1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * crash.c - kernel crash support code.
4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5 */
6
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9#include <linux/buildid.h>
10#include <linux/init.h>
11#include <linux/utsname.h>
12#include <linux/vmalloc.h>
13#include <linux/sizes.h>
14#include <linux/kexec.h>
15#include <linux/memory.h>
16#include <linux/mm.h>
17#include <linux/cpuhotplug.h>
18#include <linux/memblock.h>
19#include <linux/kmemleak.h>
20#include <linux/crash_core.h>
21#include <linux/reboot.h>
22#include <linux/btf.h>
23#include <linux/objtool.h>
24
25#include <asm/page.h>
26#include <asm/sections.h>
27
28#include <crypto/sha1.h>
29
30#include "kallsyms_internal.h"
31#include "kexec_internal.h"
32
33/* Per cpu memory for storing cpu states in case of system crash. */
34note_buf_t __percpu *crash_notes;
35
36#ifdef CONFIG_CRASH_DUMP
37
38int kimage_crash_copy_vmcoreinfo(struct kimage *image)
39{
40	struct page *vmcoreinfo_page;
41	void *safecopy;
42
43	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
44		return 0;
45	if (image->type != KEXEC_TYPE_CRASH)
46		return 0;
47
48	/*
49	 * For kdump, allocate one vmcoreinfo safe copy from the
50	 * crash memory. as we have arch_kexec_protect_crashkres()
51	 * after kexec syscall, we naturally protect it from write
52	 * (even read) access under kernel direct mapping. But on
53	 * the other hand, we still need to operate it when crash
54	 * happens to generate vmcoreinfo note, hereby we rely on
55	 * vmap for this purpose.
56	 */
57	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
58	if (!vmcoreinfo_page) {
59		pr_warn("Could not allocate vmcoreinfo buffer\n");
60		return -ENOMEM;
61	}
62	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
63	if (!safecopy) {
64		pr_warn("Could not vmap vmcoreinfo buffer\n");
65		return -ENOMEM;
66	}
67
68	image->vmcoreinfo_data_copy = safecopy;
69	crash_update_vmcoreinfo_safecopy(safecopy);
70
71	return 0;
72}
73
74
75
76int kexec_should_crash(struct task_struct *p)
77{
78	/*
79	 * If crash_kexec_post_notifiers is enabled, don't run
80	 * crash_kexec() here yet, which must be run after panic
81	 * notifiers in panic().
82	 */
83	if (crash_kexec_post_notifiers)
84		return 0;
85	/*
86	 * There are 4 panic() calls in make_task_dead() path, each of which
87	 * corresponds to each of these 4 conditions.
88	 */
89	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
90		return 1;
91	return 0;
92}
93
94int kexec_crash_loaded(void)
95{
96	return !!kexec_crash_image;
97}
98EXPORT_SYMBOL_GPL(kexec_crash_loaded);
99
100/*
101 * No panic_cpu check version of crash_kexec().  This function is called
102 * only when panic_cpu holds the current CPU number; this is the only CPU
103 * which processes crash_kexec routines.
104 */
105void __noclone __crash_kexec(struct pt_regs *regs)
106{
107	/* Take the kexec_lock here to prevent sys_kexec_load
108	 * running on one cpu from replacing the crash kernel
109	 * we are using after a panic on a different cpu.
110	 *
111	 * If the crash kernel was not located in a fixed area
112	 * of memory the xchg(&kexec_crash_image) would be
113	 * sufficient.  But since I reuse the memory...
114	 */
115	if (kexec_trylock()) {
116		if (kexec_crash_image) {
117			struct pt_regs fixed_regs;
118
119			crash_setup_regs(&fixed_regs, regs);
120			crash_save_vmcoreinfo();
121			machine_crash_shutdown(&fixed_regs);
122			machine_kexec(kexec_crash_image);
123		}
124		kexec_unlock();
125	}
126}
127STACK_FRAME_NON_STANDARD(__crash_kexec);
128
129__bpf_kfunc void crash_kexec(struct pt_regs *regs)
130{
131	int old_cpu, this_cpu;
132
133	/*
134	 * Only one CPU is allowed to execute the crash_kexec() code as with
135	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
136	 * may stop each other.  To exclude them, we use panic_cpu here too.
