1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/sched/mm.h>
13#include <linux/prefetch.h>
14#include <linux/kthread.h>
15#include <linux/swap.h>
16#include <linux/timer.h>
17#include <linux/freezer.h>
18#include <linux/sched/signal.h>
19#include <linux/random.h>
20
21#include "f2fs.h"
22#include "segment.h"
23#include "node.h"
24#include "gc.h"
25#include "iostat.h"
26#include <trace/events/f2fs.h>
27
28#define __reverse_ffz(x) __reverse_ffs(~(x))
29
30static struct kmem_cache *discard_entry_slab;
31static struct kmem_cache *discard_cmd_slab;
32static struct kmem_cache *sit_entry_set_slab;
33static struct kmem_cache *revoke_entry_slab;
34
35static unsigned long __reverse_ulong(unsigned char *str)
36{
37	unsigned long tmp = 0;
38	int shift = 24, idx = 0;
39
40#if BITS_PER_LONG == 64
41	shift = 56;
42#endif
43	while (shift >= 0) {
44		tmp |= (unsigned long)str[idx++] << shift;
45		shift -= BITS_PER_BYTE;
46	}
47	return tmp;
48}
49
50/*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
54static inline unsigned long __reverse_ffs(unsigned long word)
55{
56	int num = 0;
57
58#if BITS_PER_LONG == 64
59	if ((word & 0xffffffff00000000UL) == 0)
60		num += 32;
61	else
62		word >>= 32;
63#endif
64	if ((word & 0xffff0000) == 0)
65		num += 16;
66	else
67		word >>= 16;
68
69	if ((word & 0xff00) == 0)
70		num += 8;
71	else
72		word >>= 8;
73
74	if ((word & 0xf0) == 0)
75		num += 4;
76	else
77		word >>= 4;
78
79	if ((word & 0xc) == 0)
80		num += 2;
81	else
82		word >>= 2;
83
84	if ((word & 0x2) == 0)
85		num += 1;
86	return num;
87}
88
89/*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 *                             MSB <--> LSB
95 *   f2fs_set_bit(0, bitmap) => 1000 0000
96 *   f2fs_set_bit(7, bitmap) => 0000 0001
97 */
98static unsigned long __find_rev_next_bit(const unsigned long *addr,
99			unsigned long size, unsigned long offset)
100{
101	const unsigned long *p = addr + BIT_WORD(offset);
102	unsigned long result = size;
103	unsigned long tmp;
104
105	if (offset >= size)
106		return size;
107
108	size -= (offset & ~(BITS_PER_LONG - 1));
109	offset %= BITS_PER_LONG;
110
111	while (1) {
112		if (*p == 0)
113			goto pass;
114
115		tmp = __reverse_ulong((unsigned char *)p);
116
117		tmp &= ~0UL >> offset;
118		if (size < BITS_PER_LONG)
119			tmp &= (~0UL << (BITS_PER_LONG - size));
120		if (tmp)
121			goto found;
122pass:
123		if (size <= BITS_PER_LONG)
124			break;
125		size -= BITS_PER_LONG;
126		offset = 0;
127		p++;
128	}
129	return result;
130found:
131	return result - size + __reverse_ffs(tmp);
132}
133
134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135			unsigned long size, unsigned long offset)
136{
137	const unsigned long *p = addr + BIT_WORD(offset);
138	unsigned long result = size;
139	unsigned long tmp;
140
141	if (offset >= size)
142		return size;
143
144	size -= (offset & ~(BITS_PER_LONG - 1));
145	offset %= BITS_PER_LONG;
146
147	while (1) {
148		if (*p == ~0UL)
149			goto pass;
150
151		tmp = __reverse_ulong((unsigned char *)p);
152
153		if (offset)
154			tmp |= ~0UL << (BITS_PER_LONG - offset);
155		if (size < BITS_PER_LONG)
156			tmp |= ~0UL >> size;
157		if (tmp != ~0UL)
158			goto found;
159pass:
160		if (size <= BITS_PER_LONG)
161			break;
162		size -= BITS_PER_LONG;
163		offset = 0;
164		p++;
165	}
166	return result;
167found:
168	return result - size + __reverse_ffz(tmp);
169}
170
171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172{
173	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177	if (f2fs_lfs_mode(sbi))
178		return false;
179	if (sbi->gc_mode == GC_URGENT_HIGH)
180		return true;
181	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182		return true;
183
184	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186}
187
188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189{
190	struct f2fs_inode_info *fi = F2FS_I(inode);
191
192	if (!f2fs_is_atomic_file(inode))
193		return;
194
195	if (clean)
196		truncate_inode_pages_final(inode->i_mapping);
197
198	release_atomic_write_cnt(inode);
199	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201	clear_inode_flag(inode, FI_ATOMIC_FILE);
202	stat_dec_atomic_inode(inode);
203
204	F2FS_I(inode)->atomic_write_task = NULL;
205
206	if (clean) {
207		f2fs_i_size_write(inode, fi->original_i_size);
208		fi->original_i_size = 0;
209	}
210	/* avoid stale dirty inode during eviction */
211	sync_inode_metadata(inode, 0);
212}
213
214static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
215			block_t new_addr, block_t *old_addr, bool recover)
216{
217	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218	struct dnode_of_data dn;
219	struct node_info ni;
220	int err;
221
222retry:
223	set_new_dnode(&dn, inode, NULL, NULL, 0);
224	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
225	if (err) {
226		if (err == -ENOMEM) {
227			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
228			goto retry;
229		}
230		return err;
231	}
232
233	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
234	if (err) {
235		f2fs_put_dnode(&dn);
236		return err;
237	}
238
239	if (recover) {
240		/* dn.data_blkaddr is always valid */
241		if (!__is_valid_data_blkaddr(new_addr)) {
242			if (new_addr == NULL_ADDR)
243				dec_valid_block_count(sbi, inode, 1);
244			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
245			f2fs_update_data_blkaddr(&dn, new_addr);
246		} else {
247			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
248				new_addr, ni.version, true, true);
249		}
250	} else {
251		blkcnt_t count = 1;
252
253		err = inc_valid_block_count(sbi, inode, &count, true);
254		if (err) {
255			f2fs_put_dnode(&dn);
256			return err;
257		}
258
259		*old_addr = dn.data_blkaddr;
260		f2fs_truncate_data_blocks_range(&dn, 1);
261		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
262
263		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
264					ni.version, true, false);
265	}
266
267	f2fs_put_dnode(&dn);
268
269	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
270			index, old_addr ? *old_addr : 0, new_addr, recover);
271	return 0;
272}
273
274static void __complete_revoke_list(struct inode *inode, struct list_head *head,
275					bool revoke)
276{
277	struct revoke_entry *cur, *tmp;
278	pgoff_t start_index = 0;
279	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
280
281	list_for_each_entry_safe(cur, tmp, head, list) {
282		if (revoke) {
283			__replace_atomic_write_block(inode, cur->index,
284						cur->old_addr, NULL, true);
285		} else if (truncate) {
286			f2fs_truncate_hole(inode, start_index, cur->index);
287			start_index = cur->index + 1;
288		}
289
290		list_del(&cur->list);
291		kmem_cache_free(revoke_entry_slab, cur);
292	}
293
294	if (!revoke && truncate)
295		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
296}
297
298static int __f2fs_commit_atomic_write(struct inode *inode)
299{
300	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301	struct f2fs_inode_info *fi = F2FS_I(inode);
302	struct inode *cow_inode = fi->cow_inode;
303	struct revoke_entry *new;
304	struct list_head revoke_list;
305	block_t blkaddr;
306	struct dnode_of_data dn;
307	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
308	pgoff_t off = 0, blen, index;
309	int ret = 0, i;
310
311	INIT_LIST_HEAD(&revoke_list);
312
313	while (len) {
314		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
315
316		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
317		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
318		if (ret && ret != -ENOENT) {
319			goto out;
320		} else if (ret == -ENOENT) {
321			ret = 0;
322			if (dn.max_level == 0)
323				goto out;
324			goto next;
325		}
326
327		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
328				len);
329		index = off;
330		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
331			blkaddr = f2fs_data_blkaddr(&dn);
332
333			if (!__is_valid_data_blkaddr(blkaddr)) {
334				continue;
335			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
336					DATA_GENERIC_ENHANCE)) {
337				f2fs_put_dnode(&dn);
338				ret = -EFSCORRUPTED;
339				goto out;
340			}
341
342			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343							true, NULL);
344
345			ret = __replace_atomic_write_block(inode, index, blkaddr,
346							&new->old_addr, false);
347			if (ret) {
348				f2fs_put_dnode(&dn);
349				kmem_cache_free(revoke_entry_slab, new);
350				goto out;
351			}
352
353			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354			new->index = index;
355			list_add_tail(&new->list, &revoke_list);
356		}
357		f2fs_put_dnode(&dn);
358next:
359		off += blen;
360		len -= blen;
361	}
362
363out:
364	if (ret) {
365		sbi->revoked_atomic_block += fi->atomic_write_cnt;
366	} else {
367		sbi->committed_atomic_block += fi->atomic_write_cnt;
368		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369	}
370
371	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
372
373	return ret;
374}
375
376int f2fs_commit_atomic_write(struct inode *inode)
377{
378	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379	struct f2fs_inode_info *fi = F2FS_I(inode);
380	int err;
381
382	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383	if (err)
384		return err;
385
386	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387	f2fs_lock_op(sbi);
388
389	err = __f2fs_commit_atomic_write(inode);
390
391	f2fs_unlock_op(sbi);
392	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393
394	return err;
395}
396
397/*
398 * This function balances dirty node and dentry pages.
399 * In addition, it controls garbage collection.
400 */
401void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402{
403	if (f2fs_cp_error(sbi))
404		return;
405
406	if (time_to_inject(sbi, FAULT_CHECKPOINT))
407		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
408
409	/* balance_fs_bg is able to be pending */
410	if (need && excess_cached_nats(sbi))
411		f2fs_balance_fs_bg(sbi, false);
412
413	if (!f2fs_is_checkpoint_ready(sbi))
414		return;
415
416	/*
417	 * We should do GC or end up with checkpoint, if there are so many dirty
418	 * dir/node pages without enough free segments.
419	 */
420	if (has_enough_free_secs(sbi, 0, 0))
421		return;
422
423	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
424				sbi->gc_thread->f2fs_gc_task) {
425		DEFINE_WAIT(wait);
426
427		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
428					TASK_UNINTERRUPTIBLE);
429		wake_up(&sbi->gc_thread->gc_wait_queue_head);
430		io_schedule();
431		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
432	} else {
433		struct f2fs_gc_control gc_control = {
434			.victim_segno = NULL_SEGNO,
435			.init_gc_type = BG_GC,
436			.no_bg_gc = true,
437			.should_migrate_blocks = false,
438			.err_gc_skipped = false,
439			.nr_free_secs = 1 };
440		f2fs_down_write(&sbi->gc_lock);
441		stat_inc_gc_call_count(sbi, FOREGROUND);
442		f2fs_gc(sbi, &gc_control);
443	}
444}
445
446static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
447{
448	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
449	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
450	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
451	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
452	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
453	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
454	unsigned int threshold =
455		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
456	unsigned int global_threshold = threshold * 3 / 2;
457
458	if (dents >= threshold || qdata >= threshold ||
459		nodes >= threshold || meta >= threshold ||
460		imeta >= threshold)
461		return true;
462	return dents + qdata + nodes + meta + imeta >  global_threshold;
463}
464
465void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
466{
467	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
468		return;
469
470	/* try to shrink extent cache when there is no enough memory */
471	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
472		f2fs_shrink_read_extent_tree(sbi,
473				READ_EXTENT_CACHE_SHRINK_NUMBER);
474
475	/* try to shrink age extent cache when there is no enough memory */
476	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
477		f2fs_shrink_age_extent_tree(sbi,
478				AGE_EXTENT_CACHE_SHRINK_NUMBER);
479
480	/* check the # of cached NAT entries */
481	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
482		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
483
484	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
485		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
486	else
487		f2fs_build_free_nids(sbi, false, false);
488
489	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
490		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
491		goto do_sync;
492
493	/* there is background inflight IO or foreground operation recently */
494	if (is_inflight_io(sbi, REQ_TIME) ||
495		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
496		return;
497
498	/* exceed periodical checkpoint timeout threshold */
499	if (f2fs_time_over(sbi, CP_TIME))
500		goto do_sync;
501
502	/* checkpoint is the only way to shrink partial cached entries */
503	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
504		f2fs_available_free_memory(sbi, INO_ENTRIES))
505		return;
506
507do_sync:
508	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
509		struct blk_plug plug;
510
511		mutex_lock(&sbi->flush_lock);
512
513		blk_start_plug(&plug);
514		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
515		blk_finish_plug(&plug);
516
517		mutex_unlock(&sbi->flush_lock);
518	}
519	stat_inc_cp_call_count(sbi, BACKGROUND);
520	f2fs_sync_fs(sbi->sb, 1);
521}
522
523static int __submit_flush_wait(struct f2fs_sb_info *sbi,
524				struct block_device *bdev)
525{
526	int ret = blkdev_issue_flush(bdev);
527
528	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
529				test_opt(sbi, FLUSH_MERGE), ret);
530	if (!ret)
531		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
532	return ret;
533}
534
535static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
536{
537	int ret = 0;
538	int i;
539
540	if (!f2fs_is_multi_device(sbi))
541		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
542
543	for (i = 0; i < sbi->s_ndevs; i++) {
544		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
545			continue;
546		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
547		if (ret)
548			break;
549	}
550	return ret;
551}
552
553static int issue_flush_thread(void *data)
554{
555	struct f2fs_sb_info *sbi = data;
556	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
557	wait_queue_head_t *q = &fcc->flush_wait_queue;
558repeat:
559	if (kthread_should_stop())
560		return 0;
561
562	if (!llist_empty(&fcc->issue_list)) {
563		struct flush_cmd *cmd, *next;
564		int ret;
565
566		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
567		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
568
569		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
570
571		ret = submit_flush_wait(sbi, cmd->ino);
572		atomic_inc(&fcc->issued_flush);
573
574		llist_for_each_entry_safe(cmd, next,
575					  fcc->dispatch_list, llnode) {
576			cmd->ret = ret;
577			complete(&cmd->wait);
578		}
579		fcc->dispatch_list = NULL;
580	}
581
582	wait_event_interruptible(*q,
583		kthread_should_stop() || !llist_empty(&fcc->issue_list));
584	goto repeat;
585}
586
587int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588{
589	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590	struct flush_cmd cmd;
591	int ret;
592
593	if (test_opt(sbi, NOBARRIER))
594		return 0;
595
596	if (!test_opt(sbi, FLUSH_MERGE)) {
597		atomic_inc(&fcc->queued_flush);
598		ret = submit_flush_wait(sbi, ino);
599		atomic_dec(&fcc->queued_flush);
600		atomic_inc(&fcc->issued_flush);
601		return ret;
602	}
603
604	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
605	    f2fs_is_multi_device(sbi)) {
606		ret = submit_flush_wait(sbi, ino);
607		atomic_dec(&fcc->queued_flush);
608
609		atomic_inc(&fcc->issued_flush);
610		return ret;
611	}
612
613	cmd.ino = ino;
614	init_completion(&cmd.wait);
615
616	llist_add(&cmd.llnode, &fcc->issue_list);
617
618	/*
619	 * update issue_list before we wake up issue_flush thread, this
620	 * smp_mb() pairs with another barrier in ___wait_event(), see
621	 * more details in comments of waitqueue_active().
622	 */
623	smp_mb();
624
625	if (waitqueue_active(&fcc->flush_wait_queue))
626		wake_up(&fcc->flush_wait_queue);
627
628	if (fcc->f2fs_issue_flush) {
629		wait_for_completion(&cmd.wait);
630		atomic_dec(&fcc->queued_flush);
631	} else {
632		struct llist_node *list;
633
634		list = llist_del_all(&fcc->issue_list);
635		if (!list) {
636			wait_for_completion(&cmd.wait);
637			atomic_dec(&fcc->queued_flush);
638		} else {
639			struct flush_cmd *tmp, *next;
640
641			ret = submit_flush_wait(sbi, ino);
642
643			llist_for_each_entry_safe(tmp, next, list, llnode) {
644				if (tmp == &cmd) {
645					cmd.ret = ret;
646					atomic_dec(&fcc->queued_flush);
647					continue;
648				}
649				tmp->ret = ret;
650				complete(&tmp->wait);
651			}
652		}
653	}
654
655	return cmd.ret;
656}
657
658int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
659{
660	dev_t dev = sbi->sb->s_bdev->bd_dev;
661	struct flush_cmd_control *fcc;
662
663	if (SM_I(sbi)->fcc_info) {
664		fcc = SM_I(sbi)->fcc_info;
665		if (fcc->f2fs_issue_flush)
666			return 0;
667		goto init_thread;
668	}
669
670	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
671	if (!fcc)
672		return -ENOMEM;
673	atomic_set(&fcc->issued_flush, 0);
674	atomic_set(&fcc->queued_flush, 0);
675	init_waitqueue_head(&fcc->flush_wait_queue);
676	init_llist_head(&fcc->issue_list);
677	SM_I(sbi)->fcc_info = fcc;
678	if (!test_opt(sbi, FLUSH_MERGE))
679		return 0;
680
681init_thread:
682	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
683				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
684	if (IS_ERR(fcc->f2fs_issue_flush)) {
685		int err = PTR_ERR(fcc->f2fs_issue_flush);
686
687		fcc->f2fs_issue_flush = NULL;
688		return err;
689	}
690
691	return 0;
692}
693
694void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
695{
696	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
697
698	if (fcc && fcc->f2fs_issue_flush) {
699		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
700
701		fcc->f2fs_issue_flush = NULL;
702		kthread_stop(flush_thread);
703	}
704	if (free) {
705		kfree(fcc);
706		SM_I(sbi)->fcc_info = NULL;
707	}
708}
709
710int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
711{
712	int ret = 0, i;
713
714	if (!f2fs_is_multi_device(sbi))
715		return 0;
716
717	if (test_opt(sbi, NOBARRIER))
718		return 0;
719
720	for (i = 1; i < sbi->s_ndevs; i++) {
721		int count = DEFAULT_RETRY_IO_COUNT;
722
723		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
724			continue;
725
726		do {
727			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
728			if (ret)
729				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
730		} while (ret && --count);
731
732		if (ret) {
733			f2fs_stop_checkpoint(sbi, false,
734					STOP_CP_REASON_FLUSH_FAIL);
735			break;
736		}
737
738		spin_lock(&sbi->dev_lock);
739		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
740		spin_unlock(&sbi->dev_lock);
741	}
742
743	return ret;
744}
745
746static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
747		enum dirty_type dirty_type)
748{
749	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
750
751	/* need not be added */
752	if (IS_CURSEG(sbi, segno))
753		return;
754
755	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
756		dirty_i->nr_dirty[dirty_type]++;
757
758	if (dirty_type == DIRTY) {
759		struct seg_entry *sentry = get_seg_entry(sbi, segno);
760		enum dirty_type t = sentry->type;
761
762		if (unlikely(t >= DIRTY)) {
763			f2fs_bug_on(sbi, 1);
764			return;
765		}
766		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
767			dirty_i->nr_dirty[t]++;
768
769		if (__is_large_section(sbi)) {
770			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771			block_t valid_blocks =
772				get_valid_blocks(sbi, segno, true);
773
774			f2fs_bug_on(sbi,
775				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
776				!valid_blocks) ||
777				valid_blocks == CAP_BLKS_PER_SEC(sbi));
778
779			if (!IS_CURSEC(sbi, secno))
780				set_bit(secno, dirty_i->dirty_secmap);
781		}
782	}
783}
784
785static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
786		enum dirty_type dirty_type)
787{
788	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
789	block_t valid_blocks;
790
791	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
792		dirty_i->nr_dirty[dirty_type]--;
793
794	if (dirty_type == DIRTY) {
795		struct seg_entry *sentry = get_seg_entry(sbi, segno);
796		enum dirty_type t = sentry->type;
797
798		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
799			dirty_i->nr_dirty[t]--;
800
801		valid_blocks = get_valid_blocks(sbi, segno, true);
802		if (valid_blocks == 0) {
803			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
804						dirty_i->victim_secmap);
805#ifdef CONFIG_F2FS_CHECK_FS
806			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
807#endif
808		}
809		if (__is_large_section(sbi)) {
810			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
811
812			if (!valid_blocks ||
813					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
814				clear_bit(secno, dirty_i->dirty_secmap);
815				return;
816			}
817
818			if (!IS_CURSEC(sbi, secno))
819				set_bit(secno, dirty_i->dirty_secmap);
820		}
821	}
822}
823
824/*
825 * Should not occur error such as -ENOMEM.
