1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 *      Vivek Goyal <vgoyal@redhat.com>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/capability.h>
13#include <linux/mm.h>
14#include <linux/file.h>
15#include <linux/slab.h>
16#include <linux/kexec.h>
17#include <linux/memblock.h>
18#include <linux/mutex.h>
19#include <linux/list.h>
20#include <linux/fs.h>
21#include <linux/ima.h>
22#include <crypto/hash.h>
23#include <crypto/sha2.h>
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/syscalls.h>
29#include <linux/vmalloc.h>
30#include "kexec_internal.h"
31
32#ifdef CONFIG_KEXEC_SIG
33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
35void set_kexec_sig_enforced(void)
36{
37	sig_enforce = true;
38}
39#endif
40
41static int kexec_calculate_store_digests(struct kimage *image);
42
43/* Maximum size in bytes for kernel/initrd files. */
44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
45
46/*
47 * Currently this is the only default function that is exported as some
48 * architectures need it to do additional handlings.
49 * In the future, other default functions may be exported too if required.
50 */
51int kexec_image_probe_default(struct kimage *image, void *buf,
52			      unsigned long buf_len)
53{
54	const struct kexec_file_ops * const *fops;
55	int ret = -ENOEXEC;
56
57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58		ret = (*fops)->probe(buf, buf_len);
59		if (!ret) {
60			image->fops = *fops;
61			return ret;
62		}
63	}
64
65	return ret;
66}
67
68static void *kexec_image_load_default(struct kimage *image)
69{
70	if (!image->fops || !image->fops->load)
71		return ERR_PTR(-ENOEXEC);
72
73	return image->fops->load(image, image->kernel_buf,
74				 image->kernel_buf_len, image->initrd_buf,
75				 image->initrd_buf_len, image->cmdline_buf,
76				 image->cmdline_buf_len);
77}
78
79int kexec_image_post_load_cleanup_default(struct kimage *image)
80{
81	if (!image->fops || !image->fops->cleanup)
82		return 0;
83
84	return image->fops->cleanup(image->image_loader_data);
85}
86
87/*
88 * Free up memory used by kernel, initrd, and command line. This is temporary
89 * memory allocation which is not needed any more after these buffers have
90 * been loaded into separate segments and have been copied elsewhere.
91 */
92void kimage_file_post_load_cleanup(struct kimage *image)
93{
94	struct purgatory_info *pi = &image->purgatory_info;
95
96	vfree(image->kernel_buf);
97	image->kernel_buf = NULL;
98
99	vfree(image->initrd_buf);
100	image->initrd_buf = NULL;
101
102	kfree(image->cmdline_buf);
103	image->cmdline_buf = NULL;
104
105	vfree(pi->purgatory_buf);
106	pi->purgatory_buf = NULL;
107
108	vfree(pi->sechdrs);
109	pi->sechdrs = NULL;
110
111#ifdef CONFIG_IMA_KEXEC
112	vfree(image->ima_buffer);
113	image->ima_buffer = NULL;
114#endif /* CONFIG_IMA_KEXEC */
115
116	/* See if architecture has anything to cleanup post load */
117	arch_kimage_file_post_load_cleanup(image);
118
119	/*
120	 * Above call should have called into bootloader to free up
121	 * any data stored in kimage->image_loader_data. It should
122	 * be ok now to free it up.
123	 */
124	kfree(image->image_loader_data);
125	image->image_loader_data = NULL;
126
127	kexec_file_dbg_print = false;
128}
129
130#ifdef CONFIG_KEXEC_SIG
131#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
132int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133{
134	int ret;
135
136	ret = verify_pefile_signature(kernel, kernel_len,
137				      VERIFY_USE_SECONDARY_KEYRING,
138				      VERIFYING_KEXEC_PE_SIGNATURE);
139	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140		ret = verify_pefile_signature(kernel, kernel_len,
141					      VERIFY_USE_PLATFORM_KEYRING,
142					      VERIFYING_KEXEC_PE_SIGNATURE);
143	}
144	return ret;
145}
146#endif
147
148static int kexec_image_verify_sig(struct kimage *image, void *buf,
149				  unsigned long buf_len)
150{
151	if (!image->fops || !image->fops->verify_sig) {
152		pr_debug("kernel loader does not support signature verification.\n");
153		return -EKEYREJECTED;
154	}
155
156	return image->fops->verify_sig(buf, buf_len);
157}
158
159static int
160kimage_validate_signature(struct kimage *image)
161{
162	int ret;
163
164	ret = kexec_image_verify_sig(image, image->kernel_buf,
165				     image->kernel_buf_len);
166	if (ret) {
167
168		if (sig_enforce) {
169			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170			return ret;
171		}
172
173		/*
174		 * If IMA is guaranteed to appraise a signature on the kexec
175		 * image, permit it even if the kernel is otherwise locked
176		 * down.