137	 */
138	old_cpu = PANIC_CPU_INVALID;
139	this_cpu = raw_smp_processor_id();
140
141	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
142		/* This is the 1st CPU which comes here, so go ahead. */
143		__crash_kexec(regs);
144
145		/*
146		 * Reset panic_cpu to allow another panic()/crash_kexec()
147		 * call.
148		 */
149		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
150	}
151}
152
153static inline resource_size_t crash_resource_size(const struct resource *res)
154{
155	return !res->end ? 0 : resource_size(res);
156}
157
158
159
160
161int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
162			  void **addr, unsigned long *sz)
163{
164	Elf64_Ehdr *ehdr;
165	Elf64_Phdr *phdr;
166	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
167	unsigned char *buf;
168	unsigned int cpu, i;
169	unsigned long long notes_addr;
170	unsigned long mstart, mend;
171
172	/* extra phdr for vmcoreinfo ELF note */
173	nr_phdr = nr_cpus + 1;
174	nr_phdr += mem->nr_ranges;
175
176	/*
177	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
178	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
179	 * I think this is required by tools like gdb. So same physical
180	 * memory will be mapped in two ELF headers. One will contain kernel
181	 * text virtual addresses and other will have __va(physical) addresses.
182	 */
183
184	nr_phdr++;
185	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
186	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
187
188	buf = vzalloc(elf_sz);
189	if (!buf)
190		return -ENOMEM;
191
192	ehdr = (Elf64_Ehdr *)buf;
193	phdr = (Elf64_Phdr *)(ehdr + 1);
194	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
195	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
196	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
197	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
198	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
199	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
200	ehdr->e_type = ET_CORE;
201	ehdr->e_machine = ELF_ARCH;
202	ehdr->e_version = EV_CURRENT;
203	ehdr->e_phoff = sizeof(Elf64_Ehdr);
204	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
205	ehdr->e_phentsize = sizeof(Elf64_Phdr);
206
207	/* Prepare one phdr of type PT_NOTE for each possible CPU */
208	for_each_possible_cpu(cpu) {
209		phdr->p_type = PT_NOTE;
210		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
211		phdr->p_offset = phdr->p_paddr = notes_addr;
212		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
213		(ehdr->e_phnum)++;
214		phdr++;
215	}
216
217	/* Prepare one PT_NOTE header for vmcoreinfo */
218	phdr->p_type = PT_NOTE;
219	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
220	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
221	(ehdr->e_phnum)++;
222	phdr++;
223
224	/* Prepare PT_LOAD type program header for kernel text region */
225	if (need_kernel_map) {
226		phdr->p_type = PT_LOAD;
227		phdr->p_flags = PF_R|PF_W|PF_X;
228		phdr->p_vaddr = (unsigned long) _text;
229		phdr->p_filesz = phdr->p_memsz = _end - _text;
230		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
231		ehdr->e_phnum++;
232		phdr++;
233	}
234
235	/* Go through all the ranges in mem->ranges[] and prepare phdr */
236	for (i = 0; i < mem->nr_ranges; i++) {
237		mstart = mem->ranges[i].start;
238		mend = mem->ranges[i].end;
239
240		phdr->p_type = PT_LOAD;
241		phdr->p_flags = PF_R|PF_W|PF_X;
242		phdr->p_offset  = mstart;
243
244		phdr->p_paddr = mstart;
245		phdr->p_vaddr = (unsigned long) __va(mstart);
246		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
247		phdr->p_align = 0;
248		ehdr->e_phnum++;
249#ifdef CONFIG_KEXEC_FILE
250		kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
251			      phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
252			      ehdr->e_phnum, phdr->p_offset);
253#endif
254		phdr++;
255	}
256
257	*addr = buf;
258	*sz = elf_sz;
259	return 0;
260}
261
262int crash_exclude_mem_range(struct crash_mem *mem,
263			    unsigned long long mstart, unsigned long long mend)
264{
265	int i;
266	unsigned long long start, end, p_start, p_end;
267
268	for (i = 0; i < mem->nr_ranges; i++) {
269		start = mem->ranges[i].start;
270		end = mem->ranges[i].end;
271		p_start = mstart;
272		p_end = mend;
273
274		if (p_start > end)
275			continue;
276
277		/*
278		 * Because the memory ranges in mem->ranges are stored in
279		 * ascending order, when we detect `p_end < start`, we can
280		 * immediately exit the for loop, as the subsequent memory
281		 * ranges will definitely be outside the range we are looking
282		 * for.
