1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "rcu-string.h"
22#include "dev-replace.h"
23#include "sysfs.h"
24#include "tree-checker.h"
25#include "space-info.h"
26#include "block-group.h"
27#include "discard.h"
28#include "zoned.h"
29#include "fs.h"
30#include "accessors.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35#include "super.h"
36#include "raid-stripe-tree.h"
37
38#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
39					 BTRFS_BLOCK_GROUP_RAID10 | \
40					 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42struct btrfs_io_geometry {
43	u32 stripe_index;
44	u32 stripe_nr;
45	int mirror_num;
46	int num_stripes;
47	u64 stripe_offset;
48	u64 raid56_full_stripe_start;
49	int max_errors;
50	enum btrfs_map_op op;
51};
52
53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54	[BTRFS_RAID_RAID10] = {
55		.sub_stripes	= 2,
56		.dev_stripes	= 1,
57		.devs_max	= 0,	/* 0 == as many as possible */
58		.devs_min	= 2,
59		.tolerated_failures = 1,
60		.devs_increment	= 2,
61		.ncopies	= 2,
62		.nparity        = 0,
63		.raid_name	= "raid10",
64		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
65		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66	},
67	[BTRFS_RAID_RAID1] = {
68		.sub_stripes	= 1,
69		.dev_stripes	= 1,
70		.devs_max	= 2,
71		.devs_min	= 2,
72		.tolerated_failures = 1,
73		.devs_increment	= 2,
74		.ncopies	= 2,
75		.nparity        = 0,
76		.raid_name	= "raid1",
77		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
78		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79	},
80	[BTRFS_RAID_RAID1C3] = {
81		.sub_stripes	= 1,
82		.dev_stripes	= 1,
83		.devs_max	= 3,
84		.devs_min	= 3,
85		.tolerated_failures = 2,
86		.devs_increment	= 3,
87		.ncopies	= 3,
88		.nparity        = 0,
89		.raid_name	= "raid1c3",
90		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
91		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92	},
93	[BTRFS_RAID_RAID1C4] = {
94		.sub_stripes	= 1,
95		.dev_stripes	= 1,
96		.devs_max	= 4,
97		.devs_min	= 4,
98		.tolerated_failures = 3,
99		.devs_increment	= 4,
100		.ncopies	= 4,
101		.nparity        = 0,
102		.raid_name	= "raid1c4",
103		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
104		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105	},
106	[BTRFS_RAID_DUP] = {
107		.sub_stripes	= 1,
108		.dev_stripes	= 2,
109		.devs_max	= 1,
110		.devs_min	= 1,
111		.tolerated_failures = 0,
112		.devs_increment	= 1,
113		.ncopies	= 2,
114		.nparity        = 0,
115		.raid_name	= "dup",
116		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
117		.mindev_error	= 0,
118	},
119	[BTRFS_RAID_RAID0] = {
120		.sub_stripes	= 1,
121		.dev_stripes	= 1,
122		.devs_max	= 0,
123		.devs_min	= 1,
124		.tolerated_failures = 0,
125		.devs_increment	= 1,
126		.ncopies	= 1,
127		.nparity        = 0,
128		.raid_name	= "raid0",
129		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
130		.mindev_error	= 0,
131	},
132	[BTRFS_RAID_SINGLE] = {
133		.sub_stripes	= 1,
134		.dev_stripes	= 1,
135		.devs_max	= 1,
136		.devs_min	= 1,
137		.tolerated_failures = 0,
138		.devs_increment	= 1,
139		.ncopies	= 1,
140		.nparity        = 0,
141		.raid_name	= "single",
142		.bg_flag	= 0,
143		.mindev_error	= 0,
144	},
145	[BTRFS_RAID_RAID5] = {
146		.sub_stripes	= 1,
147		.dev_stripes	= 1,
148		.devs_max	= 0,
149		.devs_min	= 2,
150		.tolerated_failures = 1,
151		.devs_increment	= 1,
152		.ncopies	= 1,
153		.nparity        = 1,
154		.raid_name	= "raid5",
155		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
156		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157	},
158	[BTRFS_RAID_RAID6] = {
159		.sub_stripes	= 1,
160		.dev_stripes	= 1,
161		.devs_max	= 0,
162		.devs_min	= 3,
163		.tolerated_failures = 2,
164		.devs_increment	= 1,
165		.ncopies	= 1,
166		.nparity        = 2,
167		.raid_name	= "raid6",
168		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
169		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170	},
171};
172
173/*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178{
179	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181	if (!profile)
182		return BTRFS_RAID_SINGLE;
183
184	return BTRFS_BG_FLAG_TO_INDEX(profile);
185}
186
187const char *btrfs_bg_type_to_raid_name(u64 flags)
188{
189	const int index = btrfs_bg_flags_to_raid_index(flags);
190
191	if (index >= BTRFS_NR_RAID_TYPES)
192		return NULL;
193
194	return btrfs_raid_array[index].raid_name;
195}
196
197int btrfs_nr_parity_stripes(u64 type)
198{
199	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201	return btrfs_raid_array[index].nparity;
202}
203
204/*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209{
210	int i;
211	int ret;
212	char *bp = buf;
213	u64 flags = bg_flags;
214	u32 size_bp = size_buf;
215
216	if (!flags) {
217		strcpy(bp, "NONE");
218		return;
219	}
220
221#define DESCRIBE_FLAG(flag, desc)						\
222	do {								\
223		if (flags & (flag)) {					\
224			ret = snprintf(bp, size_bp, "%s|", (desc));	\
225			if (ret < 0 || ret >= size_bp)			\
226				goto out_overflow;			\
227			size_bp -= ret;					\
228			bp += ret;					\
229			flags &= ~(flag);				\
230		}							\
231	} while (0)
232
233	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240			      btrfs_raid_array[i].raid_name);
241#undef DESCRIBE_FLAG
242
243	if (flags) {
244		ret = snprintf(bp, size_bp, "0x%llx|", flags);
245		size_bp -= ret;
246	}
247
248	if (size_bp < size_buf)
249		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251	/*
252	 * The text is trimmed, it's up to the caller to provide sufficiently
253	 * large buffer
254	 */
255out_overflow:;
256}
257
258static int init_first_rw_device(struct btrfs_trans_handle *trans);
259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262/*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 *   device_list_mutex
323 *     chunk_mutex
324 *   balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362DEFINE_MUTEX(uuid_mutex);
363static LIST_HEAD(fs_uuids);
364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365{
366	return &fs_uuids;
367}
368
369/*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373 *           fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380{
381	struct btrfs_fs_devices *fs_devs;
382
383	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384	if (!fs_devs)
385		return ERR_PTR(-ENOMEM);
386
387	mutex_init(&fs_devs->device_list_mutex);
388
389	INIT_LIST_HEAD(&fs_devs->devices);
390	INIT_LIST_HEAD(&fs_devs->alloc_list);
391	INIT_LIST_HEAD(&fs_devs->fs_list);
392	INIT_LIST_HEAD(&fs_devs->seed_list);
393
394	if (fsid) {
395		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397	}
398
399	return fs_devs;
400}
401
402static void btrfs_free_device(struct btrfs_device *device)
403{
404	WARN_ON(!list_empty(&device->post_commit_list));
405	rcu_string_free(device->name);
406	extent_io_tree_release(&device->alloc_state);
407	btrfs_destroy_dev_zone_info(device);
408	kfree(device);
409}
410
411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412{
413	struct btrfs_device *device;
414
415	WARN_ON(fs_devices->opened);
416	while (!list_empty(&fs_devices->devices)) {
417		device = list_entry(fs_devices->devices.next,
418				    struct btrfs_device, dev_list);
419		list_del(&device->dev_list);
420		btrfs_free_device(device);
421	}
422	kfree(fs_devices);
423}
424
425void __exit btrfs_cleanup_fs_uuids(void)
426{
427	struct btrfs_fs_devices *fs_devices;
428
429	while (!list_empty(&fs_uuids)) {
430		fs_devices = list_entry(fs_uuids.next,
431					struct btrfs_fs_devices, fs_list);
432		list_del(&fs_devices->fs_list);
433		free_fs_devices(fs_devices);
434	}
435}
436
437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438				  const u8 *fsid, const u8 *metadata_fsid)
439{
440	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441		return false;
442
443	if (!metadata_fsid)
444		return true;
445
446	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447		return false;
448
449	return true;
450}
451
452static noinline struct btrfs_fs_devices *find_fsid(
453		const u8 *fsid, const u8 *metadata_fsid)
454{
455	struct btrfs_fs_devices *fs_devices;
456
457	ASSERT(fsid);
458
459	/* Handle non-split brain cases */
460	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462			return fs_devices;
463	}
464	return NULL;
465}
466
467static int
468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469		      int flush, struct file **bdev_file,
470		      struct btrfs_super_block **disk_super)
471{
472	struct block_device *bdev;
473	int ret;
474
475	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477	if (IS_ERR(*bdev_file)) {
478		ret = PTR_ERR(*bdev_file);
479		goto error;
480	}
481	bdev = file_bdev(*bdev_file);
482
483	if (flush)
484		sync_blockdev(bdev);
485	if (holder) {
486		ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
487		if (ret) {
488			fput(*bdev_file);
489			goto error;
490		}
491	}
492	invalidate_bdev(bdev);
493	*disk_super = btrfs_read_dev_super(bdev);
494	if (IS_ERR(*disk_super)) {
495		ret = PTR_ERR(*disk_super);
496		fput(*bdev_file);
497		goto error;
498	}
499
500	return 0;
501
502error:
503	*disk_super = NULL;
504	*bdev_file = NULL;
505	return ret;
506}
507
508/*
509 *  Search and remove all stale devices (which are not mounted).  When both
510 *  inputs are NULL, it will search and release all stale devices.
511 *
512 *  @devt:         Optional. When provided will it release all unmounted devices
513 *                 matching this devt only.
514 *  @skip_device:  Optional. Will skip this device when searching for the stale
515 *                 devices.
516 *
517 *  Return:	0 for success or if @devt is 0.
518 *		-EBUSY if @devt is a mounted device.
519 *		-ENOENT if @devt does not match any device in the list.
520 */
521static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
522{
523	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
524	struct btrfs_device *device, *tmp_device;
525	int ret;
526	bool freed = false;
527
528	lockdep_assert_held(&uuid_mutex);
529
530	/* Return good status if there is no instance of devt. */
531	ret = 0;
532	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
533
534		mutex_lock(&fs_devices->device_list_mutex);
535		list_for_each_entry_safe(device, tmp_device,
536					 &fs_devices->devices, dev_list) {
537			if (skip_device && skip_device == device)
538				continue;
539			if (devt && devt != device->devt)
540				continue;
541			if (fs_devices->opened) {
542				if (devt)
543					ret = -EBUSY;
544				break;
545			}
546
547			/* delete the stale device */
548			fs_devices->num_devices--;
549			list_del(&device->dev_list);
550			btrfs_free_device(device);
551
552			freed = true;
553		}
554		mutex_unlock(&fs_devices->device_list_mutex);
555
556		if (fs_devices->num_devices == 0) {
557			btrfs_sysfs_remove_fsid(fs_devices);
558			list_del(&fs_devices->fs_list);
559			free_fs_devices(fs_devices);
560		}
561	}
562
563	/* If there is at least one freed device return 0. */
564	if (freed)
565		return 0;
566
567	return ret;
568}
569
570static struct btrfs_fs_devices *find_fsid_by_device(
571					struct btrfs_super_block *disk_super,
572					dev_t devt, bool *same_fsid_diff_dev)
573{
574	struct btrfs_fs_devices *fsid_fs_devices;
575	struct btrfs_fs_devices *devt_fs_devices;
576	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
577					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
578	bool found_by_devt = false;
579
580	/* Find the fs_device by the usual method, if found use it. */
581	fsid_fs_devices = find_fsid(disk_super->fsid,
582		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
583
584	/* The temp_fsid feature is supported only with single device filesystem. */
585	if (btrfs_super_num_devices(disk_super) != 1)
586		return fsid_fs_devices;
587
588	/*
589	 * A seed device is an integral component of the sprout device, which
590	 * functions as a multi-device filesystem. So, temp-fsid feature is
591	 * not supported.
592	 */
593	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
594		return fsid_fs_devices;
595
596	/* Try to find a fs_devices by matching devt. */
597	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
598		struct btrfs_device *device;
599
600		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
601			if (device->devt == devt) {
602				found_by_devt = true;
603				break;
604			}
605		}
606		if (found_by_devt)
607			break;
608	}
609
610	if (found_by_devt) {
611		/* Existing device. */
612		if (fsid_fs_devices == NULL) {
613			if (devt_fs_devices->opened == 0) {
614				/* Stale device. */
615				return NULL;
616			} else {
617				/* temp_fsid is mounting a subvol. */
618				return devt_fs_devices;
619			}
620		} else {
621			/* Regular or temp_fsid device mounting a subvol. */
622			return devt_fs_devices;
623		}
624	} else {
625		/* New device. */
626		if (fsid_fs_devices == NULL) {
627			return NULL;
628		} else {
629			/* sb::fsid is already used create a new temp_fsid. */
630			*same_fsid_diff_dev = true;
631			return NULL;
632		}
633	}
634
635	/* Not reached. */
636}
637
638/*
639 * This is only used on mount, and we are protected from competing things
640 * messing with our fs_devices by the uuid_mutex, thus we do not need the
641 * fs_devices->device_list_mutex here.
642 */
643static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
644			struct btrfs_device *device, blk_mode_t flags,
645			void *holder)
646{
647	struct file *bdev_file;
648	struct btrfs_super_block *disk_super;
649	u64 devid;
650	int ret;
651
652	if (device->bdev)
653		return -EINVAL;
654	if (!device->name)
655		return -EINVAL;
656
657	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
658				    &bdev_file, &disk_super);
659	if (ret)
660		return ret;
661
662	devid = btrfs_stack_device_id(&disk_super->dev_item);
663	if (devid != device->devid)
664		goto error_free_page;
665
666	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
667		goto error_free_page;
668
669	device->generation = btrfs_super_generation(disk_super);
670
671	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
672		if (btrfs_super_incompat_flags(disk_super) &
673		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
674			pr_err(
675		"BTRFS: Invalid seeding and uuid-changed device detected\n");
676			goto error_free_page;
677		}
678
679		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
680		fs_devices->seeding = true;
681	} else {
682		if (bdev_read_only(file_bdev(bdev_file)))
683			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
684		else
685			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686	}
687
688	if (!bdev_nonrot(file_bdev(bdev_file)))
689		fs_devices->rotating = true;
690
691	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
692		fs_devices->discardable = true;
693
694	device->bdev_file = bdev_file;
695	device->bdev = file_bdev(bdev_file);
696	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
697
698	if (device->devt != device->bdev->bd_dev) {
699		btrfs_warn(NULL,
700			   "device %s maj:min changed from %d:%d to %d:%d",
701			   device->name->str, MAJOR(device->devt),
702			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
703			   MINOR(device->bdev->bd_dev));
704
705		device->devt = device->bdev->bd_dev;
706	}
707
708	fs_devices->open_devices++;
709	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
710	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
711		fs_devices->rw_devices++;
712		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
713	}
714	btrfs_release_disk_super(disk_super);
715
716	return 0;
717
718error_free_page:
719	btrfs_release_disk_super(disk_super);
720	fput(bdev_file);
721
722	return -EINVAL;
723}
724
725u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
726{
727	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
728				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
729
730	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
731}
732
733/*
734 * Add new device to list of registered devices
735 *
736 * Returns:
737 * device pointer which was just added or updated when successful
738 * error pointer when failed
739 */
740static noinline struct btrfs_device *device_list_add(const char *path,
741			   struct btrfs_super_block *disk_super,
742			   bool *new_device_added)
743{
744	struct btrfs_device *device;
745	struct btrfs_fs_devices *fs_devices = NULL;
746	struct rcu_string *name;
747	u64 found_transid = btrfs_super_generation(disk_super);
748	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
749	dev_t path_devt;
750	int error;
751	bool same_fsid_diff_dev = false;
752	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
753		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
754
755	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
756		btrfs_err(NULL,
757"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
758			  path);
759		return ERR_PTR(-EAGAIN);
760	}
761
762	error = lookup_bdev(path, &path_devt);
763	if (error) {
764		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
765			  path, error);
766		return ERR_PTR(error);
767	}
768
769	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
770
771	if (!fs_devices) {
772		fs_devices = alloc_fs_devices(disk_super->fsid);
773		if (IS_ERR(fs_devices))
774			return ERR_CAST(fs_devices);
775
776		if (has_metadata_uuid)
777			memcpy(fs_devices->metadata_uuid,
778			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
779
780		if (same_fsid_diff_dev) {
781			generate_random_uuid(fs_devices->fsid);
782			fs_devices->temp_fsid = true;
783		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
784				path, MAJOR(path_devt), MINOR(path_devt),
785				fs_devices->fsid);
786		}
787
788		mutex_lock(&fs_devices->device_list_mutex);
789		list_add(&fs_devices->fs_list, &fs_uuids);
790
791		device = NULL;
792	} else {
793		struct btrfs_dev_lookup_args args = {
794			.devid = devid,
795			.uuid = disk_super->dev_item.uuid,
796		};
797
798		mutex_lock(&fs_devices->device_list_mutex);
799		device = btrfs_find_device(fs_devices, &args);
800
801		if (found_transid > fs_devices->latest_generation) {
802			memcpy(fs_devices->fsid, disk_super->fsid,
803					BTRFS_FSID_SIZE);
804			memcpy(fs_devices->metadata_uuid,
805			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
806		}
807	}
808
809	if (!device) {
810		unsigned int nofs_flag;
811
812		if (fs_devices->opened) {
813			btrfs_err(NULL,
814"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
815				  path, MAJOR(path_devt), MINOR(path_devt),
816				  fs_devices->fsid, current->comm,
817				  task_pid_nr(current));
818			mutex_unlock(&fs_devices->device_list_mutex);
819			return ERR_PTR(-EBUSY);
820		}
821
822		nofs_flag = memalloc_nofs_save();
823		device = btrfs_alloc_device(NULL, &devid,
824					    disk_super->dev_item.uuid, path);
825		memalloc_nofs_restore(nofs_flag);
826		if (IS_ERR(device)) {
827			mutex_unlock(&fs_devices->device_list_mutex);
828			/* we can safely leave the fs_devices entry around */
829			return device;
830		}
831
832		device->devt = path_devt;
833
834		list_add_rcu(&device->dev_list, &fs_devices->devices);
835		fs_devices->num_devices++;
836
837		device->fs_devices = fs_devices;
838		*new_device_added = true;
839
840		if (disk_super->label[0])
841			pr_info(
842"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
843				disk_super->label, devid, found_transid, path,
844				MAJOR(path_devt), MINOR(path_devt),
845				current->comm, task_pid_nr(current));
846		else
847			pr_info(
848"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
849				disk_super->fsid, devid, found_transid, path,
850				MAJOR(path_devt), MINOR(path_devt),
851				current->comm, task_pid_nr(current));
852
853	} else if (!device->name || strcmp(device->name->str, path)) {
854		/*
855		 * When FS is already mounted.
