1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 *  (C) 1998 Dave Boynton
10 *  (C) 1998-2004 Ben Fennema
11 *  (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 *  10/04/98 dgb  Added rudimentary directory functions
16 *  10/07/98      Fully working udf_block_map! It works!
17 *  11/25/98      bmap altered to better support extents
18 *  12/06/98 blf  partition support in udf_iget, udf_block_map
19 *                and udf_read_inode
20 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21 *                block boundaries (which is not actually allowed)
22 *  12/20/98      added support for strategy 4096
23 *  03/07/99      rewrote udf_block_map (again)
24 *                New funcs, inode_bmap, udf_next_aext
25 *  04/19/99      Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49			 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59			   struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61			      struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63				 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66			      int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68			    struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72	struct udf_inode_info *iinfo = UDF_I(inode);
73
74	if (iinfo->cached_extent.lstart != -1) {
75		brelse(iinfo->cached_extent.epos.bh);
76		iinfo->cached_extent.lstart = -1;
77	}
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83	struct udf_inode_info *iinfo = UDF_I(inode);
84
85	spin_lock(&iinfo->i_extent_cache_lock);
86	__udf_clear_extent_cache(inode);
87	spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92				 loff_t *lbcount, struct extent_position *pos)
93{
94	struct udf_inode_info *iinfo = UDF_I(inode);
95	int ret = 0;
96
97	spin_lock(&iinfo->i_extent_cache_lock);
98	if ((iinfo->cached_extent.lstart <= bcount) &&
99	    (iinfo->cached_extent.lstart != -1)) {
100		/* Cache hit */
101		*lbcount = iinfo->cached_extent.lstart;
102		memcpy(pos, &iinfo->cached_extent.epos,
103		       sizeof(struct extent_position));
104		if (pos->bh)
105			get_bh(pos->bh);
106		ret = 1;
107	}
108	spin_unlock(&iinfo->i_extent_cache_lock);
109	return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114				    struct extent_position *pos)
115{
116	struct udf_inode_info *iinfo = UDF_I(inode);
117
118	spin_lock(&iinfo->i_extent_cache_lock);
119	/* Invalidate previously cached extent */
120	__udf_clear_extent_cache(inode);
121	if (pos->bh)
122		get_bh(pos->bh);
123	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124	iinfo->cached_extent.lstart = estart;
125	switch (iinfo->i_alloc_type) {
126	case ICBTAG_FLAG_AD_SHORT:
127		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128		break;
129	case ICBTAG_FLAG_AD_LONG:
130		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131		break;
132	}
133	spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138	struct udf_inode_info *iinfo = UDF_I(inode);
139	int want_delete = 0;
140
141	if (!is_bad_inode(inode)) {
142		if (!inode->i_nlink) {
143			want_delete = 1;
144			udf_setsize(inode, 0);
145			udf_update_inode(inode, IS_SYNC(inode));
146		}
147		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148		    inode->i_size != iinfo->i_lenExtents) {
149			udf_warn(inode->i_sb,
150				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151				 inode->i_ino, inode->i_mode,
152				 (unsigned long long)inode->i_size,
153				 (unsigned long long)iinfo->i_lenExtents);
154		}
155	}
156	truncate_inode_pages_final(&inode->i_data);
157	invalidate_inode_buffers(inode);
158	clear_inode(inode);
159	kfree(iinfo->i_data);
160	iinfo->i_data = NULL;
161	udf_clear_extent_cache(inode);
162	if (want_delete) {
163		udf_free_inode(inode);
164	}
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169	struct inode *inode = mapping->host;
170	struct udf_inode_info *iinfo = UDF_I(inode);
171	loff_t isize = inode->i_size;
172
173	if (to > isize) {
174		truncate_pagecache(inode, isize);
175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176			down_write(&iinfo->i_data_sem);
177			udf_clear_extent_cache(inode);
178			udf_truncate_extents(inode);
179			up_write(&iinfo->i_data_sem);
180		}
181	}
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185				 struct writeback_control *wbc, void *data)
186{
187	struct inode *inode = folio->mapping->host;
188	struct udf_inode_info *iinfo = UDF_I(inode);
189
190	BUG_ON(!folio_test_locked(folio));
191	BUG_ON(folio->index != 0);
192	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193		       i_size_read(inode));
194	folio_unlock(folio);
195	mark_inode_dirty(inode);
196
197	return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201			  struct writeback_control *wbc)
202{
203	struct inode *inode = mapping->host;
204	struct udf_inode_info *iinfo = UDF_I(inode);
205
206	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207		return mpage_writepages(mapping, wbc, udf_get_block_wb);
208	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_read_folio(struct folio *folio)
212{
213	struct inode *inode = folio->mapping->host;
214	struct udf_inode_info *iinfo = UDF_I(inode);
215	loff_t isize = i_size_read(inode);
216
217	folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
218	folio_mark_uptodate(folio);
219}
220
221static int udf_read_folio(struct file *file, struct folio *folio)
222{
223	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
224
225	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
226		udf_adinicb_read_folio(folio);
227		folio_unlock(folio);
228		return 0;
229	}
230	return mpage_read_folio(folio, udf_get_block);
231}
232
233static void udf_readahead(struct readahead_control *rac)
234{
235	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
236
237	/*
238	 * No readahead needed for in-ICB files and udf_get_block() would get
239	 * confused for such file anyway.
240	 */
241	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
242		return;
243
244	mpage_readahead(rac, udf_get_block);
245}
246
247static int udf_write_begin(struct file *file, struct address_space *mapping,
248			   loff_t pos, unsigned len,
249			   struct page **pagep, void **fsdata)
250{
251	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
252	struct folio *folio;
253	int ret;
254
255	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
256		ret = block_write_begin(mapping, pos, len, pagep,
257					udf_get_block);
258		if (unlikely(ret))
259			udf_write_failed(mapping, pos + len);
260		return ret;
261	}
262	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
263		return -EIO;
264	folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
265			mapping_gfp_mask(mapping));
266	if (IS_ERR(folio))
267		return PTR_ERR(folio);
268	*pagep = &folio->page;
269	if (!folio_test_uptodate(folio))
270		udf_adinicb_read_folio(folio);
271	return 0;
272}
273
274static int udf_write_end(struct file *file, struct address_space *mapping,
275			 loff_t pos, unsigned len, unsigned copied,
276			 struct page *page, void *fsdata)
277{
278	struct inode *inode = file_inode(file);
279	struct folio *folio;
280	loff_t last_pos;
281
282	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
283		return generic_write_end(file, mapping, pos, len, copied, page,
284					 fsdata);
285	folio = page_folio(page);
286	last_pos = pos + copied;
287	if (last_pos > inode->i_size)
288		i_size_write(inode, last_pos);
289	folio_mark_dirty(folio);
290	folio_unlock(folio);
291	folio_put(folio);
292
293	return copied;
294}
295
296static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
297{
298	struct file *file = iocb->ki_filp;
299	struct address_space *mapping = file->f_mapping;
300	struct inode *inode = mapping->host;
301	size_t count = iov_iter_count(iter);
302	ssize_t ret;
303
304	/* Fallback to buffered IO for in-ICB files */
305	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
306		return 0;
307	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
308	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
309		udf_write_failed(mapping, iocb->ki_pos + count);
310	return ret;
311}
312
313static sector_t udf_bmap(struct address_space *mapping, sector_t block)
314{
315	struct udf_inode_info *iinfo = UDF_I(mapping->host);
316
317	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
318		return -EINVAL;
319	return generic_block_bmap(mapping, block, udf_get_block);
320}
321
322const struct address_space_operations udf_aops = {
323	.dirty_folio	= block_dirty_folio,
324	.invalidate_folio = block_invalidate_folio,
325	.read_folio	= udf_read_folio,
326	.readahead	= udf_readahead,
327	.writepages	= udf_writepages,
328	.write_begin	= udf_write_begin,
329	.write_end	= udf_write_end,
330	.direct_IO	= udf_direct_IO,
331	.bmap		= udf_bmap,
332	.migrate_folio	= buffer_migrate_folio,
333};
334
335/*
336 * Expand file stored in ICB to a normal one-block-file
337 *
338 * This function requires i_mutex held
339 */
340int udf_expand_file_adinicb(struct inode *inode)
341{
342	struct folio *folio;
343	struct udf_inode_info *iinfo = UDF_I(inode);
344	int err;
345
346	WARN_ON_ONCE(!inode_is_locked(inode));
347	if (!iinfo->i_lenAlloc) {
348		down_write(&iinfo->i_data_sem);
349		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
350			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
351		else
352			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
353		up_write(&iinfo->i_data_sem);
354		mark_inode_dirty(inode);
355		return 0;
356	}
357
358	folio = __filemap_get_folio(inode->i_mapping, 0,
359			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
360	if (IS_ERR(folio))
361		return PTR_ERR(folio);
362
363	if (!folio_test_uptodate(folio))
364		udf_adinicb_read_folio(folio);
365	down_write(&iinfo->i_data_sem);
366	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
367	       iinfo->i_lenAlloc);
368	iinfo->i_lenAlloc = 0;
369	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
370		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
371	else
372		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
373	folio_mark_dirty(folio);
374	folio_unlock(folio);
375	up_write(&iinfo->i_data_sem);
376	err = filemap_fdatawrite(inode->i_mapping);
377	if (err) {
378		/* Restore everything back so that we don't lose data... */
379		folio_lock(folio);
380		down_write(&iinfo->i_data_sem);
381		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
382				folio, 0, inode->i_size);
383		folio_unlock(folio);
384		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
385		iinfo->i_lenAlloc = inode->i_size;
386		up_write(&iinfo->i_data_sem);
387	}
388	folio_put(folio);
389	mark_inode_dirty(inode);
390
391	return err;
392}
393
394#define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
395#define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
396
397#define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
398#define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
399
400struct udf_map_rq {
401	sector_t lblk;
402	udf_pblk_t pblk;
403	int iflags;		/* UDF_MAP_ flags determining behavior */
404	int oflags;		/* UDF_BLK_ flags reporting results */
405};
406
407static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
408{
409	int err;
410	struct udf_inode_info *iinfo = UDF_I(inode);
411
412	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
413		return -EFSCORRUPTED;
414
415	map->oflags = 0;
416	if (!(map->iflags & UDF_MAP_CREATE)) {
417		struct kernel_lb_addr eloc;
418		uint32_t elen;
419		sector_t offset;
420		struct extent_position epos = {};
421
422		down_read(&iinfo->i_data_sem);
423		if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset)
424				== (EXT_RECORDED_ALLOCATED >> 30)) {
425			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
426							offset);
427			map->oflags |= UDF_BLK_MAPPED;
428		}
429		up_read(&iinfo->i_data_sem);
430		brelse(epos.bh);
431
432		return 0;
433	}
434
435	down_write(&iinfo->i_data_sem);
436	/*
437	 * Block beyond EOF and prealloc extents? Just discard preallocation
438	 * as it is not useful and complicates things.