177		 */
178		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179		    security_locked_down(LOCKDOWN_KEXEC))
180			return -EPERM;
181
182		pr_debug("kernel signature verification failed (%d).\n", ret);
183	}
184
185	return 0;
186}
187#endif
188
189/*
190 * In file mode list of segments is prepared by kernel. Copy relevant
191 * data from user space, do error checking, prepare segment list
192 */
193static int
194kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195			     const char __user *cmdline_ptr,
196			     unsigned long cmdline_len, unsigned flags)
197{
198	ssize_t ret;
199	void *ldata;
200
201	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202				       KEXEC_FILE_SIZE_MAX, NULL,
203				       READING_KEXEC_IMAGE);
204	if (ret < 0)
205		return ret;
206	image->kernel_buf_len = ret;
207	kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208		      image->kernel_buf, image->kernel_buf_len);
209
210	/* Call arch image probe handlers */
211	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212					    image->kernel_buf_len);
213	if (ret)
214		goto out;
215
216#ifdef CONFIG_KEXEC_SIG
217	ret = kimage_validate_signature(image);
218
219	if (ret)
220		goto out;
221#endif
222	/* It is possible that there no initramfs is being loaded */
223	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225					       KEXEC_FILE_SIZE_MAX, NULL,
226					       READING_KEXEC_INITRAMFS);
227		if (ret < 0)
228			goto out;
229		image->initrd_buf_len = ret;
230		ret = 0;
231	}
232
233	if (cmdline_len) {
234		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235		if (IS_ERR(image->cmdline_buf)) {
236			ret = PTR_ERR(image->cmdline_buf);
237			image->cmdline_buf = NULL;
238			goto out;
239		}
240
241		image->cmdline_buf_len = cmdline_len;
242
243		/* command line should be a string with last byte null */
244		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245			ret = -EINVAL;
246			goto out;
247		}
248
249		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250				  image->cmdline_buf_len - 1);
251	}
252
253	/* IMA needs to pass the measurement list to the next kernel. */
254	ima_add_kexec_buffer(image);
255
256	/* Call image load handler */
257	ldata = kexec_image_load_default(image);
258
259	if (IS_ERR(ldata)) {
260		ret = PTR_ERR(ldata);
261		goto out;
262	}
263
264	image->image_loader_data = ldata;
265out:
266	/* In case of error, free up all allocated memory in this function */
267	if (ret)
268		kimage_file_post_load_cleanup(image);
269	return ret;
270}
271
272static int
273kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274		       int initrd_fd, const char __user *cmdline_ptr,
275		       unsigned long cmdline_len, unsigned long flags)
276{
277	int ret;
278	struct kimage *image;
279	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280
281	image = do_kimage_alloc_init();
282	if (!image)
283		return -ENOMEM;
284
285	kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286	image->file_mode = 1;
287
288#ifdef CONFIG_CRASH_DUMP
289	if (kexec_on_panic) {
290		/* Enable special crash kernel control page alloc policy. */
291		image->control_page = crashk_res.start;
292		image->type = KEXEC_TYPE_CRASH;
293	}
294#endif
295
296	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
297					   cmdline_ptr, cmdline_len, flags);
298	if (ret)
299		goto out_free_image;
300
301	ret = sanity_check_segment_list(image);
302	if (ret)
303		goto out_free_post_load_bufs;
304
305	ret = -ENOMEM;
306	image->control_code_page = kimage_alloc_control_pages(image,
307					   get_order(KEXEC_CONTROL_PAGE_SIZE));
308	if (!image->control_code_page) {
309		pr_err("Could not allocate control_code_buffer\n");
310		goto out_free_post_load_bufs;
311	}
312
313	if (!kexec_on_panic) {
314		image->swap_page = kimage_alloc_control_pages(image, 0);
315		if (!image->swap_page) {
316			pr_err("Could not allocate swap buffer\n");
317			goto out_free_control_pages;
318		}
319	}
320