826 * Adding dirty entry into seglist is not critical operation.
827 * If a given segment is one of current working segments, it won't be added.
828 */
829static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
830{
831	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
832	unsigned short valid_blocks, ckpt_valid_blocks;
833	unsigned int usable_blocks;
834
835	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
836		return;
837
838	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
839	mutex_lock(&dirty_i->seglist_lock);
840
841	valid_blocks = get_valid_blocks(sbi, segno, false);
842	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
843
844	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845		ckpt_valid_blocks == usable_blocks)) {
846		__locate_dirty_segment(sbi, segno, PRE);
847		__remove_dirty_segment(sbi, segno, DIRTY);
848	} else if (valid_blocks < usable_blocks) {
849		__locate_dirty_segment(sbi, segno, DIRTY);
850	} else {
851		/* Recovery routine with SSR needs this */
852		__remove_dirty_segment(sbi, segno, DIRTY);
853	}
854
855	mutex_unlock(&dirty_i->seglist_lock);
856}
857
858/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
859void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860{
861	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862	unsigned int segno;
863
864	mutex_lock(&dirty_i->seglist_lock);
865	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866		if (get_valid_blocks(sbi, segno, false))
867			continue;
868		if (IS_CURSEG(sbi, segno))
869			continue;
870		__locate_dirty_segment(sbi, segno, PRE);
871		__remove_dirty_segment(sbi, segno, DIRTY);
872	}
873	mutex_unlock(&dirty_i->seglist_lock);
874}
875
876block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877{
878	int ovp_hole_segs =
879		(overprovision_segments(sbi) - reserved_segments(sbi));
880	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
881	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882	block_t holes[2] = {0, 0};	/* DATA and NODE */
883	block_t unusable;
884	struct seg_entry *se;
885	unsigned int segno;
886
887	mutex_lock(&dirty_i->seglist_lock);
888	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889		se = get_seg_entry(sbi, segno);
890		if (IS_NODESEG(se->type))
891			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
892							se->valid_blocks;
893		else
894			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
895							se->valid_blocks;
896	}
897	mutex_unlock(&dirty_i->seglist_lock);
898
899	unusable = max(holes[DATA], holes[NODE]);
900	if (unusable > ovp_holes)
901		return unusable - ovp_holes;
902	return 0;
903}
904
905int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
906{
907	int ovp_hole_segs =
908		(overprovision_segments(sbi) - reserved_segments(sbi));
909
910	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
911		return 0;
912	if (unusable > F2FS_OPTION(sbi).unusable_cap)
913		return -EAGAIN;
914	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
915		dirty_segments(sbi) > ovp_hole_segs)
916		return -EAGAIN;
917	if (has_not_enough_free_secs(sbi, 0, 0))
918		return -EAGAIN;
919	return 0;
920}
921
922/* This is only used by SBI_CP_DISABLED */
923static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
924{
925	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
926	unsigned int segno = 0;
927
928	mutex_lock(&dirty_i->seglist_lock);
929	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
930		if (get_valid_blocks(sbi, segno, false))
931			continue;
932		if (get_ckpt_valid_blocks(sbi, segno, false))
933			continue;
934		mutex_unlock(&dirty_i->seglist_lock);
935		return segno;
936	}
937	mutex_unlock(&dirty_i->seglist_lock);
938	return NULL_SEGNO;
939}
940
941static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
942		struct block_device *bdev, block_t lstart,
943		block_t start, block_t len)
944{
945	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
946	struct list_head *pend_list;
947	struct discard_cmd *dc;
948
949	f2fs_bug_on(sbi, !len);
950
951	pend_list = &dcc->pend_list[plist_idx(len)];
952
953	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
954	INIT_LIST_HEAD(&dc->list);
955	dc->bdev = bdev;
956	dc->di.lstart = lstart;
957	dc->di.start = start;
958	dc->di.len = len;
959	dc->ref = 0;
960	dc->state = D_PREP;
961	dc->queued = 0;
962	dc->error = 0;
963	init_completion(&dc->wait);
964	list_add_tail(&dc->list, pend_list);
965	spin_lock_init(&dc->lock);
966	dc->bio_ref = 0;
967	atomic_inc(&dcc->discard_cmd_cnt);
968	dcc->undiscard_blks += len;
969
970	return dc;
971}
972
973static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
974{
975#ifdef CONFIG_F2FS_CHECK_FS
976	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
977	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
978	struct discard_cmd *cur_dc, *next_dc;
979
980	while (cur) {
981		next = rb_next(cur);
982		if (!next)
983			return true;
984
985		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
986		next_dc = rb_entry(next, struct discard_cmd, rb_node);
987
988		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
989			f2fs_info(sbi, "broken discard_rbtree, "
990				"cur(%u, %u) next(%u, %u)",
991				cur_dc->di.lstart, cur_dc->di.len,
992				next_dc->di.lstart, next_dc->di.len);
993			return false;
994		}
995		cur = next;
996	}
997#endif
998	return true;
999}
1000
1001static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1002						block_t blkaddr)
1003{
1004	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1005	struct rb_node *node = dcc->root.rb_root.rb_node;
1006	struct discard_cmd *dc;
1007
1008	while (node) {
1009		dc = rb_entry(node, struct discard_cmd, rb_node);
1010
1011		if (blkaddr < dc->di.lstart)
1012			node = node->rb_left;
1013		else if (blkaddr >= dc->di.lstart + dc->di.len)
1014			node = node->rb_right;
1015		else
1016			return dc;
1017	}
1018	return NULL;
1019}
1020
1021static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1022				block_t blkaddr,
1023				struct discard_cmd **prev_entry,
1024				struct discard_cmd **next_entry,
1025				struct rb_node ***insert_p,
1026				struct rb_node **insert_parent)
1027{
1028	struct rb_node **pnode = &root->rb_root.rb_node;
1029	struct rb_node *parent = NULL, *tmp_node;
1030	struct discard_cmd *dc;
1031
1032	*insert_p = NULL;
1033	*insert_parent = NULL;
1034	*prev_entry = NULL;
1035	*next_entry = NULL;
1036
1037	if (RB_EMPTY_ROOT(&root->rb_root))
1038		return NULL;
1039
1040	while (*pnode) {
1041		parent = *pnode;
1042		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1043
1044		if (blkaddr < dc->di.lstart)
1045			pnode = &(*pnode)->rb_left;
1046		else if (blkaddr >= dc->di.lstart + dc->di.len)
1047			pnode = &(*pnode)->rb_right;
1048		else
1049			goto lookup_neighbors;
1050	}
1051
1052	*insert_p = pnode;
1053	*insert_parent = parent;
1054
1055	dc = rb_entry(parent, struct discard_cmd, rb_node);
1056	tmp_node = parent;
1057	if (parent && blkaddr > dc->di.lstart)
1058		tmp_node = rb_next(parent);
1059	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1060
1061	tmp_node = parent;
1062	if (parent && blkaddr < dc->di.lstart)
1063		tmp_node = rb_prev(parent);
1064	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065	return NULL;
1066
1067lookup_neighbors:
1068	/* lookup prev node for merging backward later */
1069	tmp_node = rb_prev(&dc->rb_node);
1070	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1071
1072	/* lookup next node for merging frontward later */
1073	tmp_node = rb_next(&dc->rb_node);
1074	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1075	return dc;
1076}
1077
1078static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1079							struct discard_cmd *dc)
1080{
1081	if (dc->state == D_DONE)
1082		atomic_sub(dc->queued, &dcc->queued_discard);
1083
1084	list_del(&dc->list);
1085	rb_erase_cached(&dc->rb_node, &dcc->root);
1086	dcc->undiscard_blks -= dc->di.len;
1087
1088	kmem_cache_free(discard_cmd_slab, dc);
1089
1090	atomic_dec(&dcc->discard_cmd_cnt);
1091}
1092
1093static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1094							struct discard_cmd *dc)
1095{
1096	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1097	unsigned long flags;
1098
1099	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1100
1101	spin_lock_irqsave(&dc->lock, flags);
1102	if (dc->bio_ref) {
1103		spin_unlock_irqrestore(&dc->lock, flags);
1104		return;
1105	}
1106	spin_unlock_irqrestore(&dc->lock, flags);
1107
1108	f2fs_bug_on(sbi, dc->ref);
1109
1110	if (dc->error == -EOPNOTSUPP)
1111		dc->error = 0;
1112
1113	if (dc->error)
1114		f2fs_info_ratelimited(sbi,
1115			"Issue discard(%u, %u, %u) failed, ret: %d",
1116			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1117	__detach_discard_cmd(dcc, dc);
1118}
1119
1120static void f2fs_submit_discard_endio(struct bio *bio)
1121{
1122	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1123	unsigned long flags;
1124
1125	spin_lock_irqsave(&dc->lock, flags);
1126	if (!dc->error)
1127		dc->error = blk_status_to_errno(bio->bi_status);
1128	dc->bio_ref--;
1129	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1130		dc->state = D_DONE;
1131		complete_all(&dc->wait);
1132	}
1133	spin_unlock_irqrestore(&dc->lock, flags);
1134	bio_put(bio);
1135}
1136
1137static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1138				block_t start, block_t end)
1139{
1140#ifdef CONFIG_F2FS_CHECK_FS
1141	struct seg_entry *sentry;
1142	unsigned int segno;
1143	block_t blk = start;
1144	unsigned long offset, size, *map;
1145
1146	while (blk < end) {
1147		segno = GET_SEGNO(sbi, blk);
1148		sentry = get_seg_entry(sbi, segno);
1149		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1150
1151		if (end < START_BLOCK(sbi, segno + 1))
1152			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1153		else
1154			size = BLKS_PER_SEG(sbi);
1155		map = (unsigned long *)(sentry->cur_valid_map);
1156		offset = __find_rev_next_bit(map, size, offset);
1157		f2fs_bug_on(sbi, offset != size);
1158		blk = START_BLOCK(sbi, segno + 1);
1159	}
1160#endif
1161}
1162
1163static void __init_discard_policy(struct f2fs_sb_info *sbi,
1164				struct discard_policy *dpolicy,
1165				int discard_type, unsigned int granularity)
1166{
1167	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1168
1169	/* common policy */
1170	dpolicy->type = discard_type;
1171	dpolicy->sync = true;
1172	dpolicy->ordered = false;
1173	dpolicy->granularity = granularity;
1174
1175	dpolicy->max_requests = dcc->max_discard_request;
1176	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1177	dpolicy->timeout = false;
1178
1179	if (discard_type == DPOLICY_BG) {
1180		dpolicy->min_interval = dcc->min_discard_issue_time;
1181		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1182		dpolicy->max_interval = dcc->max_discard_issue_time;
1183		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1184			dpolicy->io_aware = true;
1185		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1186			dpolicy->io_aware = false;
1187		dpolicy->sync = false;
1188		dpolicy->ordered = true;
1189		if (utilization(sbi) > dcc->discard_urgent_util) {
1190			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1191			if (atomic_read(&dcc->discard_cmd_cnt))
1192				dpolicy->max_interval =
1193					dcc->min_discard_issue_time;
1194		}
1195	} else if (discard_type == DPOLICY_FORCE) {
1196		dpolicy->min_interval = dcc->min_discard_issue_time;
1197		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1198		dpolicy->max_interval = dcc->max_discard_issue_time;
1199		dpolicy->io_aware = false;
1200	} else if (discard_type == DPOLICY_FSTRIM) {
1201		dpolicy->io_aware = false;
1202	} else if (discard_type == DPOLICY_UMOUNT) {
1203		dpolicy->io_aware = false;
1204		/* we need to issue all to keep CP_TRIMMED_FLAG */
1205		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1206		dpolicy->timeout = true;
1207	}
1208}
1209
1210static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1211				struct block_device *bdev, block_t lstart,
1212				block_t start, block_t len);
1213
1214#ifdef CONFIG_BLK_DEV_ZONED
1215static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1216				   struct discard_cmd *dc, blk_opf_t flag,
1217				   struct list_head *wait_list,
1218				   unsigned int *issued)
1219{
1220	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1221	struct block_device *bdev = dc->bdev;
1222	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1223	unsigned long flags;
1224
1225	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1226
1227	spin_lock_irqsave(&dc->lock, flags);
1228	dc->state = D_SUBMIT;
1229	dc->bio_ref++;
1230	spin_unlock_irqrestore(&dc->lock, flags);
1231
1232	if (issued)
1233		(*issued)++;
1234
1235	atomic_inc(&dcc->queued_discard);
1236	dc->queued++;
1237	list_move_tail(&dc->list, wait_list);
1238
1239	/* sanity check on discard range */
1240	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1241
1242	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1243	bio->bi_private = dc;
1244	bio->bi_end_io = f2fs_submit_discard_endio;
1245	submit_bio(bio);
1246
1247	atomic_inc(&dcc->issued_discard);
1248	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1249}
1250#endif
1251
1252/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1253static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1254				struct discard_policy *dpolicy,
1255				struct discard_cmd *dc, int *issued)
1256{
1257	struct block_device *bdev = dc->bdev;
1258	unsigned int max_discard_blocks =
1259			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1260	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1261	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1262					&(dcc->fstrim_list) : &(dcc->wait_list);
1263	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1264	block_t lstart, start, len, total_len;
1265	int err = 0;
1266
1267	if (dc->state != D_PREP)
1268		return 0;
1269
1270	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1271		return 0;
1272
1273#ifdef CONFIG_BLK_DEV_ZONED
1274	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1275		int devi = f2fs_bdev_index(sbi, bdev);
1276
1277		if (devi < 0)
1278			return -EINVAL;
1279
1280		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1281			__submit_zone_reset_cmd(sbi, dc, flag,
1282						wait_list, issued);
1283			return 0;
1284		}
1285	}
1286#endif
1287
1288	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1289
1290	lstart = dc->di.lstart;
1291	start = dc->di.start;
1292	len = dc->di.len;
1293	total_len = len;
1294
1295	dc->di.len = 0;
1296
1297	while (total_len && *issued < dpolicy->max_requests && !err) {
1298		struct bio *bio = NULL;
1299		unsigned long flags;
1300		bool last = true;
1301
1302		if (len > max_discard_blocks) {
1303			len = max_discard_blocks;
1304			last = false;
1305		}
1306
1307		(*issued)++;
1308		if (*issued == dpolicy->max_requests)
1309			last = true;
1310
1311		dc->di.len += len;
1312
1313		if (time_to_inject(sbi, FAULT_DISCARD)) {
1314			err = -EIO;
1315		} else {
1316			err = __blkdev_issue_discard(bdev,
1317					SECTOR_FROM_BLOCK(start),
1318					SECTOR_FROM_BLOCK(len),
1319					GFP_NOFS, &bio);
1320		}
1321		if (err) {
1322			spin_lock_irqsave(&dc->lock, flags);
1323			if (dc->state == D_PARTIAL)
1324				dc->state = D_SUBMIT;
1325			spin_unlock_irqrestore(&dc->lock, flags);
1326
1327			break;
1328		}
1329
1330		f2fs_bug_on(sbi, !bio);
1331
1332		/*
1333		 * should keep before submission to avoid D_DONE
1334		 * right away
1335		 */
1336		spin_lock_irqsave(&dc->lock, flags);
1337		if (last)
1338			dc->state = D_SUBMIT;
1339		else
1340			dc->state = D_PARTIAL;
1341		dc->bio_ref++;
1342		spin_unlock_irqrestore(&dc->lock, flags);
1343
1344		atomic_inc(&dcc->queued_discard);
1345		dc->queued++;
1346		list_move_tail(&dc->list, wait_list);
1347
1348		/* sanity check on discard range */
1349		__check_sit_bitmap(sbi, lstart, lstart + len);
1350
1351		bio->bi_private = dc;
1352		bio->bi_end_io = f2fs_submit_discard_endio;
1353		bio->bi_opf |= flag;
1354		submit_bio(bio);
1355
1356		atomic_inc(&dcc->issued_discard);
1357
1358		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1359
1360		lstart += len;
1361		start += len;
1362		total_len -= len;
1363		len = total_len;
1364	}
1365
1366	if (!err && len) {
1367		dcc->undiscard_blks -= len;
1368		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1369	}
1370	return err;
1371}
1372
1373static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1374				struct block_device *bdev, block_t lstart,
1375				block_t start, block_t len)
1376{
1377	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1378	struct rb_node **p = &dcc->root.rb_root.rb_node;
1379	struct rb_node *parent = NULL;
1380	struct discard_cmd *dc;
1381	bool leftmost = true;
1382
1383	/* look up rb tree to find parent node */
1384	while (*p) {
1385		parent = *p;
1386		dc = rb_entry(parent, struct discard_cmd, rb_node);
1387
1388		if (lstart < dc->di.lstart) {
1389			p = &(*p)->rb_left;
1390		} else if (lstart >= dc->di.lstart + dc->di.len) {
1391			p = &(*p)->rb_right;
1392			leftmost = false;
1393		} else {
1394			/* Let's skip to add, if exists */
1395			return;
1396		}
1397	}
1398
1399	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1400
1401	rb_link_node(&dc->rb_node, parent, p);
1402	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1403}
1404
1405static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1406						struct discard_cmd *dc)
1407{
1408	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1409}
1410
1411static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1412				struct discard_cmd *dc, block_t blkaddr)
1413{
1414	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1415	struct discard_info di = dc->di;
1416	bool modified = false;
1417
1418	if (dc->state == D_DONE || dc->di.len == 1) {
1419		__remove_discard_cmd(sbi, dc);
1420		return;
1421	}
1422
1423	dcc->undiscard_blks -= di.len;
1424
1425	if (blkaddr > di.lstart) {
1426		dc->di.len = blkaddr - dc->di.lstart;
1427		dcc->undiscard_blks += dc->di.len;
1428		__relocate_discard_cmd(dcc, dc);
1429		modified = true;
1430	}
1431
1432	if (blkaddr < di.lstart + di.len - 1) {
1433		if (modified) {
1434			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1435					di.start + blkaddr + 1 - di.lstart,
1436					di.lstart + di.len - 1 - blkaddr);
1437		} else {
1438			dc->di.lstart++;
1439			dc->di.len--;
1440			dc->di.start++;
1441			dcc->undiscard_blks += dc->di.len;
1442			__relocate_discard_cmd(dcc, dc);
1443		}
1444	}
1445}
1446
1447static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1448				struct block_device *bdev, block_t lstart,
1449				block_t start, block_t len)
1450{
1451	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1452	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1453	struct discard_cmd *dc;
1454	struct discard_info di = {0};
1455	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1456	unsigned int max_discard_blocks =
1457			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1458	block_t end = lstart + len;
1459
1460	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1461				&prev_dc, &next_dc, &insert_p, &insert_parent);
1462	if (dc)
1463		prev_dc = dc;
1464
1465	if (!prev_dc) {
1466		di.lstart = lstart;
1467		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1468		di.len = min(di.len, len);
1469		di.start = start;
1470	}
1471
1472	while (1) {
1473		struct rb_node *node;
1474		bool merged = false;
1475		struct discard_cmd *tdc = NULL;
1476
1477		if (prev_dc) {
1478			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1479			if (di.lstart < lstart)
1480				di.lstart = lstart;
1481			if (di.lstart >= end)
1482				break;
1483
1484			if (!next_dc || next_dc->di.lstart > end)
