1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/kernel/exit.c
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h> /* for audit_free() */
50#include <linux/resource.h>
51#include <linux/task_io_accounting_ops.h>
52#include <linux/blkdev.h>
53#include <linux/task_work.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/kmsan.h>
64#include <linux/random.h>
65#include <linux/rcuwait.h>
66#include <linux/compat.h>
67#include <linux/io_uring.h>
68#include <linux/kprobes.h>
69#include <linux/rethook.h>
70#include <linux/sysfs.h>
71#include <linux/user_events.h>
72#include <linux/uaccess.h>
73
74#include <uapi/linux/wait.h>
75
76#include <asm/unistd.h>
77#include <asm/mmu_context.h>
78
79#include "exit.h"
80
81/*
82 * The default value should be high enough to not crash a system that randomly
83 * crashes its kernel from time to time, but low enough to at least not permit
84 * overflowing 32-bit refcounts or the ldsem writer count.
85 */
86static unsigned int oops_limit = 10000;
87
88#ifdef CONFIG_SYSCTL
89static struct ctl_table kern_exit_table[] = {
90	{
91		.procname       = "oops_limit",
92		.data           = &oops_limit,
93		.maxlen         = sizeof(oops_limit),
94		.mode           = 0644,
95		.proc_handler   = proc_douintvec,
96	},
97};
98
99static __init int kernel_exit_sysctls_init(void)
100{
101	register_sysctl_init("kernel", kern_exit_table);
102	return 0;
103}
104late_initcall(kernel_exit_sysctls_init);
105#endif
106
107static atomic_t oops_count = ATOMIC_INIT(0);
108
109#ifdef CONFIG_SYSFS
110static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111			       char *page)
112{
113	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114}
115
116static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117
118static __init int kernel_exit_sysfs_init(void)
119{
120	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121	return 0;
122}
123late_initcall(kernel_exit_sysfs_init);
124#endif
125
126static void __unhash_process(struct task_struct *p, bool group_dead)
127{
128	nr_threads--;
129	detach_pid(p, PIDTYPE_PID);
130	if (group_dead) {
131		detach_pid(p, PIDTYPE_TGID);
132		detach_pid(p, PIDTYPE_PGID);
133		detach_pid(p, PIDTYPE_SID);
134
135		list_del_rcu(&p->tasks);
136		list_del_init(&p->sibling);
137		__this_cpu_dec(process_counts);
138	}
139	list_del_rcu(&p->thread_node);
140}
141
142/*
143 * This function expects the tasklist_lock write-locked.
144 */
145static void __exit_signal(struct task_struct *tsk)
146{
147	struct signal_struct *sig = tsk->signal;
148	bool group_dead = thread_group_leader(tsk);
149	struct sighand_struct *sighand;
150	struct tty_struct *tty;
151	u64 utime, stime;
152
153	sighand = rcu_dereference_check(tsk->sighand,
154					lockdep_tasklist_lock_is_held());
155	spin_lock(&sighand->siglock);
156
157#ifdef CONFIG_POSIX_TIMERS
158	posix_cpu_timers_exit(tsk);
159	if (group_dead)
160		posix_cpu_timers_exit_group(tsk);
161#endif
162
163	if (group_dead) {
164		tty = sig->tty;
165		sig->tty = NULL;
166	} else {
167		/*
168		 * If there is any task waiting for the group exit
169		 * then notify it:
170		 */
171		if (sig->notify_count > 0 && !--sig->notify_count)
172			wake_up_process(sig->group_exec_task);
173
174		if (tsk == sig->curr_target)
175			sig->curr_target = next_thread(tsk);
176	}
177
178	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179			      sizeof(unsigned long long));
180
181	/*
182	 * Accumulate here the counters for all threads as they die. We could
183	 * skip the group leader because it is the last user of signal_struct,
184	 * but we want to avoid the race with thread_group_cputime() which can
185	 * see the empty ->thread_head list.
186	 */
187	task_cputime(tsk, &utime, &stime);
188	write_seqlock(&sig->stats_lock);
189	sig->utime += utime;
190	sig->stime += stime;
191	sig->gtime += task_gtime(tsk);
192	sig->min_flt += tsk->min_flt;
193	sig->maj_flt += tsk->maj_flt;
194	sig->nvcsw += tsk->nvcsw;
195	sig->nivcsw += tsk->nivcsw;
196	sig->inblock += task_io_get_inblock(tsk);
197	sig->oublock += task_io_get_oublock(tsk);
198	task_io_accounting_add(&sig->ioac, &tsk->ioac);
199	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200	sig->nr_threads--;
201	__unhash_process(tsk, group_dead);
202	write_sequnlock(&sig->stats_lock);
203
204	/*
205	 * Do this under ->siglock, we can race with another thread
206	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207	 */
208	flush_sigqueue(&tsk->pending);
209	tsk->sighand = NULL;
210	spin_unlock(&sighand->siglock);
211
212	__cleanup_sighand(sighand);
213	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214	if (group_dead) {
215		flush_sigqueue(&sig->shared_pending);
216		tty_kref_put(tty);
217	}
218}
219
220static void delayed_put_task_struct(struct rcu_head *rhp)
221{
222	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223
224	kprobe_flush_task(tsk);
225	rethook_flush_task(tsk);
226	perf_event_delayed_put(tsk);
227	trace_sched_process_free(tsk);
228	put_task_struct(tsk);
229}
230
231void put_task_struct_rcu_user(struct task_struct *task)
232{
233	if (refcount_dec_and_test(&task->rcu_users))
234		call_rcu(&task->rcu, delayed_put_task_struct);
235}
236
237void __weak release_thread(struct task_struct *dead_task)
238{
239}
240
241void release_task(struct task_struct *p)
242{
243	struct task_struct *leader;
244	struct pid *thread_pid;
245	int zap_leader;
246repeat:
247	/* don't need to get the RCU readlock here - the process is dead and
248	 * can't be modifying its own credentials. But shut RCU-lockdep up */
249	rcu_read_lock();
250	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251	rcu_read_unlock();
252
253	cgroup_release(p);
254
255	write_lock_irq(&tasklist_lock);
256	ptrace_release_task(p);
257	thread_pid = get_pid(p->thread_pid);
258	__exit_signal(p);
259
260	/*
261	 * If we are the last non-leader member of the thread
262	 * group, and the leader is zombie, then notify the
263	 * group leader's parent process. (if it wants notification.)
264	 */
265	zap_leader = 0;
266	leader = p->group_leader;
267	if (leader != p && thread_group_empty(leader)
268			&& leader->exit_state == EXIT_ZOMBIE) {
269		/*
270		 * If we were the last child thread and the leader has
271		 * exited already, and the leader's parent ignores SIGCHLD,
272		 * then we are the one who should release the leader.
