1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 *	Jay Schulist <jschlst@samba.org>
13 *	Alexei Starovoitov <ast@plumgrid.com>
14 *	Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20#include <uapi/linux/btf.h>
21#include <linux/filter.h>
22#include <linux/skbuff.h>
23#include <linux/vmalloc.h>
24#include <linux/random.h>
25#include <linux/bpf.h>
26#include <linux/btf.h>
27#include <linux/objtool.h>
28#include <linux/overflow.h>
29#include <linux/rbtree_latch.h>
30#include <linux/kallsyms.h>
31#include <linux/rcupdate.h>
32#include <linux/perf_event.h>
33#include <linux/extable.h>
34#include <linux/log2.h>
35#include <linux/bpf_verifier.h>
36#include <linux/nodemask.h>
37#include <linux/nospec.h>
38#include <linux/bpf_mem_alloc.h>
39#include <linux/memcontrol.h>
40#include <linux/execmem.h>
41
42#include <asm/barrier.h>
43#include <asm/unaligned.h>
44
45/* Registers */
46#define BPF_R0	regs[BPF_REG_0]
47#define BPF_R1	regs[BPF_REG_1]
48#define BPF_R2	regs[BPF_REG_2]
49#define BPF_R3	regs[BPF_REG_3]
50#define BPF_R4	regs[BPF_REG_4]
51#define BPF_R5	regs[BPF_REG_5]
52#define BPF_R6	regs[BPF_REG_6]
53#define BPF_R7	regs[BPF_REG_7]
54#define BPF_R8	regs[BPF_REG_8]
55#define BPF_R9	regs[BPF_REG_9]
56#define BPF_R10	regs[BPF_REG_10]
57
58/* Named registers */
59#define DST	regs[insn->dst_reg]
60#define SRC	regs[insn->src_reg]
61#define FP	regs[BPF_REG_FP]
62#define AX	regs[BPF_REG_AX]
63#define ARG1	regs[BPF_REG_ARG1]
64#define CTX	regs[BPF_REG_CTX]
65#define OFF	insn->off
66#define IMM	insn->imm
67
68struct bpf_mem_alloc bpf_global_ma;
69bool bpf_global_ma_set;
70
71/* No hurry in this branch
72 *
73 * Exported for the bpf jit load helper.
74 */
75void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
76{
77	u8 *ptr = NULL;
78
79	if (k >= SKF_NET_OFF) {
80		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
81	} else if (k >= SKF_LL_OFF) {
82		if (unlikely(!skb_mac_header_was_set(skb)))
83			return NULL;
84		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
85	}
86	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
87		return ptr;
88
89	return NULL;
90}
91
92/* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
93enum page_size_enum {
94	__PAGE_SIZE = PAGE_SIZE
95};
96
97struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
98{
99	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
100	struct bpf_prog_aux *aux;
101	struct bpf_prog *fp;
102
103	size = round_up(size, __PAGE_SIZE);
104	fp = __vmalloc(size, gfp_flags);
105	if (fp == NULL)
106		return NULL;
107
108	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
109	if (aux == NULL) {
110		vfree(fp);
111		return NULL;
112	}
113	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
114	if (!fp->active) {
115		vfree(fp);
116		kfree(aux);
117		return NULL;
118	}
119
120	fp->pages = size / PAGE_SIZE;
121	fp->aux = aux;
122	fp->aux->prog = fp;
123	fp->jit_requested = ebpf_jit_enabled();
124	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
125#ifdef CONFIG_CGROUP_BPF
126	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
127#endif
128
129	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
130#ifdef CONFIG_FINEIBT
131	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
132#endif
133	mutex_init(&fp->aux->used_maps_mutex);
134	mutex_init(&fp->aux->dst_mutex);
135
136	return fp;
137}
138
139struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
140{
141	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
142	struct bpf_prog *prog;
143	int cpu;
144
145	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
146	if (!prog)
147		return NULL;
148
149	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
150	if (!prog->stats) {
151		free_percpu(prog->active);
152		kfree(prog->aux);
153		vfree(prog);
154		return NULL;
155	}
156
157	for_each_possible_cpu(cpu) {
158		struct bpf_prog_stats *pstats;
159
160		pstats = per_cpu_ptr(prog->stats, cpu);
161		u64_stats_init(&pstats->syncp);
162	}
163	return prog;
164}
165EXPORT_SYMBOL_GPL(bpf_prog_alloc);
166
167int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
168{
169	if (!prog->aux->nr_linfo || !prog->jit_requested)
170		return 0;
171
172	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
173					  sizeof(*prog->aux->jited_linfo),
174					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
175	if (!prog->aux->jited_linfo)
176		return -ENOMEM;
177
178	return 0;
179}
180
181void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
182{
183	if (prog->aux->jited_linfo &&
184	    (!prog->jited || !prog->aux->jited_linfo[0])) {
185		kvfree(prog->aux->jited_linfo);
186		prog->aux->jited_linfo = NULL;
187	}
188
189	kfree(prog->aux->kfunc_tab);
190	prog->aux->kfunc_tab = NULL;
191}
192
193/* The jit engine is responsible to provide an array
194 * for insn_off to the jited_off mapping (insn_to_jit_off).
195 *
196 * The idx to this array is the insn_off.  Hence, the insn_off
197 * here is relative to the prog itself instead of the main prog.
198 * This array has one entry for each xlated bpf insn.
199 *
200 * jited_off is the byte off to the end of the jited insn.
201 *
202 * Hence, with
203 * insn_start:
204 *      The first bpf insn off of the prog.  The insn off
205 *      here is relative to the main prog.
206 *      e.g. if prog is a subprog, insn_start > 0
207 * linfo_idx:
208 *      The prog's idx to prog->aux->linfo and jited_linfo
209 *
210 * jited_linfo[linfo_idx] = prog->bpf_func
211 *
212 * For i > linfo_idx,
213 *
214 * jited_linfo[i] = prog->bpf_func +
215 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
216 */
217void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
218			       const u32 *insn_to_jit_off)
219{
220	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
221	const struct bpf_line_info *linfo;
222	void **jited_linfo;
223
224	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
225		/* Userspace did not provide linfo */
226		return;
227
228	linfo_idx = prog->aux->linfo_idx;
229	linfo = &prog->aux->linfo[linfo_idx];
230	insn_start = linfo[0].insn_off;
231	insn_end = insn_start + prog->len;
232
233	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
234	jited_linfo[0] = prog->bpf_func;
235
236	nr_linfo = prog->aux->nr_linfo - linfo_idx;
237
238	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
239		/* The verifier ensures that linfo[i].insn_off is
240		 * strictly increasing
241		 */
242		jited_linfo[i] = prog->bpf_func +
243			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
244}
245
246struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
247				  gfp_t gfp_extra_flags)
248{
249	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
250	struct bpf_prog *fp;
251	u32 pages;
252
253	size = round_up(size, PAGE_SIZE);
254	pages = size / PAGE_SIZE;
255	if (pages <= fp_old->pages)
256		return fp_old;
257
258	fp = __vmalloc(size, gfp_flags);
259	if (fp) {
260		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
261		fp->pages = pages;
262		fp->aux->prog = fp;
263
264		/* We keep fp->aux from fp_old around in the new
265		 * reallocated structure.
266		 */
267		fp_old->aux = NULL;
268		fp_old->stats = NULL;
269		fp_old->active = NULL;
270		__bpf_prog_free(fp_old);
271	}
272
273	return fp;
274}
275
276void __bpf_prog_free(struct bpf_prog *fp)
277{
278	if (fp->aux) {
279		mutex_destroy(&fp->aux->used_maps_mutex);
280		mutex_destroy(&fp->aux->dst_mutex);
281		kfree(fp->aux->poke_tab);
282		kfree(fp->aux);
283	}
284	free_percpu(fp->stats);
285	free_percpu(fp->active);
286	vfree(fp);
287}
288
289int bpf_prog_calc_tag(struct bpf_prog *fp)
290{
291	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
292	u32 raw_size = bpf_prog_tag_scratch_size(fp);
293	u32 digest[SHA1_DIGEST_WORDS];
294	u32 ws[SHA1_WORKSPACE_WORDS];
295	u32 i, bsize, psize, blocks;
296	struct bpf_insn *dst;
297	bool was_ld_map;
298	u8 *raw, *todo;
299	__be32 *result;
300	__be64 *bits;
301
302	raw = vmalloc(raw_size);
303	if (!raw)
304		return -ENOMEM;
305
306	sha1_init(digest);
307	memset(ws, 0, sizeof(ws));
308
309	/* We need to take out the map fd for the digest calculation
310	 * since they are unstable from user space side.
311	 */
312	dst = (void *)raw;
313	for (i = 0, was_ld_map = false; i < fp->len; i++) {
314		dst[i] = fp->insnsi[i];
315		if (!was_ld_map &&
316		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
317		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
318		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
319			was_ld_map = true;
320			dst[i].imm = 0;
321		} else if (was_ld_map &&
322			   dst[i].code == 0 &&
323			   dst[i].dst_reg == 0 &&
324			   dst[i].src_reg == 0 &&
325			   dst[i].off == 0) {
326			was_ld_map = false;
327			dst[i].imm = 0;
328		} else {
329			was_ld_map = false;
330		}
331	}
332
333	psize = bpf_prog_insn_size(fp);
334	memset(&raw[psize], 0, raw_size - psize);
335	raw[psize++] = 0x80;
336
337	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
338	blocks = bsize / SHA1_BLOCK_SIZE;
339	todo   = raw;
340	if (bsize - psize >= sizeof(__be64)) {
341		bits = (__be64 *)(todo + bsize - sizeof(__be64));
342	} else {
343		bits = (__be64 *)(todo + bsize + bits_offset);
344		blocks++;
345	}
346	*bits = cpu_to_be64((psize - 1) << 3);
347
348	while (blocks--) {
349		sha1_transform(digest, todo, ws);
350		todo += SHA1_BLOCK_SIZE;
351	}
352
353	result = (__force __be32 *)digest;
354	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
355		result[i] = cpu_to_be32(digest[i]);
356	memcpy(fp->tag, result, sizeof(fp->tag));
357
358	vfree(raw);
359	return 0;
360}
361
362static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
363				s32 end_new, s32 curr, const bool probe_pass)
364{
365	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
366	s32 delta = end_new - end_old;
367	s64 imm = insn->imm;
368
369	if (curr < pos && curr + imm + 1 >= end_old)
370		imm += delta;
371	else if (curr >= end_new && curr + imm + 1 < end_new)
372		imm -= delta;
373	if (imm < imm_min || imm > imm_max)
374		return -ERANGE;
375	if (!probe_pass)
376		insn->imm = imm;
377	return 0;
378}
379
380static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
381				s32 end_new, s32 curr, const bool probe_pass)
382{
383	s64 off_min, off_max, off;
384	s32 delta = end_new - end_old;
385
386	if (insn->code == (BPF_JMP32 | BPF_JA)) {
387		off = insn->imm;
388		off_min = S32_MIN;
389		off_max = S32_MAX;
390	} else {
391		off = insn->off;
392		off_min = S16_MIN;
393		off_max = S16_MAX;
394	}
395
396	if (curr < pos && curr + off + 1 >= end_old)
397		off += delta;
398	else if (curr >= end_new && curr + off + 1 < end_new)
399		off -= delta;
400	if (off < off_min || off > off_max)
401		return -ERANGE;
402	if (!probe_pass) {
403		if (insn->code == (BPF_JMP32 | BPF_JA))
404			insn->imm = off;
405		else
406			insn->off = off;
407	}
408	return 0;
409}
410
411static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
412			    s32 end_new, const bool probe_pass)
413{
414	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
415	struct bpf_insn *insn = prog->insnsi;
416	int ret = 0;
417
418	for (i = 0; i < insn_cnt; i++, insn++) {
419		u8 code;
420
421		/* In the probing pass we still operate on the original,
422		 * unpatched image in order to check overflows before we
423		 * do any other adjustments. Therefore skip the patchlet.