856		 * 1. If you are here and if the device->name is NULL that
857		 *    means this device was missing at time of FS mount.
858		 * 2. If you are here and if the device->name is different
859		 *    from 'path' that means either
860		 *      a. The same device disappeared and reappeared with
861		 *         different name. or
862		 *      b. The missing-disk-which-was-replaced, has
863		 *         reappeared now.
864		 *
865		 * We must allow 1 and 2a above. But 2b would be a spurious
866		 * and unintentional.
867		 *
868		 * Further in case of 1 and 2a above, the disk at 'path'
869		 * would have missed some transaction when it was away and
870		 * in case of 2a the stale bdev has to be updated as well.
871		 * 2b must not be allowed at all time.
872		 */
873
874		/*
875		 * For now, we do allow update to btrfs_fs_device through the
876		 * btrfs dev scan cli after FS has been mounted.  We're still
877		 * tracking a problem where systems fail mount by subvolume id
878		 * when we reject replacement on a mounted FS.
879		 */
880		if (!fs_devices->opened && found_transid < device->generation) {
881			/*
882			 * That is if the FS is _not_ mounted and if you
883			 * are here, that means there is more than one
884			 * disk with same uuid and devid.We keep the one
885			 * with larger generation number or the last-in if
886			 * generation are equal.
887			 */
888			mutex_unlock(&fs_devices->device_list_mutex);
889			btrfs_err(NULL,
890"device %s already registered with a higher generation, found %llu expect %llu",
891				  path, found_transid, device->generation);
892			return ERR_PTR(-EEXIST);
893		}
894
895		/*
896		 * We are going to replace the device path for a given devid,
897		 * make sure it's the same device if the device is mounted
898		 *
899		 * NOTE: the device->fs_info may not be reliable here so pass
900		 * in a NULL to message helpers instead. This avoids a possible
901		 * use-after-free when the fs_info and fs_info->sb are already
902		 * torn down.
903		 */
904		if (device->bdev) {
905			if (device->devt != path_devt) {
906				mutex_unlock(&fs_devices->device_list_mutex);
907				btrfs_warn_in_rcu(NULL,
908	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
909						  path, devid, found_transid,
910						  current->comm,
911						  task_pid_nr(current));
912				return ERR_PTR(-EEXIST);
913			}
914			btrfs_info_in_rcu(NULL,
915	"devid %llu device path %s changed to %s scanned by %s (%d)",
916					  devid, btrfs_dev_name(device),
917					  path, current->comm,
918					  task_pid_nr(current));
919		}
920
921		name = rcu_string_strdup(path, GFP_NOFS);
922		if (!name) {
923			mutex_unlock(&fs_devices->device_list_mutex);
924			return ERR_PTR(-ENOMEM);
925		}
926		rcu_string_free(device->name);
927		rcu_assign_pointer(device->name, name);
928		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
929			fs_devices->missing_devices--;
930			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
931		}
932		device->devt = path_devt;
933	}
934
935	/*
936	 * Unmount does not free the btrfs_device struct but would zero
937	 * generation along with most of the other members. So just update
938	 * it back. We need it to pick the disk with largest generation
939	 * (as above).
940	 */
941	if (!fs_devices->opened) {
942		device->generation = found_transid;
943		fs_devices->latest_generation = max_t(u64, found_transid,
944						fs_devices->latest_generation);
945	}
946
947	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
948
949	mutex_unlock(&fs_devices->device_list_mutex);
950	return device;
951}
952
953static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
954{
955	struct btrfs_fs_devices *fs_devices;
956	struct btrfs_device *device;
957	struct btrfs_device *orig_dev;
958	int ret = 0;
959
960	lockdep_assert_held(&uuid_mutex);
961
962	fs_devices = alloc_fs_devices(orig->fsid);
963	if (IS_ERR(fs_devices))
964		return fs_devices;
965
966	fs_devices->total_devices = orig->total_devices;
967
968	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
969		const char *dev_path = NULL;
970
971		/*
972		 * This is ok to do without RCU read locked because we hold the
973		 * uuid mutex so nothing we touch in here is going to disappear.
974		 */
975		if (orig_dev->name)
976			dev_path = orig_dev->name->str;
977
978		device = btrfs_alloc_device(NULL, &orig_dev->devid,
979					    orig_dev->uuid, dev_path);
980		if (IS_ERR(device)) {
981			ret = PTR_ERR(device);
982			goto error;
983		}
984
985		if (orig_dev->zone_info) {
986			struct btrfs_zoned_device_info *zone_info;
987
988			zone_info = btrfs_clone_dev_zone_info(orig_dev);
989			if (!zone_info) {
990				btrfs_free_device(device);
991				ret = -ENOMEM;
992				goto error;
993			}
994			device->zone_info = zone_info;
995		}
996
997		list_add(&device->dev_list, &fs_devices->devices);
998		device->fs_devices = fs_devices;
999		fs_devices->num_devices++;
1000	}
1001	return fs_devices;
1002error:
1003	free_fs_devices(fs_devices);
1004	return ERR_PTR(ret);
1005}
1006
1007static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1008				      struct btrfs_device **latest_dev)
1009{
1010	struct btrfs_device *device, *next;
1011
1012	/* This is the initialized path, it is safe to release the devices. */
1013	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1014		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1015			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1016				      &device->dev_state) &&
1017			    !test_bit(BTRFS_DEV_STATE_MISSING,
1018				      &device->dev_state) &&
1019			    (!*latest_dev ||
1020			     device->generation > (*latest_dev)->generation)) {
1021				*latest_dev = device;
1022			}
1023			continue;
1024		}
1025
1026		/*
1027		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1028		 * in btrfs_init_dev_replace() so just continue.
1029		 */
1030		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1031			continue;
1032
1033		if (device->bdev_file) {
1034			fput(device->bdev_file);
1035			device->bdev = NULL;
1036			device->bdev_file = NULL;
1037			fs_devices->open_devices--;
1038		}
1039		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1040			list_del_init(&device->dev_alloc_list);
1041			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1042			fs_devices->rw_devices--;
1043		}
1044		list_del_init(&device->dev_list);
1045		fs_devices->num_devices--;
1046		btrfs_free_device(device);
1047	}
1048
1049}
1050
1051/*
1052 * After we have read the system tree and know devids belonging to this
1053 * filesystem, remove the device which does not belong there.
1054 */
1055void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1056{
1057	struct btrfs_device *latest_dev = NULL;
1058	struct btrfs_fs_devices *seed_dev;
1059
1060	mutex_lock(&uuid_mutex);
1061	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1062
1063	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1064		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1065
1066	fs_devices->latest_dev = latest_dev;
1067
1068	mutex_unlock(&uuid_mutex);
1069}
1070
1071static void btrfs_close_bdev(struct btrfs_device *device)
1072{
1073	if (!device->bdev)
1074		return;
1075
1076	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077		sync_blockdev(device->bdev);
1078		invalidate_bdev(device->bdev);
1079	}
1080
1081	fput(device->bdev_file);
1082}
1083
1084static void btrfs_close_one_device(struct btrfs_device *device)
1085{
1086	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1087
1088	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1089	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1090		list_del_init(&device->dev_alloc_list);
1091		fs_devices->rw_devices--;
1092	}
1093
1094	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1095		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1096
1097	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1098		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1099		fs_devices->missing_devices--;
1100	}
1101
1102	btrfs_close_bdev(device);
1103	if (device->bdev) {
1104		fs_devices->open_devices--;
1105		device->bdev = NULL;
1106	}
1107	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1108	btrfs_destroy_dev_zone_info(device);
1109
1110	device->fs_info = NULL;
1111	atomic_set(&device->dev_stats_ccnt, 0);
1112	extent_io_tree_release(&device->alloc_state);
1113
1114	/*
1115	 * Reset the flush error record. We might have a transient flush error
1116	 * in this mount, and if so we aborted the current transaction and set
1117	 * the fs to an error state, guaranteeing no super blocks can be further
1118	 * committed. However that error might be transient and if we unmount the
1119	 * filesystem and mount it again, we should allow the mount to succeed
1120	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1121	 * filesystem again we still get flush errors, then we will again abort
1122	 * any transaction and set the error state, guaranteeing no commits of
1123	 * unsafe super blocks.
1124	 */
1125	device->last_flush_error = 0;
1126
1127	/* Verify the device is back in a pristine state  */
1128	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1129	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1130	WARN_ON(!list_empty(&device->dev_alloc_list));
1131	WARN_ON(!list_empty(&device->post_commit_list));
1132}
1133
1134static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1135{
1136	struct btrfs_device *device, *tmp;
1137
1138	lockdep_assert_held(&uuid_mutex);
1139
1140	if (--fs_devices->opened > 0)
1141		return;
1142
1143	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1144		btrfs_close_one_device(device);
1145
1146	WARN_ON(fs_devices->open_devices);
1147	WARN_ON(fs_devices->rw_devices);
1148	fs_devices->opened = 0;
1149	fs_devices->seeding = false;
1150	fs_devices->fs_info = NULL;
1151}
1152
1153void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1154{
1155	LIST_HEAD(list);
1156	struct btrfs_fs_devices *tmp;
1157
1158	mutex_lock(&uuid_mutex);
1159	close_fs_devices(fs_devices);
1160	if (!fs_devices->opened) {
1161		list_splice_init(&fs_devices->seed_list, &list);
1162
1163		/*
1164		 * If the struct btrfs_fs_devices is not assembled with any
1165		 * other device, it can be re-initialized during the next mount
1166		 * without the needing device-scan step. Therefore, it can be
1167		 * fully freed.
1168		 */
1169		if (fs_devices->num_devices == 1) {
1170			list_del(&fs_devices->fs_list);
1171			free_fs_devices(fs_devices);
1172		}
1173	}
1174
1175
1176	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1177		close_fs_devices(fs_devices);
1178		list_del(&fs_devices->seed_list);
1179		free_fs_devices(fs_devices);
1180	}
1181	mutex_unlock(&uuid_mutex);
1182}
1183
1184static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1185				blk_mode_t flags, void *holder)
1186{
1187	struct btrfs_device *device;
1188	struct btrfs_device *latest_dev = NULL;
1189	struct btrfs_device *tmp_device;
1190	int ret = 0;
1191
1192	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1193				 dev_list) {
1194		int ret2;
1195
1196		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1197		if (ret2 == 0 &&
1198		    (!latest_dev || device->generation > latest_dev->generation)) {
1199			latest_dev = device;
1200		} else if (ret2 == -ENODATA) {
1201			fs_devices->num_devices--;
1202			list_del(&device->dev_list);
1203			btrfs_free_device(device);
1204		}
1205		if (ret == 0 && ret2 != 0)
1206			ret = ret2;
1207	}
1208
1209	if (fs_devices->open_devices == 0) {
1210		if (ret)
1211			return ret;
1212		return -EINVAL;
1213	}
1214
1215	fs_devices->opened = 1;
1216	fs_devices->latest_dev = latest_dev;
1217	fs_devices->total_rw_bytes = 0;
1218	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1220
1221	return 0;
1222}
1223
1224static int devid_cmp(void *priv, const struct list_head *a,
1225		     const struct list_head *b)
1226{
1227	const struct btrfs_device *dev1, *dev2;
1228
1229	dev1 = list_entry(a, struct btrfs_device, dev_list);
1230	dev2 = list_entry(b, struct btrfs_device, dev_list);
1231
1232	if (dev1->devid < dev2->devid)
1233		return -1;
1234	else if (dev1->devid > dev2->devid)
1235		return 1;
1236	return 0;
1237}
1238
1239int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1240		       blk_mode_t flags, void *holder)
1241{
1242	int ret;
1243
1244	lockdep_assert_held(&uuid_mutex);
1245	/*
1246	 * The device_list_mutex cannot be taken here in case opening the
1247	 * underlying device takes further locks like open_mutex.
1248	 *
1249	 * We also don't need the lock here as this is called during mount and
1250	 * exclusion is provided by uuid_mutex
1251	 */
1252
1253	if (fs_devices->opened) {
1254		fs_devices->opened++;
1255		ret = 0;
1256	} else {
1257		list_sort(NULL, &fs_devices->devices, devid_cmp);
1258		ret = open_fs_devices(fs_devices, flags, holder);
1259	}
1260
1261	return ret;
1262}
1263
1264void btrfs_release_disk_super(struct btrfs_super_block *super)
1265{
1266	struct page *page = virt_to_page(super);
1267
1268	put_page(page);
1269}
1270
1271static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1272						       u64 bytenr, u64 bytenr_orig)
1273{
1274	struct btrfs_super_block *disk_super;
1275	struct page *page;
1276	void *p;
1277	pgoff_t index;
1278
1279	/* make sure our super fits in the device */
1280	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1281		return ERR_PTR(-EINVAL);
1282
1283	/* make sure our super fits in the page */
1284	if (sizeof(*disk_super) > PAGE_SIZE)
1285		return ERR_PTR(-EINVAL);
1286
1287	/* make sure our super doesn't straddle pages on disk */
1288	index = bytenr >> PAGE_SHIFT;
1289	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1290		return ERR_PTR(-EINVAL);
1291
1292	/* pull in the page with our super */
1293	page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1294
1295	if (IS_ERR(page))
1296		return ERR_CAST(page);
1297
1298	p = page_address(page);
1299
1300	/* align our pointer to the offset of the super block */
1301	disk_super = p + offset_in_page(bytenr);
1302
1303	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1304	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1305		btrfs_release_disk_super(p);
1306		return ERR_PTR(-EINVAL);
1307	}
1308
1309	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1310		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1311
1312	return disk_super;
1313}
1314
1315int btrfs_forget_devices(dev_t devt)
1316{
1317	int ret;
1318
1319	mutex_lock(&uuid_mutex);
1320	ret = btrfs_free_stale_devices(devt, NULL);
1321	mutex_unlock(&uuid_mutex);
1322
1323	return ret;
1324}
1325
1326static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1327				    const char *path, dev_t devt,
1328				    bool mount_arg_dev)
1329{
1330	struct btrfs_fs_devices *fs_devices;
1331
1332	/*
1333	 * Do not skip device registration for mounted devices with matching
1334	 * maj:min but different paths. Booting without initrd relies on
1335	 * /dev/root initially, later replaced with the actual root device.
1336	 * A successful scan ensures grub2-probe selects the correct device.
1337	 */
1338	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1339		struct btrfs_device *device;
1340
1341		mutex_lock(&fs_devices->device_list_mutex);
1342
1343		if (!fs_devices->opened) {
1344			mutex_unlock(&fs_devices->device_list_mutex);
1345			continue;
1346		}
1347
1348		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1349			if (device->bdev && (device->bdev->bd_dev == devt) &&
1350			    strcmp(device->name->str, path) != 0) {
1351				mutex_unlock(&fs_devices->device_list_mutex);
1352
1353				/* Do not skip registration. */
1354				return false;
1355			}
1356		}
1357		mutex_unlock(&fs_devices->device_list_mutex);
1358	}
1359
1360	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1362		return true;
1363
1364	return false;
1365}
1366
1367/*
1368 * Look for a btrfs signature on a device. This may be called out of the mount path
1369 * and we are not allowed to call set_blocksize during the scan. The superblock
1370 * is read via pagecache.
1371 *
1372 * With @mount_arg_dev it's a scan during mount time that will always register
1373 * the device or return an error. Multi-device and seeding devices are registered
1374 * in both cases.
1375 */
1376struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1377					   bool mount_arg_dev)
1378{
1379	struct btrfs_super_block *disk_super;
1380	bool new_device_added = false;
1381	struct btrfs_device *device = NULL;
1382	struct file *bdev_file;
1383	u64 bytenr, bytenr_orig;
1384	dev_t devt;
1385	int ret;
1386
1387	lockdep_assert_held(&uuid_mutex);
1388
1389	/*
1390	 * we would like to check all the supers, but that would make
1391	 * a btrfs mount succeed after a mkfs from a different FS.
1392	 * So, we need to add a special mount option to scan for
1393	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1394	 */
1395
1396	/*
1397	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1398	 * device scan which may race with the user's mount or mkfs command,
1399	 * resulting in failure.
1400	 * Since the device scan is solely for reading purposes, there is no
1401	 * need for an exclusive open. Additionally, the devices are read again
1402	 * during the mount process. It is ok to get some inconsistent
1403	 * values temporarily, as the device paths of the fsid are the only
1404	 * required information for assembling the volume.