1485				di.len = end - di.lstart;
1486			else
1487				di.len = next_dc->di.lstart - di.lstart;
1488			di.start = start + di.lstart - lstart;
1489		}
1490
1491		if (!di.len)
1492			goto next;
1493
1494		if (prev_dc && prev_dc->state == D_PREP &&
1495			prev_dc->bdev == bdev &&
1496			__is_discard_back_mergeable(&di, &prev_dc->di,
1497							max_discard_blocks)) {
1498			prev_dc->di.len += di.len;
1499			dcc->undiscard_blks += di.len;
1500			__relocate_discard_cmd(dcc, prev_dc);
1501			di = prev_dc->di;
1502			tdc = prev_dc;
1503			merged = true;
1504		}
1505
1506		if (next_dc && next_dc->state == D_PREP &&
1507			next_dc->bdev == bdev &&
1508			__is_discard_front_mergeable(&di, &next_dc->di,
1509							max_discard_blocks)) {
1510			next_dc->di.lstart = di.lstart;
1511			next_dc->di.len += di.len;
1512			next_dc->di.start = di.start;
1513			dcc->undiscard_blks += di.len;
1514			__relocate_discard_cmd(dcc, next_dc);
1515			if (tdc)
1516				__remove_discard_cmd(sbi, tdc);
1517			merged = true;
1518		}
1519
1520		if (!merged)
1521			__insert_discard_cmd(sbi, bdev,
1522						di.lstart, di.start, di.len);
1523 next:
1524		prev_dc = next_dc;
1525		if (!prev_dc)
1526			break;
1527
1528		node = rb_next(&prev_dc->rb_node);
1529		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1530	}
1531}
1532
1533#ifdef CONFIG_BLK_DEV_ZONED
1534static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1535		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1536		block_t blklen)
1537{
1538	trace_f2fs_queue_reset_zone(bdev, blkstart);
1539
1540	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1541	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1542	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1543}
1544#endif
1545
1546static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1547		struct block_device *bdev, block_t blkstart, block_t blklen)
1548{
1549	block_t lblkstart = blkstart;
1550
1551	if (!f2fs_bdev_support_discard(bdev))
1552		return;
1553
1554	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1555
1556	if (f2fs_is_multi_device(sbi)) {
1557		int devi = f2fs_target_device_index(sbi, blkstart);
1558
1559		blkstart -= FDEV(devi).start_blk;
1560	}
1561	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1562	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1563	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1564}
1565
1566static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1567		struct discard_policy *dpolicy, int *issued)
1568{
1569	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1570	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1571	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1572	struct discard_cmd *dc;
1573	struct blk_plug plug;
1574	bool io_interrupted = false;
1575
1576	mutex_lock(&dcc->cmd_lock);
1577	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1578				&prev_dc, &next_dc, &insert_p, &insert_parent);
1579	if (!dc)
1580		dc = next_dc;
1581
1582	blk_start_plug(&plug);
1583
1584	while (dc) {
1585		struct rb_node *node;
1586		int err = 0;
1587
1588		if (dc->state != D_PREP)
1589			goto next;
1590
1591		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1592			io_interrupted = true;
1593			break;
1594		}
1595
1596		dcc->next_pos = dc->di.lstart + dc->di.len;
1597		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1598
1599		if (*issued >= dpolicy->max_requests)
1600			break;
1601next:
1602		node = rb_next(&dc->rb_node);
1603		if (err)
1604			__remove_discard_cmd(sbi, dc);
1605		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1606	}
1607
1608	blk_finish_plug(&plug);
1609
1610	if (!dc)
1611		dcc->next_pos = 0;
1612
1613	mutex_unlock(&dcc->cmd_lock);
1614
1615	if (!(*issued) && io_interrupted)
1616		*issued = -1;
1617}
1618static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1619					struct discard_policy *dpolicy);
1620
1621static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1622					struct discard_policy *dpolicy)
1623{
1624	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1625	struct list_head *pend_list;
1626	struct discard_cmd *dc, *tmp;
1627	struct blk_plug plug;
1628	int i, issued;
1629	bool io_interrupted = false;
1630
1631	if (dpolicy->timeout)
1632		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1633
1634retry:
1635	issued = 0;
1636	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1637		if (dpolicy->timeout &&
1638				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1639			break;
1640
1641		if (i + 1 < dpolicy->granularity)
1642			break;
1643
1644		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1645			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1646			return issued;
1647		}
1648
1649		pend_list = &dcc->pend_list[i];
1650
1651		mutex_lock(&dcc->cmd_lock);
1652		if (list_empty(pend_list))
1653			goto next;
1654		if (unlikely(dcc->rbtree_check))
1655			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1656		blk_start_plug(&plug);
1657		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1658			f2fs_bug_on(sbi, dc->state != D_PREP);
1659
1660			if (dpolicy->timeout &&
1661				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1662				break;
1663
1664			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1665						!is_idle(sbi, DISCARD_TIME)) {
1666				io_interrupted = true;
1667				break;
1668			}
1669
1670			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1671
1672			if (issued >= dpolicy->max_requests)
1673				break;
1674		}
1675		blk_finish_plug(&plug);
1676next:
1677		mutex_unlock(&dcc->cmd_lock);
1678
1679		if (issued >= dpolicy->max_requests || io_interrupted)
1680			break;
1681	}
1682
1683	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1684		__wait_all_discard_cmd(sbi, dpolicy);
1685		goto retry;
1686	}
1687
1688	if (!issued && io_interrupted)
1689		issued = -1;
1690
1691	return issued;
1692}
1693
1694static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1695{
1696	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697	struct list_head *pend_list;
1698	struct discard_cmd *dc, *tmp;
1699	int i;
1700	bool dropped = false;
1701
1702	mutex_lock(&dcc->cmd_lock);
1703	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1704		pend_list = &dcc->pend_list[i];
1705		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1706			f2fs_bug_on(sbi, dc->state != D_PREP);
1707			__remove_discard_cmd(sbi, dc);
1708			dropped = true;
1709		}
1710	}
1711	mutex_unlock(&dcc->cmd_lock);
1712
1713	return dropped;
1714}
1715
1716void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1717{
1718	__drop_discard_cmd(sbi);
1719}
1720
1721static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1722							struct discard_cmd *dc)
1723{
1724	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725	unsigned int len = 0;
1726
1727	wait_for_completion_io(&dc->wait);
1728	mutex_lock(&dcc->cmd_lock);
1729	f2fs_bug_on(sbi, dc->state != D_DONE);
1730	dc->ref--;
1731	if (!dc->ref) {
1732		if (!dc->error)
1733			len = dc->di.len;
1734		__remove_discard_cmd(sbi, dc);
1735	}
1736	mutex_unlock(&dcc->cmd_lock);
1737
1738	return len;
1739}
1740
1741static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1742						struct discard_policy *dpolicy,
1743						block_t start, block_t end)
1744{
1745	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1746	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1747					&(dcc->fstrim_list) : &(dcc->wait_list);
1748	struct discard_cmd *dc = NULL, *iter, *tmp;
1749	unsigned int trimmed = 0;
1750
1751next:
1752	dc = NULL;
1753
1754	mutex_lock(&dcc->cmd_lock);
1755	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1756		if (iter->di.lstart + iter->di.len <= start ||
1757					end <= iter->di.lstart)
1758			continue;
1759		if (iter->di.len < dpolicy->granularity)
1760			continue;
1761		if (iter->state == D_DONE && !iter->ref) {
1762			wait_for_completion_io(&iter->wait);
1763			if (!iter->error)
1764				trimmed += iter->di.len;
1765			__remove_discard_cmd(sbi, iter);
1766		} else {
1767			iter->ref++;
1768			dc = iter;
1769			break;
1770		}
1771	}
1772	mutex_unlock(&dcc->cmd_lock);
1773
1774	if (dc) {
1775		trimmed += __wait_one_discard_bio(sbi, dc);
1776		goto next;
1777	}
1778
1779	return trimmed;
1780}
1781
1782static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1783						struct discard_policy *dpolicy)
1784{
1785	struct discard_policy dp;
1786	unsigned int discard_blks;
1787
1788	if (dpolicy)
1789		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1790
1791	/* wait all */
1792	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1793	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1794	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1795	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1796
1797	return discard_blks;
1798}
1799
1800/* This should be covered by global mutex, &sit_i->sentry_lock */
1801static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1802{
1803	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1804	struct discard_cmd *dc;
1805	bool need_wait = false;
1806
1807	mutex_lock(&dcc->cmd_lock);
1808	dc = __lookup_discard_cmd(sbi, blkaddr);
1809#ifdef CONFIG_BLK_DEV_ZONED
1810	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1811		int devi = f2fs_bdev_index(sbi, dc->bdev);
1812
1813		if (devi < 0) {
1814			mutex_unlock(&dcc->cmd_lock);
1815			return;
1816		}
1817
1818		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1819			/* force submit zone reset */
1820			if (dc->state == D_PREP)
1821				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1822							&dcc->wait_list, NULL);
1823			dc->ref++;
1824			mutex_unlock(&dcc->cmd_lock);
1825			/* wait zone reset */
1826			__wait_one_discard_bio(sbi, dc);
1827			return;
1828		}
1829	}
1830#endif
1831	if (dc) {
1832		if (dc->state == D_PREP) {
1833			__punch_discard_cmd(sbi, dc, blkaddr);
1834		} else {
1835			dc->ref++;
1836			need_wait = true;
1837		}
1838	}
1839	mutex_unlock(&dcc->cmd_lock);
1840
1841	if (need_wait)
1842		__wait_one_discard_bio(sbi, dc);
1843}
1844
1845void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1846{
1847	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1848
1849	if (dcc && dcc->f2fs_issue_discard) {
1850		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1851
1852		dcc->f2fs_issue_discard = NULL;
1853		kthread_stop(discard_thread);
1854	}
1855}
1856
1857/**
1858 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1859 * @sbi: the f2fs_sb_info data for discard cmd to issue
1860 *
1861 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1862 *
1863 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1864 */
1865bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1866{
1867	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1868	struct discard_policy dpolicy;
1869	bool dropped;
1870
1871	if (!atomic_read(&dcc->discard_cmd_cnt))
1872		return true;
1873
1874	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1875					dcc->discard_granularity);
1876	__issue_discard_cmd(sbi, &dpolicy);
1877	dropped = __drop_discard_cmd(sbi);
1878
1879	/* just to make sure there is no pending discard commands */
1880	__wait_all_discard_cmd(sbi, NULL);
1881
1882	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1883	return !dropped;
1884}
1885
1886static int issue_discard_thread(void *data)
1887{
1888	struct f2fs_sb_info *sbi = data;
1889	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1890	wait_queue_head_t *q = &dcc->discard_wait_queue;
1891	struct discard_policy dpolicy;
1892	unsigned int wait_ms = dcc->min_discard_issue_time;
1893	int issued;
1894
1895	set_freezable();
1896
1897	do {
1898		wait_event_freezable_timeout(*q,
1899				kthread_should_stop() || dcc->discard_wake,
1900				msecs_to_jiffies(wait_ms));
1901
1902		if (sbi->gc_mode == GC_URGENT_HIGH ||
1903			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1904			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1905						MIN_DISCARD_GRANULARITY);
1906		else
1907			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1908						dcc->discard_granularity);
1909
1910		if (dcc->discard_wake)
1911			dcc->discard_wake = false;
1912
1913		/* clean up pending candidates before going to sleep */
1914		if (atomic_read(&dcc->queued_discard))
1915			__wait_all_discard_cmd(sbi, NULL);
1916
1917		if (f2fs_readonly(sbi->sb))
1918			continue;
1919		if (kthread_should_stop())
1920			return 0;
1921		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1922			!atomic_read(&dcc->discard_cmd_cnt)) {
1923			wait_ms = dpolicy.max_interval;
1924			continue;
1925		}
1926
1927		sb_start_intwrite(sbi->sb);
1928
1929		issued = __issue_discard_cmd(sbi, &dpolicy);
1930		if (issued > 0) {
1931			__wait_all_discard_cmd(sbi, &dpolicy);
1932			wait_ms = dpolicy.min_interval;
1933		} else if (issued == -1) {
1934			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1935			if (!wait_ms)
1936				wait_ms = dpolicy.mid_interval;
1937		} else {
1938			wait_ms = dpolicy.max_interval;
1939		}
1940		if (!atomic_read(&dcc->discard_cmd_cnt))
1941			wait_ms = dpolicy.max_interval;
1942
1943		sb_end_intwrite(sbi->sb);
1944
1945	} while (!kthread_should_stop());
1946	return 0;
1947}
1948
1949#ifdef CONFIG_BLK_DEV_ZONED
1950static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1951		struct block_device *bdev, block_t blkstart, block_t blklen)
1952{
1953	sector_t sector, nr_sects;
1954	block_t lblkstart = blkstart;
1955	int devi = 0;
1956	u64 remainder = 0;
1957
1958	if (f2fs_is_multi_device(sbi)) {
1959		devi = f2fs_target_device_index(sbi, blkstart);
1960		if (blkstart < FDEV(devi).start_blk ||
1961		    blkstart > FDEV(devi).end_blk) {
1962			f2fs_err(sbi, "Invalid block %x", blkstart);
1963			return -EIO;
1964		}
1965		blkstart -= FDEV(devi).start_blk;
1966	}
1967
1968	/* For sequential zones, reset the zone write pointer */
1969	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1970		sector = SECTOR_FROM_BLOCK(blkstart);
1971		nr_sects = SECTOR_FROM_BLOCK(blklen);
1972		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1973
1974		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1975			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1976				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1977				 blkstart, blklen);
1978			return -EIO;
1979		}
1980
1981		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1982			unsigned int nofs_flags;
1983			int ret;
1984
1985			trace_f2fs_issue_reset_zone(bdev, blkstart);
1986			nofs_flags = memalloc_nofs_save();
1987			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1988						sector, nr_sects);
1989			memalloc_nofs_restore(nofs_flags);
1990			return ret;
1991		}
1992
1993		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1994		return 0;
1995	}
1996
1997	/* For conventional zones, use regular discard if supported */
1998	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1999	return 0;
2000}
2001#endif
2002
2003static int __issue_discard_async(struct f2fs_sb_info *sbi,
2004		struct block_device *bdev, block_t blkstart, block_t blklen)
2005{
2006#ifdef CONFIG_BLK_DEV_ZONED
2007	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2008		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2009#endif
2010	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2011	return 0;
2012}
2013
2014static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2015				block_t blkstart, block_t blklen)
2016{
2017	sector_t start = blkstart, len = 0;
2018	struct block_device *bdev;
2019	struct seg_entry *se;
2020	unsigned int offset;
2021	block_t i;
2022	int err = 0;
2023
2024	bdev = f2fs_target_device(sbi, blkstart, NULL);
2025
2026	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2027		if (i != start) {
2028			struct block_device *bdev2 =
2029				f2fs_target_device(sbi, i, NULL);
2030
2031			if (bdev2 != bdev) {
2032				err = __issue_discard_async(sbi, bdev,
2033						start, len);
2034				if (err)
2035					return err;
2036				bdev = bdev2;
2037				start = i;
2038				len = 0;
2039			}
2040		}
2041
2042		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2043		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2044
2045		if (f2fs_block_unit_discard(sbi) &&
2046				!f2fs_test_and_set_bit(offset, se->discard_map))
2047			sbi->discard_blks--;
2048	}
2049
2050	if (len)
2051		err = __issue_discard_async(sbi, bdev, start, len);
2052	return err;
2053}
2054
2055static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2056							bool check_only)
2057{
2058	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2059	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2060	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2061	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2062	unsigned long *discard_map = (unsigned long *)se->discard_map;
2063	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2064	unsigned int start = 0, end = -1;
2065	bool force = (cpc->reason & CP_DISCARD);
2066	struct discard_entry *de = NULL;
2067	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2068	int i;
2069
2070	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2071	    !f2fs_hw_support_discard(sbi) ||
2072	    !f2fs_block_unit_discard(sbi))
2073		return false;
2074
2075	if (!force) {
2076		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2077			SM_I(sbi)->dcc_info->nr_discards >=
2078				SM_I(sbi)->dcc_info->max_discards)
2079			return false;
2080	}
2081
2082	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2083	for (i = 0; i < entries; i++)
2084		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2085				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2086
2087	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2088				SM_I(sbi)->dcc_info->max_discards) {
2089		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2090		if (start >= BLKS_PER_SEG(sbi))
2091			break;
2092
2093		end = __find_rev_next_zero_bit(dmap,
2094						BLKS_PER_SEG(sbi), start + 1);
2095		if (force && start && end != BLKS_PER_SEG(sbi) &&
2096		    (end - start) < cpc->trim_minlen)
2097			continue;
2098
2099		if (check_only)
2100			return true;
2101
2102		if (!de) {
2103			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2104						GFP_F2FS_ZERO, true, NULL);
2105			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2106			list_add_tail(&de->list, head);
2107		}
2108
2109		for (i = start; i < end; i++)
2110			__set_bit_le(i, (void *)de->discard_map);
2111
2112		SM_I(sbi)->dcc_info->nr_discards += end - start;
2113	}
2114	return false;
2115}
2116
2117static void release_discard_addr(struct discard_entry *entry)
2118{
2119	list_del(&entry->list);
2120	kmem_cache_free(discard_entry_slab, entry);
2121}
2122
2123void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2124{
2125	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2126	struct discard_entry *entry, *this;
2127
2128	/* drop caches */
2129	list_for_each_entry_safe(entry, this, head, list)
2130		release_discard_addr(entry);
2131}
2132
2133/*
2134 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2135 */
2136static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2137{
2138	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2139	unsigned int segno;
2140
2141	mutex_lock(&dirty_i->seglist_lock);
2142	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2143		__set_test_and_free(sbi, segno, false);
2144	mutex_unlock(&dirty_i->seglist_lock);
2145}
2146
2147void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2148						struct cp_control *cpc)
2149{
2150	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2151	struct list_head *head = &dcc->entry_list;
2152	struct discard_entry *entry, *this;
2153	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2154	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2155	unsigned int start = 0, end = -1;