424		 */
425		if (probe_pass && i == pos) {
426			i = end_new;
427			insn = prog->insnsi + end_old;
428		}
429		if (bpf_pseudo_func(insn)) {
430			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
431						   end_new, i, probe_pass);
432			if (ret)
433				return ret;
434			continue;
435		}
436		code = insn->code;
437		if ((BPF_CLASS(code) != BPF_JMP &&
438		     BPF_CLASS(code) != BPF_JMP32) ||
439		    BPF_OP(code) == BPF_EXIT)
440			continue;
441		/* Adjust offset of jmps if we cross patch boundaries. */
442		if (BPF_OP(code) == BPF_CALL) {
443			if (insn->src_reg != BPF_PSEUDO_CALL)
444				continue;
445			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
446						   end_new, i, probe_pass);
447		} else {
448			ret = bpf_adj_delta_to_off(insn, pos, end_old,
449						   end_new, i, probe_pass);
450		}
451		if (ret)
452			break;
453	}
454
455	return ret;
456}
457
458static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
459{
460	struct bpf_line_info *linfo;
461	u32 i, nr_linfo;
462
463	nr_linfo = prog->aux->nr_linfo;
464	if (!nr_linfo || !delta)
465		return;
466
467	linfo = prog->aux->linfo;
468
469	for (i = 0; i < nr_linfo; i++)
470		if (off < linfo[i].insn_off)
471			break;
472
473	/* Push all off < linfo[i].insn_off by delta */
474	for (; i < nr_linfo; i++)
475		linfo[i].insn_off += delta;
476}
477
478struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
479				       const struct bpf_insn *patch, u32 len)
480{
481	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
482	const u32 cnt_max = S16_MAX;
483	struct bpf_prog *prog_adj;
484	int err;
485
486	/* Since our patchlet doesn't expand the image, we're done. */
487	if (insn_delta == 0) {
488		memcpy(prog->insnsi + off, patch, sizeof(*patch));
489		return prog;
490	}
491
492	insn_adj_cnt = prog->len + insn_delta;
493
494	/* Reject anything that would potentially let the insn->off
495	 * target overflow when we have excessive program expansions.
496	 * We need to probe here before we do any reallocation where
497	 * we afterwards may not fail anymore.
498	 */
499	if (insn_adj_cnt > cnt_max &&
500	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
501		return ERR_PTR(err);
502
503	/* Several new instructions need to be inserted. Make room
504	 * for them. Likely, there's no need for a new allocation as
505	 * last page could have large enough tailroom.
506	 */
507	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
508				    GFP_USER);
509	if (!prog_adj)
510		return ERR_PTR(-ENOMEM);
511
512	prog_adj->len = insn_adj_cnt;
513
514	/* Patching happens in 3 steps:
515	 *
516	 * 1) Move over tail of insnsi from next instruction onwards,
517	 *    so we can patch the single target insn with one or more
518	 *    new ones (patching is always from 1 to n insns, n > 0).
519	 * 2) Inject new instructions at the target location.
520	 * 3) Adjust branch offsets if necessary.
521	 */
522	insn_rest = insn_adj_cnt - off - len;
523
524	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
525		sizeof(*patch) * insn_rest);
526	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
527
528	/* We are guaranteed to not fail at this point, otherwise
529	 * the ship has sailed to reverse to the original state. An
530	 * overflow cannot happen at this point.
531	 */
532	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
533
534	bpf_adj_linfo(prog_adj, off, insn_delta);
535
536	return prog_adj;
537}
538
539int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
540{
541	/* Branch offsets can't overflow when program is shrinking, no need
542	 * to call bpf_adj_branches(..., true) here
543	 */
544	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
545		sizeof(struct bpf_insn) * (prog->len - off - cnt));
546	prog->len -= cnt;
547
548	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
549}
550
551static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
552{
553	int i;
554
555	for (i = 0; i < fp->aux->real_func_cnt; i++)
556		bpf_prog_kallsyms_del(fp->aux->func[i]);
557}
558
559void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
560{
561	bpf_prog_kallsyms_del_subprogs(fp);
562	bpf_prog_kallsyms_del(fp);
563}
564
565#ifdef CONFIG_BPF_JIT
566/* All BPF JIT sysctl knobs here. */
567int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
568int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
569int bpf_jit_harden   __read_mostly;
570long bpf_jit_limit   __read_mostly;
571long bpf_jit_limit_max __read_mostly;
572
573static void
574bpf_prog_ksym_set_addr(struct bpf_prog *prog)
575{
576	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
577
578	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
579	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
580}
581
582static void
583bpf_prog_ksym_set_name(struct bpf_prog *prog)
584{
585	char *sym = prog->aux->ksym.name;
586	const char *end = sym + KSYM_NAME_LEN;
587	const struct btf_type *type;
588	const char *func_name;
589
590	BUILD_BUG_ON(sizeof("bpf_prog_") +
591		     sizeof(prog->tag) * 2 +
592		     /* name has been null terminated.
593		      * We should need +1 for the '_' preceding
594		      * the name.  However, the null character
595		      * is double counted between the name and the
596		      * sizeof("bpf_prog_") above, so we omit
597		      * the +1 here.
598		      */
599		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
600
601	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
602	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
603
604	/* prog->aux->name will be ignored if full btf name is available */
605	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
606		type = btf_type_by_id(prog->aux->btf,
607				      prog->aux->func_info[prog->aux->func_idx].type_id);
608		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
609		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
610		return;
611	}
612
613	if (prog->aux->name[0])
614		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
615	else
616		*sym = 0;
617}
618
619static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
620{
621	return container_of(n, struct bpf_ksym, tnode)->start;
622}
623
624static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
625					  struct latch_tree_node *b)
626{
627	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
628}
629
630static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
631{
632	unsigned long val = (unsigned long)key;
633	const struct bpf_ksym *ksym;
634
635	ksym = container_of(n, struct bpf_ksym, tnode);
636
637	if (val < ksym->start)
638		return -1;
639	/* Ensure that we detect return addresses as part of the program, when
640	 * the final instruction is a call for a program part of the stack
641	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
642	 */
643	if (val > ksym->end)
644		return  1;
645
646	return 0;
647}
648
649static const struct latch_tree_ops bpf_tree_ops = {
650	.less	= bpf_tree_less,
651	.comp	= bpf_tree_comp,
652};
653
654static DEFINE_SPINLOCK(bpf_lock);
655static LIST_HEAD(bpf_kallsyms);
656static struct latch_tree_root bpf_tree __cacheline_aligned;
657
658void bpf_ksym_add(struct bpf_ksym *ksym)
659{
660	spin_lock_bh(&bpf_lock);
661	WARN_ON_ONCE(!list_empty(&ksym->lnode));
662	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
663	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
664	spin_unlock_bh(&bpf_lock);
665}
666
667static void __bpf_ksym_del(struct bpf_ksym *ksym)
668{
669	if (list_empty(&ksym->lnode))
670		return;
671
672	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
673	list_del_rcu(&ksym->lnode);
674}
675
676void bpf_ksym_del(struct bpf_ksym *ksym)
677{
678	spin_lock_bh(&bpf_lock);
679	__bpf_ksym_del(ksym);
680	spin_unlock_bh(&bpf_lock);
681}
682
683static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
684{
685	return fp->jited && !bpf_prog_was_classic(fp);
686}
687
688void bpf_prog_kallsyms_add(struct bpf_prog *fp)
689{
690	if (!bpf_prog_kallsyms_candidate(fp) ||
691	    !bpf_token_capable(fp->aux->token, CAP_BPF))
692		return;
693
694	bpf_prog_ksym_set_addr(fp);
695	bpf_prog_ksym_set_name(fp);
696	fp->aux->ksym.prog = true;
697
698	bpf_ksym_add(&fp->aux->ksym);
699
700#ifdef CONFIG_FINEIBT
701	/*
702	 * When FineIBT, code in the __cfi_foo() symbols can get executed
703	 * and hence unwinder needs help.
704	 */
705	if (cfi_mode != CFI_FINEIBT)
706		return;
707
708	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
709		 "__cfi_%s", fp->aux->ksym.name);
710
711	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
712	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
713
714	bpf_ksym_add(&fp->aux->ksym_prefix);
715#endif
716}
717
718void bpf_prog_kallsyms_del(struct bpf_prog *fp)
719{
720	if (!bpf_prog_kallsyms_candidate(fp))
721		return;
722
723	bpf_ksym_del(&fp->aux->ksym);
724#ifdef CONFIG_FINEIBT
725	if (cfi_mode != CFI_FINEIBT)
726		return;
727	bpf_ksym_del(&fp->aux->ksym_prefix);
728#endif
729}
730
731static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
732{
733	struct latch_tree_node *n;
734
735	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
736	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
737}
738
739const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
740				 unsigned long *off, char *sym)
741{
742	struct bpf_ksym *ksym;
743	char *ret = NULL;
744
745	rcu_read_lock();
746	ksym = bpf_ksym_find(addr);
747	if (ksym) {
748		unsigned long symbol_start = ksym->start;
749		unsigned long symbol_end = ksym->end;
750
751		strscpy(sym, ksym->name, KSYM_NAME_LEN);
752
753		ret = sym;
754		if (size)
755			*size = symbol_end - symbol_start;
756		if (off)
757			*off  = addr - symbol_start;
758	}
759	rcu_read_unlock();
760
761	return ret;
762}
763
764bool is_bpf_text_address(unsigned long addr)
765{
766	bool ret;
767
768	rcu_read_lock();
769	ret = bpf_ksym_find(addr) != NULL;
770	rcu_read_unlock();
771
772	return ret;
773}
774
775struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
776{
777	struct bpf_ksym *ksym = bpf_ksym_find(addr);
778
779	return ksym && ksym->prog ?
780	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
781	       NULL;
782}
783
784const struct exception_table_entry *search_bpf_extables(unsigned long addr)
785{
786	const struct exception_table_entry *e = NULL;
787	struct bpf_prog *prog;
788
789	rcu_read_lock();
790	prog = bpf_prog_ksym_find(addr);
791	if (!prog)
792		goto out;
793	if (!prog->aux->num_exentries)
794		goto out;
795
796	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
797out:
798	rcu_read_unlock();
799	return e;
800}
801
802int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
803		    char *sym)
804{
805	struct bpf_ksym *ksym;
806	unsigned int it = 0;
807	int ret = -ERANGE;
808
809	if (!bpf_jit_kallsyms_enabled())
810		return ret;
811
812	rcu_read_lock();
813	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
814		if (it++ != symnum)
815			continue;
816
817		strscpy(sym, ksym->name, KSYM_NAME_LEN);
818
819		*value = ksym->start;
820		*type  = BPF_SYM_ELF_TYPE;
821
822		ret = 0;
823		break;
824	}
825	rcu_read_unlock();
826
827	return ret;
828}
829
830int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
831				struct bpf_jit_poke_descriptor *poke)
832{
833	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
834	static const u32 poke_tab_max = 1024;
835	u32 slot = prog->aux->size_poke_tab;
836	u32 size = slot + 1;
837
838	if (size > poke_tab_max)
839		return -ENOSPC;
840	if (poke->tailcall_target || poke->tailcall_target_stable ||
841	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
842		return -EINVAL;
843
844	switch (poke->reason) {
845	case BPF_POKE_REASON_TAIL_CALL:
846		if (!poke->tail_call.map)
847			return -EINVAL;
848		break;
849	default:
850		return -EINVAL;
851	}
852
853	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
854	if (!tab)
855		return -ENOMEM;
856
857	memcpy(&tab[slot], poke, sizeof(*poke));
858	prog->aux->size_poke_tab = size;
859	prog->aux->poke_tab = tab;
860
861	return slot;
862}
863
864/*
865 * BPF program pack allocator.