1405	 */
1406	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1407	if (IS_ERR(bdev_file))
1408		return ERR_CAST(bdev_file);
1409
1410	bytenr_orig = btrfs_sb_offset(0);
1411	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1412	if (ret) {
1413		device = ERR_PTR(ret);
1414		goto error_bdev_put;
1415	}
1416
1417	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1418					   bytenr_orig);
1419	if (IS_ERR(disk_super)) {
1420		device = ERR_CAST(disk_super);
1421		goto error_bdev_put;
1422	}
1423
1424	devt = file_bdev(bdev_file)->bd_dev;
1425	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1426		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1427			  path, MAJOR(devt), MINOR(devt));
1428
1429		btrfs_free_stale_devices(devt, NULL);
1430
1431		device = NULL;
1432		goto free_disk_super;
1433	}
1434
1435	device = device_list_add(path, disk_super, &new_device_added);
1436	if (!IS_ERR(device) && new_device_added)
1437		btrfs_free_stale_devices(device->devt, device);
1438
1439free_disk_super:
1440	btrfs_release_disk_super(disk_super);
1441
1442error_bdev_put:
1443	fput(bdev_file);
1444
1445	return device;
1446}
1447
1448/*
1449 * Try to find a chunk that intersects [start, start + len] range and when one
1450 * such is found, record the end of it in *start
1451 */
1452static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1453				    u64 len)
1454{
1455	u64 physical_start, physical_end;
1456
1457	lockdep_assert_held(&device->fs_info->chunk_mutex);
1458
1459	if (find_first_extent_bit(&device->alloc_state, *start,
1460				  &physical_start, &physical_end,
1461				  CHUNK_ALLOCATED, NULL)) {
1462
1463		if (in_range(physical_start, *start, len) ||
1464		    in_range(*start, physical_start,
1465			     physical_end + 1 - physical_start)) {
1466			*start = physical_end + 1;
1467			return true;
1468		}
1469	}
1470	return false;
1471}
1472
1473static u64 dev_extent_search_start(struct btrfs_device *device)
1474{
1475	switch (device->fs_devices->chunk_alloc_policy) {
1476	case BTRFS_CHUNK_ALLOC_REGULAR:
1477		return BTRFS_DEVICE_RANGE_RESERVED;
1478	case BTRFS_CHUNK_ALLOC_ZONED:
1479		/*
1480		 * We don't care about the starting region like regular
1481		 * allocator, because we anyway use/reserve the first two zones
1482		 * for superblock logging.
1483		 */
1484		return 0;
1485	default:
1486		BUG();
1487	}
1488}
1489
1490static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1491					u64 *hole_start, u64 *hole_size,
1492					u64 num_bytes)
1493{
1494	u64 zone_size = device->zone_info->zone_size;
1495	u64 pos;
1496	int ret;
1497	bool changed = false;
1498
1499	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1500
1501	while (*hole_size > 0) {
1502		pos = btrfs_find_allocatable_zones(device, *hole_start,
1503						   *hole_start + *hole_size,
1504						   num_bytes);
1505		if (pos != *hole_start) {
1506			*hole_size = *hole_start + *hole_size - pos;
1507			*hole_start = pos;
1508			changed = true;
1509			if (*hole_size < num_bytes)
1510				break;
1511		}
1512
1513		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1514
1515		/* Range is ensured to be empty */
1516		if (!ret)
1517			return changed;
1518
1519		/* Given hole range was invalid (outside of device) */
1520		if (ret == -ERANGE) {
1521			*hole_start += *hole_size;
1522			*hole_size = 0;
1523			return true;
1524		}
1525
1526		*hole_start += zone_size;
1527		*hole_size -= zone_size;
1528		changed = true;
1529	}
1530
1531	return changed;
1532}
1533
1534/*
1535 * Check if specified hole is suitable for allocation.
1536 *
1537 * @device:	the device which we have the hole
1538 * @hole_start: starting position of the hole
1539 * @hole_size:	the size of the hole
1540 * @num_bytes:	the size of the free space that we need
1541 *
1542 * This function may modify @hole_start and @hole_size to reflect the suitable
1543 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1544 */
1545static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1546				  u64 *hole_size, u64 num_bytes)
1547{
1548	bool changed = false;
1549	u64 hole_end = *hole_start + *hole_size;
1550
1551	for (;;) {
1552		/*
1553		 * Check before we set max_hole_start, otherwise we could end up
1554		 * sending back this offset anyway.
1555		 */
1556		if (contains_pending_extent(device, hole_start, *hole_size)) {
1557			if (hole_end >= *hole_start)
1558				*hole_size = hole_end - *hole_start;
1559			else
1560				*hole_size = 0;
1561			changed = true;
1562		}
1563
1564		switch (device->fs_devices->chunk_alloc_policy) {
1565		case BTRFS_CHUNK_ALLOC_REGULAR:
1566			/* No extra check */
1567			break;
1568		case BTRFS_CHUNK_ALLOC_ZONED:
1569			if (dev_extent_hole_check_zoned(device, hole_start,
1570							hole_size, num_bytes)) {
1571				changed = true;
1572				/*
1573				 * The changed hole can contain pending extent.
1574				 * Loop again to check that.
1575				 */
1576				continue;
1577			}
1578			break;
1579		default:
1580			BUG();
1581		}
1582
1583		break;
1584	}
1585
1586	return changed;
1587}
1588
1589/*
1590 * Find free space in the specified device.
1591 *
1592 * @device:	  the device which we search the free space in
1593 * @num_bytes:	  the size of the free space that we need
1594 * @search_start: the position from which to begin the search
1595 * @start:	  store the start of the free space.
1596 * @len:	  the size of the free space. that we find, or the size
1597 *		  of the max free space if we don't find suitable free space
1598 *
1599 * This does a pretty simple search, the expectation is that it is called very
1600 * infrequently and that a given device has a small number of extents.
1601 *
1602 * @start is used to store the start of the free space if we find. But if we
1603 * don't find suitable free space, it will be used to store the start position
1604 * of the max free space.
1605 *
1606 * @len is used to store the size of the free space that we find.
1607 * But if we don't find suitable free space, it is used to store the size of
1608 * the max free space.
1609 *
1610 * NOTE: This function will search *commit* root of device tree, and does extra
1611 * check to ensure dev extents are not double allocated.
1612 * This makes the function safe to allocate dev extents but may not report
1613 * correct usable device space, as device extent freed in current transaction
1614 * is not reported as available.
1615 */
1616static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1617				u64 *start, u64 *len)
1618{
1619	struct btrfs_fs_info *fs_info = device->fs_info;
1620	struct btrfs_root *root = fs_info->dev_root;
1621	struct btrfs_key key;
1622	struct btrfs_dev_extent *dev_extent;
1623	struct btrfs_path *path;
1624	u64 search_start;
1625	u64 hole_size;
1626	u64 max_hole_start;
1627	u64 max_hole_size = 0;
1628	u64 extent_end;
1629	u64 search_end = device->total_bytes;
1630	int ret;
1631	int slot;
1632	struct extent_buffer *l;
1633
1634	search_start = dev_extent_search_start(device);
1635	max_hole_start = search_start;
1636
1637	WARN_ON(device->zone_info &&
1638		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1639
1640	path = btrfs_alloc_path();
1641	if (!path) {
1642		ret = -ENOMEM;
1643		goto out;
1644	}
1645again:
1646	if (search_start >= search_end ||
1647		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1648		ret = -ENOSPC;
1649		goto out;
1650	}
1651
1652	path->reada = READA_FORWARD;
1653	path->search_commit_root = 1;
1654	path->skip_locking = 1;
1655
1656	key.objectid = device->devid;
1657	key.offset = search_start;
1658	key.type = BTRFS_DEV_EXTENT_KEY;
1659
1660	ret = btrfs_search_backwards(root, &key, path);
1661	if (ret < 0)
1662		goto out;
1663
1664	while (search_start < search_end) {
1665		l = path->nodes[0];
1666		slot = path->slots[0];
1667		if (slot >= btrfs_header_nritems(l)) {
1668			ret = btrfs_next_leaf(root, path);
1669			if (ret == 0)
1670				continue;
1671			if (ret < 0)
1672				goto out;
1673
1674			break;
1675		}
1676		btrfs_item_key_to_cpu(l, &key, slot);
1677
1678		if (key.objectid < device->devid)
1679			goto next;
1680
1681		if (key.objectid > device->devid)
1682			break;
1683
1684		if (key.type != BTRFS_DEV_EXTENT_KEY)
1685			goto next;
1686
1687		if (key.offset > search_end)
1688			break;
1689
1690		if (key.offset > search_start) {
1691			hole_size = key.offset - search_start;
1692			dev_extent_hole_check(device, &search_start, &hole_size,
1693					      num_bytes);
1694
1695			if (hole_size > max_hole_size) {
1696				max_hole_start = search_start;
1697				max_hole_size = hole_size;
1698			}
1699
1700			/*
1701			 * If this free space is greater than which we need,
1702			 * it must be the max free space that we have found
1703			 * until now, so max_hole_start must point to the start
1704			 * of this free space and the length of this free space
1705			 * is stored in max_hole_size. Thus, we return
1706			 * max_hole_start and max_hole_size and go back to the
1707			 * caller.
1708			 */
1709			if (hole_size >= num_bytes) {
1710				ret = 0;
1711				goto out;
1712			}
1713		}
1714
1715		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1716		extent_end = key.offset + btrfs_dev_extent_length(l,
1717								  dev_extent);
1718		if (extent_end > search_start)
1719			search_start = extent_end;
1720next:
1721		path->slots[0]++;
1722		cond_resched();
1723	}
1724
1725	/*
1726	 * At this point, search_start should be the end of
1727	 * allocated dev extents, and when shrinking the device,
1728	 * search_end may be smaller than search_start.
1729	 */
1730	if (search_end > search_start) {
1731		hole_size = search_end - search_start;
1732		if (dev_extent_hole_check(device, &search_start, &hole_size,
1733					  num_bytes)) {
1734			btrfs_release_path(path);
1735			goto again;
1736		}
1737
1738		if (hole_size > max_hole_size) {
1739			max_hole_start = search_start;
1740			max_hole_size = hole_size;
1741		}
1742	}
1743
1744	/* See above. */
1745	if (max_hole_size < num_bytes)
1746		ret = -ENOSPC;
1747	else
1748		ret = 0;
1749
1750	ASSERT(max_hole_start + max_hole_size <= search_end);
1751out:
1752	btrfs_free_path(path);
1753	*start = max_hole_start;
1754	if (len)
1755		*len = max_hole_size;
1756	return ret;
1757}
1758
1759static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1760			  struct btrfs_device *device,
1761			  u64 start, u64 *dev_extent_len)
1762{
1763	struct btrfs_fs_info *fs_info = device->fs_info;
1764	struct btrfs_root *root = fs_info->dev_root;
1765	int ret;
1766	struct btrfs_path *path;
1767	struct btrfs_key key;
1768	struct btrfs_key found_key;
1769	struct extent_buffer *leaf = NULL;
1770	struct btrfs_dev_extent *extent = NULL;
1771
1772	path = btrfs_alloc_path();
1773	if (!path)
1774		return -ENOMEM;
1775
1776	key.objectid = device->devid;
1777	key.offset = start;
1778	key.type = BTRFS_DEV_EXTENT_KEY;
1779again:
1780	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1781	if (ret > 0) {
1782		ret = btrfs_previous_item(root, path, key.objectid,
1783					  BTRFS_DEV_EXTENT_KEY);
1784		if (ret)
1785			goto out;
1786		leaf = path->nodes[0];
1787		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1788		extent = btrfs_item_ptr(leaf, path->slots[0],
1789					struct btrfs_dev_extent);
1790		BUG_ON(found_key.offset > start || found_key.offset +
1791		       btrfs_dev_extent_length(leaf, extent) < start);
1792		key = found_key;
1793		btrfs_release_path(path);
1794		goto again;
1795	} else if (ret == 0) {
1796		leaf = path->nodes[0];
1797		extent = btrfs_item_ptr(leaf, path->slots[0],
1798					struct btrfs_dev_extent);
1799	} else {
1800		goto out;
1801	}
1802
1803	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1804
1805	ret = btrfs_del_item(trans, root, path);
1806	if (ret == 0)
1807		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1808out:
1809	btrfs_free_path(path);
1810	return ret;
1811}
1812
1813static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1814{
1815	struct rb_node *n;
1816	u64 ret = 0;
1817
1818	read_lock(&fs_info->mapping_tree_lock);
1819	n = rb_last(&fs_info->mapping_tree.rb_root);
1820	if (n) {
1821		struct btrfs_chunk_map *map;
1822
1823		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1824		ret = map->start + map->chunk_len;
1825	}
1826	read_unlock(&fs_info->mapping_tree_lock);
1827
1828	return ret;
1829}
1830
1831static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1832				    u64 *devid_ret)
1833{
1834	int ret;
1835	struct btrfs_key key;
1836	struct btrfs_key found_key;
1837	struct btrfs_path *path;
1838
1839	path = btrfs_alloc_path();
1840	if (!path)
1841		return -ENOMEM;
1842
1843	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1844	key.type = BTRFS_DEV_ITEM_KEY;
1845	key.offset = (u64)-1;
1846
1847	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1848	if (ret < 0)
1849		goto error;
1850
1851	if (ret == 0) {
1852		/* Corruption */
1853		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1854		ret = -EUCLEAN;
1855		goto error;
1856	}
1857
1858	ret = btrfs_previous_item(fs_info->chunk_root, path,
1859				  BTRFS_DEV_ITEMS_OBJECTID,
1860				  BTRFS_DEV_ITEM_KEY);
1861	if (ret) {
1862		*devid_ret = 1;
1863	} else {
1864		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1865				      path->slots[0]);
1866		*devid_ret = found_key.offset + 1;
1867	}
1868	ret = 0;
1869error:
1870	btrfs_free_path(path);
1871	return ret;
1872}
1873
1874/*
1875 * the device information is stored in the chunk root
1876 * the btrfs_device struct should be fully filled in
1877 */
1878static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1879			    struct btrfs_device *device)
1880{
1881	int ret;
1882	struct btrfs_path *path;
1883	struct btrfs_dev_item *dev_item;
1884	struct extent_buffer *leaf;
1885	struct btrfs_key key;
1886	unsigned long ptr;
1887
1888	path = btrfs_alloc_path();
1889	if (!path)
1890		return -ENOMEM;
1891
1892	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1893	key.type = BTRFS_DEV_ITEM_KEY;
1894	key.offset = device->devid;
1895
1896	btrfs_reserve_chunk_metadata(trans, true);
1897	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1898				      &key, sizeof(*dev_item));
1899	btrfs_trans_release_chunk_metadata(trans);
1900	if (ret)
1901		goto out;
1902
1903	leaf = path->nodes[0];
1904	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1905
1906	btrfs_set_device_id(leaf, dev_item, device->devid);
1907	btrfs_set_device_generation(leaf, dev_item, 0);
1908	btrfs_set_device_type(leaf, dev_item, device->type);
1909	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912	btrfs_set_device_total_bytes(leaf, dev_item,
1913				     btrfs_device_get_disk_total_bytes(device));
1914	btrfs_set_device_bytes_used(leaf, dev_item,
1915				    btrfs_device_get_bytes_used(device));
1916	btrfs_set_device_group(leaf, dev_item, 0);
1917	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919	btrfs_set_device_start_offset(leaf, dev_item, 0);
1920
1921	ptr = btrfs_device_uuid(dev_item);
1922	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923	ptr = btrfs_device_fsid(dev_item);
1924	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925			    ptr, BTRFS_FSID_SIZE);
1926	btrfs_mark_buffer_dirty(trans, leaf);
1927
1928	ret = 0;
1929out:
1930	btrfs_free_path(path);
1931	return ret;
1932}
1933
1934/*
1935 * Function to update ctime/mtime for a given device path.
1936 * Mainly used for ctime/mtime based probe like libblkid.
1937 *
1938 * We don't care about errors here, this is just to be kind to userspace.
1939 */
1940static void update_dev_time(const char *device_path)
1941{
1942	struct path path;
1943	int ret;
1944
1945	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1946	if (ret)
1947		return;
1948
1949	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1950	path_put(&path);
1951}
1952
1953static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1954			     struct btrfs_device *device)
1955{
1956	struct btrfs_root *root = device->fs_info->chunk_root;
1957	int ret;
1958	struct btrfs_path *path;
1959	struct btrfs_key key;
1960
1961	path = btrfs_alloc_path();
1962	if (!path)
1963		return -ENOMEM;
1964
1965	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1966	key.type = BTRFS_DEV_ITEM_KEY;
1967	key.offset = device->devid;
1968
1969	btrfs_reserve_chunk_metadata(trans, false);
1970	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971	btrfs_trans_release_chunk_metadata(trans);
1972	if (ret) {
1973		if (ret > 0)
1974			ret = -ENOENT;
1975		goto out;
1976	}
1977
1978	ret = btrfs_del_item(trans, root, path);
1979out:
1980	btrfs_free_path(path);
1981	return ret;
1982}
1983
1984/*
1985 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1986 * filesystem. It's up to the caller to adjust that number regarding eg. device
1987 * replace.
1988 */
1989static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1990		u64 num_devices)
1991{
1992	u64 all_avail;
1993	unsigned seq;
1994	int i;
1995
1996	do {
1997		seq = read_seqbegin(&fs_info->profiles_lock);
1998
1999		all_avail = fs_info->avail_data_alloc_bits |
2000			    fs_info->avail_system_alloc_bits |
2001			    fs_info->avail_metadata_alloc_bits;
2002	} while (read_seqretry(&fs_info->profiles_lock, seq));
2003
2004	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2005		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2006			continue;
2007
2008		if (num_devices < btrfs_raid_array[i].devs_min)
2009			return btrfs_raid_array[i].mindev_error;
2010	}
2011
2012	return 0;
2013}
2014
2015static struct btrfs_device * btrfs_find_next_active_device(
2016		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2017{
2018	struct btrfs_device *next_device;
2019
2020	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2021		if (next_device != device &&
2022		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2023		    && next_device->bdev)
2024			return next_device;
2025	}
2026
2027	return NULL;
2028}
2029
2030/*
2031 * Helper function to check if the given device is part of s_bdev / latest_dev
2032 * and replace it with the provided or the next active device, in the context
2033 * where this function called, there should be always be another device (or
2034 * this_dev) which is active.
