1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9#define pr_fmt(fmt) "genirq: " fmt
10
11#include <linux/irq.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/random.h>
15#include <linux/interrupt.h>
16#include <linux/irqdomain.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/sched/task.h>
21#include <linux/sched/isolation.h>
22#include <uapi/linux/sched/types.h>
23#include <linux/task_work.h>
24
25#include "internals.h"
26
27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30static int __init setup_forced_irqthreads(char *arg)
31{
32	static_branch_enable(&force_irqthreads_key);
33	return 0;
34}
35early_param("threadirqs", setup_forced_irqthreads);
36#endif
37
38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39{
40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41	bool inprogress;
42
43	do {
44		unsigned long flags;
45
46		/*
47		 * Wait until we're out of the critical section.  This might
48		 * give the wrong answer due to the lack of memory barriers.
49		 */
50		while (irqd_irq_inprogress(&desc->irq_data))
51			cpu_relax();
52
53		/* Ok, that indicated we're done: double-check carefully. */
54		raw_spin_lock_irqsave(&desc->lock, flags);
55		inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57		/*
58		 * If requested and supported, check at the chip whether it
59		 * is in flight at the hardware level, i.e. already pending
60		 * in a CPU and waiting for service and acknowledge.
61		 */
62		if (!inprogress && sync_chip) {
63			/*
64			 * Ignore the return code. inprogress is only updated
65			 * when the chip supports it.
66			 */
67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68						&inprogress);
69		}
70		raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72		/* Oops, that failed? */
73	} while (inprogress);
74}
75
76/**
77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 *	@irq: interrupt number to wait for
79 *
80 *	This function waits for any pending hard IRQ handlers for this
81 *	interrupt to complete before returning. If you use this
82 *	function while holding a resource the IRQ handler may need you
83 *	will deadlock. It does not take associated threaded handlers
84 *	into account.
85 *
86 *	Do not use this for shutdown scenarios where you must be sure
87 *	that all parts (hardirq and threaded handler) have completed.
88 *
89 *	Returns: false if a threaded handler is active.
90 *
91 *	This function may be called - with care - from IRQ context.
92 *
93 *	It does not check whether there is an interrupt in flight at the
94 *	hardware level, but not serviced yet, as this might deadlock when
95 *	called with interrupts disabled and the target CPU of the interrupt
96 *	is the current CPU.
97 */
98bool synchronize_hardirq(unsigned int irq)
99{
100	struct irq_desc *desc = irq_to_desc(irq);
101
102	if (desc) {
103		__synchronize_hardirq(desc, false);
104		return !atomic_read(&desc->threads_active);
105	}
106
107	return true;
108}
109EXPORT_SYMBOL(synchronize_hardirq);
110
111static void __synchronize_irq(struct irq_desc *desc)
112{
113	__synchronize_hardirq(desc, true);
114	/*
115	 * We made sure that no hardirq handler is running. Now verify that no
116	 * threaded handlers are active.
117	 */
118	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119}
120
121/**
122 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123 *	@irq: interrupt number to wait for
124 *
125 *	This function waits for any pending IRQ handlers for this interrupt
126 *	to complete before returning. If you use this function while
127 *	holding a resource the IRQ handler may need you will deadlock.
128 *
129 *	Can only be called from preemptible code as it might sleep when
130 *	an interrupt thread is associated to @irq.
131 *
132 *	It optionally makes sure (when the irq chip supports that method)
133 *	that the interrupt is not pending in any CPU and waiting for
134 *	service.
135 */
136void synchronize_irq(unsigned int irq)
137{
138	struct irq_desc *desc = irq_to_desc(irq);
139
140	if (desc)
141		__synchronize_irq(desc);
142}
143EXPORT_SYMBOL(synchronize_irq);
144
145#ifdef CONFIG_SMP
146cpumask_var_t irq_default_affinity;
147
148static bool __irq_can_set_affinity(struct irq_desc *desc)
149{
150	if (!desc || !irqd_can_balance(&desc->irq_data) ||
151	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152		return false;
153	return true;
154}
155
156/**
157 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
158 *	@irq:		Interrupt to check
159 *
160 */
161int irq_can_set_affinity(unsigned int irq)
162{
163	return __irq_can_set_affinity(irq_to_desc(irq));
164}
165
166/**
167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168 * @irq:	Interrupt to check
169 *
170 * Like irq_can_set_affinity() above, but additionally checks for the
171 * AFFINITY_MANAGED flag.
172 */
173bool irq_can_set_affinity_usr(unsigned int irq)
174{
175	struct irq_desc *desc = irq_to_desc(irq);
176
177	return __irq_can_set_affinity(desc) &&
178		!irqd_affinity_is_managed(&desc->irq_data);
179}
180
181/**
182 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
183 *	@desc:		irq descriptor which has affinity changed
184 *
185 *	We just set IRQTF_AFFINITY and delegate the affinity setting
186 *	to the interrupt thread itself. We can not call
187 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
188 *	code can be called from hard interrupt context.
189 */
190void irq_set_thread_affinity(struct irq_desc *desc)
191{
192	struct irqaction *action;
193
194	for_each_action_of_desc(desc, action) {
195		if (action->thread) {
196			set_bit(IRQTF_AFFINITY, &action->thread_flags);
197			wake_up_process(action->thread);
198		}
199		if (action->secondary && action->secondary->thread) {
200			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201			wake_up_process(action->secondary->thread);
202		}
203	}
204}
205
206#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207static void irq_validate_effective_affinity(struct irq_data *data)
208{
209	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210	struct irq_chip *chip = irq_data_get_irq_chip(data);
211
212	if (!cpumask_empty(m))
213		return;
214	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215		     chip->name, data->irq);
216}
217#else
218static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219#endif
220
221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222			bool force)
223{
224	struct irq_desc *desc = irq_data_to_desc(data);
225	struct irq_chip *chip = irq_data_get_irq_chip(data);
226	const struct cpumask  *prog_mask;
227	int ret;
228
229	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230	static struct cpumask tmp_mask;
231
232	if (!chip || !chip->irq_set_affinity)
233		return -EINVAL;
234
235	raw_spin_lock(&tmp_mask_lock);
236	/*
237	 * If this is a managed interrupt and housekeeping is enabled on
238	 * it check whether the requested affinity mask intersects with
239	 * a housekeeping CPU. If so, then remove the isolated CPUs from
240	 * the mask and just keep the housekeeping CPU(s). This prevents
241	 * the affinity setter from routing the interrupt to an isolated
242	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243	 * interrupts on an isolated one.
244	 *
245	 * If the masks do not intersect or include online CPU(s) then
246	 * keep the requested mask. The isolated target CPUs are only
247	 * receiving interrupts when the I/O operation was submitted
248	 * directly from them.
249	 *
250	 * If all housekeeping CPUs in the affinity mask are offline, the
251	 * interrupt will be migrated by the CPU hotplug code once a
252	 * housekeeping CPU which belongs to the affinity mask comes
253	 * online.
254	 */
255	if (irqd_affinity_is_managed(data) &&
256	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
257		const struct cpumask *hk_mask;
258
259		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
260
261		cpumask_and(&tmp_mask, mask, hk_mask);
262		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263			prog_mask = mask;
264		else
265			prog_mask = &tmp_mask;
266	} else {
267		prog_mask = mask;
268	}
269
270	/*
271	 * Make sure we only provide online CPUs to the irqchip,
272	 * unless we are being asked to force the affinity (in which
273	 * case we do as we are told).
274	 */
275	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276	if (!force && !cpumask_empty(&tmp_mask))
277		ret = chip->irq_set_affinity(data, &tmp_mask, force);
278	else if (force)
279		ret = chip->irq_set_affinity(data, mask, force);
280	else
281		ret = -EINVAL;
282
283	raw_spin_unlock(&tmp_mask_lock);
284
285	switch (ret) {
286	case IRQ_SET_MASK_OK:
287	case IRQ_SET_MASK_OK_DONE:
288		cpumask_copy(desc->irq_common_data.affinity, mask);
289		fallthrough;
290	case IRQ_SET_MASK_OK_NOCOPY:
291		irq_validate_effective_affinity(data);
292		irq_set_thread_affinity(desc);
293		ret = 0;
294	}
295
296	return ret;
297}
298
299#ifdef CONFIG_GENERIC_PENDING_IRQ
300static inline int irq_set_affinity_pending(struct irq_data *data,
301					   const struct cpumask *dest)
302{
303	struct irq_desc *desc = irq_data_to_desc(data);
304
305	irqd_set_move_pending(data);
306	irq_copy_pending(desc, dest);
307	return 0;
308}
309#else
310static inline int irq_set_affinity_pending(struct irq_data *data,
311					   const struct cpumask *dest)
312{
313	return -EBUSY;
314}
315#endif
316
317static int irq_try_set_affinity(struct irq_data *data,
318				const struct cpumask *dest, bool force)
319{
320	int ret = irq_do_set_affinity(data, dest, force);
321
322	/*
323	 * In case that the underlying vector management is busy and the
324	 * architecture supports the generic pending mechanism then utilize
325	 * this to avoid returning an error to user space.
326	 */
327	if (ret == -EBUSY && !force)
328		ret = irq_set_affinity_pending(data, dest);
329	return ret;
330}
331
332static bool irq_set_affinity_deactivated(struct irq_data *data,
333					 const struct cpumask *mask)
334{
335	struct irq_desc *desc = irq_data_to_desc(data);
336
337	/*
338	 * Handle irq chips which can handle affinity only in activated
339	 * state correctly
340	 *
341	 * If the interrupt is not yet activated, just store the affinity
342	 * mask and do not call the chip driver at all. On activation the
343	 * driver has to make sure anyway that the interrupt is in a
344	 * usable state so startup works.
345	 */
346	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348		return false;
349
350	cpumask_copy(desc->irq_common_data.affinity, mask);
351	irq_data_update_effective_affinity(data, mask);
352	irqd_set(data, IRQD_AFFINITY_SET);
353	return true;
354}
355
356int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357			    bool force)
358{
359	struct irq_chip *chip = irq_data_get_irq_chip(data);
360	struct irq_desc *desc = irq_data_to_desc(data);
361	int ret = 0;
362
363	if (!chip || !chip->irq_set_affinity)
364		return -EINVAL;
365
366	if (irq_set_affinity_deactivated(data, mask))
367		return 0;
368
369	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370		ret = irq_try_set_affinity(data, mask, force);
371	} else {
372		irqd_set_move_pending(data);
373		irq_copy_pending(desc, mask);
374	}
375
376	if (desc->affinity_notify) {
377		kref_get(&desc->affinity_notify->kref);
378		if (!schedule_work(&desc->affinity_notify->work)) {
379			/* Work was already scheduled, drop our extra ref */
380			kref_put(&desc->affinity_notify->kref,
381				 desc->affinity_notify->release);
382		}
383	}
384	irqd_set(data, IRQD_AFFINITY_SET);
385
386	return ret;
387}
388
389/**
390 * irq_update_affinity_desc - Update affinity management for an interrupt
391 * @irq:	The interrupt number to update
392 * @affinity:	Pointer to the affinity descriptor
393 *
394 * This interface can be used to configure the affinity management of
395 * interrupts which have been allocated already.