866 *
867 * Most BPF programs are pretty small. Allocating a hole page for each
868 * program is sometime a waste. Many small bpf program also adds pressure
869 * to instruction TLB. To solve this issue, we introduce a BPF program pack
870 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
871 * to host BPF programs.
872 */
873#define BPF_PROG_CHUNK_SHIFT	6
874#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
875#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
876
877struct bpf_prog_pack {
878	struct list_head list;
879	void *ptr;
880	unsigned long bitmap[];
881};
882
883void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
884{
885	memset(area, 0, size);
886}
887
888#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
889
890static DEFINE_MUTEX(pack_mutex);
891static LIST_HEAD(pack_list);
892
893/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
894 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
895 */
896#ifdef PMD_SIZE
897/* PMD_SIZE is really big for some archs. It doesn't make sense to
898 * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
899 * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
900 * greater than or equal to 2MB.
901 */
902#define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
903#else
904#define BPF_PROG_PACK_SIZE PAGE_SIZE
905#endif
906
907#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
908
909static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
910{
911	struct bpf_prog_pack *pack;
912	int err;
913
914	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
915		       GFP_KERNEL);
916	if (!pack)
917		return NULL;
918	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
919	if (!pack->ptr)
920		goto out;
921	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
922	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
923
924	set_vm_flush_reset_perms(pack->ptr);
925	err = set_memory_rox((unsigned long)pack->ptr,
926			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
927	if (err)
928		goto out;
929	list_add_tail(&pack->list, &pack_list);
930	return pack;
931
932out:
933	bpf_jit_free_exec(pack->ptr);
934	kfree(pack);
935	return NULL;
936}
937
938void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
939{
940	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
941	struct bpf_prog_pack *pack;
942	unsigned long pos;
943	void *ptr = NULL;
944
945	mutex_lock(&pack_mutex);
946	if (size > BPF_PROG_PACK_SIZE) {
947		size = round_up(size, PAGE_SIZE);
948		ptr = bpf_jit_alloc_exec(size);
949		if (ptr) {
950			int err;
951
952			bpf_fill_ill_insns(ptr, size);
953			set_vm_flush_reset_perms(ptr);
954			err = set_memory_rox((unsigned long)ptr,
955					     size / PAGE_SIZE);
956			if (err) {
957				bpf_jit_free_exec(ptr);
958				ptr = NULL;
959			}
960		}
961		goto out;
962	}
963	list_for_each_entry(pack, &pack_list, list) {
964		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
965						 nbits, 0);
966		if (pos < BPF_PROG_CHUNK_COUNT)
967			goto found_free_area;
968	}
969
970	pack = alloc_new_pack(bpf_fill_ill_insns);
971	if (!pack)
972		goto out;
973
974	pos = 0;
975
976found_free_area:
977	bitmap_set(pack->bitmap, pos, nbits);
978	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
979
980out:
981	mutex_unlock(&pack_mutex);
982	return ptr;
983}
984
985void bpf_prog_pack_free(void *ptr, u32 size)
986{
987	struct bpf_prog_pack *pack = NULL, *tmp;
988	unsigned int nbits;
989	unsigned long pos;
990
991	mutex_lock(&pack_mutex);
992	if (size > BPF_PROG_PACK_SIZE) {
993		bpf_jit_free_exec(ptr);
994		goto out;
995	}
996
997	list_for_each_entry(tmp, &pack_list, list) {
998		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
999			pack = tmp;
1000			break;
1001		}
1002	}
1003
1004	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1005		goto out;
1006
1007	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1008	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1009
1010	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1011		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1012
1013	bitmap_clear(pack->bitmap, pos, nbits);
1014	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1015				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1016		list_del(&pack->list);
1017		bpf_jit_free_exec(pack->ptr);
1018		kfree(pack);
1019	}
1020out:
1021	mutex_unlock(&pack_mutex);
1022}
1023
1024static atomic_long_t bpf_jit_current;
1025
1026/* Can be overridden by an arch's JIT compiler if it has a custom,
1027 * dedicated BPF backend memory area, or if neither of the two
1028 * below apply.
1029 */
1030u64 __weak bpf_jit_alloc_exec_limit(void)
1031{
1032#if defined(MODULES_VADDR)
1033	return MODULES_END - MODULES_VADDR;
1034#else
1035	return VMALLOC_END - VMALLOC_START;
1036#endif
1037}
1038
1039static int __init bpf_jit_charge_init(void)
1040{
1041	/* Only used as heuristic here to derive limit. */
1042	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1043	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1044					    PAGE_SIZE), LONG_MAX);
1045	return 0;
1046}
1047pure_initcall(bpf_jit_charge_init);
1048
1049int bpf_jit_charge_modmem(u32 size)
1050{
1051	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1052		if (!bpf_capable()) {
1053			atomic_long_sub(size, &bpf_jit_current);
1054			return -EPERM;
1055		}
1056	}
1057
1058	return 0;
1059}
1060
1061void bpf_jit_uncharge_modmem(u32 size)
1062{
1063	atomic_long_sub(size, &bpf_jit_current);
1064}
1065
1066void *__weak bpf_jit_alloc_exec(unsigned long size)
1067{
1068	return execmem_alloc(EXECMEM_BPF, size);
1069}
1070
1071void __weak bpf_jit_free_exec(void *addr)
1072{
1073	execmem_free(addr);
1074}
1075
1076struct bpf_binary_header *
1077bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1078		     unsigned int alignment,
1079		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1080{
1081	struct bpf_binary_header *hdr;
1082	u32 size, hole, start;
1083
1084	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1085		     alignment > BPF_IMAGE_ALIGNMENT);
1086
1087	/* Most of BPF filters are really small, but if some of them
1088	 * fill a page, allow at least 128 extra bytes to insert a
1089	 * random section of illegal instructions.
1090	 */
1091	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1092
1093	if (bpf_jit_charge_modmem(size))
1094		return NULL;
1095	hdr = bpf_jit_alloc_exec(size);
1096	if (!hdr) {
1097		bpf_jit_uncharge_modmem(size);
1098		return NULL;
1099	}
1100
1101	/* Fill space with illegal/arch-dep instructions. */
1102	bpf_fill_ill_insns(hdr, size);
1103
1104	hdr->size = size;
1105	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1106		     PAGE_SIZE - sizeof(*hdr));
1107	start = get_random_u32_below(hole) & ~(alignment - 1);
1108
1109	/* Leave a random number of instructions before BPF code. */
1110	*image_ptr = &hdr->image[start];
1111
1112	return hdr;
1113}
1114
1115void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1116{
1117	u32 size = hdr->size;
1118
1119	bpf_jit_free_exec(hdr);
1120	bpf_jit_uncharge_modmem(size);
1121}
1122
1123/* Allocate jit binary from bpf_prog_pack allocator.
1124 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1125 * to the memory. To solve this problem, a RW buffer is also allocated at
1126 * as the same time. The JIT engine should calculate offsets based on the
1127 * RO memory address, but write JITed program to the RW buffer. Once the
1128 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1129 * the JITed program to the RO memory.
1130 */
1131struct bpf_binary_header *
1132bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1133			  unsigned int alignment,
1134			  struct bpf_binary_header **rw_header,
1135			  u8 **rw_image,
1136			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1137{
1138	struct bpf_binary_header *ro_header;
1139	u32 size, hole, start;
1140
1141	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1142		     alignment > BPF_IMAGE_ALIGNMENT);
1143
1144	/* add 16 bytes for a random section of illegal instructions */
1145	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1146
1147	if (bpf_jit_charge_modmem(size))
1148		return NULL;
1149	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1150	if (!ro_header) {
1151		bpf_jit_uncharge_modmem(size);
1152		return NULL;
1153	}
1154
1155	*rw_header = kvmalloc(size, GFP_KERNEL);
1156	if (!*rw_header) {
1157		bpf_prog_pack_free(ro_header, size);
1158		bpf_jit_uncharge_modmem(size);
1159		return NULL;
1160	}
1161
1162	/* Fill space with illegal/arch-dep instructions. */
1163	bpf_fill_ill_insns(*rw_header, size);
1164	(*rw_header)->size = size;
1165
1166	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1167		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1168	start = get_random_u32_below(hole) & ~(alignment - 1);
1169
1170	*image_ptr = &ro_header->image[start];
1171	*rw_image = &(*rw_header)->image[start];
1172
1173	return ro_header;
1174}
1175
1176/* Copy JITed text from rw_header to its final location, the ro_header. */
1177int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1178				 struct bpf_binary_header *ro_header,
1179				 struct bpf_binary_header *rw_header)
1180{
1181	void *ptr;
1182
1183	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1184
1185	kvfree(rw_header);
1186
1187	if (IS_ERR(ptr)) {
1188		bpf_prog_pack_free(ro_header, ro_header->size);
1189		return PTR_ERR(ptr);
1190	}
1191	return 0;
1192}
1193
1194/* bpf_jit_binary_pack_free is called in two different scenarios:
1195 *   1) when the program is freed after;
1196 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1197 * For case 2), we need to free both the RO memory and the RW buffer.
1198 *
1199 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1200 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1201 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1202 * bpf_arch_text_copy (when jit fails).
1203 */
1204void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1205			      struct bpf_binary_header *rw_header)
1206{
1207	u32 size = ro_header->size;
1208
1209	bpf_prog_pack_free(ro_header, size);
1210	kvfree(rw_header);
1211	bpf_jit_uncharge_modmem(size);
1212}
1213
1214struct bpf_binary_header *
1215bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1216{
1217	unsigned long real_start = (unsigned long)fp->bpf_func;
1218	unsigned long addr;
1219
1220	addr = real_start & BPF_PROG_CHUNK_MASK;
1221	return (void *)addr;
1222}
1223
1224static inline struct bpf_binary_header *
1225bpf_jit_binary_hdr(const struct bpf_prog *fp)
1226{
1227	unsigned long real_start = (unsigned long)fp->bpf_func;
1228	unsigned long addr;
1229
1230	addr = real_start & PAGE_MASK;
1231	return (void *)addr;
1232}
1233
1234/* This symbol is only overridden by archs that have different
1235 * requirements than the usual eBPF JITs, f.e. when they only
1236 * implement cBPF JIT, do not set images read-only, etc.
1237 */
1238void __weak bpf_jit_free(struct bpf_prog *fp)
1239{
1240	if (fp->jited) {
1241		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1242
1243		bpf_jit_binary_free(hdr);
1244		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1245	}
1246
1247	bpf_prog_unlock_free(fp);
1248}
1249
1250int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1251			  const struct bpf_insn *insn, bool extra_pass,
1252			  u64 *func_addr, bool *func_addr_fixed)
1253{
1254	s16 off = insn->off;
1255	s32 imm = insn->imm;
1256	u8 *addr;
1257	int err;
1258
1259	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1260	if (!*func_addr_fixed) {
1261		/* Place-holder address till the last pass has collected
1262		 * all addresses for JITed subprograms in which case we
1263		 * can pick them up from prog->aux.