2156	unsigned int secno, start_segno;
2157	bool force = (cpc->reason & CP_DISCARD);
2158	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2159						DISCARD_UNIT_SECTION;
2160
2161	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2162		section_alignment = true;
2163
2164	mutex_lock(&dirty_i->seglist_lock);
2165
2166	while (1) {
2167		int i;
2168
2169		if (section_alignment && end != -1)
2170			end--;
2171		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2172		if (start >= MAIN_SEGS(sbi))
2173			break;
2174		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2175								start + 1);
2176
2177		if (section_alignment) {
2178			start = rounddown(start, SEGS_PER_SEC(sbi));
2179			end = roundup(end, SEGS_PER_SEC(sbi));
2180		}
2181
2182		for (i = start; i < end; i++) {
2183			if (test_and_clear_bit(i, prefree_map))
2184				dirty_i->nr_dirty[PRE]--;
2185		}
2186
2187		if (!f2fs_realtime_discard_enable(sbi))
2188			continue;
2189
2190		if (force && start >= cpc->trim_start &&
2191					(end - 1) <= cpc->trim_end)
2192			continue;
2193
2194		/* Should cover 2MB zoned device for zone-based reset */
2195		if (!f2fs_sb_has_blkzoned(sbi) &&
2196		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2197			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2198				SEGS_TO_BLKS(sbi, end - start));
2199			continue;
2200		}
2201next:
2202		secno = GET_SEC_FROM_SEG(sbi, start);
2203		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2204		if (!IS_CURSEC(sbi, secno) &&
2205			!get_valid_blocks(sbi, start, true))
2206			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2207						BLKS_PER_SEC(sbi));
2208
2209		start = start_segno + SEGS_PER_SEC(sbi);
2210		if (start < end)
2211			goto next;
2212		else
2213			end = start - 1;
2214	}
2215	mutex_unlock(&dirty_i->seglist_lock);
2216
2217	if (!f2fs_block_unit_discard(sbi))
2218		goto wakeup;
2219
2220	/* send small discards */
2221	list_for_each_entry_safe(entry, this, head, list) {
2222		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2223		bool is_valid = test_bit_le(0, entry->discard_map);
2224
2225find_next:
2226		if (is_valid) {
2227			next_pos = find_next_zero_bit_le(entry->discard_map,
2228						BLKS_PER_SEG(sbi), cur_pos);
2229			len = next_pos - cur_pos;
2230
2231			if (f2fs_sb_has_blkzoned(sbi) ||
2232			    (force && len < cpc->trim_minlen))
2233				goto skip;
2234
2235			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2236									len);
2237			total_len += len;
2238		} else {
2239			next_pos = find_next_bit_le(entry->discard_map,
2240						BLKS_PER_SEG(sbi), cur_pos);
2241		}
2242skip:
2243		cur_pos = next_pos;
2244		is_valid = !is_valid;
2245
2246		if (cur_pos < BLKS_PER_SEG(sbi))
2247			goto find_next;
2248
2249		release_discard_addr(entry);
2250		dcc->nr_discards -= total_len;
2251	}
2252
2253wakeup:
2254	wake_up_discard_thread(sbi, false);
2255}
2256
2257int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2258{
2259	dev_t dev = sbi->sb->s_bdev->bd_dev;
2260	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2261	int err = 0;
2262
2263	if (f2fs_sb_has_readonly(sbi)) {
2264		f2fs_info(sbi,
2265			"Skip to start discard thread for readonly image");
2266		return 0;
2267	}
2268
2269	if (!f2fs_realtime_discard_enable(sbi))
2270		return 0;
2271
2272	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2273				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2274	if (IS_ERR(dcc->f2fs_issue_discard)) {
2275		err = PTR_ERR(dcc->f2fs_issue_discard);
2276		dcc->f2fs_issue_discard = NULL;
2277	}
2278
2279	return err;
2280}
2281
2282static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2283{
2284	struct discard_cmd_control *dcc;
2285	int err = 0, i;
2286
2287	if (SM_I(sbi)->dcc_info) {
2288		dcc = SM_I(sbi)->dcc_info;
2289		goto init_thread;
2290	}
2291
2292	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2293	if (!dcc)
2294		return -ENOMEM;
2295
2296	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2297	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2298	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2299	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2300	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2301		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2302	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2303		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2304
2305	INIT_LIST_HEAD(&dcc->entry_list);
2306	for (i = 0; i < MAX_PLIST_NUM; i++)
2307		INIT_LIST_HEAD(&dcc->pend_list[i]);
2308	INIT_LIST_HEAD(&dcc->wait_list);
2309	INIT_LIST_HEAD(&dcc->fstrim_list);
2310	mutex_init(&dcc->cmd_lock);
2311	atomic_set(&dcc->issued_discard, 0);
2312	atomic_set(&dcc->queued_discard, 0);
2313	atomic_set(&dcc->discard_cmd_cnt, 0);
2314	dcc->nr_discards = 0;
2315	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2316	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2317	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2318	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2319	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2320	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2321	dcc->undiscard_blks = 0;
2322	dcc->next_pos = 0;
2323	dcc->root = RB_ROOT_CACHED;
2324	dcc->rbtree_check = false;
2325
2326	init_waitqueue_head(&dcc->discard_wait_queue);
2327	SM_I(sbi)->dcc_info = dcc;
2328init_thread:
2329	err = f2fs_start_discard_thread(sbi);
2330	if (err) {
2331		kfree(dcc);
2332		SM_I(sbi)->dcc_info = NULL;
2333	}
2334
2335	return err;
2336}
2337
2338static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2339{
2340	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2341
2342	if (!dcc)
2343		return;
2344
2345	f2fs_stop_discard_thread(sbi);
2346
2347	/*
2348	 * Recovery can cache discard commands, so in error path of
2349	 * fill_super(), it needs to give a chance to handle them.
2350	 */
2351	f2fs_issue_discard_timeout(sbi);
2352
2353	kfree(dcc);
2354	SM_I(sbi)->dcc_info = NULL;
2355}
2356
2357static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2358{
2359	struct sit_info *sit_i = SIT_I(sbi);
2360
2361	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2362		sit_i->dirty_sentries++;
2363		return false;
2364	}
2365
2366	return true;
2367}
2368
2369static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2370					unsigned int segno, int modified)
2371{
2372	struct seg_entry *se = get_seg_entry(sbi, segno);
2373
2374	se->type = type;
2375	if (modified)
2376		__mark_sit_entry_dirty(sbi, segno);
2377}
2378
2379static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2380								block_t blkaddr)
2381{
2382	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2383
2384	if (segno == NULL_SEGNO)
2385		return 0;
2386	return get_seg_entry(sbi, segno)->mtime;
2387}
2388
2389static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2390						unsigned long long old_mtime)
2391{
2392	struct seg_entry *se;
2393	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2394	unsigned long long ctime = get_mtime(sbi, false);
2395	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2396
2397	if (segno == NULL_SEGNO)
2398		return;
2399
2400	se = get_seg_entry(sbi, segno);
2401
2402	if (!se->mtime)
2403		se->mtime = mtime;
2404	else
2405		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2406						se->valid_blocks + 1);
2407
2408	if (ctime > SIT_I(sbi)->max_mtime)
2409		SIT_I(sbi)->max_mtime = ctime;
2410}
2411
2412static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2413{
2414	struct seg_entry *se;
2415	unsigned int segno, offset;
2416	long int new_vblocks;
2417	bool exist;
2418#ifdef CONFIG_F2FS_CHECK_FS
2419	bool mir_exist;
2420#endif
2421
2422	segno = GET_SEGNO(sbi, blkaddr);
2423	if (segno == NULL_SEGNO)
2424		return;
2425
2426	se = get_seg_entry(sbi, segno);
2427	new_vblocks = se->valid_blocks + del;
2428	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2429
2430	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2431			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2432
2433	se->valid_blocks = new_vblocks;
2434
2435	/* Update valid block bitmap */
2436	if (del > 0) {
2437		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2438#ifdef CONFIG_F2FS_CHECK_FS
2439		mir_exist = f2fs_test_and_set_bit(offset,
2440						se->cur_valid_map_mir);
2441		if (unlikely(exist != mir_exist)) {
2442			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2443				 blkaddr, exist);
2444			f2fs_bug_on(sbi, 1);
2445		}
2446#endif
2447		if (unlikely(exist)) {
2448			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2449				 blkaddr);
2450			f2fs_bug_on(sbi, 1);
2451			se->valid_blocks--;
2452			del = 0;
2453		}
2454
2455		if (f2fs_block_unit_discard(sbi) &&
2456				!f2fs_test_and_set_bit(offset, se->discard_map))
2457			sbi->discard_blks--;
2458
2459		/*
2460		 * SSR should never reuse block which is checkpointed
2461		 * or newly invalidated.
2462		 */
2463		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2464			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2465				se->ckpt_valid_blocks++;
2466		}
2467	} else {
2468		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2469#ifdef CONFIG_F2FS_CHECK_FS
2470		mir_exist = f2fs_test_and_clear_bit(offset,
2471						se->cur_valid_map_mir);
2472		if (unlikely(exist != mir_exist)) {
2473			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2474				 blkaddr, exist);
2475			f2fs_bug_on(sbi, 1);
2476		}
2477#endif
2478		if (unlikely(!exist)) {
2479			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2480				 blkaddr);
2481			f2fs_bug_on(sbi, 1);
2482			se->valid_blocks++;
2483			del = 0;
2484		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2485			/*
2486			 * If checkpoints are off, we must not reuse data that
2487			 * was used in the previous checkpoint. If it was used
2488			 * before, we must track that to know how much space we
2489			 * really have.
2490			 */
2491			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2492				spin_lock(&sbi->stat_lock);
2493				sbi->unusable_block_count++;
2494				spin_unlock(&sbi->stat_lock);
2495			}
2496		}
2497
2498		if (f2fs_block_unit_discard(sbi) &&
2499			f2fs_test_and_clear_bit(offset, se->discard_map))
2500			sbi->discard_blks++;
2501	}
2502	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2503		se->ckpt_valid_blocks += del;
2504
2505	__mark_sit_entry_dirty(sbi, segno);
2506
2507	/* update total number of valid blocks to be written in ckpt area */
2508	SIT_I(sbi)->written_valid_blocks += del;
2509
2510	if (__is_large_section(sbi))
2511		get_sec_entry(sbi, segno)->valid_blocks += del;
2512}
2513
2514void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2515{
2516	unsigned int segno = GET_SEGNO(sbi, addr);
2517	struct sit_info *sit_i = SIT_I(sbi);
2518
2519	f2fs_bug_on(sbi, addr == NULL_ADDR);
2520	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2521		return;
2522
2523	f2fs_invalidate_internal_cache(sbi, addr);
2524
2525	/* add it into sit main buffer */
2526	down_write(&sit_i->sentry_lock);
2527
2528	update_segment_mtime(sbi, addr, 0);
2529	update_sit_entry(sbi, addr, -1);
2530
2531	/* add it into dirty seglist */
2532	locate_dirty_segment(sbi, segno);
2533
2534	up_write(&sit_i->sentry_lock);
2535}
2536
2537bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2538{
2539	struct sit_info *sit_i = SIT_I(sbi);
2540	unsigned int segno, offset;
2541	struct seg_entry *se;
2542	bool is_cp = false;
2543
2544	if (!__is_valid_data_blkaddr(blkaddr))
2545		return true;
2546
2547	down_read(&sit_i->sentry_lock);
2548
2549	segno = GET_SEGNO(sbi, blkaddr);
2550	se = get_seg_entry(sbi, segno);
2551	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2552
2553	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2554		is_cp = true;
2555
2556	up_read(&sit_i->sentry_lock);
2557
2558	return is_cp;
2559}
2560
2561static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2562{
2563	struct curseg_info *curseg = CURSEG_I(sbi, type);
2564
2565	if (sbi->ckpt->alloc_type[type] == SSR)
2566		return BLKS_PER_SEG(sbi);
2567	return curseg->next_blkoff;
2568}
2569
2570/*
2571 * Calculate the number of current summary pages for writing
2572 */
2573int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2574{
2575	int valid_sum_count = 0;
2576	int i, sum_in_page;
2577
2578	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2579		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2580			valid_sum_count +=
2581				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2582		else
2583			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2584	}
2585
2586	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2587			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2588	if (valid_sum_count <= sum_in_page)
2589		return 1;
2590	else if ((valid_sum_count - sum_in_page) <=
2591		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2592		return 2;
2593	return 3;
2594}
2595
2596/*
2597 * Caller should put this summary page
2598 */
2599struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2600{
2601	if (unlikely(f2fs_cp_error(sbi)))
2602		return ERR_PTR(-EIO);
2603	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2604}
2605
2606void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2607					void *src, block_t blk_addr)
2608{
2609	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2610
2611	memcpy(page_address(page), src, PAGE_SIZE);
2612	set_page_dirty(page);
2613	f2fs_put_page(page, 1);
2614}
2615
2616static void write_sum_page(struct f2fs_sb_info *sbi,
2617			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2618{
2619	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2620}
2621
2622static void write_current_sum_page(struct f2fs_sb_info *sbi,
2623						int type, block_t blk_addr)
2624{
2625	struct curseg_info *curseg = CURSEG_I(sbi, type);
2626	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2627	struct f2fs_summary_block *src = curseg->sum_blk;
2628	struct f2fs_summary_block *dst;
2629
2630	dst = (struct f2fs_summary_block *)page_address(page);
2631	memset(dst, 0, PAGE_SIZE);
2632
2633	mutex_lock(&curseg->curseg_mutex);
2634
2635	down_read(&curseg->journal_rwsem);
2636	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2637	up_read(&curseg->journal_rwsem);
2638
2639	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2640	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2641
2642	mutex_unlock(&curseg->curseg_mutex);
2643
2644	set_page_dirty(page);
2645	f2fs_put_page(page, 1);
2646}
2647
2648static int is_next_segment_free(struct f2fs_sb_info *sbi,
2649				struct curseg_info *curseg)
2650{
2651	unsigned int segno = curseg->segno + 1;
2652	struct free_segmap_info *free_i = FREE_I(sbi);
2653
2654	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2655		return !test_bit(segno, free_i->free_segmap);
2656	return 0;
2657}
2658
2659/*
2660 * Find a new segment from the free segments bitmap to right order
2661 * This function should be returned with success, otherwise BUG
2662 */
2663static int get_new_segment(struct f2fs_sb_info *sbi,
2664			unsigned int *newseg, bool new_sec, bool pinning)
2665{
2666	struct free_segmap_info *free_i = FREE_I(sbi);
2667	unsigned int segno, secno, zoneno;
2668	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2669	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2670	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2671	bool init = true;
2672	int i;
2673	int ret = 0;
2674
2675	spin_lock(&free_i->segmap_lock);
2676
2677	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2678		ret = -ENOSPC;
2679		goto out_unlock;
2680	}
2681
2682	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2683		segno = find_next_zero_bit(free_i->free_segmap,
2684			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2685		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2686			goto got_it;
2687	}
2688
2689	/*
2690	 * If we format f2fs on zoned storage, let's try to get pinned sections
2691	 * from beginning of the storage, which should be a conventional one.
2692	 */
2693	if (f2fs_sb_has_blkzoned(sbi)) {
2694		segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2695		hint = GET_SEC_FROM_SEG(sbi, segno);
2696	}
2697
2698find_other_zone:
2699	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2700	if (secno >= MAIN_SECS(sbi)) {
2701		secno = find_first_zero_bit(free_i->free_secmap,
2702							MAIN_SECS(sbi));
2703		if (secno >= MAIN_SECS(sbi)) {
2704			ret = -ENOSPC;
2705			goto out_unlock;
2706		}
2707	}
2708	segno = GET_SEG_FROM_SEC(sbi, secno);
2709	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2710
2711	/* give up on finding another zone */
2712	if (!init)
2713		goto got_it;
2714	if (sbi->secs_per_zone == 1)
2715		goto got_it;
2716	if (zoneno == old_zoneno)
2717		goto got_it;
2718	for (i = 0; i < NR_CURSEG_TYPE; i++)
2719		if (CURSEG_I(sbi, i)->zone == zoneno)
2720			break;
2721
2722	if (i < NR_CURSEG_TYPE) {
2723		/* zone is in user, try another */
2724		if (zoneno + 1 >= total_zones)
2725			hint = 0;
2726		else
2727			hint = (zoneno + 1) * sbi->secs_per_zone;
2728		init = false;
2729		goto find_other_zone;
2730	}
2731got_it:
2732	/* set it as dirty segment in free segmap */
2733	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2734
2735	/* no free section in conventional zone */
2736	if (new_sec && pinning &&
2737		!f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2738		ret = -EAGAIN;
2739		goto out_unlock;
2740	}
2741	__set_inuse(sbi, segno);
2742	*newseg = segno;
2743out_unlock:
2744	spin_unlock(&free_i->segmap_lock);
2745
2746	if (ret == -ENOSPC) {
2747		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2748		f2fs_bug_on(sbi, 1);
2749	}
2750	return ret;
2751}
2752
2753static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2754{
2755	struct curseg_info *curseg = CURSEG_I(sbi, type);
2756	struct summary_footer *sum_footer;
2757	unsigned short seg_type = curseg->seg_type;
2758
2759	/* only happen when get_new_segment() fails */
2760	if (curseg->next_segno == NULL_SEGNO)
2761		return;
2762
2763	curseg->inited = true;
2764	curseg->segno = curseg->next_segno;
2765	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2766	curseg->next_blkoff = 0;
2767	curseg->next_segno = NULL_SEGNO;
2768
2769	sum_footer = &(curseg->sum_blk->footer);
2770	memset(sum_footer, 0, sizeof(struct summary_footer));
2771
2772	sanity_check_seg_type(sbi, seg_type);
2773
2774	if (IS_DATASEG(seg_type))
2775		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2776	if (IS_NODESEG(seg_type))
2777		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2778	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2779}
2780
2781static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2782{
2783	struct curseg_info *curseg = CURSEG_I(sbi, type);
2784	unsigned short seg_type = curseg->seg_type;
2785
2786	sanity_check_seg_type(sbi, seg_type);
2787	if (f2fs_need_rand_seg(sbi))
2788		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2789
2790	if (__is_large_section(sbi))
2791		return curseg->segno;
2792
2793	/* inmem log may not locate on any segment after mount */
2794	if (!curseg->inited)
2795		return 0;
2796
2797	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2798		return 0;
2799
2800	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2801		return 0;
2802
2803	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2804		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2805
2806	/* find segments from 0 to reuse freed segments */
2807	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2808		return 0;
2809
2810	return curseg->segno;
2811}
2812
2813/*
2814 * Allocate a current working segment.
2815 * This function always allocates a free segment in LFS manner.
