1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 *	git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <net/compat.h>
47#include <linux/refcount.h>
48#include <linux/uio.h>
49#include <linux/bits.h>
50
51#include <linux/sched/signal.h>
52#include <linux/fs.h>
53#include <linux/file.h>
54#include <linux/fdtable.h>
55#include <linux/mm.h>
56#include <linux/mman.h>
57#include <linux/percpu.h>
58#include <linux/slab.h>
59#include <linux/bvec.h>
60#include <linux/net.h>
61#include <net/sock.h>
62#include <linux/anon_inodes.h>
63#include <linux/sched/mm.h>
64#include <linux/uaccess.h>
65#include <linux/nospec.h>
66#include <linux/fsnotify.h>
67#include <linux/fadvise.h>
68#include <linux/task_work.h>
69#include <linux/io_uring.h>
70#include <linux/io_uring/cmd.h>
71#include <linux/audit.h>
72#include <linux/security.h>
73#include <asm/shmparam.h>
74
75#define CREATE_TRACE_POINTS
76#include <trace/events/io_uring.h>
77
78#include <uapi/linux/io_uring.h>
79
80#include "io-wq.h"
81
82#include "io_uring.h"
83#include "opdef.h"
84#include "refs.h"
85#include "tctx.h"
86#include "register.h"
87#include "sqpoll.h"
88#include "fdinfo.h"
89#include "kbuf.h"
90#include "rsrc.h"
91#include "cancel.h"
92#include "net.h"
93#include "notif.h"
94#include "waitid.h"
95#include "futex.h"
96#include "napi.h"
97#include "uring_cmd.h"
98#include "memmap.h"
99
100#include "timeout.h"
101#include "poll.h"
102#include "rw.h"
103#include "alloc_cache.h"
104
105#define IORING_MAX_ENTRIES	32768
106#define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
107
108#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110
111#define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113
114#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
116				REQ_F_ASYNC_DATA)
117
118#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
119				 IO_REQ_CLEAN_FLAGS)
120
121#define IO_TCTX_REFS_CACHE_NR	(1U << 10)
122
123#define IO_COMPL_BATCH			32
124#define IO_REQ_ALLOC_BATCH		8
125
126struct io_defer_entry {
127	struct list_head	list;
128	struct io_kiocb		*req;
129	u32			seq;
130};
131
132/* requests with any of those set should undergo io_disarm_next() */
133#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
135
136/*
137 * No waiters. It's larger than any valid value of the tw counter
138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
139 */
140#define IO_CQ_WAKE_INIT		(-1U)
141/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142#define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
143
144static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145					 struct task_struct *task,
146					 bool cancel_all);
147
148static void io_queue_sqe(struct io_kiocb *req);
149
150struct kmem_cache *req_cachep;
151static struct workqueue_struct *iou_wq __ro_after_init;
152
153static int __read_mostly sysctl_io_uring_disabled;
154static int __read_mostly sysctl_io_uring_group = -1;
155
156#ifdef CONFIG_SYSCTL
157static struct ctl_table kernel_io_uring_disabled_table[] = {
158	{
159		.procname	= "io_uring_disabled",
160		.data		= &sysctl_io_uring_disabled,
161		.maxlen		= sizeof(sysctl_io_uring_disabled),
162		.mode		= 0644,
163		.proc_handler	= proc_dointvec_minmax,
164		.extra1		= SYSCTL_ZERO,
165		.extra2		= SYSCTL_TWO,
166	},
167	{
168		.procname	= "io_uring_group",
169		.data		= &sysctl_io_uring_group,
170		.maxlen		= sizeof(gid_t),
171		.mode		= 0644,
172		.proc_handler	= proc_dointvec,
173	},
174};
175#endif
176
177static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
178{
179	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
180}
181
182static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
183{
184	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
185}
186
187static bool io_match_linked(struct io_kiocb *head)
188{
189	struct io_kiocb *req;
190
191	io_for_each_link(req, head) {
192		if (req->flags & REQ_F_INFLIGHT)
193			return true;
194	}
195	return false;
196}
197
198/*
199 * As io_match_task() but protected against racing with linked timeouts.
200 * User must not hold timeout_lock.
201 */
202bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
203			bool cancel_all)
204{
205	bool matched;
206
207	if (task && head->task != task)
208		return false;
209	if (cancel_all)
210		return true;
211
212	if (head->flags & REQ_F_LINK_TIMEOUT) {
213		struct io_ring_ctx *ctx = head->ctx;
214
215		/* protect against races with linked timeouts */
216		spin_lock_irq(&ctx->timeout_lock);
217		matched = io_match_linked(head);
218		spin_unlock_irq(&ctx->timeout_lock);
219	} else {
220		matched = io_match_linked(head);
221	}
222	return matched;
223}
224
225static inline void req_fail_link_node(struct io_kiocb *req, int res)
226{
227	req_set_fail(req);
228	io_req_set_res(req, res, 0);
229}
230
231static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
232{
233	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
234}
235
236static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237{
238	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239
240	complete(&ctx->ref_comp);
241}
242
243static __cold void io_fallback_req_func(struct work_struct *work)
244{
245	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246						fallback_work.work);
247	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248	struct io_kiocb *req, *tmp;
249	struct io_tw_state ts = {};
250
251	percpu_ref_get(&ctx->refs);
252	mutex_lock(&ctx->uring_lock);
253	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
254		req->io_task_work.func(req, &ts);
255	io_submit_flush_completions(ctx);
256	mutex_unlock(&ctx->uring_lock);
257	percpu_ref_put(&ctx->refs);
258}
259
260static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261{
262	unsigned hash_buckets = 1U << bits;
263	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264
265	table->hbs = kmalloc(hash_size, GFP_KERNEL);
266	if (!table->hbs)
267		return -ENOMEM;
268
269	table->hash_bits = bits;
270	init_hash_table(table, hash_buckets);
271	return 0;
272}
273
274static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275{
276	struct io_ring_ctx *ctx;
277	int hash_bits;
278	bool ret;
279
280	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
281	if (!ctx)
282		return NULL;
283
284	xa_init(&ctx->io_bl_xa);
285
286	/*
287	 * Use 5 bits less than the max cq entries, that should give us around
288	 * 32 entries per hash list if totally full and uniformly spread, but
289	 * don't keep too many buckets to not overconsume memory.
290	 */
291	hash_bits = ilog2(p->cq_entries) - 5;
292	hash_bits = clamp(hash_bits, 1, 8);
293	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
294		goto err;
295	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
296		goto err;
297	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
298			    0, GFP_KERNEL))
299		goto err;
300
301	ctx->flags = p->flags;
302	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
303	init_waitqueue_head(&ctx->sqo_sq_wait);
304	INIT_LIST_HEAD(&ctx->sqd_list);
305	INIT_LIST_HEAD(&ctx->cq_overflow_list);
306	INIT_LIST_HEAD(&ctx->io_buffers_cache);
307	ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
308			    sizeof(struct io_rsrc_node));
309	ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
310			    sizeof(struct async_poll));
311	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
312			    sizeof(struct io_async_msghdr));
313	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
314			    sizeof(struct io_async_rw));
315	ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
316			    sizeof(struct uring_cache));
317	ret |= io_futex_cache_init(ctx);
318	if (ret)
319		goto err;
320	init_completion(&ctx->ref_comp);
321	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
322	mutex_init(&ctx->uring_lock);
323	init_waitqueue_head(&ctx->cq_wait);
324	init_waitqueue_head(&ctx->poll_wq);
325	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
326	spin_lock_init(&ctx->completion_lock);
327	spin_lock_init(&ctx->timeout_lock);
328	INIT_WQ_LIST(&ctx->iopoll_list);
329	INIT_LIST_HEAD(&ctx->io_buffers_comp);
330	INIT_LIST_HEAD(&ctx->defer_list);
331	INIT_LIST_HEAD(&ctx->timeout_list);
332	INIT_LIST_HEAD(&ctx->ltimeout_list);
333	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
334	init_llist_head(&ctx->work_llist);
335	INIT_LIST_HEAD(&ctx->tctx_list);
336	ctx->submit_state.free_list.next = NULL;
337	INIT_HLIST_HEAD(&ctx->waitid_list);
338#ifdef CONFIG_FUTEX
339	INIT_HLIST_HEAD(&ctx->futex_list);
340#endif
341	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
342	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
343	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
344	io_napi_init(ctx);
345
346	return ctx;
347err:
348	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
349	io_alloc_cache_free(&ctx->apoll_cache, kfree);
350	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
351	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
352	io_alloc_cache_free(&ctx->uring_cache, kfree);
353	io_futex_cache_free(ctx);
354	kfree(ctx->cancel_table.hbs);
355	kfree(ctx->cancel_table_locked.hbs);
356	xa_destroy(&ctx->io_bl_xa);
357	kfree(ctx);
358	return NULL;
359}
360
361static void io_account_cq_overflow(struct io_ring_ctx *ctx)
362{
363	struct io_rings *r = ctx->rings;
364
365	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
366	ctx->cq_extra--;
367}
368
369static bool req_need_defer(struct io_kiocb *req, u32 seq)
370{
371	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
372		struct io_ring_ctx *ctx = req->ctx;
373
374		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
375	}
376
377	return false;
378}
379
380static void io_clean_op(struct io_kiocb *req)
381{
382	if (req->flags & REQ_F_BUFFER_SELECTED) {
383		spin_lock(&req->ctx->completion_lock);
384		io_kbuf_drop(req);
385		spin_unlock(&req->ctx->completion_lock);
386	}
387
388	if (req->flags & REQ_F_NEED_CLEANUP) {
389		const struct io_cold_def *def = &io_cold_defs[req->opcode];
390
391		if (def->cleanup)
392			def->cleanup(req);
393	}
394	if ((req->flags & REQ_F_POLLED) && req->apoll) {
395		kfree(req->apoll->double_poll);
396		kfree(req->apoll);
397		req->apoll = NULL;
398	}
399	if (req->flags & REQ_F_INFLIGHT) {
400		struct io_uring_task *tctx = req->task->io_uring;
401
402		atomic_dec(&tctx->inflight_tracked);
403	}
404	if (req->flags & REQ_F_CREDS)
405		put_cred(req->creds);
406	if (req->flags & REQ_F_ASYNC_DATA) {
407		kfree(req->async_data);
408		req->async_data = NULL;
409	}
410	req->flags &= ~IO_REQ_CLEAN_FLAGS;
411}
412
413static inline void io_req_track_inflight(struct io_kiocb *req)
414{
415	if (!(req->flags & REQ_F_INFLIGHT)) {
416		req->flags |= REQ_F_INFLIGHT;
417		atomic_inc(&req->task->io_uring->inflight_tracked);
418	}
419}
420
421static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
422{
423	if (WARN_ON_ONCE(!req->link))
424		return NULL;
425
426	req->flags &= ~REQ_F_ARM_LTIMEOUT;
427	req->flags |= REQ_F_LINK_TIMEOUT;
428
429	/* linked timeouts should have two refs once prep'ed */
430	io_req_set_refcount(req);
431	__io_req_set_refcount(req->link, 2);
432	return req->link;
433}
434
435static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
436{
437	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
438		return NULL;
439	return __io_prep_linked_timeout(req);
440}
441
442static noinline void __io_arm_ltimeout(struct io_kiocb *req)
443{
444	io_queue_linked_timeout(__io_prep_linked_timeout(req));
445}
446
447static inline void io_arm_ltimeout(struct io_kiocb *req)
448{
449	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
450		__io_arm_ltimeout(req);
451}
452
453static void io_prep_async_work(struct io_kiocb *req)
454{
455	const struct io_issue_def *def = &io_issue_defs[req->opcode];
456	struct io_ring_ctx *ctx = req->ctx;
457
458	if (!(req->flags & REQ_F_CREDS)) {
459		req->flags |= REQ_F_CREDS;
460		req->creds = get_current_cred();
461	}
462
463	req->work.list.next = NULL;
464	req->work.flags = 0;
465	if (req->flags & REQ_F_FORCE_ASYNC)
466		req->work.flags |= IO_WQ_WORK_CONCURRENT;
467
468	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
469		req->flags |= io_file_get_flags(req->file);
470
471	if (req->file && (req->flags & REQ_F_ISREG)) {
472		bool should_hash = def->hash_reg_file;
473
474		/* don't serialize this request if the fs doesn't need it */
475		if (should_hash && (req->file->f_flags & O_DIRECT) &&
476		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
477			should_hash = false;
478		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
479			io_wq_hash_work(&req->work, file_inode(req->file));
480	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
481		if (def->unbound_nonreg_file)
482			req->work.flags |= IO_WQ_WORK_UNBOUND;
483	}
484}
485
486static void io_prep_async_link(struct io_kiocb *req)
487{
488	struct io_kiocb *cur;
489
490	if (req->flags & REQ_F_LINK_TIMEOUT) {
491		struct io_ring_ctx *ctx = req->ctx;
492
493		spin_lock_irq(&ctx->timeout_lock);
494		io_for_each_link(cur, req)
495			io_prep_async_work(cur);
496		spin_unlock_irq(&ctx->timeout_lock);
497	} else {
498		io_for_each_link(cur, req)
499			io_prep_async_work(cur);
500	}
501}
502
503static void io_queue_iowq(struct io_kiocb *req)
504{
505	struct io_kiocb *link = io_prep_linked_timeout(req);
506	struct io_uring_task *tctx = req->task->io_uring;
507
508	BUG_ON(!tctx);
509	BUG_ON(!tctx->io_wq);
510
511	/* init ->work of the whole link before punting */
512	io_prep_async_link(req);
513
514	/*
515	 * Not expected to happen, but if we do have a bug where this _can_
516	 * happen, catch it here and ensure the request is marked as
517	 * canceled. That will make io-wq go through the usual work cancel
518	 * procedure rather than attempt to run this request (or create a new
519	 * worker for it).
