1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *	fs/libfs.c
4 *	Library for filesystems writers.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/export.h>
9#include <linux/pagemap.h>
10#include <linux/slab.h>
11#include <linux/cred.h>
12#include <linux/mount.h>
13#include <linux/vfs.h>
14#include <linux/quotaops.h>
15#include <linux/mutex.h>
16#include <linux/namei.h>
17#include <linux/exportfs.h>
18#include <linux/iversion.h>
19#include <linux/writeback.h>
20#include <linux/buffer_head.h> /* sync_mapping_buffers */
21#include <linux/fs_context.h>
22#include <linux/pseudo_fs.h>
23#include <linux/fsnotify.h>
24#include <linux/unicode.h>
25#include <linux/fscrypt.h>
26#include <linux/pidfs.h>
27
28#include <linux/uaccess.h>
29
30#include "internal.h"
31
32int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33		   struct kstat *stat, u32 request_mask,
34		   unsigned int query_flags)
35{
36	struct inode *inode = d_inode(path->dentry);
37	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39	return 0;
40}
41EXPORT_SYMBOL(simple_getattr);
42
43int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44{
45	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47	buf->f_fsid = u64_to_fsid(id);
48	buf->f_type = dentry->d_sb->s_magic;
49	buf->f_bsize = PAGE_SIZE;
50	buf->f_namelen = NAME_MAX;
51	return 0;
52}
53EXPORT_SYMBOL(simple_statfs);
54
55/*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
59int always_delete_dentry(const struct dentry *dentry)
60{
61	return 1;
62}
63EXPORT_SYMBOL(always_delete_dentry);
64
65const struct dentry_operations simple_dentry_operations = {
66	.d_delete = always_delete_dentry,
67};
68EXPORT_SYMBOL(simple_dentry_operations);
69
70/*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative.  Set d_op to delete negative dentries.
73 */
74struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75{
76	if (dentry->d_name.len > NAME_MAX)
77		return ERR_PTR(-ENAMETOOLONG);
78	if (!dentry->d_sb->s_d_op)
79		d_set_d_op(dentry, &simple_dentry_operations);
80	d_add(dentry, NULL);
81	return NULL;
82}
83EXPORT_SYMBOL(simple_lookup);
84
85int dcache_dir_open(struct inode *inode, struct file *file)
86{
87	file->private_data = d_alloc_cursor(file->f_path.dentry);
88
89	return file->private_data ? 0 : -ENOMEM;
90}
91EXPORT_SYMBOL(dcache_dir_open);
92
93int dcache_dir_close(struct inode *inode, struct file *file)
94{
95	dput(file->private_data);
96	return 0;
97}
98EXPORT_SYMBOL(dcache_dir_close);
99
100/* parent is locked at least shared */
101/*
102 * Returns an element of siblings' list.
103 * We are looking for <count>th positive after <p>; if
104 * found, dentry is grabbed and returned to caller.
105 * If no such element exists, NULL is returned.
106 */
107static struct dentry *scan_positives(struct dentry *cursor,
108					struct hlist_node **p,
109					loff_t count,
110					struct dentry *last)
111{
112	struct dentry *dentry = cursor->d_parent, *found = NULL;
113
114	spin_lock(&dentry->d_lock);
115	while (*p) {
116		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
117		p = &d->d_sib.next;
118		// we must at least skip cursors, to avoid livelocks
119		if (d->d_flags & DCACHE_DENTRY_CURSOR)
120			continue;
121		if (simple_positive(d) && !--count) {
122			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
123			if (simple_positive(d))
124				found = dget_dlock(d);
125			spin_unlock(&d->d_lock);
126			if (likely(found))
127				break;
128			count = 1;
129		}
130		if (need_resched()) {
131			if (!hlist_unhashed(&cursor->d_sib))
132				__hlist_del(&cursor->d_sib);
133			hlist_add_behind(&cursor->d_sib, &d->d_sib);
134			p = &cursor->d_sib.next;
135			spin_unlock(&dentry->d_lock);
136			cond_resched();
137			spin_lock(&dentry->d_lock);
138		}
139	}
140	spin_unlock(&dentry->d_lock);
141	dput(last);
142	return found;
143}
144
145loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
146{
147	struct dentry *dentry = file->f_path.dentry;
148	switch (whence) {
149		case 1:
150			offset += file->f_pos;
151			fallthrough;
152		case 0:
153			if (offset >= 0)
154				break;
155			fallthrough;
156		default:
157			return -EINVAL;
158	}
159	if (offset != file->f_pos) {
160		struct dentry *cursor = file->private_data;
161		struct dentry *to = NULL;
162
163		inode_lock_shared(dentry->d_inode);
164
165		if (offset > 2)
166			to = scan_positives(cursor, &dentry->d_children.first,
167					    offset - 2, NULL);
168		spin_lock(&dentry->d_lock);
169		hlist_del_init(&cursor->d_sib);
170		if (to)
171			hlist_add_behind(&cursor->d_sib, &to->d_sib);
172		spin_unlock(&dentry->d_lock);
173		dput(to);
174
175		file->f_pos = offset;
176
177		inode_unlock_shared(dentry->d_inode);
178	}
179	return offset;
180}
181EXPORT_SYMBOL(dcache_dir_lseek);
182
183/*
184 * Directory is locked and all positive dentries in it are safe, since
185 * for ramfs-type trees they can't go away without unlink() or rmdir(),
186 * both impossible due to the lock on directory.
187 */
188
189int dcache_readdir(struct file *file, struct dir_context *ctx)
190{
191	struct dentry *dentry = file->f_path.dentry;
192	struct dentry *cursor = file->private_data;
193	struct dentry *next = NULL;
194	struct hlist_node **p;
195
196	if (!dir_emit_dots(file, ctx))
197		return 0;
198
199	if (ctx->pos == 2)
200		p = &dentry->d_children.first;
201	else
202		p = &cursor->d_sib.next;
203
204	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206			      d_inode(next)->i_ino,
207			      fs_umode_to_dtype(d_inode(next)->i_mode)))
208			break;
209		ctx->pos++;
210		p = &next->d_sib.next;
211	}
212	spin_lock(&dentry->d_lock);
213	hlist_del_init(&cursor->d_sib);
214	if (next)
215		hlist_add_before(&cursor->d_sib, &next->d_sib);
216	spin_unlock(&dentry->d_lock);
217	dput(next);
218
219	return 0;
220}
221EXPORT_SYMBOL(dcache_readdir);
222
223ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224{
225	return -EISDIR;
226}
227EXPORT_SYMBOL(generic_read_dir);
228
229const struct file_operations simple_dir_operations = {
230	.open		= dcache_dir_open,
231	.release	= dcache_dir_close,
232	.llseek		= dcache_dir_lseek,
233	.read		= generic_read_dir,
234	.iterate_shared	= dcache_readdir,
235	.fsync		= noop_fsync,
236};
237EXPORT_SYMBOL(simple_dir_operations);
238
239const struct inode_operations simple_dir_inode_operations = {
240	.lookup		= simple_lookup,
241};
242EXPORT_SYMBOL(simple_dir_inode_operations);
243
244/* 0 is '.', 1 is '..', so always start with offset 2 or more */
245enum {
246	DIR_OFFSET_MIN	= 2,
247};
248
249static void offset_set(struct dentry *dentry, long offset)
250{
251	dentry->d_fsdata = (void *)offset;
252}
253
254static long dentry2offset(struct dentry *dentry)
255{
256	return (long)dentry->d_fsdata;
257}
258
259static struct lock_class_key simple_offset_lock_class;
260
261/**
262 * simple_offset_init - initialize an offset_ctx
263 * @octx: directory offset map to be initialized
264 *
265 */
266void simple_offset_init(struct offset_ctx *octx)
267{
268	mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
269	lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
270	octx->next_offset = DIR_OFFSET_MIN;
271}
272
273/**
274 * simple_offset_add - Add an entry to a directory's offset map
275 * @octx: directory offset ctx to be updated
276 * @dentry: new dentry being added
277 *
278 * Returns zero on success. @octx and the dentry's offset are updated.
279 * Otherwise, a negative errno value is returned.