1264		 */
1265		if (!extra_pass)
1266			addr = NULL;
1267		else if (prog->aux->func &&
1268			 off >= 0 && off < prog->aux->real_func_cnt)
1269			addr = (u8 *)prog->aux->func[off]->bpf_func;
1270		else
1271			return -EINVAL;
1272	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1273		   bpf_jit_supports_far_kfunc_call()) {
1274		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1275		if (err)
1276			return err;
1277	} else {
1278		/* Address of a BPF helper call. Since part of the core
1279		 * kernel, it's always at a fixed location. __bpf_call_base
1280		 * and the helper with imm relative to it are both in core
1281		 * kernel.
1282		 */
1283		addr = (u8 *)__bpf_call_base + imm;
1284	}
1285
1286	*func_addr = (unsigned long)addr;
1287	return 0;
1288}
1289
1290static int bpf_jit_blind_insn(const struct bpf_insn *from,
1291			      const struct bpf_insn *aux,
1292			      struct bpf_insn *to_buff,
1293			      bool emit_zext)
1294{
1295	struct bpf_insn *to = to_buff;
1296	u32 imm_rnd = get_random_u32();
1297	s16 off;
1298
1299	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1300	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1301
1302	/* Constraints on AX register:
1303	 *
1304	 * AX register is inaccessible from user space. It is mapped in
1305	 * all JITs, and used here for constant blinding rewrites. It is
1306	 * typically "stateless" meaning its contents are only valid within
1307	 * the executed instruction, but not across several instructions.
1308	 * There are a few exceptions however which are further detailed
1309	 * below.
1310	 *
1311	 * Constant blinding is only used by JITs, not in the interpreter.
1312	 * The interpreter uses AX in some occasions as a local temporary
1313	 * register e.g. in DIV or MOD instructions.
1314	 *
1315	 * In restricted circumstances, the verifier can also use the AX
1316	 * register for rewrites as long as they do not interfere with
1317	 * the above cases!
1318	 */
1319	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1320		goto out;
1321
1322	if (from->imm == 0 &&
1323	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1324	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1325		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1326		goto out;
1327	}
1328
1329	switch (from->code) {
1330	case BPF_ALU | BPF_ADD | BPF_K:
1331	case BPF_ALU | BPF_SUB | BPF_K:
1332	case BPF_ALU | BPF_AND | BPF_K:
1333	case BPF_ALU | BPF_OR  | BPF_K:
1334	case BPF_ALU | BPF_XOR | BPF_K:
1335	case BPF_ALU | BPF_MUL | BPF_K:
1336	case BPF_ALU | BPF_MOV | BPF_K:
1337	case BPF_ALU | BPF_DIV | BPF_K:
1338	case BPF_ALU | BPF_MOD | BPF_K:
1339		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1340		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1341		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1342		break;
1343
1344	case BPF_ALU64 | BPF_ADD | BPF_K:
1345	case BPF_ALU64 | BPF_SUB | BPF_K:
1346	case BPF_ALU64 | BPF_AND | BPF_K:
1347	case BPF_ALU64 | BPF_OR  | BPF_K:
1348	case BPF_ALU64 | BPF_XOR | BPF_K:
1349	case BPF_ALU64 | BPF_MUL | BPF_K:
1350	case BPF_ALU64 | BPF_MOV | BPF_K:
1351	case BPF_ALU64 | BPF_DIV | BPF_K:
1352	case BPF_ALU64 | BPF_MOD | BPF_K:
1353		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1354		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1355		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1356		break;
1357
1358	case BPF_JMP | BPF_JEQ  | BPF_K:
1359	case BPF_JMP | BPF_JNE  | BPF_K:
1360	case BPF_JMP | BPF_JGT  | BPF_K:
1361	case BPF_JMP | BPF_JLT  | BPF_K:
1362	case BPF_JMP | BPF_JGE  | BPF_K:
1363	case BPF_JMP | BPF_JLE  | BPF_K:
1364	case BPF_JMP | BPF_JSGT | BPF_K:
1365	case BPF_JMP | BPF_JSLT | BPF_K:
1366	case BPF_JMP | BPF_JSGE | BPF_K:
1367	case BPF_JMP | BPF_JSLE | BPF_K:
1368	case BPF_JMP | BPF_JSET | BPF_K:
1369		/* Accommodate for extra offset in case of a backjump. */
1370		off = from->off;
1371		if (off < 0)
1372			off -= 2;
1373		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1374		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1375		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1376		break;
1377
1378	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1379	case BPF_JMP32 | BPF_JNE  | BPF_K:
1380	case BPF_JMP32 | BPF_JGT  | BPF_K:
1381	case BPF_JMP32 | BPF_JLT  | BPF_K:
1382	case BPF_JMP32 | BPF_JGE  | BPF_K:
1383	case BPF_JMP32 | BPF_JLE  | BPF_K:
1384	case BPF_JMP32 | BPF_JSGT | BPF_K:
1385	case BPF_JMP32 | BPF_JSLT | BPF_K:
1386	case BPF_JMP32 | BPF_JSGE | BPF_K:
1387	case BPF_JMP32 | BPF_JSLE | BPF_K:
1388	case BPF_JMP32 | BPF_JSET | BPF_K:
1389		/* Accommodate for extra offset in case of a backjump. */
1390		off = from->off;
1391		if (off < 0)
1392			off -= 2;
1393		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1394		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1395		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1396				      off);
1397		break;
1398
1399	case BPF_LD | BPF_IMM | BPF_DW:
1400		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1401		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1402		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1403		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1404		break;
1405	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1406		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1407		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1408		if (emit_zext)
1409			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1410		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1411		break;
1412
1413	case BPF_ST | BPF_MEM | BPF_DW:
1414	case BPF_ST | BPF_MEM | BPF_W:
1415	case BPF_ST | BPF_MEM | BPF_H:
1416	case BPF_ST | BPF_MEM | BPF_B:
1417		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1418		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1419		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1420		break;
1421	}
1422out:
1423	return to - to_buff;
1424}
1425
1426static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1427					      gfp_t gfp_extra_flags)
1428{
1429	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1430	struct bpf_prog *fp;
1431
1432	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1433	if (fp != NULL) {
1434		/* aux->prog still points to the fp_other one, so
1435		 * when promoting the clone to the real program,
1436		 * this still needs to be adapted.
1437		 */
1438		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1439	}
1440
1441	return fp;
1442}
1443
1444static void bpf_prog_clone_free(struct bpf_prog *fp)
1445{
1446	/* aux was stolen by the other clone, so we cannot free
1447	 * it from this path! It will be freed eventually by the
1448	 * other program on release.
1449	 *
1450	 * At this point, we don't need a deferred release since
1451	 * clone is guaranteed to not be locked.
1452	 */
1453	fp->aux = NULL;
1454	fp->stats = NULL;
1455	fp->active = NULL;
1456	__bpf_prog_free(fp);
1457}
1458
1459void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1460{
1461	/* We have to repoint aux->prog to self, as we don't
1462	 * know whether fp here is the clone or the original.
1463	 */
1464	fp->aux->prog = fp;
1465	bpf_prog_clone_free(fp_other);
1466}
1467
1468struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1469{
1470	struct bpf_insn insn_buff[16], aux[2];
1471	struct bpf_prog *clone, *tmp;
1472	int insn_delta, insn_cnt;
1473	struct bpf_insn *insn;
1474	int i, rewritten;
1475
1476	if (!prog->blinding_requested || prog->blinded)
1477		return prog;
1478
1479	clone = bpf_prog_clone_create(prog, GFP_USER);
1480	if (!clone)
1481		return ERR_PTR(-ENOMEM);
1482
1483	insn_cnt = clone->len;
1484	insn = clone->insnsi;
1485
1486	for (i = 0; i < insn_cnt; i++, insn++) {
1487		if (bpf_pseudo_func(insn)) {
1488			/* ld_imm64 with an address of bpf subprog is not
1489			 * a user controlled constant. Don't randomize it,
1490			 * since it will conflict with jit_subprogs() logic.
1491			 */
1492			insn++;
1493			i++;
1494			continue;
1495		}
1496
1497		/* We temporarily need to hold the original ld64 insn
1498		 * so that we can still access the first part in the
1499		 * second blinding run.
1500		 */
1501		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1502		    insn[1].code == 0)
1503			memcpy(aux, insn, sizeof(aux));
1504
1505		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1506						clone->aux->verifier_zext);
1507		if (!rewritten)
1508			continue;
1509
1510		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1511		if (IS_ERR(tmp)) {
1512			/* Patching may have repointed aux->prog during
1513			 * realloc from the original one, so we need to
1514			 * fix it up here on error.
1515			 */
1516			bpf_jit_prog_release_other(prog, clone);
1517			return tmp;
1518		}
1519
1520		clone = tmp;
1521		insn_delta = rewritten - 1;
1522
1523		/* Walk new program and skip insns we just inserted. */
1524		insn = clone->insnsi + i + insn_delta;
1525		insn_cnt += insn_delta;
1526		i        += insn_delta;
1527	}
1528
1529	clone->blinded = 1;
1530	return clone;
1531}
1532#endif /* CONFIG_BPF_JIT */
1533
1534/* Base function for offset calculation. Needs to go into .text section,
1535 * therefore keeping it non-static as well; will also be used by JITs
1536 * anyway later on, so do not let the compiler omit it. This also needs
1537 * to go into kallsyms for correlation from e.g. bpftool, so naming
1538 * must not change.