2816 */
2817static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2818{
2819	struct curseg_info *curseg = CURSEG_I(sbi, type);
2820	unsigned int segno = curseg->segno;
2821	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2822	int ret;
2823
2824	if (curseg->inited)
2825		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2826
2827	segno = __get_next_segno(sbi, type);
2828	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2829	if (ret) {
2830		if (ret == -ENOSPC)
2831			curseg->segno = NULL_SEGNO;
2832		return ret;
2833	}
2834
2835	curseg->next_segno = segno;
2836	reset_curseg(sbi, type, 1);
2837	curseg->alloc_type = LFS;
2838	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2839		curseg->fragment_remained_chunk =
2840				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2841	return 0;
2842}
2843
2844static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2845					int segno, block_t start)
2846{
2847	struct seg_entry *se = get_seg_entry(sbi, segno);
2848	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2849	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2850	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2851	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2852	int i;
2853
2854	for (i = 0; i < entries; i++)
2855		target_map[i] = ckpt_map[i] | cur_map[i];
2856
2857	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2858}
2859
2860static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2861		struct curseg_info *seg)
2862{
2863	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2864}
2865
2866bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2867{
2868	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2869}
2870
2871/*
2872 * This function always allocates a used segment(from dirty seglist) by SSR
2873 * manner, so it should recover the existing segment information of valid blocks
2874 */
2875static int change_curseg(struct f2fs_sb_info *sbi, int type)
2876{
2877	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2878	struct curseg_info *curseg = CURSEG_I(sbi, type);
2879	unsigned int new_segno = curseg->next_segno;
2880	struct f2fs_summary_block *sum_node;
2881	struct page *sum_page;
2882
2883	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2884
2885	__set_test_and_inuse(sbi, new_segno);
2886
2887	mutex_lock(&dirty_i->seglist_lock);
2888	__remove_dirty_segment(sbi, new_segno, PRE);
2889	__remove_dirty_segment(sbi, new_segno, DIRTY);
2890	mutex_unlock(&dirty_i->seglist_lock);
2891
2892	reset_curseg(sbi, type, 1);
2893	curseg->alloc_type = SSR;
2894	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2895
2896	sum_page = f2fs_get_sum_page(sbi, new_segno);
2897	if (IS_ERR(sum_page)) {
2898		/* GC won't be able to use stale summary pages by cp_error */
2899		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2900		return PTR_ERR(sum_page);
2901	}
2902	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2903	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2904	f2fs_put_page(sum_page, 1);
2905	return 0;
2906}
2907
2908static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2909				int alloc_mode, unsigned long long age);
2910
2911static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2912					int target_type, int alloc_mode,
2913					unsigned long long age)
2914{
2915	struct curseg_info *curseg = CURSEG_I(sbi, type);
2916	int ret = 0;
2917
2918	curseg->seg_type = target_type;
2919
2920	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2921		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2922
2923		curseg->seg_type = se->type;
2924		ret = change_curseg(sbi, type);
2925	} else {
2926		/* allocate cold segment by default */
2927		curseg->seg_type = CURSEG_COLD_DATA;
2928		ret = new_curseg(sbi, type, true);
2929	}
2930	stat_inc_seg_type(sbi, curseg);
2931	return ret;
2932}
2933
2934static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2935{
2936	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2937	int ret = 0;
2938
2939	if (!sbi->am.atgc_enabled)
2940		return 0;
2941
2942	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2943
2944	mutex_lock(&curseg->curseg_mutex);
2945	down_write(&SIT_I(sbi)->sentry_lock);
2946
2947	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2948					CURSEG_COLD_DATA, SSR, 0);
2949
2950	up_write(&SIT_I(sbi)->sentry_lock);
2951	mutex_unlock(&curseg->curseg_mutex);
2952
2953	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2954	return ret;
2955}
2956int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2957{
2958	return __f2fs_init_atgc_curseg(sbi);
2959}
2960
2961static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2962{
2963	struct curseg_info *curseg = CURSEG_I(sbi, type);
2964
2965	mutex_lock(&curseg->curseg_mutex);
2966	if (!curseg->inited)
2967		goto out;
2968
2969	if (get_valid_blocks(sbi, curseg->segno, false)) {
2970		write_sum_page(sbi, curseg->sum_blk,
2971				GET_SUM_BLOCK(sbi, curseg->segno));
2972	} else {
2973		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2974		__set_test_and_free(sbi, curseg->segno, true);
2975		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2976	}
2977out:
2978	mutex_unlock(&curseg->curseg_mutex);
2979}
2980
2981void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2982{
2983	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2984
2985	if (sbi->am.atgc_enabled)
2986		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2987}
2988
2989static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2990{
2991	struct curseg_info *curseg = CURSEG_I(sbi, type);
2992
2993	mutex_lock(&curseg->curseg_mutex);
2994	if (!curseg->inited)
2995		goto out;
2996	if (get_valid_blocks(sbi, curseg->segno, false))
2997		goto out;
2998
2999	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3000	__set_test_and_inuse(sbi, curseg->segno);
3001	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3002out:
3003	mutex_unlock(&curseg->curseg_mutex);
3004}
3005
3006void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3007{
3008	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3009
3010	if (sbi->am.atgc_enabled)
3011		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3012}
3013
3014static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3015				int alloc_mode, unsigned long long age)
3016{
3017	struct curseg_info *curseg = CURSEG_I(sbi, type);
3018	unsigned segno = NULL_SEGNO;
3019	unsigned short seg_type = curseg->seg_type;
3020	int i, cnt;
3021	bool reversed = false;
3022
3023	sanity_check_seg_type(sbi, seg_type);
3024
3025	/* f2fs_need_SSR() already forces to do this */
3026	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
3027		curseg->next_segno = segno;
3028		return 1;
3029	}
3030
3031	/* For node segments, let's do SSR more intensively */
3032	if (IS_NODESEG(seg_type)) {
3033		if (seg_type >= CURSEG_WARM_NODE) {
3034			reversed = true;
3035			i = CURSEG_COLD_NODE;
3036		} else {
3037			i = CURSEG_HOT_NODE;
3038		}
3039		cnt = NR_CURSEG_NODE_TYPE;
3040	} else {
3041		if (seg_type >= CURSEG_WARM_DATA) {
3042			reversed = true;
3043			i = CURSEG_COLD_DATA;
3044		} else {
3045			i = CURSEG_HOT_DATA;
3046		}
3047		cnt = NR_CURSEG_DATA_TYPE;
3048	}
3049
3050	for (; cnt-- > 0; reversed ? i-- : i++) {
3051		if (i == seg_type)
3052			continue;
3053		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3054			curseg->next_segno = segno;
3055			return 1;
3056		}
3057	}
3058
3059	/* find valid_blocks=0 in dirty list */
3060	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3061		segno = get_free_segment(sbi);
3062		if (segno != NULL_SEGNO) {
3063			curseg->next_segno = segno;
3064			return 1;
3065		}
3066	}
3067	return 0;
3068}
3069
3070static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3071{
3072	struct curseg_info *curseg = CURSEG_I(sbi, type);
3073
3074	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3075	    curseg->seg_type == CURSEG_WARM_NODE)
3076		return true;
3077	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3078	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3079		return true;
3080	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3081		return true;
3082	return false;
3083}
3084
3085int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3086					unsigned int start, unsigned int end)
3087{
3088	struct curseg_info *curseg = CURSEG_I(sbi, type);
3089	unsigned int segno;
3090	int ret = 0;
3091
3092	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3093	mutex_lock(&curseg->curseg_mutex);
3094	down_write(&SIT_I(sbi)->sentry_lock);
3095
3096	segno = CURSEG_I(sbi, type)->segno;
3097	if (segno < start || segno > end)
3098		goto unlock;
3099
3100	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3101		ret = change_curseg(sbi, type);
3102	else
3103		ret = new_curseg(sbi, type, true);
3104
3105	stat_inc_seg_type(sbi, curseg);
3106
3107	locate_dirty_segment(sbi, segno);
3108unlock:
3109	up_write(&SIT_I(sbi)->sentry_lock);
3110
3111	if (segno != curseg->segno)
3112		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3113			    type, segno, curseg->segno);
3114
3115	mutex_unlock(&curseg->curseg_mutex);
3116	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3117	return ret;
3118}
3119
3120static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3121						bool new_sec, bool force)
3122{
3123	struct curseg_info *curseg = CURSEG_I(sbi, type);
3124	unsigned int old_segno;
3125	int err = 0;
3126
3127	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3128		goto allocate;
3129
3130	if (!force && curseg->inited &&
3131	    !curseg->next_blkoff &&
3132	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3133	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3134		return 0;
3135
3136allocate:
3137	old_segno = curseg->segno;
3138	err = new_curseg(sbi, type, true);
3139	if (err)
3140		return err;
3141	stat_inc_seg_type(sbi, curseg);
3142	locate_dirty_segment(sbi, old_segno);
3143	return 0;
3144}
3145
3146int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3147{
3148	int ret;
3149
3150	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3151	down_write(&SIT_I(sbi)->sentry_lock);
3152	ret = __allocate_new_segment(sbi, type, true, force);
3153	up_write(&SIT_I(sbi)->sentry_lock);
3154	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3155
3156	return ret;
3157}
3158
3159int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3160{
3161	int err;
3162	bool gc_required = true;
3163
3164retry:
3165	f2fs_lock_op(sbi);
3166	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3167	f2fs_unlock_op(sbi);
3168
3169	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3170		f2fs_down_write(&sbi->gc_lock);
3171		err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3172		f2fs_up_write(&sbi->gc_lock);
3173
3174		gc_required = false;
3175		if (!err)
3176			goto retry;
3177	}
3178
3179	return err;
3180}
3181
3182int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3183{
3184	int i;
3185	int err = 0;
3186
3187	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3188	down_write(&SIT_I(sbi)->sentry_lock);
3189	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3190		err += __allocate_new_segment(sbi, i, false, false);
3191	up_write(&SIT_I(sbi)->sentry_lock);
3192	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3193
3194	return err;
3195}
3196
3197bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3198						struct cp_control *cpc)
3199{
3200	__u64 trim_start = cpc->trim_start;
3201	bool has_candidate = false;
3202
3203	down_write(&SIT_I(sbi)->sentry_lock);
3204	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3205		if (add_discard_addrs(sbi, cpc, true)) {
3206			has_candidate = true;
3207			break;
3208		}
3209	}
3210	up_write(&SIT_I(sbi)->sentry_lock);
3211
3212	cpc->trim_start = trim_start;
3213	return has_candidate;
3214}
3215
3216static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3217					struct discard_policy *dpolicy,
3218					unsigned int start, unsigned int end)
3219{
3220	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3221	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3222	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3223	struct discard_cmd *dc;
3224	struct blk_plug plug;
3225	int issued;
3226	unsigned int trimmed = 0;
3227
3228next:
3229	issued = 0;
3230
3231	mutex_lock(&dcc->cmd_lock);
3232	if (unlikely(dcc->rbtree_check))
3233		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3234
3235	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3236				&prev_dc, &next_dc, &insert_p, &insert_parent);
3237	if (!dc)
3238		dc = next_dc;
3239
3240	blk_start_plug(&plug);
3241
3242	while (dc && dc->di.lstart <= end) {
3243		struct rb_node *node;
3244		int err = 0;
3245
3246		if (dc->di.len < dpolicy->granularity)
3247			goto skip;
3248
3249		if (dc->state != D_PREP) {
3250			list_move_tail(&dc->list, &dcc->fstrim_list);
3251			goto skip;
3252		}
3253
3254		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3255
3256		if (issued >= dpolicy->max_requests) {
3257			start = dc->di.lstart + dc->di.len;
3258
3259			if (err)
3260				__remove_discard_cmd(sbi, dc);
3261
3262			blk_finish_plug(&plug);
3263			mutex_unlock(&dcc->cmd_lock);
3264			trimmed += __wait_all_discard_cmd(sbi, NULL);
3265			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3266			goto next;
3267		}
3268skip:
3269		node = rb_next(&dc->rb_node);
3270		if (err)
3271			__remove_discard_cmd(sbi, dc);
3272		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3273
3274		if (fatal_signal_pending(current))
3275			break;
3276	}
3277
3278	blk_finish_plug(&plug);
3279	mutex_unlock(&dcc->cmd_lock);
3280
3281	return trimmed;
3282}
3283
3284int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3285{
3286	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3287	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3288	unsigned int start_segno, end_segno;
3289	block_t start_block, end_block;
3290	struct cp_control cpc;
3291	struct discard_policy dpolicy;
3292	unsigned long long trimmed = 0;
3293	int err = 0;
3294	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3295
3296	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3297		return -EINVAL;
3298
3299	if (end < MAIN_BLKADDR(sbi))
3300		goto out;
3301
3302	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3303		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3304		return -EFSCORRUPTED;
3305	}
3306
3307	/* start/end segment number in main_area */
3308	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3309	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3310						GET_SEGNO(sbi, end);
3311	if (need_align) {
3312		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3313		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3314	}
3315
3316	cpc.reason = CP_DISCARD;
3317	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3318	cpc.trim_start = start_segno;
3319	cpc.trim_end = end_segno;
3320
3321	if (sbi->discard_blks == 0)
3322		goto out;
3323
3324	f2fs_down_write(&sbi->gc_lock);
3325	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3326	err = f2fs_write_checkpoint(sbi, &cpc);
3327	f2fs_up_write(&sbi->gc_lock);
3328	if (err)
3329		goto out;
3330
3331	/*
3332	 * We filed discard candidates, but actually we don't need to wait for
3333	 * all of them, since they'll be issued in idle time along with runtime
3334	 * discard option. User configuration looks like using runtime discard
3335	 * or periodic fstrim instead of it.
3336	 */
3337	if (f2fs_realtime_discard_enable(sbi))
3338		goto out;
3339
3340	start_block = START_BLOCK(sbi, start_segno);
3341	end_block = START_BLOCK(sbi, end_segno + 1);
3342
3343	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3344	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3345					start_block, end_block);
3346
3347	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3348					start_block, end_block);
3349out:
3350	if (!err)
3351		range->len = F2FS_BLK_TO_BYTES(trimmed);
3352	return err;
3353}
3354
3355int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3356{
3357	if (F2FS_OPTION(sbi).active_logs == 2)
3358		return CURSEG_HOT_DATA;
3359	else if (F2FS_OPTION(sbi).active_logs == 4)
3360		return CURSEG_COLD_DATA;
3361
3362	/* active_log == 6 */
3363	switch (hint) {
3364	case WRITE_LIFE_SHORT:
3365		return CURSEG_HOT_DATA;
3366	case WRITE_LIFE_EXTREME:
3367		return CURSEG_COLD_DATA;
3368	default:
3369		return CURSEG_WARM_DATA;
3370	}
3371}
3372
3373/*
3374 * This returns write hints for each segment type. This hints will be
3375 * passed down to block layer as below by default.
3376 *
3377 * User                  F2FS                     Block
3378 * ----                  ----                     -----
3379 *                       META                     WRITE_LIFE_NONE|REQ_META
3380 *                       HOT_NODE                 WRITE_LIFE_NONE
3381 *                       WARM_NODE                WRITE_LIFE_MEDIUM
3382 *                       COLD_NODE                WRITE_LIFE_LONG
3383 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3384 * extension list        "                        "
3385 *
3386 * -- buffered io
3387 *                       COLD_DATA                WRITE_LIFE_EXTREME
3388 *                       HOT_DATA                 WRITE_LIFE_SHORT
3389 *                       WARM_DATA                WRITE_LIFE_NOT_SET
3390 *
3391 * -- direct io
3392 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3393 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3394 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3395 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3396 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3397 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3398 */
3399enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3400				enum page_type type, enum temp_type temp)
3401{
3402	switch (type) {
3403	case DATA:
3404		switch (temp) {
3405		case WARM:
3406			return WRITE_LIFE_NOT_SET;
3407		case HOT:
3408			return WRITE_LIFE_SHORT;
3409		case COLD:
3410			return WRITE_LIFE_EXTREME;
3411		default:
3412			return WRITE_LIFE_NONE;
3413		}
3414	case NODE:
3415		switch (temp) {
3416		case WARM:
3417			return WRITE_LIFE_MEDIUM;
3418		case HOT:
3419			return WRITE_LIFE_NONE;
3420		case COLD:
3421			return WRITE_LIFE_LONG;
3422		default:
3423			return WRITE_LIFE_NONE;
3424		}
3425	case META:
3426		return WRITE_LIFE_NONE;
3427	default:
3428		return WRITE_LIFE_NONE;
3429	}
3430}
3431
3432static int __get_segment_type_2(struct f2fs_io_info *fio)
3433{
3434	if (fio->type == DATA)
3435		return CURSEG_HOT_DATA;
3436	else
3437		return CURSEG_HOT_NODE;
3438}
3439
3440static int __get_segment_type_4(struct f2fs_io_info *fio)
3441{
3442	if (fio->type == DATA) {
3443		struct inode *inode = fio->page->mapping->host;
3444
3445		if (S_ISDIR(inode->i_mode))
3446			return CURSEG_HOT_DATA;
3447		else
3448			return CURSEG_COLD_DATA;
3449	} else {
3450		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3451			return CURSEG_WARM_NODE;
3452		else
3453			return CURSEG_COLD_NODE;
3454	}
3455}
3456
3457static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3458{
3459	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3460	struct extent_info ei = {};
3461
3462	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3463		if (!ei.age)
3464			return NO_CHECK_TYPE;
3465		if (ei.age <= sbi->hot_data_age_threshold)
3466			return CURSEG_HOT_DATA;
3467		if (ei.age <= sbi->warm_data_age_threshold)
3468			return CURSEG_WARM_DATA;
3469		return CURSEG_COLD_DATA;
3470	}
3471	return NO_CHECK_TYPE;
3472}
3473
3474static int __get_segment_type_6(struct f2fs_io_info *fio)
3475{
3476	if (fio->type == DATA) {
3477		struct inode *inode = fio->page->mapping->host;
3478		int type;
3479
3480		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3481			return CURSEG_COLD_DATA_PINNED;
3482
3483		if (page_private_gcing(fio->page)) {
3484			if (fio->sbi->am.atgc_enabled &&
3485				(fio->io_type == FS_DATA_IO) &&
3486				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3487				return CURSEG_ALL_DATA_ATGC;
3488			else
3489				return CURSEG_COLD_DATA;
3490		}
3491		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3492			return CURSEG_COLD_DATA;
3493
3494		type = __get_age_segment_type(inode, fio->page->index);
3495		if (type != NO_CHECK_TYPE)
3496			return type;
3497
3498		if (file_is_hot(inode) ||
3499				is_inode_flag_set(inode, FI_HOT_DATA) ||
3500				f2fs_is_cow_file(inode))
3501			return CURSEG_HOT_DATA;
3502		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3503						inode->i_write_hint);
3504	} else {
3505		if (IS_DNODE(fio->page))
3506			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3507						CURSEG_HOT_NODE;
3508		return CURSEG_COLD_NODE;
3509	}
3510}
3511
3512int f2fs_get_segment_temp(int seg_type)
3513{
3514	if (IS_HOT(seg_type))
3515		return HOT;
3516	else if (IS_WARM(seg_type))
3517		return WARM;
3518	return COLD;
3519}
3520
3521static int __get_segment_type(struct f2fs_io_info *fio)
3522{
3523	int type = 0;
3524
3525	switch (F2FS_OPTION(fio->sbi).active_logs) {
3526	case 2:
3527		type = __get_segment_type_2(fio);
3528		break;
3529	case 4:
3530		type = __get_segment_type_4(fio);
3531		break;
3532	case 6:
3533		type = __get_segment_type_6(fio);
3534		break;
3535	default:
3536		f2fs_bug_on(fio->sbi, true);
3537	}
3538
3539	fio->temp = f2fs_get_segment_temp(type);
3540
3541	return type;
3542}
3543
3544static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3545		struct curseg_info *seg)
3546{
3547	/* To allocate block chunks in different sizes, use random number */
3548	if (--seg->fragment_remained_chunk > 0)
3549		return;
3550
3551	seg->fragment_remained_chunk =
3552		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3553	seg->next_blkoff +=
3554		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3555}
3556
3557static void reset_curseg_fields(struct curseg_info *curseg)
3558{
3559	curseg->inited = false;
3560	curseg->segno = NULL_SEGNO;
3561	curseg->next_segno = 0;
3562}
3563
3564int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3565		block_t old_blkaddr, block_t *new_blkaddr,
3566		struct f2fs_summary *sum, int type,
3567		struct f2fs_io_info *fio)
3568{
3569	struct sit_info *sit_i = SIT_I(sbi);
3570	struct curseg_info *curseg = CURSEG_I(sbi, type);
3571	unsigned long long old_mtime;
3572	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3573	struct seg_entry *se = NULL;
3574	bool segment_full = false;
3575	int ret = 0;
3576
3577	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3578
3579	mutex_lock(&curseg->curseg_mutex);
3580	down_write(&sit_i->sentry_lock);
3581
3582	if (curseg->segno == NULL_SEGNO) {
3583		ret = -ENOSPC;
3584		goto out_err;
3585	}
3586
3587	if (from_gc) {
3588		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3589		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3590		sanity_check_seg_type(sbi, se->type);
3591		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3592	}
3593	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3594
3595	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3596
3597	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3598
3599	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3600	if (curseg->alloc_type == SSR) {
3601		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3602	} else {
3603		curseg->next_blkoff++;
3604		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3605			f2fs_randomize_chunk(sbi, curseg);
3606	}
3607	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3608		segment_full = true;
3609	stat_inc_block_count(sbi, curseg);
3610
3611	if (from_gc) {
3612		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3613	} else {
3614		update_segment_mtime(sbi, old_blkaddr, 0);
3615		old_mtime = 0;
3616	}
3617	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3618
3619	/*
3620	 * SIT information should be updated before segment allocation,
3621	 * since SSR needs latest valid block information.