283		 */
284		if (p_end < start)
285			break;
286
287		/* Truncate any area outside of range */
288		if (p_start < start)
289			p_start = start;
290		if (p_end > end)
291			p_end = end;
292
293		/* Found completely overlapping range */
294		if (p_start == start && p_end == end) {
295			memmove(&mem->ranges[i], &mem->ranges[i + 1],
296				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
297			i--;
298			mem->nr_ranges--;
299		} else if (p_start > start && p_end < end) {
300			/* Split original range */
301			if (mem->nr_ranges >= mem->max_nr_ranges)
302				return -ENOMEM;
303
304			memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
305				(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
306
307			mem->ranges[i].end = p_start - 1;
308			mem->ranges[i + 1].start = p_end + 1;
309			mem->ranges[i + 1].end = end;
310
311			i++;
312			mem->nr_ranges++;
313		} else if (p_start != start)
314			mem->ranges[i].end = p_start - 1;
315		else
316			mem->ranges[i].start = p_end + 1;
317	}
318
319	return 0;
320}
321
322ssize_t crash_get_memory_size(void)
323{
324	ssize_t size = 0;
325
326	if (!kexec_trylock())
327		return -EBUSY;
328
329	size += crash_resource_size(&crashk_res);
330	size += crash_resource_size(&crashk_low_res);
331
332	kexec_unlock();
333	return size;
334}
335
336static int __crash_shrink_memory(struct resource *old_res,
337				 unsigned long new_size)
338{
339	struct resource *ram_res;
340
341	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
342	if (!ram_res)
343		return -ENOMEM;
344
345	ram_res->start = old_res->start + new_size;
346	ram_res->end   = old_res->end;
347	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
348	ram_res->name  = "System RAM";
349
350	if (!new_size) {
351		release_resource(old_res);
352		old_res->start = 0;
353		old_res->end   = 0;
354	} else {
355		crashk_res.end = ram_res->start - 1;
356	}
357
358	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
359	insert_resource(&iomem_resource, ram_res);
360
361	return 0;
362}
363
364int crash_shrink_memory(unsigned long new_size)
365{
366	int ret = 0;
367	unsigned long old_size, low_size;
368
369	if (!kexec_trylock())
370		return -EBUSY;
371
372	if (kexec_crash_image) {
373		ret = -ENOENT;
374		goto unlock;
375	}
376
377	low_size = crash_resource_size(&crashk_low_res);
378	old_size = crash_resource_size(&crashk_res) + low_size;
379	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
380	if (new_size >= old_size) {
381		ret = (new_size == old_size) ? 0 : -EINVAL;
382		goto unlock;
383	}
384
385	/*
386	 * (low_size > new_size) implies that low_size is greater than zero.
387	 * This also means that if low_size is zero, the else branch is taken.
388	 *
389	 * If low_size is greater than 0, (low_size > new_size) indicates that
390	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
391	 * needs to be shrunken.