273		 */
274		zap_leader = do_notify_parent(leader, leader->exit_signal);
275		if (zap_leader)
276			leader->exit_state = EXIT_DEAD;
277	}
278
279	write_unlock_irq(&tasklist_lock);
280	seccomp_filter_release(p);
281	proc_flush_pid(thread_pid);
282	put_pid(thread_pid);
283	release_thread(p);
284	put_task_struct_rcu_user(p);
285
286	p = leader;
287	if (unlikely(zap_leader))
288		goto repeat;
289}
290
291int rcuwait_wake_up(struct rcuwait *w)
292{
293	int ret = 0;
294	struct task_struct *task;
295
296	rcu_read_lock();
297
298	/*
299	 * Order condition vs @task, such that everything prior to the load
300	 * of @task is visible. This is the condition as to why the user called
301	 * rcuwait_wake() in the first place. Pairs with set_current_state()
302	 * barrier (A) in rcuwait_wait_event().
303	 *
304	 *    WAIT                WAKE
305	 *    [S] tsk = current	  [S] cond = true
306	 *        MB (A)	      MB (B)
307	 *    [L] cond		  [L] tsk
308	 */
309	smp_mb(); /* (B) */
310
311	task = rcu_dereference(w->task);
312	if (task)
313		ret = wake_up_process(task);
314	rcu_read_unlock();
315
316	return ret;
317}
318EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319
320/*
321 * Determine if a process group is "orphaned", according to the POSIX
322 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323 * by terminal-generated stop signals.  Newly orphaned process groups are
324 * to receive a SIGHUP and a SIGCONT.
325 *
326 * "I ask you, have you ever known what it is to be an orphan?"
327 */
328static int will_become_orphaned_pgrp(struct pid *pgrp,
329					struct task_struct *ignored_task)
330{
331	struct task_struct *p;
332
333	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334		if ((p == ignored_task) ||
335		    (p->exit_state && thread_group_empty(p)) ||
336		    is_global_init(p->real_parent))
337			continue;
338
339		if (task_pgrp(p->real_parent) != pgrp &&
340		    task_session(p->real_parent) == task_session(p))
341			return 0;
342	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343
344	return 1;
345}
346
347int is_current_pgrp_orphaned(void)
348{
349	int retval;
350
351	read_lock(&tasklist_lock);
352	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353	read_unlock(&tasklist_lock);
354
355	return retval;
356}
357
358static bool has_stopped_jobs(struct pid *pgrp)
359{
360	struct task_struct *p;
361
362	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363		if (p->signal->flags & SIGNAL_STOP_STOPPED)
364			return true;
365	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366
367	return false;
368}
369
370/*
371 * Check to see if any process groups have become orphaned as
372 * a result of our exiting, and if they have any stopped jobs,
373 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374 */
375static void
376kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377{
378	struct pid *pgrp = task_pgrp(tsk);
379	struct task_struct *ignored_task = tsk;
380
381	if (!parent)
382		/* exit: our father is in a different pgrp than
383		 * we are and we were the only connection outside.
384		 */
385		parent = tsk->real_parent;
386	else
387		/* reparent: our child is in a different pgrp than
388		 * we are, and it was the only connection outside.
389		 */
390		ignored_task = NULL;
391
392	if (task_pgrp(parent) != pgrp &&
393	    task_session(parent) == task_session(tsk) &&
394	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
395	    has_stopped_jobs(pgrp)) {
396		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398	}
399}
400
401static void coredump_task_exit(struct task_struct *tsk)
402{
403	struct core_state *core_state;
404
405	/*
406	 * Serialize with any possible pending coredump.
407	 * We must hold siglock around checking core_state
408	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
409	 * will increment ->nr_threads for each thread in the
410	 * group without PF_POSTCOREDUMP set.
411	 */
412	spin_lock_irq(&tsk->sighand->siglock);
413	tsk->flags |= PF_POSTCOREDUMP;
414	core_state = tsk->signal->core_state;
415	spin_unlock_irq(&tsk->sighand->siglock);
416
417	/* The vhost_worker does not particpate in coredumps */
418	if (core_state &&
419	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
420		struct core_thread self;
421
422		self.task = current;
423		if (self.task->flags & PF_SIGNALED)
424			self.next = xchg(&core_state->dumper.next, &self);
425		else
426			self.task = NULL;
427		/*
428		 * Implies mb(), the result of xchg() must be visible
429		 * to core_state->dumper.
430		 */
431		if (atomic_dec_and_test(&core_state->nr_threads))
432			complete(&core_state->startup);
433
434		for (;;) {
435			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
436			if (!self.task) /* see coredump_finish() */
437				break;
438			schedule();
439		}
440		__set_current_state(TASK_RUNNING);
441	}
442}
443
444#ifdef CONFIG_MEMCG
445/*
446 * A task is exiting.   If it owned this mm, find a new owner for the mm.
447 */
448void mm_update_next_owner(struct mm_struct *mm)
449{
450	struct task_struct *c, *g, *p = current;
451
452retry:
453	/*
454	 * If the exiting or execing task is not the owner, it's
455	 * someone else's problem.
456	 */
457	if (mm->owner != p)
458		return;
459	/*
460	 * The current owner is exiting/execing and there are no other
461	 * candidates.  Do not leave the mm pointing to a possibly
462	 * freed task structure.
463	 */
464	if (atomic_read(&mm->mm_users) <= 1) {
465		WRITE_ONCE(mm->owner, NULL);
466		return;
467	}
468
469	read_lock(&tasklist_lock);
470	/*
471	 * Search in the children
472	 */
473	list_for_each_entry(c, &p->children, sibling) {
474		if (c->mm == mm)
475			goto assign_new_owner;
476	}
477
478	/*
479	 * Search in the siblings
480	 */
481	list_for_each_entry(c, &p->real_parent->children, sibling) {
482		if (c->mm == mm)
483			goto assign_new_owner;
484	}
485
486	/*
487	 * Search through everything else, we should not get here often.
488	 */
489	for_each_process(g) {
490		if (g->flags & PF_KTHREAD)
491			continue;
492		for_each_thread(g, c) {
493			if (c->mm == mm)
494				goto assign_new_owner;
495			if (c->mm)
496				break;
497		}
498	}
499	read_unlock(&tasklist_lock);
500	/*
501	 * We found no owner yet mm_users > 1: this implies that we are
502	 * most likely racing with swapoff (try_to_unuse()) or /proc or
503	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
504	 */
505	WRITE_ONCE(mm->owner, NULL);
506	return;
507
508assign_new_owner:
509	BUG_ON(c == p);
510	get_task_struct(c);
511	/*
512	 * The task_lock protects c->mm from changing.
513	 * We always want mm->owner->mm == mm
514	 */
515	task_lock(c);
516	/*
517	 * Delay read_unlock() till we have the task_lock()
518	 * to ensure that c does not slip away underneath us
519	 */
520	read_unlock(&tasklist_lock);
521	if (c->mm != mm) {
522		task_unlock(c);
523		put_task_struct(c);
524		goto retry;
525	}
526	WRITE_ONCE(mm->owner, c);
527	lru_gen_migrate_mm(mm);
528	task_unlock(c);
529	put_task_struct(c);
530}
531#endif /* CONFIG_MEMCG */
532
533/*
534 * Turn us into a lazy TLB process if we
535 * aren't already..