396 *
397 * There are certain limitations on when it may be used - attempts to use it
398 * for when the kernel is configured for generic IRQ reservation mode (in
399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
400 * managed/non-managed interrupt accounting. In addition, attempts to use it on
401 * an interrupt which is already started or which has already been configured
402 * as managed will also fail, as these mean invalid init state or double init.
403 */
404int irq_update_affinity_desc(unsigned int irq,
405			     struct irq_affinity_desc *affinity)
406{
407	struct irq_desc *desc;
408	unsigned long flags;
409	bool activated;
410	int ret = 0;
411
412	/*
413	 * Supporting this with the reservation scheme used by x86 needs
414	 * some more thought. Fail it for now.
415	 */
416	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
417		return -EOPNOTSUPP;
418
419	desc = irq_get_desc_buslock(irq, &flags, 0);
420	if (!desc)
421		return -EINVAL;
422
423	/* Requires the interrupt to be shut down */
424	if (irqd_is_started(&desc->irq_data)) {
425		ret = -EBUSY;
426		goto out_unlock;
427	}
428
429	/* Interrupts which are already managed cannot be modified */
430	if (irqd_affinity_is_managed(&desc->irq_data)) {
431		ret = -EBUSY;
432		goto out_unlock;
433	}
434
435	/*
436	 * Deactivate the interrupt. That's required to undo
437	 * anything an earlier activation has established.
438	 */
439	activated = irqd_is_activated(&desc->irq_data);
440	if (activated)
441		irq_domain_deactivate_irq(&desc->irq_data);
442
443	if (affinity->is_managed) {
444		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
445		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
446	}
447
448	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
449
450	/* Restore the activation state */
451	if (activated)
452		irq_domain_activate_irq(&desc->irq_data, false);
453
454out_unlock:
455	irq_put_desc_busunlock(desc, flags);
456	return ret;
457}
458
459static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
460			      bool force)
461{
462	struct irq_desc *desc = irq_to_desc(irq);
463	unsigned long flags;
464	int ret;
465
466	if (!desc)
467		return -EINVAL;
468
469	raw_spin_lock_irqsave(&desc->lock, flags);
470	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
471	raw_spin_unlock_irqrestore(&desc->lock, flags);
472	return ret;
473}
474
475/**
476 * irq_set_affinity - Set the irq affinity of a given irq
477 * @irq:	Interrupt to set affinity
478 * @cpumask:	cpumask
479 *
480 * Fails if cpumask does not contain an online CPU
481 */
482int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
483{
484	return __irq_set_affinity(irq, cpumask, false);
485}
486EXPORT_SYMBOL_GPL(irq_set_affinity);
487
488/**
489 * irq_force_affinity - Force the irq affinity of a given irq
490 * @irq:	Interrupt to set affinity
491 * @cpumask:	cpumask
492 *
493 * Same as irq_set_affinity, but without checking the mask against
494 * online cpus.
495 *
496 * Solely for low level cpu hotplug code, where we need to make per
497 * cpu interrupts affine before the cpu becomes online.
498 */
499int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
500{
501	return __irq_set_affinity(irq, cpumask, true);
502}
503EXPORT_SYMBOL_GPL(irq_force_affinity);
504
505int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
506			      bool setaffinity)
507{
508	unsigned long flags;
509	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
510
511	if (!desc)
512		return -EINVAL;
513	desc->affinity_hint = m;
514	irq_put_desc_unlock(desc, flags);
515	if (m && setaffinity)
516		__irq_set_affinity(irq, m, false);
517	return 0;
518}
519EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
520
521static void irq_affinity_notify(struct work_struct *work)
522{
523	struct irq_affinity_notify *notify =
524		container_of(work, struct irq_affinity_notify, work);
525	struct irq_desc *desc = irq_to_desc(notify->irq);
526	cpumask_var_t cpumask;
527	unsigned long flags;
528
529	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
530		goto out;
531
532	raw_spin_lock_irqsave(&desc->lock, flags);
533	if (irq_move_pending(&desc->irq_data))
534		irq_get_pending(cpumask, desc);
535	else
536		cpumask_copy(cpumask, desc->irq_common_data.affinity);
537	raw_spin_unlock_irqrestore(&desc->lock, flags);
538
539	notify->notify(notify, cpumask);
540
541	free_cpumask_var(cpumask);
542out:
543	kref_put(&notify->kref, notify->release);
544}
545
546/**
547 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
548 *	@irq:		Interrupt for which to enable/disable notification
549 *	@notify:	Context for notification, or %NULL to disable
550 *			notification.  Function pointers must be initialised;
551 *			the other fields will be initialised by this function.
552 *
553 *	Must be called in process context.  Notification may only be enabled
554 *	after the IRQ is allocated and must be disabled before the IRQ is
555 *	freed using free_irq().
556 */
557int
558irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
559{
560	struct irq_desc *desc = irq_to_desc(irq);
561	struct irq_affinity_notify *old_notify;
562	unsigned long flags;
563
564	/* The release function is promised process context */
565	might_sleep();
566
567	if (!desc || irq_is_nmi(desc))
568		return -EINVAL;
569
570	/* Complete initialisation of *notify */
571	if (notify) {
572		notify->irq = irq;
573		kref_init(&notify->kref);
574		INIT_WORK(&notify->work, irq_affinity_notify);
575	}
576
577	raw_spin_lock_irqsave(&desc->lock, flags);
578	old_notify = desc->affinity_notify;
579	desc->affinity_notify = notify;
580	raw_spin_unlock_irqrestore(&desc->lock, flags);
581
582	if (old_notify) {
583		if (cancel_work_sync(&old_notify->work)) {
584			/* Pending work had a ref, put that one too */
585			kref_put(&old_notify->kref, old_notify->release);
586		}
587		kref_put(&old_notify->kref, old_notify->release);
588	}
589
590	return 0;
591}
592EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
593
594#ifndef CONFIG_AUTO_IRQ_AFFINITY
595/*
596 * Generic version of the affinity autoselector.
597 */
598int irq_setup_affinity(struct irq_desc *desc)
599{
600	struct cpumask *set = irq_default_affinity;
601	int ret, node = irq_desc_get_node(desc);
602	static DEFINE_RAW_SPINLOCK(mask_lock);
603	static struct cpumask mask;
604
605	/* Excludes PER_CPU and NO_BALANCE interrupts */
606	if (!__irq_can_set_affinity(desc))
607		return 0;
608
609	raw_spin_lock(&mask_lock);
610	/*
611	 * Preserve the managed affinity setting and a userspace affinity
612	 * setup, but make sure that one of the targets is online.
613	 */
614	if (irqd_affinity_is_managed(&desc->irq_data) ||
615	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
616		if (cpumask_intersects(desc->irq_common_data.affinity,
617				       cpu_online_mask))
618			set = desc->irq_common_data.affinity;
619		else
620			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
621	}
622
623	cpumask_and(&mask, cpu_online_mask, set);
624	if (cpumask_empty(&mask))
625		cpumask_copy(&mask, cpu_online_mask);
626
627	if (node != NUMA_NO_NODE) {
628		const struct cpumask *nodemask = cpumask_of_node(node);
629
630		/* make sure at least one of the cpus in nodemask is online */
631		if (cpumask_intersects(&mask, nodemask))
632			cpumask_and(&mask, &mask, nodemask);
633	}
634	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
635	raw_spin_unlock(&mask_lock);
636	return ret;
637}
638#else
639/* Wrapper for ALPHA specific affinity selector magic */
640int irq_setup_affinity(struct irq_desc *desc)
641{
642	return irq_select_affinity(irq_desc_get_irq(desc));
643}
644#endif /* CONFIG_AUTO_IRQ_AFFINITY */
645#endif /* CONFIG_SMP */
646
647
648/**
649 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
650 *	@irq: interrupt number to set affinity
651 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
652 *	            specific data for percpu_devid interrupts
653 *
654 *	This function uses the vCPU specific data to set the vCPU
655 *	affinity for an irq. The vCPU specific data is passed from
656 *	outside, such as KVM. One example code path is as below:
657 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
658 */
659int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
660{
661	unsigned long flags;
662	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
663	struct irq_data *data;
664	struct irq_chip *chip;
665	int ret = -ENOSYS;
666
667	if (!desc)
668		return -EINVAL;
669
670	data = irq_desc_get_irq_data(desc);
671	do {
672		chip = irq_data_get_irq_chip(data);
673		if (chip && chip->irq_set_vcpu_affinity)
674			break;
675#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
676		data = data->parent_data;
677#else
678		data = NULL;
679#endif
680	} while (data);
681
682	if (data)
683		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
684	irq_put_desc_unlock(desc, flags);
685
686	return ret;
687}
688EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
689
690void __disable_irq(struct irq_desc *desc)
691{
692	if (!desc->depth++)
693		irq_disable(desc);
694}
695
696static int __disable_irq_nosync(unsigned int irq)
697{
698	unsigned long flags;
699	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700
701	if (!desc)
702		return -EINVAL;
703	__disable_irq(desc);
704	irq_put_desc_busunlock(desc, flags);
705	return 0;
706}
707
708/**
709 *	disable_irq_nosync - disable an irq without waiting
710 *	@irq: Interrupt to disable
711 *
712 *	Disable the selected interrupt line.  Disables and Enables are
713 *	nested.
714 *	Unlike disable_irq(), this function does not ensure existing
715 *	instances of the IRQ handler have completed before returning.
716 *
717 *	This function may be called from IRQ context.
718 */
719void disable_irq_nosync(unsigned int irq)
720{
721	__disable_irq_nosync(irq);
722}
723EXPORT_SYMBOL(disable_irq_nosync);
724
725/**
726 *	disable_irq - disable an irq and wait for completion
727 *	@irq: Interrupt to disable
728 *
729 *	Disable the selected interrupt line.  Enables and Disables are
730 *	nested.
731 *	This function waits for any pending IRQ handlers for this interrupt
732 *	to complete before returning. If you use this function while
733 *	holding a resource the IRQ handler may need you will deadlock.
734 *
735 *	Can only be called from preemptible code as it might sleep when
736 *	an interrupt thread is associated to @irq.
737 *
738 */
739void disable_irq(unsigned int irq)
740{
741	might_sleep();
742	if (!__disable_irq_nosync(irq))
743		synchronize_irq(irq);
744}
745EXPORT_SYMBOL(disable_irq);
746
747/**
748 *	disable_hardirq - disables an irq and waits for hardirq completion
749 *	@irq: Interrupt to disable
750 *
751 *	Disable the selected interrupt line.  Enables and Disables are
752 *	nested.
753 *	This function waits for any pending hard IRQ handlers for this
754 *	interrupt to complete before returning. If you use this function while
755 *	holding a resource the hard IRQ handler may need you will deadlock.
756 *
757 *	When used to optimistically disable an interrupt from atomic context
758 *	the return value must be checked.
759 *
760 *	Returns: false if a threaded handler is active.
761 *
762 *	This function may be called - with care - from IRQ context.