321	*rimage = image;
322	return 0;
323out_free_control_pages:
324	kimage_free_page_list(&image->control_pages);
325out_free_post_load_bufs:
326	kimage_file_post_load_cleanup(image);
327out_free_image:
328	kfree(image);
329	return ret;
330}
331
332SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
333		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
334		unsigned long, flags)
335{
336	int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
337			 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
338	struct kimage **dest_image, *image;
339	int ret = 0, i;
340
341	/* We only trust the superuser with rebooting the system. */
342	if (!kexec_load_permitted(image_type))
343		return -EPERM;
344
345	/* Make sure we have a legal set of flags */
346	if (flags != (flags & KEXEC_FILE_FLAGS))
347		return -EINVAL;
348
349	image = NULL;
350
351	if (!kexec_trylock())
352		return -EBUSY;
353
354#ifdef CONFIG_CRASH_DUMP
355	if (image_type == KEXEC_TYPE_CRASH) {
356		dest_image = &kexec_crash_image;
357		if (kexec_crash_image)
358			arch_kexec_unprotect_crashkres();
359	} else
360#endif
361		dest_image = &kexec_image;
362
363	if (flags & KEXEC_FILE_UNLOAD)
364		goto exchange;
365
366	/*
367	 * In case of crash, new kernel gets loaded in reserved region. It is
368	 * same memory where old crash kernel might be loaded. Free any
369	 * current crash dump kernel before we corrupt it.
370	 */
371	if (flags & KEXEC_FILE_ON_CRASH)
372		kimage_free(xchg(&kexec_crash_image, NULL));
373
374	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
375				     cmdline_len, flags);
376	if (ret)
377		goto out;
378
379#ifdef CONFIG_CRASH_HOTPLUG
380	if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags))
381		image->hotplug_support = 1;
382#endif
383
384	ret = machine_kexec_prepare(image);
385	if (ret)
386		goto out;
387
388	/*
389	 * Some architecture(like S390) may touch the crash memory before
390	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
391	 */
392	ret = kimage_crash_copy_vmcoreinfo(image);
393	if (ret)
394		goto out;
395
396	ret = kexec_calculate_store_digests(image);
397	if (ret)
398		goto out;
399
400	kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
401	for (i = 0; i < image->nr_segments; i++) {
402		struct kexec_segment *ksegment;
403
404		ksegment = &image->segment[i];
405		kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
406			      i, ksegment->buf, ksegment->bufsz, ksegment->mem,
407			      ksegment->memsz);
408
409		ret = kimage_load_segment(image, &image->segment[i]);
410		if (ret)
411			goto out;
412	}
413
414	kimage_terminate(image);
415
416	ret = machine_kexec_post_load(image);
417	if (ret)
418		goto out;
419
420	kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
421		      image->type, image->start, image->head, flags);
422	/*
423	 * Free up any temporary buffers allocated which are not needed
424	 * after image has been loaded
425	 */
426	kimage_file_post_load_cleanup(image);
427exchange:
428	image = xchg(dest_image, image);
429out:
430#ifdef CONFIG_CRASH_DUMP
431	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
432		arch_kexec_protect_crashkres();
433#endif
434
435	kexec_unlock();
436	kimage_free(image);
437	return ret;
438}
439
440static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
441				    struct kexec_buf *kbuf)
442{
443	struct kimage *image = kbuf->image;
444	unsigned long temp_start, temp_end;
445
446	temp_end = min(end, kbuf->buf_max);
447	temp_start = temp_end - kbuf->memsz + 1;
448
449	do {
450		/* align down start */
451		temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
452
453		if (temp_start < start || temp_start < kbuf->buf_min)
454			return 0;
455
456		temp_end = temp_start + kbuf->memsz - 1;
457
458		/*
459		 * Make sure this does not conflict with any of existing
460		 * segments
461		 */
462		if (kimage_is_destination_range(image, temp_start, temp_end)) {
463			temp_start = temp_start - PAGE_SIZE;