392	 */
393	if (low_size > new_size) {
394		ret = __crash_shrink_memory(&crashk_res, 0);
395		if (ret)
396			goto unlock;
397
398		ret = __crash_shrink_memory(&crashk_low_res, new_size);
399	} else {
400		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
401	}
402
403	/* Swap crashk_res and crashk_low_res if needed */
404	if (!crashk_res.end && crashk_low_res.end) {
405		crashk_res.start = crashk_low_res.start;
406		crashk_res.end   = crashk_low_res.end;
407		release_resource(&crashk_low_res);
408		crashk_low_res.start = 0;
409		crashk_low_res.end   = 0;
410		insert_resource(&iomem_resource, &crashk_res);
411	}
412
413unlock:
414	kexec_unlock();
415	return ret;
416}
417
418void crash_save_cpu(struct pt_regs *regs, int cpu)
419{
420	struct elf_prstatus prstatus;
421	u32 *buf;
422
423	if ((cpu < 0) || (cpu >= nr_cpu_ids))
424		return;
425
426	/* Using ELF notes here is opportunistic.
427	 * I need a well defined structure format
428	 * for the data I pass, and I need tags
429	 * on the data to indicate what information I have
430	 * squirrelled away.  ELF notes happen to provide
431	 * all of that, so there is no need to invent something new.
432	 */
433	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
434	if (!buf)
435		return;
436	memset(&prstatus, 0, sizeof(prstatus));
437	prstatus.common.pr_pid = current->pid;
438	elf_core_copy_regs(&prstatus.pr_reg, regs);
439	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
440			      &prstatus, sizeof(prstatus));
441	final_note(buf);
442}
443
444
445
446static int __init crash_notes_memory_init(void)
447{
448	/* Allocate memory for saving cpu registers. */
449	size_t size, align;
450
451	/*
452	 * crash_notes could be allocated across 2 vmalloc pages when percpu
453	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
454	 * pages are also on 2 continuous physical pages. In this case the
455	 * 2nd part of crash_notes in 2nd page could be lost since only the
456	 * starting address and size of crash_notes are exported through sysfs.
457	 * Here round up the size of crash_notes to the nearest power of two
458	 * and pass it to __alloc_percpu as align value. This can make sure
459	 * crash_notes is allocated inside one physical page.
460	 */
461	size = sizeof(note_buf_t);
462	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
463
464	/*
465	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
466	 * definitely will be in 2 pages with that.
467	 */
468	BUILD_BUG_ON(size > PAGE_SIZE);
469
470	crash_notes = __alloc_percpu(size, align);
471	if (!crash_notes) {
472		pr_warn("Memory allocation for saving cpu register states failed\n");
473		return -ENOMEM;
474	}
475	return 0;
476}
477subsys_initcall(crash_notes_memory_init);
478
479#endif /*CONFIG_CRASH_DUMP*/
480
481#ifdef CONFIG_CRASH_HOTPLUG
482#undef pr_fmt
483#define pr_fmt(fmt) "crash hp: " fmt
484
485/*
486 * Different than kexec/kdump loading/unloading/jumping/shrinking which
487 * usually rarely happen, there will be many crash hotplug events notified
488 * during one short period, e.g one memory board is hot added and memory
489 * regions are online. So mutex lock  __crash_hotplug_lock is used to
490 * serialize the crash hotplug handling specifically.
491 */
492static DEFINE_MUTEX(__crash_hotplug_lock);
493#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
494#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
495
496/*
497 * This routine utilized when the crash_hotplug sysfs node is read.
498 * It reflects the kernel's ability/permission to update the kdump
499 * image directly.
500 */
501int crash_check_hotplug_support(void)
502{
503	int rc = 0;
504
505	crash_hotplug_lock();
506	/* Obtain lock while reading crash information */
507	if (!kexec_trylock()) {
508		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
509		crash_hotplug_unlock();
510		return 0;
511	}
512	if (kexec_crash_image) {
513		rc = kexec_crash_image->hotplug_support;
514	}
515	/* Release lock now that update complete */
516	kexec_unlock();
517	crash_hotplug_unlock();
518
519	return rc;
520}
521
522/*
523 * To accurately reflect hot un/plug changes of cpu and memory resources
524 * (including onling and offlining of those resources), the elfcorehdr
525 * (which is passed to the crash kernel via the elfcorehdr= parameter)
526 * must be updated with the new list of CPUs and memories.