763 */
764bool disable_hardirq(unsigned int irq)
765{
766	if (!__disable_irq_nosync(irq))
767		return synchronize_hardirq(irq);
768
769	return false;
770}
771EXPORT_SYMBOL_GPL(disable_hardirq);
772
773/**
774 *	disable_nmi_nosync - disable an nmi without waiting
775 *	@irq: Interrupt to disable
776 *
777 *	Disable the selected interrupt line. Disables and enables are
778 *	nested.
779 *	The interrupt to disable must have been requested through request_nmi.
780 *	Unlike disable_nmi(), this function does not ensure existing
781 *	instances of the IRQ handler have completed before returning.
782 */
783void disable_nmi_nosync(unsigned int irq)
784{
785	disable_irq_nosync(irq);
786}
787
788void __enable_irq(struct irq_desc *desc)
789{
790	switch (desc->depth) {
791	case 0:
792 err_out:
793		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
794		     irq_desc_get_irq(desc));
795		break;
796	case 1: {
797		if (desc->istate & IRQS_SUSPENDED)
798			goto err_out;
799		/* Prevent probing on this irq: */
800		irq_settings_set_noprobe(desc);
801		/*
802		 * Call irq_startup() not irq_enable() here because the
803		 * interrupt might be marked NOAUTOEN so irq_startup()
804		 * needs to be invoked when it gets enabled the first time.
805		 * This is also required when __enable_irq() is invoked for
806		 * a managed and shutdown interrupt from the S3 resume
807		 * path.
808		 *
809		 * If it was already started up, then irq_startup() will
810		 * invoke irq_enable() under the hood.
811		 */
812		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
813		break;
814	}
815	default:
816		desc->depth--;
817	}
818}
819
820/**
821 *	enable_irq - enable handling of an irq
822 *	@irq: Interrupt to enable
823 *
824 *	Undoes the effect of one call to disable_irq().  If this
825 *	matches the last disable, processing of interrupts on this
826 *	IRQ line is re-enabled.
827 *
828 *	This function may be called from IRQ context only when
829 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
830 */
831void enable_irq(unsigned int irq)
832{
833	unsigned long flags;
834	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
835
836	if (!desc)
837		return;
838	if (WARN(!desc->irq_data.chip,
839		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
840		goto out;
841
842	__enable_irq(desc);
843out:
844	irq_put_desc_busunlock(desc, flags);
845}
846EXPORT_SYMBOL(enable_irq);
847
848/**
849 *	enable_nmi - enable handling of an nmi
850 *	@irq: Interrupt to enable
851 *
852 *	The interrupt to enable must have been requested through request_nmi.
853 *	Undoes the effect of one call to disable_nmi(). If this
854 *	matches the last disable, processing of interrupts on this
855 *	IRQ line is re-enabled.
856 */
857void enable_nmi(unsigned int irq)
858{
859	enable_irq(irq);
860}
861
862static int set_irq_wake_real(unsigned int irq, unsigned int on)
863{
864	struct irq_desc *desc = irq_to_desc(irq);
865	int ret = -ENXIO;
866
867	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
868		return 0;
869
870	if (desc->irq_data.chip->irq_set_wake)
871		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
872
873	return ret;
874}
875
876/**
877 *	irq_set_irq_wake - control irq power management wakeup
878 *	@irq:	interrupt to control
879 *	@on:	enable/disable power management wakeup
880 *
881 *	Enable/disable power management wakeup mode, which is
882 *	disabled by default.  Enables and disables must match,
883 *	just as they match for non-wakeup mode support.
884 *
885 *	Wakeup mode lets this IRQ wake the system from sleep
886 *	states like "suspend to RAM".
887 *
888 *	Note: irq enable/disable state is completely orthogonal
889 *	to the enable/disable state of irq wake. An irq can be
890 *	disabled with disable_irq() and still wake the system as
891 *	long as the irq has wake enabled. If this does not hold,
892 *	then the underlying irq chip and the related driver need
893 *	to be investigated.
894 */
895int irq_set_irq_wake(unsigned int irq, unsigned int on)
896{
897	unsigned long flags;
898	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
899	int ret = 0;
900
901	if (!desc)
902		return -EINVAL;
903
904	/* Don't use NMIs as wake up interrupts please */
905	if (irq_is_nmi(desc)) {
906		ret = -EINVAL;
907		goto out_unlock;
908	}
909
910	/* wakeup-capable irqs can be shared between drivers that
911	 * don't need to have the same sleep mode behaviors.
912	 */
913	if (on) {
914		if (desc->wake_depth++ == 0) {
915			ret = set_irq_wake_real(irq, on);
916			if (ret)
917				desc->wake_depth = 0;
918			else
919				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
920		}
921	} else {
922		if (desc->wake_depth == 0) {
923			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
924		} else if (--desc->wake_depth == 0) {
925			ret = set_irq_wake_real(irq, on);
926			if (ret)
927				desc->wake_depth = 1;
928			else
929				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
930		}
931	}
932
933out_unlock:
934	irq_put_desc_busunlock(desc, flags);
935	return ret;
936}
937EXPORT_SYMBOL(irq_set_irq_wake);
938
939/*
940 * Internal function that tells the architecture code whether a
941 * particular irq has been exclusively allocated or is available
942 * for driver use.
943 */
944int can_request_irq(unsigned int irq, unsigned long irqflags)
945{
946	unsigned long flags;
947	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
948	int canrequest = 0;
949
950	if (!desc)
951		return 0;
952
953	if (irq_settings_can_request(desc)) {
954		if (!desc->action ||
955		    irqflags & desc->action->flags & IRQF_SHARED)
956			canrequest = 1;
957	}
958	irq_put_desc_unlock(desc, flags);
959	return canrequest;
960}
961
962int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
963{
964	struct irq_chip *chip = desc->irq_data.chip;
965	int ret, unmask = 0;
966
967	if (!chip || !chip->irq_set_type) {
968		/*
969		 * IRQF_TRIGGER_* but the PIC does not support multiple
970		 * flow-types?
971		 */
972		pr_debug("No set_type function for IRQ %d (%s)\n",
973			 irq_desc_get_irq(desc),
974			 chip ? (chip->name ? : "unknown") : "unknown");
975		return 0;
976	}
977
978	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
979		if (!irqd_irq_masked(&desc->irq_data))
980			mask_irq(desc);
981		if (!irqd_irq_disabled(&desc->irq_data))
982			unmask = 1;
983	}
984
985	/* Mask all flags except trigger mode */
986	flags &= IRQ_TYPE_SENSE_MASK;
987	ret = chip->irq_set_type(&desc->irq_data, flags);
988
989	switch (ret) {
990	case IRQ_SET_MASK_OK:
991	case IRQ_SET_MASK_OK_DONE:
992		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
993		irqd_set(&desc->irq_data, flags);
994		fallthrough;
995
996	case IRQ_SET_MASK_OK_NOCOPY:
997		flags = irqd_get_trigger_type(&desc->irq_data);
998		irq_settings_set_trigger_mask(desc, flags);
999		irqd_clear(&desc->irq_data, IRQD_LEVEL);
1000		irq_settings_clr_level(desc);
1001		if (flags & IRQ_TYPE_LEVEL_MASK) {
1002			irq_settings_set_level(desc);
1003			irqd_set(&desc->irq_data, IRQD_LEVEL);
1004		}
1005
1006		ret = 0;
1007		break;
1008	default:
1009		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1010		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1011	}
1012	if (unmask)
1013		unmask_irq(desc);
1014	return ret;
1015}
1016
1017#ifdef CONFIG_HARDIRQS_SW_RESEND
1018int irq_set_parent(int irq, int parent_irq)
1019{
1020	unsigned long flags;
1021	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1022
1023	if (!desc)
1024		return -EINVAL;
1025
1026	desc->parent_irq = parent_irq;
1027
1028	irq_put_desc_unlock(desc, flags);
1029	return 0;
1030}
1031EXPORT_SYMBOL_GPL(irq_set_parent);
1032#endif
1033
1034/*
1035 * Default primary interrupt handler for threaded interrupts. Is
1036 * assigned as primary handler when request_threaded_irq is called
1037 * with handler == NULL. Useful for oneshot interrupts.
1038 */
1039static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1040{
1041	return IRQ_WAKE_THREAD;
1042}
1043
1044/*
1045 * Primary handler for nested threaded interrupts. Should never be
1046 * called.
1047 */
1048static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1049{
1050	WARN(1, "Primary handler called for nested irq %d\n", irq);
1051	return IRQ_NONE;
1052}
1053
1054static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1055{
1056	WARN(1, "Secondary action handler called for irq %d\n", irq);
1057	return IRQ_NONE;
1058}
1059
1060#ifdef CONFIG_SMP
1061/*
1062 * Check whether we need to change the affinity of the interrupt thread.
1063 */
1064static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1065{
1066	cpumask_var_t mask;
1067	bool valid = false;
1068
1069	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1070		return;
1071
1072	__set_current_state(TASK_RUNNING);
1073
1074	/*
1075	 * In case we are out of memory we set IRQTF_AFFINITY again and
1076	 * try again next time
1077	 */
1078	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1079		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1080		return;
1081	}
1082
1083	raw_spin_lock_irq(&desc->lock);
1084	/*
1085	 * This code is triggered unconditionally. Check the affinity
1086	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1087	 */
1088	if (cpumask_available(desc->irq_common_data.affinity)) {
1089		const struct cpumask *m;
1090
1091		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1092		cpumask_copy(mask, m);
1093		valid = true;
1094	}
1095	raw_spin_unlock_irq(&desc->lock);
1096
1097	if (valid)
1098		set_cpus_allowed_ptr(current, mask);
1099	free_cpumask_var(mask);
1100}
1101#else
1102static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1103#endif
1104
1105static int irq_wait_for_interrupt(struct irq_desc *desc,
1106				  struct irqaction *action)
1107{
1108	for (;;) {
1109		set_current_state(TASK_INTERRUPTIBLE);
1110		irq_thread_check_affinity(desc, action);
1111
1112		if (kthread_should_stop()) {
1113			/* may need to run one last time */
1114			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1115					       &action->thread_flags)) {
1116				__set_current_state(TASK_RUNNING);
1117				return 0;
1118			}
1119			__set_current_state(TASK_RUNNING);
1120			return -1;
1121		}
1122
1123		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1124				       &action->thread_flags)) {
1125			__set_current_state(TASK_RUNNING);
1126			return 0;
1127		}
1128		schedule();
1129	}
1130}
1131
1132/*
1133 * Oneshot interrupts keep the irq line masked until the threaded
1134 * handler finished. unmask if the interrupt has not been disabled and
1135 * is marked MASKED.
1136 */
1137static void irq_finalize_oneshot(struct irq_desc *desc,
1138				 struct irqaction *action)
1139{
1140	if (!(desc->istate & IRQS_ONESHOT) ||
1141	    action->handler == irq_forced_secondary_handler)
1142		return;
1143again:
1144	chip_bus_lock(desc);
1145	raw_spin_lock_irq(&desc->lock);
1146
1147	/*
1148	 * Implausible though it may be we need to protect us against
1149	 * the following scenario:
1150	 *
1151	 * The thread is faster done than the hard interrupt handler
1152	 * on the other CPU. If we unmask the irq line then the
1153	 * interrupt can come in again and masks the line, leaves due
1154	 * to IRQS_INPROGRESS and the irq line is masked forever.