464			continue;
465		}
466
467		/* We found a suitable memory range */
468		break;
469	} while (1);
470
471	/* If we are here, we found a suitable memory range */
472	kbuf->mem = temp_start;
473
474	/* Success, stop navigating through remaining System RAM ranges */
475	return 1;
476}
477
478static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
479				     struct kexec_buf *kbuf)
480{
481	struct kimage *image = kbuf->image;
482	unsigned long temp_start, temp_end;
483
484	temp_start = max(start, kbuf->buf_min);
485
486	do {
487		temp_start = ALIGN(temp_start, kbuf->buf_align);
488		temp_end = temp_start + kbuf->memsz - 1;
489
490		if (temp_end > end || temp_end > kbuf->buf_max)
491			return 0;
492		/*
493		 * Make sure this does not conflict with any of existing
494		 * segments
495		 */
496		if (kimage_is_destination_range(image, temp_start, temp_end)) {
497			temp_start = temp_start + PAGE_SIZE;
498			continue;
499		}
500
501		/* We found a suitable memory range */
502		break;
503	} while (1);
504
505	/* If we are here, we found a suitable memory range */
506	kbuf->mem = temp_start;
507
508	/* Success, stop navigating through remaining System RAM ranges */
509	return 1;
510}
511
512static int locate_mem_hole_callback(struct resource *res, void *arg)
513{
514	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
515	u64 start = res->start, end = res->end;
516	unsigned long sz = end - start + 1;
517
518	/* Returning 0 will take to next memory range */
519
520	/* Don't use memory that will be detected and handled by a driver. */
521	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
522		return 0;
523
524	if (sz < kbuf->memsz)
525		return 0;
526
527	if (end < kbuf->buf_min || start > kbuf->buf_max)
528		return 0;
529
530	/*
531	 * Allocate memory top down with-in ram range. Otherwise bottom up
532	 * allocation.
533	 */
534	if (kbuf->top_down)
535		return locate_mem_hole_top_down(start, end, kbuf);
536	return locate_mem_hole_bottom_up(start, end, kbuf);
537}
538
539#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
540static int kexec_walk_memblock(struct kexec_buf *kbuf,
541			       int (*func)(struct resource *, void *))
542{
543	int ret = 0;
544	u64 i;
545	phys_addr_t mstart, mend;
546	struct resource res = { };
547
548#ifdef CONFIG_CRASH_DUMP
549	if (kbuf->image->type == KEXEC_TYPE_CRASH)
550		return func(&crashk_res, kbuf);
551#endif
552
553	/*
554	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
555	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
556	 * locate_mem_hole_callback().
557	 */
558	if (kbuf->top_down) {
559		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
560						&mstart, &mend, NULL) {
561			/*
562			 * In memblock, end points to the first byte after the
563			 * range while in kexec, end points to the last byte
564			 * in the range.
565			 */
566			res.start = mstart;
567			res.end = mend - 1;
568			ret = func(&res, kbuf);
569			if (ret)
570				break;
571		}
572	} else {
573		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
574					&mstart, &mend, NULL) {
575			/*
576			 * In memblock, end points to the first byte after the
577			 * range while in kexec, end points to the last byte
578			 * in the range.
579			 */
580			res.start = mstart;
581			res.end = mend - 1;
582			ret = func(&res, kbuf);
583			if (ret)
584				break;
585		}
586	}
587
588	return ret;
589}
590#else
591static int kexec_walk_memblock(struct kexec_buf *kbuf,
592			       int (*func)(struct resource *, void *))
593{
594	return 0;
595}
596#endif
597
598/**
599 * kexec_walk_resources - call func(data) on free memory regions
600 * @kbuf:	Context info for the search. Also passed to @func.
601 * @func:	Function to call for each memory region.
602 *
603 * Return: The memory walk will stop when func returns a non-zero value
604 * and that value will be returned. If all free regions are visited without
605 * func returning non-zero, then zero will be returned.