527 *
528 * In order to make changes to elfcorehdr, two conditions are needed:
529 * First, the segment containing the elfcorehdr must be large enough
530 * to permit a growing number of resources; the elfcorehdr memory size
531 * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
532 * Second, purgatory must explicitly exclude the elfcorehdr from the
533 * list of segments it checks (since the elfcorehdr changes and thus
534 * would require an update to purgatory itself to update the digest).
535 */
536static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
537{
538	struct kimage *image;
539
540	crash_hotplug_lock();
541	/* Obtain lock while changing crash information */
542	if (!kexec_trylock()) {
543		pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
544		crash_hotplug_unlock();
545		return;
546	}
547
548	/* Check kdump is not loaded */
549	if (!kexec_crash_image)
550		goto out;
551
552	image = kexec_crash_image;
553
554	/* Check that kexec segments update is permitted */
555	if (!image->hotplug_support)
556		goto out;
557
558	if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
559		hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
560		pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
561	else
562		pr_debug("hp_action %u\n", hp_action);
563
564	/*
565	 * The elfcorehdr_index is set to -1 when the struct kimage
566	 * is allocated. Find the segment containing the elfcorehdr,
567	 * if not already found.
568	 */
569	if (image->elfcorehdr_index < 0) {
570		unsigned long mem;
571		unsigned char *ptr;
572		unsigned int n;
573
574		for (n = 0; n < image->nr_segments; n++) {
575			mem = image->segment[n].mem;
576			ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
577			if (ptr) {
578				/* The segment containing elfcorehdr */
579				if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
580					image->elfcorehdr_index = (int)n;
581				kunmap_local(ptr);
582			}
583		}
584	}
585
586	if (image->elfcorehdr_index < 0) {
587		pr_err("unable to locate elfcorehdr segment");
588		goto out;
589	}
590
591	/* Needed in order for the segments to be updated */
592	arch_kexec_unprotect_crashkres();
593
594	/* Differentiate between normal load and hotplug update */
595	image->hp_action = hp_action;
596
597	/* Now invoke arch-specific update handler */
598	arch_crash_handle_hotplug_event(image, arg);
599
600	/* No longer handling a hotplug event */
601	image->hp_action = KEXEC_CRASH_HP_NONE;
602	image->elfcorehdr_updated = true;
603
604	/* Change back to read-only */
605	arch_kexec_protect_crashkres();
606
607	/* Errors in the callback is not a reason to rollback state */
608out:
609	/* Release lock now that update complete */
610	kexec_unlock();
611	crash_hotplug_unlock();
612}
613
614static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
615{
616	switch (val) {
617	case MEM_ONLINE:
618		crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
619			KEXEC_CRASH_HP_INVALID_CPU, arg);
620		break;
621
622	case MEM_OFFLINE:
623		crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
624			KEXEC_CRASH_HP_INVALID_CPU, arg);
625		break;
626	}
627	return NOTIFY_OK;
628}
629
630static struct notifier_block crash_memhp_nb = {
631	.notifier_call = crash_memhp_notifier,
632	.priority = 0
633};
634
635static int crash_cpuhp_online(unsigned int cpu)
636{
637	crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
638	return 0;
639}
640
641static int crash_cpuhp_offline(unsigned int cpu)
642{
643	crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
644	return 0;
645}
646
647static int __init crash_hotplug_init(void)
648{
649	int result = 0;
650
651	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
652		register_memory_notifier(&crash_memhp_nb);
653
654	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
655		result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
656			"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
657	}
658
659	return result;
660}
661
662subsys_initcall(crash_hotplug_init);
663#endif
664