1155	 *
1156	 * This also serializes the state of shared oneshot handlers
1157	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1158	 * irq_wake_thread(). See the comment there which explains the
1159	 * serialization.
1160	 */
1161	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1162		raw_spin_unlock_irq(&desc->lock);
1163		chip_bus_sync_unlock(desc);
1164		cpu_relax();
1165		goto again;
1166	}
1167
1168	/*
1169	 * Now check again, whether the thread should run. Otherwise
1170	 * we would clear the threads_oneshot bit of this thread which
1171	 * was just set.
1172	 */
1173	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1174		goto out_unlock;
1175
1176	desc->threads_oneshot &= ~action->thread_mask;
1177
1178	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1179	    irqd_irq_masked(&desc->irq_data))
1180		unmask_threaded_irq(desc);
1181
1182out_unlock:
1183	raw_spin_unlock_irq(&desc->lock);
1184	chip_bus_sync_unlock(desc);
1185}
1186
1187/*
1188 * Interrupts which are not explicitly requested as threaded
1189 * interrupts rely on the implicit bh/preempt disable of the hard irq
1190 * context. So we need to disable bh here to avoid deadlocks and other
1191 * side effects.
1192 */
1193static irqreturn_t
1194irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1195{
1196	irqreturn_t ret;
1197
1198	local_bh_disable();
1199	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1200		local_irq_disable();
1201	ret = action->thread_fn(action->irq, action->dev_id);
1202	if (ret == IRQ_HANDLED)
1203		atomic_inc(&desc->threads_handled);
1204
1205	irq_finalize_oneshot(desc, action);
1206	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1207		local_irq_enable();
1208	local_bh_enable();
1209	return ret;
1210}
1211
1212/*
1213 * Interrupts explicitly requested as threaded interrupts want to be
1214 * preemptible - many of them need to sleep and wait for slow busses to
1215 * complete.
1216 */
1217static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1218		struct irqaction *action)
1219{
1220	irqreturn_t ret;
1221
1222	ret = action->thread_fn(action->irq, action->dev_id);
1223	if (ret == IRQ_HANDLED)
1224		atomic_inc(&desc->threads_handled);
1225
1226	irq_finalize_oneshot(desc, action);
1227	return ret;
1228}
1229
1230void wake_threads_waitq(struct irq_desc *desc)
1231{
1232	if (atomic_dec_and_test(&desc->threads_active))
1233		wake_up(&desc->wait_for_threads);
1234}
1235
1236static void irq_thread_dtor(struct callback_head *unused)
1237{
1238	struct task_struct *tsk = current;
1239	struct irq_desc *desc;
1240	struct irqaction *action;
1241
1242	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1243		return;
1244
1245	action = kthread_data(tsk);
1246
1247	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1248	       tsk->comm, tsk->pid, action->irq);
1249
1250
1251	desc = irq_to_desc(action->irq);
1252	/*
1253	 * If IRQTF_RUNTHREAD is set, we need to decrement
1254	 * desc->threads_active and wake possible waiters.
1255	 */
1256	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1257		wake_threads_waitq(desc);
1258
1259	/* Prevent a stale desc->threads_oneshot */
1260	irq_finalize_oneshot(desc, action);
1261}
1262
1263static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1264{
1265	struct irqaction *secondary = action->secondary;
1266
1267	if (WARN_ON_ONCE(!secondary))
1268		return;
1269
1270	raw_spin_lock_irq(&desc->lock);
1271	__irq_wake_thread(desc, secondary);
1272	raw_spin_unlock_irq(&desc->lock);
1273}
1274
1275/*
1276 * Internal function to notify that a interrupt thread is ready.
1277 */
1278static void irq_thread_set_ready(struct irq_desc *desc,
1279				 struct irqaction *action)
1280{
1281	set_bit(IRQTF_READY, &action->thread_flags);
1282	wake_up(&desc->wait_for_threads);
1283}
1284
1285/*
1286 * Internal function to wake up a interrupt thread and wait until it is
1287 * ready.
1288 */
1289static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1290						  struct irqaction *action)
1291{
1292	if (!action || !action->thread)
1293		return;
1294
1295	wake_up_process(action->thread);
1296	wait_event(desc->wait_for_threads,
1297		   test_bit(IRQTF_READY, &action->thread_flags));
1298}
1299
1300/*
1301 * Interrupt handler thread
1302 */
1303static int irq_thread(void *data)
1304{
1305	struct callback_head on_exit_work;
1306	struct irqaction *action = data;
1307	struct irq_desc *desc = irq_to_desc(action->irq);
1308	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1309			struct irqaction *action);
1310
1311	irq_thread_set_ready(desc, action);
1312
1313	sched_set_fifo(current);
1314
1315	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1316					   &action->thread_flags))
1317		handler_fn = irq_forced_thread_fn;
1318	else
1319		handler_fn = irq_thread_fn;
1320
1321	init_task_work(&on_exit_work, irq_thread_dtor);
1322	task_work_add(current, &on_exit_work, TWA_NONE);
1323
1324	while (!irq_wait_for_interrupt(desc, action)) {
1325		irqreturn_t action_ret;
1326
1327		action_ret = handler_fn(desc, action);
1328		if (action_ret == IRQ_WAKE_THREAD)
1329			irq_wake_secondary(desc, action);
1330
1331		wake_threads_waitq(desc);
1332	}
1333
1334	/*
1335	 * This is the regular exit path. __free_irq() is stopping the
1336	 * thread via kthread_stop() after calling
1337	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1338	 * oneshot mask bit can be set.
1339	 */
1340	task_work_cancel(current, irq_thread_dtor);
1341	return 0;
1342}
1343
1344/**
1345 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1346 *	@irq:		Interrupt line
1347 *	@dev_id:	Device identity for which the thread should be woken
1348 *
1349 */
1350void irq_wake_thread(unsigned int irq, void *dev_id)
1351{
1352	struct irq_desc *desc = irq_to_desc(irq);
1353	struct irqaction *action;
1354	unsigned long flags;
1355
1356	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1357		return;
1358
1359	raw_spin_lock_irqsave(&desc->lock, flags);
1360	for_each_action_of_desc(desc, action) {
1361		if (action->dev_id == dev_id) {
1362			if (action->thread)
1363				__irq_wake_thread(desc, action);
1364			break;
1365		}
1366	}
1367	raw_spin_unlock_irqrestore(&desc->lock, flags);
1368}
1369EXPORT_SYMBOL_GPL(irq_wake_thread);
1370
1371static int irq_setup_forced_threading(struct irqaction *new)
1372{
1373	if (!force_irqthreads())
1374		return 0;
1375	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1376		return 0;
1377
1378	/*
1379	 * No further action required for interrupts which are requested as
1380	 * threaded interrupts already
1381	 */
1382	if (new->handler == irq_default_primary_handler)
1383		return 0;
1384
1385	new->flags |= IRQF_ONESHOT;
1386
1387	/*
1388	 * Handle the case where we have a real primary handler and a
1389	 * thread handler. We force thread them as well by creating a
1390	 * secondary action.
1391	 */
1392	if (new->handler && new->thread_fn) {
1393		/* Allocate the secondary action */
1394		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1395		if (!new->secondary)
1396			return -ENOMEM;
1397		new->secondary->handler = irq_forced_secondary_handler;
1398		new->secondary->thread_fn = new->thread_fn;
1399		new->secondary->dev_id = new->dev_id;
1400		new->secondary->irq = new->irq;
1401		new->secondary->name = new->name;
1402	}
1403	/* Deal with the primary handler */
1404	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1405	new->thread_fn = new->handler;
1406	new->handler = irq_default_primary_handler;
1407	return 0;
1408}
1409
1410static int irq_request_resources(struct irq_desc *desc)
1411{
1412	struct irq_data *d = &desc->irq_data;
1413	struct irq_chip *c = d->chip;
1414
1415	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1416}
1417
1418static void irq_release_resources(struct irq_desc *desc)
1419{
1420	struct irq_data *d = &desc->irq_data;
1421	struct irq_chip *c = d->chip;
1422
1423	if (c->irq_release_resources)
1424		c->irq_release_resources(d);
1425}
1426
1427static bool irq_supports_nmi(struct irq_desc *desc)
1428{
1429	struct irq_data *d = irq_desc_get_irq_data(desc);
1430
1431#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1432	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1433	if (d->parent_data)
1434		return false;
1435#endif
1436	/* Don't support NMIs for chips behind a slow bus */
1437	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1438		return false;
1439
1440	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1441}
1442
1443static int irq_nmi_setup(struct irq_desc *desc)
1444{
1445	struct irq_data *d = irq_desc_get_irq_data(desc);
1446	struct irq_chip *c = d->chip;
1447
1448	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1449}
1450
1451static void irq_nmi_teardown(struct irq_desc *desc)
1452{
1453	struct irq_data *d = irq_desc_get_irq_data(desc);
1454	struct irq_chip *c = d->chip;
1455
1456	if (c->irq_nmi_teardown)
1457		c->irq_nmi_teardown(d);
1458}
1459
1460static int
1461setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1462{
1463	struct task_struct *t;
1464
1465	if (!secondary) {
1466		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1467				   new->name);
1468	} else {
1469		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1470				   new->name);
1471	}
1472
1473	if (IS_ERR(t))
1474		return PTR_ERR(t);
1475
1476	/*
1477	 * We keep the reference to the task struct even if
1478	 * the thread dies to avoid that the interrupt code
1479	 * references an already freed task_struct.
1480	 */
1481	new->thread = get_task_struct(t);
1482	/*
1483	 * Tell the thread to set its affinity. This is
1484	 * important for shared interrupt handlers as we do
1485	 * not invoke setup_affinity() for the secondary
1486	 * handlers as everything is already set up. Even for
1487	 * interrupts marked with IRQF_NO_BALANCE this is
1488	 * correct as we want the thread to move to the cpu(s)
1489	 * on which the requesting code placed the interrupt.
1490	 */
1491	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1492	return 0;
1493}
1494
1495/*
1496 * Internal function to register an irqaction - typically used to
1497 * allocate special interrupts that are part of the architecture.
1498 *
1499 * Locking rules:
1500 *
1501 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1502 *   chip_bus_lock	Provides serialization for slow bus operations
1503 *     desc->lock	Provides serialization against hard interrupts
1504 *
1505 * chip_bus_lock and desc->lock are sufficient for all other management and
1506 * interrupt related functions. desc->request_mutex solely serializes
1507 * request/free_irq().
1508 */
1509static int
1510__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1511{
1512	struct irqaction *old, **old_ptr;
1513	unsigned long flags, thread_mask = 0;
1514	int ret, nested, shared = 0;
1515
1516	if (!desc)
1517		return -EINVAL;
1518
1519	if (desc->irq_data.chip == &no_irq_chip)
1520		return -ENOSYS;
1521	if (!try_module_get(desc->owner))
1522		return -ENODEV;
1523
1524	new->irq = irq;
1525
1526	/*
1527	 * If the trigger type is not specified by the caller,
1528	 * then use the default for this interrupt.
1529	 */
1530	if (!(new->flags & IRQF_TRIGGER_MASK))
1531		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1532
1533	/*
1534	 * Check whether the interrupt nests into another interrupt
1535	 * thread.
