must NOT be null. This means rethook data structure is broken. */
2163	if (WARN_ON_ONCE(!data) || !rp->handler)
2164		return;
2165
2166	__this_cpu_write(current_kprobe, &rp->kp);
2167	kcb = get_kprobe_ctlblk();
2168	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2169
2170	ri = container_of(rh, struct kretprobe_instance, node);
2171	rp->handler(ri, regs);
2172
2173	__this_cpu_write(current_kprobe, NULL);
2174}
2175NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2176
2177#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2178
2179/**
2180 * kprobe_on_func_entry() -- check whether given address is function entry
2181 * @addr: Target address
2182 * @sym:  Target symbol name
2183 * @offset: The offset from the symbol or the address
2184 *
2185 * This checks whether the given @addr+@offset or @sym+@offset is on the
2186 * function entry address or not.
2187 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2188 * And also it returns -ENOENT if it fails the symbol or address lookup.
2189 * Caller must pass @addr or @sym (either one must be NULL), or this
2190 * returns -EINVAL.
2191 */
2192int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2193{
2194	bool on_func_entry;
2195	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2196
2197	if (IS_ERR(kp_addr))
2198		return PTR_ERR(kp_addr);
2199
2200	if (!on_func_entry)
2201		return -EINVAL;
2202
2203	return 0;
2204}
2205
2206int register_kretprobe(struct kretprobe *rp)
2207{
2208	int ret;
2209	int i;
2210	void *addr;
2211
2212	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2213	if (ret)
2214		return ret;
2215
2216	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2217	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2218		return -EINVAL;
2219
2220	if (kretprobe_blacklist_size) {
2221		addr = kprobe_addr(&rp->kp);
2222		if (IS_ERR(addr))
2223			return PTR_ERR(addr);
2224
2225		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2226			if (kretprobe_blacklist[i].addr == addr)
2227				return -EINVAL;
2228		}
2229	}
2230
2231	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2232		return -E2BIG;
2233
2234	rp->kp.pre_handler = pre_handler_kretprobe;
2235	rp->kp.post_handler = NULL;
2236
2237	/* Pre-allocate memory for max kretprobe instances */
2238	if (rp->maxactive <= 0)
2239		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2240
2241#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2242	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2243				sizeof(struct kretprobe_instance) +
2244				rp->data_size, rp->maxactive);
2245	if (IS_ERR(rp->rh))
2246		return PTR_ERR(rp->rh);
2247
2248	rp->nmissed = 0;
2249	/* Establish function entry probe point */
2250	ret = register_kprobe(&rp->kp);
2251	if (ret != 0) {
2252		rethook_free(rp->rh);
2253		rp->rh = NULL;
2254	}
2255#else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2256	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2257	if (!rp->rph)
2258		return -ENOMEM;
2259
2260	if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2261			sizeof(struct kretprobe_instance), GFP_KERNEL,
2262			rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2263		kfree(rp->rph);
2264		rp->rph = NULL;
2265		return -ENOMEM;
2266	}
2267	rcu_assign_pointer(rp->rph->rp, rp);
2268	rp->nmissed = 0;
2269	/* Establish function entry probe point */
2270	ret = register_kprobe(&rp->kp);
2271	if (ret != 0)
2272		free_rp_inst(rp);
2273#endif
2274	return ret;
2275}
2276EXPORT_SYMBOL_GPL(register_kretprobe);
2277
2278int register_kretprobes(struct kretprobe **rps, int num)
2279{
2280	int ret = 0, i;
2281
2282	if (num <= 0)
2283		return -EINVAL;
2284	for (i = 0; i < num; i++) {
2285		ret = register_kretprobe(rps[i]);
2286		if (ret < 0) {
2287			if (i > 0)
2288				unregister_kretprobes(rps, i);
2289			break;
2290		}
2291	}
2292	return ret;
2293}
2294EXPORT_SYMBOL_GPL(register_kretprobes);
2295
2296void unregister_kretprobe(struct kretprobe *rp)
2297{
2298	unregister_kretprobes(&rp, 1);
2299}
2300EXPORT_SYMBOL_GPL(unregister_kretprobe);
2301
2302void unregister_kretprobes(struct kretprobe **rps, int num)
2303{
2304	int i;
2305
2306	if (num <= 0)
2307		return;
2308	mutex_lock(&kprobe_mutex);
2309	for (i = 0; i < num; i++) {
2310		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2311			rps[i]->kp.addr = NULL;