520	 */
521	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
522		req->work.flags |= IO_WQ_WORK_CANCEL;
523
524	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
525	io_wq_enqueue(tctx->io_wq, &req->work);
526	if (link)
527		io_queue_linked_timeout(link);
528}
529
530static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
531{
532	while (!list_empty(&ctx->defer_list)) {
533		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
534						struct io_defer_entry, list);
535
536		if (req_need_defer(de->req, de->seq))
537			break;
538		list_del_init(&de->list);
539		io_req_task_queue(de->req);
540		kfree(de);
541	}
542}
543
544void io_eventfd_ops(struct rcu_head *rcu)
545{
546	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
547	int ops = atomic_xchg(&ev_fd->ops, 0);
548
549	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
550		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
551
552	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
553	 * ordering in a race but if references are 0 we know we have to free
554	 * it regardless.
555	 */
556	if (atomic_dec_and_test(&ev_fd->refs)) {
557		eventfd_ctx_put(ev_fd->cq_ev_fd);
558		kfree(ev_fd);
559	}
560}
561
562static void io_eventfd_signal(struct io_ring_ctx *ctx)
563{
564	struct io_ev_fd *ev_fd = NULL;
565
566	rcu_read_lock();
567	/*
568	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
569	 * and eventfd_signal
570	 */
571	ev_fd = rcu_dereference(ctx->io_ev_fd);
572
573	/*
574	 * Check again if ev_fd exists incase an io_eventfd_unregister call
575	 * completed between the NULL check of ctx->io_ev_fd at the start of
576	 * the function and rcu_read_lock.
577	 */
578	if (unlikely(!ev_fd))
579		goto out;
580	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
581		goto out;
582	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
583		goto out;
584
585	if (likely(eventfd_signal_allowed())) {
586		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
587	} else {
588		atomic_inc(&ev_fd->refs);
589		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
590			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
591		else
592			atomic_dec(&ev_fd->refs);
593	}
594
595out:
596	rcu_read_unlock();
597}
598
599static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
600{
601	bool skip;
602
603	spin_lock(&ctx->completion_lock);
604
605	/*
606	 * Eventfd should only get triggered when at least one event has been
607	 * posted. Some applications rely on the eventfd notification count
608	 * only changing IFF a new CQE has been added to the CQ ring. There's
609	 * no depedency on 1:1 relationship between how many times this
610	 * function is called (and hence the eventfd count) and number of CQEs
611	 * posted to the CQ ring.
612	 */
613	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
614	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
615	spin_unlock(&ctx->completion_lock);
616	if (skip)
617		return;
618
619	io_eventfd_signal(ctx);
620}
621
622void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
623{
624	if (ctx->poll_activated)
625		io_poll_wq_wake(ctx);
626	if (ctx->off_timeout_used)
627		io_flush_timeouts(ctx);
628	if (ctx->drain_active) {
629		spin_lock(&ctx->completion_lock);
630		io_queue_deferred(ctx);
631		spin_unlock(&ctx->completion_lock);
632	}
633	if (ctx->has_evfd)
634		io_eventfd_flush_signal(ctx);
635}
636
637static inline void __io_cq_lock(struct io_ring_ctx *ctx)
638{
639	if (!ctx->lockless_cq)
640		spin_lock(&ctx->completion_lock);
641}
642
643static inline void io_cq_lock(struct io_ring_ctx *ctx)
644	__acquires(ctx->completion_lock)
645{
646	spin_lock(&ctx->completion_lock);
647}
648
649static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
650{
651	io_commit_cqring(ctx);
652	if (!ctx->task_complete) {
653		if (!ctx->lockless_cq)
654			spin_unlock(&ctx->completion_lock);
655		/* IOPOLL rings only need to wake up if it's also SQPOLL */
656		if (!ctx->syscall_iopoll)
657			io_cqring_wake(ctx);
658	}
659	io_commit_cqring_flush(ctx);
660}
661
662static void io_cq_unlock_post(struct io_ring_ctx *ctx)
663	__releases(ctx->completion_lock)
664{
665	io_commit_cqring(ctx);
666	spin_unlock(&ctx->completion_lock);
667	io_cqring_wake(ctx);
668	io_commit_cqring_flush(ctx);
669}
670
671static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
672{
673	size_t cqe_size = sizeof(struct io_uring_cqe);
674
675	lockdep_assert_held(&ctx->uring_lock);
676
677	/* don't abort if we're dying, entries must get freed */
678	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
679		return;
680
681	if (ctx->flags & IORING_SETUP_CQE32)
682		cqe_size <<= 1;
683
684	io_cq_lock(ctx);
685	while (!list_empty(&ctx->cq_overflow_list)) {
686		struct io_uring_cqe *cqe;
687		struct io_overflow_cqe *ocqe;
688
689		ocqe = list_first_entry(&ctx->cq_overflow_list,
690					struct io_overflow_cqe, list);
691
692		if (!dying) {
693			if (!io_get_cqe_overflow(ctx, &cqe, true))
694				break;
695			memcpy(cqe, &ocqe->cqe, cqe_size);
696		}
697		list_del(&ocqe->list);
698		kfree(ocqe);
699	}
700
701	if (list_empty(&ctx->cq_overflow_list)) {
702		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
703		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
704	}
705	io_cq_unlock_post(ctx);
706}
707
708static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
709{
710	if (ctx->rings)
711		__io_cqring_overflow_flush(ctx, true);
712}
713
714static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
715{
716	mutex_lock(&ctx->uring_lock);
717	__io_cqring_overflow_flush(ctx, false);
718	mutex_unlock(&ctx->uring_lock);
719}
720
721/* can be called by any task */
722static void io_put_task_remote(struct task_struct *task)
723{
724	struct io_uring_task *tctx = task->io_uring;
725
726	percpu_counter_sub(&tctx->inflight, 1);
727	if (unlikely(atomic_read(&tctx->in_cancel)))
728		wake_up(&tctx->wait);
729	put_task_struct(task);
730}
731
732/* used by a task to put its own references */
733static void io_put_task_local(struct task_struct *task)
734{
735	task->io_uring->cached_refs++;
736}
737
738/* must to be called somewhat shortly after putting a request */
739static inline void io_put_task(struct task_struct *task)
740{
741	if (likely(task == current))
742		io_put_task_local(task);
743	else
744		io_put_task_remote(task);
745}
746
747void io_task_refs_refill(struct io_uring_task *tctx)
748{
749	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
750
751	percpu_counter_add(&tctx->inflight, refill);
752	refcount_add(refill, &current->usage);
753	tctx->cached_refs += refill;
754}
755
756static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
757{
758	struct io_uring_task *tctx = task->io_uring;
759	unsigned int refs = tctx->cached_refs;
760
761	if (refs) {
762		tctx->cached_refs = 0;
763		percpu_counter_sub(&tctx->inflight, refs);
764		put_task_struct_many(task, refs);
765	}
766}
767
768static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
769				     s32 res, u32 cflags, u64 extra1, u64 extra2)
770{
771	struct io_overflow_cqe *ocqe;
772	size_t ocq_size = sizeof(struct io_overflow_cqe);
773	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
774
775	lockdep_assert_held(&ctx->completion_lock);
776
777	if (is_cqe32)
778		ocq_size += sizeof(struct io_uring_cqe);
779
780	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
781	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
782	if (!ocqe) {
783		/*
784		 * If we're in ring overflow flush mode, or in task cancel mode,
785		 * or cannot allocate an overflow entry, then we need to drop it
786		 * on the floor.
787		 */
788		io_account_cq_overflow(ctx);
789		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
790		return false;
791	}
792	if (list_empty(&ctx->cq_overflow_list)) {
793		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
794		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
795
796	}
797	ocqe->cqe.user_data = user_data;
798	ocqe->cqe.res = res;
799	ocqe->cqe.flags = cflags;
800	if (is_cqe32) {
801		ocqe->cqe.big_cqe[0] = extra1;
802		ocqe->cqe.big_cqe[1] = extra2;
803	}
804	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
805	return true;
806}
807
808static void io_req_cqe_overflow(struct io_kiocb *req)
809{
810	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
811				req->cqe.res, req->cqe.flags,
812				req->big_cqe.extra1, req->big_cqe.extra2);
813	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
814}
815
816/*
817 * writes to the cq entry need to come after reading head; the
818 * control dependency is enough as we're using WRITE_ONCE to
819 * fill the cq entry
820 */
821bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
822{
823	struct io_rings *rings = ctx->rings;
824	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
825	unsigned int free, queued, len;
826
827	/*
828	 * Posting into the CQ when there are pending overflowed CQEs may break
829	 * ordering guarantees, which will affect links, F_MORE users and more.
830	 * Force overflow the completion.
831	 */
832	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
833		return false;
834
835	/* userspace may cheat modifying the tail, be safe and do min */
836	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
837	free = ctx->cq_entries - queued;
838	/* we need a contiguous range, limit based on the current array offset */
839	len = min(free, ctx->cq_entries - off);
840	if (!len)
841		return false;
842
843	if (ctx->flags & IORING_SETUP_CQE32) {
844		off <<= 1;
845		len <<= 1;
846	}
847
848	ctx->cqe_cached = &rings->cqes[off];
849	ctx->cqe_sentinel = ctx->cqe_cached + len;
850	return true;
851}
852
853static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
854			      u32 cflags)
855{
856	struct io_uring_cqe *cqe;
857
858	ctx->cq_extra++;
859
860	/*
861	 * If we can't get a cq entry, userspace overflowed the
862	 * submission (by quite a lot). Increment the overflow count in
863	 * the ring.
864	 */
865	if (likely(io_get_cqe(ctx, &cqe))) {
866		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
867
868		WRITE_ONCE(cqe->user_data, user_data);
869		WRITE_ONCE(cqe->res, res);
870		WRITE_ONCE(cqe->flags, cflags);
871
872		if (ctx->flags & IORING_SETUP_CQE32) {
873			WRITE_ONCE(cqe->big_cqe[0], 0);
874			WRITE_ONCE(cqe->big_cqe[1], 0);
875		}
876		return true;
877	}
878	return false;
879}
880
881bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
882{
883	bool filled;
884
885	io_cq_lock(ctx);
886	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
887	if (!filled)
888		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
889
890	io_cq_unlock_post(ctx);
891	return filled;
892}
893
894/*
895 * A helper for multishot requests posting additional CQEs.
896 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
897 */
898bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
899{
900	struct io_ring_ctx *ctx = req->ctx;
901	bool posted;
902
903	lockdep_assert(!io_wq_current_is_worker());
904	lockdep_assert_held(&ctx->uring_lock);
905
906	__io_cq_lock(ctx);
907	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
908	ctx->submit_state.cq_flush = true;
909	__io_cq_unlock_post(ctx);
910	return posted;
911}
912
913static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
914{
915	struct io_ring_ctx *ctx = req->ctx;
916
917	/*
918	 * All execution paths but io-wq use the deferred completions by
919	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
920	 */
921	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
922		return;
923
924	/*
925	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
926	 * the submitter task context, IOPOLL protects with uring_lock.
927	 */
928	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
929		req->io_task_work.func = io_req_task_complete;
930		io_req_task_work_add(req);
931		return;
932	}
933
934	io_cq_lock(ctx);
935	if (!(req->flags & REQ_F_CQE_SKIP)) {
936		if (!io_fill_cqe_req(ctx, req))
937			io_req_cqe_overflow(req);
938	}
939	io_cq_unlock_post(ctx);
940
941	/*
942	 * We don't free the request here because we know it's called from
943	 * io-wq only, which holds a reference, so it cannot be the last put.
944	 */
945	req_ref_put(req);
946}
947
948void io_req_defer_failed(struct io_kiocb *req, s32 res)
949	__must_hold(&ctx->uring_lock)
950{
951	const struct io_cold_def *def = &io_cold_defs[req->opcode];
952
953	lockdep_assert_held(&req->ctx->uring_lock);
954
955	req_set_fail(req);
956	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
957	if (def->fail)
958		def->fail(req);
959	io_req_complete_defer(req);
960}
961
962/*
963 * Don't initialise the fields below on every allocation, but do that in
964 * advance and keep them valid across allocations.
965 */
966static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
967{
968	req->ctx = ctx;
969	req->link = NULL;
970	req->async_data = NULL;
971	/* not necessary, but safer to zero */
972	memset(&req->cqe, 0, sizeof(req->cqe));
973	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
974}
975
976/*
977 * A request might get retired back into the request caches even before opcode
978 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
979 * Because of that, io_alloc_req() should be called only under ->uring_lock
980 * and with extra caution to not get a request that is still worked on.
981 */
982__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
983	__must_hold(&ctx->uring_lock)
984{
985	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
986	void *reqs[IO_REQ_ALLOC_BATCH];
987	int ret;
988
989	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
990
991	/*
992	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
993	 * retry single alloc to be on the safe side.