1539 */
1540noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1541{
1542	return 0;
1543}
1544EXPORT_SYMBOL_GPL(__bpf_call_base);
1545
1546/* All UAPI available opcodes. */
1547#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1548	/* 32 bit ALU operations. */		\
1549	/*   Register based. */			\
1550	INSN_3(ALU, ADD,  X),			\
1551	INSN_3(ALU, SUB,  X),			\
1552	INSN_3(ALU, AND,  X),			\
1553	INSN_3(ALU, OR,   X),			\
1554	INSN_3(ALU, LSH,  X),			\
1555	INSN_3(ALU, RSH,  X),			\
1556	INSN_3(ALU, XOR,  X),			\
1557	INSN_3(ALU, MUL,  X),			\
1558	INSN_3(ALU, MOV,  X),			\
1559	INSN_3(ALU, ARSH, X),			\
1560	INSN_3(ALU, DIV,  X),			\
1561	INSN_3(ALU, MOD,  X),			\
1562	INSN_2(ALU, NEG),			\
1563	INSN_3(ALU, END, TO_BE),		\
1564	INSN_3(ALU, END, TO_LE),		\
1565	/*   Immediate based. */		\
1566	INSN_3(ALU, ADD,  K),			\
1567	INSN_3(ALU, SUB,  K),			\
1568	INSN_3(ALU, AND,  K),			\
1569	INSN_3(ALU, OR,   K),			\
1570	INSN_3(ALU, LSH,  K),			\
1571	INSN_3(ALU, RSH,  K),			\
1572	INSN_3(ALU, XOR,  K),			\
1573	INSN_3(ALU, MUL,  K),			\
1574	INSN_3(ALU, MOV,  K),			\
1575	INSN_3(ALU, ARSH, K),			\
1576	INSN_3(ALU, DIV,  K),			\
1577	INSN_3(ALU, MOD,  K),			\
1578	/* 64 bit ALU operations. */		\
1579	/*   Register based. */			\
1580	INSN_3(ALU64, ADD,  X),			\
1581	INSN_3(ALU64, SUB,  X),			\
1582	INSN_3(ALU64, AND,  X),			\
1583	INSN_3(ALU64, OR,   X),			\
1584	INSN_3(ALU64, LSH,  X),			\
1585	INSN_3(ALU64, RSH,  X),			\
1586	INSN_3(ALU64, XOR,  X),			\
1587	INSN_3(ALU64, MUL,  X),			\
1588	INSN_3(ALU64, MOV,  X),			\
1589	INSN_3(ALU64, ARSH, X),			\
1590	INSN_3(ALU64, DIV,  X),			\
1591	INSN_3(ALU64, MOD,  X),			\
1592	INSN_2(ALU64, NEG),			\
1593	INSN_3(ALU64, END, TO_LE),		\
1594	/*   Immediate based. */		\
1595	INSN_3(ALU64, ADD,  K),			\
1596	INSN_3(ALU64, SUB,  K),			\
1597	INSN_3(ALU64, AND,  K),			\
1598	INSN_3(ALU64, OR,   K),			\
1599	INSN_3(ALU64, LSH,  K),			\
1600	INSN_3(ALU64, RSH,  K),			\
1601	INSN_3(ALU64, XOR,  K),			\
1602	INSN_3(ALU64, MUL,  K),			\
1603	INSN_3(ALU64, MOV,  K),			\
1604	INSN_3(ALU64, ARSH, K),			\
1605	INSN_3(ALU64, DIV,  K),			\
1606	INSN_3(ALU64, MOD,  K),			\
1607	/* Call instruction. */			\
1608	INSN_2(JMP, CALL),			\
1609	/* Exit instruction. */			\
1610	INSN_2(JMP, EXIT),			\
1611	/* 32-bit Jump instructions. */		\
1612	/*   Register based. */			\
1613	INSN_3(JMP32, JEQ,  X),			\
1614	INSN_3(JMP32, JNE,  X),			\
1615	INSN_3(JMP32, JGT,  X),			\
1616	INSN_3(JMP32, JLT,  X),			\
1617	INSN_3(JMP32, JGE,  X),			\
1618	INSN_3(JMP32, JLE,  X),			\
1619	INSN_3(JMP32, JSGT, X),			\
1620	INSN_3(JMP32, JSLT, X),			\
1621	INSN_3(JMP32, JSGE, X),			\
1622	INSN_3(JMP32, JSLE, X),			\
1623	INSN_3(JMP32, JSET, X),			\
1624	/*   Immediate based. */		\
1625	INSN_3(JMP32, JEQ,  K),			\
1626	INSN_3(JMP32, JNE,  K),			\
1627	INSN_3(JMP32, JGT,  K),			\
1628	INSN_3(JMP32, JLT,  K),			\
1629	INSN_3(JMP32, JGE,  K),			\
1630	INSN_3(JMP32, JLE,  K),			\
1631	INSN_3(JMP32, JSGT, K),			\
1632	INSN_3(JMP32, JSLT, K),			\
1633	INSN_3(JMP32, JSGE, K),			\
1634	INSN_3(JMP32, JSLE, K),			\
1635	INSN_3(JMP32, JSET, K),			\
1636	/* Jump instructions. */		\
1637	/*   Register based. */			\
1638	INSN_3(JMP, JEQ,  X),			\
1639	INSN_3(JMP, JNE,  X),			\
1640	INSN_3(JMP, JGT,  X),			\
1641	INSN_3(JMP, JLT,  X),			\
1642	INSN_3(JMP, JGE,  X),			\
1643	INSN_3(JMP, JLE,  X),			\
1644	INSN_3(JMP, JSGT, X),			\
1645	INSN_3(JMP, JSLT, X),			\
1646	INSN_3(JMP, JSGE, X),			\
1647	INSN_3(JMP, JSLE, X),			\
1648	INSN_3(JMP, JSET, X),			\
1649	/*   Immediate based. */		\
1650	INSN_3(JMP, JEQ,  K),			\
1651	INSN_3(JMP, JNE,  K),			\
1652	INSN_3(JMP, JGT,  K),			\
1653	INSN_3(JMP, JLT,  K),			\
1654	INSN_3(JMP, JGE,  K),			\
1655	INSN_3(JMP, JLE,  K),			\
1656	INSN_3(JMP, JSGT, K),			\
1657	INSN_3(JMP, JSLT, K),			\
1658	INSN_3(JMP, JSGE, K),			\
1659	INSN_3(JMP, JSLE, K),			\
1660	INSN_3(JMP, JSET, K),			\
1661	INSN_2(JMP, JA),			\
1662	INSN_2(JMP32, JA),			\
1663	/* Store instructions. */		\
1664	/*   Register based. */			\
1665	INSN_3(STX, MEM,  B),			\
1666	INSN_3(STX, MEM,  H),			\
1667	INSN_3(STX, MEM,  W),			\
1668	INSN_3(STX, MEM,  DW),			\
1669	INSN_3(STX, ATOMIC, W),			\
1670	INSN_3(STX, ATOMIC, DW),		\
1671	/*   Immediate based. */		\
1672	INSN_3(ST, MEM, B),			\
1673	INSN_3(ST, MEM, H),			\
1674	INSN_3(ST, MEM, W),			\
1675	INSN_3(ST, MEM, DW),			\
1676	/* Load instructions. */		\
1677	/*   Register based. */			\
1678	INSN_3(LDX, MEM, B),			\
1679	INSN_3(LDX, MEM, H),			\
1680	INSN_3(LDX, MEM, W),			\
1681	INSN_3(LDX, MEM, DW),			\
1682	INSN_3(LDX, MEMSX, B),			\
1683	INSN_3(LDX, MEMSX, H),			\
1684	INSN_3(LDX, MEMSX, W),			\
1685	/*   Immediate based. */		\
1686	INSN_3(LD, IMM, DW)
1687
1688bool bpf_opcode_in_insntable(u8 code)
1689{
1690#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1691#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1692	static const bool public_insntable[256] = {
1693		[0 ... 255] = false,
1694		/* Now overwrite non-defaults ... */
1695		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1696		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1697		[BPF_LD | BPF_ABS | BPF_B] = true,
1698		[BPF_LD | BPF_ABS | BPF_H] = true,
1699		[BPF_LD | BPF_ABS | BPF_W] = true,
1700		[BPF_LD | BPF_IND | BPF_B] = true,
1701		[BPF_LD | BPF_IND | BPF_H] = true,
1702		[BPF_LD | BPF_IND | BPF_W] = true,
1703		[BPF_JMP | BPF_JCOND] = true,
1704	};
1705#undef BPF_INSN_3_TBL
1706#undef BPF_INSN_2_TBL
1707	return public_insntable[code];
1708}
1709
1710#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1711/**
1712 *	___bpf_prog_run - run eBPF program on a given context
1713 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1714 *	@insn: is the array of eBPF instructions
1715 *
1716 * Decode and execute eBPF instructions.
1717 *
1718 * Return: whatever value is in %BPF_R0 at program exit
1719 */
1720static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1721{
1722#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1723#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1724	static const void * const jumptable[256] __annotate_jump_table = {
1725		[0 ... 255] = &&default_label,
1726		/* Now overwrite non-defaults ... */
1727		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1728		/* Non-UAPI available opcodes. */
1729		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1730		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1731		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1732		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1733		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1734		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1735		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1736		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1737		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1738		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1739	};
1740#undef BPF_INSN_3_LBL
1741#undef BPF_INSN_2_LBL
1742	u32 tail_call_cnt = 0;
1743
1744#define CONT	 ({ insn++; goto select_insn; })
1745#define CONT_JMP ({ insn++; goto select_insn; })
1746
1747select_insn:
1748	goto *jumptable[insn->code];
1749
1750	/* Explicitly mask the register-based shift amounts with 63 or 31
1751	 * to avoid undefined behavior. Normally this won't affect the
1752	 * generated code, for example, in case of native 64 bit archs such
1753	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1754	 * the interpreter. In case of JITs, each of the JIT backends compiles
1755	 * the BPF shift operations to machine instructions which produce
1756	 * implementation-defined results in such a case; the resulting
1757	 * contents of the register may be arbitrary, but program behaviour
1758	 * as a whole remains defined. In other words, in case of JIT backends,
1759	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1760	 */
1761	/* ALU (shifts) */
1762#define SHT(OPCODE, OP)					\
1763	ALU64_##OPCODE##_X:				\
1764		DST = DST OP (SRC & 63);		\
1765		CONT;					\
1766	ALU_##OPCODE##_X:				\
1767		DST = (u32) DST OP ((u32) SRC & 31);	\
1768		CONT;					\
1769	ALU64_##OPCODE##_K:				\
1770		DST = DST OP IMM;			\
1771		CONT;					\
1772	ALU_##OPCODE##_K:				\
1773		DST = (u32) DST OP (u32) IMM;		\
1774		CONT;
1775	/* ALU (rest) */
1776#define ALU(OPCODE, OP)					\
1777	ALU64_##OPCODE##_X:				\
1778		DST = DST OP SRC;			\
1779		CONT;					\
1780	ALU_##OPCODE##_X:				\
1781		DST = (u32) DST OP (u32) SRC;		\
1782		CONT;					\
1783	ALU64_##OPCODE##_K:				\
1784		DST = DST OP IMM;			\
1785		CONT;					\
1786	ALU_##OPCODE##_K:				\
1787		DST = (u32) DST OP (u32) IMM;		\
1788		CONT;
1789	ALU(ADD,  +)
1790	ALU(SUB,  -)
1791	ALU(AND,  &)
1792	ALU(OR,   |)
1793	ALU(XOR,  ^)
1794	ALU(MUL,  *)
1795	SHT(LSH, <<)
1796	SHT(RSH, >>)
1797#undef SHT
1798#undef ALU
1799	ALU_NEG:
1800		DST = (u32) -DST;
1801		CONT;
1802	ALU64_NEG:
1803		DST = -DST;
1804		CONT;
1805	ALU_MOV_X:
1806		switch (OFF) {
1807		case 0:
1808			DST = (u32) SRC;
1809			break;
1810		case 8:
1811			DST = (u32)(s8) SRC;
1812			break;
1813		case 16:
1814			DST = (u32)(s16) SRC;
1815			break;
1816		}
1817		CONT;
1818	ALU_MOV_K:
1819		DST = (u32) IMM;
1820		CONT;
1821	ALU64_MOV_X:
1822		switch (OFF) {
1823		case 0:
1824			DST = SRC;
1825			break;
1826		case 8:
1827			DST = (s8) SRC;
1828			break;
1829		case 16:
1830			DST = (s16) SRC;
1831			break;
1832		case 32:
1833			DST = (s32) SRC;
1834			break;
1835		}
1836		CONT;
1837	ALU64_MOV_K:
1838		DST = IMM;
1839		CONT;
1840	LD_IMM_DW:
1841		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1842		insn++;