536 */
537static void exit_mm(void)
538{
539	struct mm_struct *mm = current->mm;
540
541	exit_mm_release(current, mm);
542	if (!mm)
543		return;
544	mmap_read_lock(mm);
545	mmgrab_lazy_tlb(mm);
546	BUG_ON(mm != current->active_mm);
547	/* more a memory barrier than a real lock */
548	task_lock(current);
549	/*
550	 * When a thread stops operating on an address space, the loop
551	 * in membarrier_private_expedited() may not observe that
552	 * tsk->mm, and the loop in membarrier_global_expedited() may
553	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
554	 * rq->membarrier_state, so those would not issue an IPI.
555	 * Membarrier requires a memory barrier after accessing
556	 * user-space memory, before clearing tsk->mm or the
557	 * rq->membarrier_state.
558	 */
559	smp_mb__after_spinlock();
560	local_irq_disable();
561	current->mm = NULL;
562	membarrier_update_current_mm(NULL);
563	enter_lazy_tlb(mm, current);
564	local_irq_enable();
565	task_unlock(current);
566	mmap_read_unlock(mm);
567	mm_update_next_owner(mm);
568	mmput(mm);
569	if (test_thread_flag(TIF_MEMDIE))
570		exit_oom_victim();
571}
572
573static struct task_struct *find_alive_thread(struct task_struct *p)
574{
575	struct task_struct *t;
576
577	for_each_thread(p, t) {
578		if (!(t->flags & PF_EXITING))
579			return t;
580	}
581	return NULL;
582}
583
584static struct task_struct *find_child_reaper(struct task_struct *father,
585						struct list_head *dead)
586	__releases(&tasklist_lock)
587	__acquires(&tasklist_lock)
588{
589	struct pid_namespace *pid_ns = task_active_pid_ns(father);
590	struct task_struct *reaper = pid_ns->child_reaper;
591	struct task_struct *p, *n;
592
593	if (likely(reaper != father))
594		return reaper;
595
596	reaper = find_alive_thread(father);
597	if (reaper) {
598		pid_ns->child_reaper = reaper;
599		return reaper;
600	}
601
602	write_unlock_irq(&tasklist_lock);
603
604	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
605		list_del_init(&p->ptrace_entry);
606		release_task(p);
607	}
608
609	zap_pid_ns_processes(pid_ns);
610	write_lock_irq(&tasklist_lock);
611
612	return father;
613}
614
615/*
616 * When we die, we re-parent all our children, and try to:
617 * 1. give them to another thread in our thread group, if such a member exists
618 * 2. give it to the first ancestor process which prctl'd itself as a
619 *    child_subreaper for its children (like a service manager)
620 * 3. give it to the init process (PID 1) in our pid namespace
621 */
622static struct task_struct *find_new_reaper(struct task_struct *father,
623					   struct task_struct *child_reaper)
624{
625	struct task_struct *thread, *reaper;
626
627	thread = find_alive_thread(father);
628	if (thread)
629		return thread;
630
631	if (father->signal->has_child_subreaper) {
632		unsigned int ns_level = task_pid(father)->level;
633		/*
634		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
635		 * We can't check reaper != child_reaper to ensure we do not
636		 * cross the namespaces, the exiting parent could be injected
637		 * by setns() + fork().
638		 * We check pid->level, this is slightly more efficient than
639		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
640		 */
641		for (reaper = father->real_parent;
642		     task_pid(reaper)->level == ns_level;
643		     reaper = reaper->real_parent) {
644			if (reaper == &init_task)
645				break;
646			if (!reaper->signal->is_child_subreaper)
647				continue;
648			thread = find_alive_thread(reaper);
649			if (thread)
650				return thread;
651		}
652	}
653
654	return child_reaper;
655}
656
657/*
658* Any that need to be release_task'd are put on the @dead list.
659 */
660static void reparent_leader(struct task_struct *father, struct task_struct *p,
661				struct list_head *dead)
662{
663	if (unlikely(p->exit_state == EXIT_DEAD))
664		return;
665
666	/* We don't want people slaying init. */
667	p->exit_signal = SIGCHLD;
668
669	/* If it has exited notify the new parent about this child's death. */
670	if (!p->ptrace &&
671	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
672		if (do_notify_parent(p, p->exit_signal)) {
673			p->exit_state = EXIT_DEAD;
674			list_add(&p->ptrace_entry, dead);
675		}
676	}
677
678	kill_orphaned_pgrp(p, father);
679}
680
681/*
682 * This does two things:
683 *
684 * A.  Make init inherit all the child processes
685 * B.  Check to see if any process groups have become orphaned
686 *	as a result of our exiting, and if they have any stopped
687 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
688 */
689static void forget_original_parent(struct task_struct *father,
690					struct list_head *dead)
691{
692	struct task_struct *p, *t, *reaper;
693
694	if (unlikely(!list_empty(&father->ptraced)))
695		exit_ptrace(father, dead);
696
697	/* Can drop and reacquire tasklist_lock */
698	reaper = find_child_reaper(father, dead);
699	if (list_empty(&father->children))
700		return;
701
702	reaper = find_new_reaper(father, reaper);
703	list_for_each_entry(p, &father->children, sibling) {
704		for_each_thread(p, t) {
705			RCU_INIT_POINTER(t->real_parent, reaper);
706			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
707			if (likely(!t->ptrace))
708				t->parent = t->real_parent;
709			if (t->pdeath_signal)
710				group_send_sig_info(t->pdeath_signal,
711						    SEND_SIG_NOINFO, t,
712						    PIDTYPE_TGID);
713		}
714		/*
715		 * If this is a threaded reparent there is no need to
716		 * notify anyone anything has happened.
717		 */
718		if (!same_thread_group(reaper, father))
719			reparent_leader(father, p, dead);
720	}
721	list_splice_tail_init(&father->children, &reaper->children);
722}
723
724/*
725 * Send signals to all our closest relatives so that they know
726 * to properly mourn us..
727 */
728static void exit_notify(struct task_struct *tsk, int group_dead)
729{
730	bool autoreap;
731	struct task_struct *p, *n;
732	LIST_HEAD(dead);
733
734	write_lock_irq(&tasklist_lock);
735	forget_original_parent(tsk, &dead);
736
737	if (group_dead)
738		kill_orphaned_pgrp(tsk->group_leader, NULL);
739
740	tsk->exit_state = EXIT_ZOMBIE;
741	/*
742	 * sub-thread or delay_group_leader(), wake up the
743	 * PIDFD_THREAD waiters.
744	 */
745	if (!thread_group_empty(tsk))
746		do_notify_pidfd(tsk);
747
748	if (unlikely(tsk->ptrace)) {
749		int sig = thread_group_leader(tsk) &&
750				thread_group_empty(tsk) &&
751				!ptrace_reparented(tsk) ?