439	 */
440	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
441		udf_discard_prealloc(inode);
442	udf_clear_extent_cache(inode);
443	err = inode_getblk(inode, map);
444	up_write(&iinfo->i_data_sem);
445	return err;
446}
447
448static int __udf_get_block(struct inode *inode, sector_t block,
449			   struct buffer_head *bh_result, int flags)
450{
451	int err;
452	struct udf_map_rq map = {
453		.lblk = block,
454		.iflags = flags,
455	};
456
457	err = udf_map_block(inode, &map);
458	if (err < 0)
459		return err;
460	if (map.oflags & UDF_BLK_MAPPED) {
461		map_bh(bh_result, inode->i_sb, map.pblk);
462		if (map.oflags & UDF_BLK_NEW)
463			set_buffer_new(bh_result);
464	}
465	return 0;
466}
467
468int udf_get_block(struct inode *inode, sector_t block,
469		  struct buffer_head *bh_result, int create)
470{
471	int flags = create ? UDF_MAP_CREATE : 0;
472
473	/*
474	 * We preallocate blocks only for regular files. It also makes sense
475	 * for directories but there's a problem when to drop the
476	 * preallocation. We might use some delayed work for that but I feel
477	 * it's overengineering for a filesystem like UDF.
478	 */
479	if (!S_ISREG(inode->i_mode))
480		flags |= UDF_MAP_NOPREALLOC;
481	return __udf_get_block(inode, block, bh_result, flags);
482}
483
484/*
485 * We shouldn't be allocating blocks on page writeback since we allocate them
486 * on page fault. We can spot dirty buffers without allocated blocks though
487 * when truncate expands file. These however don't have valid data so we can
488 * safely ignore them. So never allocate blocks from page writeback.
489 */
490static int udf_get_block_wb(struct inode *inode, sector_t block,
491			    struct buffer_head *bh_result, int create)
492{
493	return __udf_get_block(inode, block, bh_result, 0);
494}
495
496/* Extend the file with new blocks totaling 'new_block_bytes',
497 * return the number of extents added
498 */
499static int udf_do_extend_file(struct inode *inode,
500			      struct extent_position *last_pos,
501			      struct kernel_long_ad *last_ext,
502			      loff_t new_block_bytes)
503{
504	uint32_t add;
505	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
506	struct super_block *sb = inode->i_sb;
507	struct udf_inode_info *iinfo;
508	int err;
509
510	/* The previous extent is fake and we should not extend by anything
511	 * - there's nothing to do... */
512	if (!new_block_bytes && fake)
513		return 0;
514
515	iinfo = UDF_I(inode);
516	/* Round the last extent up to a multiple of block size */
517	if (last_ext->extLength & (sb->s_blocksize - 1)) {
518		last_ext->extLength =
519			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
520			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
521			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
522		iinfo->i_lenExtents =
523			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
524			~(sb->s_blocksize - 1);
525	}
526
527	add = 0;
528	/* Can we merge with the previous extent? */
529	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
530					EXT_NOT_RECORDED_NOT_ALLOCATED) {
531		add = (1 << 30) - sb->s_blocksize -
532			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
533		if (add > new_block_bytes)
534			add = new_block_bytes;
535		new_block_bytes -= add;
536		last_ext->extLength += add;
537	}
538
539	if (fake) {
540		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
541				   last_ext->extLength, 1);
542		if (err < 0)
543			goto out_err;
544		count++;
545	} else {
546		struct kernel_lb_addr tmploc;
547		uint32_t tmplen;
548
549		udf_write_aext(inode, last_pos, &last_ext->extLocation,
550				last_ext->extLength, 1);
551
552		/*
553		 * We've rewritten the last extent. If we are going to add
554		 * more extents, we may need to enter possible following
555		 * empty indirect extent.
556		 */
557		if (new_block_bytes)
558			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
559	}
560	iinfo->i_lenExtents += add;
561
562	/* Managed to do everything necessary? */
563	if (!new_block_bytes)
564		goto out;
565
566	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
567	last_ext->extLocation.logicalBlockNum = 0;
568	last_ext->extLocation.partitionReferenceNum = 0;
569	add = (1 << 30) - sb->s_blocksize;
570	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
571
572	/* Create enough extents to cover the whole hole */
573	while (new_block_bytes > add) {
574		new_block_bytes -= add;
575		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
576				   last_ext->extLength, 1);
577		if (err)
578			goto out_err;
579		iinfo->i_lenExtents += add;
580		count++;
581	}
582	if (new_block_bytes) {
583		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
584			new_block_bytes;
585		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
586				   last_ext->extLength, 1);
587		if (err)
588			goto out_err;
589		iinfo->i_lenExtents += new_block_bytes;
590		count++;
591	}
592
593out:
594	/* last_pos should point to the last written extent... */
595	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596		last_pos->offset -= sizeof(struct short_ad);
597	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598		last_pos->offset -= sizeof(struct long_ad);
599	else
600		return -EIO;
601
602	return count;
603out_err:
604	/* Remove extents we've created so far */
605	udf_clear_extent_cache(inode);
606	udf_truncate_extents(inode);
607	return err;
608}
609
610/* Extend the final block of the file to final_block_len bytes */
611static void udf_do_extend_final_block(struct inode *inode,
612				      struct extent_position *last_pos,
613				      struct kernel_long_ad *last_ext,
614				      uint32_t new_elen)
615{
616	uint32_t added_bytes;
617
618	/*
619	 * Extent already large enough? It may be already rounded up to block
620	 * size...
621	 */
622	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
623		return;
624	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
625	last_ext->extLength += added_bytes;
626	UDF_I(inode)->i_lenExtents += added_bytes;
627
628	udf_write_aext(inode, last_pos, &last_ext->extLocation,
629			last_ext->extLength, 1);
630}
631
632static int udf_extend_file(struct inode *inode, loff_t newsize)
633{
634
635	struct extent_position epos;
636	struct kernel_lb_addr eloc;
637	uint32_t elen;
638	int8_t etype;
639	struct super_block *sb = inode->i_sb;
640	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
641	loff_t new_elen;
642	int adsize;
643	struct udf_inode_info *iinfo = UDF_I(inode);
644	struct kernel_long_ad extent;
645	int err = 0;
646	bool within_last_ext;
647
648	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
649		adsize = sizeof(struct short_ad);
650	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
651		adsize = sizeof(struct long_ad);
652	else
653		BUG();
654
655	down_write(&iinfo->i_data_sem);
656	/*
657	 * When creating hole in file, just don't bother with preserving
658	 * preallocation. It likely won't be very useful anyway.