1843		CONT;
1844	ALU_ARSH_X:
1845		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1846		CONT;
1847	ALU_ARSH_K:
1848		DST = (u64) (u32) (((s32) DST) >> IMM);
1849		CONT;
1850	ALU64_ARSH_X:
1851		(*(s64 *) &DST) >>= (SRC & 63);
1852		CONT;
1853	ALU64_ARSH_K:
1854		(*(s64 *) &DST) >>= IMM;
1855		CONT;
1856	ALU64_MOD_X:
1857		switch (OFF) {
1858		case 0:
1859			div64_u64_rem(DST, SRC, &AX);
1860			DST = AX;
1861			break;
1862		case 1:
1863			AX = div64_s64(DST, SRC);
1864			DST = DST - AX * SRC;
1865			break;
1866		}
1867		CONT;
1868	ALU_MOD_X:
1869		switch (OFF) {
1870		case 0:
1871			AX = (u32) DST;
1872			DST = do_div(AX, (u32) SRC);
1873			break;
1874		case 1:
1875			AX = abs((s32)DST);
1876			AX = do_div(AX, abs((s32)SRC));
1877			if ((s32)DST < 0)
1878				DST = (u32)-AX;
1879			else
1880				DST = (u32)AX;
1881			break;
1882		}
1883		CONT;
1884	ALU64_MOD_K:
1885		switch (OFF) {
1886		case 0:
1887			div64_u64_rem(DST, IMM, &AX);
1888			DST = AX;
1889			break;
1890		case 1:
1891			AX = div64_s64(DST, IMM);
1892			DST = DST - AX * IMM;
1893			break;
1894		}
1895		CONT;
1896	ALU_MOD_K:
1897		switch (OFF) {
1898		case 0:
1899			AX = (u32) DST;
1900			DST = do_div(AX, (u32) IMM);
1901			break;
1902		case 1:
1903			AX = abs((s32)DST);
1904			AX = do_div(AX, abs((s32)IMM));
1905			if ((s32)DST < 0)
1906				DST = (u32)-AX;
1907			else
1908				DST = (u32)AX;
1909			break;
1910		}
1911		CONT;
1912	ALU64_DIV_X:
1913		switch (OFF) {
1914		case 0:
1915			DST = div64_u64(DST, SRC);
1916			break;
1917		case 1:
1918			DST = div64_s64(DST, SRC);
1919			break;
1920		}
1921		CONT;
1922	ALU_DIV_X:
1923		switch (OFF) {
1924		case 0:
1925			AX = (u32) DST;
1926			do_div(AX, (u32) SRC);
1927			DST = (u32) AX;
1928			break;
1929		case 1:
1930			AX = abs((s32)DST);
1931			do_div(AX, abs((s32)SRC));
1932			if (((s32)DST < 0) == ((s32)SRC < 0))
1933				DST = (u32)AX;
1934			else
1935				DST = (u32)-AX;
1936			break;
1937		}
1938		CONT;
1939	ALU64_DIV_K:
1940		switch (OFF) {
1941		case 0:
1942			DST = div64_u64(DST, IMM);
1943			break;
1944		case 1:
1945			DST = div64_s64(DST, IMM);
1946			break;
1947		}
1948		CONT;
1949	ALU_DIV_K:
1950		switch (OFF) {
1951		case 0:
1952			AX = (u32) DST;
1953			do_div(AX, (u32) IMM);
1954			DST = (u32) AX;
1955			break;
1956		case 1:
1957			AX = abs((s32)DST);
1958			do_div(AX, abs((s32)IMM));
1959			if (((s32)DST < 0) == ((s32)IMM < 0))
1960				DST = (u32)AX;
1961			else
1962				DST = (u32)-AX;
1963			break;
1964		}
1965		CONT;
1966	ALU_END_TO_BE:
1967		switch (IMM) {
1968		case 16:
1969			DST = (__force u16) cpu_to_be16(DST);
1970			break;
1971		case 32:
1972			DST = (__force u32) cpu_to_be32(DST);
1973			break;
1974		case 64:
1975			DST = (__force u64) cpu_to_be64(DST);
1976			break;
1977		}
1978		CONT;
1979	ALU_END_TO_LE:
1980		switch (IMM) {
1981		case 16:
1982			DST = (__force u16) cpu_to_le16(DST);
1983			break;
1984		case 32:
1985			DST = (__force u32) cpu_to_le32(DST);
1986			break;
1987		case 64:
1988			DST = (__force u64) cpu_to_le64(DST);
1989			break;
1990		}
1991		CONT;
1992	ALU64_END_TO_LE:
1993		switch (IMM) {
1994		case 16:
1995			DST = (__force u16) __swab16(DST);
1996			break;
1997		case 32:
1998			DST = (__force u32) __swab32(DST);
1999			break;
2000		case 64:
2001			DST = (__force u64) __swab64(DST);
2002			break;
2003		}
2004		CONT;
2005
2006	/* CALL */
2007	JMP_CALL:
2008		/* Function call scratches BPF_R1-BPF_R5 registers,
2009		 * preserves BPF_R6-BPF_R9, and stores return value
2010		 * into BPF_R0.
2011		 */
2012		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2013						       BPF_R4, BPF_R5);
2014		CONT;
2015
2016	JMP_CALL_ARGS:
2017		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2018							    BPF_R3, BPF_R4,
2019							    BPF_R5,
2020							    insn + insn->off + 1);
2021		CONT;
2022
2023	JMP_TAIL_CALL: {
2024		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2025		struct bpf_array *array = container_of(map, struct bpf_array, map);
2026		struct bpf_prog *prog;
2027		u32 index = BPF_R3;
2028
2029		if (unlikely(index >= array->map.max_entries))
2030			goto out;
2031
2032		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2033			goto out;
2034
2035		tail_call_cnt++;
2036
2037		prog = READ_ONCE(array->ptrs[index]);
2038		if (!prog)
2039			goto out;
2040
2041		/* ARG1 at this point is guaranteed to point to CTX from
2042		 * the verifier side due to the fact that the tail call is
2043		 * handled like a helper, that is, bpf_tail_call_proto,
2044		 * where arg1_type is ARG_PTR_TO_CTX.
2045		 */
2046		insn = prog->insnsi;
2047		goto select_insn;
2048out:
2049		CONT;
2050	}
2051	JMP_JA:
2052		insn += insn->off;
2053		CONT;
2054	JMP32_JA:
2055		insn += insn->imm;
2056		CONT;
2057	JMP_EXIT:
2058		return BPF_R0;
2059	/* JMP */
2060#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2061	JMP_##OPCODE##_X:					\
2062		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2063			insn += insn->off;			\
2064			CONT_JMP;				\
2065		}						\
2066		CONT;						\
2067	JMP32_##OPCODE##_X:					\
2068		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2069			insn += insn->off;			\
2070			CONT_JMP;				\
2071		}						\
2072		CONT;						\
2073	JMP_##OPCODE##_K:					\
2074		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2075			insn += insn->off;			\
2076			CONT_JMP;				\
2077		}						\
2078		CONT;						\
2079	JMP32_##OPCODE##_K:					\
2080		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2081			insn += insn->off;			\
2082			CONT_JMP;				\
2083		}						\
2084		CONT;
2085	COND_JMP(u, JEQ, ==)
2086	COND_JMP(u, JNE, !=)
2087	COND_JMP(u, JGT, >)
2088	COND_JMP(u, JLT, <)
2089	COND_JMP(u, JGE, >=)
2090	COND_JMP(u, JLE, <=)
2091	COND_JMP(u, JSET, &)
2092	COND_JMP(s, JSGT, >)
2093	COND_JMP(s, JSLT, <)
2094	COND_JMP(s, JSGE, >=)
2095	COND_JMP(s, JSLE, <=)
2096#undef COND_JMP
2097	/* ST, STX and LDX*/
2098	ST_NOSPEC:
2099		/* Speculation barrier for mitigating Speculative Store Bypass.
2100		 * In case of arm64, we rely on the firmware mitigation as
2101		 * controlled via the ssbd kernel parameter. Whenever the
2102		 * mitigation is enabled, it works for all of the kernel code
2103		 * with no need to provide any additional instructions here.
2104		 * In case of x86, we use 'lfence' insn for mitigation. We
2105		 * reuse preexisting logic from Spectre v1 mitigation that
2106		 * happens to produce the required code on x86 for v4 as well.
2107		 */
2108		barrier_nospec();
2109		CONT;
2110#define LDST(SIZEOP, SIZE)						\
2111	STX_MEM_##SIZEOP:						\
2112		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2113		CONT;							\
2114	ST_MEM_##SIZEOP:						\
2115		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2116		CONT;							\
2117	LDX_MEM_##SIZEOP:						\
2118		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2119		CONT;							\
2120	LDX_PROBE_MEM_##SIZEOP:						\
2121		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2122			      (const void *)(long) (SRC + insn->off));	\
2123		DST = *((SIZE *)&DST);					\
2124		CONT;
2125
2126	LDST(B,   u8)
2127	LDST(H,  u16)
2128	LDST(W,  u32)
2129	LDST(DW, u64)
2130#undef LDST
2131
2132#define LDSX(SIZEOP, SIZE)						\
2133	LDX_MEMSX_##SIZEOP:						\
2134		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2135		CONT;							\
2136	LDX_PROBE_MEMSX_##SIZEOP:					\
2137		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2138				      (const void *)(long) (SRC + insn->off));	\
2139		DST = *((SIZE *)&DST);					\
2140		CONT;
2141
2142	LDSX(B,   s8)
2143	LDSX(H,  s16)
2144	LDSX(W,  s32)
2145#undef LDSX
2146
2147#define ATOMIC_ALU_OP(BOP, KOP)						\
2148		case BOP:						\
2149			if (BPF_SIZE(insn->code) == BPF_W)		\
2150				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2151					     (DST + insn->off));	\
2152			else						\
2153				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2154					       (DST + insn->off));	\
2155			break;						\
2156		case BOP | BPF_FETCH:					\
2157			if (BPF_SIZE(insn->code) == BPF_W)		\
2158				SRC = (u32) atomic_fetch_##KOP(		\
2159					(u32) SRC,			\
2160					(atomic_t *)(unsigned long) (DST + insn->off)); \
2161			else						\
2162				SRC = (u64) atomic64_fetch_##KOP(	\
2163					(u64) SRC,			\
2164					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2165			break;
2166
2167	STX_ATOMIC_DW:
2168	STX_ATOMIC_W:
2169		switch (IMM) {
2170		ATOMIC_ALU_OP(BPF_ADD, add)
2171		ATOMIC_ALU_OP(BPF_AND, and)
2172		ATOMIC_ALU_OP(BPF_OR, or)
2173		ATOMIC_ALU_OP(BPF_XOR, xor)
2174#undef ATOMIC_ALU_OP
2175
2176		case BPF_XCHG:
2177			if (BPF_SIZE(insn->code) == BPF_W)
2178				SRC = (u32) atomic_xchg(
2179					(atomic_t *)(unsigned long) (DST + insn->off),
2180					(u32) SRC);
2181			else
2182				SRC = (u64) atomic64_xchg(
2183					(atomic64_t *)(unsigned long) (DST + insn->off),
2184					(u64) SRC);
2185			break;
2186		case BPF_CMPXCHG:
2187			if (BPF_SIZE(insn->code) == BPF_W)
2188				BPF_R0 = (u32) atomic_cmpxchg(
2189					(atomic_t *)(unsigned long) (DST + insn->off),
2190					(u32) BPF_R0, (u32) SRC);
2191			else
2192				BPF_R0 = (u64) atomic64_cmpxchg(
2193					(atomic64_t *)(unsigned long) (DST + insn->off),
2194					(u64) BPF_R0, (u64) SRC);
2195			break;
2196
2197		default:
2198			goto default_label;
2199		}
2200		CONT;
2201
2202	default_label:
2203		/* If we ever reach this, we have a bug somewhere. Die hard here
2204		 * instead of just returning 0; we could be somewhere in a subprog,
2205		 * so execution could continue otherwise which we do /not/ want.