280 */
281int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
282{
283	unsigned long offset;
284	int ret;
285
286	if (dentry2offset(dentry) != 0)
287		return -EBUSY;
288
289	ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
290				 LONG_MAX, &octx->next_offset, GFP_KERNEL);
291	if (ret < 0)
292		return ret;
293
294	offset_set(dentry, offset);
295	return 0;
296}
297
298static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
299				 long offset)
300{
301	int ret;
302
303	ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
304	if (ret)
305		return ret;
306	offset_set(dentry, offset);
307	return 0;
308}
309
310/**
311 * simple_offset_remove - Remove an entry to a directory's offset map
312 * @octx: directory offset ctx to be updated
313 * @dentry: dentry being removed
314 *
315 */
316void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
317{
318	long offset;
319
320	offset = dentry2offset(dentry);
321	if (offset == 0)
322		return;
323
324	mtree_erase(&octx->mt, offset);
325	offset_set(dentry, 0);
326}
327
328/**
329 * simple_offset_empty - Check if a dentry can be unlinked
330 * @dentry: dentry to be tested
331 *
332 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
333 */
334int simple_offset_empty(struct dentry *dentry)
335{
336	struct inode *inode = d_inode(dentry);
337	struct offset_ctx *octx;
338	struct dentry *child;
339	unsigned long index;
340	int ret = 1;
341
342	if (!inode || !S_ISDIR(inode->i_mode))
343		return ret;
344
345	index = DIR_OFFSET_MIN;
346	octx = inode->i_op->get_offset_ctx(inode);
347	mt_for_each(&octx->mt, child, index, LONG_MAX) {
348		spin_lock(&child->d_lock);
349		if (simple_positive(child)) {
350			spin_unlock(&child->d_lock);
351			ret = 0;
352			break;
353		}
354		spin_unlock(&child->d_lock);
355	}
356
357	return ret;
358}
359
360/**
361 * simple_offset_rename - handle directory offsets for rename
362 * @old_dir: parent directory of source entry
363 * @old_dentry: dentry of source entry
364 * @new_dir: parent_directory of destination entry
365 * @new_dentry: dentry of destination
366 *
367 * Caller provides appropriate serialization.
368 *
369 * User space expects the directory offset value of the replaced
370 * (new) directory entry to be unchanged after a rename.
371 *
372 * Returns zero on success, a negative errno value on failure.
373 */
374int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
375			 struct inode *new_dir, struct dentry *new_dentry)
376{
377	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
378	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
379	long new_offset = dentry2offset(new_dentry);
380
381	simple_offset_remove(old_ctx, old_dentry);
382
383	if (new_offset) {
384		offset_set(new_dentry, 0);
385		return simple_offset_replace(new_ctx, old_dentry, new_offset);
386	}
387	return simple_offset_add(new_ctx, old_dentry);
388}
389
390/**
391 * simple_offset_rename_exchange - exchange rename with directory offsets
392 * @old_dir: parent of dentry being moved
393 * @old_dentry: dentry being moved
394 * @new_dir: destination parent
395 * @new_dentry: destination dentry
396 *
397 * This API preserves the directory offset values. Caller provides
398 * appropriate serialization.
399 *
400 * Returns zero on success. Otherwise a negative errno is returned and the
401 * rename is rolled back.
402 */
403int simple_offset_rename_exchange(struct inode *old_dir,
404				  struct dentry *old_dentry,
405				  struct inode *new_dir,
406				  struct dentry *new_dentry)
407{
408	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
409	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
410	long old_index = dentry2offset(old_dentry);
411	long new_index = dentry2offset(new_dentry);
412	int ret;
413
414	simple_offset_remove(old_ctx, old_dentry);
415	simple_offset_remove(new_ctx, new_dentry);
416
417	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
418	if (ret)
419		goto out_restore;
420
421	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
422	if (ret) {
423		simple_offset_remove(new_ctx, old_dentry);
424		goto out_restore;
425	}
426
427	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
428	if (ret) {
429		simple_offset_remove(new_ctx, old_dentry);
430		simple_offset_remove(old_ctx, new_dentry);
431		goto out_restore;
432	}
433	return 0;
434
435out_restore:
436	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
437	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
438	return ret;
439}
440
441/**
442 * simple_offset_destroy - Release offset map
443 * @octx: directory offset ctx that is about to be destroyed
444 *
445 * During fs teardown (eg. umount), a directory's offset map might still
446 * contain entries. xa_destroy() cleans out anything that remains.
447 */
448void simple_offset_destroy(struct offset_ctx *octx)
449{
450	mtree_destroy(&octx->mt);
451}
452
453/**
454 * offset_dir_llseek - Advance the read position of a directory descriptor
455 * @file: an open directory whose position is to be updated
456 * @offset: a byte offset
457 * @whence: enumerator describing the starting position for this update
458 *
459 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
460 *
461 * Returns the updated read position if successful; otherwise a
462 * negative errno is returned and the read position remains unchanged.
463 */
464static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
465{
466	switch (whence) {
467	case SEEK_CUR:
468		offset += file->f_pos;
469		fallthrough;
470	case SEEK_SET:
471		if (offset >= 0)
472			break;
473		fallthrough;
474	default:
475		return -EINVAL;
476	}
477
478	/* In this case, ->private_data is protected by f_pos_lock */
479	file->private_data = NULL;
480	return vfs_setpos(file, offset, LONG_MAX);
481}
482
483static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
484{
485	MA_STATE(mas, &octx->mt, offset, offset);
486	struct dentry *child, *found = NULL;
487
488	rcu_read_lock();
489	child = mas_find(&mas, LONG_MAX);
490	if (!child)
491		goto out;
492	spin_lock(&child->d_lock);
493	if (simple_positive(child))
494		found = dget_dlock(child);
495	spin_unlock(&child->d_lock);
496out:
497	rcu_read_unlock();
498	return found;
499}
500
501static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
502{
503	struct inode *inode = d_inode(dentry);
504	long offset = dentry2offset(dentry);
505
506	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
507			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
508}
509
510static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
511{
512	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
513	struct dentry *dentry;
514
515	while (true) {
516		dentry = offset_find_next(octx, ctx->pos);
517		if (!dentry)
518			return ERR_PTR(-ENOENT);
519
520		if (!offset_dir_emit(ctx, dentry)) {
521			dput(dentry);
522			break;
523		}
524
525		ctx->pos = dentry2offset(dentry) + 1;
526		dput(dentry);
527	}
528	return NULL;
529}
530
531/**
532 * offset_readdir - Emit entries starting at offset @ctx->pos
533 * @file: an open directory to iterate over
534 * @ctx: directory iteration context
535 *
536 * Caller must hold @file's i_rwsem to prevent insertion or removal of
537 * entries during this call.
538 *
539 * On entry, @ctx->pos contains an offset that represents the first entry
540 * to be read from the directory.
541 *
542 * The operation continues until there are no more entries to read, or
543 * until the ctx->actor indicates there is no more space in the caller's
544 * output buffer.
545 *
546 * On return, @ctx->pos contains an offset that will read the next entry
547 * in this directory when offset_readdir() is called again with @ctx.