3622	 */
3623	update_sit_entry(sbi, *new_blkaddr, 1);
3624	update_sit_entry(sbi, old_blkaddr, -1);
3625
3626	/*
3627	 * If the current segment is full, flush it out and replace it with a
3628	 * new segment.
3629	 */
3630	if (segment_full) {
3631		if (type == CURSEG_COLD_DATA_PINNED &&
3632		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3633			write_sum_page(sbi, curseg->sum_blk,
3634					GET_SUM_BLOCK(sbi, curseg->segno));
3635			reset_curseg_fields(curseg);
3636			goto skip_new_segment;
3637		}
3638
3639		if (from_gc) {
3640			ret = get_atssr_segment(sbi, type, se->type,
3641						AT_SSR, se->mtime);
3642		} else {
3643			if (need_new_seg(sbi, type))
3644				ret = new_curseg(sbi, type, false);
3645			else
3646				ret = change_curseg(sbi, type);
3647			stat_inc_seg_type(sbi, curseg);
3648		}
3649
3650		if (ret)
3651			goto out_err;
3652	}
3653
3654skip_new_segment:
3655	/*
3656	 * segment dirty status should be updated after segment allocation,
3657	 * so we just need to update status only one time after previous
3658	 * segment being closed.
3659	 */
3660	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3661	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3662
3663	if (IS_DATASEG(curseg->seg_type))
3664		atomic64_inc(&sbi->allocated_data_blocks);
3665
3666	up_write(&sit_i->sentry_lock);
3667
3668	if (page && IS_NODESEG(curseg->seg_type)) {
3669		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3670
3671		f2fs_inode_chksum_set(sbi, page);
3672	}
3673
3674	if (fio) {
3675		struct f2fs_bio_info *io;
3676
3677		INIT_LIST_HEAD(&fio->list);
3678		fio->in_list = 1;
3679		io = sbi->write_io[fio->type] + fio->temp;
3680		spin_lock(&io->io_lock);
3681		list_add_tail(&fio->list, &io->io_list);
3682		spin_unlock(&io->io_lock);
3683	}
3684
3685	mutex_unlock(&curseg->curseg_mutex);
3686	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3687	return 0;
3688
3689out_err:
3690	*new_blkaddr = NULL_ADDR;
3691	up_write(&sit_i->sentry_lock);
3692	mutex_unlock(&curseg->curseg_mutex);
3693	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3694	return ret;
3695}
3696
3697void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3698					block_t blkaddr, unsigned int blkcnt)
3699{
3700	if (!f2fs_is_multi_device(sbi))
3701		return;
3702
3703	while (1) {
3704		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3705		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3706
3707		/* update device state for fsync */
3708		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3709
3710		/* update device state for checkpoint */
3711		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3712			spin_lock(&sbi->dev_lock);
3713			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3714			spin_unlock(&sbi->dev_lock);
3715		}
3716
3717		if (blkcnt <= blks)
3718			break;
3719		blkcnt -= blks;
3720		blkaddr += blks;
3721	}
3722}
3723
3724static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3725{
3726	int type = __get_segment_type(fio);
3727	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3728
3729	if (keep_order)
3730		f2fs_down_read(&fio->sbi->io_order_lock);
3731
3732	if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3733			&fio->new_blkaddr, sum, type, fio)) {
3734		if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3735			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3736		end_page_writeback(fio->page);
3737		if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3738			f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3739		goto out;
3740	}
3741	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3742		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3743
3744	/* writeout dirty page into bdev */
3745	f2fs_submit_page_write(fio);
3746
3747	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3748out:
3749	if (keep_order)
3750		f2fs_up_read(&fio->sbi->io_order_lock);
3751}
3752
3753void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3754					enum iostat_type io_type)
3755{
3756	struct f2fs_io_info fio = {
3757		.sbi = sbi,
3758		.type = META,
3759		.temp = HOT,
3760		.op = REQ_OP_WRITE,
3761		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3762		.old_blkaddr = page->index,
3763		.new_blkaddr = page->index,
3764		.page = page,
3765		.encrypted_page = NULL,
3766		.in_list = 0,
3767	};
3768
3769	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3770		fio.op_flags &= ~REQ_META;
3771
3772	set_page_writeback(page);
3773	f2fs_submit_page_write(&fio);
3774
3775	stat_inc_meta_count(sbi, page->index);
3776	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3777}
3778
3779void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3780{
3781	struct f2fs_summary sum;
3782
3783	set_summary(&sum, nid, 0, 0);
3784	do_write_page(&sum, fio);
3785
3786	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3787}
3788
3789void f2fs_outplace_write_data(struct dnode_of_data *dn,
3790					struct f2fs_io_info *fio)
3791{
3792	struct f2fs_sb_info *sbi = fio->sbi;
3793	struct f2fs_summary sum;
3794
3795	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3796	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3797		f2fs_update_age_extent_cache(dn);
3798	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3799	do_write_page(&sum, fio);
3800	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3801
3802	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3803}
3804
3805int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3806{
3807	int err;
3808	struct f2fs_sb_info *sbi = fio->sbi;
3809	unsigned int segno;
3810
3811	fio->new_blkaddr = fio->old_blkaddr;
3812	/* i/o temperature is needed for passing down write hints */
3813	__get_segment_type(fio);
3814
3815	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3816
3817	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3818		set_sbi_flag(sbi, SBI_NEED_FSCK);
3819		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3820			  __func__, segno);
3821		err = -EFSCORRUPTED;
3822		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3823		goto drop_bio;
3824	}
3825
3826	if (f2fs_cp_error(sbi)) {
3827		err = -EIO;
3828		goto drop_bio;
3829	}
3830
3831	if (fio->post_read)
3832		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3833
3834	stat_inc_inplace_blocks(fio->sbi);
3835
3836	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3837		err = f2fs_merge_page_bio(fio);
3838	else
3839		err = f2fs_submit_page_bio(fio);
3840	if (!err) {
3841		f2fs_update_device_state(fio->sbi, fio->ino,
3842						fio->new_blkaddr, 1);
3843		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3844						fio->io_type, F2FS_BLKSIZE);
3845	}
3846
3847	return err;
3848drop_bio:
3849	if (fio->bio && *(fio->bio)) {
3850		struct bio *bio = *(fio->bio);
3851
3852		bio->bi_status = BLK_STS_IOERR;
3853		bio_endio(bio);
3854		*(fio->bio) = NULL;
3855	}
3856	return err;
3857}
3858
3859static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3860						unsigned int segno)
3861{
3862	int i;
3863
3864	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3865		if (CURSEG_I(sbi, i)->segno == segno)
3866			break;
3867	}
3868	return i;
3869}
3870
3871void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3872				block_t old_blkaddr, block_t new_blkaddr,
3873				bool recover_curseg, bool recover_newaddr,
3874				bool from_gc)
3875{
3876	struct sit_info *sit_i = SIT_I(sbi);
3877	struct curseg_info *curseg;
3878	unsigned int segno, old_cursegno;
3879	struct seg_entry *se;
3880	int type;
3881	unsigned short old_blkoff;
3882	unsigned char old_alloc_type;
3883
3884	segno = GET_SEGNO(sbi, new_blkaddr);
3885	se = get_seg_entry(sbi, segno);
3886	type = se->type;
3887
3888	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3889
3890	if (!recover_curseg) {
3891		/* for recovery flow */
3892		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3893			if (old_blkaddr == NULL_ADDR)
3894				type = CURSEG_COLD_DATA;
3895			else
3896				type = CURSEG_WARM_DATA;
3897		}
3898	} else {
3899		if (IS_CURSEG(sbi, segno)) {
3900			/* se->type is volatile as SSR allocation */
3901			type = __f2fs_get_curseg(sbi, segno);
3902			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3903		} else {
3904			type = CURSEG_WARM_DATA;
3905		}
3906	}
3907
3908	f2fs_bug_on(sbi, !IS_DATASEG(type));
3909	curseg = CURSEG_I(sbi, type);
3910
3911	mutex_lock(&curseg->curseg_mutex);
3912	down_write(&sit_i->sentry_lock);
3913
3914	old_cursegno = curseg->segno;
3915	old_blkoff = curseg->next_blkoff;
3916	old_alloc_type = curseg->alloc_type;
3917
3918	/* change the current segment */
3919	if (segno != curseg->segno) {
3920		curseg->next_segno = segno;
3921		if (change_curseg(sbi, type))
3922			goto out_unlock;
3923	}
3924
3925	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3926	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3927
3928	if (!recover_curseg || recover_newaddr) {
3929		if (!from_gc)
3930			update_segment_mtime(sbi, new_blkaddr, 0);
3931		update_sit_entry(sbi, new_blkaddr, 1);
3932	}
3933	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3934		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3935		if (!from_gc)
3936			update_segment_mtime(sbi, old_blkaddr, 0);
3937		update_sit_entry(sbi, old_blkaddr, -1);
3938	}
3939
3940	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3941	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3942
3943	locate_dirty_segment(sbi, old_cursegno);
3944
3945	if (recover_curseg) {
3946		if (old_cursegno != curseg->segno) {
3947			curseg->next_segno = old_cursegno;
3948			if (change_curseg(sbi, type))
3949				goto out_unlock;
3950		}
3951		curseg->next_blkoff = old_blkoff;
3952		curseg->alloc_type = old_alloc_type;
3953	}
3954
3955out_unlock:
3956	up_write(&sit_i->sentry_lock);
3957	mutex_unlock(&curseg->curseg_mutex);
3958	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3959}
3960
3961void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3962				block_t old_addr, block_t new_addr,
3963				unsigned char version, bool recover_curseg,
3964				bool recover_newaddr)
3965{
3966	struct f2fs_summary sum;
3967
3968	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3969
3970	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3971					recover_curseg, recover_newaddr, false);
3972
3973	f2fs_update_data_blkaddr(dn, new_addr);
3974}
3975
3976void f2fs_wait_on_page_writeback(struct page *page,
3977				enum page_type type, bool ordered, bool locked)
3978{
3979	if (folio_test_writeback(page_folio(page))) {
3980		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3981
3982		/* submit cached LFS IO */
3983		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3984		/* submit cached IPU IO */
3985		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3986		if (ordered) {
3987			wait_on_page_writeback(page);
3988			f2fs_bug_on(sbi, locked &&
3989				folio_test_writeback(page_folio(page)));
3990		} else {
3991			wait_for_stable_page(page);
3992		}
3993	}
3994}
3995
3996void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3997{
3998	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3999	struct page *cpage;
4000
4001	if (!f2fs_post_read_required(inode))
4002		return;
4003
4004	if (!__is_valid_data_blkaddr(blkaddr))
4005		return;
4006
4007	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4008	if (cpage) {
4009		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4010		f2fs_put_page(cpage, 1);
4011	}
4012}
4013
4014void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4015								block_t len)
4016{
4017	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4018	block_t i;
4019
4020	if (!f2fs_post_read_required(inode))
4021		return;
4022
4023	for (i = 0; i < len; i++)
4024		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4025
4026	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4027}
4028
4029static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4030{
4031	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4032	struct curseg_info *seg_i;
4033	unsigned char *kaddr;
4034	struct page *page;
4035	block_t start;
4036	int i, j, offset;
4037
4038	start = start_sum_block(sbi);
4039
4040	page = f2fs_get_meta_page(sbi, start++);
4041	if (IS_ERR(page))
4042		return PTR_ERR(page);
4043	kaddr = (unsigned char *)page_address(page);
4044
4045	/* Step 1: restore nat cache */
4046	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4047	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4048
4049	/* Step 2: restore sit cache */
4050	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4051	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4052	offset = 2 * SUM_JOURNAL_SIZE;
4053
4054	/* Step 3: restore summary entries */
4055	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4056		unsigned short blk_off;
4057		unsigned int segno;
4058
4059		seg_i = CURSEG_I(sbi, i);
4060		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4061		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4062		seg_i->next_segno = segno;
4063		reset_curseg(sbi, i, 0);
4064		seg_i->alloc_type = ckpt->alloc_type[i];
4065		seg_i->next_blkoff = blk_off;
4066
4067		if (seg_i->alloc_type == SSR)
4068			blk_off = BLKS_PER_SEG(sbi);
4069
4070		for (j = 0; j < blk_off; j++) {
4071			struct f2fs_summary *s;
4072
4073			s = (struct f2fs_summary *)(kaddr + offset);
4074			seg_i->sum_blk->entries[j] = *s;
4075			offset += SUMMARY_SIZE;
4076			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4077						SUM_FOOTER_SIZE)
4078				continue;
4079
4080			f2fs_put_page(page, 1);
4081			page = NULL;
4082
4083			page = f2fs_get_meta_page(sbi, start++);
4084			if (IS_ERR(page))
4085				return PTR_ERR(page);
4086			kaddr = (unsigned char *)page_address(page);
4087			offset = 0;
4088		}
4089	}
4090	f2fs_put_page(page, 1);
4091	return 0;
4092}
4093
4094static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4095{
4096	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4097	struct f2fs_summary_block *sum;
4098	struct curseg_info *curseg;
4099	struct page *new;
4100	unsigned short blk_off;
4101	unsigned int segno = 0;
4102	block_t blk_addr = 0;
4103	int err = 0;
4104
4105	/* get segment number and block addr */
4106	if (IS_DATASEG(type)) {
4107		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4108		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4109							CURSEG_HOT_DATA]);
4110		if (__exist_node_summaries(sbi))
4111			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4112		else
4113			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4114	} else {
4115		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4116							CURSEG_HOT_NODE]);
4117		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4118							CURSEG_HOT_NODE]);
4119		if (__exist_node_summaries(sbi))
4120			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4121							type - CURSEG_HOT_NODE);
4122		else
4123			blk_addr = GET_SUM_BLOCK(sbi, segno);
4124	}
4125
4126	new = f2fs_get_meta_page(sbi, blk_addr);
4127	if (IS_ERR(new))
4128		return PTR_ERR(new);
4129	sum = (struct f2fs_summary_block *)page_address(new);
4130
4131	if (IS_NODESEG(type)) {
4132		if (__exist_node_summaries(sbi)) {
4133			struct f2fs_summary *ns = &sum->entries[0];
4134			int i;
4135
4136			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4137				ns->version = 0;
4138				ns->ofs_in_node = 0;
4139			}
4140		} else {
4141			err = f2fs_restore_node_summary(sbi, segno, sum);
4142			if (err)
4143				goto out;
4144		}
4145	}
4146
4147	/* set uncompleted segment to curseg */
4148	curseg = CURSEG_I(sbi, type);
4149	mutex_lock(&curseg->curseg_mutex);
4150
4151	/* update journal info */
4152	down_write(&curseg->journal_rwsem);
4153	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4154	up_write(&curseg->journal_rwsem);
4155
4156	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4157	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4158	curseg->next_segno = segno;
4159	reset_curseg(sbi, type, 0);
4160	curseg->alloc_type = ckpt->alloc_type[type];
4161	curseg->next_blkoff = blk_off;
4162	mutex_unlock(&curseg->curseg_mutex);
4163out:
4164	f2fs_put_page(new, 1);
4165	return err;
4166}
4167
4168static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4169{
4170	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4171	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4172	int type = CURSEG_HOT_DATA;
4173	int err;
4174
4175	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4176		int npages = f2fs_npages_for_summary_flush(sbi, true);
4177
4178		if (npages >= 2)
4179			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4180							META_CP, true);
4181
4182		/* restore for compacted data summary */
4183		err = read_compacted_summaries(sbi);
4184		if (err)
4185			return err;
4186		type = CURSEG_HOT_NODE;
4187	}
4188
4189	if (__exist_node_summaries(sbi))
4190		f2fs_ra_meta_pages(sbi,
4191				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4192				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4193
4194	for (; type <= CURSEG_COLD_NODE; type++) {
4195		err = read_normal_summaries(sbi, type);
4196		if (err)
4197			return err;
4198	}
4199
4200	/* sanity check for summary blocks */
4201	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4202			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4203		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4204			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4205		return -EINVAL;
4206	}
4207
4208	return 0;
4209}
4210
4211static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4212{
4213	struct page *page;
4214	unsigned char *kaddr;
4215	struct f2fs_summary *summary;
4216	struct curseg_info *seg_i;
4217	int written_size = 0;
4218	int i, j;
4219
4220	page = f2fs_grab_meta_page(sbi, blkaddr++);
4221	kaddr = (unsigned char *)page_address(page);
4222	memset(kaddr, 0, PAGE_SIZE);
4223
4224	/* Step 1: write nat cache */
4225	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4226	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4227	written_size += SUM_JOURNAL_SIZE;
4228
4229	/* Step 2: write sit cache */
4230	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4231	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4232	written_size += SUM_JOURNAL_SIZE;
4233
4234	/* Step 3: write summary entries */
4235	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4236		seg_i = CURSEG_I(sbi, i);
4237		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4238			if (!page) {
4239				page = f2fs_grab_meta_page(sbi, blkaddr++);
4240				kaddr = (unsigned char *)page_address(page);
4241				memset(kaddr, 0, PAGE_SIZE);
4242				written_size = 0;
4243			}
4244			summary = (struct f2fs_summary *)(kaddr + written_size);
4245			*summary = seg_i->sum_blk->entries[j];
4246			written_size += SUMMARY_SIZE;
4247
4248			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4249							SUM_FOOTER_SIZE)
4250				continue;
4251
4252			set_page_dirty(page);
4253			f2fs_put_page(page, 1);
4254			page = NULL;
4255		}
4256	}
4257	if (page) {
4258		set_page_dirty(page);
4259		f2fs_put_page(page, 1);
4260	}
4261}
4262
4263static void write_normal_summaries(struct f2fs_sb_info *sbi,
4264					block_t blkaddr, int type)
4265{
4266	int i, end;
4267
4268	if (IS_DATASEG(type))
4269		end = type + NR_CURSEG_DATA_TYPE;
4270	else
4271		end = type + NR_CURSEG_NODE_TYPE;
4272
4273	for (i = type; i < end; i++)
4274		write_current_sum_page(sbi, i, blkaddr + (i - type));
4275}
4276
4277void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4278{
4279	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4280		write_compacted_summaries(sbi, start_blk);
4281	else
4282		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4283}
4284
4285void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4286{
4287	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4288}
4289
4290int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4291					unsigned int val, int alloc)
4292{
4293	int i;
4294
4295	if (type == NAT_JOURNAL) {
4296		for (i = 0; i < nats_in_cursum(journal); i++) {
4297			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4298				return i;
4299		}
4300		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4301			return update_nats_in_cursum(journal, 1);
4302	} else if (type == SIT_JOURNAL) {
4303		for (i = 0; i < sits_in_cursum(journal); i++)
4304			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4305				return i;
4306		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4307			return update_sits_in_cursum(journal, 1);
4308	}
4309	return -1;
4310}
4311
4312static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4313					unsigned int segno)
4314{
4315	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4316}
4317
4318static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4319					unsigned int start)
4320{
4321	struct sit_info *sit_i = SIT_I(sbi);
4322	struct page *page;
4323	pgoff_t src_off, dst_off;
4324
4325	src_off = current_sit_addr(sbi, start);
4326	dst_off = next_sit_addr(sbi, src_off);
4327
4328	page = f2fs_grab_meta_page(sbi, dst_off);
4329	seg_info_to_sit_page(sbi, page, start);
4330
4331	set_page_dirty(page);
4332	set_to_next_sit(sit_i, start);
4333
4334	return page;
4335}
4336
4337static struct sit_entry_set *grab_sit_entry_set(void)
4338{
4339	struct sit_entry_set *ses =
4340			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4341						GFP_NOFS, true, NULL);
4342
4343	ses->entry_cnt = 0;
4344	INIT_LIST_HEAD(&ses->set_list);
4345	return ses;
4346}
4347
4348static void release_sit_entry_set(struct sit_entry_set *ses)
4349{
4350	list_del(&ses->set_list);
4351	kmem_cache_free(sit_entry_set_slab, ses);
4352}
4353
4354static void adjust_sit_entry_set(struct sit_entry_set *ses,
4355						struct list_head *head)
4356{
4357	struct sit_entry_set *next = ses;
4358
4359	if (list_is_last(&ses->set_list, head))
4360		return;
4361
4362	list_for_each_entry_continue(next, head, set_list)
4363		if (ses->entry_cnt <= next->entry_cnt) {
4364			list_move_tail(&ses->set_list, &next->set_list);
4365			return;
4366		}
4367
4368	list_move_tail(&ses->set_list, head);
4369}
4370
4371static void add_sit_entry(unsigned int segno, struct list_head *head)
4372{
4373	struct sit_entry_set *ses;
4374	unsigned int start_segno = START_SEGNO(segno);
4375
4376	list_for_each_entry(ses, head, set_list) {
4377		if (ses->start_segno == start_segno) {
4378			ses->entry_cnt++;
4379			adjust_sit_entry_set(ses, head);
4380			return;
4381		}
4382	}
4383
4384	ses = grab_sit_entry_set();
4385
4386	ses->start_segno = start_segno;
4387	ses->entry_cnt++;
4388	list_add(&ses->set_list, head);
4389}
4390
4391static void add_sits_in_set(struct f2fs_sb_info *sbi)
4392{
4393	struct f2fs_sm_info *sm_info = SM_I(sbi);
4394	struct list_head *set_list = &sm_info->sit_entry_set;
4395	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4396	unsigned int segno;
4397
4398	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4399		add_sit_entry(segno, set_list);
4400}
4401
4402static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4403{
4404	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4405	struct f2fs_journal *journal = curseg->journal;
4406	int i;
4407
4408	down_write(&curseg->journal_rwsem);
4409	for (i = 0; i < sits_in_cursum(journal); i++) {
4410		unsigned int segno;
4411		bool dirtied;
4412
4413		segno = le32_to_cpu(segno_in_journal(journal, i));
4414		dirtied = __mark_sit_entry_dirty(sbi, segno);
4415
4416		if (!dirtied)
4417			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4418	}
4419	update_sits_in_cursum(journal, -i);
4420	up_write(&curseg->journal_rwsem);
4421}
4422
4423/*
4424 * CP calls this function, which flushes SIT entries including sit_journal,
4425 * and moves prefree segs to free segs.