752			tsk->exit_signal : SIGCHLD;
753		autoreap = do_notify_parent(tsk, sig);
754	} else if (thread_group_leader(tsk)) {
755		autoreap = thread_group_empty(tsk) &&
756			do_notify_parent(tsk, tsk->exit_signal);
757	} else {
758		autoreap = true;
759	}
760
761	if (autoreap) {
762		tsk->exit_state = EXIT_DEAD;
763		list_add(&tsk->ptrace_entry, &dead);
764	}
765
766	/* mt-exec, de_thread() is waiting for group leader */
767	if (unlikely(tsk->signal->notify_count < 0))
768		wake_up_process(tsk->signal->group_exec_task);
769	write_unlock_irq(&tasklist_lock);
770
771	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
772		list_del_init(&p->ptrace_entry);
773		release_task(p);
774	}
775}
776
777#ifdef CONFIG_DEBUG_STACK_USAGE
778static void check_stack_usage(void)
779{
780	static DEFINE_SPINLOCK(low_water_lock);
781	static int lowest_to_date = THREAD_SIZE;
782	unsigned long free;
783
784	free = stack_not_used(current);
785
786	if (free >= lowest_to_date)
787		return;
788
789	spin_lock(&low_water_lock);
790	if (free < lowest_to_date) {
791		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
792			current->comm, task_pid_nr(current), free);
793		lowest_to_date = free;
794	}
795	spin_unlock(&low_water_lock);
796}
797#else
798static inline void check_stack_usage(void) {}
799#endif
800
801static void synchronize_group_exit(struct task_struct *tsk, long code)
802{
803	struct sighand_struct *sighand = tsk->sighand;
804	struct signal_struct *signal = tsk->signal;
805
806	spin_lock_irq(&sighand->siglock);
807	signal->quick_threads--;
808	if ((signal->quick_threads == 0) &&
809	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
810		signal->flags = SIGNAL_GROUP_EXIT;
811		signal->group_exit_code = code;
812		signal->group_stop_count = 0;
813	}
814	spin_unlock_irq(&sighand->siglock);
815}
816
817void __noreturn do_exit(long code)
818{
819	struct task_struct *tsk = current;
820	int group_dead;
821
822	WARN_ON(irqs_disabled());
823
824	synchronize_group_exit(tsk, code);
825
826	WARN_ON(tsk->plug);
827
828	kcov_task_exit(tsk);
829	kmsan_task_exit(tsk);
830
831	coredump_task_exit(tsk);
832	ptrace_event(PTRACE_EVENT_EXIT, code);
833	user_events_exit(tsk);
834
835	io_uring_files_cancel();
836	exit_signals(tsk);  /* sets PF_EXITING */
837
838	acct_update_integrals(tsk);
839	group_dead = atomic_dec_and_test(&tsk->signal->live);
840	if (group_dead) {
841		/*
842		 * If the last thread of global init has exited, panic
843		 * immediately to get a useable coredump.
844		 */
845		if (unlikely(is_global_init(tsk)))
846			panic("Attempted to kill init! exitcode=0x%08x\n",
847				tsk->signal->group_exit_code ?: (int)code);
848
849#ifdef CONFIG_POSIX_TIMERS
850		hrtimer_cancel(&tsk->signal->real_timer);
851		exit_itimers(tsk);
852#endif
853		if (tsk->mm)
854			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
855	}
856	acct_collect(code, group_dead);
857	if (group_dead)
858		tty_audit_exit();
859	audit_free(tsk);
860
861	tsk->exit_code = code;
862	taskstats_exit(tsk, group_dead);
863
864	exit_mm();
865
866	if (group_dead)
867		acct_process();
868	trace_sched_process_exit(tsk);
869
870	exit_sem(tsk);
871	exit_shm(tsk);
872	exit_files(tsk);
873	exit_fs(tsk);
874	if (group_dead)
875		disassociate_ctty(1);
876	exit_task_namespaces(tsk);
877	exit_task_work(tsk);
878	exit_thread(tsk);
879
880	/*
881	 * Flush inherited counters to the parent - before the parent
882	 * gets woken up by child-exit notifications.
883	 *
884	 * because of cgroup mode, must be called before cgroup_exit()
885	 */
886	perf_event_exit_task(tsk);
887
888	sched_autogroup_exit_task(tsk);
889	cgroup_exit(tsk);
890
891	/*
892	 * FIXME: do that only when needed, using sched_exit tracepoint
893	 */
894	flush_ptrace_hw_breakpoint(tsk);
895
896	exit_tasks_rcu_start();
897	exit_notify(tsk, group_dead);
898	proc_exit_connector(tsk);
899	mpol_put_task_policy(tsk);
900#ifdef CONFIG_FUTEX
901	if (unlikely(current->pi_state_cache))
902		kfree(current->pi_state_cache);
903#endif
904	/*
905	 * Make sure we are holding no locks:
906	 */
907	debug_check_no_locks_held();
908
909	if (tsk->io_context)
910		exit_io_context(tsk);
911
912	if (tsk->splice_pipe)
913		free_pipe_info(tsk->splice_pipe);
914
915	if (tsk->task_frag.page)
916		put_page(tsk->task_frag.page);
917
918	exit_task_stack_account(tsk);
919
920	check_stack_usage();
921	preempt_disable();
922	if (tsk->nr_dirtied)
923		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
924	exit_rcu();
925	exit_tasks_rcu_finish();
926
927	lockdep_free_task(tsk);
928	do_task_dead();
929}
930
931void __noreturn make_task_dead(int signr)
932{
933	/*
934	 * Take the task off the cpu after something catastrophic has
935	 * happened.
936	 *
937	 * We can get here from a kernel oops, sometimes with preemption off.
938	 * Start by checking for critical errors.
939	 * Then fix up important state like USER_DS and preemption.
940	 * Then do everything else.
941	 */
942	struct task_struct *tsk = current;
943	unsigned int limit;
944
945	if (unlikely(in_interrupt()))
946		panic("Aiee, killing interrupt handler!");
947	if (unlikely(!tsk->pid))
948		panic("Attempted to kill the idle task!");
949
950	if (unlikely(irqs_disabled())) {
951		pr_info("note: %s[%d] exited with irqs disabled\n",
952			current->comm, task_pid_nr(current));
953		local_irq_enable();
954	}
955	if (unlikely(in_atomic())) {
956		pr_info("note: %s[%d] exited with preempt_count %d\n",
957			current->comm, task_pid_nr(current),
958			preempt_count());
959		preempt_count_set(PREEMPT_ENABLED);
960	}
961
962	/*
963	 * Every time the system oopses, if the oops happens while a reference
964	 * to an object was held, the reference leaks.
965	 * If the oops doesn't also leak memory, repeated oopsing can cause
966	 * reference counters to wrap around (if they're not using refcount_t).
967	 * This means that repeated oopsing can make unexploitable-looking bugs
968	 * exploitable through repeated oopsing.
969	 * To make sure this can't happen, place an upper bound on how often the
970	 * kernel may oops without panic().