2035 */
2036void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2037					    struct btrfs_device *next_device)
2038{
2039	struct btrfs_fs_info *fs_info = device->fs_info;
2040
2041	if (!next_device)
2042		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2043							    device);
2044	ASSERT(next_device);
2045
2046	if (fs_info->sb->s_bdev &&
2047			(fs_info->sb->s_bdev == device->bdev))
2048		fs_info->sb->s_bdev = next_device->bdev;
2049
2050	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2051		fs_info->fs_devices->latest_dev = next_device;
2052}
2053
2054/*
2055 * Return btrfs_fs_devices::num_devices excluding the device that's being
2056 * currently replaced.
2057 */
2058static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2059{
2060	u64 num_devices = fs_info->fs_devices->num_devices;
2061
2062	down_read(&fs_info->dev_replace.rwsem);
2063	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2064		ASSERT(num_devices > 1);
2065		num_devices--;
2066	}
2067	up_read(&fs_info->dev_replace.rwsem);
2068
2069	return num_devices;
2070}
2071
2072static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2073				     struct block_device *bdev, int copy_num)
2074{
2075	struct btrfs_super_block *disk_super;
2076	const size_t len = sizeof(disk_super->magic);
2077	const u64 bytenr = btrfs_sb_offset(copy_num);
2078	int ret;
2079
2080	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2081	if (IS_ERR(disk_super))
2082		return;
2083
2084	memset(&disk_super->magic, 0, len);
2085	folio_mark_dirty(virt_to_folio(disk_super));
2086	btrfs_release_disk_super(disk_super);
2087
2088	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2089	if (ret)
2090		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2091			copy_num, ret);
2092}
2093
2094void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2095{
2096	int copy_num;
2097	struct block_device *bdev = device->bdev;
2098
2099	if (!bdev)
2100		return;
2101
2102	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2103		if (bdev_is_zoned(bdev))
2104			btrfs_reset_sb_log_zones(bdev, copy_num);
2105		else
2106			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2107	}
2108
2109	/* Notify udev that device has changed */
2110	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2111
2112	/* Update ctime/mtime for device path for libblkid */
2113	update_dev_time(device->name->str);
2114}
2115
2116int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2117		    struct btrfs_dev_lookup_args *args,
2118		    struct file **bdev_file)
2119{
2120	struct btrfs_trans_handle *trans;
2121	struct btrfs_device *device;
2122	struct btrfs_fs_devices *cur_devices;
2123	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2124	u64 num_devices;
2125	int ret = 0;
2126
2127	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2128		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2129		return -EINVAL;
2130	}
2131
2132	/*
2133	 * The device list in fs_devices is accessed without locks (neither
2134	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2135	 * filesystem and another device rm cannot run.
2136	 */
2137	num_devices = btrfs_num_devices(fs_info);
2138
2139	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2140	if (ret)
2141		return ret;
2142
2143	device = btrfs_find_device(fs_info->fs_devices, args);
2144	if (!device) {
2145		if (args->missing)
2146			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2147		else
2148			ret = -ENOENT;
2149		return ret;
2150	}
2151
2152	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2153		btrfs_warn_in_rcu(fs_info,
2154		  "cannot remove device %s (devid %llu) due to active swapfile",
2155				  btrfs_dev_name(device), device->devid);
2156		return -ETXTBSY;
2157	}
2158
2159	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2160		return BTRFS_ERROR_DEV_TGT_REPLACE;
2161
2162	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2163	    fs_info->fs_devices->rw_devices == 1)
2164		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2165
2166	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167		mutex_lock(&fs_info->chunk_mutex);
2168		list_del_init(&device->dev_alloc_list);
2169		device->fs_devices->rw_devices--;
2170		mutex_unlock(&fs_info->chunk_mutex);
2171	}
2172
2173	ret = btrfs_shrink_device(device, 0);
2174	if (ret)
2175		goto error_undo;
2176
2177	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2178	if (IS_ERR(trans)) {
2179		ret = PTR_ERR(trans);
2180		goto error_undo;
2181	}
2182
2183	ret = btrfs_rm_dev_item(trans, device);
2184	if (ret) {
2185		/* Any error in dev item removal is critical */
2186		btrfs_crit(fs_info,
2187			   "failed to remove device item for devid %llu: %d",
2188			   device->devid, ret);
2189		btrfs_abort_transaction(trans, ret);
2190		btrfs_end_transaction(trans);
2191		return ret;
2192	}
2193
2194	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2195	btrfs_scrub_cancel_dev(device);
2196
2197	/*
2198	 * the device list mutex makes sure that we don't change
2199	 * the device list while someone else is writing out all
2200	 * the device supers. Whoever is writing all supers, should
2201	 * lock the device list mutex before getting the number of
2202	 * devices in the super block (super_copy). Conversely,
2203	 * whoever updates the number of devices in the super block
2204	 * (super_copy) should hold the device list mutex.
2205	 */
2206
2207	/*
2208	 * In normal cases the cur_devices == fs_devices. But in case
2209	 * of deleting a seed device, the cur_devices should point to
2210	 * its own fs_devices listed under the fs_devices->seed_list.
2211	 */
2212	cur_devices = device->fs_devices;
2213	mutex_lock(&fs_devices->device_list_mutex);
2214	list_del_rcu(&device->dev_list);
2215
2216	cur_devices->num_devices--;
2217	cur_devices->total_devices--;
2218	/* Update total_devices of the parent fs_devices if it's seed */
2219	if (cur_devices != fs_devices)
2220		fs_devices->total_devices--;
2221
2222	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2223		cur_devices->missing_devices--;
2224
2225	btrfs_assign_next_active_device(device, NULL);
2226
2227	if (device->bdev_file) {
2228		cur_devices->open_devices--;
2229		/* remove sysfs entry */
2230		btrfs_sysfs_remove_device(device);
2231	}
2232
2233	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2234	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2235	mutex_unlock(&fs_devices->device_list_mutex);
2236
2237	/*
2238	 * At this point, the device is zero sized and detached from the
2239	 * devices list.  All that's left is to zero out the old supers and
2240	 * free the device.
2241	 *
2242	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2243	 * write lock, and fput() on the block device will pull in the
2244	 * ->open_mutex on the block device and it's dependencies.  Instead
2245	 *  just flush the device and let the caller do the final bdev_release.
2246	 */
2247	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2248		btrfs_scratch_superblocks(fs_info, device);
2249		if (device->bdev) {
2250			sync_blockdev(device->bdev);
2251			invalidate_bdev(device->bdev);
2252		}
2253	}
2254
2255	*bdev_file = device->bdev_file;
2256	synchronize_rcu();
2257	btrfs_free_device(device);
2258
2259	/*
2260	 * This can happen if cur_devices is the private seed devices list.  We
2261	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2262	 * to be held, but in fact we don't need that for the private
2263	 * seed_devices, we can simply decrement cur_devices->opened and then
2264	 * remove it from our list and free the fs_devices.
2265	 */
2266	if (cur_devices->num_devices == 0) {
2267		list_del_init(&cur_devices->seed_list);
2268		ASSERT(cur_devices->opened == 1);
2269		cur_devices->opened--;
2270		free_fs_devices(cur_devices);
2271	}
2272
2273	ret = btrfs_commit_transaction(trans);
2274
2275	return ret;
2276
2277error_undo:
2278	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2279		mutex_lock(&fs_info->chunk_mutex);
2280		list_add(&device->dev_alloc_list,
2281			 &fs_devices->alloc_list);
2282		device->fs_devices->rw_devices++;
2283		mutex_unlock(&fs_info->chunk_mutex);
2284	}
2285	return ret;
2286}
2287
2288void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2289{
2290	struct btrfs_fs_devices *fs_devices;
2291
2292	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2293
2294	/*
2295	 * in case of fs with no seed, srcdev->fs_devices will point
2296	 * to fs_devices of fs_info. However when the dev being replaced is
2297	 * a seed dev it will point to the seed's local fs_devices. In short
2298	 * srcdev will have its correct fs_devices in both the cases.
2299	 */
2300	fs_devices = srcdev->fs_devices;
2301
2302	list_del_rcu(&srcdev->dev_list);
2303	list_del(&srcdev->dev_alloc_list);
2304	fs_devices->num_devices--;
2305	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2306		fs_devices->missing_devices--;
2307
2308	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2309		fs_devices->rw_devices--;
2310
2311	if (srcdev->bdev)
2312		fs_devices->open_devices--;
2313}
2314
2315void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2316{
2317	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2318
2319	mutex_lock(&uuid_mutex);
2320
2321	btrfs_close_bdev(srcdev);
2322	synchronize_rcu();
2323	btrfs_free_device(srcdev);
2324
2325	/* if this is no devs we rather delete the fs_devices */
2326	if (!fs_devices->num_devices) {
2327		/*
2328		 * On a mounted FS, num_devices can't be zero unless it's a
2329		 * seed. In case of a seed device being replaced, the replace
2330		 * target added to the sprout FS, so there will be no more
2331		 * device left under the seed FS.
2332		 */
2333		ASSERT(fs_devices->seeding);
2334
2335		list_del_init(&fs_devices->seed_list);
2336		close_fs_devices(fs_devices);
2337		free_fs_devices(fs_devices);
2338	}
2339	mutex_unlock(&uuid_mutex);
2340}
2341
2342void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2343{
2344	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2345
2346	mutex_lock(&fs_devices->device_list_mutex);
2347
2348	btrfs_sysfs_remove_device(tgtdev);
2349
2350	if (tgtdev->bdev)
2351		fs_devices->open_devices--;
2352
2353	fs_devices->num_devices--;
2354
2355	btrfs_assign_next_active_device(tgtdev, NULL);
2356
2357	list_del_rcu(&tgtdev->dev_list);
2358
2359	mutex_unlock(&fs_devices->device_list_mutex);
2360
2361	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2362
2363	btrfs_close_bdev(tgtdev);
2364	synchronize_rcu();
2365	btrfs_free_device(tgtdev);
2366}
2367
2368/*
2369 * Populate args from device at path.
2370 *
2371 * @fs_info:	the filesystem
2372 * @args:	the args to populate
2373 * @path:	the path to the device
2374 *
2375 * This will read the super block of the device at @path and populate @args with
2376 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2377 * lookup a device to operate on, but need to do it before we take any locks.
2378 * This properly handles the special case of "missing" that a user may pass in,
2379 * and does some basic sanity checks.  The caller must make sure that @path is
2380 * properly NUL terminated before calling in, and must call
2381 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2382 * uuid buffers.
2383 *
2384 * Return: 0 for success, -errno for failure
2385 */
2386int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2387				 struct btrfs_dev_lookup_args *args,
2388				 const char *path)
2389{
2390	struct btrfs_super_block *disk_super;
2391	struct file *bdev_file;
2392	int ret;
2393
2394	if (!path || !path[0])
2395		return -EINVAL;
2396	if (!strcmp(path, "missing")) {
2397		args->missing = true;
2398		return 0;
2399	}
2400
2401	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2402	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2403	if (!args->uuid || !args->fsid) {
2404		btrfs_put_dev_args_from_path(args);
2405		return -ENOMEM;
2406	}
2407
2408	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2409				    &bdev_file, &disk_super);
2410	if (ret) {
2411		btrfs_put_dev_args_from_path(args);
2412		return ret;
2413	}
2414
2415	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2416	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2417	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2418		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2419	else
2420		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2421	btrfs_release_disk_super(disk_super);
2422	fput(bdev_file);
2423	return 0;
2424}
2425
2426/*
2427 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2428 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2429 * that don't need to be freed.
2430 */
2431void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2432{
2433	kfree(args->uuid);
2434	kfree(args->fsid);
2435	args->uuid = NULL;
2436	args->fsid = NULL;
2437}
2438
2439struct btrfs_device *btrfs_find_device_by_devspec(
2440		struct btrfs_fs_info *fs_info, u64 devid,
2441		const char *device_path)
2442{
2443	BTRFS_DEV_LOOKUP_ARGS(args);
2444	struct btrfs_device *device;
2445	int ret;
2446
2447	if (devid) {
2448		args.devid = devid;
2449		device = btrfs_find_device(fs_info->fs_devices, &args);
2450		if (!device)
2451			return ERR_PTR(-ENOENT);
2452		return device;
2453	}
2454
2455	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2456	if (ret)
2457		return ERR_PTR(ret);
2458	device = btrfs_find_device(fs_info->fs_devices, &args);
2459	btrfs_put_dev_args_from_path(&args);
2460	if (!device)
2461		return ERR_PTR(-ENOENT);
2462	return device;
2463}
2464
2465static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2466{
2467	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2468	struct btrfs_fs_devices *old_devices;
2469	struct btrfs_fs_devices *seed_devices;
2470
2471	lockdep_assert_held(&uuid_mutex);
2472	if (!fs_devices->seeding)
2473		return ERR_PTR(-EINVAL);
2474
2475	/*
2476	 * Private copy of the seed devices, anchored at
2477	 * fs_info->fs_devices->seed_list
2478	 */
2479	seed_devices = alloc_fs_devices(NULL);
2480	if (IS_ERR(seed_devices))
2481		return seed_devices;
2482
2483	/*
2484	 * It's necessary to retain a copy of the original seed fs_devices in
2485	 * fs_uuids so that filesystems which have been seeded can successfully
2486	 * reference the seed device from open_seed_devices. This also supports
2487	 * multiple fs seed.
2488	 */
2489	old_devices = clone_fs_devices(fs_devices);
2490	if (IS_ERR(old_devices)) {
2491		kfree(seed_devices);
2492		return old_devices;
2493	}
2494
2495	list_add(&old_devices->fs_list, &fs_uuids);
2496
2497	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2498	seed_devices->opened = 1;
2499	INIT_LIST_HEAD(&seed_devices->devices);
2500	INIT_LIST_HEAD(&seed_devices->alloc_list);
2501	mutex_init(&seed_devices->device_list_mutex);
2502
2503	return seed_devices;
2504}
2505
2506/*
2507 * Splice seed devices into the sprout fs_devices.
2508 * Generate a new fsid for the sprouted read-write filesystem.
2509 */
2510static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2511			       struct btrfs_fs_devices *seed_devices)
2512{
2513	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2514	struct btrfs_super_block *disk_super = fs_info->super_copy;
2515	struct btrfs_device *device;
2516	u64 super_flags;
2517
2518	/*
2519	 * We are updating the fsid, the thread leading to device_list_add()
2520	 * could race, so uuid_mutex is needed.
2521	 */
2522	lockdep_assert_held(&uuid_mutex);
2523
2524	/*
2525	 * The threads listed below may traverse dev_list but can do that without
2526	 * device_list_mutex:
2527	 * - All device ops and balance - as we are in btrfs_exclop_start.
2528	 * - Various dev_list readers - are using RCU.
2529	 * - btrfs_ioctl_fitrim() - is using RCU.
2530	 *
2531	 * For-read threads as below are using device_list_mutex:
2532	 * - Readonly scrub btrfs_scrub_dev()
2533	 * - Readonly scrub btrfs_scrub_progress()
2534	 * - btrfs_get_dev_stats()
2535	 */
2536	lockdep_assert_held(&fs_devices->device_list_mutex);
2537
2538	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2539			      synchronize_rcu);
2540	list_for_each_entry(device, &seed_devices->devices, dev_list)
2541		device->fs_devices = seed_devices;
2542
2543	fs_devices->seeding = false;
2544	fs_devices->num_devices = 0;
2545	fs_devices->open_devices = 0;
2546	fs_devices->missing_devices = 0;
2547	fs_devices->rotating = false;
2548	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2549
2550	generate_random_uuid(fs_devices->fsid);
2551	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2552	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2553
2554	super_flags = btrfs_super_flags(disk_super) &
2555		      ~BTRFS_SUPER_FLAG_SEEDING;
2556	btrfs_set_super_flags(disk_super, super_flags);
2557}
2558
2559/*
2560 * Store the expected generation for seed devices in device items.