606 */
607static int kexec_walk_resources(struct kexec_buf *kbuf,
608				int (*func)(struct resource *, void *))
609{
610#ifdef CONFIG_CRASH_DUMP
611	if (kbuf->image->type == KEXEC_TYPE_CRASH)
612		return walk_iomem_res_desc(crashk_res.desc,
613					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
614					   crashk_res.start, crashk_res.end,
615					   kbuf, func);
616#endif
617	if (kbuf->top_down)
618		return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
619	else
620		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
621}
622
623/**
624 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
625 * @kbuf:	Parameters for the memory search.
626 *
627 * On success, kbuf->mem will have the start address of the memory region found.
628 *
629 * Return: 0 on success, negative errno on error.
630 */
631int kexec_locate_mem_hole(struct kexec_buf *kbuf)
632{
633	int ret;
634
635	/* Arch knows where to place */
636	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
637		return 0;
638
639	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
640		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
641	else
642		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
643
644	return ret == 1 ? 0 : -EADDRNOTAVAIL;
645}
646
647/**
648 * kexec_add_buffer - place a buffer in a kexec segment
649 * @kbuf:	Buffer contents and memory parameters.
650 *
651 * This function assumes that kexec_lock is held.
652 * On successful return, @kbuf->mem will have the physical address of
653 * the buffer in memory.
654 *
655 * Return: 0 on success, negative errno on error.
656 */
657int kexec_add_buffer(struct kexec_buf *kbuf)
658{
659	struct kexec_segment *ksegment;
660	int ret;
661
662	/* Currently adding segment this way is allowed only in file mode */
663	if (!kbuf->image->file_mode)
664		return -EINVAL;
665
666	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
667		return -EINVAL;
668
669	/*
670	 * Make sure we are not trying to add buffer after allocating
671	 * control pages. All segments need to be placed first before
672	 * any control pages are allocated. As control page allocation
673	 * logic goes through list of segments to make sure there are
674	 * no destination overlaps.
675	 */
676	if (!list_empty(&kbuf->image->control_pages)) {
677		WARN_ON(1);
678		return -EINVAL;
679	}
680
681	/* Ensure minimum alignment needed for segments. */
682	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
683	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
684
685	/* Walk the RAM ranges and allocate a suitable range for the buffer */
686	ret = arch_kexec_locate_mem_hole(kbuf);
687	if (ret)
688		return ret;
689
690	/* Found a suitable memory range */
691	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
692	ksegment->kbuf = kbuf->buffer;
693	ksegment->bufsz = kbuf->bufsz;
694	ksegment->mem = kbuf->mem;
695	ksegment->memsz = kbuf->memsz;
696	kbuf->image->nr_segments++;
697	return 0;
698}
699
700/* Calculate and store the digest of segments */
701static int kexec_calculate_store_digests(struct kimage *image)
702{
703	struct crypto_shash *tfm;
704	struct shash_desc *desc;
705	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
706	size_t desc_size, nullsz;
707	char *digest;
708	void *zero_buf;
709	struct kexec_sha_region *sha_regions;
710	struct purgatory_info *pi = &image->purgatory_info;
711
712	if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
713		return 0;
714
715	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
716	zero_buf_sz = PAGE_SIZE;
717
718	tfm = crypto_alloc_shash("sha256", 0, 0);
719	if (IS_ERR(tfm)) {
720		ret = PTR_ERR(tfm);
721		goto out;
722	}
723
724	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
725	desc = kzalloc(desc_size, GFP_KERNEL);
726	if (!desc) {
727		ret = -ENOMEM;
728		goto out_free_tfm;
729	}
730
731	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
732	sha_regions = vzalloc(sha_region_sz);
733	if (!sha_regions) {
734		ret = -ENOMEM;
735		goto out_free_desc;
736	}
737
738	desc->tfm   = tfm;
739
740	ret = crypto_shash_init(desc);
741	if (ret < 0)
742		goto out_free_sha_regions;
743
744	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
745	if (!digest) {
746		ret = -ENOMEM;
747		goto out_free_sha_regions;
748	}
749
750	for (j = i = 0; i < image->nr_segments; i++) {
751		struct kexec_segment *ksegment;
752
753#ifdef CONFIG_CRASH_HOTPLUG
754		/* Exclude elfcorehdr segment to allow future changes via hotplug */
755		if (j == image->elfcorehdr_index)
756			continue;
757#endif
758
759		ksegment = &image->segment[i];
760		/*
761		 * Skip purgatory as it will be modified once we put digest
762		 * info in purgatory.