971	 */
972	limit = READ_ONCE(oops_limit);
973	if (atomic_inc_return(&oops_count) >= limit && limit)
974		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
975
976	/*
977	 * We're taking recursive faults here in make_task_dead. Safest is to just
978	 * leave this task alone and wait for reboot.
979	 */
980	if (unlikely(tsk->flags & PF_EXITING)) {
981		pr_alert("Fixing recursive fault but reboot is needed!\n");
982		futex_exit_recursive(tsk);
983		tsk->exit_state = EXIT_DEAD;
984		refcount_inc(&tsk->rcu_users);
985		do_task_dead();
986	}
987
988	do_exit(signr);
989}
990
991SYSCALL_DEFINE1(exit, int, error_code)
992{
993	do_exit((error_code&0xff)<<8);
994}
995
996/*
997 * Take down every thread in the group.  This is called by fatal signals
998 * as well as by sys_exit_group (below).
999 */
1000void __noreturn
1001do_group_exit(int exit_code)
1002{
1003	struct signal_struct *sig = current->signal;
1004
1005	if (sig->flags & SIGNAL_GROUP_EXIT)
1006		exit_code = sig->group_exit_code;
1007	else if (sig->group_exec_task)
1008		exit_code = 0;
1009	else {
1010		struct sighand_struct *const sighand = current->sighand;
1011
1012		spin_lock_irq(&sighand->siglock);
1013		if (sig->flags & SIGNAL_GROUP_EXIT)
1014			/* Another thread got here before we took the lock.  */
1015			exit_code = sig->group_exit_code;
1016		else if (sig->group_exec_task)
1017			exit_code = 0;
1018		else {
1019			sig->group_exit_code = exit_code;
1020			sig->flags = SIGNAL_GROUP_EXIT;
1021			zap_other_threads(current);
1022		}
1023		spin_unlock_irq(&sighand->siglock);
1024	}
1025
1026	do_exit(exit_code);
1027	/* NOTREACHED */
1028}
1029
1030/*
1031 * this kills every thread in the thread group. Note that any externally
1032 * wait4()-ing process will get the correct exit code - even if this
1033 * thread is not the thread group leader.
1034 */
1035SYSCALL_DEFINE1(exit_group, int, error_code)
1036{
1037	do_group_exit((error_code & 0xff) << 8);
1038	/* NOTREACHED */
1039	return 0;
1040}
1041
1042static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1043{
1044	return	wo->wo_type == PIDTYPE_MAX ||
1045		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1046}
1047
1048static int
1049eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1050{
1051	if (!eligible_pid(wo, p))
1052		return 0;
1053
1054	/*
1055	 * Wait for all children (clone and not) if __WALL is set or
1056	 * if it is traced by us.
1057	 */
1058	if (ptrace || (wo->wo_flags & __WALL))
1059		return 1;
1060
1061	/*
1062	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1063	 * otherwise, wait for non-clone children *only*.
1064	 *
1065	 * Note: a "clone" child here is one that reports to its parent
1066	 * using a signal other than SIGCHLD, or a non-leader thread which
1067	 * we can only see if it is traced by us.
1068	 */
1069	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1070		return 0;
1071
1072	return 1;
1073}
1074
1075/*
1076 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1077 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1078 * the lock and this task is uninteresting.  If we return nonzero, we have
1079 * released the lock and the system call should return.
1080 */
1081static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1082{
1083	int state, status;
1084	pid_t pid = task_pid_vnr(p);
1085	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1086	struct waitid_info *infop;
1087
1088	if (!likely(wo->wo_flags & WEXITED))
1089		return 0;
1090
1091	if (unlikely(wo->wo_flags & WNOWAIT)) {
1092		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1093			? p->signal->group_exit_code : p->exit_code;
1094		get_task_struct(p);
1095		read_unlock(&tasklist_lock);
1096		sched_annotate_sleep();
1097		if (wo->wo_rusage)
1098			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1099		put_task_struct(p);
1100		goto out_info;
1101	}
1102	/*
1103	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1104	 */
1105	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1106		EXIT_TRACE : EXIT_DEAD;
1107	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1108		return 0;
1109	/*
1110	 * We own this thread, nobody else can reap it.
1111	 */
1112	read_unlock(&tasklist_lock);
1113	sched_annotate_sleep();
1114
1115	/*
1116	 * Check thread_group_leader() to exclude the traced sub-threads.
1117	 */
1118	if (state == EXIT_DEAD && thread_group_leader(p)) {
1119		struct signal_struct *sig = p->signal;
1120		struct signal_struct *psig = current->signal;
1121		unsigned long maxrss;
1122		u64 tgutime, tgstime;
1123
1124		/*
1125		 * The resource counters for the group leader are in its
1126		 * own task_struct.  Those for dead threads in the group
1127		 * are in its signal_struct, as are those for the child
1128		 * processes it has previously reaped.  All these
1129		 * accumulate in the parent's signal_struct c* fields.
1130		 *
1131		 * We don't bother to take a lock here to protect these
1132		 * p->signal fields because the whole thread group is dead
1133		 * and nobody can change them.
1134		 *
1135		 * psig->stats_lock also protects us from our sub-threads
1136		 * which can reap other children at the same time.
1137		 *
1138		 * We use thread_group_cputime_adjusted() to get times for
1139		 * the thread group, which consolidates times for all threads
1140		 * in the group including the group leader.
1141		 */
1142		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1143		write_seqlock_irq(&psig->stats_lock);
1144		psig->cutime += tgutime + sig->cutime;
1145		psig->cstime += tgstime + sig->cstime;
1146		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1147		psig->cmin_flt +=
1148			p->min_flt + sig->min_flt + sig->cmin_flt;
1149		psig->cmaj_flt +=
1150			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1151		psig->cnvcsw +=
1152			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1153		psig->cnivcsw +=
1154			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1155		psig->cinblock +=
1156			task_io_get_inblock(p) +
1157			sig->inblock + sig->cinblock;
1158		psig->coublock +=
1159			task_io_get_oublock(p) +
1160			sig->oublock + sig->coublock;
1161		maxrss = max(sig->maxrss, sig->cmaxrss);
1162		if (psig->cmaxrss < maxrss)
1163			psig->cmaxrss = maxrss;
1164		task_io_accounting_add(&psig->ioac, &p->ioac);
1165		task_io_accounting_add(&psig->ioac, &sig->ioac);
1166		write_sequnlock_irq(&psig->stats_lock);
1167	}
1168
1169	if (wo->wo_rusage)
1170		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1171	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1172		? p->signal->group_exit_code : p->exit_code;
1173	wo->wo_stat = status;
1174
1175	if (state == EXIT_TRACE) {
1176		write_lock_irq(&tasklist_lock);
1177		/* We dropped tasklist, ptracer could die and untrace */
1178		ptrace_unlink(p);
1179
1180		/* If parent wants a zombie, don't release it now */
1181		state = EXIT_ZOMBIE;
1182		if (do_notify_parent(p, p->exit_signal))
1183			state = EXIT_DEAD;
1184		p->exit_state = state;
1185		write_unlock_irq(&tasklist_lock);
1186	}
1187	if (state == EXIT_DEAD)
1188		release_task(p);
1189
1190out_info:
1191	infop = wo->wo_info;
1192	if (infop) {
1193		if ((status & 0x7f) == 0) {
1194			infop->cause = CLD_EXITED;
1195			infop->status = status >> 8;
1196		} else {
1197			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1198			infop->status = status & 0x7f;
1199		}
1200		infop->pid = pid;
1201		infop->uid = uid;
1202	}
1203
1204	return pid;
1205}
1206
1207static int *task_stopped_code(struct task_struct *p, bool ptrace)
1208{
1209	if (ptrace) {
1210		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1211			return &p->exit_code;
1212	} else {
1213		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1214			return &p->signal->group_exit_code;
1215	}
1216	return NULL;
1217}
1218
1219/**
1220 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1221 * @wo: wait options
1222 * @ptrace: is the wait for ptrace
1223 * @p: task to wait for
1224 *
1225 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1226 *
1227 * CONTEXT:
1228 * read_lock(&tasklist_lock), which is released if return value is
1229 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1230 *
1231 * RETURNS:
1232 * 0 if wait condition didn't exist and search for other wait conditions
1233 * should continue.  Non-zero return, -errno on failure and @p's pid on
1234 * success, implies that tasklist_lock is released and wait condition
1235 * search should terminate.