2561 */
2562static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2563{
2564	BTRFS_DEV_LOOKUP_ARGS(args);
2565	struct btrfs_fs_info *fs_info = trans->fs_info;
2566	struct btrfs_root *root = fs_info->chunk_root;
2567	struct btrfs_path *path;
2568	struct extent_buffer *leaf;
2569	struct btrfs_dev_item *dev_item;
2570	struct btrfs_device *device;
2571	struct btrfs_key key;
2572	u8 fs_uuid[BTRFS_FSID_SIZE];
2573	u8 dev_uuid[BTRFS_UUID_SIZE];
2574	int ret;
2575
2576	path = btrfs_alloc_path();
2577	if (!path)
2578		return -ENOMEM;
2579
2580	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2581	key.offset = 0;
2582	key.type = BTRFS_DEV_ITEM_KEY;
2583
2584	while (1) {
2585		btrfs_reserve_chunk_metadata(trans, false);
2586		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2587		btrfs_trans_release_chunk_metadata(trans);
2588		if (ret < 0)
2589			goto error;
2590
2591		leaf = path->nodes[0];
2592next_slot:
2593		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2594			ret = btrfs_next_leaf(root, path);
2595			if (ret > 0)
2596				break;
2597			if (ret < 0)
2598				goto error;
2599			leaf = path->nodes[0];
2600			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2601			btrfs_release_path(path);
2602			continue;
2603		}
2604
2605		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2606		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2607		    key.type != BTRFS_DEV_ITEM_KEY)
2608			break;
2609
2610		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2611					  struct btrfs_dev_item);
2612		args.devid = btrfs_device_id(leaf, dev_item);
2613		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2614				   BTRFS_UUID_SIZE);
2615		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2616				   BTRFS_FSID_SIZE);
2617		args.uuid = dev_uuid;
2618		args.fsid = fs_uuid;
2619		device = btrfs_find_device(fs_info->fs_devices, &args);
2620		BUG_ON(!device); /* Logic error */
2621
2622		if (device->fs_devices->seeding) {
2623			btrfs_set_device_generation(leaf, dev_item,
2624						    device->generation);
2625			btrfs_mark_buffer_dirty(trans, leaf);
2626		}
2627
2628		path->slots[0]++;
2629		goto next_slot;
2630	}
2631	ret = 0;
2632error:
2633	btrfs_free_path(path);
2634	return ret;
2635}
2636
2637int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2638{
2639	struct btrfs_root *root = fs_info->dev_root;
2640	struct btrfs_trans_handle *trans;
2641	struct btrfs_device *device;
2642	struct file *bdev_file;
2643	struct super_block *sb = fs_info->sb;
2644	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2645	struct btrfs_fs_devices *seed_devices = NULL;
2646	u64 orig_super_total_bytes;
2647	u64 orig_super_num_devices;
2648	int ret = 0;
2649	bool seeding_dev = false;
2650	bool locked = false;
2651
2652	if (sb_rdonly(sb) && !fs_devices->seeding)
2653		return -EROFS;
2654
2655	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2656					fs_info->bdev_holder, NULL);
2657	if (IS_ERR(bdev_file))
2658		return PTR_ERR(bdev_file);
2659
2660	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2661		ret = -EINVAL;
2662		goto error;
2663	}
2664
2665	if (fs_devices->seeding) {
2666		seeding_dev = true;
2667		down_write(&sb->s_umount);
2668		mutex_lock(&uuid_mutex);
2669		locked = true;
2670	}
2671
2672	sync_blockdev(file_bdev(bdev_file));
2673
2674	rcu_read_lock();
2675	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2676		if (device->bdev == file_bdev(bdev_file)) {
2677			ret = -EEXIST;
2678			rcu_read_unlock();
2679			goto error;
2680		}
2681	}
2682	rcu_read_unlock();
2683
2684	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2685	if (IS_ERR(device)) {
2686		/* we can safely leave the fs_devices entry around */
2687		ret = PTR_ERR(device);
2688		goto error;
2689	}
2690
2691	device->fs_info = fs_info;
2692	device->bdev_file = bdev_file;
2693	device->bdev = file_bdev(bdev_file);
2694	ret = lookup_bdev(device_path, &device->devt);
2695	if (ret)
2696		goto error_free_device;
2697
2698	ret = btrfs_get_dev_zone_info(device, false);
2699	if (ret)
2700		goto error_free_device;
2701
2702	trans = btrfs_start_transaction(root, 0);
2703	if (IS_ERR(trans)) {
2704		ret = PTR_ERR(trans);
2705		goto error_free_zone;
2706	}
2707
2708	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2709	device->generation = trans->transid;
2710	device->io_width = fs_info->sectorsize;
2711	device->io_align = fs_info->sectorsize;
2712	device->sector_size = fs_info->sectorsize;
2713	device->total_bytes =
2714		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2715	device->disk_total_bytes = device->total_bytes;
2716	device->commit_total_bytes = device->total_bytes;
2717	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2718	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2719	device->dev_stats_valid = 1;
2720	set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2721
2722	if (seeding_dev) {
2723		btrfs_clear_sb_rdonly(sb);
2724
2725		/* GFP_KERNEL allocation must not be under device_list_mutex */
2726		seed_devices = btrfs_init_sprout(fs_info);
2727		if (IS_ERR(seed_devices)) {
2728			ret = PTR_ERR(seed_devices);
2729			btrfs_abort_transaction(trans, ret);
2730			goto error_trans;
2731		}
2732	}
2733
2734	mutex_lock(&fs_devices->device_list_mutex);
2735	if (seeding_dev) {
2736		btrfs_setup_sprout(fs_info, seed_devices);
2737		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2738						device);
2739	}
2740
2741	device->fs_devices = fs_devices;
2742
2743	mutex_lock(&fs_info->chunk_mutex);
2744	list_add_rcu(&device->dev_list, &fs_devices->devices);
2745	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2746	fs_devices->num_devices++;
2747	fs_devices->open_devices++;
2748	fs_devices->rw_devices++;
2749	fs_devices->total_devices++;
2750	fs_devices->total_rw_bytes += device->total_bytes;
2751
2752	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2753
2754	if (!bdev_nonrot(device->bdev))
2755		fs_devices->rotating = true;
2756
2757	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2758	btrfs_set_super_total_bytes(fs_info->super_copy,
2759		round_down(orig_super_total_bytes + device->total_bytes,
2760			   fs_info->sectorsize));
2761
2762	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2763	btrfs_set_super_num_devices(fs_info->super_copy,
2764				    orig_super_num_devices + 1);
2765
2766	/*
2767	 * we've got more storage, clear any full flags on the space
2768	 * infos
2769	 */
2770	btrfs_clear_space_info_full(fs_info);
2771
2772	mutex_unlock(&fs_info->chunk_mutex);
2773
2774	/* Add sysfs device entry */
2775	btrfs_sysfs_add_device(device);
2776
2777	mutex_unlock(&fs_devices->device_list_mutex);
2778
2779	if (seeding_dev) {
2780		mutex_lock(&fs_info->chunk_mutex);
2781		ret = init_first_rw_device(trans);
2782		mutex_unlock(&fs_info->chunk_mutex);
2783		if (ret) {
2784			btrfs_abort_transaction(trans, ret);
2785			goto error_sysfs;
2786		}
2787	}
2788
2789	ret = btrfs_add_dev_item(trans, device);
2790	if (ret) {
2791		btrfs_abort_transaction(trans, ret);
2792		goto error_sysfs;
2793	}
2794
2795	if (seeding_dev) {
2796		ret = btrfs_finish_sprout(trans);
2797		if (ret) {
2798			btrfs_abort_transaction(trans, ret);
2799			goto error_sysfs;
2800		}
2801
2802		/*
2803		 * fs_devices now represents the newly sprouted filesystem and
2804		 * its fsid has been changed by btrfs_sprout_splice().
2805		 */
2806		btrfs_sysfs_update_sprout_fsid(fs_devices);
2807	}
2808
2809	ret = btrfs_commit_transaction(trans);
2810
2811	if (seeding_dev) {
2812		mutex_unlock(&uuid_mutex);
2813		up_write(&sb->s_umount);
2814		locked = false;
2815
2816		if (ret) /* transaction commit */
2817			return ret;
2818
2819		ret = btrfs_relocate_sys_chunks(fs_info);
2820		if (ret < 0)
2821			btrfs_handle_fs_error(fs_info, ret,
2822				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2823		trans = btrfs_attach_transaction(root);
2824		if (IS_ERR(trans)) {
2825			if (PTR_ERR(trans) == -ENOENT)
2826				return 0;
2827			ret = PTR_ERR(trans);
2828			trans = NULL;
2829			goto error_sysfs;
2830		}
2831		ret = btrfs_commit_transaction(trans);
2832	}
2833
2834	/*
2835	 * Now that we have written a new super block to this device, check all
2836	 * other fs_devices list if device_path alienates any other scanned
2837	 * device.
2838	 * We can ignore the return value as it typically returns -EINVAL and
2839	 * only succeeds if the device was an alien.
2840	 */
2841	btrfs_forget_devices(device->devt);
2842
2843	/* Update ctime/mtime for blkid or udev */
2844	update_dev_time(device_path);
2845
2846	return ret;
2847
2848error_sysfs:
2849	btrfs_sysfs_remove_device(device);
2850	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2851	mutex_lock(&fs_info->chunk_mutex);
2852	list_del_rcu(&device->dev_list);
2853	list_del(&device->dev_alloc_list);
2854	fs_info->fs_devices->num_devices--;
2855	fs_info->fs_devices->open_devices--;
2856	fs_info->fs_devices->rw_devices--;
2857	fs_info->fs_devices->total_devices--;
2858	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2859	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2860	btrfs_set_super_total_bytes(fs_info->super_copy,
2861				    orig_super_total_bytes);
2862	btrfs_set_super_num_devices(fs_info->super_copy,
2863				    orig_super_num_devices);
2864	mutex_unlock(&fs_info->chunk_mutex);
2865	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2866error_trans:
2867	if (seeding_dev)
2868		btrfs_set_sb_rdonly(sb);
2869	if (trans)
2870		btrfs_end_transaction(trans);
2871error_free_zone:
2872	btrfs_destroy_dev_zone_info(device);
2873error_free_device:
2874	btrfs_free_device(device);
2875error:
2876	fput(bdev_file);
2877	if (locked) {
2878		mutex_unlock(&uuid_mutex);
2879		up_write(&sb->s_umount);
2880	}
2881	return ret;
2882}
2883
2884static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2885					struct btrfs_device *device)
2886{
2887	int ret;
2888	struct btrfs_path *path;
2889	struct btrfs_root *root = device->fs_info->chunk_root;
2890	struct btrfs_dev_item *dev_item;
2891	struct extent_buffer *leaf;
2892	struct btrfs_key key;
2893
2894	path = btrfs_alloc_path();
2895	if (!path)
2896		return -ENOMEM;
2897
2898	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2899	key.type = BTRFS_DEV_ITEM_KEY;
2900	key.offset = device->devid;
2901
2902	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2903	if (ret < 0)
2904		goto out;
2905
2906	if (ret > 0) {
2907		ret = -ENOENT;
2908		goto out;
2909	}
2910
2911	leaf = path->nodes[0];
2912	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2913
2914	btrfs_set_device_id(leaf, dev_item, device->devid);
2915	btrfs_set_device_type(leaf, dev_item, device->type);
2916	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2917	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2918	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2919	btrfs_set_device_total_bytes(leaf, dev_item,
2920				     btrfs_device_get_disk_total_bytes(device));
2921	btrfs_set_device_bytes_used(leaf, dev_item,
2922				    btrfs_device_get_bytes_used(device));
2923	btrfs_mark_buffer_dirty(trans, leaf);
2924
2925out:
2926	btrfs_free_path(path);
2927	return ret;
2928}
2929
2930int btrfs_grow_device(struct btrfs_trans_handle *trans,
2931		      struct btrfs_device *device, u64 new_size)
2932{
2933	struct btrfs_fs_info *fs_info = device->fs_info;
2934	struct btrfs_super_block *super_copy = fs_info->super_copy;
2935	u64 old_total;
2936	u64 diff;
2937	int ret;
2938
2939	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2940		return -EACCES;
2941
2942	new_size = round_down(new_size, fs_info->sectorsize);
2943
2944	mutex_lock(&fs_info->chunk_mutex);
2945	old_total = btrfs_super_total_bytes(super_copy);
2946	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2947
2948	if (new_size <= device->total_bytes ||
2949	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2950		mutex_unlock(&fs_info->chunk_mutex);
2951		return -EINVAL;
2952	}
2953
2954	btrfs_set_super_total_bytes(super_copy,
2955			round_down(old_total + diff, fs_info->sectorsize));
2956	device->fs_devices->total_rw_bytes += diff;
2957	atomic64_add(diff, &fs_info->free_chunk_space);
2958
2959	btrfs_device_set_total_bytes(device, new_size);
2960	btrfs_device_set_disk_total_bytes(device, new_size);
2961	btrfs_clear_space_info_full(device->fs_info);
2962	if (list_empty(&device->post_commit_list))
2963		list_add_tail(&device->post_commit_list,
2964			      &trans->transaction->dev_update_list);
2965	mutex_unlock(&fs_info->chunk_mutex);
2966
2967	btrfs_reserve_chunk_metadata(trans, false);
2968	ret = btrfs_update_device(trans, device);
2969	btrfs_trans_release_chunk_metadata(trans);
2970
2971	return ret;
2972}
2973
2974static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2975{
2976	struct btrfs_fs_info *fs_info = trans->fs_info;
2977	struct btrfs_root *root = fs_info->chunk_root;
2978	int ret;
2979	struct btrfs_path *path;
2980	struct btrfs_key key;
2981
2982	path = btrfs_alloc_path();
2983	if (!path)
2984		return -ENOMEM;
2985
2986	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2987	key.offset = chunk_offset;
2988	key.type = BTRFS_CHUNK_ITEM_KEY;
2989
2990	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2991	if (ret < 0)
2992		goto out;
2993	else if (ret > 0) { /* Logic error or corruption */
2994		btrfs_handle_fs_error(fs_info, -ENOENT,
2995				      "Failed lookup while freeing chunk.");
2996		ret = -ENOENT;
2997		goto out;
2998	}
2999
3000	ret = btrfs_del_item(trans, root, path);
3001	if (ret < 0)
3002		btrfs_handle_fs_error(fs_info, ret,
3003				      "Failed to delete chunk item.");
3004out:
3005	btrfs_free_path(path);
3006	return ret;
3007}
3008
3009static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3010{
3011	struct btrfs_super_block *super_copy = fs_info->super_copy;
3012	struct btrfs_disk_key *disk_key;
3013	struct btrfs_chunk *chunk;
3014	u8 *ptr;
3015	int ret = 0;
3016	u32 num_stripes;
3017	u32 array_size;
3018	u32 len = 0;
3019	u32 cur;
3020	struct btrfs_key key;
3021
3022	lockdep_assert_held(&fs_info->chunk_mutex);
3023	array_size = btrfs_super_sys_array_size(super_copy);
3024
3025	ptr = super_copy->sys_chunk_array;
3026	cur = 0;
3027
3028	while (cur < array_size) {
3029		disk_key = (struct btrfs_disk_key *)ptr;
3030		btrfs_disk_key_to_cpu(&key, disk_key);
3031
3032		len = sizeof(*disk_key);
3033
3034		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3035			chunk = (struct btrfs_chunk *)(ptr + len);
3036			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3037			len += btrfs_chunk_item_size(num_stripes);
3038		} else {
3039			ret = -EIO;
3040			break;
3041		}
3042		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3043		    key.offset == chunk_offset) {
3044			memmove(ptr, ptr + len, array_size - (cur + len));
3045			array_size -= len;
3046			btrfs_set_super_sys_array_size(super_copy, array_size);
3047		} else {
3048			ptr += len;
3049			cur += len;
3050		}
3051	}
3052	return ret;
3053}
3054
3055struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3056						    u64 logical, u64 length)
3057{
3058	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3059	struct rb_node *prev = NULL;
3060	struct rb_node *orig_prev;
3061	struct btrfs_chunk_map *map;
3062	struct btrfs_chunk_map *prev_map = NULL;
3063
3064	while (node) {
3065		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3066		prev = node;
3067		prev_map = map;
3068
3069		if (logical < map->start) {
3070			node = node->rb_left;
3071		} else if (logical >= map->start + map->chunk_len) {
3072			node = node->rb_right;
3073		} else {
3074			refcount_inc(&map->refs);
3075			return map;
3076		}
3077	}
3078
3079	if (!prev)
3080		return NULL;
3081
3082	orig_prev = prev;
3083	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3084		prev = rb_next(prev);
3085		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3086	}
3087
3088	if (!prev) {
3089		prev = orig_prev;
3090		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091		while (prev && logical < prev_map->start) {
3092			prev = rb_prev(prev);
3093			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3094		}
3095	}
3096
3097	if (prev) {
3098		u64 end = logical + length;
3099
3100		/*
3101		 * Caller can pass a U64_MAX length when it wants to get any
3102		 * chunk starting at an offset of 'logical' or higher, so deal
3103		 * with underflow by resetting the end offset to U64_MAX.
3104		 */
3105		if (end < logical)
3106			end = U64_MAX;
3107
3108		if (end > prev_map->start &&
3109		    logical < prev_map->start + prev_map->chunk_len) {
3110			refcount_inc(&prev_map->refs);
3111			return prev_map;
3112		}
3113	}
3114
3115	return NULL;
3116}
3117
3118struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3119					     u64 logical, u64 length)
3120{
3121	struct btrfs_chunk_map *map;
3122
3123	read_lock(&fs_info->mapping_tree_lock);
3124	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3125	read_unlock(&fs_info->mapping_tree_lock);
3126
3127	return map;
3128}
3129
3130/*
3131 * Find the mapping containing the given logical extent.
3132 *
3133 * @logical: Logical block offset in bytes.
3134 * @length: Length of extent in bytes.
3135 *
3136 * Return: Chunk mapping or ERR_PTR.
3137 */
3138struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3139					    u64 logical, u64 length)
3140{
3141	struct btrfs_chunk_map *map;
3142
3143	map = btrfs_find_chunk_map(fs_info, logical, length);
3144
3145	if (unlikely(!map)) {
3146		btrfs_crit(fs_info,
3147			   "unable to find chunk map for logical %llu length %llu",
3148			   logical, length);
3149		return ERR_PTR(-EINVAL);
3150	}
3151
3152	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3153		btrfs_crit(fs_info,
3154			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3155			   logical, logical + length, map->start,
3156			   map->start + map->chunk_len);
3157		btrfs_free_chunk_map(map);
3158		return ERR_PTR(-EINVAL);
3159	}
3160
3161	/* Callers are responsible for dropping the reference. */
3162	return map;
3163}
3164
3165static int remove_chunk_item(struct btrfs_trans_handle *trans,
3166			     struct btrfs_chunk_map *map, u64 chunk_offset)
3167{
3168	int i;
3169
3170	/*
3171	 * Removing chunk items and updating the device items in the chunks btree
3172	 * requires holding the chunk_mutex.