659	 */
660	udf_discard_prealloc(inode);
661
662	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
663	within_last_ext = (etype != -1);
664	/* We don't expect extents past EOF... */
665	WARN_ON_ONCE(within_last_ext &&
666		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
667
668	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
669	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
670		/* File has no extents at all or has empty last
671		 * indirect extent! Create a fake extent... */
672		extent.extLocation.logicalBlockNum = 0;
673		extent.extLocation.partitionReferenceNum = 0;
674		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
675	} else {
676		epos.offset -= adsize;
677		etype = udf_next_aext(inode, &epos, &extent.extLocation,
678				      &extent.extLength, 0);
679		extent.extLength |= etype << 30;
680	}
681
682	new_elen = ((loff_t)offset << inode->i_blkbits) |
683					(newsize & (sb->s_blocksize - 1));
684
685	/* File has extent covering the new size (could happen when extending
686	 * inside a block)?
687	 */
688	if (within_last_ext) {
689		/* Extending file within the last file block */
690		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
691	} else {
692		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
693	}
694
695	if (err < 0)
696		goto out;
697	err = 0;
698out:
699	brelse(epos.bh);
700	up_write(&iinfo->i_data_sem);
701	return err;
702}
703
704static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
705{
706	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
707	struct extent_position prev_epos, cur_epos, next_epos;
708	int count = 0, startnum = 0, endnum = 0;
709	uint32_t elen = 0, tmpelen;
710	struct kernel_lb_addr eloc, tmpeloc;
711	int c = 1;
712	loff_t lbcount = 0, b_off = 0;
713	udf_pblk_t newblocknum;
714	sector_t offset = 0;
715	int8_t etype;
716	struct udf_inode_info *iinfo = UDF_I(inode);
717	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
718	int lastblock = 0;
719	bool isBeyondEOF;
720	int ret = 0;
721
722	prev_epos.offset = udf_file_entry_alloc_offset(inode);
723	prev_epos.block = iinfo->i_location;
724	prev_epos.bh = NULL;
725	cur_epos = next_epos = prev_epos;
726	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
727
728	/* find the extent which contains the block we are looking for.
729	   alternate between laarr[0] and laarr[1] for locations of the
730	   current extent, and the previous extent */
731	do {
732		if (prev_epos.bh != cur_epos.bh) {
733			brelse(prev_epos.bh);
734			get_bh(cur_epos.bh);
735			prev_epos.bh = cur_epos.bh;
736		}
737		if (cur_epos.bh != next_epos.bh) {
738			brelse(cur_epos.bh);
739			get_bh(next_epos.bh);
740			cur_epos.bh = next_epos.bh;
741		}
742
743		lbcount += elen;
744
745		prev_epos.block = cur_epos.block;
746		cur_epos.block = next_epos.block;
747
748		prev_epos.offset = cur_epos.offset;
749		cur_epos.offset = next_epos.offset;
750
751		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
752		if (etype == -1)
753			break;
754
755		c = !c;
756
757		laarr[c].extLength = (etype << 30) | elen;
758		laarr[c].extLocation = eloc;
759
760		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
761			pgoal = eloc.logicalBlockNum +
762				((elen + inode->i_sb->s_blocksize - 1) >>
763				 inode->i_sb->s_blocksize_bits);
764
765		count++;
766	} while (lbcount + elen <= b_off);
767
768	b_off -= lbcount;
769	offset = b_off >> inode->i_sb->s_blocksize_bits;
770	/*
771	 * Move prev_epos and cur_epos into indirect extent if we are at
772	 * the pointer to it
773	 */
774	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
775	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
776
777	/* if the extent is allocated and recorded, return the block
778	   if the extent is not a multiple of the blocksize, round up */
779
780	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
781		if (elen & (inode->i_sb->s_blocksize - 1)) {
782			elen = EXT_RECORDED_ALLOCATED |
783				((elen + inode->i_sb->s_blocksize - 1) &
784				 ~(inode->i_sb->s_blocksize - 1));
785			iinfo->i_lenExtents =
786				ALIGN(iinfo->i_lenExtents,
787				      inode->i_sb->s_blocksize);
788			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
789		}
790		map->oflags = UDF_BLK_MAPPED;
791		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
792		goto out_free;
793	}
794
795	/* Are we beyond EOF and preallocated extent? */
796	if (etype == -1) {
797		loff_t hole_len;
798
799		isBeyondEOF = true;
800		if (count) {
801			if (c)
802				laarr[0] = laarr[1];
803			startnum = 1;
804		} else {
805			/* Create a fake extent when there's not one */
806			memset(&laarr[0].extLocation, 0x00,
807				sizeof(struct kernel_lb_addr));
808			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
809			/* Will udf_do_extend_file() create real extent from
810			   a fake one? */
811			startnum = (offset > 0);
812		}
813		/* Create extents for the hole between EOF and offset */
814		hole_len = (loff_t)offset << inode->i_blkbits;
815		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
816		if (ret < 0)
817			goto out_free;
818		c = 0;
819		offset = 0;
820		count += ret;
821		/*
822		 * Is there any real extent? - otherwise we overwrite the fake
823		 * one...
824		 */
825		if (count)
826			c = !c;
827		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
828			inode->i_sb->s_blocksize;
829		memset(&laarr[c].extLocation, 0x00,
830			sizeof(struct kernel_lb_addr));
831		count++;
832		endnum = c + 1;
833		lastblock = 1;
834	} else {
835		isBeyondEOF = false;
836		endnum = startnum = ((count > 2) ? 2 : count);
837
838		/* if the current extent is in position 0,
839		   swap it with the previous */
840		if (!c && count != 1) {
841			laarr[2] = laarr[0];
842			laarr[0] = laarr[1];
843			laarr[1] = laarr[2];
844			c = 1;
845		}
846
847		/* if the current block is located in an extent,
848		   read the next extent */
849		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
850		if (etype != -1) {
851			laarr[c + 1].extLength = (etype << 30) | elen;
852			laarr[c + 1].extLocation = eloc;
853			count++;
854			startnum++;
855			endnum++;
856		} else
857			lastblock = 1;
858	}
859
860	/* if the current extent is not recorded but allocated, get the
861	 * block in the extent corresponding to the requested block */
862	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
863		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
864	else { /* otherwise, allocate a new block */
865		if (iinfo->i_next_alloc_block == map->lblk)
866			goal = iinfo->i_next_alloc_goal;
867
868		if (!goal) {
869			if (!(goal = pgoal)) /* XXX: what was intended here? */
870				goal = iinfo->i_location.logicalBlockNum + 1;
871		}
872
873		newblocknum = udf_new_block(inode->i_sb, inode,
874				iinfo->i_location.partitionReferenceNum,
875				goal, &ret);
876		if (!newblocknum)
877			goto out_free;
878		if (isBeyondEOF)
879			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
880	}
881
882	/* if the extent the requsted block is located in contains multiple
883	 * blocks, split the extent into at most three extents. blocks prior
884	 * to requested block, requested block, and blocks after requested
885	 * block */
886	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
887
888	if (!(map->iflags & UDF_MAP_NOPREALLOC))
889		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
890
891	/* merge any continuous blocks in laarr */
892	udf_merge_extents(inode, laarr, &endnum);
893
894	/* write back the new extents, inserting new extents if the new number
895	 * of extents is greater than the old number, and deleting extents if
896	 * the new number of extents is less than the old number */
897	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
898	if (ret < 0)
899		goto out_free;
900
901	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
902				iinfo->i_location.partitionReferenceNum, 0);
903	if (!map->pblk) {
904		ret = -EFSCORRUPTED;
905		goto out_free;
906	}
907	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
908	iinfo->i_next_alloc_block = map->lblk + 1;
909	iinfo->i_next_alloc_goal = newblocknum + 1;
910	inode_set_ctime_current(inode);
911
912	if (IS_SYNC(inode))
913		udf_sync_inode(inode);
914	else
915		mark_inode_dirty(inode);
916	ret = 0;
917out_free:
918	brelse(prev_epos.bh);
919	brelse(cur_epos.bh);
920	brelse(next_epos.bh);
921	return ret;
922}
923
924static void udf_split_extents(struct inode *inode, int *c, int offset,
925			       udf_pblk_t newblocknum,
926			       struct kernel_long_ad *laarr, int *endnum)
927{
928	unsigned long blocksize = inode->i_sb->s_blocksize;
929	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
930
931	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
932	    (laarr[*c].extLength >> 30) ==
933				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
934		int curr = *c;
935		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
936			    blocksize - 1) >> blocksize_bits;
937		int8_t etype = (laarr[curr].extLength >> 30);
938
939		if (blen == 1)
940			;
941		else if (!offset || blen == offset + 1) {
942			laarr[curr + 2] = laarr[curr + 1];
943			laarr[curr + 1] = laarr[curr];
944		} else {
945			laarr[curr + 3] = laarr[curr + 1];
946			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
947		}
948
949		if (offset) {
950			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
951				udf_free_blocks(inode->i_sb, inode,
952						&laarr[curr].extLocation,
953						0, offset);
954				laarr[curr].extLength =
955					EXT_NOT_RECORDED_NOT_ALLOCATED |
956					(offset << blocksize_bits);
957				laarr[curr].extLocation.logicalBlockNum = 0;
958				laarr[curr].extLocation.