548 *
549 * Return values:
550 *   %0 - Complete
551 */
552static int offset_readdir(struct file *file, struct dir_context *ctx)
553{
554	struct dentry *dir = file->f_path.dentry;
555
556	lockdep_assert_held(&d_inode(dir)->i_rwsem);
557
558	if (!dir_emit_dots(file, ctx))
559		return 0;
560
561	/* In this case, ->private_data is protected by f_pos_lock */
562	if (ctx->pos == DIR_OFFSET_MIN)
563		file->private_data = NULL;
564	else if (file->private_data == ERR_PTR(-ENOENT))
565		return 0;
566	file->private_data = offset_iterate_dir(d_inode(dir), ctx);
567	return 0;
568}
569
570const struct file_operations simple_offset_dir_operations = {
571	.llseek		= offset_dir_llseek,
572	.iterate_shared	= offset_readdir,
573	.read		= generic_read_dir,
574	.fsync		= noop_fsync,
575};
576
577static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
578{
579	struct dentry *child = NULL, *d;
580
581	spin_lock(&parent->d_lock);
582	d = prev ? d_next_sibling(prev) : d_first_child(parent);
583	hlist_for_each_entry_from(d, d_sib) {
584		if (simple_positive(d)) {
585			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
586			if (simple_positive(d))
587				child = dget_dlock(d);
588			spin_unlock(&d->d_lock);
589			if (likely(child))
590				break;
591		}
592	}
593	spin_unlock(&parent->d_lock);
594	dput(prev);
595	return child;
596}
597
598void simple_recursive_removal(struct dentry *dentry,
599                              void (*callback)(struct dentry *))
600{
601	struct dentry *this = dget(dentry);
602	while (true) {
603		struct dentry *victim = NULL, *child;
604		struct inode *inode = this->d_inode;
605
606		inode_lock(inode);
607		if (d_is_dir(this))
608			inode->i_flags |= S_DEAD;
609		while ((child = find_next_child(this, victim)) == NULL) {
610			// kill and ascend
611			// update metadata while it's still locked
612			inode_set_ctime_current(inode);
613			clear_nlink(inode);
614			inode_unlock(inode);
615			victim = this;
616			this = this->d_parent;
617			inode = this->d_inode;
618			inode_lock(inode);
619			if (simple_positive(victim)) {
620				d_invalidate(victim);	// avoid lost mounts
621				if (d_is_dir(victim))
622					fsnotify_rmdir(inode, victim);
623				else
624					fsnotify_unlink(inode, victim);
625				if (callback)
626					callback(victim);
627				dput(victim);		// unpin it
628			}
629			if (victim == dentry) {
630				inode_set_mtime_to_ts(inode,
631						      inode_set_ctime_current(inode));
632				if (d_is_dir(dentry))
633					drop_nlink(inode);
634				inode_unlock(inode);
635				dput(dentry);
636				return;
637			}
638		}
639		inode_unlock(inode);
640		this = child;
641	}
642}
643EXPORT_SYMBOL(simple_recursive_removal);
644
645static const struct super_operations simple_super_operations = {
646	.statfs		= simple_statfs,
647};
648
649static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
650{
651	struct pseudo_fs_context *ctx = fc->fs_private;
652	struct inode *root;
653
654	s->s_maxbytes = MAX_LFS_FILESIZE;
655	s->s_blocksize = PAGE_SIZE;
656	s->s_blocksize_bits = PAGE_SHIFT;
657	s->s_magic = ctx->magic;
658	s->s_op = ctx->ops ?: &simple_super_operations;
659	s->s_xattr = ctx->xattr;
660	s->s_time_gran = 1;
661	root = new_inode(s);
662	if (!root)
663		return -ENOMEM;
664
665	/*
666	 * since this is the first inode, make it number 1. New inodes created
667	 * after this must take care not to collide with it (by passing
668	 * max_reserved of 1 to iunique).
669	 */
670	root->i_ino = 1;
671	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
672	simple_inode_init_ts(root);
673	s->s_root = d_make_root(root);
674	if (!s->s_root)
675		return -ENOMEM;
676	s->s_d_op = ctx->dops;
677	return 0;
678}
679
680static int pseudo_fs_get_tree(struct fs_context *fc)
681{
682	return get_tree_nodev(fc, pseudo_fs_fill_super);
683}
684
685static void pseudo_fs_free(struct fs_context *fc)
686{
687	kfree(fc->fs_private);
688}
689
690static const struct fs_context_operations pseudo_fs_context_ops = {
691	.free		= pseudo_fs_free,
692	.get_tree	= pseudo_fs_get_tree,
693};
694
695/*
696 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
697 * will never be mountable)
698 */
699struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
700					unsigned long magic)
701{
702	struct pseudo_fs_context *ctx;
703
704	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
705	if (likely(ctx)) {
706		ctx->magic = magic;
707		fc->fs_private = ctx;
708		fc->ops = &pseudo_fs_context_ops;
709		fc->sb_flags |= SB_NOUSER;
710		fc->global = true;
711	}
712	return ctx;
713}
714EXPORT_SYMBOL(init_pseudo);
715
716int simple_open(struct inode *inode, struct file *file)
717{
718	if (inode->i_private)
719		file->private_data = inode->i_private;
720	return 0;
721}
722EXPORT_SYMBOL(simple_open);
723
724int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
725{
726	struct inode *inode = d_inode(old_dentry);
727
728	inode_set_mtime_to_ts(dir,
729			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
730	inc_nlink(inode);
731	ihold(inode);
732	dget(dentry);
733	d_instantiate(dentry, inode);
734	return 0;
735}
736EXPORT_SYMBOL(simple_link);
737
738int simple_empty(struct dentry *dentry)
739{
740	struct dentry *child;
741	int ret = 0;
742
743	spin_lock(&dentry->d_lock);
744	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
745		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
746		if (simple_positive(child)) {
747			spin_unlock(&child->d_lock);
748			goto out;
749		}
750		spin_unlock(&child->d_lock);
751	}
752	ret = 1;
753out:
754	spin_unlock(&dentry->d_lock);
755	return ret;
756}
757EXPORT_SYMBOL(simple_empty);
758
759int simple_unlink(struct inode *dir, struct dentry *dentry)
760{
761	struct inode *inode = d_inode(dentry);
762
763	inode_set_mtime_to_ts(dir,
764			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
765	drop_nlink(inode);
766	dput(dentry);
767	return 0;
768}
769EXPORT_SYMBOL(simple_unlink);
770
771int simple_rmdir(struct inode *dir, struct dentry *dentry)
772{
773	if (!simple_empty(dentry))
774		return -ENOTEMPTY;
775
776	drop_nlink(d_inode(dentry));
777	simple_unlink(dir, dentry);
778	drop_nlink(dir);
779	return 0;
780}
781EXPORT_SYMBOL(simple_rmdir);
782
783/**
784 * simple_rename_timestamp - update the various inode timestamps for rename
785 * @old_dir: old parent directory
786 * @old_dentry: dentry that is being renamed
787 * @new_dir: new parent directory
788 * @new_dentry: target for rename
789 *
790 * POSIX mandates that the old and new parent directories have their ctime and
791 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
792 * their ctime updated.
793 */
794void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
795			     struct inode *new_dir, struct dentry *new_dentry)
796{
797	struct inode *newino = d_inode(new_dentry);
798
799	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
800	if (new_dir != old_dir)
801		inode_set_mtime_to_ts(new_dir,
802				      inode_set_ctime_current(new_dir));
803	inode_set_ctime_current(d_inode(old_dentry));
804	if (newino)
805		inode_set_ctime_current(newino);
806}
807EXPORT_SYMBOL_GPL(simple_rename_timestamp);
808
809int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
810			   struct inode *new_dir, struct dentry *new_dentry)
811{
812	bool old_is_dir = d_is_dir(old_dentry);
813	bool new_is_dir = d_is_dir(new_dentry);
814
815	if (old_dir != new_dir && old_is_dir != new_is_dir) {
816		if (old_is_dir) {
817			drop_nlink(old_dir);
818			inc_nlink(new_dir);
819		} else {
820			drop_nlink(new_dir);
821			inc_nlink(old_dir);
822		}
823	}
824	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
825	return 0;
826}
827EXPORT_SYMBOL_GPL(simple_rename_exchange);
828
829int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
830		  struct dentry *old_dentry, struct inode *new_dir,
831		  struct dentry *new_dentry, unsigned int flags)
832{
833	int they_are_dirs = d_is_dir(old_dentry);
834
835	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
836		return -EINVAL;
837
838	if (flags & RENAME_EXCHANGE)
839		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
840
841	if (!simple_empty(new_dentry))
842		return -ENOTEMPTY;
843
844	if (d_really_is_positive(new_dentry)) {
845		simple_unlink(new_dir, new_dentry);
846		if (they_are_dirs) {
847			drop_nlink(d_inode(new_dentry));
848			drop_nlink(old_dir);
849		}
850	} else if (they_are_dirs) {
851		drop_nlink(old_dir);
852		inc_nlink(new_dir);
853	}
854
855	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
856	return 0;
857}
858EXPORT_SYMBOL(simple_rename);
859
860/**
861 * simple_setattr - setattr for simple filesystem
862 * @idmap: idmap of the target mount
863 * @dentry: dentry
864 * @iattr: iattr structure
865 *
866 * Returns 0 on success, -error on failure.
867 *
868 * simple_setattr is a simple ->setattr implementation without a proper
869 * implementation of size changes.
870 *
871 * It can either be used for in-memory filesystems or special files
872 * on simple regular filesystems.  Anything that needs to change on-disk
873 * or wire state on size changes needs its own setattr method.