1236 */
1237static int wait_task_stopped(struct wait_opts *wo,
1238				int ptrace, struct task_struct *p)
1239{
1240	struct waitid_info *infop;
1241	int exit_code, *p_code, why;
1242	uid_t uid = 0; /* unneeded, required by compiler */
1243	pid_t pid;
1244
1245	/*
1246	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1247	 */
1248	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1249		return 0;
1250
1251	if (!task_stopped_code(p, ptrace))
1252		return 0;
1253
1254	exit_code = 0;
1255	spin_lock_irq(&p->sighand->siglock);
1256
1257	p_code = task_stopped_code(p, ptrace);
1258	if (unlikely(!p_code))
1259		goto unlock_sig;
1260
1261	exit_code = *p_code;
1262	if (!exit_code)
1263		goto unlock_sig;
1264
1265	if (!unlikely(wo->wo_flags & WNOWAIT))
1266		*p_code = 0;
1267
1268	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1269unlock_sig:
1270	spin_unlock_irq(&p->sighand->siglock);
1271	if (!exit_code)
1272		return 0;
1273
1274	/*
1275	 * Now we are pretty sure this task is interesting.
1276	 * Make sure it doesn't get reaped out from under us while we
1277	 * give up the lock and then examine it below.  We don't want to
1278	 * keep holding onto the tasklist_lock while we call getrusage and
1279	 * possibly take page faults for user memory.
1280	 */
1281	get_task_struct(p);
1282	pid = task_pid_vnr(p);
1283	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1284	read_unlock(&tasklist_lock);
1285	sched_annotate_sleep();
1286	if (wo->wo_rusage)
1287		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1288	put_task_struct(p);
1289
1290	if (likely(!(wo->wo_flags & WNOWAIT)))
1291		wo->wo_stat = (exit_code << 8) | 0x7f;
1292
1293	infop = wo->wo_info;
1294	if (infop) {
1295		infop->cause = why;
1296		infop->status = exit_code;
1297		infop->pid = pid;
1298		infop->uid = uid;
1299	}
1300	return pid;
1301}
1302
1303/*
1304 * Handle do_wait work for one task in a live, non-stopped state.
1305 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1306 * the lock and this task is uninteresting.  If we return nonzero, we have
1307 * released the lock and the system call should return.
1308 */
1309static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1310{
1311	struct waitid_info *infop;
1312	pid_t pid;
1313	uid_t uid;
1314
1315	if (!unlikely(wo->wo_flags & WCONTINUED))
1316		return 0;
1317
1318	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1319		return 0;
1320
1321	spin_lock_irq(&p->sighand->siglock);
1322	/* Re-check with the lock held.  */
1323	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1324		spin_unlock_irq(&p->sighand->siglock);
1325		return 0;
1326	}
1327	if (!unlikely(wo->wo_flags & WNOWAIT))
1328		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1329	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330	spin_unlock_irq(&p->sighand->siglock);
1331
1332	pid = task_pid_vnr(p);
1333	get_task_struct(p);
1334	read_unlock(&tasklist_lock);
1335	sched_annotate_sleep();
1336	if (wo->wo_rusage)
1337		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1338	put_task_struct(p);
1339
1340	infop = wo->wo_info;
1341	if (!infop) {
1342		wo->wo_stat = 0xffff;
1343	} else {
1344		infop->cause = CLD_CONTINUED;
1345		infop->pid = pid;
1346		infop->uid = uid;
1347		infop->status = SIGCONT;
1348	}
1349	return pid;
1350}
1351
1352/*
1353 * Consider @p for a wait by @parent.
1354 *
1355 * -ECHILD should be in ->notask_error before the first call.
1356 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1357 * Returns zero if the search for a child should continue;
1358 * then ->notask_error is 0 if @p is an eligible child,
1359 * or still -ECHILD.
1360 */
1361static int wait_consider_task(struct wait_opts *wo, int ptrace,
1362				struct task_struct *p)
1363{
1364	/*
1365	 * We can race with wait_task_zombie() from another thread.
1366	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1367	 * can't confuse the checks below.
1368	 */
1369	int exit_state = READ_ONCE(p->exit_state);
1370	int ret;
1371
1372	if (unlikely(exit_state == EXIT_DEAD))
1373		return 0;
1374
1375	ret = eligible_child(wo, ptrace, p);
1376	if (!ret)
1377		return ret;
1378
1379	if (unlikely(exit_state == EXIT_TRACE)) {
1380		/*
1381		 * ptrace == 0 means we are the natural parent. In this case
1382		 * we should clear notask_error, debugger will notify us.
1383		 */
1384		if (likely(!ptrace))
1385			wo->notask_error = 0;
1386		return 0;
1387	}
1388
1389	if (likely(!ptrace) && unlikely(p->ptrace)) {
1390		/*
1391		 * If it is traced by its real parent's group, just pretend
1392		 * the caller is ptrace_do_wait() and reap this child if it
1393		 * is zombie.
1394		 *
1395		 * This also hides group stop state from real parent; otherwise
1396		 * a single stop can be reported twice as group and ptrace stop.
1397		 * If a ptracer wants to distinguish these two events for its
1398		 * own children it should create a separate process which takes
1399		 * the role of real parent.
1400		 */
1401		if (!ptrace_reparented(p))
1402			ptrace = 1;
1403	}
1404
1405	/* slay zombie? */
1406	if (exit_state == EXIT_ZOMBIE) {
1407		/* we don't reap group leaders with subthreads */
1408		if (!delay_group_leader(p)) {
1409			/*
1410			 * A zombie ptracee is only visible to its ptracer.
1411			 * Notification and reaping will be cascaded to the
1412			 * real parent when the ptracer detaches.