1536	 */
1537	nested = irq_settings_is_nested_thread(desc);
1538	if (nested) {
1539		if (!new->thread_fn) {
1540			ret = -EINVAL;
1541			goto out_mput;
1542		}
1543		/*
1544		 * Replace the primary handler which was provided from
1545		 * the driver for non nested interrupt handling by the
1546		 * dummy function which warns when called.
1547		 */
1548		new->handler = irq_nested_primary_handler;
1549	} else {
1550		if (irq_settings_can_thread(desc)) {
1551			ret = irq_setup_forced_threading(new);
1552			if (ret)
1553				goto out_mput;
1554		}
1555	}
1556
1557	/*
1558	 * Create a handler thread when a thread function is supplied
1559	 * and the interrupt does not nest into another interrupt
1560	 * thread.
1561	 */
1562	if (new->thread_fn && !nested) {
1563		ret = setup_irq_thread(new, irq, false);
1564		if (ret)
1565			goto out_mput;
1566		if (new->secondary) {
1567			ret = setup_irq_thread(new->secondary, irq, true);
1568			if (ret)
1569				goto out_thread;
1570		}
1571	}
1572
1573	/*
1574	 * Drivers are often written to work w/o knowledge about the
1575	 * underlying irq chip implementation, so a request for a
1576	 * threaded irq without a primary hard irq context handler
1577	 * requires the ONESHOT flag to be set. Some irq chips like
1578	 * MSI based interrupts are per se one shot safe. Check the
1579	 * chip flags, so we can avoid the unmask dance at the end of
1580	 * the threaded handler for those.
1581	 */
1582	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1583		new->flags &= ~IRQF_ONESHOT;
1584
1585	/*
1586	 * Protects against a concurrent __free_irq() call which might wait
1587	 * for synchronize_hardirq() to complete without holding the optional
1588	 * chip bus lock and desc->lock. Also protects against handing out
1589	 * a recycled oneshot thread_mask bit while it's still in use by
1590	 * its previous owner.
1591	 */
1592	mutex_lock(&desc->request_mutex);
1593
1594	/*
1595	 * Acquire bus lock as the irq_request_resources() callback below
1596	 * might rely on the serialization or the magic power management
1597	 * functions which are abusing the irq_bus_lock() callback,
1598	 */
1599	chip_bus_lock(desc);
1600
1601	/* First installed action requests resources. */
1602	if (!desc->action) {
1603		ret = irq_request_resources(desc);
1604		if (ret) {
1605			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1606			       new->name, irq, desc->irq_data.chip->name);
1607			goto out_bus_unlock;
1608		}
1609	}
1610
1611	/*
1612	 * The following block of code has to be executed atomically
1613	 * protected against a concurrent interrupt and any of the other
1614	 * management calls which are not serialized via
1615	 * desc->request_mutex or the optional bus lock.
1616	 */
1617	raw_spin_lock_irqsave(&desc->lock, flags);
1618	old_ptr = &desc->action;
1619	old = *old_ptr;
1620	if (old) {
1621		/*
1622		 * Can't share interrupts unless both agree to and are
1623		 * the same type (level, edge, polarity). So both flag
1624		 * fields must have IRQF_SHARED set and the bits which
1625		 * set the trigger type must match. Also all must
1626		 * agree on ONESHOT.
1627		 * Interrupt lines used for NMIs cannot be shared.
1628		 */
1629		unsigned int oldtype;
1630
1631		if (irq_is_nmi(desc)) {
1632			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1633				new->name, irq, desc->irq_data.chip->name);
1634			ret = -EINVAL;
1635			goto out_unlock;
1636		}
1637
1638		/*
1639		 * If nobody did set the configuration before, inherit
1640		 * the one provided by the requester.
1641		 */
1642		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1643			oldtype = irqd_get_trigger_type(&desc->irq_data);
1644		} else {
1645			oldtype = new->flags & IRQF_TRIGGER_MASK;
1646			irqd_set_trigger_type(&desc->irq_data, oldtype);
1647		}
1648
1649		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1650		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1651			goto mismatch;
1652
1653		if ((old->flags & IRQF_ONESHOT) &&
1654		    (new->flags & IRQF_COND_ONESHOT))
1655			new->flags |= IRQF_ONESHOT;
1656		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1657			goto mismatch;
1658
1659		/* All handlers must agree on per-cpuness */
1660		if ((old->flags & IRQF_PERCPU) !=
1661		    (new->flags & IRQF_PERCPU))
1662			goto mismatch;
1663
1664		/* add new interrupt at end of irq queue */
1665		do {
1666			/*
1667			 * Or all existing action->thread_mask bits,
1668			 * so we can find the next zero bit for this
1669			 * new action.
1670			 */
1671			thread_mask |= old->thread_mask;
1672			old_ptr = &old->next;
1673			old = *old_ptr;
1674		} while (old);
1675		shared = 1;
1676	}
1677
1678	/*
1679	 * Setup the thread mask for this irqaction for ONESHOT. For
1680	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1681	 * conditional in irq_wake_thread().
1682	 */
1683	if (new->flags & IRQF_ONESHOT) {
1684		/*
1685		 * Unlikely to have 32 resp 64 irqs sharing one line,
1686		 * but who knows.
1687		 */
1688		if (thread_mask == ~0UL) {
1689			ret = -EBUSY;
1690			goto out_unlock;
1691		}
1692		/*
1693		 * The thread_mask for the action is or'ed to
1694		 * desc->thread_active to indicate that the
1695		 * IRQF_ONESHOT thread handler has been woken, but not
1696		 * yet finished. The bit is cleared when a thread
1697		 * completes. When all threads of a shared interrupt
1698		 * line have completed desc->threads_active becomes
1699		 * zero and the interrupt line is unmasked. See
1700		 * handle.c:irq_wake_thread() for further information.
1701		 *
1702		 * If no thread is woken by primary (hard irq context)
1703		 * interrupt handlers, then desc->threads_active is
1704		 * also checked for zero to unmask the irq line in the
1705		 * affected hard irq flow handlers
1706		 * (handle_[fasteoi|level]_irq).
1707		 *
1708		 * The new action gets the first zero bit of
1709		 * thread_mask assigned. See the loop above which or's
1710		 * all existing action->thread_mask bits.
1711		 */
1712		new->thread_mask = 1UL << ffz(thread_mask);
1713
1714	} else if (new->handler == irq_default_primary_handler &&
1715		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1716		/*
1717		 * The interrupt was requested with handler = NULL, so
1718		 * we use the default primary handler for it. But it
1719		 * does not have the oneshot flag set. In combination
1720		 * with level interrupts this is deadly, because the
1721		 * default primary handler just wakes the thread, then
1722		 * the irq lines is reenabled, but the device still
1723		 * has the level irq asserted. Rinse and repeat....
1724		 *
1725		 * While this works for edge type interrupts, we play
1726		 * it safe and reject unconditionally because we can't
1727		 * say for sure which type this interrupt really
1728		 * has. The type flags are unreliable as the
1729		 * underlying chip implementation can override them.
1730		 */
1731		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1732		       new->name, irq);
1733		ret = -EINVAL;
1734		goto out_unlock;
1735	}
1736
1737	if (!shared) {
1738		/* Setup the type (level, edge polarity) if configured: */
1739		if (new->flags & IRQF_TRIGGER_MASK) {
1740			ret = __irq_set_trigger(desc,
1741						new->flags & IRQF_TRIGGER_MASK);
1742
1743			if (ret)
1744				goto out_unlock;
1745		}
1746
1747		/*
1748		 * Activate the interrupt. That activation must happen
1749		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1750		 * and the callers are supposed to handle
1751		 * that. enable_irq() of an interrupt requested with
1752		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1753		 * keeps it in shutdown mode, it merily associates
1754		 * resources if necessary and if that's not possible it
1755		 * fails. Interrupts which are in managed shutdown mode
1756		 * will simply ignore that activation request.
1757		 */
1758		ret = irq_activate(desc);
1759		if (ret)
1760			goto out_unlock;
1761
1762		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1763				  IRQS_ONESHOT | IRQS_WAITING);
1764		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1765
1766		if (new->flags & IRQF_PERCPU) {
1767			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1768			irq_settings_set_per_cpu(desc);
1769			if (new->flags & IRQF_NO_DEBUG)
1770				irq_settings_set_no_debug(desc);
1771		}
1772
1773		if (noirqdebug)
1774			irq_settings_set_no_debug(desc);
1775
1776		if (new->flags & IRQF_ONESHOT)
1777			desc->istate |= IRQS_ONESHOT;
1778
1779		/* Exclude IRQ from balancing if requested */
1780		if (new->flags & IRQF_NOBALANCING) {
1781			irq_settings_set_no_balancing(desc);
1782			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1783		}
1784
1785		if (!(new->flags & IRQF_NO_AUTOEN) &&
1786		    irq_settings_can_autoenable(desc)) {
1787			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1788		} else {
1789			/*
1790			 * Shared interrupts do not go well with disabling
1791			 * auto enable. The sharing interrupt might request
1792			 * it while it's still disabled and then wait for
1793			 * interrupts forever.
1794			 */
1795			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1796			/* Undo nested disables: */
1797			desc->depth = 1;
1798		}
1799
1800	} else if (new->flags & IRQF_TRIGGER_MASK) {
1801		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1802		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1803
1804		if (nmsk != omsk)
1805			/* hope the handler works with current  trigger mode */
1806			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1807				irq, omsk, nmsk);
1808	}
1809
1810	*old_ptr = new;
1811
1812	irq_pm_install_action(desc, new);
1813
1814	/* Reset broken irq detection when installing new handler */
1815	desc->irq_count = 0;
1816	desc->irqs_unhandled = 0;
1817
1818	/*
1819	 * Check whether we disabled the irq via the spurious handler
1820	 * before. Reenable it and give it another chance.
1821	 */
1822	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1823		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1824		__enable_irq(desc);
1825	}
1826
1827	raw_spin_unlock_irqrestore(&desc->lock, flags);
1828	chip_bus_sync_unlock(desc);
1829	mutex_unlock(&desc->request_mutex);
1830
1831	irq_setup_timings(desc, new);
1832
1833	wake_up_and_wait_for_irq_thread_ready(desc, new);
1834	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1835
1836	register_irq_proc(irq, desc);
1837	new->dir = NULL;
1838	register_handler_proc(irq, new);
1839	return 0;
1840
1841mismatch:
1842	if (!(new->flags & IRQF_PROBE_SHARED)) {
1843		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1844		       irq, new->flags, new->name, old->flags, old->name);
1845#ifdef CONFIG_DEBUG_SHIRQ
1846		dump_stack();
1847#endif
1848	}
1849	ret = -EBUSY;
1850
1851out_unlock:
1852	raw_spin_unlock_irqrestore(&desc->lock, flags);
1853
1854	if (!desc->action)
1855		irq_release_resources(desc);
1856out_bus_unlock:
1857	chip_bus_sync_unlock(desc);
1858	mutex_unlock(&desc->request_mutex);
1859
1860out_thread:
1861	if (new->thread) {
1862		struct task_struct *t = new->thread;
1863
1864		new->thread = NULL;
1865		kthread_stop_put(t);
1866	}
1867	if (new->secondary && new->secondary->thread) {
1868		struct task_struct *t = new->secondary->thread;
1869
1870		new->secondary->thread = NULL;
1871		kthread_stop_put(t);
1872	}
1873out_mput:
1874	module_put(desc->owner);
1875	return ret;
1876}
1877
1878/*
1879 * Internal function to unregister an irqaction - used to free
1880 * regular and special interrupts that are part of the architecture.