874 */
875int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
876		   struct iattr *iattr)
877{
878	struct inode *inode = d_inode(dentry);
879	int error;
880
881	error = setattr_prepare(idmap, dentry, iattr);
882	if (error)
883		return error;
884
885	if (iattr->ia_valid & ATTR_SIZE)
886		truncate_setsize(inode, iattr->ia_size);
887	setattr_copy(idmap, inode, iattr);
888	mark_inode_dirty(inode);
889	return 0;
890}
891EXPORT_SYMBOL(simple_setattr);
892
893static int simple_read_folio(struct file *file, struct folio *folio)
894{
895	folio_zero_range(folio, 0, folio_size(folio));
896	flush_dcache_folio(folio);
897	folio_mark_uptodate(folio);
898	folio_unlock(folio);
899	return 0;
900}
901
902int simple_write_begin(struct file *file, struct address_space *mapping,
903			loff_t pos, unsigned len,
904			struct page **pagep, void **fsdata)
905{
906	struct folio *folio;
907
908	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
909			mapping_gfp_mask(mapping));
910	if (IS_ERR(folio))
911		return PTR_ERR(folio);
912
913	*pagep = &folio->page;
914
915	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
916		size_t from = offset_in_folio(folio, pos);
917
918		folio_zero_segments(folio, 0, from,
919				from + len, folio_size(folio));
920	}
921	return 0;
922}
923EXPORT_SYMBOL(simple_write_begin);
924
925/**
926 * simple_write_end - .write_end helper for non-block-device FSes
927 * @file: See .write_end of address_space_operations
928 * @mapping: 		"
929 * @pos: 		"
930 * @len: 		"
931 * @copied: 		"
932 * @page: 		"
933 * @fsdata: 		"
934 *
935 * simple_write_end does the minimum needed for updating a page after writing is
936 * done. It has the same API signature as the .write_end of
937 * address_space_operations vector. So it can just be set onto .write_end for
938 * FSes that don't need any other processing. i_mutex is assumed to be held.
939 * Block based filesystems should use generic_write_end().
940 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
941 * is not called, so a filesystem that actually does store data in .write_inode
942 * should extend on what's done here with a call to mark_inode_dirty() in the
943 * case that i_size has changed.
944 *
945 * Use *ONLY* with simple_read_folio()
946 */
947static int simple_write_end(struct file *file, struct address_space *mapping,
948			loff_t pos, unsigned len, unsigned copied,
949			struct page *page, void *fsdata)
950{
951	struct folio *folio = page_folio(page);
952	struct inode *inode = folio->mapping->host;
953	loff_t last_pos = pos + copied;
954
955	/* zero the stale part of the folio if we did a short copy */
956	if (!folio_test_uptodate(folio)) {
957		if (copied < len) {
958			size_t from = offset_in_folio(folio, pos);
959
960			folio_zero_range(folio, from + copied, len - copied);
961		}
962		folio_mark_uptodate(folio);
963	}
964	/*
965	 * No need to use i_size_read() here, the i_size
966	 * cannot change under us because we hold the i_mutex.
967	 */
968	if (last_pos > inode->i_size)
969		i_size_write(inode, last_pos);
970
971	folio_mark_dirty(folio);
972	folio_unlock(folio);
973	folio_put(folio);
974
975	return copied;
976}
977
978/*
979 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
980 */
981const struct address_space_operations ram_aops = {
982	.read_folio	= simple_read_folio,
983	.write_begin	= simple_write_begin,
984	.write_end	= simple_write_end,
985	.dirty_folio	= noop_dirty_folio,
986};
987EXPORT_SYMBOL(ram_aops);
988
989/*
990 * the inodes created here are not hashed. If you use iunique to generate
991 * unique inode values later for this filesystem, then you must take care
992 * to pass it an appropriate max_reserved value to avoid collisions.
993 */
994int simple_fill_super(struct super_block *s, unsigned long magic,
995		      const struct tree_descr *files)
996{
997	struct inode *inode;
998	struct dentry *dentry;
999	int i;
1000
1001	s->s_blocksize = PAGE_SIZE;
1002	s->s_blocksize_bits = PAGE_SHIFT;
1003	s->s_magic = magic;
1004	s->s_op = &simple_super_operations;
1005	s->s_time_gran = 1;
1006
1007	inode = new_inode(s);
1008	if (!inode)
1009		return -ENOMEM;
1010	/*
1011	 * because the root inode is 1, the files array must not contain an
1012	 * entry at index 1
1013	 */
1014	inode->i_ino = 1;
1015	inode->i_mode = S_IFDIR | 0755;
1016	simple_inode_init_ts(inode);
1017	inode->i_op = &simple_dir_inode_operations;
1018	inode->i_fop = &simple_dir_operations;
1019	set_nlink(inode, 2);
1020	s->s_root = d_make_root(inode);
1021	if (!s->s_root)
1022		return -ENOMEM;
1023	for (i = 0; !files->name || files->name[0]; i++, files++) {
1024		if (!files->name)
1025			continue;
1026
1027		/* warn if it tries to conflict with the root inode */
1028		if (unlikely(i == 1))
1029			printk(KERN_WARNING "%s: %s passed in a files array"
1030				"with an index of 1!\n", __func__,
1031				s->s_type->name);
1032
1033		dentry = d_alloc_name(s->s_root, files->name);
1034		if (!dentry)
1035			return -ENOMEM;
1036		inode = new_inode(s);
1037		if (!inode) {
1038			dput(dentry);
1039			return -ENOMEM;
1040		}
1041		inode->i_mode = S_IFREG | files->mode;
1042		simple_inode_init_ts(inode);
1043		inode->i_fop = files->ops;
1044		inode->i_ino = i;
1045		d_add(dentry, inode);
1046	}
1047	return 0;
1048}
1049EXPORT_SYMBOL(simple_fill_super);
1050
1051static DEFINE_SPINLOCK(pin_fs_lock);
1052
1053int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1054{
1055	struct vfsmount *mnt = NULL;
1056	spin_lock(&pin_fs_lock);
1057	if (unlikely(!*mount)) {
1058		spin_unlock(&pin_fs_lock);
1059		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1060		if (IS_ERR(mnt))
1061			return PTR_ERR(mnt);
1062		spin_lock(&pin_fs_lock);
1063		if (!*mount)
1064			*mount = mnt;
1065	}
1066	mntget(*mount);
1067	++*count;
1068	spin_unlock(&pin_fs_lock);
1069	mntput(mnt);
1070	return 0;
1071}
1072EXPORT_SYMBOL(simple_pin_fs);
1073
1074void simple_release_fs(struct vfsmount **mount, int *count)
1075{
1076	struct vfsmount *mnt;
1077	spin_lock(&pin_fs_lock);
1078	mnt = *mount;
1079	if (!--*count)
1080		*mount = NULL;
1081	spin_unlock(&pin_fs_lock);
1082	mntput(mnt);
1083}
1084EXPORT_SYMBOL(simple_release_fs);
1085
1086/**
1087 * simple_read_from_buffer - copy data from the buffer to user space
1088 * @to: the user space buffer to read to
1089 * @count: the maximum number of bytes to read
1090 * @ppos: the current position in the buffer
1091 * @from: the buffer to read from
1092 * @available: the size of the buffer
1093 *
1094 * The simple_read_from_buffer() function reads up to @count bytes from the
1095 * buffer @from at offset @ppos into the user space address starting at @to.
1096 *
1097 * On success, the number of bytes read is returned and the offset @ppos is
1098 * advanced by this number, or negative value is returned on error.
1099 **/
1100ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1101				const void *from, size_t available)
1102{
1103	loff_t pos = *ppos;
1104	size_t ret;
1105
1106	if (pos < 0)
1107		return -EINVAL;
1108	if (pos >= available || !count)
1109		return 0;
1110	if (count > available - pos)
1111		count = available - pos;
1112	ret = copy_to_user(to, from + pos, count);
1113	if (ret == count)
1114		return -EFAULT;
1115	count -= ret;
1116	*ppos = pos + count;
1117	return count;
1118}
1119EXPORT_SYMBOL(simple_read_from_buffer);
1120
1121/**
1122 * simple_write_to_buffer - copy data from user space to the buffer
1123 * @to: the buffer to write to
1124 * @available: the size of the buffer
1125 * @ppos: the current position in the buffer
1126 * @from: the user space buffer to read from
1127 * @count: the maximum number of bytes to read
1128 *
1129 * The simple_write_to_buffer() function reads up to @count bytes from the user
1130 * space address starting at @from into the buffer @to at offset @ppos.