3173	 * See the comment at btrfs_chunk_alloc() for the details.
3174	 */
3175	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3176
3177	for (i = 0; i < map->num_stripes; i++) {
3178		int ret;
3179
3180		ret = btrfs_update_device(trans, map->stripes[i].dev);
3181		if (ret)
3182			return ret;
3183	}
3184
3185	return btrfs_free_chunk(trans, chunk_offset);
3186}
3187
3188int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3189{
3190	struct btrfs_fs_info *fs_info = trans->fs_info;
3191	struct btrfs_chunk_map *map;
3192	u64 dev_extent_len = 0;
3193	int i, ret = 0;
3194	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3195
3196	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3197	if (IS_ERR(map)) {
3198		/*
3199		 * This is a logic error, but we don't want to just rely on the
3200		 * user having built with ASSERT enabled, so if ASSERT doesn't
3201		 * do anything we still error out.
3202		 */
3203		ASSERT(0);
3204		return PTR_ERR(map);
3205	}
3206
3207	/*
3208	 * First delete the device extent items from the devices btree.
3209	 * We take the device_list_mutex to avoid racing with the finishing phase
3210	 * of a device replace operation. See the comment below before acquiring
3211	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3212	 * because that can result in a deadlock when deleting the device extent
3213	 * items from the devices btree - COWing an extent buffer from the btree
3214	 * may result in allocating a new metadata chunk, which would attempt to
3215	 * lock again fs_info->chunk_mutex.
3216	 */
3217	mutex_lock(&fs_devices->device_list_mutex);
3218	for (i = 0; i < map->num_stripes; i++) {
3219		struct btrfs_device *device = map->stripes[i].dev;
3220		ret = btrfs_free_dev_extent(trans, device,
3221					    map->stripes[i].physical,
3222					    &dev_extent_len);
3223		if (ret) {
3224			mutex_unlock(&fs_devices->device_list_mutex);
3225			btrfs_abort_transaction(trans, ret);
3226			goto out;
3227		}
3228
3229		if (device->bytes_used > 0) {
3230			mutex_lock(&fs_info->chunk_mutex);
3231			btrfs_device_set_bytes_used(device,
3232					device->bytes_used - dev_extent_len);
3233			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3234			btrfs_clear_space_info_full(fs_info);
3235			mutex_unlock(&fs_info->chunk_mutex);
3236		}
3237	}
3238	mutex_unlock(&fs_devices->device_list_mutex);
3239
3240	/*
3241	 * We acquire fs_info->chunk_mutex for 2 reasons:
3242	 *
3243	 * 1) Just like with the first phase of the chunk allocation, we must
3244	 *    reserve system space, do all chunk btree updates and deletions, and
3245	 *    update the system chunk array in the superblock while holding this
3246	 *    mutex. This is for similar reasons as explained on the comment at
3247	 *    the top of btrfs_chunk_alloc();
3248	 *
3249	 * 2) Prevent races with the final phase of a device replace operation
3250	 *    that replaces the device object associated with the map's stripes,
3251	 *    because the device object's id can change at any time during that
3252	 *    final phase of the device replace operation
3253	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3254	 *    replaced device and then see it with an ID of
3255	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3256	 *    the device item, which does not exists on the chunk btree.
3257	 *    The finishing phase of device replace acquires both the
3258	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3259	 *    safe by just acquiring the chunk_mutex.
3260	 */
3261	trans->removing_chunk = true;
3262	mutex_lock(&fs_info->chunk_mutex);
3263
3264	check_system_chunk(trans, map->type);
3265
3266	ret = remove_chunk_item(trans, map, chunk_offset);
3267	/*
3268	 * Normally we should not get -ENOSPC since we reserved space before
3269	 * through the call to check_system_chunk().
3270	 *
3271	 * Despite our system space_info having enough free space, we may not
3272	 * be able to allocate extents from its block groups, because all have
3273	 * an incompatible profile, which will force us to allocate a new system
3274	 * block group with the right profile, or right after we called
3275	 * check_system_space() above, a scrub turned the only system block group
3276	 * with enough free space into RO mode.
3277	 * This is explained with more detail at do_chunk_alloc().
3278	 *
3279	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3280	 */
3281	if (ret == -ENOSPC) {
3282		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3283		struct btrfs_block_group *sys_bg;
3284
3285		sys_bg = btrfs_create_chunk(trans, sys_flags);
3286		if (IS_ERR(sys_bg)) {
3287			ret = PTR_ERR(sys_bg);
3288			btrfs_abort_transaction(trans, ret);
3289			goto out;
3290		}
3291
3292		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3293		if (ret) {
3294			btrfs_abort_transaction(trans, ret);
3295			goto out;
3296		}
3297
3298		ret = remove_chunk_item(trans, map, chunk_offset);
3299		if (ret) {
3300			btrfs_abort_transaction(trans, ret);
3301			goto out;
3302		}
3303	} else if (ret) {
3304		btrfs_abort_transaction(trans, ret);
3305		goto out;
3306	}
3307
3308	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3309
3310	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3311		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3312		if (ret) {
3313			btrfs_abort_transaction(trans, ret);
3314			goto out;
3315		}
3316	}
3317
3318	mutex_unlock(&fs_info->chunk_mutex);
3319	trans->removing_chunk = false;
3320
3321	/*
3322	 * We are done with chunk btree updates and deletions, so release the
3323	 * system space we previously reserved (with check_system_chunk()).
3324	 */
3325	btrfs_trans_release_chunk_metadata(trans);
3326
3327	ret = btrfs_remove_block_group(trans, map);
3328	if (ret) {
3329		btrfs_abort_transaction(trans, ret);
3330		goto out;
3331	}
3332
3333out:
3334	if (trans->removing_chunk) {
3335		mutex_unlock(&fs_info->chunk_mutex);
3336		trans->removing_chunk = false;
3337	}
3338	/* once for us */
3339	btrfs_free_chunk_map(map);
3340	return ret;
3341}
3342
3343int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3344{
3345	struct btrfs_root *root = fs_info->chunk_root;
3346	struct btrfs_trans_handle *trans;
3347	struct btrfs_block_group *block_group;
3348	u64 length;
3349	int ret;
3350
3351	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3352		btrfs_err(fs_info,
3353			  "relocate: not supported on extent tree v2 yet");
3354		return -EINVAL;
3355	}
3356
3357	/*
3358	 * Prevent races with automatic removal of unused block groups.
3359	 * After we relocate and before we remove the chunk with offset
3360	 * chunk_offset, automatic removal of the block group can kick in,
3361	 * resulting in a failure when calling btrfs_remove_chunk() below.
3362	 *
3363	 * Make sure to acquire this mutex before doing a tree search (dev
3364	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3365	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3366	 * we release the path used to search the chunk/dev tree and before
3367	 * the current task acquires this mutex and calls us.
3368	 */
3369	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3370
3371	/* step one, relocate all the extents inside this chunk */
3372	btrfs_scrub_pause(fs_info);
3373	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3374	btrfs_scrub_continue(fs_info);
3375	if (ret) {
3376		/*
3377		 * If we had a transaction abort, stop all running scrubs.
3378		 * See transaction.c:cleanup_transaction() why we do it here.
3379		 */
3380		if (BTRFS_FS_ERROR(fs_info))
3381			btrfs_scrub_cancel(fs_info);
3382		return ret;
3383	}
3384
3385	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3386	if (!block_group)
3387		return -ENOENT;
3388	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3389	length = block_group->length;
3390	btrfs_put_block_group(block_group);
3391
3392	/*
3393	 * On a zoned file system, discard the whole block group, this will
3394	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3395	 * resetting the zone fails, don't treat it as a fatal problem from the
3396	 * filesystem's point of view.
3397	 */
3398	if (btrfs_is_zoned(fs_info)) {
3399		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3400		if (ret)
3401			btrfs_info(fs_info,
3402				"failed to reset zone %llu after relocation",
3403				chunk_offset);
3404	}
3405
3406	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3407						     chunk_offset);
3408	if (IS_ERR(trans)) {
3409		ret = PTR_ERR(trans);
3410		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3411		return ret;
3412	}
3413
3414	/*
3415	 * step two, delete the device extents and the
3416	 * chunk tree entries
3417	 */
3418	ret = btrfs_remove_chunk(trans, chunk_offset);
3419	btrfs_end_transaction(trans);
3420	return ret;
3421}
3422
3423static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3424{
3425	struct btrfs_root *chunk_root = fs_info->chunk_root;
3426	struct btrfs_path *path;
3427	struct extent_buffer *leaf;
3428	struct btrfs_chunk *chunk;
3429	struct btrfs_key key;
3430	struct btrfs_key found_key;
3431	u64 chunk_type;
3432	bool retried = false;
3433	int failed = 0;
3434	int ret;
3435
3436	path = btrfs_alloc_path();
3437	if (!path)
3438		return -ENOMEM;
3439
3440again:
3441	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3442	key.offset = (u64)-1;
3443	key.type = BTRFS_CHUNK_ITEM_KEY;
3444
3445	while (1) {
3446		mutex_lock(&fs_info->reclaim_bgs_lock);
3447		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3448		if (ret < 0) {
3449			mutex_unlock(&fs_info->reclaim_bgs_lock);
3450			goto error;
3451		}
3452		if (ret == 0) {
3453			/*
3454			 * On the first search we would find chunk tree with
3455			 * offset -1, which is not possible. On subsequent
3456			 * loops this would find an existing item on an invalid
3457			 * offset (one less than the previous one, wrong
3458			 * alignment and size).
3459			 */
3460			ret = -EUCLEAN;
3461			mutex_unlock(&fs_info->reclaim_bgs_lock);
3462			goto error;
3463		}
3464
3465		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3466					  key.type);
3467		if (ret)
3468			mutex_unlock(&fs_info->reclaim_bgs_lock);
3469		if (ret < 0)
3470			goto error;
3471		if (ret > 0)
3472			break;
3473
3474		leaf = path->nodes[0];
3475		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3476
3477		chunk = btrfs_item_ptr(leaf, path->slots[0],
3478				       struct btrfs_chunk);
3479		chunk_type = btrfs_chunk_type(leaf, chunk);
3480		btrfs_release_path(path);
3481
3482		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3483			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3484			if (ret == -ENOSPC)
3485				failed++;
3486			else
3487				BUG_ON(ret);
3488		}
3489		mutex_unlock(&fs_info->reclaim_bgs_lock);
3490
3491		if (found_key.offset == 0)
3492			break;
3493		key.offset = found_key.offset - 1;
3494	}
3495	ret = 0;
3496	if (failed && !retried) {
3497		failed = 0;
3498		retried = true;
3499		goto again;
3500	} else if (WARN_ON(failed && retried)) {
3501		ret = -ENOSPC;
3502	}
3503error:
3504	btrfs_free_path(path);
3505	return ret;
3506}
3507
3508/*
3509 * return 1 : allocate a data chunk successfully,
3510 * return <0: errors during allocating a data chunk,
3511 * return 0 : no need to allocate a data chunk.
3512 */
3513static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3514				      u64 chunk_offset)
3515{
3516	struct btrfs_block_group *cache;
3517	u64 bytes_used;
3518	u64 chunk_type;
3519
3520	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3521	ASSERT(cache);
3522	chunk_type = cache->flags;
3523	btrfs_put_block_group(cache);
3524
3525	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3526		return 0;
3527
3528	spin_lock(&fs_info->data_sinfo->lock);
3529	bytes_used = fs_info->data_sinfo->bytes_used;
3530	spin_unlock(&fs_info->data_sinfo->lock);
3531
3532	if (!bytes_used) {
3533		struct btrfs_trans_handle *trans;
3534		int ret;
3535
3536		trans =	btrfs_join_transaction(fs_info->tree_root);
3537		if (IS_ERR(trans))
3538			return PTR_ERR(trans);
3539
3540		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3541		btrfs_end_transaction(trans);
3542		if (ret < 0)
3543			return ret;
3544		return 1;
3545	}
3546
3547	return 0;
3548}
3549
3550static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3551					   const struct btrfs_disk_balance_args *disk)
3552{
3553	memset(cpu, 0, sizeof(*cpu));
3554
3555	cpu->profiles = le64_to_cpu(disk->profiles);
3556	cpu->usage = le64_to_cpu(disk->usage);
3557	cpu->devid = le64_to_cpu(disk->devid);
3558	cpu->pstart = le64_to_cpu(disk->pstart);
3559	cpu->pend = le64_to_cpu(disk->pend);
3560	cpu->vstart = le64_to_cpu(disk->vstart);
3561	cpu->vend = le64_to_cpu(disk->vend);
3562	cpu->target = le64_to_cpu(disk->target);
3563	cpu->flags = le64_to_cpu(disk->flags);
3564	cpu->limit = le64_to_cpu(disk->limit);
3565	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3566	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3567}
3568
3569static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3570					   const struct btrfs_balance_args *cpu)
3571{
3572	memset(disk, 0, sizeof(*disk));
3573
3574	disk->profiles = cpu_to_le64(cpu->profiles);
3575	disk->usage = cpu_to_le64(cpu->usage);
3576	disk->devid = cpu_to_le64(cpu->devid);
3577	disk->pstart = cpu_to_le64(cpu->pstart);
3578	disk->pend = cpu_to_le64(cpu->pend);
3579	disk->vstart = cpu_to_le64(cpu->vstart);
3580	disk->vend = cpu_to_le64(cpu->vend);
3581	disk->target = cpu_to_le64(cpu->target);
3582	disk->flags = cpu_to_le64(cpu->flags);
3583	disk->limit = cpu_to_le64(cpu->limit);
3584	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3585	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3586}
3587
3588static int insert_balance_item(struct btrfs_fs_info *fs_info,
3589			       struct btrfs_balance_control *bctl)
3590{
3591	struct btrfs_root *root = fs_info->tree_root;
3592	struct btrfs_trans_handle *trans;
3593	struct btrfs_balance_item *item;
3594	struct btrfs_disk_balance_args disk_bargs;
3595	struct btrfs_path *path;
3596	struct extent_buffer *leaf;
3597	struct btrfs_key key;
3598	int ret, err;
3599
3600	path = btrfs_alloc_path();
3601	if (!path)
3602		return -ENOMEM;
3603
3604	trans = btrfs_start_transaction(root, 0);
3605	if (IS_ERR(trans)) {
3606		btrfs_free_path(path);
3607		return PTR_ERR(trans);
3608	}
3609
3610	key.objectid = BTRFS_BALANCE_OBJECTID;
3611	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3612	key.offset = 0;
3613
3614	ret = btrfs_insert_empty_item(trans, root, path, &key,
3615				      sizeof(*item));
3616	if (ret)
3617		goto out;
3618
3619	leaf = path->nodes[0];
3620	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3621
3622	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3623
3624	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3625	btrfs_set_balance_data(leaf, item, &disk_bargs);
3626	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3627	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3628	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3629	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3630
3631	btrfs_set_balance_flags(leaf, item, bctl->flags);
3632
3633	btrfs_mark_buffer_dirty(trans, leaf);
3634out:
3635	btrfs_free_path(path);
3636	err = btrfs_commit_transaction(trans);
3637	if (err && !ret)
3638		ret = err;
3639	return ret;
3640}
3641
3642static int del_balance_item(struct btrfs_fs_info *fs_info)
3643{
3644	struct btrfs_root *root = fs_info->tree_root;
3645	struct btrfs_trans_handle *trans;
3646	struct btrfs_path *path;
3647	struct btrfs_key key;
3648	int ret, err;
3649
3650	path = btrfs_alloc_path();
3651	if (!path)
3652		return -ENOMEM;
3653
3654	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3655	if (IS_ERR(trans)) {
3656		btrfs_free_path(path);
3657		return PTR_ERR(trans);
3658	}
3659
3660	key.objectid = BTRFS_BALANCE_OBJECTID;
3661	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3662	key.offset = 0;
3663
3664	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3665	if (ret < 0)
3666		goto out;
3667	if (ret > 0) {
3668		ret = -ENOENT;
3669		goto out;
3670	}
3671
3672	ret = btrfs_del_item(trans, root, path);
3673out:
3674	btrfs_free_path(path);
3675	err = btrfs_commit_transaction(trans);
3676	if (err && !ret)
3677		ret = err;
3678	return ret;
3679}
3680
3681/*
3682 * This is a heuristic used to reduce the number of chunks balanced on
3683 * resume after balance was interrupted.
3684 */
3685static void update_balance_args(struct btrfs_balance_control *bctl)
3686{
3687	/*
3688	 * Turn on soft mode for chunk types that were being converted.
3689	 */
3690	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3691		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3692	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3693		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3694	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3695		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3696
3697	/*
3698	 * Turn on usage filter if is not already used.  The idea is
3699	 * that chunks that we have already balanced should be
3700	 * reasonably full.  Don't do it for chunks that are being
3701	 * converted - that will keep us from relocating unconverted
3702	 * (albeit full) chunks.
3703	 */
3704	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3705	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3706	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3707		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3708		bctl->data.usage = 90;
3709	}
3710	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3711	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3712	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3713		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3714		bctl->sys.usage = 90;
3715	}
3716	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3717	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3718	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3719		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3720		bctl->meta.usage = 90;
3721	}
3722}
3723
3724/*
3725 * Clear the balance status in fs_info and delete the balance item from disk.
3726 */
3727static void reset_balance_state(struct btrfs_fs_info *fs_info)
3728{
3729	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3730	int ret;
3731
3732	ASSERT(fs_info->balance_ctl);
3733
3734	spin_lock(&fs_info->balance_lock);
3735	fs_info->balance_ctl = NULL;
3736	spin_unlock(&fs_info->balance_lock);
3737
3738	kfree(bctl);
3739	ret = del_balance_item(fs_info);
3740	if (ret)
3741		btrfs_handle_fs_error(fs_info, ret, NULL);
3742}
3743
3744/*
3745 * Balance filters.  Return 1 if chunk should be filtered out
3746 * (should not be balanced).