994	 */
995	if (unlikely(ret <= 0)) {
996		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
997		if (!reqs[0])
998			return false;
999		ret = 1;
1000	}
1001
1002	percpu_ref_get_many(&ctx->refs, ret);
1003	while (ret--) {
1004		struct io_kiocb *req = reqs[ret];
1005
1006		io_preinit_req(req, ctx);
1007		io_req_add_to_cache(req, ctx);
1008	}
1009	return true;
1010}
1011
1012__cold void io_free_req(struct io_kiocb *req)
1013{
1014	/* refs were already put, restore them for io_req_task_complete() */
1015	req->flags &= ~REQ_F_REFCOUNT;
1016	/* we only want to free it, don't post CQEs */
1017	req->flags |= REQ_F_CQE_SKIP;
1018	req->io_task_work.func = io_req_task_complete;
1019	io_req_task_work_add(req);
1020}
1021
1022static void __io_req_find_next_prep(struct io_kiocb *req)
1023{
1024	struct io_ring_ctx *ctx = req->ctx;
1025
1026	spin_lock(&ctx->completion_lock);
1027	io_disarm_next(req);
1028	spin_unlock(&ctx->completion_lock);
1029}
1030
1031static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1032{
1033	struct io_kiocb *nxt;
1034
1035	/*
1036	 * If LINK is set, we have dependent requests in this chain. If we
1037	 * didn't fail this request, queue the first one up, moving any other
1038	 * dependencies to the next request. In case of failure, fail the rest
1039	 * of the chain.
1040	 */
1041	if (unlikely(req->flags & IO_DISARM_MASK))
1042		__io_req_find_next_prep(req);
1043	nxt = req->link;
1044	req->link = NULL;
1045	return nxt;
1046}
1047
1048static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1049{
1050	if (!ctx)
1051		return;
1052	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1053		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1054
1055	io_submit_flush_completions(ctx);
1056	mutex_unlock(&ctx->uring_lock);
1057	percpu_ref_put(&ctx->refs);
1058}
1059
1060/*
1061 * Run queued task_work, returning the number of entries processed in *count.
1062 * If more entries than max_entries are available, stop processing once this
1063 * is reached and return the rest of the list.
1064 */
1065struct llist_node *io_handle_tw_list(struct llist_node *node,
1066				     unsigned int *count,
1067				     unsigned int max_entries)
1068{
1069	struct io_ring_ctx *ctx = NULL;
1070	struct io_tw_state ts = { };
1071
1072	do {
1073		struct llist_node *next = node->next;
1074		struct io_kiocb *req = container_of(node, struct io_kiocb,
1075						    io_task_work.node);
1076
1077		if (req->ctx != ctx) {
1078			ctx_flush_and_put(ctx, &ts);
1079			ctx = req->ctx;
1080			mutex_lock(&ctx->uring_lock);
1081			percpu_ref_get(&ctx->refs);
1082		}
1083		INDIRECT_CALL_2(req->io_task_work.func,
1084				io_poll_task_func, io_req_rw_complete,
1085				req, &ts);
1086		node = next;
1087		(*count)++;
1088		if (unlikely(need_resched())) {
1089			ctx_flush_and_put(ctx, &ts);
1090			ctx = NULL;
1091			cond_resched();
1092		}
1093	} while (node && *count < max_entries);
1094
1095	ctx_flush_and_put(ctx, &ts);
1096	return node;
1097}
1098
1099/**
1100 * io_llist_xchg - swap all entries in a lock-less list
1101 * @head:	the head of lock-less list to delete all entries
1102 * @new:	new entry as the head of the list
1103 *
1104 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1105 * The order of entries returned is from the newest to the oldest added one.
1106 */
1107static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1108					       struct llist_node *new)
1109{
1110	return xchg(&head->first, new);
1111}
1112
1113static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1114{
1115	struct llist_node *node = llist_del_all(&tctx->task_list);
1116	struct io_ring_ctx *last_ctx = NULL;
1117	struct io_kiocb *req;
1118
1119	while (node) {
1120		req = container_of(node, struct io_kiocb, io_task_work.node);
1121		node = node->next;
1122		if (sync && last_ctx != req->ctx) {
1123			if (last_ctx) {
1124				flush_delayed_work(&last_ctx->fallback_work);
1125				percpu_ref_put(&last_ctx->refs);
1126			}
1127			last_ctx = req->ctx;
1128			percpu_ref_get(&last_ctx->refs);
1129		}
1130		if (llist_add(&req->io_task_work.node,
1131			      &req->ctx->fallback_llist))
1132			schedule_delayed_work(&req->ctx->fallback_work, 1);
1133	}
1134
1135	if (last_ctx) {
1136		flush_delayed_work(&last_ctx->fallback_work);
1137		percpu_ref_put(&last_ctx->refs);
1138	}
1139}
1140
1141struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1142				      unsigned int max_entries,
1143				      unsigned int *count)
1144{
1145	struct llist_node *node;
1146
1147	if (unlikely(current->flags & PF_EXITING)) {
1148		io_fallback_tw(tctx, true);
1149		return NULL;
1150	}
1151
1152	node = llist_del_all(&tctx->task_list);
1153	if (node) {
1154		node = llist_reverse_order(node);
1155		node = io_handle_tw_list(node, count, max_entries);
1156	}
1157
1158	/* relaxed read is enough as only the task itself sets ->in_cancel */
1159	if (unlikely(atomic_read(&tctx->in_cancel)))
1160		io_uring_drop_tctx_refs(current);
1161
1162	trace_io_uring_task_work_run(tctx, *count);
1163	return node;
1164}
1165
1166void tctx_task_work(struct callback_head *cb)
1167{
1168	struct io_uring_task *tctx;
1169	struct llist_node *ret;
1170	unsigned int count = 0;
1171
1172	tctx = container_of(cb, struct io_uring_task, task_work);
1173	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1174	/* can't happen */
1175	WARN_ON_ONCE(ret);
1176}
1177
1178static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1179{
1180	struct io_ring_ctx *ctx = req->ctx;
1181	unsigned nr_wait, nr_tw, nr_tw_prev;
1182	struct llist_node *head;
1183
1184	/* See comment above IO_CQ_WAKE_INIT */
1185	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1186
1187	/*
1188	 * We don't know how many reuqests is there in the link and whether
1189	 * they can even be queued lazily, fall back to non-lazy.
1190	 */
1191	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1192		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1193
1194	head = READ_ONCE(ctx->work_llist.first);
1195	do {
1196		nr_tw_prev = 0;
1197		if (head) {
1198			struct io_kiocb *first_req = container_of(head,
1199							struct io_kiocb,
1200							io_task_work.node);
1201			/*
1202			 * Might be executed at any moment, rely on
1203			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1204			 */
1205			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1206		}
1207
1208		/*
1209		 * Theoretically, it can overflow, but that's fine as one of
1210		 * previous adds should've tried to wake the task.
1211		 */
1212		nr_tw = nr_tw_prev + 1;
1213		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1214			nr_tw = IO_CQ_WAKE_FORCE;
1215
1216		req->nr_tw = nr_tw;
1217		req->io_task_work.node.next = head;
1218	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1219			      &req->io_task_work.node));
1220
1221	/*
1222	 * cmpxchg implies a full barrier, which pairs with the barrier
1223	 * in set_current_state() on the io_cqring_wait() side. It's used
1224	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1225	 * going to sleep will observe the work added to the list, which
1226	 * is similar to the wait/wawke task state sync.
1227	 */
1228
1229	if (!head) {
1230		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1231			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1232		if (ctx->has_evfd)
1233			io_eventfd_signal(ctx);
1234	}
1235
1236	nr_wait = atomic_read(&ctx->cq_wait_nr);
1237	/* not enough or no one is waiting */
1238	if (nr_tw < nr_wait)
1239		return;
1240	/* the previous add has already woken it up */
1241	if (nr_tw_prev >= nr_wait)
1242		return;
1243	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1244}
1245
1246static void io_req_normal_work_add(struct io_kiocb *req)
1247{
1248	struct io_uring_task *tctx = req->task->io_uring;
1249	struct io_ring_ctx *ctx = req->ctx;
1250
1251	/* task_work already pending, we're done */
1252	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1253		return;
1254
1255	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1256		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1257
1258	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1259	if (ctx->flags & IORING_SETUP_SQPOLL) {
1260		struct io_sq_data *sqd = ctx->sq_data;
1261
1262		if (wq_has_sleeper(&sqd->wait))
1263			wake_up(&sqd->wait);
1264		return;
1265	}
1266
1267	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1268		return;
1269
1270	io_fallback_tw(tctx, false);
1271}
1272
1273void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1274{
1275	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1276		rcu_read_lock();
1277		io_req_local_work_add(req, flags);
1278		rcu_read_unlock();
1279	} else {
1280		io_req_normal_work_add(req);
1281	}
1282}
1283
1284static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1285{
1286	struct llist_node *node;
1287
1288	node = llist_del_all(&ctx->work_llist);
1289	while (node) {
1290		struct io_kiocb *req = container_of(node, struct io_kiocb,
1291						    io_task_work.node);
1292
1293		node = node->next;
1294		io_req_normal_work_add(req);
1295	}
1296}
1297
1298static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1299				       int min_events)
1300{
1301	if (llist_empty(&ctx->work_llist))
1302		return false;
1303	if (events < min_events)
1304		return true;
1305	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1306		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1307	return false;
1308}
1309
1310static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1311			       int min_events)
1312{
1313	struct llist_node *node;
1314	unsigned int loops = 0;
1315	int ret = 0;
1316
1317	if (WARN_ON_ONCE(ctx->submitter_task != current))
1318		return -EEXIST;
1319	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1320		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1321again:
1322	/*
1323	 * llists are in reverse order, flip it back the right way before
1324	 * running the pending items.
1325	 */
1326	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1327	while (node) {
1328		struct llist_node *next = node->next;
1329		struct io_kiocb *req = container_of(node, struct io_kiocb,
1330						    io_task_work.node);
1331		INDIRECT_CALL_2(req->io_task_work.func,
1332				io_poll_task_func, io_req_rw_complete,
1333				req, ts);
1334		ret++;
1335		node = next;
1336	}
1337	loops++;
1338
1339	if (io_run_local_work_continue(ctx, ret, min_events))
1340		goto again;
1341	io_submit_flush_completions(ctx);
1342	if (io_run_local_work_continue(ctx, ret, min_events))
1343		goto again;
1344
1345	trace_io_uring_local_work_run(ctx, ret, loops);
1346	return ret;
1347}
1348
1349static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1350					   int min_events)
1351{
1352	struct io_tw_state ts = {};
1353
1354	if (llist_empty(&ctx->work_llist))
1355		return 0;
1356	return __io_run_local_work(ctx, &ts, min_events);
1357}
1358
1359static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1360{
1361	struct io_tw_state ts = {};
1362	int ret;
1363
1364	mutex_lock(&ctx->uring_lock);
1365	ret = __io_run_local_work(ctx, &ts, min_events);
1366	mutex_unlock(&ctx->uring_lock);
1367	return ret;
1368}
1369
1370static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1371{
1372	io_tw_lock(req->ctx, ts);
1373	io_req_defer_failed(req, req->cqe.res);
1374}
1375
1376void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1377{
1378	io_tw_lock(req->ctx, ts);
1379	/* req->task == current here, checking PF_EXITING is safe */
1380	if (unlikely(req->task->flags & PF_EXITING))
1381		io_req_defer_failed(req, -EFAULT);
1382	else if (req->flags & REQ_F_FORCE_ASYNC)
1383		io_queue_iowq(req);
1384	else
1385		io_queue_sqe(req);
1386}
1387
1388void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1389{
1390	io_req_set_res(req, ret, 0);
1391	req->io_task_work.func = io_req_task_cancel;
1392	io_req_task_work_add(req);
1393}
1394
1395void io_req_task_queue(struct io_kiocb *req)
1396{
1397	req->io_task_work.func = io_req_task_submit;
1398	io_req_task_work_add(req);
1399}
1400
1401void io_queue_next(struct io_kiocb *req)
1402{
1403	struct io_kiocb *nxt = io_req_find_next(req);
1404
1405	if (nxt)
1406		io_req_task_queue(nxt);
1407}
1408
1409static void io_free_batch_list(struct io_ring_ctx *ctx,
1410			       struct io_wq_work_node *node)
1411	__must_hold(&ctx->uring_lock)
1412{
1413	do {
1414		struct io_kiocb *req = container_of(node, struct io_kiocb,
1415						    comp_list);
1416
1417		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1418			if (req->flags & REQ_F_REFCOUNT) {
1419				node = req->comp_list.next;
1420				if (!req_ref_put_and_test(req))
1421					continue;
1422			}
1423			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1424				struct async_poll *apoll = req->apoll;
1425
1426				if (apoll->double_poll)
1427					kfree(apoll->double_poll);
1428				if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1429					kfree(apoll);
1430				req->flags &= ~REQ_F_POLLED;
1431			}
1432			if (req->flags & IO_REQ_LINK_FLAGS)
1433				io_queue_next(req);
1434			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1435				io_clean_op(req);
1436		}
1437		io_put_file(req);
1438		io_put_rsrc_node(ctx, req->rsrc_node);
1439		io_put_task(req->task);
1440
1441		node = req->comp_list.next;
1442		io_req_add_to_cache(req, ctx);
1443	} while (node);
1444}
1445
1446void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1447	__must_hold(&ctx->uring_lock)
1448{
1449	struct io_submit_state *state = &ctx->submit_state;
1450	struct io_wq_work_node *node;
1451
1452	__io_cq_lock(ctx);
1453	__wq_list_for_each(node, &state->compl_reqs) {
1454		struct io_kiocb *req = container_of(node, struct io_kiocb,
1455					    comp_list);
1456
1457		if (!(req->flags & REQ_F_CQE_SKIP) &&
1458		    unlikely(!io_fill_cqe_req(ctx, req))) {
1459			if (ctx->lockless_cq) {
1460				spin_lock(&ctx->completion_lock);
1461				io_req_cqe_overflow(req);
1462				spin_unlock(&ctx->completion_lock);
1463			} else {
1464				io_req_cqe_overflow(req);
1465			}
1466		}
1467	}
1468	__io_cq_unlock_post(ctx);
1469
1470	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1471		io_free_batch_list(ctx, state->compl_reqs.first);
1472		INIT_WQ_LIST(&state->compl_reqs);
1473	}
1474	ctx->submit_state.cq_flush = false;
1475}
1476
1477static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1478{
1479	/* See comment at the top of this file */
1480	smp_rmb();
1481	return __io_cqring_events(ctx);
1482}
1483
1484/*
1485 * We can't just wait for polled events to come to us, we have to actively
1486 * find and complete them.