1131 *
1132 * On success, the number of bytes written is returned and the offset @ppos is
1133 * advanced by this number, or negative value is returned on error.
1134 **/
1135ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1136		const void __user *from, size_t count)
1137{
1138	loff_t pos = *ppos;
1139	size_t res;
1140
1141	if (pos < 0)
1142		return -EINVAL;
1143	if (pos >= available || !count)
1144		return 0;
1145	if (count > available - pos)
1146		count = available - pos;
1147	res = copy_from_user(to + pos, from, count);
1148	if (res == count)
1149		return -EFAULT;
1150	count -= res;
1151	*ppos = pos + count;
1152	return count;
1153}
1154EXPORT_SYMBOL(simple_write_to_buffer);
1155
1156/**
1157 * memory_read_from_buffer - copy data from the buffer
1158 * @to: the kernel space buffer to read to
1159 * @count: the maximum number of bytes to read
1160 * @ppos: the current position in the buffer
1161 * @from: the buffer to read from
1162 * @available: the size of the buffer
1163 *
1164 * The memory_read_from_buffer() function reads up to @count bytes from the
1165 * buffer @from at offset @ppos into the kernel space address starting at @to.
1166 *
1167 * On success, the number of bytes read is returned and the offset @ppos is
1168 * advanced by this number, or negative value is returned on error.
1169 **/
1170ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1171				const void *from, size_t available)
1172{
1173	loff_t pos = *ppos;
1174
1175	if (pos < 0)
1176		return -EINVAL;
1177	if (pos >= available)
1178		return 0;
1179	if (count > available - pos)
1180		count = available - pos;
1181	memcpy(to, from + pos, count);
1182	*ppos = pos + count;
1183
1184	return count;
1185}
1186EXPORT_SYMBOL(memory_read_from_buffer);
1187
1188/*
1189 * Transaction based IO.
1190 * The file expects a single write which triggers the transaction, and then
1191 * possibly a read which collects the result - which is stored in a
1192 * file-local buffer.
1193 */
1194
1195void simple_transaction_set(struct file *file, size_t n)
1196{
1197	struct simple_transaction_argresp *ar = file->private_data;
1198
1199	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1200
1201	/*
1202	 * The barrier ensures that ar->size will really remain zero until
1203	 * ar->data is ready for reading.
1204	 */
1205	smp_mb();
1206	ar->size = n;
1207}
1208EXPORT_SYMBOL(simple_transaction_set);
1209
1210char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1211{
1212	struct simple_transaction_argresp *ar;
1213	static DEFINE_SPINLOCK(simple_transaction_lock);
1214
1215	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1216		return ERR_PTR(-EFBIG);
1217
1218	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1219	if (!ar)
1220		return ERR_PTR(-ENOMEM);
1221
1222	spin_lock(&simple_transaction_lock);
1223
1224	/* only one write allowed per open */
1225	if (file->private_data) {
1226		spin_unlock(&simple_transaction_lock);
1227		free_page((unsigned long)ar);
1228		return ERR_PTR(-EBUSY);
1229	}
1230
1231	file->private_data = ar;
1232
1233	spin_unlock(&simple_transaction_lock);
1234
1235	if (copy_from_user(ar->data, buf, size))
1236		return ERR_PTR(-EFAULT);
1237
1238	return ar->data;
1239}
1240EXPORT_SYMBOL(simple_transaction_get);
1241
1242ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1243{
1244	struct simple_transaction_argresp *ar = file->private_data;
1245
1246	if (!ar)
1247		return 0;
1248	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1249}
1250EXPORT_SYMBOL(simple_transaction_read);
1251
1252int simple_transaction_release(struct inode *inode, struct file *file)
1253{
1254	free_page((unsigned long)file->private_data);
1255	return 0;
1256}
1257EXPORT_SYMBOL(simple_transaction_release);
1258
1259/* Simple attribute files */
1260
1261struct simple_attr {
1262	int (*get)(void *, u64 *);
1263	int (*set)(void *, u64);
1264	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1265	char set_buf[24];
1266	void *data;
1267	const char *fmt;	/* format for read operation */
1268	struct mutex mutex;	/* protects access to these buffers */
1269};
1270
1271/* simple_attr_open is called by an actual attribute open file operation
1272 * to set the attribute specific access operations. */
1273int simple_attr_open(struct inode *inode, struct file *file,
1274		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1275		     const char *fmt)
1276{
1277	struct simple_attr *attr;
1278
1279	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1280	if (!attr)
1281		return -ENOMEM;
1282
1283	attr->get = get;
1284	attr->set = set;
1285	attr->data = inode->i_private;
1286	attr->fmt = fmt;
1287	mutex_init(&attr->mutex);
1288
1289	file->private_data = attr;
1290
1291	return nonseekable_open(inode, file);
1292}
1293EXPORT_SYMBOL_GPL(simple_attr_open);
1294
1295int simple_attr_release(struct inode *inode, struct file *file)
1296{
1297	kfree(file->private_data);
1298	return 0;
1299}
1300EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1301
1302/* read from the buffer that is filled with the get function */
1303ssize_t simple_attr_read(struct file *file, char __user *buf,
1304			 size_t len, loff_t *ppos)
1305{
1306	struct simple_attr *attr;
1307	size_t size;
1308	ssize_t ret;
1309
1310	attr = file->private_data;
1311
1312	if (!attr->get)
1313		return -EACCES;
1314
1315	ret = mutex_lock_interruptible(&attr->mutex);
1316	if (ret)
1317		return ret;
1318
1319	if (*ppos && attr->get_buf[0]) {
1320		/* continued read */
1321		size = strlen(attr->get_buf);
1322	} else {
1323		/* first read */
1324		u64 val;
1325		ret = attr->get(attr->data, &val);
1326		if (ret)
1327			goto out;
1328
1329		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1330				 attr->fmt, (unsigned long long)val);
1331	}
1332
1333	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1334out:
1335	mutex_unlock(&attr->mutex);
1336	return ret;
1337}
1338EXPORT_SYMBOL_GPL(simple_attr_read);
1339
1340/* interpret the buffer as a number to call the set function with */
1341static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1342			  size_t len, loff_t *ppos, bool is_signed)
1343{
1344	struct simple_attr *attr;
1345	unsigned long long val;
1346	size_t size;
1347	ssize_t ret;
1348
1349	attr = file->private_data;
1350	if (!attr->set)
1351		return -EACCES;
1352
1353	ret = mutex_lock_interruptible(&attr->mutex);
1354	if (ret)
1355		return ret;
1356
1357	ret = -EFAULT;
1358	size = min(sizeof(attr->set_buf) - 1, len);
1359	if (copy_from_user(attr->set_buf, buf, size))
1360		goto out;
1361
1362	attr->set_buf[size] = '\0';
1363	if (is_signed)
1364		ret = kstrtoll(attr->set_buf, 0, &val);
1365	else
1366		ret = kstrtoull(attr->set_buf, 0, &val);
1367	if (ret)
1368		goto out;
1369	ret = attr->set(attr->data, val);
1370	if (ret == 0)
1371		ret = len; /* on success, claim we got the whole input */
1372out:
1373	mutex_unlock(&attr->mutex);
1374	return ret;
1375}
1376
1377ssize_t simple_attr_write(struct file *file, const char __user *buf,
1378			  size_t len, loff_t *ppos)
1379{
1380	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1381}
1382EXPORT_SYMBOL_GPL(simple_attr_write);
1383
1384ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1385			  size_t len, loff_t *ppos)
1386{
1387	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1388}
1389EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1390
1391/**
1392 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1393 * @inode:   the object to encode
1394 * @fh:      where to store the file handle fragment
1395 * @max_len: maximum length to store there (in 4 byte units)
1396 * @parent:  parent directory inode, if wanted
1397 *
1398 * This generic encode_fh function assumes that the 32 inode number
1399 * is suitable for locating an inode, and that the generation number
1400 * can be used to check that it is still valid.  It places them in the
1401 * filehandle fragment where export_decode_fh expects to find them.