763		 */
764		if (ksegment->kbuf == pi->purgatory_buf)
765			continue;
766
767		ret = crypto_shash_update(desc, ksegment->kbuf,
768					  ksegment->bufsz);
769		if (ret)
770			break;
771
772		/*
773		 * Assume rest of the buffer is filled with zero and
774		 * update digest accordingly.
775		 */
776		nullsz = ksegment->memsz - ksegment->bufsz;
777		while (nullsz) {
778			unsigned long bytes = nullsz;
779
780			if (bytes > zero_buf_sz)
781				bytes = zero_buf_sz;
782			ret = crypto_shash_update(desc, zero_buf, bytes);
783			if (ret)
784				break;
785			nullsz -= bytes;
786		}
787
788		if (ret)
789			break;
790
791		sha_regions[j].start = ksegment->mem;
792		sha_regions[j].len = ksegment->memsz;
793		j++;
794	}
795
796	if (!ret) {
797		ret = crypto_shash_final(desc, digest);
798		if (ret)
799			goto out_free_digest;
800		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
801						     sha_regions, sha_region_sz, 0);
802		if (ret)
803			goto out_free_digest;
804
805		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
806						     digest, SHA256_DIGEST_SIZE, 0);
807		if (ret)
808			goto out_free_digest;
809	}
810
811out_free_digest:
812	kfree(digest);
813out_free_sha_regions:
814	vfree(sha_regions);
815out_free_desc:
816	kfree(desc);
817out_free_tfm:
818	kfree(tfm);
819out:
820	return ret;
821}
822
823#ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
824/*
825 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
826 * @pi:		Purgatory to be loaded.
827 * @kbuf:	Buffer to setup.
828 *
829 * Allocates the memory needed for the buffer. Caller is responsible to free
830 * the memory after use.
831 *
832 * Return: 0 on success, negative errno on error.
833 */
834static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
835				      struct kexec_buf *kbuf)
836{
837	const Elf_Shdr *sechdrs;
838	unsigned long bss_align;
839	unsigned long bss_sz;
840	unsigned long align;
841	int i, ret;
842
843	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
844	kbuf->buf_align = bss_align = 1;
845	kbuf->bufsz = bss_sz = 0;
846
847	for (i = 0; i < pi->ehdr->e_shnum; i++) {
848		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
849			continue;
850
851		align = sechdrs[i].sh_addralign;
852		if (sechdrs[i].sh_type != SHT_NOBITS) {
853			if (kbuf->buf_align < align)
854				kbuf->buf_align = align;
855			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
856			kbuf->bufsz += sechdrs[i].sh_size;
857		} else {
858			if (bss_align < align)
859				bss_align = align;
860			bss_sz = ALIGN(bss_sz, align);
861			bss_sz += sechdrs[i].sh_size;
862		}
863	}
864	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
865	kbuf->memsz = kbuf->bufsz + bss_sz;
866	if (kbuf->buf_align < bss_align)
867		kbuf->buf_align = bss_align;
868
869	kbuf->buffer = vzalloc(kbuf->bufsz);
870	if (!kbuf->buffer)
871		return -ENOMEM;
872	pi->purgatory_buf = kbuf->buffer;
873
874	ret = kexec_add_buffer(kbuf);
875	if (ret)
876		goto out;
877
878	return 0;
879out:
880	vfree(pi->purgatory_buf);
881	pi->purgatory_buf = NULL;
882	return ret;
883}
884
885/*
886 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
887 * @pi:		Purgatory to be loaded.
888 * @kbuf:	Buffer prepared to store purgatory.
889 *
890 * Allocates the memory needed for the buffer. Caller is responsible to free
891 * the memory after use.
892 *
893 * Return: 0 on success, negative errno on error.
894 */
895static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
896					 struct kexec_buf *kbuf)
897{
898	unsigned long bss_addr;
899	unsigned long offset;
900	size_t sechdrs_size;
901	Elf_Shdr *sechdrs;
902	int i;
903
904	/*
905	 * The section headers in kexec_purgatory are read-only. In order to
906	 * have them modifiable make a temporary copy.