4426 */
4427void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4428{
4429	struct sit_info *sit_i = SIT_I(sbi);
4430	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4431	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4432	struct f2fs_journal *journal = curseg->journal;
4433	struct sit_entry_set *ses, *tmp;
4434	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4435	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4436	struct seg_entry *se;
4437
4438	down_write(&sit_i->sentry_lock);
4439
4440	if (!sit_i->dirty_sentries)
4441		goto out;
4442
4443	/*
4444	 * add and account sit entries of dirty bitmap in sit entry
4445	 * set temporarily
4446	 */
4447	add_sits_in_set(sbi);
4448
4449	/*
4450	 * if there are no enough space in journal to store dirty sit
4451	 * entries, remove all entries from journal and add and account
4452	 * them in sit entry set.
4453	 */
4454	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4455								!to_journal)
4456		remove_sits_in_journal(sbi);
4457
4458	/*
4459	 * there are two steps to flush sit entries:
4460	 * #1, flush sit entries to journal in current cold data summary block.
4461	 * #2, flush sit entries to sit page.
4462	 */
4463	list_for_each_entry_safe(ses, tmp, head, set_list) {
4464		struct page *page = NULL;
4465		struct f2fs_sit_block *raw_sit = NULL;
4466		unsigned int start_segno = ses->start_segno;
4467		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4468						(unsigned long)MAIN_SEGS(sbi));
4469		unsigned int segno = start_segno;
4470
4471		if (to_journal &&
4472			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4473			to_journal = false;
4474
4475		if (to_journal) {
4476			down_write(&curseg->journal_rwsem);
4477		} else {
4478			page = get_next_sit_page(sbi, start_segno);
4479			raw_sit = page_address(page);
4480		}
4481
4482		/* flush dirty sit entries in region of current sit set */
4483		for_each_set_bit_from(segno, bitmap, end) {
4484			int offset, sit_offset;
4485
4486			se = get_seg_entry(sbi, segno);
4487#ifdef CONFIG_F2FS_CHECK_FS
4488			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4489						SIT_VBLOCK_MAP_SIZE))
4490				f2fs_bug_on(sbi, 1);
4491#endif
4492
4493			/* add discard candidates */
4494			if (!(cpc->reason & CP_DISCARD)) {
4495				cpc->trim_start = segno;
4496				add_discard_addrs(sbi, cpc, false);
4497			}
4498
4499			if (to_journal) {
4500				offset = f2fs_lookup_journal_in_cursum(journal,
4501							SIT_JOURNAL, segno, 1);
4502				f2fs_bug_on(sbi, offset < 0);
4503				segno_in_journal(journal, offset) =
4504							cpu_to_le32(segno);
4505				seg_info_to_raw_sit(se,
4506					&sit_in_journal(journal, offset));
4507				check_block_count(sbi, segno,
4508					&sit_in_journal(journal, offset));
4509			} else {
4510				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4511				seg_info_to_raw_sit(se,
4512						&raw_sit->entries[sit_offset]);
4513				check_block_count(sbi, segno,
4514						&raw_sit->entries[sit_offset]);
4515			}
4516
4517			__clear_bit(segno, bitmap);
4518			sit_i->dirty_sentries--;
4519			ses->entry_cnt--;
4520		}
4521
4522		if (to_journal)
4523			up_write(&curseg->journal_rwsem);
4524		else
4525			f2fs_put_page(page, 1);
4526
4527		f2fs_bug_on(sbi, ses->entry_cnt);
4528		release_sit_entry_set(ses);
4529	}
4530
4531	f2fs_bug_on(sbi, !list_empty(head));
4532	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4533out:
4534	if (cpc->reason & CP_DISCARD) {
4535		__u64 trim_start = cpc->trim_start;
4536
4537		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4538			add_discard_addrs(sbi, cpc, false);
4539
4540		cpc->trim_start = trim_start;
4541	}
4542	up_write(&sit_i->sentry_lock);
4543
4544	set_prefree_as_free_segments(sbi);
4545}
4546
4547static int build_sit_info(struct f2fs_sb_info *sbi)
4548{
4549	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4550	struct sit_info *sit_i;
4551	unsigned int sit_segs, start;
4552	char *src_bitmap, *bitmap;
4553	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4554	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4555
4556	/* allocate memory for SIT information */
4557	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4558	if (!sit_i)
4559		return -ENOMEM;
4560
4561	SM_I(sbi)->sit_info = sit_i;
4562
4563	sit_i->sentries =
4564		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4565					      MAIN_SEGS(sbi)),
4566			      GFP_KERNEL);
4567	if (!sit_i->sentries)
4568		return -ENOMEM;
4569
4570	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4571	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4572								GFP_KERNEL);
4573	if (!sit_i->dirty_sentries_bitmap)
4574		return -ENOMEM;
4575
4576#ifdef CONFIG_F2FS_CHECK_FS
4577	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4578#else
4579	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4580#endif
4581	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4582	if (!sit_i->bitmap)
4583		return -ENOMEM;
4584
4585	bitmap = sit_i->bitmap;
4586
4587	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4588		sit_i->sentries[start].cur_valid_map = bitmap;
4589		bitmap += SIT_VBLOCK_MAP_SIZE;
4590
4591		sit_i->sentries[start].ckpt_valid_map = bitmap;
4592		bitmap += SIT_VBLOCK_MAP_SIZE;
4593
4594#ifdef CONFIG_F2FS_CHECK_FS
4595		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4596		bitmap += SIT_VBLOCK_MAP_SIZE;
4597#endif
4598
4599		if (discard_map) {
4600			sit_i->sentries[start].discard_map = bitmap;
4601			bitmap += SIT_VBLOCK_MAP_SIZE;
4602		}
4603	}
4604
4605	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4606	if (!sit_i->tmp_map)
4607		return -ENOMEM;
4608
4609	if (__is_large_section(sbi)) {
4610		sit_i->sec_entries =
4611			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4612						      MAIN_SECS(sbi)),
4613				      GFP_KERNEL);
4614		if (!sit_i->sec_entries)
4615			return -ENOMEM;
4616	}
4617
4618	/* get information related with SIT */
4619	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4620
4621	/* setup SIT bitmap from ckeckpoint pack */
4622	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4623	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4624
4625	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4626	if (!sit_i->sit_bitmap)
4627		return -ENOMEM;
4628
4629#ifdef CONFIG_F2FS_CHECK_FS
4630	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4631					sit_bitmap_size, GFP_KERNEL);
4632	if (!sit_i->sit_bitmap_mir)
4633		return -ENOMEM;
4634
4635	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4636					main_bitmap_size, GFP_KERNEL);
4637	if (!sit_i->invalid_segmap)
4638		return -ENOMEM;
4639#endif
4640
4641	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4642	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4643	sit_i->written_valid_blocks = 0;
4644	sit_i->bitmap_size = sit_bitmap_size;
4645	sit_i->dirty_sentries = 0;
4646	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4647	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4648	sit_i->mounted_time = ktime_get_boottime_seconds();
4649	init_rwsem(&sit_i->sentry_lock);
4650	return 0;
4651}
4652
4653static int build_free_segmap(struct f2fs_sb_info *sbi)
4654{
4655	struct free_segmap_info *free_i;
4656	unsigned int bitmap_size, sec_bitmap_size;
4657
4658	/* allocate memory for free segmap information */
4659	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4660	if (!free_i)
4661		return -ENOMEM;
4662
4663	SM_I(sbi)->free_info = free_i;
4664
4665	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4666	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4667	if (!free_i->free_segmap)
4668		return -ENOMEM;
4669
4670	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4671	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4672	if (!free_i->free_secmap)
4673		return -ENOMEM;
4674
4675	/* set all segments as dirty temporarily */
4676	memset(free_i->free_segmap, 0xff, bitmap_size);
4677	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4678
4679	/* init free segmap information */
4680	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4681	free_i->free_segments = 0;
4682	free_i->free_sections = 0;
4683	spin_lock_init(&free_i->segmap_lock);
4684	return 0;
4685}
4686
4687static int build_curseg(struct f2fs_sb_info *sbi)
4688{
4689	struct curseg_info *array;
4690	int i;
4691
4692	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4693					sizeof(*array)), GFP_KERNEL);
4694	if (!array)
4695		return -ENOMEM;
4696
4697	SM_I(sbi)->curseg_array = array;
4698
4699	for (i = 0; i < NO_CHECK_TYPE; i++) {
4700		mutex_init(&array[i].curseg_mutex);
4701		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4702		if (!array[i].sum_blk)
4703			return -ENOMEM;
4704		init_rwsem(&array[i].journal_rwsem);
4705		array[i].journal = f2fs_kzalloc(sbi,
4706				sizeof(struct f2fs_journal), GFP_KERNEL);
4707		if (!array[i].journal)
4708			return -ENOMEM;
4709		if (i < NR_PERSISTENT_LOG)
4710			array[i].seg_type = CURSEG_HOT_DATA + i;
4711		else if (i == CURSEG_COLD_DATA_PINNED)
4712			array[i].seg_type = CURSEG_COLD_DATA;
4713		else if (i == CURSEG_ALL_DATA_ATGC)
4714			array[i].seg_type = CURSEG_COLD_DATA;
4715		reset_curseg_fields(&array[i]);
4716	}
4717	return restore_curseg_summaries(sbi);
4718}
4719
4720static int build_sit_entries(struct f2fs_sb_info *sbi)
4721{
4722	struct sit_info *sit_i = SIT_I(sbi);
4723	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4724	struct f2fs_journal *journal = curseg->journal;
4725	struct seg_entry *se;
4726	struct f2fs_sit_entry sit;
4727	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4728	unsigned int i, start, end;
4729	unsigned int readed, start_blk = 0;
4730	int err = 0;
4731	block_t sit_valid_blocks[2] = {0, 0};
4732
4733	do {
4734		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4735							META_SIT, true);
4736
4737		start = start_blk * sit_i->sents_per_block;
4738		end = (start_blk + readed) * sit_i->sents_per_block;
4739
4740		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4741			struct f2fs_sit_block *sit_blk;
4742			struct page *page;
4743
4744			se = &sit_i->sentries[start];
4745			page = get_current_sit_page(sbi, start);
4746			if (IS_ERR(page))
4747				return PTR_ERR(page);
4748			sit_blk = (struct f2fs_sit_block *)page_address(page);
4749			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4750			f2fs_put_page(page, 1);
4751
4752			err = check_block_count(sbi, start, &sit);
4753			if (err)
4754				return err;
4755			seg_info_from_raw_sit(se, &sit);
4756
4757			if (se->type >= NR_PERSISTENT_LOG) {
4758				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4759							se->type, start);
4760				f2fs_handle_error(sbi,
4761						ERROR_INCONSISTENT_SUM_TYPE);
4762				return -EFSCORRUPTED;
4763			}
4764
4765			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4766
4767			if (!f2fs_block_unit_discard(sbi))
4768				goto init_discard_map_done;
4769
4770			/* build discard map only one time */
4771			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4772				memset(se->discard_map, 0xff,
4773						SIT_VBLOCK_MAP_SIZE);
4774				goto init_discard_map_done;
4775			}
4776			memcpy(se->discard_map, se->cur_valid_map,
4777						SIT_VBLOCK_MAP_SIZE);
4778			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4779						se->valid_blocks;
4780init_discard_map_done:
4781			if (__is_large_section(sbi))
4782				get_sec_entry(sbi, start)->valid_blocks +=
4783							se->valid_blocks;
4784		}
4785		start_blk += readed;
4786	} while (start_blk < sit_blk_cnt);
4787
4788	down_read(&curseg->journal_rwsem);
4789	for (i = 0; i < sits_in_cursum(journal); i++) {
4790		unsigned int old_valid_blocks;
4791
4792		start = le32_to_cpu(segno_in_journal(journal, i));
4793		if (start >= MAIN_SEGS(sbi)) {
4794			f2fs_err(sbi, "Wrong journal entry on segno %u",
4795				 start);
4796			err = -EFSCORRUPTED;
4797			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4798			break;
4799		}
4800
4801		se = &sit_i->sentries[start];
4802		sit = sit_in_journal(journal, i);
4803
4804		old_valid_blocks = se->valid_blocks;
4805
4806		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4807
4808		err = check_block_count(sbi, start, &sit);
4809		if (err)
4810			break;
4811		seg_info_from_raw_sit(se, &sit);
4812
4813		if (se->type >= NR_PERSISTENT_LOG) {
4814			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4815							se->type, start);
4816			err = -EFSCORRUPTED;
4817			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4818			break;
4819		}
4820
4821		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4822
4823		if (f2fs_block_unit_discard(sbi)) {
4824			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4825				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4826			} else {
4827				memcpy(se->discard_map, se->cur_valid_map,
4828							SIT_VBLOCK_MAP_SIZE);
4829				sbi->discard_blks += old_valid_blocks;
4830				sbi->discard_blks -= se->valid_blocks;
4831			}
4832		}
4833
4834		if (__is_large_section(sbi)) {
4835			get_sec_entry(sbi, start)->valid_blocks +=
4836							se->valid_blocks;
4837			get_sec_entry(sbi, start)->valid_blocks -=
4838							old_valid_blocks;
4839		}
4840	}
4841	up_read(&curseg->journal_rwsem);
4842
4843	if (err)
4844		return err;
4845
4846	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4847		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4848			 sit_valid_blocks[NODE], valid_node_count(sbi));
4849		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4850		return -EFSCORRUPTED;
4851	}
4852
4853	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4854				valid_user_blocks(sbi)) {
4855		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4856			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4857			 valid_user_blocks(sbi));
4858		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4859		return -EFSCORRUPTED;
4860	}
4861
4862	return 0;
4863}
4864
4865static void init_free_segmap(struct f2fs_sb_info *sbi)
4866{
4867	unsigned int start;
4868	int type;
4869	struct seg_entry *sentry;
4870
4871	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4872		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4873			continue;
4874		sentry = get_seg_entry(sbi, start);
4875		if (!sentry->valid_blocks)
4876			__set_free(sbi, start);
4877		else
4878			SIT_I(sbi)->written_valid_blocks +=
4879						sentry->valid_blocks;
4880	}
4881
4882	/* set use the current segments */
4883	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4884		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4885
4886		__set_test_and_inuse(sbi, curseg_t->segno);
4887	}
4888}
4889
4890static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4891{
4892	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4893	struct free_segmap_info *free_i = FREE_I(sbi);
4894	unsigned int segno = 0, offset = 0, secno;
4895	block_t valid_blocks, usable_blks_in_seg;
4896
4897	while (1) {
4898		/* find dirty segment based on free segmap */
4899		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4900		if (segno >= MAIN_SEGS(sbi))
4901			break;
4902		offset = segno + 1;
4903		valid_blocks = get_valid_blocks(sbi, segno, false);
4904		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4905		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4906			continue;
4907		if (valid_blocks > usable_blks_in_seg) {
4908			f2fs_bug_on(sbi, 1);
4909			continue;
4910		}
4911		mutex_lock(&dirty_i->seglist_lock);
4912		__locate_dirty_segment(sbi, segno, DIRTY);
4913		mutex_unlock(&dirty_i->seglist_lock);
4914	}
4915
4916	if (!__is_large_section(sbi))
4917		return;
4918
4919	mutex_lock(&dirty_i->seglist_lock);
4920	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4921		valid_blocks = get_valid_blocks(sbi, segno, true);
4922		secno = GET_SEC_FROM_SEG(sbi, segno);
4923
4924		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4925			continue;
4926		if (IS_CURSEC(sbi, secno))
4927			continue;
4928		set_bit(secno, dirty_i->dirty_secmap);
4929	}
4930	mutex_unlock(&dirty_i->seglist_lock);
4931}
4932
4933static int init_victim_secmap(struct f2fs_sb_info *sbi)
4934{
4935	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4936	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4937
4938	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4939	if (!dirty_i->victim_secmap)
4940		return -ENOMEM;
4941
4942	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4943	if (!dirty_i->pinned_secmap)
4944		return -ENOMEM;
4945
4946	dirty_i->pinned_secmap_cnt = 0;
4947	dirty_i->enable_pin_section = true;
4948	return 0;
4949}
4950
4951static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4952{
4953	struct dirty_seglist_info *dirty_i;
4954	unsigned int bitmap_size, i;
4955
4956	/* allocate memory for dirty segments list information */
4957	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4958								GFP_KERNEL);
4959	if (!dirty_i)
4960		return -ENOMEM;
4961
4962	SM_I(sbi)->dirty_info = dirty_i;
4963	mutex_init(&dirty_i->seglist_lock);
4964
4965	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4966
4967	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4968		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4969								GFP_KERNEL);
4970		if (!dirty_i->dirty_segmap[i])
4971			return -ENOMEM;
4972	}
4973
4974	if (__is_large_section(sbi)) {
4975		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4976		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4977						bitmap_size, GFP_KERNEL);
4978		if (!dirty_i->dirty_secmap)
4979			return -ENOMEM;
4980	}
4981
4982	init_dirty_segmap(sbi);
4983	return init_victim_secmap(sbi);
4984}
4985
4986static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4987{
4988	int i;
4989
4990	/*
4991	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4992	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4993	 */
4994	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4995		struct curseg_info *curseg = CURSEG_I(sbi, i);
4996		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4997		unsigned int blkofs = curseg->next_blkoff;
4998
4999		if (f2fs_sb_has_readonly(sbi) &&
5000			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5001			continue;
5002
5003		sanity_check_seg_type(sbi, curseg->seg_type);
5004
5005		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5006			f2fs_err(sbi,
5007				 "Current segment has invalid alloc_type:%d",
5008				 curseg->alloc_type);
5009			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5010			return -EFSCORRUPTED;
5011		}
5012
5013		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5014			goto out;
5015
5016		if (curseg->alloc_type == SSR)
5017			continue;
5018
5019		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5020			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5021				continue;
5022out:
5023			f2fs_err(sbi,
5024				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5025				 i, curseg->segno, curseg->alloc_type,
5026				 curseg->next_blkoff, blkofs);
5027			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5028			return -EFSCORRUPTED;
5029		}
5030	}
5031	return 0;
5032}
5033
5034#ifdef CONFIG_BLK_DEV_ZONED
5035static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5036				    struct f2fs_dev_info *fdev,
5037				    struct blk_zone *zone)
5038{
5039	unsigned int zone_segno;
5040	block_t zone_block, valid_block_cnt;
5041	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5042	int ret;
5043	unsigned int nofs_flags;
5044
5045	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5046		return 0;
5047
5048	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5049	zone_segno = GET_SEGNO(sbi, zone_block);
5050
5051	/*
5052	 * Skip check of zones cursegs point to, since
5053	 * fix_curseg_write_pointer() checks them.