3747 */
3748static int chunk_profiles_filter(u64 chunk_type,
3749				 struct btrfs_balance_args *bargs)
3750{
3751	chunk_type = chunk_to_extended(chunk_type) &
3752				BTRFS_EXTENDED_PROFILE_MASK;
3753
3754	if (bargs->profiles & chunk_type)
3755		return 0;
3756
3757	return 1;
3758}
3759
3760static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3761			      struct btrfs_balance_args *bargs)
3762{
3763	struct btrfs_block_group *cache;
3764	u64 chunk_used;
3765	u64 user_thresh_min;
3766	u64 user_thresh_max;
3767	int ret = 1;
3768
3769	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3770	chunk_used = cache->used;
3771
3772	if (bargs->usage_min == 0)
3773		user_thresh_min = 0;
3774	else
3775		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3776
3777	if (bargs->usage_max == 0)
3778		user_thresh_max = 1;
3779	else if (bargs->usage_max > 100)
3780		user_thresh_max = cache->length;
3781	else
3782		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3783
3784	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3785		ret = 0;
3786
3787	btrfs_put_block_group(cache);
3788	return ret;
3789}
3790
3791static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3792		u64 chunk_offset, struct btrfs_balance_args *bargs)
3793{
3794	struct btrfs_block_group *cache;
3795	u64 chunk_used, user_thresh;
3796	int ret = 1;
3797
3798	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3799	chunk_used = cache->used;
3800
3801	if (bargs->usage_min == 0)
3802		user_thresh = 1;
3803	else if (bargs->usage > 100)
3804		user_thresh = cache->length;
3805	else
3806		user_thresh = mult_perc(cache->length, bargs->usage);
3807
3808	if (chunk_used < user_thresh)
3809		ret = 0;
3810
3811	btrfs_put_block_group(cache);
3812	return ret;
3813}
3814
3815static int chunk_devid_filter(struct extent_buffer *leaf,
3816			      struct btrfs_chunk *chunk,
3817			      struct btrfs_balance_args *bargs)
3818{
3819	struct btrfs_stripe *stripe;
3820	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3821	int i;
3822
3823	for (i = 0; i < num_stripes; i++) {
3824		stripe = btrfs_stripe_nr(chunk, i);
3825		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3826			return 0;
3827	}
3828
3829	return 1;
3830}
3831
3832static u64 calc_data_stripes(u64 type, int num_stripes)
3833{
3834	const int index = btrfs_bg_flags_to_raid_index(type);
3835	const int ncopies = btrfs_raid_array[index].ncopies;
3836	const int nparity = btrfs_raid_array[index].nparity;
3837
3838	return (num_stripes - nparity) / ncopies;
3839}
3840
3841/* [pstart, pend) */
3842static int chunk_drange_filter(struct extent_buffer *leaf,
3843			       struct btrfs_chunk *chunk,
3844			       struct btrfs_balance_args *bargs)
3845{
3846	struct btrfs_stripe *stripe;
3847	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3848	u64 stripe_offset;
3849	u64 stripe_length;
3850	u64 type;
3851	int factor;
3852	int i;
3853
3854	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3855		return 0;
3856
3857	type = btrfs_chunk_type(leaf, chunk);
3858	factor = calc_data_stripes(type, num_stripes);
3859
3860	for (i = 0; i < num_stripes; i++) {
3861		stripe = btrfs_stripe_nr(chunk, i);
3862		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3863			continue;
3864
3865		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3866		stripe_length = btrfs_chunk_length(leaf, chunk);
3867		stripe_length = div_u64(stripe_length, factor);
3868
3869		if (stripe_offset < bargs->pend &&
3870		    stripe_offset + stripe_length > bargs->pstart)
3871			return 0;
3872	}
3873
3874	return 1;
3875}
3876
3877/* [vstart, vend) */
3878static int chunk_vrange_filter(struct extent_buffer *leaf,
3879			       struct btrfs_chunk *chunk,
3880			       u64 chunk_offset,
3881			       struct btrfs_balance_args *bargs)
3882{
3883	if (chunk_offset < bargs->vend &&
3884	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3885		/* at least part of the chunk is inside this vrange */
3886		return 0;
3887
3888	return 1;
3889}
3890
3891static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3892			       struct btrfs_chunk *chunk,
3893			       struct btrfs_balance_args *bargs)
3894{
3895	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3896
3897	if (bargs->stripes_min <= num_stripes
3898			&& num_stripes <= bargs->stripes_max)
3899		return 0;
3900
3901	return 1;
3902}
3903
3904static int chunk_soft_convert_filter(u64 chunk_type,
3905				     struct btrfs_balance_args *bargs)
3906{
3907	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3908		return 0;
3909
3910	chunk_type = chunk_to_extended(chunk_type) &
3911				BTRFS_EXTENDED_PROFILE_MASK;
3912
3913	if (bargs->target == chunk_type)
3914		return 1;
3915
3916	return 0;
3917}
3918
3919static int should_balance_chunk(struct extent_buffer *leaf,
3920				struct btrfs_chunk *chunk, u64 chunk_offset)
3921{
3922	struct btrfs_fs_info *fs_info = leaf->fs_info;
3923	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3924	struct btrfs_balance_args *bargs = NULL;
3925	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3926
3927	/* type filter */
3928	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3929	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3930		return 0;
3931	}
3932
3933	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3934		bargs = &bctl->data;
3935	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3936		bargs = &bctl->sys;
3937	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3938		bargs = &bctl->meta;
3939
3940	/* profiles filter */
3941	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3942	    chunk_profiles_filter(chunk_type, bargs)) {
3943		return 0;
3944	}
3945
3946	/* usage filter */
3947	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3948	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3949		return 0;
3950	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3951	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3952		return 0;
3953	}
3954
3955	/* devid filter */
3956	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3957	    chunk_devid_filter(leaf, chunk, bargs)) {
3958		return 0;
3959	}
3960
3961	/* drange filter, makes sense only with devid filter */
3962	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3963	    chunk_drange_filter(leaf, chunk, bargs)) {
3964		return 0;
3965	}
3966
3967	/* vrange filter */
3968	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3969	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3970		return 0;
3971	}
3972
3973	/* stripes filter */
3974	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3975	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3976		return 0;
3977	}
3978
3979	/* soft profile changing mode */
3980	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3981	    chunk_soft_convert_filter(chunk_type, bargs)) {
3982		return 0;
3983	}
3984
3985	/*
3986	 * limited by count, must be the last filter
3987	 */
3988	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3989		if (bargs->limit == 0)
3990			return 0;
3991		else
3992			bargs->limit--;
3993	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3994		/*
3995		 * Same logic as the 'limit' filter; the minimum cannot be
3996		 * determined here because we do not have the global information
3997		 * about the count of all chunks that satisfy the filters.
3998		 */
3999		if (bargs->limit_max == 0)
4000			return 0;
4001		else
4002			bargs->limit_max--;
4003	}
4004
4005	return 1;
4006}
4007
4008static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4009{
4010	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4011	struct btrfs_root *chunk_root = fs_info->chunk_root;
4012	u64 chunk_type;
4013	struct btrfs_chunk *chunk;
4014	struct btrfs_path *path = NULL;
4015	struct btrfs_key key;
4016	struct btrfs_key found_key;
4017	struct extent_buffer *leaf;
4018	int slot;
4019	int ret;
4020	int enospc_errors = 0;
4021	bool counting = true;
4022	/* The single value limit and min/max limits use the same bytes in the */
4023	u64 limit_data = bctl->data.limit;
4024	u64 limit_meta = bctl->meta.limit;
4025	u64 limit_sys = bctl->sys.limit;
4026	u32 count_data = 0;
4027	u32 count_meta = 0;
4028	u32 count_sys = 0;
4029	int chunk_reserved = 0;
4030
4031	path = btrfs_alloc_path();
4032	if (!path) {
4033		ret = -ENOMEM;
4034		goto error;
4035	}
4036
4037	/* zero out stat counters */
4038	spin_lock(&fs_info->balance_lock);
4039	memset(&bctl->stat, 0, sizeof(bctl->stat));
4040	spin_unlock(&fs_info->balance_lock);
4041again:
4042	if (!counting) {
4043		/*
4044		 * The single value limit and min/max limits use the same bytes
4045		 * in the
4046		 */
4047		bctl->data.limit = limit_data;
4048		bctl->meta.limit = limit_meta;
4049		bctl->sys.limit = limit_sys;
4050	}
4051	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4052	key.offset = (u64)-1;
4053	key.type = BTRFS_CHUNK_ITEM_KEY;
4054
4055	while (1) {
4056		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4057		    atomic_read(&fs_info->balance_cancel_req)) {
4058			ret = -ECANCELED;
4059			goto error;
4060		}
4061
4062		mutex_lock(&fs_info->reclaim_bgs_lock);
4063		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4064		if (ret < 0) {
4065			mutex_unlock(&fs_info->reclaim_bgs_lock);
4066			goto error;
4067		}
4068
4069		/*
4070		 * this shouldn't happen, it means the last relocate
4071		 * failed
4072		 */
4073		if (ret == 0)
4074			BUG(); /* FIXME break ? */
4075
4076		ret = btrfs_previous_item(chunk_root, path, 0,
4077					  BTRFS_CHUNK_ITEM_KEY);
4078		if (ret) {
4079			mutex_unlock(&fs_info->reclaim_bgs_lock);
4080			ret = 0;
4081			break;
4082		}
4083
4084		leaf = path->nodes[0];
4085		slot = path->slots[0];
4086		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4087
4088		if (found_key.objectid != key.objectid) {
4089			mutex_unlock(&fs_info->reclaim_bgs_lock);
4090			break;
4091		}
4092
4093		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4094		chunk_type = btrfs_chunk_type(leaf, chunk);
4095
4096		if (!counting) {
4097			spin_lock(&fs_info->balance_lock);
4098			bctl->stat.considered++;
4099			spin_unlock(&fs_info->balance_lock);
4100		}
4101
4102		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4103
4104		btrfs_release_path(path);
4105		if (!ret) {
4106			mutex_unlock(&fs_info->reclaim_bgs_lock);
4107			goto loop;
4108		}
4109
4110		if (counting) {
4111			mutex_unlock(&fs_info->reclaim_bgs_lock);
4112			spin_lock(&fs_info->balance_lock);
4113			bctl->stat.expected++;
4114			spin_unlock(&fs_info->balance_lock);
4115
4116			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4117				count_data++;
4118			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4119				count_sys++;
4120			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4121				count_meta++;
4122
4123			goto loop;
4124		}
4125
4126		/*
4127		 * Apply limit_min filter, no need to check if the LIMITS
4128		 * filter is used, limit_min is 0 by default
4129		 */
4130		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4131					count_data < bctl->data.limit_min)
4132				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4133					count_meta < bctl->meta.limit_min)
4134				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4135					count_sys < bctl->sys.limit_min)) {
4136			mutex_unlock(&fs_info->reclaim_bgs_lock);
4137			goto loop;
4138		}
4139
4140		if (!chunk_reserved) {
4141			/*
4142			 * We may be relocating the only data chunk we have,
4143			 * which could potentially end up with losing data's
4144			 * raid profile, so lets allocate an empty one in
4145			 * advance.
4146			 */
4147			ret = btrfs_may_alloc_data_chunk(fs_info,
4148							 found_key.offset);
4149			if (ret < 0) {
4150				mutex_unlock(&fs_info->reclaim_bgs_lock);
4151				goto error;
4152			} else if (ret == 1) {
4153				chunk_reserved = 1;
4154			}
4155		}
4156
4157		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4158		mutex_unlock(&fs_info->reclaim_bgs_lock);
4159		if (ret == -ENOSPC) {
4160			enospc_errors++;
4161		} else if (ret == -ETXTBSY) {
4162			btrfs_info(fs_info,
4163	   "skipping relocation of block group %llu due to active swapfile",
4164				   found_key.offset);
4165			ret = 0;
4166		} else if (ret) {
4167			goto error;
4168		} else {
4169			spin_lock(&fs_info->balance_lock);
4170			bctl->stat.completed++;
4171			spin_unlock(&fs_info->balance_lock);
4172		}
4173loop:
4174		if (found_key.offset == 0)
4175			break;
4176		key.offset = found_key.offset - 1;
4177	}
4178
4179	if (counting) {
4180		btrfs_release_path(path);
4181		counting = false;
4182		goto again;
4183	}
4184error:
4185	btrfs_free_path(path);
4186	if (enospc_errors) {
4187		btrfs_info(fs_info, "%d enospc errors during balance",
4188			   enospc_errors);
4189		if (!ret)
4190			ret = -ENOSPC;
4191	}
4192
4193	return ret;
4194}
4195
4196/*
4197 * See if a given profile is valid and reduced.
4198 *
4199 * @flags:     profile to validate
4200 * @extended:  if true @flags is treated as an extended profile
4201 */
4202static int alloc_profile_is_valid(u64 flags, int extended)
4203{
4204	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4205			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4206
4207	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4208
4209	/* 1) check that all other bits are zeroed */
4210	if (flags & ~mask)
4211		return 0;
4212
4213	/* 2) see if profile is reduced */
4214	if (flags == 0)
4215		return !extended; /* "0" is valid for usual profiles */
4216
4217	return has_single_bit_set(flags);
4218}
4219
4220/*
4221 * Validate target profile against allowed profiles and return true if it's OK.
4222 * Otherwise print the error message and return false.
4223 */
4224static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4225		const struct btrfs_balance_args *bargs,
4226		u64 allowed, const char *type)
4227{
4228	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4229		return true;
4230
4231	/* Profile is valid and does not have bits outside of the allowed set */
4232	if (alloc_profile_is_valid(bargs->target, 1) &&
4233	    (bargs->target & ~allowed) == 0)
4234		return true;
4235
4236	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4237			type, btrfs_bg_type_to_raid_name(bargs->target));
4238	return false;
4239}
4240
4241/*
4242 * Fill @buf with textual description of balance filter flags @bargs, up to
4243 * @size_buf including the terminating null. The output may be trimmed if it
4244 * does not fit into the provided buffer.
4245 */
4246static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4247				 u32 size_buf)
4248{
4249	int ret;
4250	u32 size_bp = size_buf;
4251	char *bp = buf;
4252	u64 flags = bargs->flags;
4253	char tmp_buf[128] = {'\0'};
4254
4255	if (!flags)
4256		return;
4257
4258#define CHECK_APPEND_NOARG(a)						\
4259	do {								\
4260		ret = snprintf(bp, size_bp, (a));			\
4261		if (ret < 0 || ret >= size_bp)				\
4262			goto out_overflow;				\
4263		size_bp -= ret;						\
4264		bp += ret;						\
4265	} while (0)
4266
4267#define CHECK_APPEND_1ARG(a, v1)					\
4268	do {								\
4269		ret = snprintf(bp, size_bp, (a), (v1));			\
4270		if (ret < 0 || ret >= size_bp)				\
4271			goto out_overflow;				\
4272		size_bp -= ret;						\
4273		bp += ret;						\
4274	} while (0)
4275
4276#define CHECK_APPEND_2ARG(a, v1, v2)					\
4277	do {								\
4278		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4279		if (ret < 0 || ret >= size_bp)				\
4280			goto out_overflow;				\
4281		size_bp -= ret;						\
4282		bp += ret;						\
4283	} while (0)
4284
4285	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4286		CHECK_APPEND_1ARG("convert=%s,",
4287				  btrfs_bg_type_to_raid_name(bargs->target));
4288
4289	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4290		CHECK_APPEND_NOARG("soft,");
4291
4292	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4293		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4294					    sizeof(tmp_buf));
4295		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4296	}
4297
4298	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4299		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4300
4301	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4302		CHECK_APPEND_2ARG("usage=%u..%u,",
4303				  bargs->usage_min, bargs->usage_max);
4304
4305	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4306		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4307
4308	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4309		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4310				  bargs->pstart, bargs->pend);
4311
4312	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4313		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4314				  bargs->vstart, bargs->vend);
4315
4316	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4317		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4318
4319	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4320		CHECK_APPEND_2ARG("limit=%u..%u,",
4321				bargs->limit_min, bargs->limit_max);
4322
4323	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4324		CHECK_APPEND_2ARG("stripes=%u..%u,",
4325				  bargs->stripes_min, bargs->stripes_max);
4326
4327#undef CHECK_APPEND_2ARG
4328#undef CHECK_APPEND_1ARG
4329#undef CHECK_APPEND_NOARG
4330
4331out_overflow:
4332
4333	if (size_bp < size_buf)
4334		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4335	else
4336		buf[0] = '\0';
4337}
4338
4339static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4340{
4341	u32 size_buf = 1024;
4342	char tmp_buf[192] = {'\0'};
4343	char *buf;
4344	char *bp;
4345	u32 size_bp = size_buf;
4346	int ret;
4347	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4348
4349	buf = kzalloc(size_buf, GFP_KERNEL);
4350	if (!buf)
4351		return;
4352
4353	bp = buf;
4354
4355#define CHECK_APPEND_1ARG(a, v1)					\
4356	do {								\
4357		ret = snprintf(bp, size_bp, (a), (v1));			\
4358		if (ret < 0 || ret >= size_bp)				\
4359			goto out_overflow;				\
4360		size_bp -= ret;						\
4361		bp += ret;						\
4362	} while (0)
4363
4364	if (bctl->flags & BTRFS_BALANCE_FORCE)
4365		CHECK_APPEND_1ARG("%s", "-f ");
4366
4367	if (bctl->flags & BTRFS_BALANCE_DATA) {
4368		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4369		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4370	}
4371
4372	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4373		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4374		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4375	}
4376
4377	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4378		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4379		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4380	}
4381
4382#undef CHECK_APPEND_1ARG
4383
4384out_overflow:
4385
4386	if (size_bp < size_buf)
4387		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4388	btrfs_info(fs_info, "balance: %s %s",
4389		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4390		   "resume" : "start", buf);
4391
4392	kfree(buf);
4393}
4394
4395/*
4396 * Should be called with balance mutexe held
4397 */
4398int btrfs_balance(struct btrfs_fs_info *fs_info,
4399		  struct btrfs_balance_control *bctl,
4400		  struct btrfs_ioctl_balance_args *bargs)
4401{
4402	u64 meta_target, data_target;
4403	u64 allowed;
4404	int mixed = 0;
4405	int ret;
4406	u64 num_devices;
4407	unsigned seq;
4408	bool reducing_redundancy;
4409	bool paused = false;
4410	int i;
4411
4412	if (btrfs_fs_closing(fs_info) ||
4413	    atomic_read(&fs_info->balance_pause_req) ||
4414	    btrfs_should_cancel_balance(fs_info)) {
4415		ret = -EINVAL;
4416		goto out;
4417	}
4418
4419	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4420	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4421		mixed = 1;
4422
4423	/*
4424	 * In case of mixed groups both data and meta should be picked,
4425	 * and identical options should be given for both of them.