2312#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2313		rethook_free(rps[i]->rh);
2314#else
2315		rcu_assign_pointer(rps[i]->rph->rp, NULL);
2316#endif
2317	}
2318	mutex_unlock(&kprobe_mutex);
2319
2320	synchronize_rcu();
2321	for (i = 0; i < num; i++) {
2322		if (rps[i]->kp.addr) {
2323			__unregister_kprobe_bottom(&rps[i]->kp);
2324#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2325			free_rp_inst(rps[i]);
2326#endif
2327		}
2328	}
2329}
2330EXPORT_SYMBOL_GPL(unregister_kretprobes);
2331
2332#else /* CONFIG_KRETPROBES */
2333int register_kretprobe(struct kretprobe *rp)
2334{
2335	return -EOPNOTSUPP;
2336}
2337EXPORT_SYMBOL_GPL(register_kretprobe);
2338
2339int register_kretprobes(struct kretprobe **rps, int num)
2340{
2341	return -EOPNOTSUPP;
2342}
2343EXPORT_SYMBOL_GPL(register_kretprobes);
2344
2345void unregister_kretprobe(struct kretprobe *rp)
2346{
2347}
2348EXPORT_SYMBOL_GPL(unregister_kretprobe);
2349
2350void unregister_kretprobes(struct kretprobe **rps, int num)
2351{
2352}
2353EXPORT_SYMBOL_GPL(unregister_kretprobes);
2354
2355static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2356{
2357	return 0;
2358}
2359NOKPROBE_SYMBOL(pre_handler_kretprobe);
2360
2361#endif /* CONFIG_KRETPROBES */
2362
2363/* Set the kprobe gone and remove its instruction buffer. */
2364static void kill_kprobe(struct kprobe *p)
2365{
2366	struct kprobe *kp;
2367
2368	lockdep_assert_held(&kprobe_mutex);
2369
2370	/*
2371	 * The module is going away. We should disarm the kprobe which
2372	 * is using ftrace, because ftrace framework is still available at
2373	 * 'MODULE_STATE_GOING' notification.
2374	 */
2375	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2376		disarm_kprobe_ftrace(p);
2377
2378	p->flags |= KPROBE_FLAG_GONE;
2379	if (kprobe_aggrprobe(p)) {
2380		/*
2381		 * If this is an aggr_kprobe, we have to list all the
2382		 * chained probes and mark them GONE.
2383		 */
2384		list_for_each_entry(kp, &p->list, list)
2385			kp->flags |= KPROBE_FLAG_GONE;
2386		p->post_handler = NULL;
2387		kill_optimized_kprobe(p);
2388	}
2389	/*
2390	 * Here, we can remove insn_slot safely, because no thread calls
2391	 * the original probed function (which will be freed soon) any more.
2392	 */
2393	arch_remove_kprobe(p);
2394}
2395
2396/* Disable one kprobe */
2397int disable_kprobe(struct kprobe *kp)
2398{
2399	int ret = 0;
2400	struct kprobe *p;
2401
2402	mutex_lock(&kprobe_mutex);
2403
2404	/* Disable this kprobe */
2405	p = __disable_kprobe(kp);
2406	if (IS_ERR(p))
2407		ret = PTR_ERR(p);
2408
2409	mutex_unlock(&kprobe_mutex);
2410	return ret;
2411}
2412EXPORT_SYMBOL_GPL(disable_kprobe);
2413
2414/* Enable one kprobe */
2415int enable_kprobe(struct kprobe *kp)
2416{
2417	int ret = 0;
2418	struct kprobe *p;
2419
2420	mutex_lock(&kprobe_mutex);
2421
2422	/* Check whether specified probe is valid. */
2423	p = __get_valid_kprobe(kp);
2424	if (unlikely(p == NULL)) {
2425		ret = -EINVAL;
2426		goto out;
2427	}
2428
2429	if (kprobe_gone(kp)) {
2430		/* This kprobe has gone, we couldn't enable it. */
2431		ret = -EINVAL;
2432		goto out;
2433	}
2434
2435	if (p != kp)
2436		kp->flags &= ~KPROBE_FLAG_DISABLED;
2437
2438	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2439		p->flags &= ~KPROBE_FLAG_DISABLED;
2440		ret = arm_kprobe(p);
2441		if (ret) {
2442			p->flags |= KPROBE_FLAG_DISABLED;
2443			if (p != kp)
2444				kp->flags |= KPROBE_FLAG_DISABLED;
2445		}
2446	}
2447out:
2448	mutex_unlock(&kprobe_mutex);
2449	return ret;
2450}
2451EXPORT_SYMBOL_GPL(enable_kprobe);
2452
2453/* Caller must NOT call this in usual path. This is only for critical case */
2454void dump_kprobe(struct kprobe *kp)
2455{
2456	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2457	       kp->symbol_name, kp->offset, kp->addr);
2458}
2459NOKPROBE_SYMBOL(dump_kprobe);
2460
2461int kprobe_add_ksym_blacklist(unsigned long entry)
2462{
2463	struct kprobe_blacklist_entry *ent;
2464	unsigned long offset = 0, size = 0;
2465
2466	if (!kernel_text_address(entry) ||
2467	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2468		return -EINVAL;
2469
2470	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2471	if (!ent)
2472		return -ENOMEM;
2473	ent->start_addr = entry;
2474	ent->end_addr = entry + size;
2475	INIT_LIST_HEAD(&ent->list);
2476	list_add_tail(&ent->list, &kprobe_blacklist);