5054	 */
5055	if (zone_segno >= MAIN_SEGS(sbi))
5056		return 0;
5057
5058	/*
5059	 * Get # of valid block of the zone.
5060	 */
5061	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5062	if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5063		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5064				zone_segno, valid_block_cnt,
5065				blk_zone_cond_str(zone->cond));
5066		return 0;
5067	}
5068
5069	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5070	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5071		return 0;
5072
5073	if (!valid_block_cnt) {
5074		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5075			    "pointer. Reset the write pointer: cond[%s]",
5076			    blk_zone_cond_str(zone->cond));
5077		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5078					zone->len >> log_sectors_per_block);
5079		if (ret)
5080			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5081				 fdev->path, ret);
5082		return ret;
5083	}
5084
5085	/*
5086	 * If there are valid blocks and the write pointer doesn't match
5087	 * with them, we need to report the inconsistency and fill
5088	 * the zone till the end to close the zone. This inconsistency
5089	 * does not cause write error because the zone will not be
5090	 * selected for write operation until it get discarded.
5091	 */
5092	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5093		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5094		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5095
5096	nofs_flags = memalloc_nofs_save();
5097	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5098				zone->start, zone->len);
5099	memalloc_nofs_restore(nofs_flags);
5100	if (ret == -EOPNOTSUPP) {
5101		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5102					zone->len - (zone->wp - zone->start),
5103					GFP_NOFS, 0);
5104		if (ret)
5105			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5106					fdev->path, ret);
5107	} else if (ret) {
5108		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5109				fdev->path, ret);
5110	}
5111
5112	return ret;
5113}
5114
5115static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5116						  block_t zone_blkaddr)
5117{
5118	int i;
5119
5120	for (i = 0; i < sbi->s_ndevs; i++) {
5121		if (!bdev_is_zoned(FDEV(i).bdev))
5122			continue;
5123		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5124				zone_blkaddr <= FDEV(i).end_blk))
5125			return &FDEV(i);
5126	}
5127
5128	return NULL;
5129}
5130
5131static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5132			      void *data)
5133{
5134	memcpy(data, zone, sizeof(struct blk_zone));
5135	return 0;
5136}
5137
5138static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5139{
5140	struct curseg_info *cs = CURSEG_I(sbi, type);
5141	struct f2fs_dev_info *zbd;
5142	struct blk_zone zone;
5143	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5144	block_t cs_zone_block, wp_block;
5145	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5146	sector_t zone_sector;
5147	int err;
5148
5149	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5150	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5151
5152	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5153	if (!zbd)
5154		return 0;
5155
5156	/* report zone for the sector the curseg points to */
5157	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5158		<< log_sectors_per_block;
5159	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5160				  report_one_zone_cb, &zone);
5161	if (err != 1) {
5162		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5163			 zbd->path, err);
5164		return err;
5165	}
5166
5167	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5168		return 0;
5169
5170	/*
5171	 * When safely unmounted in the previous mount, we could use current
5172	 * segments. Otherwise, allocate new sections.
5173	 */
5174	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5175		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5176		wp_segno = GET_SEGNO(sbi, wp_block);
5177		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5178		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5179
5180		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5181				wp_sector_off == 0)
5182			return 0;
5183
5184		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5185			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5186			    cs->next_blkoff, wp_segno, wp_blkoff);
5187	}
5188
5189	/* Allocate a new section if it's not new. */
5190	if (cs->next_blkoff) {
5191		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5192
5193		f2fs_allocate_new_section(sbi, type, true);
5194		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5195				"[0x%x,0x%x] -> [0x%x,0x%x]",
5196				type, old_segno, old_blkoff,
5197				cs->segno, cs->next_blkoff);
5198	}
5199
5200	/* check consistency of the zone curseg pointed to */
5201	if (check_zone_write_pointer(sbi, zbd, &zone))
5202		return -EIO;
5203
5204	/* check newly assigned zone */
5205	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5206	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5207
5208	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5209	if (!zbd)
5210		return 0;
5211
5212	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5213		<< log_sectors_per_block;
5214	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5215				  report_one_zone_cb, &zone);
5216	if (err != 1) {
5217		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5218			 zbd->path, err);
5219		return err;
5220	}
5221
5222	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5223		return 0;
5224
5225	if (zone.wp != zone.start) {
5226		f2fs_notice(sbi,
5227			    "New zone for curseg[%d] is not yet discarded. "
5228			    "Reset the zone: curseg[0x%x,0x%x]",
5229			    type, cs->segno, cs->next_blkoff);
5230		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5231					zone.len >> log_sectors_per_block);
5232		if (err) {
5233			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5234				 zbd->path, err);
5235			return err;
5236		}
5237	}
5238
5239	return 0;
5240}
5241
5242int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5243{
5244	int i, ret;
5245
5246	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5247		ret = fix_curseg_write_pointer(sbi, i);
5248		if (ret)
5249			return ret;
5250	}
5251
5252	return 0;
5253}
5254
5255struct check_zone_write_pointer_args {
5256	struct f2fs_sb_info *sbi;
5257	struct f2fs_dev_info *fdev;
5258};
5259
5260static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5261				      void *data)
5262{
5263	struct check_zone_write_pointer_args *args;
5264
5265	args = (struct check_zone_write_pointer_args *)data;
5266
5267	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5268}
5269
5270int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5271{
5272	int i, ret;
5273	struct check_zone_write_pointer_args args;
5274
5275	for (i = 0; i < sbi->s_ndevs; i++) {
5276		if (!bdev_is_zoned(FDEV(i).bdev))
5277			continue;
5278
5279		args.sbi = sbi;
5280		args.fdev = &FDEV(i);
5281		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5282					  check_zone_write_pointer_cb, &args);
5283		if (ret < 0)
5284			return ret;
5285	}
5286
5287	return 0;
5288}
5289
5290/*
5291 * Return the number of usable blocks in a segment. The number of blocks
5292 * returned is always equal to the number of blocks in a segment for
5293 * segments fully contained within a sequential zone capacity or a
5294 * conventional zone. For segments partially contained in a sequential
5295 * zone capacity, the number of usable blocks up to the zone capacity
5296 * is returned. 0 is returned in all other cases.
5297 */
5298static inline unsigned int f2fs_usable_zone_blks_in_seg(
5299			struct f2fs_sb_info *sbi, unsigned int segno)
5300{
5301	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5302	unsigned int secno;
5303
5304	if (!sbi->unusable_blocks_per_sec)
5305		return BLKS_PER_SEG(sbi);
5306
5307	secno = GET_SEC_FROM_SEG(sbi, segno);
5308	seg_start = START_BLOCK(sbi, segno);
5309	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5310	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5311
5312	/*
5313	 * If segment starts before zone capacity and spans beyond
5314	 * zone capacity, then usable blocks are from seg start to
5315	 * zone capacity. If the segment starts after the zone capacity,
5316	 * then there are no usable blocks.
5317	 */
5318	if (seg_start >= sec_cap_blkaddr)
5319		return 0;
5320	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5321		return sec_cap_blkaddr - seg_start;
5322
5323	return BLKS_PER_SEG(sbi);
5324}
5325#else
5326int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5327{
5328	return 0;
5329}
5330
5331int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5332{
5333	return 0;
5334}
5335
5336static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5337							unsigned int segno)
5338{
5339	return 0;
5340}
5341
5342#endif
5343unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5344					unsigned int segno)
5345{
5346	if (f2fs_sb_has_blkzoned(sbi))
5347		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5348
5349	return BLKS_PER_SEG(sbi);
5350}
5351
5352unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5353					unsigned int segno)
5354{
5355	if (f2fs_sb_has_blkzoned(sbi))
5356		return CAP_SEGS_PER_SEC(sbi);
5357
5358	return SEGS_PER_SEC(sbi);
5359}
5360
5361/*
5362 * Update min, max modified time for cost-benefit GC algorithm
5363 */
5364static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5365{
5366	struct sit_info *sit_i = SIT_I(sbi);
5367	unsigned int segno;
5368
5369	down_write(&sit_i->sentry_lock);
5370
5371	sit_i->min_mtime = ULLONG_MAX;
5372
5373	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5374		unsigned int i;
5375		unsigned long long mtime = 0;
5376
5377		for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5378			mtime += get_seg_entry(sbi, segno + i)->mtime;
5379
5380		mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5381
5382		if (sit_i->min_mtime > mtime)
5383			sit_i->min_mtime = mtime;
5384	}
5385	sit_i->max_mtime = get_mtime(sbi, false);
5386	sit_i->dirty_max_mtime = 0;
5387	up_write(&sit_i->sentry_lock);
5388}
5389
5390int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5391{
5392	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5393	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5394	struct f2fs_sm_info *sm_info;
5395	int err;
5396
5397	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5398	if (!sm_info)
5399		return -ENOMEM;
5400
5401	/* init sm info */
5402	sbi->sm_info = sm_info;
5403	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5404	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5405	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5406	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5407	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5408	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5409	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5410	sm_info->rec_prefree_segments = sm_info->main_segments *
5411					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5412	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5413		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5414
5415	if (!f2fs_lfs_mode(sbi))
5416		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5417	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5418	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5419	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5420	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5421	sm_info->min_ssr_sections = reserved_sections(sbi);
5422
5423	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5424
5425	init_f2fs_rwsem(&sm_info->curseg_lock);
5426
5427	err = f2fs_create_flush_cmd_control(sbi);
5428	if (err)
5429		return err;
5430
5431	err = create_discard_cmd_control(sbi);
5432	if (err)
5433		return err;
5434
5435	err = build_sit_info(sbi);
5436	if (err)
5437		return err;
5438	err = build_free_segmap(sbi);
5439	if (err)
5440		return err;
5441	err = build_curseg(sbi);
5442	if (err)
5443		return err;
5444
5445	/* reinit free segmap based on SIT */
5446	err = build_sit_entries(sbi);
5447	if (err)
5448		return err;
5449
5450	init_free_segmap(sbi);
5451	err = build_dirty_segmap(sbi);
5452	if (err)
5453		return err;
5454
5455	err = sanity_check_curseg(sbi);
5456	if (err)
5457		return err;
5458
5459	init_min_max_mtime(sbi);
5460	return 0;
5461}
5462
5463static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5464		enum dirty_type dirty_type)
5465{
5466	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5467
5468	mutex_lock(&dirty_i->seglist_lock);
5469	kvfree(dirty_i->dirty_segmap[dirty_type]);
5470	dirty_i->nr_dirty[dirty_type] = 0;
5471	mutex_unlock(&dirty_i->seglist_lock);
5472}
5473
5474static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5475{
5476	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5477
5478	kvfree(dirty_i->pinned_secmap);
5479	kvfree(dirty_i->victim_secmap);
5480}
5481
5482static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5483{
5484	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5485	int i;
5486
5487	if (!dirty_i)
5488		return;
5489
5490	/* discard pre-free/dirty segments list */
5491	for (i = 0; i < NR_DIRTY_TYPE; i++)
5492		discard_dirty_segmap(sbi, i);
5493
5494	if (__is_large_section(sbi)) {
5495		mutex_lock(&dirty_i->seglist_lock);
5496		kvfree(dirty_i->dirty_secmap);
5497		mutex_unlock(&dirty_i->seglist_lock);
5498	}
5499
5500	destroy_victim_secmap(sbi);
5501	SM_I(sbi)->dirty_info = NULL;
5502	kfree(dirty_i);
5503}
5504
5505static void destroy_curseg(struct f2fs_sb_info *sbi)
5506{
5507	struct curseg_info *array = SM_I(sbi)->curseg_array;
5508	int i;
5509
5510	if (!array)
5511		return;
5512	SM_I(sbi)->curseg_array = NULL;
5513	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5514		kfree(array[i].sum_blk);
5515		kfree(array[i].journal);
5516	}
5517	kfree(array);
5518}
5519
5520static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5521{
5522	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5523
5524	if (!free_i)
5525		return;
5526	SM_I(sbi)->free_info = NULL;
5527	kvfree(free_i->free_segmap);
5528	kvfree(free_i->free_secmap);
5529	kfree(free_i);
5530}
5531
5532static void destroy_sit_info(struct f2fs_sb_info *sbi)
5533{
5534	struct sit_info *sit_i = SIT_I(sbi);
5535
5536	if (!sit_i)
5537		return;
5538
5539	if (sit_i->sentries)
5540		kvfree(sit_i->bitmap);
5541	kfree(sit_i->tmp_map);
5542
5543	kvfree(sit_i->sentries);
5544	kvfree(sit_i->sec_entries);
5545	kvfree(sit_i->dirty_sentries_bitmap);
5546
5547	SM_I(sbi)->sit_info = NULL;
5548	kvfree(sit_i->sit_bitmap);
5549#ifdef CONFIG_F2FS_CHECK_FS
5550	kvfree(sit_i->sit_bitmap_mir);
5551	kvfree(sit_i->invalid_segmap);
5552#endif
5553	kfree(sit_i);
5554}
5555
5556void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5557{
5558	struct f2fs_sm_info *sm_info = SM_I(sbi);
5559
5560	if (!sm_info)
5561		return;
5562	f2fs_destroy_flush_cmd_control(sbi, true);
5563	destroy_discard_cmd_control(sbi);
5564	destroy_dirty_segmap(sbi);
5565	destroy_curseg(sbi);
5566	destroy_free_segmap(sbi);
5567	destroy_sit_info(sbi);
5568	sbi->sm_info = NULL;
5569	kfree(sm_info);
5570}
5571
5572int __init f2fs_create_segment_manager_caches(void)
5573{
5574	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5575			sizeof(struct discard_entry));
5576	if (!discard_entry_slab)
5577		goto fail;
5578
5579	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5580			sizeof(struct discard_cmd));
5581	if (!discard_cmd_slab)
5582		goto destroy_discard_entry;
5583
5584	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5585			sizeof(struct sit_entry_set));
5586	if (!sit_entry_set_slab)
5587		goto destroy_discard_cmd;
5588
5589	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5590			sizeof(struct revoke_entry));
5591	if (!revoke_entry_slab)
5592		goto destroy_sit_entry_set;
5593	return 0;
5594
5595destroy_sit_entry_set:
5596	kmem_cache_destroy(sit_entry_set_slab);
5597destroy_discard_cmd:
5598	kmem_cache_destroy(discard_cmd_slab);
5599destroy_discard_entry:
5600	kmem_cache_destroy(discard_entry_slab);
5601fail:
5602	return -ENOMEM;
5603}
5604
5605void f2fs_destroy_segment_manager_caches(void)
5606{
5607	kmem_cache_destroy(sit_entry_set_slab);
5608	kmem_cache_destroy(discard_cmd_slab);
5609	kmem_cache_destroy(discard_entry_slab);
5610	kmem_cache_destroy(revoke_entry_slab);
5611}
5612