1402 */
1403int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1404			    struct inode *parent)
1405{
1406	struct fid *fid = (void *)fh;
1407	int len = *max_len;
1408	int type = FILEID_INO32_GEN;
1409
1410	if (parent && (len < 4)) {
1411		*max_len = 4;
1412		return FILEID_INVALID;
1413	} else if (len < 2) {
1414		*max_len = 2;
1415		return FILEID_INVALID;
1416	}
1417
1418	len = 2;
1419	fid->i32.ino = inode->i_ino;
1420	fid->i32.gen = inode->i_generation;
1421	if (parent) {
1422		fid->i32.parent_ino = parent->i_ino;
1423		fid->i32.parent_gen = parent->i_generation;
1424		len = 4;
1425		type = FILEID_INO32_GEN_PARENT;
1426	}
1427	*max_len = len;
1428	return type;
1429}
1430EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1431
1432/**
1433 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1434 * @sb:		filesystem to do the file handle conversion on
1435 * @fid:	file handle to convert
1436 * @fh_len:	length of the file handle in bytes
1437 * @fh_type:	type of file handle
1438 * @get_inode:	filesystem callback to retrieve inode
1439 *
1440 * This function decodes @fid as long as it has one of the well-known
1441 * Linux filehandle types and calls @get_inode on it to retrieve the
1442 * inode for the object specified in the file handle.
1443 */
1444struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1445		int fh_len, int fh_type, struct inode *(*get_inode)
1446			(struct super_block *sb, u64 ino, u32 gen))
1447{
1448	struct inode *inode = NULL;
1449
1450	if (fh_len < 2)
1451		return NULL;
1452
1453	switch (fh_type) {
1454	case FILEID_INO32_GEN:
1455	case FILEID_INO32_GEN_PARENT:
1456		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1457		break;
1458	}
1459
1460	return d_obtain_alias(inode);
1461}
1462EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1463
1464/**
1465 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1466 * @sb:		filesystem to do the file handle conversion on
1467 * @fid:	file handle to convert
1468 * @fh_len:	length of the file handle in bytes
1469 * @fh_type:	type of file handle
1470 * @get_inode:	filesystem callback to retrieve inode
1471 *
1472 * This function decodes @fid as long as it has one of the well-known
1473 * Linux filehandle types and calls @get_inode on it to retrieve the
1474 * inode for the _parent_ object specified in the file handle if it
1475 * is specified in the file handle, or NULL otherwise.
1476 */
1477struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1478		int fh_len, int fh_type, struct inode *(*get_inode)
1479			(struct super_block *sb, u64 ino, u32 gen))
1480{
1481	struct inode *inode = NULL;
1482
1483	if (fh_len <= 2)
1484		return NULL;
1485
1486	switch (fh_type) {
1487	case FILEID_INO32_GEN_PARENT:
1488		inode = get_inode(sb, fid->i32.parent_ino,
1489				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1490		break;
1491	}
1492
1493	return d_obtain_alias(inode);
1494}
1495EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1496
1497/**
1498 * __generic_file_fsync - generic fsync implementation for simple filesystems
1499 *
1500 * @file:	file to synchronize
1501 * @start:	start offset in bytes
1502 * @end:	end offset in bytes (inclusive)
1503 * @datasync:	only synchronize essential metadata if true
1504 *
1505 * This is a generic implementation of the fsync method for simple
1506 * filesystems which track all non-inode metadata in the buffers list
1507 * hanging off the address_space structure.
1508 */
1509int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1510				 int datasync)
1511{
1512	struct inode *inode = file->f_mapping->host;
1513	int err;
1514	int ret;
1515
1516	err = file_write_and_wait_range(file, start, end);
1517	if (err)
1518		return err;
1519
1520	inode_lock(inode);
1521	ret = sync_mapping_buffers(inode->i_mapping);
1522	if (!(inode->i_state & I_DIRTY_ALL))
1523		goto out;
1524	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1525		goto out;
1526
1527	err = sync_inode_metadata(inode, 1);
1528	if (ret == 0)
1529		ret = err;
1530
1531out:
1532	inode_unlock(inode);
1533	/* check and advance again to catch errors after syncing out buffers */
1534	err = file_check_and_advance_wb_err(file);
1535	if (ret == 0)
1536		ret = err;
1537	return ret;
1538}
1539EXPORT_SYMBOL(__generic_file_fsync);
1540
1541/**
1542 * generic_file_fsync - generic fsync implementation for simple filesystems
1543 *			with flush
1544 * @file:	file to synchronize
1545 * @start:	start offset in bytes
1546 * @end:	end offset in bytes (inclusive)
1547 * @datasync:	only synchronize essential metadata if true
1548 *
1549 */
1550
1551int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1552		       int datasync)
1553{
1554	struct inode *inode = file->f_mapping->host;
1555	int err;
1556
1557	err = __generic_file_fsync(file, start, end, datasync);
1558	if (err)
1559		return err;
1560	return blkdev_issue_flush(inode->i_sb->s_bdev);
1561}
1562EXPORT_SYMBOL(generic_file_fsync);
1563
1564/**
1565 * generic_check_addressable - Check addressability of file system
1566 * @blocksize_bits:	log of file system block size
1567 * @num_blocks:		number of blocks in file system
1568 *
1569 * Determine whether a file system with @num_blocks blocks (and a
1570 * block size of 2**@blocksize_bits) is addressable by the sector_t
1571 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1572 */
1573int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1574{
1575	u64 last_fs_block = num_blocks - 1;
1576	u64 last_fs_page =
1577		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1578
1579	if (unlikely(num_blocks == 0))
1580		return 0;
1581
1582	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1583		return -EINVAL;
1584
1585	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1586	    (last_fs_page > (pgoff_t)(~0ULL))) {
1587		return -EFBIG;
1588	}
1589	return 0;
1590}
1591EXPORT_SYMBOL(generic_check_addressable);
1592
1593/*
1594 * No-op implementation of ->fsync for in-memory filesystems.
1595 */
1596int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1597{
1598	return 0;
1599}
1600EXPORT_SYMBOL(noop_fsync);
1601
1602ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1603{
1604	/*
1605	 * iomap based filesystems support direct I/O without need for
1606	 * this callback. However, it still needs to be set in
1607	 * inode->a_ops so that open/fcntl know that direct I/O is
1608	 * generally supported.
1609	 */
1610	return -EINVAL;
1611}
1612EXPORT_SYMBOL_GPL(noop_direct_IO);
1613
1614/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1615void kfree_link(void *p)
1616{
1617	kfree(p);
1618}
1619EXPORT_SYMBOL(kfree_link);
1620
1621struct inode *alloc_anon_inode(struct super_block *s)
1622{
1623	static const struct address_space_operations anon_aops = {
1624		.dirty_folio	= noop_dirty_folio,
1625	};
1626	struct inode *inode = new_inode_pseudo(s);
1627
1628	if (!inode)
1629		return ERR_PTR(-ENOMEM);
1630
1631	inode->i_ino = get_next_ino();
1632	inode->i_mapping->a_ops = &anon_aops;
1633
1634	/*
1635	 * Mark the inode dirty from the very beginning,
1636	 * that way it will never be moved to the dirty
1637	 * list because mark_inode_dirty() will think
1638	 * that it already _is_ on the dirty list.
1639	 */
1640	inode->i_state = I_DIRTY;
1641	inode->i_mode = S_IRUSR | S_IWUSR;
1642	inode->i_uid = current_fsuid();
1643	inode->i_gid = current_fsgid();
1644	inode->i_flags |= S_PRIVATE;
1645	simple_inode_init_ts(inode);
1646	return inode;
1647}
1648EXPORT_SYMBOL(alloc_anon_inode);
1649
1650/**
1651 * simple_nosetlease - generic helper for prohibiting leases
1652 * @filp: file pointer
1653 * @arg: type of lease to obtain
1654 * @flp: new lease supplied for insertion
1655 * @priv: private data for lm_setup operation
1656 *
1657 * Generic helper for filesystems that do not wish to allow leases to be set.
1658 * All arguments are ignored and it just returns -EINVAL.