2477
2478	return (int)size;
2479}
2480
2481/* Add all symbols in given area into kprobe blacklist */
2482int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2483{
2484	unsigned long entry;
2485	int ret = 0;
2486
2487	for (entry = start; entry < end; entry += ret) {
2488		ret = kprobe_add_ksym_blacklist(entry);
2489		if (ret < 0)
2490			return ret;
2491		if (ret == 0)	/* In case of alias symbol */
2492			ret = 1;
2493	}
2494	return 0;
2495}
2496
2497int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2498				   char *type, char *sym)
2499{
2500	return -ERANGE;
2501}
2502
2503int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2504		       char *sym)
2505{
2506#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2507	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2508		return 0;
2509#ifdef CONFIG_OPTPROBES
2510	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2511		return 0;
2512#endif
2513#endif
2514	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2515		return 0;
2516	return -ERANGE;
2517}
2518
2519int __init __weak arch_populate_kprobe_blacklist(void)
2520{
2521	return 0;
2522}
2523
2524/*
2525 * Lookup and populate the kprobe_blacklist.
2526 *
2527 * Unlike the kretprobe blacklist, we'll need to determine
2528 * the range of addresses that belong to the said functions,
2529 * since a kprobe need not necessarily be at the beginning
2530 * of a function.
2531 */
2532static int __init populate_kprobe_blacklist(unsigned long *start,
2533					     unsigned long *end)
2534{
2535	unsigned long entry;
2536	unsigned long *iter;
2537	int ret;
2538
2539	for (iter = start; iter < end; iter++) {
2540		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2541		ret = kprobe_add_ksym_blacklist(entry);
2542		if (ret == -EINVAL)
2543			continue;
2544		if (ret < 0)
2545			return ret;
2546	}
2547
2548	/* Symbols in '__kprobes_text' are blacklisted */
2549	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2550					(unsigned long)__kprobes_text_end);
2551	if (ret)
2552		return ret;
2553
2554	/* Symbols in 'noinstr' section are blacklisted */
2555	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2556					(unsigned long)__noinstr_text_end);
2557
2558	return ret ? : arch_populate_kprobe_blacklist();
2559}
2560
2561#ifdef CONFIG_MODULES
2562/* Remove all symbols in given area from kprobe blacklist */
2563static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2564{
2565	struct kprobe_blacklist_entry *ent, *n;
2566
2567	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2568		if (ent->start_addr < start || ent->start_addr >= end)
2569			continue;
2570		list_del(&ent->list);
2571		kfree(ent);
2572	}
2573}
2574
2575static void kprobe_remove_ksym_blacklist(unsigned long entry)
2576{
2577	kprobe_remove_area_blacklist(entry, entry + 1);
2578}
2579
2580static void add_module_kprobe_blacklist(struct module *mod)
2581{
2582	unsigned long start, end;
2583	int i;
2584
2585	if (mod->kprobe_blacklist) {
2586		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2587			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2588	}
2589
2590	start = (unsigned long)mod->kprobes_text_start;
2591	if (start) {
2592		end = start + mod->kprobes_text_size;
2593		kprobe_add_area_blacklist(start, end);
2594	}
2595
2596	start = (unsigned long)mod->noinstr_text_start;
2597	if (start) {
2598		end = start + mod->noinstr_text_size;
2599		kprobe_add_area_blacklist(start, end);
2600	}
2601}
2602
2603static void remove_module_kprobe_blacklist(struct module *mod)
2604{
2605	unsigned long start, end;
2606	int i;
2607
2608	if (mod->kprobe_blacklist) {
2609		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2610			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2611	}
2612
2613	start = (unsigned long)mod->kprobes_text_start;
2614	if (start) {
2615		end = start + mod->kprobes_text_size;
2616		kprobe_remove_area_blacklist(start, end);
2617	}
2618
2619	start = (unsigned long)mod->noinstr_text_start;
2620	if (start) {
2621		end = start + mod->noinstr_text_size;
2622		kprobe_remove_area_blacklist(start, end);
2623	}
2624}
2625
2626/* Module notifier call back, checking kprobes on the module */
2627static int kprobes_module_callback(struct notifier_block *nb,
2628				   unsigned long val, void *data)
2629{
2630	struct module *mod = data;