1881 */
1882static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1883{
1884	unsigned irq = desc->irq_data.irq;
1885	struct irqaction *action, **action_ptr;
1886	unsigned long flags;
1887
1888	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1889
1890	mutex_lock(&desc->request_mutex);
1891	chip_bus_lock(desc);
1892	raw_spin_lock_irqsave(&desc->lock, flags);
1893
1894	/*
1895	 * There can be multiple actions per IRQ descriptor, find the right
1896	 * one based on the dev_id:
1897	 */
1898	action_ptr = &desc->action;
1899	for (;;) {
1900		action = *action_ptr;
1901
1902		if (!action) {
1903			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1904			raw_spin_unlock_irqrestore(&desc->lock, flags);
1905			chip_bus_sync_unlock(desc);
1906			mutex_unlock(&desc->request_mutex);
1907			return NULL;
1908		}
1909
1910		if (action->dev_id == dev_id)
1911			break;
1912		action_ptr = &action->next;
1913	}
1914
1915	/* Found it - now remove it from the list of entries: */
1916	*action_ptr = action->next;
1917
1918	irq_pm_remove_action(desc, action);
1919
1920	/* If this was the last handler, shut down the IRQ line: */
1921	if (!desc->action) {
1922		irq_settings_clr_disable_unlazy(desc);
1923		/* Only shutdown. Deactivate after synchronize_hardirq() */
1924		irq_shutdown(desc);
1925	}
1926
1927#ifdef CONFIG_SMP
1928	/* make sure affinity_hint is cleaned up */
1929	if (WARN_ON_ONCE(desc->affinity_hint))
1930		desc->affinity_hint = NULL;
1931#endif
1932
1933	raw_spin_unlock_irqrestore(&desc->lock, flags);
1934	/*
1935	 * Drop bus_lock here so the changes which were done in the chip
1936	 * callbacks above are synced out to the irq chips which hang
1937	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1938	 *
1939	 * Aside of that the bus_lock can also be taken from the threaded
1940	 * handler in irq_finalize_oneshot() which results in a deadlock
1941	 * because kthread_stop() would wait forever for the thread to
1942	 * complete, which is blocked on the bus lock.
1943	 *
1944	 * The still held desc->request_mutex() protects against a
1945	 * concurrent request_irq() of this irq so the release of resources
1946	 * and timing data is properly serialized.
1947	 */
1948	chip_bus_sync_unlock(desc);
1949
1950	unregister_handler_proc(irq, action);
1951
1952	/*
1953	 * Make sure it's not being used on another CPU and if the chip
1954	 * supports it also make sure that there is no (not yet serviced)
1955	 * interrupt in flight at the hardware level.
1956	 */
1957	__synchronize_irq(desc);
1958
1959#ifdef CONFIG_DEBUG_SHIRQ
1960	/*
1961	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1962	 * event to happen even now it's being freed, so let's make sure that
1963	 * is so by doing an extra call to the handler ....
1964	 *
1965	 * ( We do this after actually deregistering it, to make sure that a
1966	 *   'real' IRQ doesn't run in parallel with our fake. )
1967	 */
1968	if (action->flags & IRQF_SHARED) {
1969		local_irq_save(flags);
1970		action->handler(irq, dev_id);
1971		local_irq_restore(flags);
1972	}
1973#endif
1974
1975	/*
1976	 * The action has already been removed above, but the thread writes
1977	 * its oneshot mask bit when it completes. Though request_mutex is
1978	 * held across this which prevents __setup_irq() from handing out
1979	 * the same bit to a newly requested action.
1980	 */
1981	if (action->thread) {
1982		kthread_stop_put(action->thread);
1983		if (action->secondary && action->secondary->thread)
1984			kthread_stop_put(action->secondary->thread);
1985	}
1986
1987	/* Last action releases resources */
1988	if (!desc->action) {
1989		/*
1990		 * Reacquire bus lock as irq_release_resources() might
1991		 * require it to deallocate resources over the slow bus.
1992		 */
1993		chip_bus_lock(desc);
1994		/*
1995		 * There is no interrupt on the fly anymore. Deactivate it
1996		 * completely.
1997		 */
1998		raw_spin_lock_irqsave(&desc->lock, flags);
1999		irq_domain_deactivate_irq(&desc->irq_data);
2000		raw_spin_unlock_irqrestore(&desc->lock, flags);
2001
2002		irq_release_resources(desc);
2003		chip_bus_sync_unlock(desc);
2004		irq_remove_timings(desc);
2005	}
2006
2007	mutex_unlock(&desc->request_mutex);
2008
2009	irq_chip_pm_put(&desc->irq_data);
2010	module_put(desc->owner);
2011	kfree(action->secondary);
2012	return action;
2013}
2014
2015/**
2016 *	free_irq - free an interrupt allocated with request_irq
2017 *	@irq: Interrupt line to free
2018 *	@dev_id: Device identity to free
2019 *
2020 *	Remove an interrupt handler. The handler is removed and if the
2021 *	interrupt line is no longer in use by any driver it is disabled.
2022 *	On a shared IRQ the caller must ensure the interrupt is disabled
2023 *	on the card it drives before calling this function. The function
2024 *	does not return until any executing interrupts for this IRQ
2025 *	have completed.
2026 *
2027 *	This function must not be called from interrupt context.
2028 *
2029 *	Returns the devname argument passed to request_irq.
2030 */
2031const void *free_irq(unsigned int irq, void *dev_id)
2032{
2033	struct irq_desc *desc = irq_to_desc(irq);
2034	struct irqaction *action;
2035	const char *devname;
2036
2037	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2038		return NULL;
2039
2040#ifdef CONFIG_SMP
2041	if (WARN_ON(desc->affinity_notify))
2042		desc->affinity_notify = NULL;
2043#endif
2044
2045	action = __free_irq(desc, dev_id);
2046
2047	if (!action)
2048		return NULL;
2049
2050	devname = action->name;
2051	kfree(action);
2052	return devname;
2053}
2054EXPORT_SYMBOL(free_irq);
2055
2056/* This function must be called with desc->lock held */
2057static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2058{
2059	const char *devname = NULL;
2060
2061	desc->istate &= ~IRQS_NMI;
2062
2063	if (!WARN_ON(desc->action == NULL)) {
2064		irq_pm_remove_action(desc, desc->action);
2065		devname = desc->action->name;
2066		unregister_handler_proc(irq, desc->action);
2067
2068		kfree(desc->action);
2069		desc->action = NULL;
2070	}
2071
2072	irq_settings_clr_disable_unlazy(desc);
2073	irq_shutdown_and_deactivate(desc);
2074
2075	irq_release_resources(desc);
2076
2077	irq_chip_pm_put(&desc->irq_data);
2078	module_put(desc->owner);
2079
2080	return devname;
2081}
2082
2083const void *free_nmi(unsigned int irq, void *dev_id)
2084{
2085	struct irq_desc *desc = irq_to_desc(irq);
2086	unsigned long flags;
2087	const void *devname;
2088
2089	if (!desc || WARN_ON(!irq_is_nmi(desc)))
2090		return NULL;
2091
2092	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2093		return NULL;
2094
2095	/* NMI still enabled */
2096	if (WARN_ON(desc->depth == 0))
2097		disable_nmi_nosync(irq);
2098
2099	raw_spin_lock_irqsave(&desc->lock, flags);
2100
2101	irq_nmi_teardown(desc);
2102	devname = __cleanup_nmi(irq, desc);
2103
2104	raw_spin_unlock_irqrestore(&desc->lock, flags);
2105
2106	return devname;
2107}
2108
2109/**
2110 *	request_threaded_irq - allocate an interrupt line
2111 *	@irq: Interrupt line to allocate
2112 *	@handler: Function to be called when the IRQ occurs.
2113 *		  Primary handler for threaded interrupts.
2114 *		  If handler is NULL and thread_fn != NULL
2115 *		  the default primary handler is installed.
2116 *	@thread_fn: Function called from the irq handler thread
2117 *		    If NULL, no irq thread is created
2118 *	@irqflags: Interrupt type flags
2119 *	@devname: An ascii name for the claiming device
2120 *	@dev_id: A cookie passed back to the handler function
2121 *
2122 *	This call allocates interrupt resources and enables the
2123 *	interrupt line and IRQ handling. From the point this
2124 *	call is made your handler function may be invoked. Since
2125 *	your handler function must clear any interrupt the board
2126 *	raises, you must take care both to initialise your hardware
2127 *	and to set up the interrupt handler in the right order.
2128 *
2129 *	If you want to set up a threaded irq handler for your device
2130 *	then you need to supply @handler and @thread_fn. @handler is
2131 *	still called in hard interrupt context and has to check
2132 *	whether the interrupt originates from the device. If yes it
2133 *	needs to disable the interrupt on the device and return
2134 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2135 *	@thread_fn. This split handler design is necessary to support
2136 *	shared interrupts.
2137 *
2138 *	Dev_id must be globally unique. Normally the address of the
2139 *	device data structure is used as the cookie. Since the handler
2140 *	receives this value it makes sense to use it.
2141 *
2142 *	If your interrupt is shared you must pass a non NULL dev_id
2143 *	as this is required when freeing the interrupt.
2144 *
2145 *	Flags:
2146 *
2147 *	IRQF_SHARED		Interrupt is shared
2148 *	IRQF_TRIGGER_*		Specify active edge(s) or level
2149 *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2150 */
2151int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2152			 irq_handler_t thread_fn, unsigned long irqflags,
2153			 const char *devname, void *dev_id)
2154{
2155	struct irqaction *action;
2156	struct irq_desc *desc;
2157	int retval;
2158
2159	if (irq == IRQ_NOTCONNECTED)
2160		return -ENOTCONN;
2161
2162	/*
2163	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2164	 * otherwise we'll have trouble later trying to figure out
2165	 * which interrupt is which (messes up the interrupt freeing
2166	 * logic etc).
2167	 *
2168	 * Also shared interrupts do not go well with disabling auto enable.
2169	 * The sharing interrupt might request it while it's still disabled
2170	 * and then wait for interrupts forever.
2171	 *
2172	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2173	 * it cannot be set along with IRQF_NO_SUSPEND.