1659 */
1660int
1661simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1662		  void **priv)
1663{
1664	return -EINVAL;
1665}
1666EXPORT_SYMBOL(simple_nosetlease);
1667
1668/**
1669 * simple_get_link - generic helper to get the target of "fast" symlinks
1670 * @dentry: not used here
1671 * @inode: the symlink inode
1672 * @done: not used here
1673 *
1674 * Generic helper for filesystems to use for symlink inodes where a pointer to
1675 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1676 * since as an optimization the path lookup code uses any non-NULL ->i_link
1677 * directly, without calling ->get_link().  But ->get_link() still must be set,
1678 * to mark the inode_operations as being for a symlink.
1679 *
1680 * Return: the symlink target
1681 */
1682const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1683			    struct delayed_call *done)
1684{
1685	return inode->i_link;
1686}
1687EXPORT_SYMBOL(simple_get_link);
1688
1689const struct inode_operations simple_symlink_inode_operations = {
1690	.get_link = simple_get_link,
1691};
1692EXPORT_SYMBOL(simple_symlink_inode_operations);
1693
1694/*
1695 * Operations for a permanently empty directory.
1696 */
1697static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1698{
1699	return ERR_PTR(-ENOENT);
1700}
1701
1702static int empty_dir_getattr(struct mnt_idmap *idmap,
1703			     const struct path *path, struct kstat *stat,
1704			     u32 request_mask, unsigned int query_flags)
1705{
1706	struct inode *inode = d_inode(path->dentry);
1707	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1708	return 0;
1709}
1710
1711static int empty_dir_setattr(struct mnt_idmap *idmap,
1712			     struct dentry *dentry, struct iattr *attr)
1713{
1714	return -EPERM;
1715}
1716
1717static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1718{
1719	return -EOPNOTSUPP;
1720}
1721
1722static const struct inode_operations empty_dir_inode_operations = {
1723	.lookup		= empty_dir_lookup,
1724	.permission	= generic_permission,
1725	.setattr	= empty_dir_setattr,
1726	.getattr	= empty_dir_getattr,
1727	.listxattr	= empty_dir_listxattr,
1728};
1729
1730static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1731{
1732	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1733	return generic_file_llseek_size(file, offset, whence, 2, 2);
1734}
1735
1736static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1737{
1738	dir_emit_dots(file, ctx);
1739	return 0;
1740}
1741
1742static const struct file_operations empty_dir_operations = {
1743	.llseek		= empty_dir_llseek,
1744	.read		= generic_read_dir,
1745	.iterate_shared	= empty_dir_readdir,
1746	.fsync		= noop_fsync,
1747};
1748
1749
1750void make_empty_dir_inode(struct inode *inode)
1751{
1752	set_nlink(inode, 2);
1753	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1754	inode->i_uid = GLOBAL_ROOT_UID;
1755	inode->i_gid = GLOBAL_ROOT_GID;
1756	inode->i_rdev = 0;
1757	inode->i_size = 0;
1758	inode->i_blkbits = PAGE_SHIFT;
1759	inode->i_blocks = 0;
1760
1761	inode->i_op = &empty_dir_inode_operations;
1762	inode->i_opflags &= ~IOP_XATTR;
1763	inode->i_fop = &empty_dir_operations;
1764}
1765
1766bool is_empty_dir_inode(struct inode *inode)
1767{
1768	return (inode->i_fop == &empty_dir_operations) &&
1769		(inode->i_op == &empty_dir_inode_operations);
1770}
1771
1772#if IS_ENABLED(CONFIG_UNICODE)
1773/**
1774 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1775 * @dentry:	dentry whose name we are checking against
1776 * @len:	len of name of dentry
1777 * @str:	str pointer to name of dentry
1778 * @name:	Name to compare against
1779 *
1780 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1781 */
1782static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1783				const char *str, const struct qstr *name)
1784{
1785	const struct dentry *parent;
1786	const struct inode *dir;
1787	char strbuf[DNAME_INLINE_LEN];
1788	struct qstr qstr;
1789
1790	/*
1791	 * Attempt a case-sensitive match first. It is cheaper and
1792	 * should cover most lookups, including all the sane
1793	 * applications that expect a case-sensitive filesystem.
1794	 *
1795	 * This comparison is safe under RCU because the caller
1796	 * guarantees the consistency between str and len. See
1797	 * __d_lookup_rcu_op_compare() for details.
1798	 */
1799	if (len == name->len && !memcmp(str, name->name, len))
1800		return 0;
1801
1802	parent = READ_ONCE(dentry->d_parent);
1803	dir = READ_ONCE(parent->d_inode);
1804	if (!dir || !IS_CASEFOLDED(dir))
1805		return 1;
1806
1807	/*
1808	 * If the dentry name is stored in-line, then it may be concurrently
1809	 * modified by a rename.  If this happens, the VFS will eventually retry
1810	 * the lookup, so it doesn't matter what ->d_compare() returns.
1811	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1812	 * string.  Therefore, we have to copy the name into a temporary buffer.
1813	 */
1814	if (len <= DNAME_INLINE_LEN - 1) {
1815		memcpy(strbuf, str, len);
1816		strbuf[len] = 0;
1817		str = strbuf;
1818		/* prevent compiler from optimizing out the temporary buffer */
1819		barrier();
1820	}
1821	qstr.len = len;
1822	qstr.name = str;
1823
1824	return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1825}
1826
1827/**
1828 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1829 * @dentry:	dentry of the parent directory
1830 * @str:	qstr of name whose hash we should fill in
1831 *
1832 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1833 */
1834static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1835{
1836	const struct inode *dir = READ_ONCE(dentry->d_inode);
1837	struct super_block *sb = dentry->d_sb;
1838	const struct unicode_map *um = sb->s_encoding;
1839	int ret;
1840
1841	if (!dir || !IS_CASEFOLDED(dir))
1842		return 0;
1843
1844	ret = utf8_casefold_hash(um, dentry, str);
1845	if (ret < 0 && sb_has_strict_encoding(sb))
1846		return -EINVAL;
1847	return 0;
1848}
1849
1850static const struct dentry_operations generic_ci_dentry_ops = {
1851	.d_hash = generic_ci_d_hash,
1852	.d_compare = generic_ci_d_compare,
1853#ifdef CONFIG_FS_ENCRYPTION
1854	.d_revalidate = fscrypt_d_revalidate,
1855#endif
1856};
1857#endif
1858
1859#ifdef CONFIG_FS_ENCRYPTION
1860static const struct dentry_operations generic_encrypted_dentry_ops = {
1861	.d_revalidate = fscrypt_d_revalidate,
1862};
1863#endif
1864
1865/**
1866 * generic_set_sb_d_ops - helper for choosing the set of
1867 * filesystem-wide dentry operations for the enabled features
1868 * @sb: superblock to be configured
1869 *
1870 * Filesystems supporting casefolding and/or fscrypt can call this
1871 * helper at mount-time to configure sb->s_d_op to best set of dentry
1872 * operations required for the enabled features. The helper must be
1873 * called after these have been configured, but before the root dentry
1874 * is created.
1875 */
1876void generic_set_sb_d_ops(struct super_block *sb)
1877{
1878#if IS_ENABLED(CONFIG_UNICODE)
1879	if (sb->s_encoding) {
1880		sb->s_d_op = &generic_ci_dentry_ops;
1881		return;
1882	}
1883#endif
1884#ifdef CONFIG_FS_ENCRYPTION
1885	if (sb->s_cop) {
1886		sb->s_d_op = &generic_encrypted_dentry_ops;
1887		return;
1888	}
1889#endif
1890}
1891EXPORT_SYMBOL(generic_set_sb_d_ops);
1892
1893/**
1894 * inode_maybe_inc_iversion - increments i_version
1895 * @inode: inode with the i_version that should be updated
1896 * @force: increment the counter even if it's not necessary?
1897 *
1898 * Every time the inode is modified, the i_version field must be seen to have
1899 * changed by any observer.
1900 *
1901 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1902 * the value, and clear the queried flag.
1903 *
1904 * In the common case where neither is set, then we can return "false" without
1905 * updating i_version.
1906 *
1907 * If this function returns false, and no other metadata has changed, then we
1908 * can avoid logging the metadata.
1909 */
1910bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1911{
1912	u64 cur, new;
1913
1914	/*
1915	 * The i_version field is not strictly ordered with any other inode
1916	 * information, but the legacy inode_inc_iversion code used a spinlock
1917	 * to serialize increments.