959						partitionReferenceNum = 0;
960			} else
961				laarr[curr].extLength = (etype << 30) |
962					(offset << blocksize_bits);
963			curr++;
964			(*c)++;
965			(*endnum)++;
966		}
967
968		laarr[curr].extLocation.logicalBlockNum = newblocknum;
969		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
970			laarr[curr].extLocation.partitionReferenceNum =
971				UDF_I(inode)->i_location.partitionReferenceNum;
972		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
973			blocksize;
974		curr++;
975
976		if (blen != offset + 1) {
977			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
978				laarr[curr].extLocation.logicalBlockNum +=
979								offset + 1;
980			laarr[curr].extLength = (etype << 30) |
981				((blen - (offset + 1)) << blocksize_bits);
982			curr++;
983			(*endnum)++;
984		}
985	}
986}
987
988static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
989				 struct kernel_long_ad *laarr,
990				 int *endnum)
991{
992	int start, length = 0, currlength = 0, i;
993
994	if (*endnum >= (c + 1)) {
995		if (!lastblock)
996			return;
997		else
998			start = c;
999	} else {
1000		if ((laarr[c + 1].extLength >> 30) ==
1001					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1002			start = c + 1;
1003			length = currlength =
1004				(((laarr[c + 1].extLength &
1005					UDF_EXTENT_LENGTH_MASK) +
1006				inode->i_sb->s_blocksize - 1) >>
1007				inode->i_sb->s_blocksize_bits);
1008		} else
1009			start = c;
1010	}
1011
1012	for (i = start + 1; i <= *endnum; i++) {
1013		if (i == *endnum) {
1014			if (lastblock)
1015				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1016		} else if ((laarr[i].extLength >> 30) ==
1017				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1018			length += (((laarr[i].extLength &
1019						UDF_EXTENT_LENGTH_MASK) +
1020				    inode->i_sb->s_blocksize - 1) >>
1021				    inode->i_sb->s_blocksize_bits);
1022		} else
1023			break;
1024	}
1025
1026	if (length) {
1027		int next = laarr[start].extLocation.logicalBlockNum +
1028			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1029			  inode->i_sb->s_blocksize - 1) >>
1030			  inode->i_sb->s_blocksize_bits);
1031		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1032				laarr[start].extLocation.partitionReferenceNum,
1033				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1034				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1035				currlength);
1036		if (numalloc) 	{
1037			if (start == (c + 1))
1038				laarr[start].extLength +=
1039					(numalloc <<
1040					 inode->i_sb->s_blocksize_bits);
1041			else {
1042				memmove(&laarr[c + 2], &laarr[c + 1],
1043					sizeof(struct long_ad) * (*endnum - (c + 1)));
1044				(*endnum)++;
1045				laarr[c + 1].extLocation.logicalBlockNum = next;
1046				laarr[c + 1].extLocation.partitionReferenceNum =
1047					laarr[c].extLocation.
1048							partitionReferenceNum;
1049				laarr[c + 1].extLength =
1050					EXT_NOT_RECORDED_ALLOCATED |
1051					(numalloc <<
1052					 inode->i_sb->s_blocksize_bits);
1053				start = c + 1;
1054			}
1055
1056			for (i = start + 1; numalloc && i < *endnum; i++) {
1057				int elen = ((laarr[i].extLength &
1058						UDF_EXTENT_LENGTH_MASK) +
1059					    inode->i_sb->s_blocksize - 1) >>
1060					    inode->i_sb->s_blocksize_bits;
1061
1062				if (elen > numalloc) {
1063					laarr[i].extLength -=
1064						(numalloc <<
1065						 inode->i_sb->s_blocksize_bits);
1066					numalloc = 0;
1067				} else {
1068					numalloc -= elen;
1069					if (*endnum > (i + 1))
1070						memmove(&laarr[i],
1071							&laarr[i + 1],
1072							sizeof(struct long_ad) *
1073							(*endnum - (i + 1)));
1074					i--;
1075					(*endnum)--;
1076				}
1077			}
1078			UDF_I(inode)->i_lenExtents +=
1079				numalloc << inode->i_sb->s_blocksize_bits;
1080		}
1081	}
1082}
1083
1084static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1085			      int *endnum)
1086{
1087	int i;
1088	unsigned long blocksize = inode->i_sb->s_blocksize;
1089	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1090
1091	for (i = 0; i < (*endnum - 1); i++) {
1092		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1093		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1094
1095		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1096			(((li->extLength >> 30) ==
1097				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1098			((lip1->extLocation.logicalBlockNum -
1099			  li->extLocation.logicalBlockNum) ==
1100			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101			blocksize - 1) >> blocksize_bits)))) {
1102
1103			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1104			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1105			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1106				li->extLength = lip1->extLength +
1107					(((li->extLength &
1108						UDF_EXTENT_LENGTH_MASK) +
1109					 blocksize - 1) & ~(blocksize - 1));
1110				if (*endnum > (i + 2))
1111					memmove(&laarr[i + 1], &laarr[i + 2],
1112						sizeof(struct long_ad) *
1113						(*endnum - (i + 2)));
1114				i--;
1115				(*endnum)--;
1116			}
1117		} else if (((li->extLength >> 30) ==
1118				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1119			   ((lip1->extLength >> 30) ==
1120				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1121			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1122					((li->extLength &
1123					  UDF_EXTENT_LENGTH_MASK) +
1124					 blocksize - 1) >> blocksize_bits);
1125			li->extLocation.logicalBlockNum = 0;
1126			li->extLocation.partitionReferenceNum = 0;
1127
1128			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1129			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1130			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1131				lip1->extLength = (lip1->extLength -
1132						   (li->extLength &
1133						   UDF_EXTENT_LENGTH_MASK) +
1134						   UDF_EXTENT_LENGTH_MASK) &
1135						   ~(blocksize - 1);
1136				li->extLength = (li->extLength &
1137						 UDF_EXTENT_FLAG_MASK) +
1138						(UDF_EXTENT_LENGTH_MASK + 1) -
1139						blocksize;
1140			} else {
1141				li->extLength = lip1->extLength +
1142					(((li->extLength &
1143						UDF_EXTENT_LENGTH_MASK) +
1144					  blocksize - 1) & ~(blocksize - 1));
1145				if (*endnum > (i + 2))
1146					memmove(&laarr[i + 1], &laarr[i + 2],
1147						sizeof(struct long_ad) *
1148						(*endnum - (i + 2)));
1149				i--;
1150				(*endnum)--;
1151			}
1152		} else if ((li->extLength >> 30) ==
1153					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1154			udf_free_blocks(inode->i_sb, inode,
1155					&li->extLocation, 0,
1156					((li->extLength &
1157						UDF_EXTENT_LENGTH_MASK) +
1158					 blocksize - 1) >> blocksize_bits);
1159			li->extLocation.logicalBlockNum = 0;
1160			li->extLocation.partitionReferenceNum = 0;
1161			li->extLength = (li->extLength &
1162						UDF_EXTENT_LENGTH_MASK) |
1163						EXT_NOT_RECORDED_NOT_ALLOCATED;
1164		}
1165	}
1166}
1167
1168static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1169			      int startnum, int endnum,
1170			      struct extent_position *epos)
1171{
1172	int start = 0, i;
1173	struct kernel_lb_addr tmploc;
1174	uint32_t tmplen;
1175	int err;
1176
1177	if (startnum > endnum) {
1178		for (i = 0; i < (startnum - endnum); i++)
1179			udf_delete_aext(inode, *epos);
1180	} else if (startnum < endnum) {
1181		for (i = 0; i < (endnum - startnum); i++) {
1182			err = udf_insert_aext(inode, *epos,
1183					      laarr[i].extLocation,
1184					      laarr[i].extLength);
1185			/*
1186			 * If we fail here, we are likely corrupting the extent
1187			 * list and leaking blocks. At least stop early to
1188			 * limit the damage.