2174	 */
2175	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2176	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2177	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2178	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2179		return -EINVAL;
2180
2181	desc = irq_to_desc(irq);
2182	if (!desc)
2183		return -EINVAL;
2184
2185	if (!irq_settings_can_request(desc) ||
2186	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2187		return -EINVAL;
2188
2189	if (!handler) {
2190		if (!thread_fn)
2191			return -EINVAL;
2192		handler = irq_default_primary_handler;
2193	}
2194
2195	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2196	if (!action)
2197		return -ENOMEM;
2198
2199	action->handler = handler;
2200	action->thread_fn = thread_fn;
2201	action->flags = irqflags;
2202	action->name = devname;
2203	action->dev_id = dev_id;
2204
2205	retval = irq_chip_pm_get(&desc->irq_data);
2206	if (retval < 0) {
2207		kfree(action);
2208		return retval;
2209	}
2210
2211	retval = __setup_irq(irq, desc, action);
2212
2213	if (retval) {
2214		irq_chip_pm_put(&desc->irq_data);
2215		kfree(action->secondary);
2216		kfree(action);
2217	}
2218
2219#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2220	if (!retval && (irqflags & IRQF_SHARED)) {
2221		/*
2222		 * It's a shared IRQ -- the driver ought to be prepared for it
2223		 * to happen immediately, so let's make sure....
2224		 * We disable the irq to make sure that a 'real' IRQ doesn't
2225		 * run in parallel with our fake.
2226		 */
2227		unsigned long flags;
2228
2229		disable_irq(irq);
2230		local_irq_save(flags);
2231
2232		handler(irq, dev_id);
2233
2234		local_irq_restore(flags);
2235		enable_irq(irq);
2236	}
2237#endif
2238	return retval;
2239}
2240EXPORT_SYMBOL(request_threaded_irq);
2241
2242/**
2243 *	request_any_context_irq - allocate an interrupt line
2244 *	@irq: Interrupt line to allocate
2245 *	@handler: Function to be called when the IRQ occurs.
2246 *		  Threaded handler for threaded interrupts.
2247 *	@flags: Interrupt type flags
2248 *	@name: An ascii name for the claiming device
2249 *	@dev_id: A cookie passed back to the handler function
2250 *
2251 *	This call allocates interrupt resources and enables the
2252 *	interrupt line and IRQ handling. It selects either a
2253 *	hardirq or threaded handling method depending on the
2254 *	context.
2255 *
2256 *	On failure, it returns a negative value. On success,
2257 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2258 */
2259int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2260			    unsigned long flags, const char *name, void *dev_id)
2261{
2262	struct irq_desc *desc;
2263	int ret;
2264
2265	if (irq == IRQ_NOTCONNECTED)
2266		return -ENOTCONN;
2267
2268	desc = irq_to_desc(irq);
2269	if (!desc)
2270		return -EINVAL;
2271
2272	if (irq_settings_is_nested_thread(desc)) {
2273		ret = request_threaded_irq(irq, NULL, handler,
2274					   flags, name, dev_id);
2275		return !ret ? IRQC_IS_NESTED : ret;
2276	}
2277
2278	ret = request_irq(irq, handler, flags, name, dev_id);
2279	return !ret ? IRQC_IS_HARDIRQ : ret;
2280}
2281EXPORT_SYMBOL_GPL(request_any_context_irq);
2282
2283/**
2284 *	request_nmi - allocate an interrupt line for NMI delivery
2285 *	@irq: Interrupt line to allocate
2286 *	@handler: Function to be called when the IRQ occurs.
2287 *		  Threaded handler for threaded interrupts.
2288 *	@irqflags: Interrupt type flags
2289 *	@name: An ascii name for the claiming device
2290 *	@dev_id: A cookie passed back to the handler function
2291 *
2292 *	This call allocates interrupt resources and enables the
2293 *	interrupt line and IRQ handling. It sets up the IRQ line
2294 *	to be handled as an NMI.
2295 *
2296 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2297 *	cannot be threaded.
2298 *
2299 *	Interrupt lines requested for NMI delivering must produce per cpu
2300 *	interrupts and have auto enabling setting disabled.
2301 *
2302 *	Dev_id must be globally unique. Normally the address of the
2303 *	device data structure is used as the cookie. Since the handler
2304 *	receives this value it makes sense to use it.
2305 *
2306 *	If the interrupt line cannot be used to deliver NMIs, function
2307 *	will fail and return a negative value.
2308 */
2309int request_nmi(unsigned int irq, irq_handler_t handler,
2310		unsigned long irqflags, const char *name, void *dev_id)
2311{
2312	struct irqaction *action;
2313	struct irq_desc *desc;
2314	unsigned long flags;
2315	int retval;
2316
2317	if (irq == IRQ_NOTCONNECTED)
2318		return -ENOTCONN;
2319
2320	/* NMI cannot be shared, used for Polling */
2321	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2322		return -EINVAL;
2323
2324	if (!(irqflags & IRQF_PERCPU))
2325		return -EINVAL;
2326
2327	if (!handler)
2328		return -EINVAL;
2329
2330	desc = irq_to_desc(irq);
2331
2332	if (!desc || (irq_settings_can_autoenable(desc) &&
2333	    !(irqflags & IRQF_NO_AUTOEN)) ||
2334	    !irq_settings_can_request(desc) ||
2335	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2336	    !irq_supports_nmi(desc))
2337		return -EINVAL;
2338
2339	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2340	if (!action)
2341		return -ENOMEM;
2342
2343	action->handler = handler;
2344	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2345	action->name = name;
2346	action->dev_id = dev_id;
2347
2348	retval = irq_chip_pm_get(&desc->irq_data);
2349	if (retval < 0)
2350		goto err_out;
2351
2352	retval = __setup_irq(irq, desc, action);
2353	if (retval)
2354		goto err_irq_setup;
2355
2356	raw_spin_lock_irqsave(&desc->lock, flags);
2357
2358	/* Setup NMI state */
2359	desc->istate |= IRQS_NMI;
2360	retval = irq_nmi_setup(desc);
2361	if (retval) {
2362		__cleanup_nmi(irq, desc);
2363		raw_spin_unlock_irqrestore(&desc->lock, flags);
2364		return -EINVAL;
2365	}
2366
2367	raw_spin_unlock_irqrestore(&desc->lock, flags);
2368
2369	return 0;
2370
2371err_irq_setup:
2372	irq_chip_pm_put(&desc->irq_data);
2373err_out:
2374	kfree(action);
2375
2376	return retval;
2377}
2378
2379void enable_percpu_irq(unsigned int irq, unsigned int type)
2380{
2381	unsigned int cpu = smp_processor_id();
2382	unsigned long flags;
2383	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2384
2385	if (!desc)
2386		return;
2387
2388	/*
2389	 * If the trigger type is not specified by the caller, then
2390	 * use the default for this interrupt.
2391	 */
2392	type &= IRQ_TYPE_SENSE_MASK;
2393	if (type == IRQ_TYPE_NONE)
2394		type = irqd_get_trigger_type(&desc->irq_data);
2395
2396	if (type != IRQ_TYPE_NONE) {
2397		int ret;
2398
2399		ret = __irq_set_trigger(desc, type);
2400
2401		if (ret) {
2402			WARN(1, "failed to set type for IRQ%d\n", irq);
2403			goto out;
2404		}
2405	}
2406
2407	irq_percpu_enable(desc, cpu);
2408out:
2409	irq_put_desc_unlock(desc, flags);
2410}
2411EXPORT_SYMBOL_GPL(enable_percpu_irq);
2412
2413void enable_percpu_nmi(unsigned int irq, unsigned int type)
2414{
2415	enable_percpu_irq(irq, type);
2416}
2417
2418/**
2419 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2420 * @irq:	Linux irq number to check for
2421 *
2422 * Must be called from a non migratable context. Returns the enable
2423 * state of a per cpu interrupt on the current cpu.
2424 */
2425bool irq_percpu_is_enabled(unsigned int irq)
2426{
2427	unsigned int cpu = smp_processor_id();
2428	struct irq_desc *desc;
2429	unsigned long flags;
2430	bool is_enabled;
2431
2432	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2433	if (!desc)
2434		return false;
2435
2436	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2437	irq_put_desc_unlock(desc, flags);
2438
2439	return is_enabled;
2440}
2441EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2442
2443void disable_percpu_irq(unsigned int irq)
2444{
2445	unsigned int cpu = smp_processor_id();
2446	unsigned long flags;
2447	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2448
2449	if (!desc)
2450		return;
2451
2452	irq_percpu_disable(desc, cpu);
2453	irq_put_desc_unlock(desc, flags);
2454}
2455EXPORT_SYMBOL_GPL(disable_percpu_irq);
2456
2457void disable_percpu_nmi(unsigned int irq)
2458{
2459	disable_percpu_irq(irq);
2460}
2461
2462/*
2463 * Internal function to unregister a percpu irqaction.
2464 */
2465static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2466{
2467	struct irq_desc *desc = irq_to_desc(irq);
2468	struct irqaction *action;
2469	unsigned long flags;
2470
2471	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2472
2473	if (!desc)
2474		return NULL;
2475
2476	raw_spin_lock_irqsave(&desc->lock, flags);
2477
2478	action = desc->action;
2479	if (!action || action->percpu_dev_id != dev_id) {
2480		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2481		goto bad;
2482	}
2483
2484	if (!cpumask_empty(desc->percpu_enabled)) {
2485		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2486		     irq, cpumask_first(desc->percpu_enabled));
2487		goto bad;
2488	}
2489
2490	/* Found it - now remove it from the list of entries: */
2491	desc->action = NULL;
2492
2493	desc->istate &= ~IRQS_NMI;
2494
2495	raw_spin_unlock_irqrestore(&desc->lock, flags);
2496
2497	unregister_handler_proc(irq, action);
2498
2499	irq_chip_pm_put(&desc->irq_data);
2500	module_put(desc->owner);
2501	return action;
2502
2503bad:
2504	raw_spin_unlock_irqrestore(&desc->lock, flags);
2505	return NULL;
2506}
2507
2508/**
2509 *	remove_percpu_irq - free a per-cpu interrupt
2510 *	@irq: Interrupt line to free
2511 *	@act: irqaction for the interrupt
2512 *
2513 * Used to remove interrupts statically setup by the early boot process.
2514 */
2515void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2516{
2517	struct irq_desc *desc = irq_to_desc(irq);
2518
2519	if (desc && irq_settings_is_per_cpu_devid(desc))
2520	    __free_percpu_irq(irq, act->percpu_dev_id);
2521}
2522
2523/**
2524 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2525 *	@irq: Interrupt line to free
2526 *	@dev_id: Device identity to free
2527 *
2528 *	Remove a percpu interrupt handler. The handler is removed, but
2529 *	the interrupt line is not disabled. This must be done on each
2530 *	CPU before calling this function. The function does not return
2531 *	until any executing interrupts for this IRQ have completed.
2532 *
2533 *	This function must not be called from interrupt context.
2534 */
2535void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2536{
2537	struct irq_desc *desc = irq_to_desc(irq);
2538
2539	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2540		return;
2541
2542	chip_bus_lock(desc);
2543	kfree(__free_percpu_irq(irq, dev_id));
2544	chip_bus_sync_unlock(desc);
2545}
2546EXPORT_SYMBOL_GPL(free_percpu_irq);
2547
2548void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2549{
2550	struct irq_desc *desc = irq_to_desc(irq);
2551
2552	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2553		return;
2554
2555	if (WARN_ON(!irq_is_nmi(desc)))
2556		return;
2557
2558	kfree(__free_percpu_irq(irq, dev_id));
2559}
2560
2561/**
2562 *	setup_percpu_irq - setup a per-cpu interrupt
2563 *	@irq: Interrupt line to setup
2564 *	@act: irqaction for the interrupt
2565 *
2566 * Used to statically setup per-cpu interrupts in the early boot process.