1918	 *
1919	 * Here, we add full memory barriers to ensure that any de-facto
1920	 * ordering with other info is preserved.
1921	 *
1922	 * This barrier pairs with the barrier in inode_query_iversion()
1923	 */
1924	smp_mb();
1925	cur = inode_peek_iversion_raw(inode);
1926	do {
1927		/* If flag is clear then we needn't do anything */
1928		if (!force && !(cur & I_VERSION_QUERIED))
1929			return false;
1930
1931		/* Since lowest bit is flag, add 2 to avoid it */
1932		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1933	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1934	return true;
1935}
1936EXPORT_SYMBOL(inode_maybe_inc_iversion);
1937
1938/**
1939 * inode_query_iversion - read i_version for later use
1940 * @inode: inode from which i_version should be read
1941 *
1942 * Read the inode i_version counter. This should be used by callers that wish
1943 * to store the returned i_version for later comparison. This will guarantee
1944 * that a later query of the i_version will result in a different value if
1945 * anything has changed.
1946 *
1947 * In this implementation, we fetch the current value, set the QUERIED flag and
1948 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1949 * that fails, we try again with the newly fetched value from the cmpxchg.
1950 */
1951u64 inode_query_iversion(struct inode *inode)
1952{
1953	u64 cur, new;
1954
1955	cur = inode_peek_iversion_raw(inode);
1956	do {
1957		/* If flag is already set, then no need to swap */
1958		if (cur & I_VERSION_QUERIED) {
1959			/*
1960			 * This barrier (and the implicit barrier in the
1961			 * cmpxchg below) pairs with the barrier in
1962			 * inode_maybe_inc_iversion().
1963			 */
1964			smp_mb();
1965			break;
1966		}
1967
1968		new = cur | I_VERSION_QUERIED;
1969	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1970	return cur >> I_VERSION_QUERIED_SHIFT;
1971}
1972EXPORT_SYMBOL(inode_query_iversion);
1973
1974ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1975		ssize_t direct_written, ssize_t buffered_written)
1976{
1977	struct address_space *mapping = iocb->ki_filp->f_mapping;
1978	loff_t pos = iocb->ki_pos - buffered_written;
1979	loff_t end = iocb->ki_pos - 1;
1980	int err;
1981
1982	/*
1983	 * If the buffered write fallback returned an error, we want to return
1984	 * the number of bytes which were written by direct I/O, or the error
1985	 * code if that was zero.
1986	 *
1987	 * Note that this differs from normal direct-io semantics, which will
1988	 * return -EFOO even if some bytes were written.
1989	 */
1990	if (unlikely(buffered_written < 0)) {
1991		if (direct_written)
1992			return direct_written;
1993		return buffered_written;
1994	}
1995
1996	/*
1997	 * We need to ensure that the page cache pages are written to disk and
1998	 * invalidated to preserve the expected O_DIRECT semantics.
1999	 */
2000	err = filemap_write_and_wait_range(mapping, pos, end);
2001	if (err < 0) {
2002		/*
2003		 * We don't know how much we wrote, so just return the number of
2004		 * bytes which were direct-written
2005		 */
2006		iocb->ki_pos -= buffered_written;
2007		if (direct_written)
2008			return direct_written;
2009		return err;
2010	}
2011	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2012	return direct_written + buffered_written;
2013}
2014EXPORT_SYMBOL_GPL(direct_write_fallback);
2015
2016/**
2017 * simple_inode_init_ts - initialize the timestamps for a new inode
2018 * @inode: inode to be initialized
2019 *
2020 * When a new inode is created, most filesystems set the timestamps to the
2021 * current time. Add a helper to do this.
2022 */
2023struct timespec64 simple_inode_init_ts(struct inode *inode)
2024{
2025	struct timespec64 ts = inode_set_ctime_current(inode);
2026
2027	inode_set_atime_to_ts(inode, ts);
2028	inode_set_mtime_to_ts(inode, ts);
2029	return ts;
2030}
2031EXPORT_SYMBOL(simple_inode_init_ts);
2032
2033static inline struct dentry *get_stashed_dentry(struct dentry *stashed)
2034{
2035	struct dentry *dentry;
2036
2037	guard(rcu)();
2038	dentry = READ_ONCE(stashed);
2039	if (!dentry)
2040		return NULL;
2041	if (!lockref_get_not_dead(&dentry->d_lockref))
2042		return NULL;
2043	return dentry;
2044}
2045
2046static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2047					  struct super_block *sb,
2048					  void *data)
2049{
2050	struct dentry *dentry;
2051	struct inode *inode;
2052	const struct stashed_operations *sops = sb->s_fs_info;
2053	int ret;
2054
2055	inode = new_inode_pseudo(sb);
2056	if (!inode) {
2057		sops->put_data(data);
2058		return ERR_PTR(-ENOMEM);
2059	}
2060
2061	inode->i_flags |= S_IMMUTABLE;
2062	inode->i_mode = S_IFREG;
2063	simple_inode_init_ts(inode);
2064
2065	ret = sops->init_inode(inode, data);
2066	if (ret < 0) {
2067		iput(inode);
2068		return ERR_PTR(ret);
2069	}
2070
2071	/* Notice when this is changed. */
2072	WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2073	WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2074
2075	dentry = d_alloc_anon(sb);
2076	if (!dentry) {
2077		iput(inode);
2078		return ERR_PTR(-ENOMEM);
2079	}
2080
2081	/* Store address of location where dentry's supposed to be stashed. */
2082	dentry->d_fsdata = stashed;
2083
2084	/* @data is now owned by the fs */
2085	d_instantiate(dentry, inode);
2086	return dentry;
2087}
2088
2089static struct dentry *stash_dentry(struct dentry **stashed,
2090				   struct dentry *dentry)
2091{
2092	guard(rcu)();
2093	for (;;) {
2094		struct dentry *old;
2095
2096		/* Assume any old dentry was cleared out. */
2097		old = cmpxchg(stashed, NULL, dentry);
2098		if (likely(!old))
2099			return dentry;
2100
2101		/* Check if somebody else installed a reusable dentry. */
2102		if (lockref_get_not_dead(&old->d_lockref))
2103			return old;
2104
2105		/* There's an old dead dentry there, try to take it over. */
2106		if (likely(try_cmpxchg(stashed, &old, dentry)))
2107			return dentry;
2108	}
2109}
2110
2111/**
2112 * path_from_stashed - create path from stashed or new dentry
2113 * @stashed:    where to retrieve or stash dentry
2114 * @mnt:        mnt of the filesystems to use
2115 * @data:       data to store in inode->i_private
2116 * @path:       path to create
2117 *
2118 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2119 * is still valid then it will be reused. If the dentry isn't able the function
2120 * will allocate a new dentry and inode. It will then check again whether it
2121 * can reuse an existing dentry in case one has been added in the meantime or
2122 * update @stashed with the newly added dentry.
2123 *
2124 * Special-purpose helper for nsfs and pidfs.
2125 *
2126 * Return: On success zero and on failure a negative error is returned.
2127 */
2128int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2129		      struct path *path)
2130{
2131	struct dentry *dentry;
2132	const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2133
2134	/* See if dentry can be reused. */
2135	path->dentry = get_stashed_dentry(*stashed);
2136	if (path->dentry) {
2137		sops->put_data(data);
2138		goto out_path;
2139	}
2140
2141	/* Allocate a new dentry. */
2142	dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2143	if (IS_ERR(dentry))
2144		return PTR_ERR(dentry);
2145
2146	/* Added a new dentry. @data is now owned by the filesystem. */
2147	path->dentry = stash_dentry(stashed, dentry);
2148	if (path->dentry != dentry)
2149		dput(dentry);
2150
2151out_path:
2152	WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2153	WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2154	path->mnt = mntget(mnt);
2155	return 0;
2156}
2157
2158void stashed_dentry_prune(struct dentry *dentry)
2159{
2160	struct dentry **stashed = dentry->d_fsdata;
2161	struct inode *inode = d_inode(dentry);
2162
2163	if (WARN_ON_ONCE(!stashed))
2164		return;
2165
2166	if (!inode)
2167		return;
2168
2169	/*
2170	 * Only replace our own @dentry as someone else might've
2171	 * already cleared out @dentry and stashed their own
2172	 * dentry in there.
2173	 */
2174	cmpxchg(stashed, dentry, NULL);
2175}
2176