1189			 */
1190			if (err < 0)
1191				return err;
1192			udf_next_aext(inode, epos, &laarr[i].extLocation,
1193				      &laarr[i].extLength, 1);
1194			start++;
1195		}
1196	}
1197
1198	for (i = start; i < endnum; i++) {
1199		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1200		udf_write_aext(inode, epos, &laarr[i].extLocation,
1201			       laarr[i].extLength, 1);
1202	}
1203	return 0;
1204}
1205
1206struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1207			      int create, int *err)
1208{
1209	struct buffer_head *bh = NULL;
1210	struct udf_map_rq map = {
1211		.lblk = block,
1212		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1213	};
1214
1215	*err = udf_map_block(inode, &map);
1216	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1217		return NULL;
1218
1219	bh = sb_getblk(inode->i_sb, map.pblk);
1220	if (!bh) {
1221		*err = -ENOMEM;
1222		return NULL;
1223	}
1224	if (map.oflags & UDF_BLK_NEW) {
1225		lock_buffer(bh);
1226		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1227		set_buffer_uptodate(bh);
1228		unlock_buffer(bh);
1229		mark_buffer_dirty_inode(bh, inode);
1230		return bh;
1231	}
1232
1233	if (bh_read(bh, 0) >= 0)
1234		return bh;
1235
1236	brelse(bh);
1237	*err = -EIO;
1238	return NULL;
1239}
1240
1241int udf_setsize(struct inode *inode, loff_t newsize)
1242{
1243	int err = 0;
1244	struct udf_inode_info *iinfo;
1245	unsigned int bsize = i_blocksize(inode);
1246
1247	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1248	      S_ISLNK(inode->i_mode)))
1249		return -EINVAL;
1250	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1251		return -EPERM;
1252
1253	filemap_invalidate_lock(inode->i_mapping);
1254	iinfo = UDF_I(inode);
1255	if (newsize > inode->i_size) {
1256		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1257			if (bsize >=
1258			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1259				down_write(&iinfo->i_data_sem);
1260				iinfo->i_lenAlloc = newsize;
1261				up_write(&iinfo->i_data_sem);
1262				goto set_size;
1263			}
1264			err = udf_expand_file_adinicb(inode);
1265			if (err)
1266				goto out_unlock;
1267		}
1268		err = udf_extend_file(inode, newsize);
1269		if (err)
1270			goto out_unlock;
1271set_size:
1272		truncate_setsize(inode, newsize);
1273	} else {
1274		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1275			down_write(&iinfo->i_data_sem);
1276			udf_clear_extent_cache(inode);
1277			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1278			       0x00, bsize - newsize -
1279			       udf_file_entry_alloc_offset(inode));
1280			iinfo->i_lenAlloc = newsize;
1281			truncate_setsize(inode, newsize);
1282			up_write(&iinfo->i_data_sem);
1283			goto update_time;
1284		}
1285		err = block_truncate_page(inode->i_mapping, newsize,
1286					  udf_get_block);
1287		if (err)
1288			goto out_unlock;
1289		truncate_setsize(inode, newsize);
1290		down_write(&iinfo->i_data_sem);
1291		udf_clear_extent_cache(inode);
1292		err = udf_truncate_extents(inode);
1293		up_write(&iinfo->i_data_sem);
1294		if (err)
1295			goto out_unlock;
1296	}
1297update_time:
1298	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1299	if (IS_SYNC(inode))
1300		udf_sync_inode(inode);
1301	else
1302		mark_inode_dirty(inode);
1303out_unlock:
1304	filemap_invalidate_unlock(inode->i_mapping);
1305	return err;
1306}
1307
1308/*
1309 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1310 * arbitrary - just that we hopefully don't limit any real use of rewritten
1311 * inode on write-once media but avoid looping for too long on corrupted media.
1312 */
1313#define UDF_MAX_ICB_NESTING 1024
1314
1315static int udf_read_inode(struct inode *inode, bool hidden_inode)
1316{
1317	struct buffer_head *bh = NULL;
1318	struct fileEntry *fe;
1319	struct extendedFileEntry *efe;
1320	uint16_t ident;
1321	struct udf_inode_info *iinfo = UDF_I(inode);
1322	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1323	struct kernel_lb_addr *iloc = &iinfo->i_location;
1324	unsigned int link_count;
1325	unsigned int indirections = 0;
1326	int bs = inode->i_sb->s_blocksize;
1327	int ret = -EIO;
1328	uint32_t uid, gid;
1329	struct timespec64 ts;
1330
1331reread:
1332	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1333		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1334			  iloc->partitionReferenceNum, sbi->s_partitions);
1335		return -EIO;
1336	}
1337
1338	if (iloc->logicalBlockNum >=
1339	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1340		udf_debug("block=%u, partition=%u out of range\n",
1341			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1342		return -EIO;
1343	}
1344
1345	/*
1346	 * Set defaults, but the inode is still incomplete!
1347	 * Note: get_new_inode() sets the following on a new inode:
1348	 *      i_sb = sb
1349	 *      i_no = ino
1350	 *      i_flags = sb->s_flags
1351	 *      i_state = 0
1352	 * clean_inode(): zero fills and sets
1353	 *      i_count = 1
1354	 *      i_nlink = 1
1355	 *      i_op = NULL;
1356	 */
1357	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1358	if (!bh) {
1359		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1360		return -EIO;
1361	}
1362
1363	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1364	    ident != TAG_IDENT_USE) {
1365		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1366			inode->i_ino, ident);
1367		goto out;
1368	}
1369
1370	fe = (struct fileEntry *)bh->b_data;
1371	efe = (struct extendedFileEntry *)bh->b_data;
1372
1373	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1374		struct buffer_head *ibh;
1375
1376		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1377		if (ident == TAG_IDENT_IE && ibh) {
1378			struct kernel_lb_addr loc;
1379			struct indirectEntry *ie;
1380
1381			ie = (struct indirectEntry *)ibh->b_data;
1382			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1383
1384			if (ie->indirectICB.extLength) {
1385				brelse(ibh);
1386				memcpy(&iinfo->i_location, &loc,
1387				       sizeof(struct kernel_lb_addr));
1388				if (++indirections > UDF_MAX_ICB_NESTING) {
1389					udf_err(inode->i_sb,
1390						"too many ICBs in ICB hierarchy"
1391						" (max %d supported)\n",
1392						UDF_MAX_ICB_NESTING);
1393					goto out;
1394				}
1395				brelse(bh);
1396				goto reread;
1397			}
1398		}
1399		brelse(ibh);
1400	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1401		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1402			le16_to_cpu(fe->icbTag.strategyType));
1403		goto out;
1404	}
1405	if (fe->icbTag.strategyType == cpu_to_le16(4))
1406		iinfo->i_strat4096 = 0;
1407	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1408		iinfo->i_strat4096 = 1;
1409
1410	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1411							ICBTAG_FLAG_AD_MASK;
1412	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1413	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1414	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1415		ret = -EIO;
1416		goto out;
1417	}
1418	iinfo->i_hidden = hidden_inode;
1419	iinfo->i_unique = 0;
1420	iinfo->i_lenEAttr = 0;
1421	iinfo->i_lenExtents = 0;
1422	iinfo->i_lenAlloc = 0;
1423	iinfo->i_next_alloc_block = 0;
1424	iinfo->i_next_alloc_goal = 0;
1425	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1426		iinfo->i_efe = 1;
1427		iinfo->i_use = 0;
1428		ret = udf_alloc_i_data(inode, bs -
1429					sizeof(struct extendedFileEntry));
1430		if (ret)
1431			goto out;
1432		memcpy(iinfo->i_data,
1433		       bh->b_data + sizeof(struct extendedFileEntry),
1434		       bs - sizeof(struct extendedFileEntry));
1435	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1436		iinfo->i_efe = 0;
1437		iinfo->i_use = 0;
1438		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1439		if (ret)
1440			goto out;
1441		memcpy(iinfo->i_data,
1442		       bh->b_data + sizeof(struct fileEntry),
1443		       bs - sizeof(struct fileEntry));
1444	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1445		iinfo->i_efe = 0;
1446		iinfo->i_use = 1;
1447		iinfo->i_lenAlloc = le32_to_cpu(
1448				((struct unallocSpaceEntry *)bh->b_data)->
1449				 lengthAllocDescs);
1450		ret = udf_alloc_i_data(inode, bs -
1451					sizeof(struct unallocSpaceEntry));
1452		if (ret)
1453			goto out;
1454		memcpy(iinfo->i_data,
1455		       bh->b_data + sizeof(struct unallocSpaceEntry),
1456		       bs - sizeof(struct unallocSpaceEntry));
1457		return 0;
1458	}
1459
1460	ret = -EIO;
1461	read_lock(&sbi->s_cred_lock);
1462	uid = le32_to_cpu(fe->uid);
1463	if (uid == UDF_INVALID_ID ||
1464	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1465		inode->i_uid = sbi->s_uid;
1466	else
1467		i_uid_write(inode, uid);
1468
1469	gid = le32_to_cpu(fe->gid);
1470	if (gid == UDF_INVALID_ID ||
1471	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1472		inode->i_gid = sbi->s_gid;
1473	else
1474		i_gid_write(inode, gid);
1475
1476	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1477			sbi->s_fmode != UDF_INVALID_MODE)
1478		inode->i_mode = sbi->s_fmode;
1479	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1480			sbi->s_dmode != UDF_INVALID_MODE)
1481		inode->i_mode = sbi->s_dmode;
1482	else
1483		inode->i_mode = udf_convert_permissions(fe);
1484	inode->i_mode &= ~sbi->s_umask;
1485	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1486
1487	read_unlock(&sbi->s_cred_lock);
1488
1489	link_count = le16_to_cpu(fe->fileLinkCount);
1490	if (!link_count) {
1491		if (!hidden_inode) {
1492			ret = -ESTALE;
1493			goto out;
1494		}
1495		link_count = 1;
1496	}
1497	set_nlink(inode, link_count);
1498
1499	inode->i_size = le64_to_cpu(fe->informationLength);
1500	iinfo->i_lenExtents = inode->i_size;
1501
1502	if (iinfo->i_efe == 0) {
1503		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1504			(inode->i_sb->s_blocksize_bits - 9);
1505
1506		udf_disk_stamp_to_time(&ts, fe->accessTime);