2206		 *
2207		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2208		 */
2209		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2210			insn->code, insn->imm);
2211		BUG_ON(1);
2212		return 0;
2213}
2214
2215#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2216#define DEFINE_BPF_PROG_RUN(stack_size) \
2217static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2218{ \
2219	u64 stack[stack_size / sizeof(u64)]; \
2220	u64 regs[MAX_BPF_EXT_REG] = {}; \
2221\
2222	kmsan_unpoison_memory(stack, sizeof(stack)); \
2223	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2224	ARG1 = (u64) (unsigned long) ctx; \
2225	return ___bpf_prog_run(regs, insn); \
2226}
2227
2228#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2229#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2230static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2231				      const struct bpf_insn *insn) \
2232{ \
2233	u64 stack[stack_size / sizeof(u64)]; \
2234	u64 regs[MAX_BPF_EXT_REG]; \
2235\
2236	kmsan_unpoison_memory(stack, sizeof(stack)); \
2237	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2238	BPF_R1 = r1; \
2239	BPF_R2 = r2; \
2240	BPF_R3 = r3; \
2241	BPF_R4 = r4; \
2242	BPF_R5 = r5; \
2243	return ___bpf_prog_run(regs, insn); \
2244}
2245
2246#define EVAL1(FN, X) FN(X)
2247#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2248#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2249#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2250#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2251#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2252
2253EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2254EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2255EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2256
2257EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2258EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2259EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2260
2261#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2262
2263static unsigned int (*interpreters[])(const void *ctx,
2264				      const struct bpf_insn *insn) = {
2265EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2266EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2267EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2268};
2269#undef PROG_NAME_LIST
2270#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2271static __maybe_unused
2272u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2273			   const struct bpf_insn *insn) = {
2274EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2275EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2276EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2277};
2278#undef PROG_NAME_LIST
2279
2280#ifdef CONFIG_BPF_SYSCALL
2281void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2282{
2283	stack_depth = max_t(u32, stack_depth, 1);
2284	insn->off = (s16) insn->imm;
2285	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2286		__bpf_call_base_args;
2287	insn->code = BPF_JMP | BPF_CALL_ARGS;
2288}
2289#endif
2290#else
2291static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2292					 const struct bpf_insn *insn)
2293{
2294	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2295	 * is not working properly, so warn about it!
2296	 */
2297	WARN_ON_ONCE(1);
2298	return 0;
2299}
2300#endif
2301
2302bool bpf_prog_map_compatible(struct bpf_map *map,
2303			     const struct bpf_prog *fp)
2304{
2305	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2306	bool ret;
2307
2308	if (fp->kprobe_override)
2309		return false;
2310
2311	/* XDP programs inserted into maps are not guaranteed to run on
2312	 * a particular netdev (and can run outside driver context entirely
2313	 * in the case of devmap and cpumap). Until device checks
2314	 * are implemented, prohibit adding dev-bound programs to program maps.
2315	 */
2316	if (bpf_prog_is_dev_bound(fp->aux))
2317		return false;
2318
2319	spin_lock(&map->owner.lock);
2320	if (!map->owner.type) {
2321		/* There's no owner yet where we could check for
2322		 * compatibility.
2323		 */
2324		map->owner.type  = prog_type;
2325		map->owner.jited = fp->jited;
2326		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2327		ret = true;
2328	} else {
2329		ret = map->owner.type  == prog_type &&
2330		      map->owner.jited == fp->jited &&
2331		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2332	}
2333	spin_unlock(&map->owner.lock);
2334
2335	return ret;
2336}
2337
2338static int bpf_check_tail_call(const struct bpf_prog *fp)
2339{
2340	struct bpf_prog_aux *aux = fp->aux;
2341	int i, ret = 0;
2342
2343	mutex_lock(&aux->used_maps_mutex);
2344	for (i = 0; i < aux->used_map_cnt; i++) {
2345		struct bpf_map *map = aux->used_maps[i];
2346
2347		if (!map_type_contains_progs(map))
2348			continue;
2349
2350		if (!bpf_prog_map_compatible(map, fp)) {
2351			ret = -EINVAL;
2352			goto out;
2353		}
2354	}
2355
2356out:
2357	mutex_unlock(&aux->used_maps_mutex);
2358	return ret;
2359}
2360
2361static void bpf_prog_select_func(struct bpf_prog *fp)
2362{
2363#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2364	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2365
2366	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2367#else
2368	fp->bpf_func = __bpf_prog_ret0_warn;
2369#endif
2370}
2371
2372/**
2373 *	bpf_prog_select_runtime - select exec runtime for BPF program
2374 *	@fp: bpf_prog populated with BPF program
2375 *	@err: pointer to error variable
2376 *
2377 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2378 * The BPF program will be executed via bpf_prog_run() function.
2379 *
2380 * Return: the &fp argument along with &err set to 0 for success or
2381 * a negative errno code on failure
2382 */
2383struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2384{
2385	/* In case of BPF to BPF calls, verifier did all the prep
2386	 * work with regards to JITing, etc.
2387	 */
2388	bool jit_needed = false;
2389
2390	if (fp->bpf_func)
2391		goto finalize;
2392
2393	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2394	    bpf_prog_has_kfunc_call(fp))
2395		jit_needed = true;
2396
2397	bpf_prog_select_func(fp);
2398
2399	/* eBPF JITs can rewrite the program in case constant
2400	 * blinding is active. However, in case of error during
2401	 * blinding, bpf_int_jit_compile() must always return a
2402	 * valid program, which in this case would simply not
2403	 * be JITed, but falls back to the interpreter.
2404	 */
2405	if (!bpf_prog_is_offloaded(fp->aux)) {
2406		*err = bpf_prog_alloc_jited_linfo(fp);
2407		if (*err)
2408			return fp;
2409
2410		fp = bpf_int_jit_compile(fp);
2411		bpf_prog_jit_attempt_done(fp);
2412		if (!fp->jited && jit_needed) {
2413			*err = -ENOTSUPP;
2414			return fp;
2415		}
2416	} else {
2417		*err = bpf_prog_offload_compile(fp);
2418		if (*err)
2419			return fp;
2420	}
2421
2422finalize:
2423	*err = bpf_prog_lock_ro(fp);
2424	if (*err)
2425		return fp;
2426
2427	/* The tail call compatibility check can only be done at
2428	 * this late stage as we need to determine, if we deal
2429	 * with JITed or non JITed program concatenations and not
2430	 * all eBPF JITs might immediately support all features.
2431	 */
2432	*err = bpf_check_tail_call(fp);
2433
2434	return fp;
2435}
2436EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2437
2438static unsigned int __bpf_prog_ret1(const void *ctx,
2439				    const struct bpf_insn *insn)
2440{
2441	return 1;
2442}
2443
2444static struct bpf_prog_dummy {
2445	struct bpf_prog prog;
2446} dummy_bpf_prog = {
2447	.prog = {
2448		.bpf_func = __bpf_prog_ret1,
2449	},
2450};
2451
2452struct bpf_empty_prog_array bpf_empty_prog_array = {
2453	.null_prog = NULL,
2454};
2455EXPORT_SYMBOL(bpf_empty_prog_array);
2456
2457struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2458{
2459	struct bpf_prog_array *p;
2460
2461	if (prog_cnt)
2462		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2463	else
2464		p = &bpf_empty_prog_array.hdr;
2465
2466	return p;
2467}
2468
2469void bpf_prog_array_free(struct bpf_prog_array *progs)
2470{
2471	if (!progs || progs == &bpf_empty_prog_array.hdr)
2472		return;
2473	kfree_rcu(progs, rcu);
2474}
2475
2476static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2477{
2478	struct bpf_prog_array *progs;
2479
2480	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2481	 * no need to call kfree_rcu(), just call kfree() directly.
2482	 */
2483	progs = container_of(rcu, struct bpf_prog_array, rcu);
2484	if (rcu_trace_implies_rcu_gp())
2485		kfree(progs);
2486	else
2487		kfree_rcu(progs, rcu);
2488}
2489
2490void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2491{
2492	if (!progs || progs == &bpf_empty_prog_array.hdr)
2493		return;
2494	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2495}
2496
2497int bpf_prog_array_length(struct bpf_prog_array *array)
2498{
2499	struct bpf_prog_array_item *item;
2500	u32 cnt = 0;
2501
2502	for (item = array->items; item->prog; item++)
2503		if (item->prog != &dummy_bpf_prog.prog)
2504			cnt++;
2505	return cnt;
2506}
2507
2508bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2509{
2510	struct bpf_prog_array_item *item;
2511
2512	for (item = array->items; item->prog; item++)
2513		if (item->prog != &dummy_bpf_prog.prog)
2514			return false;
2515	return true;
2516}
2517
2518static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2519				     u32 *prog_ids,
2520				     u32 request_cnt)
2521{
2522	struct bpf_prog_array_item *item;
2523	int i = 0;
2524
2525	for (item = array->items; item->prog; item++) {
2526		if (item->prog == &dummy_bpf_prog.prog)
2527			continue;
2528		prog_ids[i] = item->prog->aux->id;
2529		if (++i == request_cnt) {
2530			item++;
2531			break;
2532		}
2533	}
2534
2535	return !!(item->prog);
2536}
2537
2538int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2539				__u32 __user *prog_ids, u32 cnt)
2540{
2541	unsigned long err = 0;
2542	bool nospc;
2543	u32 *ids;
2544
2545	/* users of this function are doing:
2546	 * cnt = bpf_prog_array_length();
2547	 * if (cnt > 0)
2548	 *     bpf_prog_array_copy_to_user(..., cnt);
2549	 * so below kcalloc doesn't need extra cnt > 0 check.
2550	 */
2551	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2552	if (!ids)
2553		return -ENOMEM;
2554	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2555	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2556	kfree(ids);
2557	if (err)
2558		return -EFAULT;
2559	if (nospc)
2560		return -ENOSPC;
2561	return 0;
2562}
2563
2564void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2565				struct bpf_prog *old_prog)
2566{
2567	struct bpf_prog_array_item *item;
2568
2569	for (item = array->items; item->prog; item++)
2570		if (item->prog == old_prog) {
2571			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2572			break;
2573		}
2574}
2575
2576/**
2577 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2578 *                                   index into the program array with
2579 *                                   a dummy no-op program.
2580 * @array: a bpf_prog_array
2581 * @index: the index of the program to replace
2582 *
2583 * Skips over dummy programs, by not counting them, when calculating
2584 * the position of the program to replace.
2585 *
2586 * Return:
2587 * * 0		- Success
2588 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2589 * * -ENOENT	- Index out of range
2590 */
2591int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2592{
2593	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2594}
2595
2596/**
2597 * bpf_prog_array_update_at() - Updates the program at the given index
2598 *                              into the program array.
2599 * @array: a bpf_prog_array
2600 * @index: the index of the program to update
2601 * @prog: the program to insert into the array
2602 *
2603 * Skips over dummy programs, by not counting them, when calculating
2604 * the position of the program to update.
2605 *
2606 * Return:
2607 * * 0		- Success
2608 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2609 * * -ENOENT	- Index out of range
2610 */
2611int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2612			     struct bpf_prog *prog)
2613{
2614	struct bpf_prog_array_item *item;
2615
2616	if (unlikely(index < 0))
2617		return -EINVAL;
2618
2619	for (item = array->items; item->prog; item++) {
2620		if (item->prog == &dummy_bpf_prog.prog)
2621			continue;
2622		if (!index) {
2623			WRITE_ONCE(item->prog, prog);
2624			return 0;
2625		}
2626		index--;
2627	}
2628	return -ENOENT;
2629}
2630
2631int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2632			struct bpf_prog *exclude_prog,
2633			struct bpf_prog *include_prog,
2634			u64 bpf_cookie,
2635			struct bpf_prog_array **new_array)
2636{
2637	int new_prog_cnt, carry_prog_cnt = 0;
2638	struct bpf_prog_array_item *existing, *new;
2639	struct bpf_prog_array *array;
2640	bool found_exclude = false;
2641
2642	/* Figure out how many existing progs we need to carry over to
2643	 * the new array.