1487 */
1488static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1489{
1490	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1491		return;
1492
1493	mutex_lock(&ctx->uring_lock);
1494	while (!wq_list_empty(&ctx->iopoll_list)) {
1495		/* let it sleep and repeat later if can't complete a request */
1496		if (io_do_iopoll(ctx, true) == 0)
1497			break;
1498		/*
1499		 * Ensure we allow local-to-the-cpu processing to take place,
1500		 * in this case we need to ensure that we reap all events.
1501		 * Also let task_work, etc. to progress by releasing the mutex
1502		 */
1503		if (need_resched()) {
1504			mutex_unlock(&ctx->uring_lock);
1505			cond_resched();
1506			mutex_lock(&ctx->uring_lock);
1507		}
1508	}
1509	mutex_unlock(&ctx->uring_lock);
1510}
1511
1512static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1513{
1514	unsigned int nr_events = 0;
1515	unsigned long check_cq;
1516
1517	lockdep_assert_held(&ctx->uring_lock);
1518
1519	if (!io_allowed_run_tw(ctx))
1520		return -EEXIST;
1521
1522	check_cq = READ_ONCE(ctx->check_cq);
1523	if (unlikely(check_cq)) {
1524		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1525			__io_cqring_overflow_flush(ctx, false);
1526		/*
1527		 * Similarly do not spin if we have not informed the user of any
1528		 * dropped CQE.
1529		 */
1530		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1531			return -EBADR;
1532	}
1533	/*
1534	 * Don't enter poll loop if we already have events pending.
1535	 * If we do, we can potentially be spinning for commands that
1536	 * already triggered a CQE (eg in error).
1537	 */
1538	if (io_cqring_events(ctx))
1539		return 0;
1540
1541	do {
1542		int ret = 0;
1543
1544		/*
1545		 * If a submit got punted to a workqueue, we can have the
1546		 * application entering polling for a command before it gets
1547		 * issued. That app will hold the uring_lock for the duration
1548		 * of the poll right here, so we need to take a breather every
1549		 * now and then to ensure that the issue has a chance to add
1550		 * the poll to the issued list. Otherwise we can spin here
1551		 * forever, while the workqueue is stuck trying to acquire the
1552		 * very same mutex.
1553		 */
1554		if (wq_list_empty(&ctx->iopoll_list) ||
1555		    io_task_work_pending(ctx)) {
1556			u32 tail = ctx->cached_cq_tail;
1557
1558			(void) io_run_local_work_locked(ctx, min);
1559
1560			if (task_work_pending(current) ||
1561			    wq_list_empty(&ctx->iopoll_list)) {
1562				mutex_unlock(&ctx->uring_lock);
1563				io_run_task_work();
1564				mutex_lock(&ctx->uring_lock);
1565			}
1566			/* some requests don't go through iopoll_list */
1567			if (tail != ctx->cached_cq_tail ||
1568			    wq_list_empty(&ctx->iopoll_list))
1569				break;
1570		}
1571		ret = io_do_iopoll(ctx, !min);
1572		if (unlikely(ret < 0))
1573			return ret;
1574
1575		if (task_sigpending(current))
1576			return -EINTR;
1577		if (need_resched())
1578			break;
1579
1580		nr_events += ret;
1581	} while (nr_events < min);
1582
1583	return 0;
1584}
1585
1586void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1587{
1588	io_req_complete_defer(req);
1589}
1590
1591/*
1592 * After the iocb has been issued, it's safe to be found on the poll list.
1593 * Adding the kiocb to the list AFTER submission ensures that we don't
1594 * find it from a io_do_iopoll() thread before the issuer is done
1595 * accessing the kiocb cookie.
1596 */
1597static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1598{
1599	struct io_ring_ctx *ctx = req->ctx;
1600	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1601
1602	/* workqueue context doesn't hold uring_lock, grab it now */
1603	if (unlikely(needs_lock))
1604		mutex_lock(&ctx->uring_lock);
1605
1606	/*
1607	 * Track whether we have multiple files in our lists. This will impact
1608	 * how we do polling eventually, not spinning if we're on potentially
1609	 * different devices.
1610	 */
1611	if (wq_list_empty(&ctx->iopoll_list)) {
1612		ctx->poll_multi_queue = false;
1613	} else if (!ctx->poll_multi_queue) {
1614		struct io_kiocb *list_req;
1615
1616		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1617					comp_list);
1618		if (list_req->file != req->file)
1619			ctx->poll_multi_queue = true;
1620	}
1621
1622	/*
1623	 * For fast devices, IO may have already completed. If it has, add
1624	 * it to the front so we find it first.
1625	 */
1626	if (READ_ONCE(req->iopoll_completed))
1627		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1628	else
1629		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1630
1631	if (unlikely(needs_lock)) {
1632		/*
1633		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1634		 * in sq thread task context or in io worker task context. If
1635		 * current task context is sq thread, we don't need to check
1636		 * whether should wake up sq thread.
1637		 */
1638		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1639		    wq_has_sleeper(&ctx->sq_data->wait))
1640			wake_up(&ctx->sq_data->wait);
1641
1642		mutex_unlock(&ctx->uring_lock);
1643	}
1644}
1645
1646io_req_flags_t io_file_get_flags(struct file *file)
1647{
1648	io_req_flags_t res = 0;
1649
1650	if (S_ISREG(file_inode(file)->i_mode))
1651		res |= REQ_F_ISREG;
1652	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1653		res |= REQ_F_SUPPORT_NOWAIT;
1654	return res;
1655}
1656
1657bool io_alloc_async_data(struct io_kiocb *req)
1658{
1659	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1660
1661	WARN_ON_ONCE(!def->async_size);
1662	req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1663	if (req->async_data) {
1664		req->flags |= REQ_F_ASYNC_DATA;
1665		return false;
1666	}
1667	return true;
1668}
1669
1670static u32 io_get_sequence(struct io_kiocb *req)
1671{
1672	u32 seq = req->ctx->cached_sq_head;
1673	struct io_kiocb *cur;
1674
1675	/* need original cached_sq_head, but it was increased for each req */
1676	io_for_each_link(cur, req)
1677		seq--;
1678	return seq;
1679}
1680
1681static __cold void io_drain_req(struct io_kiocb *req)
1682	__must_hold(&ctx->uring_lock)
1683{
1684	struct io_ring_ctx *ctx = req->ctx;
1685	struct io_defer_entry *de;
1686	int ret;
1687	u32 seq = io_get_sequence(req);
1688
1689	/* Still need defer if there is pending req in defer list. */
1690	spin_lock(&ctx->completion_lock);
1691	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1692		spin_unlock(&ctx->completion_lock);
1693queue:
1694		ctx->drain_active = false;
1695		io_req_task_queue(req);
1696		return;
1697	}
1698	spin_unlock(&ctx->completion_lock);
1699
1700	io_prep_async_link(req);
1701	de = kmalloc(sizeof(*de), GFP_KERNEL);
1702	if (!de) {
1703		ret = -ENOMEM;
1704		io_req_defer_failed(req, ret);
1705		return;
1706	}
1707
1708	spin_lock(&ctx->completion_lock);
1709	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1710		spin_unlock(&ctx->completion_lock);
1711		kfree(de);
1712		goto queue;
1713	}
1714
1715	trace_io_uring_defer(req);
1716	de->req = req;
1717	de->seq = seq;
1718	list_add_tail(&de->list, &ctx->defer_list);
1719	spin_unlock(&ctx->completion_lock);
1720}
1721
1722static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1723			   unsigned int issue_flags)
1724{
1725	if (req->file || !def->needs_file)
1726		return true;
1727
1728	if (req->flags & REQ_F_FIXED_FILE)
1729		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1730	else
1731		req->file = io_file_get_normal(req, req->cqe.fd);
1732
1733	return !!req->file;
1734}
1735
1736static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1737{
1738	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1739	const struct cred *creds = NULL;
1740	int ret;
1741
1742	if (unlikely(!io_assign_file(req, def, issue_flags)))
1743		return -EBADF;
1744
1745	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1746		creds = override_creds(req->creds);
1747
1748	if (!def->audit_skip)
1749		audit_uring_entry(req->opcode);
1750
1751	ret = def->issue(req, issue_flags);
1752
1753	if (!def->audit_skip)
1754		audit_uring_exit(!ret, ret);
1755
1756	if (creds)
1757		revert_creds(creds);
1758
1759	if (ret == IOU_OK) {
1760		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1761			io_req_complete_defer(req);
1762		else
1763			io_req_complete_post(req, issue_flags);
1764
1765		return 0;
1766	}
1767
1768	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1769		ret = 0;
1770		io_arm_ltimeout(req);
1771
1772		/* If the op doesn't have a file, we're not polling for it */
1773		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1774			io_iopoll_req_issued(req, issue_flags);
1775	}
1776	return ret;
1777}
1778
1779int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1780{
1781	io_tw_lock(req->ctx, ts);
1782	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1783				 IO_URING_F_COMPLETE_DEFER);
1784}
1785
1786struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1787{
1788	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1789	struct io_kiocb *nxt = NULL;
1790
1791	if (req_ref_put_and_test(req)) {
1792		if (req->flags & IO_REQ_LINK_FLAGS)
1793			nxt = io_req_find_next(req);
1794		io_free_req(req);
1795	}
1796	return nxt ? &nxt->work : NULL;
1797}
1798
1799void io_wq_submit_work(struct io_wq_work *work)
1800{
1801	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1802	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1803	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1804	bool needs_poll = false;
1805	int ret = 0, err = -ECANCELED;
1806
1807	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1808	if (!(req->flags & REQ_F_REFCOUNT))
1809		__io_req_set_refcount(req, 2);
1810	else
1811		req_ref_get(req);
1812
1813	io_arm_ltimeout(req);
1814
1815	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1816	if (work->flags & IO_WQ_WORK_CANCEL) {
1817fail:
1818		io_req_task_queue_fail(req, err);
1819		return;
1820	}
1821	if (!io_assign_file(req, def, issue_flags)) {
1822		err = -EBADF;
1823		work->flags |= IO_WQ_WORK_CANCEL;
1824		goto fail;
1825	}
1826
1827	/*
1828	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1829	 * submitter task context. Final request completions are handed to the
1830	 * right context, however this is not the case of auxiliary CQEs,
1831	 * which is the main mean of operation for multishot requests.
1832	 * Don't allow any multishot execution from io-wq. It's more restrictive
1833	 * than necessary and also cleaner.
1834	 */
1835	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1836		err = -EBADFD;
1837		if (!io_file_can_poll(req))
1838			goto fail;
1839		if (req->file->f_flags & O_NONBLOCK ||
1840		    req->file->f_mode & FMODE_NOWAIT) {
1841			err = -ECANCELED;
1842			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1843				goto fail;
1844			return;
1845		} else {
1846			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1847		}
1848	}
1849
1850	if (req->flags & REQ_F_FORCE_ASYNC) {
1851		bool opcode_poll = def->pollin || def->pollout;
1852
1853		if (opcode_poll && io_file_can_poll(req)) {
1854			needs_poll = true;
1855			issue_flags |= IO_URING_F_NONBLOCK;
1856		}
1857	}
1858
1859	do {
1860		ret = io_issue_sqe(req, issue_flags);
1861		if (ret != -EAGAIN)
1862			break;
1863
1864		/*
1865		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1866		 * poll. -EAGAIN is final for that case.
1867		 */
1868		if (req->flags & REQ_F_NOWAIT)
1869			break;
1870
1871		/*
1872		 * We can get EAGAIN for iopolled IO even though we're
1873		 * forcing a sync submission from here, since we can't
1874		 * wait for request slots on the block side.