1413			 */
1414			if (unlikely(ptrace) || likely(!p->ptrace))
1415				return wait_task_zombie(wo, p);
1416		}
1417
1418		/*
1419		 * Allow access to stopped/continued state via zombie by
1420		 * falling through.  Clearing of notask_error is complex.
1421		 *
1422		 * When !@ptrace:
1423		 *
1424		 * If WEXITED is set, notask_error should naturally be
1425		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1426		 * so, if there are live subthreads, there are events to
1427		 * wait for.  If all subthreads are dead, it's still safe
1428		 * to clear - this function will be called again in finite
1429		 * amount time once all the subthreads are released and
1430		 * will then return without clearing.
1431		 *
1432		 * When @ptrace:
1433		 *
1434		 * Stopped state is per-task and thus can't change once the
1435		 * target task dies.  Only continued and exited can happen.
1436		 * Clear notask_error if WCONTINUED | WEXITED.
1437		 */
1438		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1439			wo->notask_error = 0;
1440	} else {
1441		/*
1442		 * @p is alive and it's gonna stop, continue or exit, so
1443		 * there always is something to wait for.
1444		 */
1445		wo->notask_error = 0;
1446	}
1447
1448	/*
1449	 * Wait for stopped.  Depending on @ptrace, different stopped state
1450	 * is used and the two don't interact with each other.
1451	 */
1452	ret = wait_task_stopped(wo, ptrace, p);
1453	if (ret)
1454		return ret;
1455
1456	/*
1457	 * Wait for continued.  There's only one continued state and the
1458	 * ptracer can consume it which can confuse the real parent.  Don't
1459	 * use WCONTINUED from ptracer.  You don't need or want it.
1460	 */
1461	return wait_task_continued(wo, p);
1462}
1463
1464/*
1465 * Do the work of do_wait() for one thread in the group, @tsk.
1466 *
1467 * -ECHILD should be in ->notask_error before the first call.
1468 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1469 * Returns zero if the search for a child should continue; then
1470 * ->notask_error is 0 if there were any eligible children,
1471 * or still -ECHILD.
1472 */
1473static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1474{
1475	struct task_struct *p;
1476
1477	list_for_each_entry(p, &tsk->children, sibling) {
1478		int ret = wait_consider_task(wo, 0, p);
1479
1480		if (ret)
1481			return ret;
1482	}
1483
1484	return 0;
1485}
1486
1487static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1488{
1489	struct task_struct *p;
1490
1491	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1492		int ret = wait_consider_task(wo, 1, p);
1493
1494		if (ret)
1495			return ret;
1496	}
1497
1498	return 0;
1499}
1500
1501bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1502{
1503	if (!eligible_pid(wo, p))
1504		return false;
1505
1506	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1507		return false;
1508
1509	return true;
1510}
1511
1512static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1513				int sync, void *key)
1514{
1515	struct wait_opts *wo = container_of(wait, struct wait_opts,
1516						child_wait);
1517	struct task_struct *p = key;
1518
1519	if (pid_child_should_wake(wo, p))
1520		return default_wake_function(wait, mode, sync, key);
1521
1522	return 0;
1523}
1524
1525void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1526{
1527	__wake_up_sync_key(&parent->signal->wait_chldexit,
1528			   TASK_INTERRUPTIBLE, p);
1529}
1530
1531static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1532				 struct task_struct *target)
1533{
1534	struct task_struct *parent =
1535		!ptrace ? target->real_parent : target->parent;
1536
1537	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1538				     same_thread_group(current, parent));
1539}
1540
1541/*
1542 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1543 * and tracee lists to find the target task.
1544 */
1545static int do_wait_pid(struct wait_opts *wo)
1546{
1547	bool ptrace;
1548	struct task_struct *target;
1549	int retval;
1550
1551	ptrace = false;
1552	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1553	if (target && is_effectively_child(wo, ptrace, target)) {
1554		retval = wait_consider_task(wo, ptrace, target);
1555		if (retval)
1556			return retval;
1557	}
1558
1559	ptrace = true;
1560	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1561	if (target && target->ptrace &&
1562	    is_effectively_child(wo, ptrace, target)) {
1563		retval = wait_consider_task(wo, ptrace, target);
1564		if (retval)
1565			return retval;
1566	}
1567
1568	return 0;
1569}
1570
1571long __do_wait(struct wait_opts *wo)
1572{
1573	long retval;
1574
1575	/*
1576	 * If there is nothing that can match our criteria, just get out.
1577	 * We will clear ->notask_error to zero if we see any child that
1578	 * might later match our criteria, even if we are not able to reap
1579	 * it yet.
1580	 */
1581	wo->notask_error = -ECHILD;
1582	if ((wo->wo_type < PIDTYPE_MAX) &&
1583	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1584		goto notask;
1585
1586	read_lock(&tasklist_lock);
1587
1588	if (wo->wo_type == PIDTYPE_PID) {
1589		retval = do_wait_pid(wo);
1590		if (retval)
1591			return retval;
1592	} else {
1593		struct task_struct *tsk = current;
1594
1595		do {
1596			retval = do_wait_thread(wo, tsk);
1597			if (retval)
1598				return retval;
1599
1600			retval = ptrace_do_wait(wo, tsk);
1601			if (retval)
1602				return retval;
1603
1604			if (wo->wo_flags & __WNOTHREAD)
1605				break;
1606		} while_each_thread(current, tsk);
1607	}
1608	read_unlock(&tasklist_lock);
1609
1610notask:
1611	retval = wo->notask_error;
1612	if (!retval && !(wo->wo_flags & WNOHANG))
1613		return -ERESTARTSYS;
1614
1615	return retval;
1616}
1617
1618static long do_wait(struct wait_opts *wo)
1619{
1620	int retval;
1621
1622	trace_sched_process_wait(wo->wo_pid);
1623
1624	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1625	wo->child_wait.private = current;
1626	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1627
1628	do {
1629		set_current_state(TASK_INTERRUPTIBLE);
1630		retval = __do_wait(wo);
1631		if (retval != -ERESTARTSYS)
1632			break;
1633		if (signal_pending(current))
1634			break;
1635		schedule();
1636	} while (1);
1637
1638	__set_current_state(TASK_RUNNING);
1639	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1640	return retval;
1641}
1642
1643int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1644			  struct waitid_info *infop, int options,
1645			  struct rusage *ru)
1646{
1647	unsigned int f_flags = 0;
1648	struct pid *pid = NULL;
1649	enum pid_type type;
1650