2644	 */
2645	if (old_array) {
2646		existing = old_array->items;
2647		for (; existing->prog; existing++) {
2648			if (existing->prog == exclude_prog) {
2649				found_exclude = true;
2650				continue;
2651			}
2652			if (existing->prog != &dummy_bpf_prog.prog)
2653				carry_prog_cnt++;
2654			if (existing->prog == include_prog)
2655				return -EEXIST;
2656		}
2657	}
2658
2659	if (exclude_prog && !found_exclude)
2660		return -ENOENT;
2661
2662	/* How many progs (not NULL) will be in the new array? */
2663	new_prog_cnt = carry_prog_cnt;
2664	if (include_prog)
2665		new_prog_cnt += 1;
2666
2667	/* Do we have any prog (not NULL) in the new array? */
2668	if (!new_prog_cnt) {
2669		*new_array = NULL;
2670		return 0;
2671	}
2672
2673	/* +1 as the end of prog_array is marked with NULL */
2674	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2675	if (!array)
2676		return -ENOMEM;
2677	new = array->items;
2678
2679	/* Fill in the new prog array */
2680	if (carry_prog_cnt) {
2681		existing = old_array->items;
2682		for (; existing->prog; existing++) {
2683			if (existing->prog == exclude_prog ||
2684			    existing->prog == &dummy_bpf_prog.prog)
2685				continue;
2686
2687			new->prog = existing->prog;
2688			new->bpf_cookie = existing->bpf_cookie;
2689			new++;
2690		}
2691	}
2692	if (include_prog) {
2693		new->prog = include_prog;
2694		new->bpf_cookie = bpf_cookie;
2695		new++;
2696	}
2697	new->prog = NULL;
2698	*new_array = array;
2699	return 0;
2700}
2701
2702int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2703			     u32 *prog_ids, u32 request_cnt,
2704			     u32 *prog_cnt)
2705{
2706	u32 cnt = 0;
2707
2708	if (array)
2709		cnt = bpf_prog_array_length(array);
2710
2711	*prog_cnt = cnt;
2712
2713	/* return early if user requested only program count or nothing to copy */
2714	if (!request_cnt || !cnt)
2715		return 0;
2716
2717	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2718	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2719								     : 0;
2720}
2721
2722void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2723			  struct bpf_map **used_maps, u32 len)
2724{
2725	struct bpf_map *map;
2726	bool sleepable;
2727	u32 i;
2728
2729	sleepable = aux->prog->sleepable;
2730	for (i = 0; i < len; i++) {
2731		map = used_maps[i];
2732		if (map->ops->map_poke_untrack)
2733			map->ops->map_poke_untrack(map, aux);
2734		if (sleepable)
2735			atomic64_dec(&map->sleepable_refcnt);
2736		bpf_map_put(map);
2737	}
2738}
2739
2740static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2741{
2742	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2743	kfree(aux->used_maps);
2744}
2745
2746void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2747			  struct btf_mod_pair *used_btfs, u32 len)
2748{
2749#ifdef CONFIG_BPF_SYSCALL
2750	struct btf_mod_pair *btf_mod;
2751	u32 i;
2752
2753	for (i = 0; i < len; i++) {
2754		btf_mod = &used_btfs[i];
2755		if (btf_mod->module)
2756			module_put(btf_mod->module);
2757		btf_put(btf_mod->btf);
2758	}
2759#endif
2760}
2761
2762static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2763{
2764	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2765	kfree(aux->used_btfs);
2766}
2767
2768static void bpf_prog_free_deferred(struct work_struct *work)
2769{
2770	struct bpf_prog_aux *aux;
2771	int i;
2772
2773	aux = container_of(work, struct bpf_prog_aux, work);
2774#ifdef CONFIG_BPF_SYSCALL
2775	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2776#endif
2777#ifdef CONFIG_CGROUP_BPF
2778	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2779		bpf_cgroup_atype_put(aux->cgroup_atype);
2780#endif
2781	bpf_free_used_maps(aux);
2782	bpf_free_used_btfs(aux);
2783	if (bpf_prog_is_dev_bound(aux))
2784		bpf_prog_dev_bound_destroy(aux->prog);
2785#ifdef CONFIG_PERF_EVENTS
2786	if (aux->prog->has_callchain_buf)
2787		put_callchain_buffers();
2788#endif
2789	if (aux->dst_trampoline)
2790		bpf_trampoline_put(aux->dst_trampoline);
2791	for (i = 0; i < aux->real_func_cnt; i++) {
2792		/* We can just unlink the subprog poke descriptor table as
2793		 * it was originally linked to the main program and is also
2794		 * released along with it.
2795		 */
2796		aux->func[i]->aux->poke_tab = NULL;
2797		bpf_jit_free(aux->func[i]);
2798	}
2799	if (aux->real_func_cnt) {
2800		kfree(aux->func);
2801		bpf_prog_unlock_free(aux->prog);
2802	} else {
2803		bpf_jit_free(aux->prog);
2804	}
2805}
2806
2807void bpf_prog_free(struct bpf_prog *fp)
2808{
2809	struct bpf_prog_aux *aux = fp->aux;
2810
2811	if (aux->dst_prog)
2812		bpf_prog_put(aux->dst_prog);
2813	bpf_token_put(aux->token);
2814	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2815	schedule_work(&aux->work);
2816}
2817EXPORT_SYMBOL_GPL(bpf_prog_free);
2818
2819/* RNG for unprivileged user space with separated state from prandom_u32(). */
2820static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2821
2822void bpf_user_rnd_init_once(void)
2823{
2824	prandom_init_once(&bpf_user_rnd_state);
2825}
2826
2827BPF_CALL_0(bpf_user_rnd_u32)
2828{
2829	/* Should someone ever have the rather unwise idea to use some
2830	 * of the registers passed into this function, then note that
2831	 * this function is called from native eBPF and classic-to-eBPF
2832	 * transformations. Register assignments from both sides are
2833	 * different, f.e. classic always sets fn(ctx, A, X) here.
2834	 */
2835	struct rnd_state *state;
2836	u32 res;
2837
2838	state = &get_cpu_var(bpf_user_rnd_state);
2839	res = prandom_u32_state(state);
2840	put_cpu_var(bpf_user_rnd_state);
2841
2842	return res;
2843}
2844
2845BPF_CALL_0(bpf_get_raw_cpu_id)
2846{
2847	return raw_smp_processor_id();
2848}
2849
2850/* Weak definitions of helper functions in case we don't have bpf syscall. */
2851const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2852const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2853const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2854const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2855const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2856const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2857const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2858const struct bpf_func_proto bpf_spin_lock_proto __weak;
2859const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2860const struct bpf_func_proto bpf_jiffies64_proto __weak;
2861
2862const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2863const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2864const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2865const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2866const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2867const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2868const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2869
2870const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2871const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2872const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2873const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2874const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2875const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2876const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2877const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2878const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2879const struct bpf_func_proto bpf_set_retval_proto __weak;
2880const struct bpf_func_proto bpf_get_retval_proto __weak;
2881
2882const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2883{
2884	return NULL;
2885}
2886
2887const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2888{
2889	return NULL;
2890}
2891
2892u64 __weak
2893bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2894		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2895{
2896	return -ENOTSUPP;
2897}
2898EXPORT_SYMBOL_GPL(bpf_event_output);
2899
2900/* Always built-in helper functions. */
2901const struct bpf_func_proto bpf_tail_call_proto = {
2902	.func		= NULL,
2903	.gpl_only	= false,
2904	.ret_type	= RET_VOID,
2905	.arg1_type	= ARG_PTR_TO_CTX,
2906	.arg2_type	= ARG_CONST_MAP_PTR,
2907	.arg3_type	= ARG_ANYTHING,
2908};
2909
2910/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2911 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2912 * eBPF and implicitly also cBPF can get JITed!
2913 */
2914struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2915{
2916	return prog;
2917}
2918
2919/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2920 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2921 */
2922void __weak bpf_jit_compile(struct bpf_prog *prog)
2923{
2924}
2925
2926bool __weak bpf_helper_changes_pkt_data(void *func)
2927{
2928	return false;
2929}
2930
2931/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2932 * analysis code and wants explicit zero extension inserted by verifier.
2933 * Otherwise, return FALSE.
2934 *
2935 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2936 * you don't override this. JITs that don't want these extra insns can detect
2937 * them using insn_is_zext.
2938 */
2939bool __weak bpf_jit_needs_zext(void)
2940{
2941	return false;
2942}
2943
2944/* Return true if the JIT inlines the call to the helper corresponding to
2945 * the imm.
2946 *
2947 * The verifier will not patch the insn->imm for the call to the helper if
2948 * this returns true.
2949 */
2950bool __weak bpf_jit_inlines_helper_call(s32 imm)
2951{
2952	return false;
2953}
2954
2955/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2956bool __weak bpf_jit_supports_subprog_tailcalls(void)
2957{
2958	return false;
2959}
2960
2961bool __weak bpf_jit_supports_percpu_insn(void)
2962{
2963	return false;
2964}
2965
2966bool __weak bpf_jit_supports_kfunc_call(void)
2967{
2968	return false;
2969}
2970
2971bool __weak bpf_jit_supports_far_kfunc_call(void)
2972{
2973	return false;
2974}
2975
2976bool __weak bpf_jit_supports_arena(void)
2977{
2978	return false;
2979}
2980
2981bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2982{
2983	return false;
2984}
2985
2986u64 __weak bpf_arch_uaddress_limit(void)
2987{
2988#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
2989	return TASK_SIZE;
2990#else
2991	return 0;
2992#endif
2993}
2994
2995/* Return TRUE if the JIT backend satisfies the following two conditions:
2996 * 1) JIT backend supports atomic_xchg() on pointer-sized words.
2997 * 2) Under the specific arch, the implementation of xchg() is the same
2998 *    as atomic_xchg() on pointer-sized words.
2999 */
3000bool __weak bpf_jit_supports_ptr_xchg(void)
3001{
3002	return false;
3003}
3004
3005/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3006 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3007 */
3008int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3009			 int len)
3010{
3011	return -EFAULT;
3012}
3013
3014int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3015			      void *addr1, void *addr2)
3016{
3017	return -ENOTSUPP;
3018}
3019
3020void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3021{
3022	return ERR_PTR(-ENOTSUPP);
3023}
3024
3025int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3026{
3027	return -ENOTSUPP;
3028}
3029
3030bool __weak bpf_jit_supports_exceptions(void)
3031{
3032	return false;
3033}
3034
3035void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3036{
3037}
3038
3039/* for configs without MMU or 32-bit */
3040__weak const struct bpf_map_ops arena_map_ops;
3041__weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3042{
3043	return 0;
3044}
3045__weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3046{
3047	return 0;
3048}
3049
3050#ifdef CONFIG_BPF_SYSCALL
3051static int __init bpf_global_ma_init(void)
3052{
3053	int ret;
3054
3055	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3056	bpf_global_ma_set = !ret;
3057	return ret;
3058}
3059late_initcall(bpf_global_ma_init);
3060#endif
3061
3062DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3063EXPORT_SYMBOL(bpf_stats_enabled_key);
3064
3065/* All definitions of tracepoints related to BPF. */
3066#define CREATE_TRACE_POINTS
3067#include <linux/bpf_trace.h>
3068
3069EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3070EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3071