2631	struct hlist_head *head;
2632	struct kprobe *p;
2633	unsigned int i;
2634	int checkcore = (val == MODULE_STATE_GOING);
2635
2636	if (val == MODULE_STATE_COMING) {
2637		mutex_lock(&kprobe_mutex);
2638		add_module_kprobe_blacklist(mod);
2639		mutex_unlock(&kprobe_mutex);
2640	}
2641	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2642		return NOTIFY_DONE;
2643
2644	/*
2645	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2646	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2647	 * notified, only '.init.text' section would be freed. We need to
2648	 * disable kprobes which have been inserted in the sections.
2649	 */
2650	mutex_lock(&kprobe_mutex);
2651	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2652		head = &kprobe_table[i];
2653		hlist_for_each_entry(p, head, hlist)
2654			if (within_module_init((unsigned long)p->addr, mod) ||
2655			    (checkcore &&
2656			     within_module_core((unsigned long)p->addr, mod))) {
2657				/*
2658				 * The vaddr this probe is installed will soon
2659				 * be vfreed buy not synced to disk. Hence,
2660				 * disarming the breakpoint isn't needed.
2661				 *
2662				 * Note, this will also move any optimized probes
2663				 * that are pending to be removed from their
2664				 * corresponding lists to the 'freeing_list' and
2665				 * will not be touched by the delayed
2666				 * kprobe_optimizer() work handler.
2667				 */
2668				kill_kprobe(p);
2669			}
2670	}
2671	if (val == MODULE_STATE_GOING)
2672		remove_module_kprobe_blacklist(mod);
2673	mutex_unlock(&kprobe_mutex);
2674	return NOTIFY_DONE;
2675}
2676
2677static struct notifier_block kprobe_module_nb = {
2678	.notifier_call = kprobes_module_callback,
2679	.priority = 0
2680};
2681
2682static int kprobe_register_module_notifier(void)
2683{
2684	return register_module_notifier(&kprobe_module_nb);
2685}
2686#else
2687static int kprobe_register_module_notifier(void)
2688{
2689	return 0;
2690}
2691#endif /* CONFIG_MODULES */
2692
2693void kprobe_free_init_mem(void)
2694{
2695	void *start = (void *)(&__init_begin);
2696	void *end = (void *)(&__init_end);
2697	struct hlist_head *head;
2698	struct kprobe *p;
2699	int i;
2700
2701	mutex_lock(&kprobe_mutex);
2702
2703	/* Kill all kprobes on initmem because the target code has been freed. */
2704	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2705		head = &kprobe_table[i];
2706		hlist_for_each_entry(p, head, hlist) {
2707			if (start <= (void *)p->addr && (void *)p->addr < end)
2708				kill_kprobe(p);
2709		}
2710	}
2711
2712	mutex_unlock(&kprobe_mutex);
2713}
2714
2715static int __init init_kprobes(void)
2716{
2717	int i, err;
2718
2719	/* FIXME allocate the probe table, currently defined statically */
2720	/* initialize all list heads */
2721	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2722		INIT_HLIST_HEAD(&kprobe_table[i]);
2723
2724	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2725					__stop_kprobe_blacklist);
2726	if (err)
2727		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2728
2729	if (kretprobe_blacklist_size) {
2730		/* lookup the function address from its name */
2731		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2732			kretprobe_blacklist[i].addr =
2733				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2734			if (!kretprobe_blacklist[i].addr)
2735				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2736				       kretprobe_blacklist[i].name);
2737		}
2738	}
2739
2740	/* By default, kprobes are armed */
2741	kprobes_all_disarmed = false;
2742
2743#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2744	/* Init 'kprobe_optinsn_slots' for allocation */
2745	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2746#endif
2747
2748	err = arch_init_kprobes();
2749	if (!err)
2750		err = register_die_notifier(&kprobe_exceptions_nb);
2751	if (!err)
2752		err = kprobe_register_module_notifier();
2753
2754	kprobes_initialized = (err == 0);
2755	kprobe_sysctls_init();
2756	return err;
2757}
2758early_initcall(init_kprobes);
2759
2760#if defined(CONFIG_OPTPROBES)
2761static int __init init_optprobes(void)
2762{
2763	/*
2764	 * Enable kprobe optimization - this kicks the optimizer which
2765	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2766	 * not spawned in early initcall. So delay the optimization.