2567 */
2568int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2569{
2570	struct irq_desc *desc = irq_to_desc(irq);
2571	int retval;
2572
2573	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2574		return -EINVAL;
2575
2576	retval = irq_chip_pm_get(&desc->irq_data);
2577	if (retval < 0)
2578		return retval;
2579
2580	retval = __setup_irq(irq, desc, act);
2581
2582	if (retval)
2583		irq_chip_pm_put(&desc->irq_data);
2584
2585	return retval;
2586}
2587
2588/**
2589 *	__request_percpu_irq - allocate a percpu interrupt line
2590 *	@irq: Interrupt line to allocate
2591 *	@handler: Function to be called when the IRQ occurs.
2592 *	@flags: Interrupt type flags (IRQF_TIMER only)
2593 *	@devname: An ascii name for the claiming device
2594 *	@dev_id: A percpu cookie passed back to the handler function
2595 *
2596 *	This call allocates interrupt resources and enables the
2597 *	interrupt on the local CPU. If the interrupt is supposed to be
2598 *	enabled on other CPUs, it has to be done on each CPU using
2599 *	enable_percpu_irq().
2600 *
2601 *	Dev_id must be globally unique. It is a per-cpu variable, and
2602 *	the handler gets called with the interrupted CPU's instance of
2603 *	that variable.
2604 */
2605int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2606			 unsigned long flags, const char *devname,
2607			 void __percpu *dev_id)
2608{
2609	struct irqaction *action;
2610	struct irq_desc *desc;
2611	int retval;
2612
2613	if (!dev_id)
2614		return -EINVAL;
2615
2616	desc = irq_to_desc(irq);
2617	if (!desc || !irq_settings_can_request(desc) ||
2618	    !irq_settings_is_per_cpu_devid(desc))
2619		return -EINVAL;
2620
2621	if (flags && flags != IRQF_TIMER)
2622		return -EINVAL;
2623
2624	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2625	if (!action)
2626		return -ENOMEM;
2627
2628	action->handler = handler;
2629	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2630	action->name = devname;
2631	action->percpu_dev_id = dev_id;
2632
2633	retval = irq_chip_pm_get(&desc->irq_data);
2634	if (retval < 0) {
2635		kfree(action);
2636		return retval;
2637	}
2638
2639	retval = __setup_irq(irq, desc, action);
2640
2641	if (retval) {
2642		irq_chip_pm_put(&desc->irq_data);
2643		kfree(action);
2644	}
2645
2646	return retval;
2647}
2648EXPORT_SYMBOL_GPL(__request_percpu_irq);
2649
2650/**
2651 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2652 *	@irq: Interrupt line to allocate
2653 *	@handler: Function to be called when the IRQ occurs.
2654 *	@name: An ascii name for the claiming device
2655 *	@dev_id: A percpu cookie passed back to the handler function
2656 *
2657 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2658 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2659 *	being enabled on the same CPU by using enable_percpu_nmi().
2660 *
2661 *	Dev_id must be globally unique. It is a per-cpu variable, and
2662 *	the handler gets called with the interrupted CPU's instance of
2663 *	that variable.
2664 *
2665 *	Interrupt lines requested for NMI delivering should have auto enabling
2666 *	setting disabled.
2667 *
2668 *	If the interrupt line cannot be used to deliver NMIs, function
2669 *	will fail returning a negative value.
2670 */
2671int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2672		       const char *name, void __percpu *dev_id)
2673{
2674	struct irqaction *action;
2675	struct irq_desc *desc;
2676	unsigned long flags;
2677	int retval;
2678
2679	if (!handler)
2680		return -EINVAL;
2681
2682	desc = irq_to_desc(irq);
2683
2684	if (!desc || !irq_settings_can_request(desc) ||
2685	    !irq_settings_is_per_cpu_devid(desc) ||
2686	    irq_settings_can_autoenable(desc) ||
2687	    !irq_supports_nmi(desc))
2688		return -EINVAL;
2689
2690	/* The line cannot already be NMI */
2691	if (irq_is_nmi(desc))
2692		return -EINVAL;
2693
2694	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2695	if (!action)
2696		return -ENOMEM;
2697
2698	action->handler = handler;
2699	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2700		| IRQF_NOBALANCING;
2701	action->name = name;
2702	action->percpu_dev_id = dev_id;
2703
2704	retval = irq_chip_pm_get(&desc->irq_data);
2705	if (retval < 0)
2706		goto err_out;
2707
2708	retval = __setup_irq(irq, desc, action);
2709	if (retval)
2710		goto err_irq_setup;
2711
2712	raw_spin_lock_irqsave(&desc->lock, flags);
2713	desc->istate |= IRQS_NMI;
2714	raw_spin_unlock_irqrestore(&desc->lock, flags);
2715
2716	return 0;
2717
2718err_irq_setup:
2719	irq_chip_pm_put(&desc->irq_data);
2720err_out:
2721	kfree(action);
2722
2723	return retval;
2724}
2725
2726/**
2727 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2728 *	@irq: Interrupt line to prepare for NMI delivery
2729 *
2730 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2731 *	before that interrupt line gets enabled with enable_percpu_nmi().
2732 *
2733 *	As a CPU local operation, this should be called from non-preemptible
2734 *	context.
2735 *
2736 *	If the interrupt line cannot be used to deliver NMIs, function
2737 *	will fail returning a negative value.
2738 */
2739int prepare_percpu_nmi(unsigned int irq)
2740{
2741	unsigned long flags;
2742	struct irq_desc *desc;
2743	int ret = 0;
2744
2745	WARN_ON(preemptible());
2746
2747	desc = irq_get_desc_lock(irq, &flags,
2748				 IRQ_GET_DESC_CHECK_PERCPU);
2749	if (!desc)
2750		return -EINVAL;
2751
2752	if (WARN(!irq_is_nmi(desc),
2753		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2754		 irq)) {
2755		ret = -EINVAL;
2756		goto out;
2757	}
2758
2759	ret = irq_nmi_setup(desc);
2760	if (ret) {
2761		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2762		goto out;
2763	}
2764
2765out:
2766	irq_put_desc_unlock(desc, flags);
2767	return ret;
2768}
2769
2770/**
2771 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2772 *	@irq: Interrupt line from which CPU local NMI configuration should be
2773 *	      removed
2774 *
2775 *	This call undoes the setup done by prepare_percpu_nmi().
2776 *
2777 *	IRQ line should not be enabled for the current CPU.
2778 *
2779 *	As a CPU local operation, this should be called from non-preemptible
2780 *	context.
2781 */
2782void teardown_percpu_nmi(unsigned int irq)
2783{
2784	unsigned long flags;
2785	struct irq_desc *desc;
2786
2787	WARN_ON(preemptible());
2788
2789	desc = irq_get_desc_lock(irq, &flags,
2790				 IRQ_GET_DESC_CHECK_PERCPU);
2791	if (!desc)
2792		return;
2793
2794	if (WARN_ON(!irq_is_nmi(desc)))
2795		goto out;
2796
2797	irq_nmi_teardown(desc);
2798out:
2799	irq_put_desc_unlock(desc, flags);
2800}
2801
2802int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2803			    bool *state)
2804{
2805	struct irq_chip *chip;
2806	int err = -EINVAL;
2807
2808	do {
2809		chip = irq_data_get_irq_chip(data);
2810		if (WARN_ON_ONCE(!chip))
2811			return -ENODEV;
2812		if (chip->irq_get_irqchip_state)
2813			break;
2814#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2815		data = data->parent_data;
2816#else
2817		data = NULL;
2818#endif
2819	} while (data);
2820
2821	if (data)
2822		err = chip->irq_get_irqchip_state(data, which, state);
2823	return err;
2824}
2825
2826/**
2827 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2828 *	@irq: Interrupt line that is forwarded to a VM
2829 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2830 *	@state: a pointer to a boolean where the state is to be stored
2831 *
2832 *	This call snapshots the internal irqchip state of an
2833 *	interrupt, returning into @state the bit corresponding to
2834 *	stage @which
2835 *
2836 *	This function should be called with preemption disabled if the
2837 *	interrupt controller has per-cpu registers.
2838 */
2839int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2840			  bool *state)
2841{
2842	struct irq_desc *desc;
2843	struct irq_data *data;
2844	unsigned long flags;
2845	int err = -EINVAL;
2846
2847	desc = irq_get_desc_buslock(irq, &flags, 0);
2848	if (!desc)
2849		return err;
2850
2851	data = irq_desc_get_irq_data(desc);
2852
2853	err = __irq_get_irqchip_state(data, which, state);
2854
2855	irq_put_desc_busunlock(desc, flags);
2856	return err;
2857}
2858EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2859
2860/**
2861 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2862 *	@irq: Interrupt line that is forwarded to a VM
2863 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2864 *	@val: Value corresponding to @which
2865 *
2866 *	This call sets the internal irqchip state of an interrupt,
2867 *	depending on the value of @which.
2868 *
2869 *	This function should be called with migration disabled if the
2870 *	interrupt controller has per-cpu registers.
2871 */
2872int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2873			  bool val)
2874{
2875	struct irq_desc *desc;
2876	struct irq_data *data;
2877	struct irq_chip *chip;
2878	unsigned long flags;
2879	int err = -EINVAL;
2880
2881	desc = irq_get_desc_buslock(irq, &flags, 0);
2882	if (!desc)
2883		return err;
2884
2885	data = irq_desc_get_irq_data(desc);
2886
2887	do {
2888		chip = irq_data_get_irq_chip(data);
2889		if (WARN_ON_ONCE(!chip)) {
2890			err = -ENODEV;
2891			goto out_unlock;
2892		}
2893		if (chip->irq_set_irqchip_state)
2894			break;
2895#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2896		data = data->parent_data;
2897#else
2898		data = NULL;
2899#endif
2900	} while (data);
2901
2902	if (data)
2903		err = chip->irq_set_irqchip_state(data, which, val);
2904
2905out_unlock:
2906	irq_put_desc_busunlock(desc, flags);
2907	return err;
2908}
2909EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2910
2911/**
2912 * irq_has_action - Check whether an interrupt is requested
2913 * @irq:	The linux irq number
2914 *
2915 * Returns: A snapshot of the current state
2916 */
2917bool irq_has_action(unsigned int irq)
2918{
2919	bool res;
2920
2921	rcu_read_lock();
2922	res = irq_desc_has_action(irq_to_desc(irq));
2923	rcu_read_unlock();
2924	return res;
2925}
2926EXPORT_SYMBOL_GPL(irq_has_action);
2927
2928/**
2929 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2930 * @irq:	The linux irq number
2931 * @bitmask:	The bitmask to evaluate
2932 *
2933 * Returns: True if one of the bits in @bitmask is set
2934 */
2935bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2936{
2937	struct irq_desc *desc;
2938	bool res = false;
2939
2940	rcu_read_lock();
2941	desc = irq_to_desc(irq);
2942	if (desc)
2943		res = !!(desc->status_use_accessors & bitmask);
2944	rcu_read_unlock();
2945	return res;
2946}
2947EXPORT_SYMBOL_GPL(irq_check_status_bit);
2948