1507		inode_set_atime_to_ts(inode, ts);
1508		udf_disk_stamp_to_time(&ts, fe->modificationTime);
1509		inode_set_mtime_to_ts(inode, ts);
1510		udf_disk_stamp_to_time(&ts, fe->attrTime);
1511		inode_set_ctime_to_ts(inode, ts);
1512
1513		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1514		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1515		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1516		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1517		iinfo->i_streamdir = 0;
1518		iinfo->i_lenStreams = 0;
1519	} else {
1520		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1521		    (inode->i_sb->s_blocksize_bits - 9);
1522
1523		udf_disk_stamp_to_time(&ts, efe->accessTime);
1524		inode_set_atime_to_ts(inode, ts);
1525		udf_disk_stamp_to_time(&ts, efe->modificationTime);
1526		inode_set_mtime_to_ts(inode, ts);
1527		udf_disk_stamp_to_time(&ts, efe->attrTime);
1528		inode_set_ctime_to_ts(inode, ts);
1529		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1530
1531		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1532		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1533		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1534		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1535
1536		/* Named streams */
1537		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1538		iinfo->i_locStreamdir =
1539			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1540		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1541		if (iinfo->i_lenStreams >= inode->i_size)
1542			iinfo->i_lenStreams -= inode->i_size;
1543		else
1544			iinfo->i_lenStreams = 0;
1545	}
1546	inode->i_generation = iinfo->i_unique;
1547
1548	/*
1549	 * Sanity check length of allocation descriptors and extended attrs to
1550	 * avoid integer overflows
1551	 */
1552	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1553		goto out;
1554	/* Now do exact checks */
1555	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1556		goto out;
1557	/* Sanity checks for files in ICB so that we don't get confused later */
1558	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1559		/*
1560		 * For file in ICB data is stored in allocation descriptor
1561		 * so sizes should match
1562		 */
1563		if (iinfo->i_lenAlloc != inode->i_size)
1564			goto out;
1565		/* File in ICB has to fit in there... */
1566		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1567			goto out;
1568	}
1569
1570	switch (fe->icbTag.fileType) {
1571	case ICBTAG_FILE_TYPE_DIRECTORY:
1572		inode->i_op = &udf_dir_inode_operations;
1573		inode->i_fop = &udf_dir_operations;
1574		inode->i_mode |= S_IFDIR;
1575		inc_nlink(inode);
1576		break;
1577	case ICBTAG_FILE_TYPE_REALTIME:
1578	case ICBTAG_FILE_TYPE_REGULAR:
1579	case ICBTAG_FILE_TYPE_UNDEF:
1580	case ICBTAG_FILE_TYPE_VAT20:
1581		inode->i_data.a_ops = &udf_aops;
1582		inode->i_op = &udf_file_inode_operations;
1583		inode->i_fop = &udf_file_operations;
1584		inode->i_mode |= S_IFREG;
1585		break;
1586	case ICBTAG_FILE_TYPE_BLOCK:
1587		inode->i_mode |= S_IFBLK;
1588		break;
1589	case ICBTAG_FILE_TYPE_CHAR:
1590		inode->i_mode |= S_IFCHR;
1591		break;
1592	case ICBTAG_FILE_TYPE_FIFO:
1593		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1594		break;
1595	case ICBTAG_FILE_TYPE_SOCKET:
1596		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1597		break;
1598	case ICBTAG_FILE_TYPE_SYMLINK:
1599		inode->i_data.a_ops = &udf_symlink_aops;
1600		inode->i_op = &udf_symlink_inode_operations;
1601		inode_nohighmem(inode);
1602		inode->i_mode = S_IFLNK | 0777;
1603		break;
1604	case ICBTAG_FILE_TYPE_MAIN:
1605		udf_debug("METADATA FILE-----\n");
1606		break;
1607	case ICBTAG_FILE_TYPE_MIRROR:
1608		udf_debug("METADATA MIRROR FILE-----\n");
1609		break;
1610	case ICBTAG_FILE_TYPE_BITMAP:
1611		udf_debug("METADATA BITMAP FILE-----\n");
1612		break;
1613	default:
1614		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1615			inode->i_ino, fe->icbTag.fileType);
1616		goto out;
1617	}
1618	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1619		struct deviceSpec *dsea =
1620			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1621		if (dsea) {
1622			init_special_inode(inode, inode->i_mode,
1623				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1624				      le32_to_cpu(dsea->minorDeviceIdent)));
1625			/* Developer ID ??? */
1626		} else
1627			goto out;
1628	}
1629	ret = 0;
1630out:
1631	brelse(bh);
1632	return ret;
1633}
1634
1635static int udf_alloc_i_data(struct inode *inode, size_t size)
1636{
1637	struct udf_inode_info *iinfo = UDF_I(inode);
1638	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1639	if (!iinfo->i_data)
1640		return -ENOMEM;
1641	return 0;
1642}
1643
1644static umode_t udf_convert_permissions(struct fileEntry *fe)
1645{
1646	umode_t mode;
1647	uint32_t permissions;
1648	uint32_t flags;
1649
1650	permissions = le32_to_cpu(fe->permissions);
1651	flags = le16_to_cpu(fe->icbTag.flags);
1652
1653	mode =	((permissions) & 0007) |
1654		((permissions >> 2) & 0070) |
1655		((permissions >> 4) & 0700) |
1656		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1657		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1658		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1659
1660	return mode;
1661}
1662
1663void udf_update_extra_perms(struct inode *inode, umode_t mode)
1664{
1665	struct udf_inode_info *iinfo = UDF_I(inode);
1666
1667	/*
1668	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1669	 * In Unix, delete permission tracks write
1670	 */
1671	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1672	if (mode & 0200)
1673		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1674	if (mode & 0020)
1675		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1676	if (mode & 0002)
1677		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1678}
1679
1680int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1681{
1682	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1683}
1684
1685static int udf_sync_inode(struct inode *inode)
1686{
1687	return udf_update_inode(inode, 1);
1688}
1689
1690static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1691{
1692	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1693	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1694	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1695		iinfo->i_crtime = time;
1696}
1697
1698static int udf_update_inode(struct inode *inode, int do_sync)
1699{
1700	struct buffer_head *bh = NULL;
1701	struct fileEntry *fe;
1702	struct extendedFileEntry *efe;
1703	uint64_t lb_recorded;
1704	uint32_t udfperms;
1705	uint16_t icbflags;
1706	uint16_t crclen;
1707	int err = 0;
1708	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1709	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1710	struct udf_inode_info *iinfo = UDF_I(inode);
1711
1712	bh = sb_getblk(inode->i_sb,
1713			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1714	if (!bh) {
1715		udf_debug("getblk failure\n");
1716		return -EIO;
1717	}
1718
1719	lock_buffer(bh);
1720	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1721	fe = (struct fileEntry *)bh->b_data;
1722	efe = (struct extendedFileEntry *)bh->b_data;
1723
1724	if (iinfo->i_use) {
1725		struct unallocSpaceEntry *use =
1726			(struct unallocSpaceEntry *)bh->b_data;
1727
1728		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1729		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1730		       iinfo->i_data, inode->i_sb->s_blocksize -
1731					sizeof(struct unallocSpaceEntry));
1732		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1733		crclen = sizeof(struct unallocSpaceEntry);
1734
1735		goto finish;
1736	}
1737
1738	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1739		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1740	else
1741		fe->uid = cpu_to_le32(i_uid_read(inode));
1742
1743	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1744		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1745	else
1746		fe->gid = cpu_to_le32(i_gid_read(inode));
1747
1748	udfperms = ((inode->i_mode & 0007)) |
1749		   ((inode->i_mode & 0070) << 2) |
1750		   ((inode->i_mode & 0700) << 4);
1751
1752	udfperms |= iinfo->i_extraPerms;
1753	fe->permissions = cpu_to_le32(udfperms);
1754
1755	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1756		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1757	else {
1758		if (iinfo->i_hidden)
1759			fe->fileLinkCount = cpu_to_le16(0);
1760		else
1761			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1762	}
1763
1764	fe->informationLength = cpu_to_le64(inode->i_size);
1765
1766	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1767		struct regid *eid;
1768		struct deviceSpec *dsea =
1769			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1770		if (!dsea) {
1771			dsea = (struct deviceSpec *)
1772				udf_add_extendedattr(inode,
1773						     sizeof(struct deviceSpec) +
1774						     sizeof(struct regid), 12, 0x3);
1775			dsea->attrType = cpu_to_le32(12);
1776			dsea->attrSubtype = 1;
1777			dsea->attrLength = cpu_to_le32(
1778						sizeof(struct deviceSpec) +
1779						sizeof(struct regid));
1780			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1781		}
1782		eid = (struct regid *)dsea->impUse;
1783		memset(eid, 0, sizeof(*eid));
1784		strcpy(eid->ident, UDF_ID_DEVELOPER);
1785		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1786		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1787		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1788		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1789	}
1790
1791	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1792		lb_recorded = 0; /* No extents => no blocks! */
1793	else
1794		lb_recorded =
1795			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1796			(blocksize_bits - 9);
1797
1798	if (iinfo->i_efe == 0) {