2767	 */
2768	optimize_all_kprobes();
2769
2770	return 0;
2771}
2772subsys_initcall(init_optprobes);
2773#endif
2774
2775#ifdef CONFIG_DEBUG_FS
2776static void report_probe(struct seq_file *pi, struct kprobe *p,
2777		const char *sym, int offset, char *modname, struct kprobe *pp)
2778{
2779	char *kprobe_type;
2780	void *addr = p->addr;
2781
2782	if (p->pre_handler == pre_handler_kretprobe)
2783		kprobe_type = "r";
2784	else
2785		kprobe_type = "k";
2786
2787	if (!kallsyms_show_value(pi->file->f_cred))
2788		addr = NULL;
2789
2790	if (sym)
2791		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2792			addr, kprobe_type, sym, offset,
2793			(modname ? modname : " "));
2794	else	/* try to use %pS */
2795		seq_printf(pi, "%px  %s  %pS ",
2796			addr, kprobe_type, p->addr);
2797
2798	if (!pp)
2799		pp = p;
2800	seq_printf(pi, "%s%s%s%s\n",
2801		(kprobe_gone(p) ? "[GONE]" : ""),
2802		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2803		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2804		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2805}
2806
2807static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2808{
2809	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2810}
2811
2812static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2813{
2814	(*pos)++;
2815	if (*pos >= KPROBE_TABLE_SIZE)
2816		return NULL;
2817	return pos;
2818}
2819
2820static void kprobe_seq_stop(struct seq_file *f, void *v)
2821{
2822	/* Nothing to do */
2823}
2824
2825static int show_kprobe_addr(struct seq_file *pi, void *v)
2826{
2827	struct hlist_head *head;
2828	struct kprobe *p, *kp;
2829	const char *sym;
2830	unsigned int i = *(loff_t *) v;
2831	unsigned long offset = 0;
2832	char *modname, namebuf[KSYM_NAME_LEN];
2833
2834	head = &kprobe_table[i];
2835	preempt_disable();
2836	hlist_for_each_entry_rcu(p, head, hlist) {
2837		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2838					&offset, &modname, namebuf);
2839		if (kprobe_aggrprobe(p)) {
2840			list_for_each_entry_rcu(kp, &p->list, list)
2841				report_probe(pi, kp, sym, offset, modname, p);
2842		} else
2843			report_probe(pi, p, sym, offset, modname, NULL);
2844	}
2845	preempt_enable();
2846	return 0;
2847}
2848
2849static const struct seq_operations kprobes_sops = {
2850	.start = kprobe_seq_start,
2851	.next  = kprobe_seq_next,
2852	.stop  = kprobe_seq_stop,
2853	.show  = show_kprobe_addr
2854};
2855
2856DEFINE_SEQ_ATTRIBUTE(kprobes);
2857
2858/* kprobes/blacklist -- shows which functions can not be probed */
2859static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2860{
2861	mutex_lock(&kprobe_mutex);
2862	return seq_list_start(&kprobe_blacklist, *pos);
2863}
2864
2865static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2866{
2867	return seq_list_next(v, &kprobe_blacklist, pos);
2868}
2869
2870static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2871{
2872	struct kprobe_blacklist_entry *ent =
2873		list_entry(v, struct kprobe_blacklist_entry, list);
2874
2875	/*
2876	 * If '/proc/kallsyms' is not showing kernel address, we won't
2877	 * show them here either.