1875		 */
1876		if (!needs_poll) {
1877			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1878				break;
1879			if (io_wq_worker_stopped())
1880				break;
1881			cond_resched();
1882			continue;
1883		}
1884
1885		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1886			return;
1887		/* aborted or ready, in either case retry blocking */
1888		needs_poll = false;
1889		issue_flags &= ~IO_URING_F_NONBLOCK;
1890	} while (1);
1891
1892	/* avoid locking problems by failing it from a clean context */
1893	if (ret < 0)
1894		io_req_task_queue_fail(req, ret);
1895}
1896
1897inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1898				      unsigned int issue_flags)
1899{
1900	struct io_ring_ctx *ctx = req->ctx;
1901	struct io_fixed_file *slot;
1902	struct file *file = NULL;
1903
1904	io_ring_submit_lock(ctx, issue_flags);
1905
1906	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1907		goto out;
1908	fd = array_index_nospec(fd, ctx->nr_user_files);
1909	slot = io_fixed_file_slot(&ctx->file_table, fd);
1910	if (!req->rsrc_node)
1911		__io_req_set_rsrc_node(req, ctx);
1912	req->flags |= io_slot_flags(slot);
1913	file = io_slot_file(slot);
1914out:
1915	io_ring_submit_unlock(ctx, issue_flags);
1916	return file;
1917}
1918
1919struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1920{
1921	struct file *file = fget(fd);
1922
1923	trace_io_uring_file_get(req, fd);
1924
1925	/* we don't allow fixed io_uring files */
1926	if (file && io_is_uring_fops(file))
1927		io_req_track_inflight(req);
1928	return file;
1929}
1930
1931static void io_queue_async(struct io_kiocb *req, int ret)
1932	__must_hold(&req->ctx->uring_lock)
1933{
1934	struct io_kiocb *linked_timeout;
1935
1936	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1937		io_req_defer_failed(req, ret);
1938		return;
1939	}
1940
1941	linked_timeout = io_prep_linked_timeout(req);
1942
1943	switch (io_arm_poll_handler(req, 0)) {
1944	case IO_APOLL_READY:
1945		io_kbuf_recycle(req, 0);
1946		io_req_task_queue(req);
1947		break;
1948	case IO_APOLL_ABORTED:
1949		io_kbuf_recycle(req, 0);
1950		io_queue_iowq(req);
1951		break;
1952	case IO_APOLL_OK:
1953		break;
1954	}
1955
1956	if (linked_timeout)
1957		io_queue_linked_timeout(linked_timeout);
1958}
1959
1960static inline void io_queue_sqe(struct io_kiocb *req)
1961	__must_hold(&req->ctx->uring_lock)
1962{
1963	int ret;
1964
1965	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1966
1967	/*
1968	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1969	 * doesn't support non-blocking read/write attempts
1970	 */
1971	if (unlikely(ret))
1972		io_queue_async(req, ret);
1973}
1974
1975static void io_queue_sqe_fallback(struct io_kiocb *req)
1976	__must_hold(&req->ctx->uring_lock)
1977{
1978	if (unlikely(req->flags & REQ_F_FAIL)) {
1979		/*
1980		 * We don't submit, fail them all, for that replace hardlinks
1981		 * with normal links. Extra REQ_F_LINK is tolerated.
1982		 */
1983		req->flags &= ~REQ_F_HARDLINK;
1984		req->flags |= REQ_F_LINK;
1985		io_req_defer_failed(req, req->cqe.res);
1986	} else {
1987		if (unlikely(req->ctx->drain_active))
1988			io_drain_req(req);
1989		else
1990			io_queue_iowq(req);
1991	}
1992}
1993
1994/*
1995 * Check SQE restrictions (opcode and flags).
1996 *
1997 * Returns 'true' if SQE is allowed, 'false' otherwise.
1998 */
1999static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2000					struct io_kiocb *req,
2001					unsigned int sqe_flags)
2002{
2003	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2004		return false;
2005
2006	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2007	    ctx->restrictions.sqe_flags_required)
2008		return false;
2009
2010	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2011			  ctx->restrictions.sqe_flags_required))
2012		return false;
2013
2014	return true;
2015}
2016
2017static void io_init_req_drain(struct io_kiocb *req)
2018{
2019	struct io_ring_ctx *ctx = req->ctx;
2020	struct io_kiocb *head = ctx->submit_state.link.head;
2021
2022	ctx->drain_active = true;
2023	if (head) {
2024		/*
2025		 * If we need to drain a request in the middle of a link, drain
2026		 * the head request and the next request/link after the current
2027		 * link. Considering sequential execution of links,
2028		 * REQ_F_IO_DRAIN will be maintained for every request of our
2029		 * link.
2030		 */
2031		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2032		ctx->drain_next = true;
2033	}
2034}
2035
2036static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2037{
2038	/* ensure per-opcode data is cleared if we fail before prep */
2039	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2040	return err;
2041}
2042
2043static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2044		       const struct io_uring_sqe *sqe)
2045	__must_hold(&ctx->uring_lock)
2046{
2047	const struct io_issue_def *def;
2048	unsigned int sqe_flags;
2049	int personality;
2050	u8 opcode;
2051
2052	/* req is partially pre-initialised, see io_preinit_req() */
2053	req->opcode = opcode = READ_ONCE(sqe->opcode);
2054	/* same numerical values with corresponding REQ_F_*, safe to copy */
2055	sqe_flags = READ_ONCE(sqe->flags);
2056	req->flags = (io_req_flags_t) sqe_flags;
2057	req->cqe.user_data = READ_ONCE(sqe->user_data);
2058	req->file = NULL;
2059	req->rsrc_node = NULL;
2060	req->task = current;
2061
2062	if (unlikely(opcode >= IORING_OP_LAST)) {
2063		req->opcode = 0;
2064		return io_init_fail_req(req, -EINVAL);
2065	}
2066	def = &io_issue_defs[opcode];
2067	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2068		/* enforce forwards compatibility on users */
2069		if (sqe_flags & ~SQE_VALID_FLAGS)
2070			return io_init_fail_req(req, -EINVAL);
2071		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2072			if (!def->buffer_select)
2073				return io_init_fail_req(req, -EOPNOTSUPP);
2074			req->buf_index = READ_ONCE(sqe->buf_group);
2075		}
2076		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2077			ctx->drain_disabled = true;
2078		if (sqe_flags & IOSQE_IO_DRAIN) {
2079			if (ctx->drain_disabled)
2080				return io_init_fail_req(req, -EOPNOTSUPP);
2081			io_init_req_drain(req);
2082		}
2083	}
2084	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2085		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2086			return io_init_fail_req(req, -EACCES);
2087		/* knock it to the slow queue path, will be drained there */
2088		if (ctx->drain_active)
2089			req->flags |= REQ_F_FORCE_ASYNC;
2090		/* if there is no link, we're at "next" request and need to drain */
2091		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2092			ctx->drain_next = false;
2093			ctx->drain_active = true;
2094			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2095		}
2096	}
2097
2098	if (!def->ioprio && sqe->ioprio)
2099		return io_init_fail_req(req, -EINVAL);
2100	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2101		return io_init_fail_req(req, -EINVAL);
2102
2103	if (def->needs_file) {
2104		struct io_submit_state *state = &ctx->submit_state;
2105
2106		req->cqe.fd = READ_ONCE(sqe->fd);
2107
2108		/*
2109		 * Plug now if we have more than 2 IO left after this, and the
2110		 * target is potentially a read/write to block based storage.
2111		 */
2112		if (state->need_plug && def->plug) {
2113			state->plug_started = true;
2114			state->need_plug = false;
2115			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2116		}
2117	}
2118
2119	personality = READ_ONCE(sqe->personality);
2120	if (personality) {
2121		int ret;
2122
2123		req->creds = xa_load(&ctx->personalities, personality);
2124		if (!req->creds)
2125			return io_init_fail_req(req, -EINVAL);
2126		get_cred(req->creds);
2127		ret = security_uring_override_creds(req->creds);
2128		if (ret) {
2129			put_cred(req->creds);
2130			return io_init_fail_req(req, ret);
2131		}
2132		req->flags |= REQ_F_CREDS;
2133	}
2134
2135	return def->prep(req, sqe);
2136}
2137
2138static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2139				      struct io_kiocb *req, int ret)
2140{
2141	struct io_ring_ctx *ctx = req->ctx;
2142	struct io_submit_link *link = &ctx->submit_state.link;
2143	struct io_kiocb *head = link->head;
2144
2145	trace_io_uring_req_failed(sqe, req, ret);
2146
2147	/*
2148	 * Avoid breaking links in the middle as it renders links with SQPOLL
2149	 * unusable. Instead of failing eagerly, continue assembling the link if
2150	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2151	 * should find the flag and handle the rest.
2152	 */
2153	req_fail_link_node(req, ret);
2154	if (head && !(head->flags & REQ_F_FAIL))
2155		req_fail_link_node(head, -ECANCELED);
2156
2157	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2158		if (head) {
2159			link->last->link = req;
2160			link->head = NULL;
2161			req = head;
2162		}
2163		io_queue_sqe_fallback(req);
2164		return ret;
2165	}
2166
2167	if (head)
2168		link->last->link = req;
2169	else
2170		link->head = req;
2171	link->last = req;
2172	return 0;
2173}
2174
2175static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2176			 const struct io_uring_sqe *sqe)
2177	__must_hold(&ctx->uring_lock)
2178{
2179	struct io_submit_link *link = &ctx->submit_state.link;
2180	int ret;
2181
2182	ret = io_init_req(ctx, req, sqe);
2183	if (unlikely(ret))
2184		return io_submit_fail_init(sqe, req, ret);
2185
2186	trace_io_uring_submit_req(req);
2187
2188	/*
2189	 * If we already have a head request, queue this one for async
2190	 * submittal once the head completes. If we don't have a head but
2191	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2192	 * submitted sync once the chain is complete. If none of those
2193	 * conditions are true (normal request), then just queue it.
2194	 */
2195	if (unlikely(link->head)) {
2196		trace_io_uring_link(req, link->head);
2197		link->last->link = req;
2198		link->last = req;
2199
2200		if (req->flags & IO_REQ_LINK_FLAGS)
2201			return 0;
2202		/* last request of the link, flush it */
2203		req = link->head;
2204		link->head = NULL;
2205		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2206			goto fallback;
2207
2208	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2209					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2210		if (req->flags & IO_REQ_LINK_FLAGS) {
2211			link->head = req;
2212			link->last = req;
2213		} else {
2214fallback:
2215			io_queue_sqe_fallback(req);
2216		}
2217		return 0;
2218	}
2219
2220	io_queue_sqe(req);
2221	return 0;
2222}
2223
2224/*
2225 * Batched submission is done, ensure local IO is flushed out.
2226 */
2227static void io_submit_state_end(struct io_ring_ctx *ctx)
2228{
2229	struct io_submit_state *state = &ctx->submit_state;
2230
2231	if (unlikely(state->link.head))
2232		io_queue_sqe_fallback(state->link.head);
2233	/* flush only after queuing links as they can generate completions */
2234	io_submit_flush_completions(ctx);
2235	if (state->plug_started)
2236		blk_finish_plug(&state->plug);
2237}
2238
2239/*
2240 * Start submission side cache.
2241 */
2242static void io_submit_state_start(struct io_submit_state *state,
2243				  unsigned int max_ios)
2244{
2245	state->plug_started = false;
2246	state->need_plug = max_ios > 2;
2247	state->submit_nr = max_ios;
2248	/* set only head, no need to init link_last in advance */
2249	state->link.head = NULL;
2250}
2251
2252static void io_commit_sqring(struct io_ring_ctx *ctx)
2253{
2254	struct io_rings *rings = ctx->rings;
2255
2256	/*
2257	 * Ensure any loads from the SQEs are done at this point,
2258	 * since once we write the new head, the application could
2259	 * write new data to them.
2260	 */
2261	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2262}
2263
2264/*
2265 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2266 * that is mapped by userspace. This means that care needs to be taken to
2267 * ensure that reads are stable, as we cannot rely on userspace always
2268 * being a good citizen. If members of the sqe are validated and then later
2269 * used, it's important that those reads are done through READ_ONCE() to
2270 * prevent a re-load down the line.
2271 */
2272static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2273{
2274	unsigned mask = ctx->sq_entries - 1;
2275	unsigned head = ctx->cached_sq_head++ & mask;
2276
2277	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2278		head = READ_ONCE(ctx->sq_array[head]);
2279		if (unlikely(head >= ctx->sq_entries)) {
2280			/* drop invalid entries */
2281			spin_lock(&ctx->completion_lock);
2282			ctx->cq_extra--;
2283			spin_unlock(&ctx->completion_lock);
2284			WRITE_ONCE(ctx->rings->sq_dropped,
2285				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2286			return false;
2287		}
2288	}
2289
2290	/*
2291	 * The cached sq head (or cq tail) serves two purposes:
2292	 *
2293	 * 1) allows us to batch the cost of updating the user visible
2294	 *    head updates.
2295	 * 2) allows the kernel side to track the head on its own, even
2296	 *    though the application is the one updating it.
2297	 */
2298
2299	/* double index for 128-byte SQEs, twice as long */
2300	if (ctx->flags & IORING_SETUP_SQE128)
2301		head <<= 1;
2302	*sqe = &ctx->sq_sqes[head];
2303	return true;
2304}
2305
2306int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2307	__must_hold(&ctx->uring_lock)
2308{
2309	unsigned int entries = io_sqring_entries(ctx);
2310	unsigned int left;
2311	int ret;
2312
2313	if (unlikely(!entries))
2314		return 0;
2315	/* make sure SQ entry isn't read before tail */
2316	ret = left = min(nr, entries);
2317	io_get_task_refs(left);
2318	io_submit_state_start(&ctx->submit_state, left);
2319
2320	do {
2321		const struct io_uring_sqe *sqe;
2322		struct io_kiocb *req;
2323
2324		if (unlikely(!io_alloc_req(ctx, &req)))
2325			break;
2326		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2327			io_req_add_to_cache(req, ctx);
2328			break;
2329		}
2330
2331		/*
2332		 * Continue submitting even for sqe failure if the
2333		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2334		 */
2335		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2336		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2337			left--;
2338			break;
2339		}
2340	} while (--left);
2341
2342	if (unlikely(left)) {
2343		ret -= left;
2344		/* try again if it submitted nothing and can't allocate a req */
2345		if (!ret && io_req_cache_empty(ctx))
2346			ret = -EAGAIN;
2347		current->io_uring->cached_refs += left;
2348	}
2349
2350	io_submit_state_end(ctx);
2351	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2352	io_commit_sqring(ctx);
2353	return ret;
2354}
2355
2356static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2357			    int wake_flags, void *key)
2358{
2359	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2360
2361	/*
2362	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2363	 * the task, and the next invocation will do it.