907	 */
908	sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
909	sechdrs = vzalloc(sechdrs_size);
910	if (!sechdrs)
911		return -ENOMEM;
912	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
913	pi->sechdrs = sechdrs;
914
915	offset = 0;
916	bss_addr = kbuf->mem + kbuf->bufsz;
917	kbuf->image->start = pi->ehdr->e_entry;
918
919	for (i = 0; i < pi->ehdr->e_shnum; i++) {
920		unsigned long align;
921		void *src, *dst;
922
923		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
924			continue;
925
926		align = sechdrs[i].sh_addralign;
927		if (sechdrs[i].sh_type == SHT_NOBITS) {
928			bss_addr = ALIGN(bss_addr, align);
929			sechdrs[i].sh_addr = bss_addr;
930			bss_addr += sechdrs[i].sh_size;
931			continue;
932		}
933
934		offset = ALIGN(offset, align);
935
936		/*
937		 * Check if the segment contains the entry point, if so,
938		 * calculate the value of image->start based on it.
939		 * If the compiler has produced more than one .text section
940		 * (Eg: .text.hot), they are generally after the main .text
941		 * section, and they shall not be used to calculate
942		 * image->start. So do not re-calculate image->start if it
943		 * is not set to the initial value, and warn the user so they
944		 * have a chance to fix their purgatory's linker script.
945		 */
946		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
947		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
948		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
949					 + sechdrs[i].sh_size) &&
950		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
951			kbuf->image->start -= sechdrs[i].sh_addr;
952			kbuf->image->start += kbuf->mem + offset;
953		}
954
955		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
956		dst = pi->purgatory_buf + offset;
957		memcpy(dst, src, sechdrs[i].sh_size);
958
959		sechdrs[i].sh_addr = kbuf->mem + offset;
960		sechdrs[i].sh_offset = offset;
961		offset += sechdrs[i].sh_size;
962	}
963
964	return 0;
965}
966
967static int kexec_apply_relocations(struct kimage *image)
968{
969	int i, ret;
970	struct purgatory_info *pi = &image->purgatory_info;
971	const Elf_Shdr *sechdrs;
972
973	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
974
975	for (i = 0; i < pi->ehdr->e_shnum; i++) {
976		const Elf_Shdr *relsec;
977		const Elf_Shdr *symtab;
978		Elf_Shdr *section;
979
980		relsec = sechdrs + i;
981
982		if (relsec->sh_type != SHT_RELA &&
983		    relsec->sh_type != SHT_REL)
984			continue;
985
986		/*
987		 * For section of type SHT_RELA/SHT_REL,
988		 * ->sh_link contains section header index of associated
989		 * symbol table. And ->sh_info contains section header
990		 * index of section to which relocations apply.
991		 */
992		if (relsec->sh_info >= pi->ehdr->e_shnum ||
993		    relsec->sh_link >= pi->ehdr->e_shnum)
994			return -ENOEXEC;
995
996		section = pi->sechdrs + relsec->sh_info;
997		symtab = sechdrs + relsec->sh_link;
998
999		if (!(section->sh_flags & SHF_ALLOC))
1000			continue;
1001
1002		/*
1003		 * symtab->sh_link contain section header index of associated
1004		 * string table.
1005		 */
1006		if (symtab->sh_link >= pi->ehdr->e_shnum)
1007			/* Invalid section number? */
1008			continue;
1009
1010		/*
1011		 * Respective architecture needs to provide support for applying
1012		 * relocations of type SHT_RELA/SHT_REL.
1013		 */
1014		if (relsec->sh_type == SHT_RELA)
1015			ret = arch_kexec_apply_relocations_add(pi, section,
1016							       relsec, symtab);
1017		else if (relsec->sh_type == SHT_REL)
1018			ret = arch_kexec_apply_relocations(pi, section,
1019							   relsec, symtab);
1020		if (ret)
1021			return ret;
1022	}
1023
1024	return 0;
1025}
1026
1027/*
1028 * kexec_load_purgatory - Load and relocate the purgatory object.
1029 * @image:	Image to add the purgatory to.
1030 * @kbuf:	Memory parameters to use.
1031 *
1032 * Allocates the memory needed for image->purgatory_info.sechdrs and
1033 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1034 * to free the memory after use.