2878	 */
2879	if (!kallsyms_show_value(m->file->f_cred))
2880		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2881			   (void *)ent->start_addr);
2882	else
2883		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2884			   (void *)ent->end_addr, (void *)ent->start_addr);
2885	return 0;
2886}
2887
2888static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2889{
2890	mutex_unlock(&kprobe_mutex);
2891}
2892
2893static const struct seq_operations kprobe_blacklist_sops = {
2894	.start = kprobe_blacklist_seq_start,
2895	.next  = kprobe_blacklist_seq_next,
2896	.stop  = kprobe_blacklist_seq_stop,
2897	.show  = kprobe_blacklist_seq_show,
2898};
2899DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2900
2901static int arm_all_kprobes(void)
2902{
2903	struct hlist_head *head;
2904	struct kprobe *p;
2905	unsigned int i, total = 0, errors = 0;
2906	int err, ret = 0;
2907
2908	mutex_lock(&kprobe_mutex);
2909
2910	/* If kprobes are armed, just return */
2911	if (!kprobes_all_disarmed)
2912		goto already_enabled;
2913
2914	/*
2915	 * optimize_kprobe() called by arm_kprobe() checks
2916	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2917	 * arm_kprobe.
2918	 */
2919	kprobes_all_disarmed = false;
2920	/* Arming kprobes doesn't optimize kprobe itself */
2921	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2922		head = &kprobe_table[i];
2923		/* Arm all kprobes on a best-effort basis */
2924		hlist_for_each_entry(p, head, hlist) {
2925			if (!kprobe_disabled(p)) {
2926				err = arm_kprobe(p);
2927				if (err)  {
2928					errors++;
2929					ret = err;
2930				}
2931				total++;
2932			}
2933		}
2934	}
2935
2936	if (errors)
2937		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2938			errors, total);
2939	else
2940		pr_info("Kprobes globally enabled\n");
2941
2942already_enabled:
2943	mutex_unlock(&kprobe_mutex);
2944	return ret;
2945}
2946
2947static int disarm_all_kprobes(void)
2948{
2949	struct hlist_head *head;
2950	struct kprobe *p;
2951	unsigned int i, total = 0, errors = 0;
2952	int err, ret = 0;
2953
2954	mutex_lock(&kprobe_mutex);
2955
2956	/* If kprobes are already disarmed, just return */
2957	if (kprobes_all_disarmed) {
2958		mutex_unlock(&kprobe_mutex);
2959		return 0;
2960	}
2961
2962	kprobes_all_disarmed = true;
2963
2964	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2965		head = &kprobe_table[i];
2966		/* Disarm all kprobes on a best-effort basis */
2967		hlist_for_each_entry(p, head, hlist) {
2968			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2969				err = disarm_kprobe(p, false);
2970				if (err) {
2971					errors++;
2972					ret = err;
2973				}
2974				total++;
2975			}
2976		}
2977	}
2978
2979	if (errors)
2980		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2981			errors, total);
2982	else
2983		pr_info("Kprobes globally disabled\n");
2984
2985	mutex_unlock(&kprobe_mutex);
2986
2987	/* Wait for disarming all kprobes by optimizer */
2988	wait_for_kprobe_optimizer();
2989
2990	return ret;
2991}
2992
2993/*
2994 * XXX: The debugfs bool file interface doesn't allow for callbacks
2995 * when the bool state is switched. We can reuse that facility when
2996 * available
2997 */
2998static ssize_t read_enabled_file_bool(struct file *file,
2999	       char __user *user_buf, size_t count, loff_t *ppos)
3000{
3001	char buf[3];
3002
3003	if (!kprobes_all_disarmed)
3004		buf[0] = '1';
3005	else
3006		buf[0] = '0';
3007	buf[1] = '\n';
3008	buf[2] = 0x00;
3009	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
3010}
3011
3012static ssize_t write_enabled_file_bool(struct file *file,
3013	       const char __user *user_buf, size_t count, loff_t *ppos)
3014{
3015	bool enable;
3016	int ret;
3017
3018	ret = kstrtobool_from_user(user_buf, count, &enable);
3019	if (ret)
3020		return ret;
3021
3022	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3023	if (ret)
3024		return ret;
3025
3026	return count;
3027}
3028
3029static const struct file_operations fops_kp = {
3030	.read =         read_enabled_file_bool,
3031	.write =        write_enabled_file_bool,
3032	.llseek =	default_llseek,
3033};
3034
3035static int __init debugfs_kprobe_init(void)
3036{
3037	struct dentry *dir;
3038
3039	dir = debugfs_create_dir("kprobes", NULL);
3040
3041	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3042
3043	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3044
3045	debugfs_create_file("blacklist", 0400, dir, NULL,
3046			    &kprobe_blacklist_fops);
3047
3048	return 0;
3049}
3050
3051late_initcall(debugfs_kprobe_init);
3052#endif /* CONFIG_DEBUG_FS */
3053