2364	 */
2365	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2366		return autoremove_wake_function(curr, mode, wake_flags, key);
2367	return -1;
2368}
2369
2370int io_run_task_work_sig(struct io_ring_ctx *ctx)
2371{
2372	if (!llist_empty(&ctx->work_llist)) {
2373		__set_current_state(TASK_RUNNING);
2374		if (io_run_local_work(ctx, INT_MAX) > 0)
2375			return 0;
2376	}
2377	if (io_run_task_work() > 0)
2378		return 0;
2379	if (task_sigpending(current))
2380		return -EINTR;
2381	return 0;
2382}
2383
2384static bool current_pending_io(void)
2385{
2386	struct io_uring_task *tctx = current->io_uring;
2387
2388	if (!tctx)
2389		return false;
2390	return percpu_counter_read_positive(&tctx->inflight);
2391}
2392
2393/* when returns >0, the caller should retry */
2394static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2395					  struct io_wait_queue *iowq)
2396{
2397	int ret;
2398
2399	if (unlikely(READ_ONCE(ctx->check_cq)))
2400		return 1;
2401	if (unlikely(!llist_empty(&ctx->work_llist)))
2402		return 1;
2403	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2404		return 1;
2405	if (unlikely(task_sigpending(current)))
2406		return -EINTR;
2407	if (unlikely(io_should_wake(iowq)))
2408		return 0;
2409
2410	/*
2411	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2412	 * can take into account that the task is waiting for IO - turns out
2413	 * to be important for low QD IO.
2414	 */
2415	if (current_pending_io())
2416		current->in_iowait = 1;
2417	ret = 0;
2418	if (iowq->timeout == KTIME_MAX)
2419		schedule();
2420	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2421		ret = -ETIME;
2422	current->in_iowait = 0;
2423	return ret;
2424}
2425
2426/*
2427 * Wait until events become available, if we don't already have some. The
2428 * application must reap them itself, as they reside on the shared cq ring.
2429 */
2430static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2431			  const sigset_t __user *sig, size_t sigsz,
2432			  struct __kernel_timespec __user *uts)
2433{
2434	struct io_wait_queue iowq;
2435	struct io_rings *rings = ctx->rings;
2436	int ret;
2437
2438	if (!io_allowed_run_tw(ctx))
2439		return -EEXIST;
2440	if (!llist_empty(&ctx->work_llist))
2441		io_run_local_work(ctx, min_events);
2442	io_run_task_work();
2443
2444	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2445		io_cqring_do_overflow_flush(ctx);
2446	if (__io_cqring_events_user(ctx) >= min_events)
2447		return 0;
2448
2449	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2450	iowq.wq.private = current;
2451	INIT_LIST_HEAD(&iowq.wq.entry);
2452	iowq.ctx = ctx;
2453	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2454	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2455	iowq.timeout = KTIME_MAX;
2456
2457	if (uts) {
2458		struct timespec64 ts;
2459
2460		if (get_timespec64(&ts, uts))
2461			return -EFAULT;
2462
2463		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2464		io_napi_adjust_timeout(ctx, &iowq, &ts);
2465	}
2466
2467	if (sig) {
2468#ifdef CONFIG_COMPAT
2469		if (in_compat_syscall())
2470			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2471						      sigsz);
2472		else
2473#endif
2474			ret = set_user_sigmask(sig, sigsz);
2475
2476		if (ret)
2477			return ret;
2478	}
2479
2480	io_napi_busy_loop(ctx, &iowq);
2481
2482	trace_io_uring_cqring_wait(ctx, min_events);
2483	do {
2484		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2485		unsigned long check_cq;
2486
2487		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2488			atomic_set(&ctx->cq_wait_nr, nr_wait);
2489			set_current_state(TASK_INTERRUPTIBLE);
2490		} else {
2491			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2492							TASK_INTERRUPTIBLE);
2493		}
2494
2495		ret = io_cqring_wait_schedule(ctx, &iowq);
2496		__set_current_state(TASK_RUNNING);
2497		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2498
2499		/*
2500		 * Run task_work after scheduling and before io_should_wake().
2501		 * If we got woken because of task_work being processed, run it
2502		 * now rather than let the caller do another wait loop.
2503		 */
2504		io_run_task_work();
2505		if (!llist_empty(&ctx->work_llist))
2506			io_run_local_work(ctx, nr_wait);
2507
2508		/*
2509		 * Non-local task_work will be run on exit to userspace, but
2510		 * if we're using DEFER_TASKRUN, then we could have waited
2511		 * with a timeout for a number of requests. If the timeout
2512		 * hits, we could have some requests ready to process. Ensure
2513		 * this break is _after_ we have run task_work, to avoid
2514		 * deferring running potentially pending requests until the
2515		 * next time we wait for events.
2516		 */
2517		if (ret < 0)
2518			break;
2519
2520		check_cq = READ_ONCE(ctx->check_cq);
2521		if (unlikely(check_cq)) {
2522			/* let the caller flush overflows, retry */
2523			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2524				io_cqring_do_overflow_flush(ctx);
2525			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2526				ret = -EBADR;
2527				break;
2528			}
2529		}
2530
2531		if (io_should_wake(&iowq)) {
2532			ret = 0;
2533			break;
2534		}
2535		cond_resched();
2536	} while (1);
2537
2538	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2539		finish_wait(&ctx->cq_wait, &iowq.wq);
2540	restore_saved_sigmask_unless(ret == -EINTR);
2541
2542	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2543}
2544
2545static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2546			  size_t size)
2547{
2548	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2549				size);
2550}
2551
2552static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2553			 size_t size)
2554{
2555	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2556				size);
2557}
2558
2559static void io_rings_free(struct io_ring_ctx *ctx)
2560{
2561	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2562		io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2563				true);
2564		io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2565				true);
2566	} else {
2567		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2568		ctx->n_ring_pages = 0;
2569		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2570		ctx->n_sqe_pages = 0;
2571		vunmap(ctx->rings);
2572		vunmap(ctx->sq_sqes);
2573	}
2574
2575	ctx->rings = NULL;
2576	ctx->sq_sqes = NULL;
2577}
2578
2579static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2580				unsigned int cq_entries, size_t *sq_offset)
2581{
2582	struct io_rings *rings;
2583	size_t off, sq_array_size;
2584
2585	off = struct_size(rings, cqes, cq_entries);
2586	if (off == SIZE_MAX)
2587		return SIZE_MAX;
2588	if (ctx->flags & IORING_SETUP_CQE32) {
2589		if (check_shl_overflow(off, 1, &off))
2590			return SIZE_MAX;
2591	}
2592
2593#ifdef CONFIG_SMP
2594	off = ALIGN(off, SMP_CACHE_BYTES);
2595	if (off == 0)
2596		return SIZE_MAX;
2597#endif
2598
2599	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2600		*sq_offset = SIZE_MAX;
2601		return off;
2602	}
2603
2604	*sq_offset = off;
2605
2606	sq_array_size = array_size(sizeof(u32), sq_entries);
2607	if (sq_array_size == SIZE_MAX)
2608		return SIZE_MAX;
2609
2610	if (check_add_overflow(off, sq_array_size, &off))
2611		return SIZE_MAX;
2612
2613	return off;
2614}
2615
2616static void io_req_caches_free(struct io_ring_ctx *ctx)
2617{
2618	struct io_kiocb *req;
2619	int nr = 0;
2620
2621	mutex_lock(&ctx->uring_lock);
2622
2623	while (!io_req_cache_empty(ctx)) {
2624		req = io_extract_req(ctx);
2625		kmem_cache_free(req_cachep, req);
2626		nr++;
2627	}
2628	if (nr)
2629		percpu_ref_put_many(&ctx->refs, nr);
2630	mutex_unlock(&ctx->uring_lock);
2631}
2632
2633static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2634{
2635	io_sq_thread_finish(ctx);
2636	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2637	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2638		return;
2639
2640	mutex_lock(&ctx->uring_lock);
2641	if (ctx->buf_data)
2642		__io_sqe_buffers_unregister(ctx);
2643	if (ctx->file_data)
2644		__io_sqe_files_unregister(ctx);
2645	io_cqring_overflow_kill(ctx);
2646	io_eventfd_unregister(ctx);
2647	io_alloc_cache_free(&ctx->apoll_cache, kfree);
2648	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2649	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2650	io_alloc_cache_free(&ctx->uring_cache, kfree);
2651	io_futex_cache_free(ctx);
2652	io_destroy_buffers(ctx);
2653	mutex_unlock(&ctx->uring_lock);
2654	if (ctx->sq_creds)
2655		put_cred(ctx->sq_creds);
2656	if (ctx->submitter_task)
2657		put_task_struct(ctx->submitter_task);
2658
2659	/* there are no registered resources left, nobody uses it */
2660	if (ctx->rsrc_node)
2661		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2662
2663	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2664	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2665
2666	io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
2667	if (ctx->mm_account) {
2668		mmdrop(ctx->mm_account);
2669		ctx->mm_account = NULL;
2670	}
2671	io_rings_free(ctx);
2672
2673	percpu_ref_exit(&ctx->refs);
2674	free_uid(ctx->user);
2675	io_req_caches_free(ctx);
2676	if (ctx->hash_map)
2677		io_wq_put_hash(ctx->hash_map);
2678	io_napi_free(ctx);
2679	kfree(ctx->cancel_table.hbs);
2680	kfree(ctx->cancel_table_locked.hbs);
2681	xa_destroy(&ctx->io_bl_xa);
2682	kfree(ctx);
2683}
2684
2685static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2686{
2687	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2688					       poll_wq_task_work);
2689
2690	mutex_lock(&ctx->uring_lock);
2691	ctx->poll_activated = true;
2692	mutex_unlock(&ctx->uring_lock);
2693
2694	/*
2695	 * Wake ups for some events between start of polling and activation
2696	 * might've been lost due to loose synchronisation.
2697	 */
2698	wake_up_all(&ctx->poll_wq);
2699	percpu_ref_put(&ctx->refs);
2700}
2701
2702__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2703{
2704	spin_lock(&ctx->completion_lock);
2705	/* already activated or in progress */
2706	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2707		goto out;
2708	if (WARN_ON_ONCE(!ctx->task_complete))
2709		goto out;
2710	if (!ctx->submitter_task)
2711		goto out;
2712	/*
2713	 * with ->submitter_task only the submitter task completes requests, we
2714	 * only need to sync with it, which is done by injecting a tw
2715	 */
2716	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2717	percpu_ref_get(&ctx->refs);
2718	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2719		percpu_ref_put(&ctx->refs);
2720out:
2721	spin_unlock(&ctx->completion_lock);
2722}
2723
2724static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2725{
2726	struct io_ring_ctx *ctx = file->private_data;
2727	__poll_t mask = 0;
2728
2729	if (unlikely(!ctx->poll_activated))
2730		io_activate_pollwq(ctx);
2731
2732	poll_wait(file, &ctx->poll_wq, wait);
2733	/*
2734	 * synchronizes with barrier from wq_has_sleeper call in
2735	 * io_commit_cqring
2736	 */
2737	smp_rmb();
2738	if (!io_sqring_full(ctx))
2739		mask |= EPOLLOUT | EPOLLWRNORM;
2740
2741	/*
2742	 * Don't flush cqring overflow list here, just do a simple check.
2743	 * Otherwise there could possible be ABBA deadlock:
2744	 *      CPU0                    CPU1
2745	 *      ----                    ----
2746	 * lock(&ctx->uring_lock);
2747	 *                              lock(&ep->mtx);
2748	 *                              lock(&ctx->uring_lock);
2749	 * lock(&ep->mtx);
2750	 *
2751	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2752	 * pushes them to do the flush.
2753	 */
2754
2755	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2756		mask |= EPOLLIN | EPOLLRDNORM;
2757
2758	return mask;
2759}
2760
2761struct io_tctx_exit {
2762	struct callback_head		task_work;
2763	struct completion		completion;
2764	struct io_ring_ctx		*ctx;
2765};
2766
2767static __cold void io_tctx_exit_cb(struct callback_head *cb)
2768{
2769	struct io_uring_task *tctx = current->io_uring;
2770	struct io_tctx_exit *work;
2771
2772	work = container_of(cb, struct io_tctx_exit, task_work);
2773	/*
2774	 * When @in_cancel, we're in cancellation and it's racy to remove the
2775	 * node. It'll be removed by the end of cancellation, just ignore it.
2776	 * tctx can be NULL if the queueing of this task_work raced with
2777	 * work cancelation off the exec path.
2778	 */
2779	if (tctx && !atomic_read(&tctx->in_cancel))
2780		io_uring_del_tctx_node((unsigned long)work->ctx);
2781	complete(&work->completion);
2782}
2783
2784static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2785{
2786	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2787
2788	return req->ctx == data;
2789}
2790
2791static __cold void io_ring_exit_work(struct work_struct *work)
2792{
2793	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2794	unsigned long timeout = jiffies + HZ * 60 * 5;
2795	unsigned long interval = HZ / 20;
2796	struct io_tctx_exit exit;
2797	struct io_tctx_node *node;
2798	int ret;
2799
2800	/*
2801	 * If we're doing polled IO and end up having requests being
2802	 * submitted async (out-of-line), then completions can come in while
2803	 * we're waiting for refs to drop. We need to reap these manually,
2804	 * as nobody else will be looking for them.