1651	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1652			__WNOTHREAD|__WCLONE|__WALL))
1653		return -EINVAL;
1654	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1655		return -EINVAL;
1656
1657	switch (which) {
1658	case P_ALL:
1659		type = PIDTYPE_MAX;
1660		break;
1661	case P_PID:
1662		type = PIDTYPE_PID;
1663		if (upid <= 0)
1664			return -EINVAL;
1665
1666		pid = find_get_pid(upid);
1667		break;
1668	case P_PGID:
1669		type = PIDTYPE_PGID;
1670		if (upid < 0)
1671			return -EINVAL;
1672
1673		if (upid)
1674			pid = find_get_pid(upid);
1675		else
1676			pid = get_task_pid(current, PIDTYPE_PGID);
1677		break;
1678	case P_PIDFD:
1679		type = PIDTYPE_PID;
1680		if (upid < 0)
1681			return -EINVAL;
1682
1683		pid = pidfd_get_pid(upid, &f_flags);
1684		if (IS_ERR(pid))
1685			return PTR_ERR(pid);
1686
1687		break;
1688	default:
1689		return -EINVAL;
1690	}
1691
1692	wo->wo_type	= type;
1693	wo->wo_pid	= pid;
1694	wo->wo_flags	= options;
1695	wo->wo_info	= infop;
1696	wo->wo_rusage	= ru;
1697	if (f_flags & O_NONBLOCK)
1698		wo->wo_flags |= WNOHANG;
1699
1700	return 0;
1701}
1702
1703static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1704			  int options, struct rusage *ru)
1705{
1706	struct wait_opts wo;
1707	long ret;
1708
1709	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1710	if (ret)
1711		return ret;
1712
1713	ret = do_wait(&wo);
1714	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1715		ret = -EAGAIN;
1716
1717	put_pid(wo.wo_pid);
1718	return ret;
1719}
1720
1721SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1722		infop, int, options, struct rusage __user *, ru)
1723{
1724	struct rusage r;
1725	struct waitid_info info = {.status = 0};
1726	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1727	int signo = 0;
1728
1729	if (err > 0) {
1730		signo = SIGCHLD;
1731		err = 0;
1732		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1733			return -EFAULT;
1734	}
1735	if (!infop)
1736		return err;
1737
1738	if (!user_write_access_begin(infop, sizeof(*infop)))
1739		return -EFAULT;
1740
1741	unsafe_put_user(signo, &infop->si_signo, Efault);
1742	unsafe_put_user(0, &infop->si_errno, Efault);
1743	unsafe_put_user(info.cause, &infop->si_code, Efault);
1744	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1745	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1746	unsafe_put_user(info.status, &infop->si_status, Efault);
1747	user_write_access_end();
1748	return err;
1749Efault:
1750	user_write_access_end();
1751	return -EFAULT;
1752}
1753
1754long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1755		  struct rusage *ru)
1756{
1757	struct wait_opts wo;
1758	struct pid *pid = NULL;
1759	enum pid_type type;
1760	long ret;
1761
1762	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1763			__WNOTHREAD|__WCLONE|__WALL))
1764		return -EINVAL;
1765
1766	/* -INT_MIN is not defined */
1767	if (upid == INT_MIN)
1768		return -ESRCH;
1769
1770	if (upid == -1)
1771		type = PIDTYPE_MAX;
1772	else if (upid < 0) {
1773		type = PIDTYPE_PGID;
1774		pid = find_get_pid(-upid);
1775	} else if (upid == 0) {
1776		type = PIDTYPE_PGID;
1777		pid = get_task_pid(current, PIDTYPE_PGID);
1778	} else /* upid > 0 */ {
1779		type = PIDTYPE_PID;
1780		pid = find_get_pid(upid);
1781	}
1782
1783	wo.wo_type	= type;
1784	wo.wo_pid	= pid;
1785	wo.wo_flags	= options | WEXITED;
1786	wo.wo_info	= NULL;
1787	wo.wo_stat	= 0;
1788	wo.wo_rusage	= ru;
1789	ret = do_wait(&wo);
1790	put_pid(pid);
1791	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1792		ret = -EFAULT;
1793
1794	return ret;
1795}
1796
1797int kernel_wait(pid_t pid, int *stat)
1798{
1799	struct wait_opts wo = {
1800		.wo_type	= PIDTYPE_PID,
1801		.wo_pid		= find_get_pid(pid),
1802		.wo_flags	= WEXITED,
1803	};
1804	int ret;
1805
1806	ret = do_wait(&wo);
1807	if (ret > 0 && wo.wo_stat)
1808		*stat = wo.wo_stat;
1809	put_pid(wo.wo_pid);
1810	return ret;
1811}
1812
1813SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1814		int, options, struct rusage __user *, ru)
1815{
1816	struct rusage r;
1817	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1818
1819	if (err > 0) {
1820		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1821			return -EFAULT;
1822	}
1823	return err;
1824}
1825
1826#ifdef __ARCH_WANT_SYS_WAITPID
1827
1828/*
1829 * sys_waitpid() remains for compatibility. waitpid() should be
1830 * implemented by calling sys_wait4() from libc.a.
1831 */
1832SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1833{
1834	return kernel_wait4(pid, stat_addr, options, NULL);
1835}
1836
1837#endif
1838
1839#ifdef CONFIG_COMPAT
1840COMPAT_SYSCALL_DEFINE4(wait4,
1841	compat_pid_t, pid,
1842	compat_uint_t __user *, stat_addr,
1843	int, options,
1844	struct compat_rusage __user *, ru)
1845{
1846	struct rusage r;
1847	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1848	if (err > 0) {
1849		if (ru && put_compat_rusage(&r, ru))
1850			return -EFAULT;
1851	}
1852	return err;
1853}
1854
1855COMPAT_SYSCALL_DEFINE5(waitid,
1856		int, which, compat_pid_t, pid,
1857		struct compat_siginfo __user *, infop, int, options,
1858		struct compat_rusage __user *, uru)
1859{
1860	struct rusage ru;
1861	struct waitid_info info = {.status = 0};
1862	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1863	int signo = 0;
1864	if (err > 0) {
1865		signo = SIGCHLD;
1866		err = 0;
1867		if (uru) {
1868			/* kernel_waitid() overwrites everything in ru */
1869			if (COMPAT_USE_64BIT_TIME)
1870				err = copy_to_user(uru, &ru, sizeof(ru));
1871			else
1872				err = put_compat_rusage(&ru, uru);
1873			if (err)
1874				return -EFAULT;
1875		}
1876	}
1877
1878	if (!infop)
1879		return err;
1880
1881	if (!user_write_access_begin(infop, sizeof(*infop)))
1882		return -EFAULT;
1883
1884	unsafe_put_user(signo, &infop->si_signo, Efault);
1885	unsafe_put_user(0, &infop->si_errno, Efault);
1886	unsafe_put_user(info.cause, &infop->si_code, Efault);
1887	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1888	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1889	unsafe_put_user(info.status, &infop->si_status, Efault);
1890	user_write_access_end();
1891	return err;
1892Efault:
1893	user_write_access_end();
1894	return -EFAULT;
1895}
1896#endif
1897
1898/*
1899 * This needs to be __function_aligned as GCC implicitly makes any
1900 * implementation of abort() cold and drops alignment specified by
1901 * -falign-functions=N.
1902 *
1903 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1904 */
1905__weak __function_aligned void abort(void)
1906{
1907	BUG();
1908
1909	/* if that doesn't kill us, halt */
1910	panic("Oops failed to kill thread");
1911}
1912EXPORT_SYMBOL(abort);
1913