1799		memcpy(bh->b_data + sizeof(struct fileEntry),
1800		       iinfo->i_data,
1801		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1802		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1803
1804		udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1805		udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1806		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1807		memset(&(fe->impIdent), 0, sizeof(struct regid));
1808		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1809		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1810		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1811		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1812		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1813		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1814		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1815		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1816		crclen = sizeof(struct fileEntry);
1817	} else {
1818		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1819		       iinfo->i_data,
1820		       inode->i_sb->s_blocksize -
1821					sizeof(struct extendedFileEntry));
1822		efe->objectSize =
1823			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1824		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826		if (iinfo->i_streamdir) {
1827			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1828
1829			icb_lad->extLocation =
1830				cpu_to_lelb(iinfo->i_locStreamdir);
1831			icb_lad->extLength =
1832				cpu_to_le32(inode->i_sb->s_blocksize);
1833		}
1834
1835		udf_adjust_time(iinfo, inode_get_atime(inode));
1836		udf_adjust_time(iinfo, inode_get_mtime(inode));
1837		udf_adjust_time(iinfo, inode_get_ctime(inode));
1838
1839		udf_time_to_disk_stamp(&efe->accessTime,
1840				       inode_get_atime(inode));
1841		udf_time_to_disk_stamp(&efe->modificationTime,
1842				       inode_get_mtime(inode));
1843		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1844		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1845
1846		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1847		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1848		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1849		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1850		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1851		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1852		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1853		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1854		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1855		crclen = sizeof(struct extendedFileEntry);
1856	}
1857
1858finish:
1859	if (iinfo->i_strat4096) {
1860		fe->icbTag.strategyType = cpu_to_le16(4096);
1861		fe->icbTag.strategyParameter = cpu_to_le16(1);
1862		fe->icbTag.numEntries = cpu_to_le16(2);
1863	} else {
1864		fe->icbTag.strategyType = cpu_to_le16(4);
1865		fe->icbTag.numEntries = cpu_to_le16(1);
1866	}
1867
1868	if (iinfo->i_use)
1869		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1870	else if (S_ISDIR(inode->i_mode))
1871		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1872	else if (S_ISREG(inode->i_mode))
1873		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1874	else if (S_ISLNK(inode->i_mode))
1875		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1876	else if (S_ISBLK(inode->i_mode))
1877		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1878	else if (S_ISCHR(inode->i_mode))
1879		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1880	else if (S_ISFIFO(inode->i_mode))
1881		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1882	else if (S_ISSOCK(inode->i_mode))
1883		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1884
1885	icbflags =	iinfo->i_alloc_type |
1886			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1887			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1888			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1889			(le16_to_cpu(fe->icbTag.flags) &
1890				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1891				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1892
1893	fe->icbTag.flags = cpu_to_le16(icbflags);
1894	if (sbi->s_udfrev >= 0x0200)
1895		fe->descTag.descVersion = cpu_to_le16(3);
1896	else
1897		fe->descTag.descVersion = cpu_to_le16(2);
1898	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1899	fe->descTag.tagLocation = cpu_to_le32(
1900					iinfo->i_location.logicalBlockNum);
1901	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1902	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1903	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1904						  crclen));
1905	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1906
1907	set_buffer_uptodate(bh);
1908	unlock_buffer(bh);
1909
1910	/* write the data blocks */
1911	mark_buffer_dirty(bh);
1912	if (do_sync) {
1913		sync_dirty_buffer(bh);
1914		if (buffer_write_io_error(bh)) {
1915			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1916				 inode->i_ino);
1917			err = -EIO;
1918		}
1919	}
1920	brelse(bh);
1921
1922	return err;
1923}
1924
1925struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1926			 bool hidden_inode)
1927{
1928	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1929	struct inode *inode = iget_locked(sb, block);
1930	int err;
1931
1932	if (!inode)
1933		return ERR_PTR(-ENOMEM);
1934
1935	if (!(inode->i_state & I_NEW)) {
1936		if (UDF_I(inode)->i_hidden != hidden_inode) {
1937			iput(inode);
1938			return ERR_PTR(-EFSCORRUPTED);
1939		}
1940		return inode;
1941	}
1942
1943	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1944	err = udf_read_inode(inode, hidden_inode);
1945	if (err < 0) {
1946		iget_failed(inode);
1947		return ERR_PTR(err);
1948	}
1949	unlock_new_inode(inode);
1950
1951	return inode;
1952}
1953
1954int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1955			    struct extent_position *epos)
1956{
1957	struct super_block *sb = inode->i_sb;
1958	struct buffer_head *bh;
1959	struct allocExtDesc *aed;
1960	struct extent_position nepos;
1961	struct kernel_lb_addr neloc;
1962	int ver, adsize;
1963
1964	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1965		adsize = sizeof(struct short_ad);
1966	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1967		adsize = sizeof(struct long_ad);
1968	else
1969		return -EIO;
1970
1971	neloc.logicalBlockNum = block;
1972	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1973
1974	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1975	if (!bh)
1976		return -EIO;
1977	lock_buffer(bh);
1978	memset(bh->b_data, 0x00, sb->s_blocksize);
1979	set_buffer_uptodate(bh);
1980	unlock_buffer(bh);
1981	mark_buffer_dirty_inode(bh, inode);
1982
1983	aed = (struct allocExtDesc *)(bh->b_data);
1984	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1985		aed->previousAllocExtLocation =
1986				cpu_to_le32(epos->block.logicalBlockNum);
1987	}
1988	aed->lengthAllocDescs = cpu_to_le32(0);
1989	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1990		ver = 3;
1991	else
1992		ver = 2;
1993	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1994		    sizeof(struct tag));
1995
1996	nepos.block = neloc;
1997	nepos.offset = sizeof(struct allocExtDesc);
1998	nepos.bh = bh;
1999
2000	/*
2001	 * Do we have to copy current last extent to make space for indirect
2002	 * one?
2003	 */
2004	if (epos->offset + adsize > sb->s_blocksize) {
2005		struct kernel_lb_addr cp_loc;
2006		uint32_t cp_len;
2007		int cp_type;
2008
2009		epos->offset -= adsize;
2010		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
2011		cp_len |= ((uint32_t)cp_type) << 30;
2012
2013		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2014		udf_write_aext(inode, epos, &nepos.block,
2015			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2016	} else {
2017		__udf_add_aext(inode, epos, &nepos.block,
2018			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2019	}
2020
2021	brelse(epos->bh);
2022	*epos = nepos;
2023
2024	return 0;
2025}
2026
2027/*
2028 * Append extent at the given position - should be the first free one in inode
2029 * / indirect extent. This function assumes there is enough space in the inode
2030 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2031 */
2032int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2033		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2034{
2035	struct udf_inode_info *iinfo = UDF_I(inode);
2036	struct allocExtDesc *aed;
2037	int adsize;
2038
2039	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2040		adsize = sizeof(struct short_ad);
2041	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2042		adsize = sizeof(struct long_ad);
2043	else
2044		return -EIO;
2045
2046	if (!epos->bh) {
2047		WARN_ON(iinfo->i_lenAlloc !=
2048			epos->offset - udf_file_entry_alloc_offset(inode));
2049	} else {
2050		aed = (struct allocExtDesc *)epos->bh->b_data;
2051		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2052			epos->offset - sizeof(struct allocExtDesc));
2053		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2054	}
2055
2056	udf_write_aext(inode, epos, eloc, elen, inc);
2057
2058	if (!epos->bh) {
2059		iinfo->i_lenAlloc += adsize;
2060		mark_inode_dirty(inode);
2061	} else {
2062		aed = (struct allocExtDesc *)epos->bh->b_data;
2063		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2064		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2065				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2066			udf_update_tag(epos->bh->b_data,
2067					epos->offset + (inc ? 0 : adsize));
2068		else
2069			udf_update_tag(epos->bh->b_data,
2070					sizeof(struct allocExtDesc));
2071		mark_buffer_dirty_inode(epos->bh, inode);
2072	}
2073
2074	return 0;
2075}
2076
2077/*
2078 * Append extent at given position - should be the first free one in inode
2079 * / indirect extent. Takes care of allocating and linking indirect blocks.