2805	 */
2806	do {
2807		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2808			mutex_lock(&ctx->uring_lock);
2809			io_cqring_overflow_kill(ctx);
2810			mutex_unlock(&ctx->uring_lock);
2811		}
2812
2813		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2814			io_move_task_work_from_local(ctx);
2815
2816		while (io_uring_try_cancel_requests(ctx, NULL, true))
2817			cond_resched();
2818
2819		if (ctx->sq_data) {
2820			struct io_sq_data *sqd = ctx->sq_data;
2821			struct task_struct *tsk;
2822
2823			io_sq_thread_park(sqd);
2824			tsk = sqd->thread;
2825			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2826				io_wq_cancel_cb(tsk->io_uring->io_wq,
2827						io_cancel_ctx_cb, ctx, true);
2828			io_sq_thread_unpark(sqd);
2829		}
2830
2831		io_req_caches_free(ctx);
2832
2833		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2834			/* there is little hope left, don't run it too often */
2835			interval = HZ * 60;
2836		}
2837		/*
2838		 * This is really an uninterruptible wait, as it has to be
2839		 * complete. But it's also run from a kworker, which doesn't
2840		 * take signals, so it's fine to make it interruptible. This
2841		 * avoids scenarios where we knowingly can wait much longer
2842		 * on completions, for example if someone does a SIGSTOP on
2843		 * a task that needs to finish task_work to make this loop
2844		 * complete. That's a synthetic situation that should not
2845		 * cause a stuck task backtrace, and hence a potential panic
2846		 * on stuck tasks if that is enabled.
2847		 */
2848	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2849
2850	init_completion(&exit.completion);
2851	init_task_work(&exit.task_work, io_tctx_exit_cb);
2852	exit.ctx = ctx;
2853
2854	mutex_lock(&ctx->uring_lock);
2855	while (!list_empty(&ctx->tctx_list)) {
2856		WARN_ON_ONCE(time_after(jiffies, timeout));
2857
2858		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2859					ctx_node);
2860		/* don't spin on a single task if cancellation failed */
2861		list_rotate_left(&ctx->tctx_list);
2862		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2863		if (WARN_ON_ONCE(ret))
2864			continue;
2865
2866		mutex_unlock(&ctx->uring_lock);
2867		/*
2868		 * See comment above for
2869		 * wait_for_completion_interruptible_timeout() on why this
2870		 * wait is marked as interruptible.
2871		 */
2872		wait_for_completion_interruptible(&exit.completion);
2873		mutex_lock(&ctx->uring_lock);
2874	}
2875	mutex_unlock(&ctx->uring_lock);
2876	spin_lock(&ctx->completion_lock);
2877	spin_unlock(&ctx->completion_lock);
2878
2879	/* pairs with RCU read section in io_req_local_work_add() */
2880	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2881		synchronize_rcu();
2882
2883	io_ring_ctx_free(ctx);
2884}
2885
2886static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2887{
2888	unsigned long index;
2889	struct creds *creds;
2890
2891	mutex_lock(&ctx->uring_lock);
2892	percpu_ref_kill(&ctx->refs);
2893	xa_for_each(&ctx->personalities, index, creds)
2894		io_unregister_personality(ctx, index);
2895	mutex_unlock(&ctx->uring_lock);
2896
2897	flush_delayed_work(&ctx->fallback_work);
2898
2899	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2900	/*
2901	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2902	 * if we're exiting a ton of rings at the same time. It just adds
2903	 * noise and overhead, there's no discernable change in runtime
2904	 * over using system_wq.
2905	 */
2906	queue_work(iou_wq, &ctx->exit_work);
2907}
2908
2909static int io_uring_release(struct inode *inode, struct file *file)
2910{
2911	struct io_ring_ctx *ctx = file->private_data;
2912
2913	file->private_data = NULL;
2914	io_ring_ctx_wait_and_kill(ctx);
2915	return 0;
2916}
2917
2918struct io_task_cancel {
2919	struct task_struct *task;
2920	bool all;
2921};
2922
2923static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2924{
2925	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2926	struct io_task_cancel *cancel = data;
2927
2928	return io_match_task_safe(req, cancel->task, cancel->all);
2929}
2930
2931static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2932					 struct task_struct *task,
2933					 bool cancel_all)
2934{
2935	struct io_defer_entry *de;
2936	LIST_HEAD(list);
2937
2938	spin_lock(&ctx->completion_lock);
2939	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2940		if (io_match_task_safe(de->req, task, cancel_all)) {
2941			list_cut_position(&list, &ctx->defer_list, &de->list);
2942			break;
2943		}
2944	}
2945	spin_unlock(&ctx->completion_lock);
2946	if (list_empty(&list))
2947		return false;
2948
2949	while (!list_empty(&list)) {
2950		de = list_first_entry(&list, struct io_defer_entry, list);
2951		list_del_init(&de->list);
2952		io_req_task_queue_fail(de->req, -ECANCELED);
2953		kfree(de);
2954	}
2955	return true;
2956}
2957
2958static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2959{
2960	struct io_tctx_node *node;
2961	enum io_wq_cancel cret;
2962	bool ret = false;
2963
2964	mutex_lock(&ctx->uring_lock);
2965	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2966		struct io_uring_task *tctx = node->task->io_uring;
2967
2968		/*
2969		 * io_wq will stay alive while we hold uring_lock, because it's
2970		 * killed after ctx nodes, which requires to take the lock.
2971		 */
2972		if (!tctx || !tctx->io_wq)
2973			continue;
2974		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2975		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2976	}
2977	mutex_unlock(&ctx->uring_lock);
2978
2979	return ret;
2980}
2981
2982static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2983						struct task_struct *task,
2984						bool cancel_all)
2985{
2986	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2987	struct io_uring_task *tctx = task ? task->io_uring : NULL;
2988	enum io_wq_cancel cret;
2989	bool ret = false;
2990
2991	/* set it so io_req_local_work_add() would wake us up */
2992	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2993		atomic_set(&ctx->cq_wait_nr, 1);
2994		smp_mb();
2995	}
2996
2997	/* failed during ring init, it couldn't have issued any requests */
2998	if (!ctx->rings)
2999		return false;
3000
3001	if (!task) {
3002		ret |= io_uring_try_cancel_iowq(ctx);
3003	} else if (tctx && tctx->io_wq) {
3004		/*
3005		 * Cancels requests of all rings, not only @ctx, but
3006		 * it's fine as the task is in exit/exec.
3007		 */
3008		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3009				       &cancel, true);
3010		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3011	}
3012
3013	/* SQPOLL thread does its own polling */
3014	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3015	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3016		while (!wq_list_empty(&ctx->iopoll_list)) {
3017			io_iopoll_try_reap_events(ctx);
3018			ret = true;
3019			cond_resched();
3020		}
3021	}
3022
3023	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3024	    io_allowed_defer_tw_run(ctx))
3025		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3026	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3027	mutex_lock(&ctx->uring_lock);
3028	ret |= io_poll_remove_all(ctx, task, cancel_all);
3029	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3030	ret |= io_futex_remove_all(ctx, task, cancel_all);
3031	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3032	mutex_unlock(&ctx->uring_lock);
3033	ret |= io_kill_timeouts(ctx, task, cancel_all);
3034	if (task)
3035		ret |= io_run_task_work() > 0;
3036	else
3037		ret |= flush_delayed_work(&ctx->fallback_work);
3038	return ret;
3039}
3040
3041static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3042{
3043	if (tracked)
3044		return atomic_read(&tctx->inflight_tracked);
3045	return percpu_counter_sum(&tctx->inflight);
3046}
3047
3048/*
3049 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3050 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3051 */
3052__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3053{
3054	struct io_uring_task *tctx = current->io_uring;
3055	struct io_ring_ctx *ctx;
3056	struct io_tctx_node *node;
3057	unsigned long index;
3058	s64 inflight;
3059	DEFINE_WAIT(wait);
3060
3061	WARN_ON_ONCE(sqd && sqd->thread != current);
3062
3063	if (!current->io_uring)
3064		return;
3065	if (tctx->io_wq)
3066		io_wq_exit_start(tctx->io_wq);
3067
3068	atomic_inc(&tctx->in_cancel);
3069	do {
3070		bool loop = false;
3071
3072		io_uring_drop_tctx_refs(current);
3073		/* read completions before cancelations */
3074		inflight = tctx_inflight(tctx, !cancel_all);
3075		if (!inflight)
3076			break;
3077
3078		if (!sqd) {
3079			xa_for_each(&tctx->xa, index, node) {
3080				/* sqpoll task will cancel all its requests */
3081				if (node->ctx->sq_data)
3082					continue;
3083				loop |= io_uring_try_cancel_requests(node->ctx,
3084							current, cancel_all);
3085			}
3086		} else {
3087			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3088				loop |= io_uring_try_cancel_requests(ctx,
3089								     current,
3090								     cancel_all);
3091		}
3092
3093		if (loop) {
3094			cond_resched();
3095			continue;
3096		}
3097
3098		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3099		io_run_task_work();
3100		io_uring_drop_tctx_refs(current);
3101		xa_for_each(&tctx->xa, index, node) {
3102			if (!llist_empty(&node->ctx->work_llist)) {
3103				WARN_ON_ONCE(node->ctx->submitter_task &&
3104					     node->ctx->submitter_task != current);
3105				goto end_wait;
3106			}
3107		}
3108		/*
3109		 * If we've seen completions, retry without waiting. This
3110		 * avoids a race where a completion comes in before we did
3111		 * prepare_to_wait().
3112		 */
3113		if (inflight == tctx_inflight(tctx, !cancel_all))
3114			schedule();
3115end_wait:
3116		finish_wait(&tctx->wait, &wait);
3117	} while (1);
3118
3119	io_uring_clean_tctx(tctx);
3120	if (cancel_all) {
3121		/*
3122		 * We shouldn't run task_works after cancel, so just leave
3123		 * ->in_cancel set for normal exit.
3124		 */
3125		atomic_dec(&tctx->in_cancel);
3126		/* for exec all current's requests should be gone, kill tctx */
3127		__io_uring_free(current);
3128	}
3129}
3130
3131void __io_uring_cancel(bool cancel_all)
3132{
3133	io_uring_cancel_generic(cancel_all, NULL);
3134}
3135
3136static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3137{
3138	if (flags & IORING_ENTER_EXT_ARG) {
3139		struct io_uring_getevents_arg arg;
3140
3141		if (argsz != sizeof(arg))
3142			return -EINVAL;
3143		if (copy_from_user(&arg, argp, sizeof(arg)))
3144			return -EFAULT;
3145	}
3146	return 0;
3147}
3148
3149static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3150			  struct __kernel_timespec __user **ts,
3151			  const sigset_t __user **sig)
3152{
3153	struct io_uring_getevents_arg arg;
3154
3155	/*
3156	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3157	 * is just a pointer to the sigset_t.
3158	 */
3159	if (!(flags & IORING_ENTER_EXT_ARG)) {
3160		*sig = (const sigset_t __user *) argp;
3161		*ts = NULL;
3162		return 0;
3163	}
3164
3165	/*
3166	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3167	 * timespec and sigset_t pointers if good.
3168	 */
3169	if (*argsz != sizeof(arg))
3170		return -EINVAL;
3171	if (copy_from_user(&arg, argp, sizeof(arg)))
3172		return -EFAULT;
3173	if (arg.pad)
3174		return -EINVAL;
3175	*sig = u64_to_user_ptr(arg.sigmask);
3176	*argsz = arg.sigmask_sz;
3177	*ts = u64_to_user_ptr(arg.ts);
3178	return 0;
3179}
3180
3181SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3182		u32, min_complete, u32, flags, const void __user *, argp,
3183		size_t, argsz)
3184{
3185	struct io_ring_ctx *ctx;
3186	struct file *file;
3187	long ret;
3188
3189	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3190			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3191			       IORING_ENTER_REGISTERED_RING)))
3192		return -EINVAL;
3193
3194	/*
3195	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3196	 * need only dereference our task private array to find it.
3197	 */
3198	if (flags & IORING_ENTER_REGISTERED_RING) {
3199		struct io_uring_task *tctx = current->io_uring;
3200
3201		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3202			return -EINVAL;
3203		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3204		file = tctx->registered_rings[fd];
3205		if (unlikely(!file))
3206			return -EBADF;
3207	} else {
3208		file = fget(fd);
3209		if (unlikely(!file))
3210			return -EBADF;
3211		ret = -EOPNOTSUPP;
3212		if (unlikely(!io_is_uring_fops(file)))
3213			goto out;
3214	}
3215
3216	ctx = file->private_data;
3217	ret = -EBADFD;
3218	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3219		goto out;
3220
3221	/*
3222	 * For SQ polling, the thread will do all submissions and completions.
3223	 * Just return the requested submit count, and wake the thread if
3224	 * we were asked to.
3225	 */
3226	ret = 0;
3227	if (ctx->flags & IORING_SETUP_SQPOLL) {
3228		if (unlikely(ctx->sq_data->thread == NULL)) {
3229			ret = -EOWNERDEAD;
3230			goto out;
3231		}
3232		if (flags & IORING_ENTER_SQ_WAKEUP)
3233			wake_up(&ctx->sq_data->wait);
3234		if (flags & IORING_ENTER_SQ_WAIT)
3235			io_sqpoll_wait_sq(ctx);
3236
3237		ret = to_submit;
3238	} else if (to_submit) {
3239		ret = io_uring_add_tctx_node(ctx);
3240		if (unlikely(ret))
3241			goto out;
3242
3243		mutex_lock(&ctx->uring_lock);
3244		ret = io_submit_sqes(ctx, to_submit);
3245		if (ret != to_submit) {
3246			mutex_unlock(&ctx->uring_lock);
3247			goto out;
3248		}
3249		if (flags & IORING_ENTER_GETEVENTS) {
3250			if (ctx->syscall_iopoll)
3251				goto iopoll_locked;
3252			/*
3253			 * Ignore errors, we'll soon call io_cqring_wait() and
3254			 * it should handle ownership problems if any.