1035 *
1036 * Return: 0 on success, negative errno on error.
1037 */
1038int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1039{
1040	struct purgatory_info *pi = &image->purgatory_info;
1041	int ret;
1042
1043	if (kexec_purgatory_size <= 0)
1044		return -EINVAL;
1045
1046	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1047
1048	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1049	if (ret)
1050		return ret;
1051
1052	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1053	if (ret)
1054		goto out_free_kbuf;
1055
1056	ret = kexec_apply_relocations(image);
1057	if (ret)
1058		goto out;
1059
1060	return 0;
1061out:
1062	vfree(pi->sechdrs);
1063	pi->sechdrs = NULL;
1064out_free_kbuf:
1065	vfree(pi->purgatory_buf);
1066	pi->purgatory_buf = NULL;
1067	return ret;
1068}
1069
1070/*
1071 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1072 * @pi:		Purgatory to search in.
1073 * @name:	Name of the symbol.
1074 *
1075 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1076 */
1077static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1078						  const char *name)
1079{
1080	const Elf_Shdr *sechdrs;
1081	const Elf_Ehdr *ehdr;
1082	const Elf_Sym *syms;
1083	const char *strtab;
1084	int i, k;
1085
1086	if (!pi->ehdr)
1087		return NULL;
1088
1089	ehdr = pi->ehdr;
1090	sechdrs = (void *)ehdr + ehdr->e_shoff;
1091
1092	for (i = 0; i < ehdr->e_shnum; i++) {
1093		if (sechdrs[i].sh_type != SHT_SYMTAB)
1094			continue;
1095
1096		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1097			/* Invalid strtab section number */
1098			continue;
1099		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1100		syms = (void *)ehdr + sechdrs[i].sh_offset;
1101
1102		/* Go through symbols for a match */
1103		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1104			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1105				continue;
1106
1107			if (strcmp(strtab + syms[k].st_name, name) != 0)
1108				continue;
1109
1110			if (syms[k].st_shndx == SHN_UNDEF ||
1111			    syms[k].st_shndx >= ehdr->e_shnum) {
1112				pr_debug("Symbol: %s has bad section index %d.\n",
1113						name, syms[k].st_shndx);
1114				return NULL;
1115			}
1116
1117			/* Found the symbol we are looking for */
1118			return &syms[k];
1119		}
1120	}
1121
1122	return NULL;
1123}
1124
1125void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1126{
1127	struct purgatory_info *pi = &image->purgatory_info;
1128	const Elf_Sym *sym;
1129	Elf_Shdr *sechdr;
1130
1131	sym = kexec_purgatory_find_symbol(pi, name);
1132	if (!sym)
1133		return ERR_PTR(-EINVAL);
1134
1135	sechdr = &pi->sechdrs[sym->st_shndx];
1136
1137	/*
1138	 * Returns the address where symbol will finally be loaded after
1139	 * kexec_load_segment()
1140	 */
1141	return (void *)(sechdr->sh_addr + sym->st_value);
1142}
1143
1144/*
1145 * Get or set value of a symbol. If "get_value" is true, symbol value is
1146 * returned in buf otherwise symbol value is set based on value in buf.
1147 */
1148int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1149				   void *buf, unsigned int size, bool get_value)
1150{
1151	struct purgatory_info *pi = &image->purgatory_info;
1152	const Elf_Sym *sym;
1153	Elf_Shdr *sec;
1154	char *sym_buf;
1155
1156	sym = kexec_purgatory_find_symbol(pi, name);
1157	if (!sym)
1158		return -EINVAL;
1159
1160	if (sym->st_size != size) {
1161		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1162		       name, (unsigned long)sym->st_size, size);
1163		return -EINVAL;
1164	}
1165
1166	sec = pi->sechdrs + sym->st_shndx;
1167
1168	if (sec->sh_type == SHT_NOBITS) {
1169		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1170		       get_value ? "get" : "set");
1171		return -EINVAL;
1172	}
1173
1174	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1175
1176	if (get_value)
1177		memcpy((void *)buf, sym_buf, size);
1178	else
1179		memcpy((void *)sym_buf, buf, size);
1180
1181	return 0;
1182}
1183#endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1184