2080 */
2081int udf_add_aext(struct inode *inode, struct extent_position *epos,
2082		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2083{
2084	int adsize;
2085	struct super_block *sb = inode->i_sb;
2086
2087	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2088		adsize = sizeof(struct short_ad);
2089	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2090		adsize = sizeof(struct long_ad);
2091	else
2092		return -EIO;
2093
2094	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2095		int err;
2096		udf_pblk_t new_block;
2097
2098		new_block = udf_new_block(sb, NULL,
2099					  epos->block.partitionReferenceNum,
2100					  epos->block.logicalBlockNum, &err);
2101		if (!new_block)
2102			return -ENOSPC;
2103
2104		err = udf_setup_indirect_aext(inode, new_block, epos);
2105		if (err)
2106			return err;
2107	}
2108
2109	return __udf_add_aext(inode, epos, eloc, elen, inc);
2110}
2111
2112void udf_write_aext(struct inode *inode, struct extent_position *epos,
2113		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2114{
2115	int adsize;
2116	uint8_t *ptr;
2117	struct short_ad *sad;
2118	struct long_ad *lad;
2119	struct udf_inode_info *iinfo = UDF_I(inode);
2120
2121	if (!epos->bh)
2122		ptr = iinfo->i_data + epos->offset -
2123			udf_file_entry_alloc_offset(inode) +
2124			iinfo->i_lenEAttr;
2125	else
2126		ptr = epos->bh->b_data + epos->offset;
2127
2128	switch (iinfo->i_alloc_type) {
2129	case ICBTAG_FLAG_AD_SHORT:
2130		sad = (struct short_ad *)ptr;
2131		sad->extLength = cpu_to_le32(elen);
2132		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2133		adsize = sizeof(struct short_ad);
2134		break;
2135	case ICBTAG_FLAG_AD_LONG:
2136		lad = (struct long_ad *)ptr;
2137		lad->extLength = cpu_to_le32(elen);
2138		lad->extLocation = cpu_to_lelb(*eloc);
2139		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2140		adsize = sizeof(struct long_ad);
2141		break;
2142	default:
2143		return;
2144	}
2145
2146	if (epos->bh) {
2147		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2148		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2149			struct allocExtDesc *aed =
2150				(struct allocExtDesc *)epos->bh->b_data;
2151			udf_update_tag(epos->bh->b_data,
2152				       le32_to_cpu(aed->lengthAllocDescs) +
2153				       sizeof(struct allocExtDesc));
2154		}
2155		mark_buffer_dirty_inode(epos->bh, inode);
2156	} else {
2157		mark_inode_dirty(inode);
2158	}
2159
2160	if (inc)
2161		epos->offset += adsize;
2162}
2163
2164/*
2165 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2166 * someone does some weird stuff.
2167 */
2168#define UDF_MAX_INDIR_EXTS 16
2169
2170int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2171		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2172{
2173	int8_t etype;
2174	unsigned int indirections = 0;
2175
2176	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2177	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2178		udf_pblk_t block;
2179
2180		if (++indirections > UDF_MAX_INDIR_EXTS) {
2181			udf_err(inode->i_sb,
2182				"too many indirect extents in inode %lu\n",
2183				inode->i_ino);
2184			return -1;
2185		}
2186
2187		epos->block = *eloc;
2188		epos->offset = sizeof(struct allocExtDesc);
2189		brelse(epos->bh);
2190		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2191		epos->bh = sb_bread(inode->i_sb, block);
2192		if (!epos->bh) {
2193			udf_debug("reading block %u failed!\n", block);
2194			return -1;
2195		}
2196	}
2197
2198	return etype;
2199}
2200
2201int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2202			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2203{
2204	int alen;
2205	int8_t etype;
2206	uint8_t *ptr;
2207	struct short_ad *sad;
2208	struct long_ad *lad;
2209	struct udf_inode_info *iinfo = UDF_I(inode);
2210
2211	if (!epos->bh) {
2212		if (!epos->offset)
2213			epos->offset = udf_file_entry_alloc_offset(inode);
2214		ptr = iinfo->i_data + epos->offset -
2215			udf_file_entry_alloc_offset(inode) +
2216			iinfo->i_lenEAttr;
2217		alen = udf_file_entry_alloc_offset(inode) +
2218							iinfo->i_lenAlloc;
2219	} else {
2220		if (!epos->offset)
2221			epos->offset = sizeof(struct allocExtDesc);
2222		ptr = epos->bh->b_data + epos->offset;
2223		alen = sizeof(struct allocExtDesc) +
2224			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2225							lengthAllocDescs);
2226	}
2227
2228	switch (iinfo->i_alloc_type) {
2229	case ICBTAG_FLAG_AD_SHORT:
2230		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2231		if (!sad)
2232			return -1;
2233		etype = le32_to_cpu(sad->extLength) >> 30;
2234		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2235		eloc->partitionReferenceNum =
2236				iinfo->i_location.partitionReferenceNum;
2237		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2238		break;
2239	case ICBTAG_FLAG_AD_LONG:
2240		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2241		if (!lad)
2242			return -1;
2243		etype = le32_to_cpu(lad->extLength) >> 30;
2244		*eloc = lelb_to_cpu(lad->extLocation);
2245		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2246		break;
2247	default:
2248		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2249		return -1;
2250	}
2251
2252	return etype;
2253}
2254
2255static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2256			   struct kernel_lb_addr neloc, uint32_t nelen)
2257{
2258	struct kernel_lb_addr oeloc;
2259	uint32_t oelen;
2260	int8_t etype;
2261	int err;
2262
2263	if (epos.bh)
2264		get_bh(epos.bh);
2265
2266	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2267		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2268		neloc = oeloc;
2269		nelen = (etype << 30) | oelen;
2270	}
2271	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2272	brelse(epos.bh);
2273
2274	return err;
2275}
2276
2277int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2278{
2279	struct extent_position oepos;
2280	int adsize;
2281	int8_t etype;
2282	struct allocExtDesc *aed;
2283	struct udf_inode_info *iinfo;
2284	struct kernel_lb_addr eloc;
2285	uint32_t elen;
2286
2287	if (epos.bh) {
2288		get_bh(epos.bh);
2289		get_bh(epos.bh);
2290	}
2291
2292	iinfo = UDF_I(inode);
2293	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2294		adsize = sizeof(struct short_ad);
2295	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2296		adsize = sizeof(struct long_ad);
2297	else
2298		adsize = 0;
2299
2300	oepos = epos;
2301	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2302		return -1;
2303
2304	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2305		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2306		if (oepos.bh != epos.bh) {
2307			oepos.block = epos.block;
2308			brelse(oepos.bh);
2309			get_bh(epos.bh);
2310			oepos.bh = epos.bh;
2311			oepos.offset = epos.offset - adsize;
2312		}
2313	}
2314	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2315	elen = 0;
2316
2317	if (epos.bh != oepos.bh) {
2318		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2319		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2320		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2321		if (!oepos.bh) {
2322			iinfo->i_lenAlloc -= (adsize * 2);
2323			mark_inode_dirty(inode);
2324		} else {
2325			aed = (struct allocExtDesc *)oepos.bh->b_data;
2326			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2327			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2328			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2329				udf_update_tag(oepos.bh->b_data,
2330						oepos.offset - (2 * adsize));
2331			else
2332				udf_update_tag(oepos.bh->b_data,
2333						sizeof(struct allocExtDesc));
2334			mark_buffer_dirty_inode(oepos.bh, inode);
2335		}
2336	} else {
2337		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2338		if (!oepos.bh) {
2339			iinfo->i_lenAlloc -= adsize;
2340			mark_inode_dirty(inode);
2341		} else {
2342			aed = (struct allocExtDesc *)oepos.bh->b_data;
2343			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2344			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2345			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2346				udf_update_tag(oepos.bh->b_data,
2347						epos.offset - adsize);
2348			else
2349				udf_update_tag(oepos.bh->b_data,
2350						sizeof(struct allocExtDesc));
2351			mark_buffer_dirty_inode(oepos.bh, inode);
2352		}
2353	}
2354
2355	brelse(epos.bh);
2356	brelse(oepos.bh);
2357
2358	return (elen >> 30);
2359}
2360
2361int8_t inode_bmap(struct inode *inode, sector_t block,
2362		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2363		  uint32_t *elen, sector_t *offset)
2364{
2365	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2366	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2367	int8_t etype;
2368	struct udf_inode_info *iinfo;
2369
2370	iinfo = UDF_I(inode);
2371	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2372		pos->offset = 0;
2373		pos->block = iinfo->i_location;
2374		pos->bh = NULL;
2375	}
2376	*elen = 0;
2377	do {
2378		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2379		if (etype == -1) {
2380			*offset = (bcount - lbcount) >> blocksize_bits;
2381			iinfo->i_lenExtents = lbcount;
2382			return -1;
2383		}
2384		lbcount += *elen;
2385	} while (lbcount <= bcount);
2386	/* update extent cache */
2387	udf_update_extent_cache(inode, lbcount - *elen, pos);
2388	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2389
2390	return etype;
2391}
2392