3255			 */
3256			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3257				(void)io_run_local_work_locked(ctx, min_complete);
3258		}
3259		mutex_unlock(&ctx->uring_lock);
3260	}
3261
3262	if (flags & IORING_ENTER_GETEVENTS) {
3263		int ret2;
3264
3265		if (ctx->syscall_iopoll) {
3266			/*
3267			 * We disallow the app entering submit/complete with
3268			 * polling, but we still need to lock the ring to
3269			 * prevent racing with polled issue that got punted to
3270			 * a workqueue.
3271			 */
3272			mutex_lock(&ctx->uring_lock);
3273iopoll_locked:
3274			ret2 = io_validate_ext_arg(flags, argp, argsz);
3275			if (likely(!ret2)) {
3276				min_complete = min(min_complete,
3277						   ctx->cq_entries);
3278				ret2 = io_iopoll_check(ctx, min_complete);
3279			}
3280			mutex_unlock(&ctx->uring_lock);
3281		} else {
3282			const sigset_t __user *sig;
3283			struct __kernel_timespec __user *ts;
3284
3285			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3286			if (likely(!ret2)) {
3287				min_complete = min(min_complete,
3288						   ctx->cq_entries);
3289				ret2 = io_cqring_wait(ctx, min_complete, sig,
3290						      argsz, ts);
3291			}
3292		}
3293
3294		if (!ret) {
3295			ret = ret2;
3296
3297			/*
3298			 * EBADR indicates that one or more CQE were dropped.
3299			 * Once the user has been informed we can clear the bit
3300			 * as they are obviously ok with those drops.
3301			 */
3302			if (unlikely(ret2 == -EBADR))
3303				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3304					  &ctx->check_cq);
3305		}
3306	}
3307out:
3308	if (!(flags & IORING_ENTER_REGISTERED_RING))
3309		fput(file);
3310	return ret;
3311}
3312
3313static const struct file_operations io_uring_fops = {
3314	.release	= io_uring_release,
3315	.mmap		= io_uring_mmap,
3316	.get_unmapped_area = io_uring_get_unmapped_area,
3317#ifndef CONFIG_MMU
3318	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3319#endif
3320	.poll		= io_uring_poll,
3321#ifdef CONFIG_PROC_FS
3322	.show_fdinfo	= io_uring_show_fdinfo,
3323#endif
3324};
3325
3326bool io_is_uring_fops(struct file *file)
3327{
3328	return file->f_op == &io_uring_fops;
3329}
3330
3331static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3332					 struct io_uring_params *p)
3333{
3334	struct io_rings *rings;
3335	size_t size, sq_array_offset;
3336	void *ptr;
3337
3338	/* make sure these are sane, as we already accounted them */
3339	ctx->sq_entries = p->sq_entries;
3340	ctx->cq_entries = p->cq_entries;
3341
3342	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3343	if (size == SIZE_MAX)
3344		return -EOVERFLOW;
3345
3346	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3347		rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3348	else
3349		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3350
3351	if (IS_ERR(rings))
3352		return PTR_ERR(rings);
3353
3354	ctx->rings = rings;
3355	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3356		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3357	rings->sq_ring_mask = p->sq_entries - 1;
3358	rings->cq_ring_mask = p->cq_entries - 1;
3359	rings->sq_ring_entries = p->sq_entries;
3360	rings->cq_ring_entries = p->cq_entries;
3361
3362	if (p->flags & IORING_SETUP_SQE128)
3363		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3364	else
3365		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3366	if (size == SIZE_MAX) {
3367		io_rings_free(ctx);
3368		return -EOVERFLOW;
3369	}
3370
3371	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3372		ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3373	else
3374		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3375
3376	if (IS_ERR(ptr)) {
3377		io_rings_free(ctx);
3378		return PTR_ERR(ptr);
3379	}
3380
3381	ctx->sq_sqes = ptr;
3382	return 0;
3383}
3384
3385static int io_uring_install_fd(struct file *file)
3386{
3387	int fd;
3388
3389	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3390	if (fd < 0)
3391		return fd;
3392	fd_install(fd, file);
3393	return fd;
3394}
3395
3396/*
3397 * Allocate an anonymous fd, this is what constitutes the application
3398 * visible backing of an io_uring instance. The application mmaps this
3399 * fd to gain access to the SQ/CQ ring details.
3400 */
3401static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3402{
3403	/* Create a new inode so that the LSM can block the creation.  */
3404	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3405					 O_RDWR | O_CLOEXEC, NULL);
3406}
3407
3408static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3409				  struct io_uring_params __user *params)
3410{
3411	struct io_ring_ctx *ctx;
3412	struct io_uring_task *tctx;
3413	struct file *file;
3414	int ret;
3415
3416	if (!entries)
3417		return -EINVAL;
3418	if (entries > IORING_MAX_ENTRIES) {
3419		if (!(p->flags & IORING_SETUP_CLAMP))
3420			return -EINVAL;
3421		entries = IORING_MAX_ENTRIES;
3422	}
3423
3424	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3425	    && !(p->flags & IORING_SETUP_NO_MMAP))
3426		return -EINVAL;
3427
3428	/*
3429	 * Use twice as many entries for the CQ ring. It's possible for the
3430	 * application to drive a higher depth than the size of the SQ ring,
3431	 * since the sqes are only used at submission time. This allows for
3432	 * some flexibility in overcommitting a bit. If the application has
3433	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3434	 * of CQ ring entries manually.
3435	 */
3436	p->sq_entries = roundup_pow_of_two(entries);
3437	if (p->flags & IORING_SETUP_CQSIZE) {
3438		/*
3439		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3440		 * to a power-of-two, if it isn't already. We do NOT impose
3441		 * any cq vs sq ring sizing.
3442		 */
3443		if (!p->cq_entries)
3444			return -EINVAL;
3445		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3446			if (!(p->flags & IORING_SETUP_CLAMP))
3447				return -EINVAL;
3448			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3449		}
3450		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3451		if (p->cq_entries < p->sq_entries)
3452			return -EINVAL;
3453	} else {
3454		p->cq_entries = 2 * p->sq_entries;
3455	}
3456
3457	ctx = io_ring_ctx_alloc(p);
3458	if (!ctx)
3459		return -ENOMEM;
3460
3461	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3462	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3463	    !(ctx->flags & IORING_SETUP_SQPOLL))
3464		ctx->task_complete = true;
3465
3466	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3467		ctx->lockless_cq = true;
3468
3469	/*
3470	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3471	 * purposes, see io_activate_pollwq()
3472	 */
3473	if (!ctx->task_complete)
3474		ctx->poll_activated = true;
3475
3476	/*
3477	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3478	 * space applications don't need to do io completion events
3479	 * polling again, they can rely on io_sq_thread to do polling
3480	 * work, which can reduce cpu usage and uring_lock contention.
3481	 */
3482	if (ctx->flags & IORING_SETUP_IOPOLL &&
3483	    !(ctx->flags & IORING_SETUP_SQPOLL))
3484		ctx->syscall_iopoll = 1;
3485
3486	ctx->compat = in_compat_syscall();
3487	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3488		ctx->user = get_uid(current_user());
3489
3490	/*
3491	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3492	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3493	 */
3494	ret = -EINVAL;
3495	if (ctx->flags & IORING_SETUP_SQPOLL) {
3496		/* IPI related flags don't make sense with SQPOLL */
3497		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3498				  IORING_SETUP_TASKRUN_FLAG |
3499				  IORING_SETUP_DEFER_TASKRUN))
3500			goto err;
3501		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3502	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3503		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3504	} else {
3505		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3506		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3507			goto err;
3508		ctx->notify_method = TWA_SIGNAL;
3509	}
3510
3511	/*
3512	 * For DEFER_TASKRUN we require the completion task to be the same as the
3513	 * submission task. This implies that there is only one submitter, so enforce
3514	 * that.
3515	 */
3516	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3517	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3518		goto err;
3519	}
3520
3521	/*
3522	 * This is just grabbed for accounting purposes. When a process exits,
3523	 * the mm is exited and dropped before the files, hence we need to hang
3524	 * on to this mm purely for the purposes of being able to unaccount
3525	 * memory (locked/pinned vm). It's not used for anything else.
3526	 */
3527	mmgrab(current->mm);
3528	ctx->mm_account = current->mm;
3529
3530	ret = io_allocate_scq_urings(ctx, p);
3531	if (ret)
3532		goto err;
3533
3534	ret = io_sq_offload_create(ctx, p);
3535	if (ret)
3536		goto err;
3537
3538	ret = io_rsrc_init(ctx);
3539	if (ret)
3540		goto err;
3541
3542	p->sq_off.head = offsetof(struct io_rings, sq.head);
3543	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3544	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3545	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3546	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3547	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3548	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3549		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3550	p->sq_off.resv1 = 0;
3551	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3552		p->sq_off.user_addr = 0;
3553
3554	p->cq_off.head = offsetof(struct io_rings, cq.head);
3555	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3556	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3557	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3558	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3559	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3560	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3561	p->cq_off.resv1 = 0;
3562	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3563		p->cq_off.user_addr = 0;
3564
3565	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3566			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3567			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3568			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3569			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3570			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3571			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3572			IORING_FEAT_RECVSEND_BUNDLE;
3573
3574	if (copy_to_user(params, p, sizeof(*p))) {
3575		ret = -EFAULT;
3576		goto err;
3577	}
3578
3579	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3580	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3581		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3582
3583	file = io_uring_get_file(ctx);
3584	if (IS_ERR(file)) {
3585		ret = PTR_ERR(file);
3586		goto err;
3587	}
3588
3589	ret = __io_uring_add_tctx_node(ctx);
3590	if (ret)
3591		goto err_fput;
3592	tctx = current->io_uring;
3593
3594	/*
3595	 * Install ring fd as the very last thing, so we don't risk someone
3596	 * having closed it before we finish setup
3597	 */
3598	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3599		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3600	else
3601		ret = io_uring_install_fd(file);
3602	if (ret < 0)
3603		goto err_fput;
3604
3605	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3606	return ret;
3607err:
3608	io_ring_ctx_wait_and_kill(ctx);
3609	return ret;
3610err_fput:
3611	fput(file);
3612	return ret;
3613}
3614
3615/*
3616 * Sets up an aio uring context, and returns the fd. Applications asks for a
3617 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3618 * params structure passed in.
3619 */
3620static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3621{
3622	struct io_uring_params p;
3623	int i;
3624
3625	if (copy_from_user(&p, params, sizeof(p)))
3626		return -EFAULT;
3627	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3628		if (p.resv[i])
3629			return -EINVAL;
3630	}
3631
3632	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3633			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3634			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3635			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3636			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3637			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3638			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3639			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3640			IORING_SETUP_NO_SQARRAY))
3641		return -EINVAL;
3642
3643	return io_uring_create(entries, &p, params);
3644}
3645
3646static inline bool io_uring_allowed(void)
3647{
3648	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3649	kgid_t io_uring_group;
3650
3651	if (disabled == 2)
3652		return false;
3653
3654	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3655		return true;
3656
3657	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3658	if (!gid_valid(io_uring_group))
3659		return false;
3660
3661	return in_group_p(io_uring_group);
3662}
3663
3664SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3665		struct io_uring_params __user *, params)
3666{
3667	if (!io_uring_allowed())
3668		return -EPERM;
3669
3670	return io_uring_setup(entries, params);
3671}
3672
3673static int __init io_uring_init(void)
3674{
3675#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3676	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3677	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3678} while (0)
3679
3680#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3681	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3682#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3683	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3684	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3685	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3686	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3687	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3688	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3689	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3690	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3691	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3692	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3693	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3694	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3695	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3696	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3697	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3698	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3699	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3700	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3701	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3702	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3703	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3704	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3705	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3706	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3707	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3708	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3709	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3710	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3711	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3712	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3713	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3714	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3715	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3716	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3717	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3718	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3719	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3720	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3721	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3722	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3723	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3724	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3725	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3726	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3727
3728	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3729		     sizeof(struct io_uring_rsrc_update));
3730	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3731		     sizeof(struct io_uring_rsrc_update2));
3732
3733	/* ->buf_index is u16 */
3734	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3735	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3736		     offsetof(struct io_uring_buf_ring, tail));
3737
3738	/* should fit into one byte */
3739	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3740	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3741	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3742
3743	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3744
3745	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3746
3747	/* top 8bits are for internal use */
3748	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3749
3750	io_uring_optable_init();
3751
3752	/*
3753	 * Allow user copy in the per-command field, which starts after the
3754	 * file in io_kiocb and until the opcode field. The openat2 handling
3755	 * requires copying in user memory into the io_kiocb object in that
3756	 * range, and HARDENED_USERCOPY will complain if we haven't
3757	 * correctly annotated this range.
3758	 */
3759	req_cachep = kmem_cache_create_usercopy("io_kiocb",
3760				sizeof(struct io_kiocb), 0,
3761				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
3762				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
3763				offsetof(struct io_kiocb, cmd.data),
3764				sizeof_field(struct io_kiocb, cmd.data), NULL);
3765	io_buf_cachep = KMEM_CACHE(io_buffer,
3766					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3767
3768	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3769
3770#ifdef CONFIG_SYSCTL
3771	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3772#endif
3773
3774	return 0;
3775};
3776__initcall(io_uring_init);
3777