4426	 */
4427	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4428	if (mixed && (bctl->flags & allowed)) {
4429		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4430		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4431		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4432			btrfs_err(fs_info,
4433	  "balance: mixed groups data and metadata options must be the same");
4434			ret = -EINVAL;
4435			goto out;
4436		}
4437	}
4438
4439	/*
4440	 * rw_devices will not change at the moment, device add/delete/replace
4441	 * are exclusive
4442	 */
4443	num_devices = fs_info->fs_devices->rw_devices;
4444
4445	/*
4446	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4447	 * special bit for it, to make it easier to distinguish.  Thus we need
4448	 * to set it manually, or balance would refuse the profile.
4449	 */
4450	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4451	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4452		if (num_devices >= btrfs_raid_array[i].devs_min)
4453			allowed |= btrfs_raid_array[i].bg_flag;
4454
4455	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4456	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4457	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4458		ret = -EINVAL;
4459		goto out;
4460	}
4461
4462	/*
4463	 * Allow to reduce metadata or system integrity only if force set for
4464	 * profiles with redundancy (copies, parity)
4465	 */
4466	allowed = 0;
4467	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4468		if (btrfs_raid_array[i].ncopies >= 2 ||
4469		    btrfs_raid_array[i].tolerated_failures >= 1)
4470			allowed |= btrfs_raid_array[i].bg_flag;
4471	}
4472	do {
4473		seq = read_seqbegin(&fs_info->profiles_lock);
4474
4475		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4476		     (fs_info->avail_system_alloc_bits & allowed) &&
4477		     !(bctl->sys.target & allowed)) ||
4478		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4479		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4480		     !(bctl->meta.target & allowed)))
4481			reducing_redundancy = true;
4482		else
4483			reducing_redundancy = false;
4484
4485		/* if we're not converting, the target field is uninitialized */
4486		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4487			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4488		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4489			bctl->data.target : fs_info->avail_data_alloc_bits;
4490	} while (read_seqretry(&fs_info->profiles_lock, seq));
4491
4492	if (reducing_redundancy) {
4493		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4494			btrfs_info(fs_info,
4495			   "balance: force reducing metadata redundancy");
4496		} else {
4497			btrfs_err(fs_info,
4498	"balance: reduces metadata redundancy, use --force if you want this");
4499			ret = -EINVAL;
4500			goto out;
4501		}
4502	}
4503
4504	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4505		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4506		btrfs_warn(fs_info,
4507	"balance: metadata profile %s has lower redundancy than data profile %s",
4508				btrfs_bg_type_to_raid_name(meta_target),
4509				btrfs_bg_type_to_raid_name(data_target));
4510	}
4511
4512	ret = insert_balance_item(fs_info, bctl);
4513	if (ret && ret != -EEXIST)
4514		goto out;
4515
4516	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4517		BUG_ON(ret == -EEXIST);
4518		BUG_ON(fs_info->balance_ctl);
4519		spin_lock(&fs_info->balance_lock);
4520		fs_info->balance_ctl = bctl;
4521		spin_unlock(&fs_info->balance_lock);
4522	} else {
4523		BUG_ON(ret != -EEXIST);
4524		spin_lock(&fs_info->balance_lock);
4525		update_balance_args(bctl);
4526		spin_unlock(&fs_info->balance_lock);
4527	}
4528
4529	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4530	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4531	describe_balance_start_or_resume(fs_info);
4532	mutex_unlock(&fs_info->balance_mutex);
4533
4534	ret = __btrfs_balance(fs_info);
4535
4536	mutex_lock(&fs_info->balance_mutex);
4537	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4538		btrfs_info(fs_info, "balance: paused");
4539		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4540		paused = true;
4541	}
4542	/*
4543	 * Balance can be canceled by:
4544	 *
4545	 * - Regular cancel request
4546	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4547	 *
4548	 * - Fatal signal to "btrfs" process
4549	 *   Either the signal caught by wait_reserve_ticket() and callers
4550	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4551	 *   got -ECANCELED.
4552	 *   Either way, in this case balance_cancel_req = 0, and
4553	 *   ret == -EINTR or ret == -ECANCELED.
4554	 *
4555	 * So here we only check the return value to catch canceled balance.
4556	 */
4557	else if (ret == -ECANCELED || ret == -EINTR)
4558		btrfs_info(fs_info, "balance: canceled");
4559	else
4560		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4561
4562	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4563
4564	if (bargs) {
4565		memset(bargs, 0, sizeof(*bargs));
4566		btrfs_update_ioctl_balance_args(fs_info, bargs);
4567	}
4568
4569	/* We didn't pause, we can clean everything up. */
4570	if (!paused) {
4571		reset_balance_state(fs_info);
4572		btrfs_exclop_finish(fs_info);
4573	}
4574
4575	wake_up(&fs_info->balance_wait_q);
4576
4577	return ret;
4578out:
4579	if (bctl->flags & BTRFS_BALANCE_RESUME)
4580		reset_balance_state(fs_info);
4581	else
4582		kfree(bctl);
4583	btrfs_exclop_finish(fs_info);
4584
4585	return ret;
4586}
4587
4588static int balance_kthread(void *data)
4589{
4590	struct btrfs_fs_info *fs_info = data;
4591	int ret = 0;
4592
4593	sb_start_write(fs_info->sb);
4594	mutex_lock(&fs_info->balance_mutex);
4595	if (fs_info->balance_ctl)
4596		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4597	mutex_unlock(&fs_info->balance_mutex);
4598	sb_end_write(fs_info->sb);
4599
4600	return ret;
4601}
4602
4603int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4604{
4605	struct task_struct *tsk;
4606
4607	mutex_lock(&fs_info->balance_mutex);
4608	if (!fs_info->balance_ctl) {
4609		mutex_unlock(&fs_info->balance_mutex);
4610		return 0;
4611	}
4612	mutex_unlock(&fs_info->balance_mutex);
4613
4614	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4615		btrfs_info(fs_info, "balance: resume skipped");
4616		return 0;
4617	}
4618
4619	spin_lock(&fs_info->super_lock);
4620	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4621	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4622	spin_unlock(&fs_info->super_lock);
4623	/*
4624	 * A ro->rw remount sequence should continue with the paused balance
4625	 * regardless of who pauses it, system or the user as of now, so set
4626	 * the resume flag.
4627	 */
4628	spin_lock(&fs_info->balance_lock);
4629	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4630	spin_unlock(&fs_info->balance_lock);
4631
4632	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4633	return PTR_ERR_OR_ZERO(tsk);
4634}
4635
4636int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4637{
4638	struct btrfs_balance_control *bctl;
4639	struct btrfs_balance_item *item;
4640	struct btrfs_disk_balance_args disk_bargs;
4641	struct btrfs_path *path;
4642	struct extent_buffer *leaf;
4643	struct btrfs_key key;
4644	int ret;
4645
4646	path = btrfs_alloc_path();
4647	if (!path)
4648		return -ENOMEM;
4649
4650	key.objectid = BTRFS_BALANCE_OBJECTID;
4651	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4652	key.offset = 0;
4653
4654	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4655	if (ret < 0)
4656		goto out;
4657	if (ret > 0) { /* ret = -ENOENT; */
4658		ret = 0;
4659		goto out;
4660	}
4661
4662	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4663	if (!bctl) {
4664		ret = -ENOMEM;
4665		goto out;
4666	}
4667
4668	leaf = path->nodes[0];
4669	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4670
4671	bctl->flags = btrfs_balance_flags(leaf, item);
4672	bctl->flags |= BTRFS_BALANCE_RESUME;
4673
4674	btrfs_balance_data(leaf, item, &disk_bargs);
4675	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4676	btrfs_balance_meta(leaf, item, &disk_bargs);
4677	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4678	btrfs_balance_sys(leaf, item, &disk_bargs);
4679	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4680
4681	/*
4682	 * This should never happen, as the paused balance state is recovered
4683	 * during mount without any chance of other exclusive ops to collide.
4684	 *
4685	 * This gives the exclusive op status to balance and keeps in paused
4686	 * state until user intervention (cancel or umount). If the ownership
4687	 * cannot be assigned, show a message but do not fail. The balance
4688	 * is in a paused state and must have fs_info::balance_ctl properly
4689	 * set up.
4690	 */
4691	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4692		btrfs_warn(fs_info,
4693	"balance: cannot set exclusive op status, resume manually");
4694
4695	btrfs_release_path(path);
4696
4697	mutex_lock(&fs_info->balance_mutex);
4698	BUG_ON(fs_info->balance_ctl);
4699	spin_lock(&fs_info->balance_lock);
4700	fs_info->balance_ctl = bctl;
4701	spin_unlock(&fs_info->balance_lock);
4702	mutex_unlock(&fs_info->balance_mutex);
4703out:
4704	btrfs_free_path(path);
4705	return ret;
4706}
4707
4708int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4709{
4710	int ret = 0;
4711
4712	mutex_lock(&fs_info->balance_mutex);
4713	if (!fs_info->balance_ctl) {
4714		mutex_unlock(&fs_info->balance_mutex);
4715		return -ENOTCONN;
4716	}
4717
4718	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4719		atomic_inc(&fs_info->balance_pause_req);
4720		mutex_unlock(&fs_info->balance_mutex);
4721
4722		wait_event(fs_info->balance_wait_q,
4723			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4724
4725		mutex_lock(&fs_info->balance_mutex);
4726		/* we are good with balance_ctl ripped off from under us */
4727		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4728		atomic_dec(&fs_info->balance_pause_req);
4729	} else {
4730		ret = -ENOTCONN;
4731	}
4732
4733	mutex_unlock(&fs_info->balance_mutex);
4734	return ret;
4735}
4736
4737int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4738{
4739	mutex_lock(&fs_info->balance_mutex);
4740	if (!fs_info->balance_ctl) {
4741		mutex_unlock(&fs_info->balance_mutex);
4742		return -ENOTCONN;
4743	}
4744
4745	/*
4746	 * A paused balance with the item stored on disk can be resumed at
4747	 * mount time if the mount is read-write. Otherwise it's still paused
4748	 * and we must not allow cancelling as it deletes the item.
4749	 */
4750	if (sb_rdonly(fs_info->sb)) {
4751		mutex_unlock(&fs_info->balance_mutex);
4752		return -EROFS;
4753	}
4754
4755	atomic_inc(&fs_info->balance_cancel_req);
4756	/*
4757	 * if we are running just wait and return, balance item is
4758	 * deleted in btrfs_balance in this case
4759	 */
4760	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4761		mutex_unlock(&fs_info->balance_mutex);
4762		wait_event(fs_info->balance_wait_q,
4763			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4764		mutex_lock(&fs_info->balance_mutex);
4765	} else {
4766		mutex_unlock(&fs_info->balance_mutex);
4767		/*
4768		 * Lock released to allow other waiters to continue, we'll
4769		 * reexamine the status again.
4770		 */
4771		mutex_lock(&fs_info->balance_mutex);
4772
4773		if (fs_info->balance_ctl) {
4774			reset_balance_state(fs_info);
4775			btrfs_exclop_finish(fs_info);
4776			btrfs_info(fs_info, "balance: canceled");
4777		}
4778	}
4779
4780	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4781	atomic_dec(&fs_info->balance_cancel_req);
4782	mutex_unlock(&fs_info->balance_mutex);
4783	return 0;
4784}
4785
4786int btrfs_uuid_scan_kthread(void *data)
4787{
4788	struct btrfs_fs_info *fs_info = data;
4789	struct btrfs_root *root = fs_info->tree_root;
4790	struct btrfs_key key;
4791	struct btrfs_path *path = NULL;
4792	int ret = 0;
4793	struct extent_buffer *eb;
4794	int slot;
4795	struct btrfs_root_item root_item;
4796	u32 item_size;
4797	struct btrfs_trans_handle *trans = NULL;
4798	bool closing = false;
4799
4800	path = btrfs_alloc_path();
4801	if (!path) {
4802		ret = -ENOMEM;
4803		goto out;
4804	}
4805
4806	key.objectid = 0;
4807	key.type = BTRFS_ROOT_ITEM_KEY;
4808	key.offset = 0;
4809
4810	while (1) {
4811		if (btrfs_fs_closing(fs_info)) {
4812			closing = true;
4813			break;
4814		}
4815		ret = btrfs_search_forward(root, &key, path,
4816				BTRFS_OLDEST_GENERATION);
4817		if (ret) {
4818			if (ret > 0)
4819				ret = 0;
4820			break;
4821		}
4822
4823		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4824		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4825		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4826		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4827			goto skip;
4828
4829		eb = path->nodes[0];
4830		slot = path->slots[0];
4831		item_size = btrfs_item_size(eb, slot);
4832		if (item_size < sizeof(root_item))
4833			goto skip;
4834
4835		read_extent_buffer(eb, &root_item,
4836				   btrfs_item_ptr_offset(eb, slot),
4837				   (int)sizeof(root_item));
4838		if (btrfs_root_refs(&root_item) == 0)
4839			goto skip;
4840
4841		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4842		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4843			if (trans)
4844				goto update_tree;
4845
4846			btrfs_release_path(path);
4847			/*
4848			 * 1 - subvol uuid item
4849			 * 1 - received_subvol uuid item
4850			 */
4851			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4852			if (IS_ERR(trans)) {
4853				ret = PTR_ERR(trans);
4854				break;
4855			}
4856			continue;
4857		} else {
4858			goto skip;
4859		}
4860update_tree:
4861		btrfs_release_path(path);
4862		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4863			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4864						  BTRFS_UUID_KEY_SUBVOL,
4865						  key.objectid);
4866			if (ret < 0) {
4867				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4868					ret);
4869				break;
4870			}
4871		}
4872
4873		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4874			ret = btrfs_uuid_tree_add(trans,
4875						  root_item.received_uuid,
4876						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4877						  key.objectid);
4878			if (ret < 0) {
4879				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4880					ret);
4881				break;
4882			}
4883		}
4884
4885skip:
4886		btrfs_release_path(path);
4887		if (trans) {
4888			ret = btrfs_end_transaction(trans);
4889			trans = NULL;
4890			if (ret)
4891				break;
4892		}
4893
4894		if (key.offset < (u64)-1) {
4895			key.offset++;
4896		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4897			key.offset = 0;
4898			key.type = BTRFS_ROOT_ITEM_KEY;
4899		} else if (key.objectid < (u64)-1) {
4900			key.offset = 0;
4901			key.type = BTRFS_ROOT_ITEM_KEY;
4902			key.objectid++;
4903		} else {
4904			break;
4905		}
4906		cond_resched();
4907	}
4908
4909out:
4910	btrfs_free_path(path);
4911	if (trans && !IS_ERR(trans))
4912		btrfs_end_transaction(trans);
4913	if (ret)
4914		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4915	else if (!closing)
4916		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4917	up(&fs_info->uuid_tree_rescan_sem);
4918	return 0;
4919}
4920
4921int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4922{
4923	struct btrfs_trans_handle *trans;
4924	struct btrfs_root *tree_root = fs_info->tree_root;
4925	struct btrfs_root *uuid_root;
4926	struct task_struct *task;
4927	int ret;
4928
4929	/*
4930	 * 1 - root node
4931	 * 1 - root item
4932	 */
4933	trans = btrfs_start_transaction(tree_root, 2);
4934	if (IS_ERR(trans))
4935		return PTR_ERR(trans);
4936
4937	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4938	if (IS_ERR(uuid_root)) {
4939		ret = PTR_ERR(uuid_root);
4940		btrfs_abort_transaction(trans, ret);
4941		btrfs_end_transaction(trans);
4942		return ret;
4943	}
4944
4945	fs_info->uuid_root = uuid_root;
4946
4947	ret = btrfs_commit_transaction(trans);
4948	if (ret)
4949		return ret;
4950
4951	down(&fs_info->uuid_tree_rescan_sem);
4952	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4953	if (IS_ERR(task)) {
4954		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4955		btrfs_warn(fs_info, "failed to start uuid_scan task");
4956		up(&fs_info->uuid_tree_rescan_sem);
4957		return PTR_ERR(task);
4958	}
4959
4960	return 0;
4961}
4962
4963/*
4964 * shrinking a device means finding all of the device extents past
4965 * the new size, and then following the back refs to the chunks.
4966 * The chunk relocation code actually frees the device extent
4967 */
4968int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4969{
4970	struct btrfs_fs_info *fs_info = device->fs_info;
4971	struct btrfs_root *root = fs_info->dev_root;
4972	struct btrfs_trans_handle *trans;
4973	struct btrfs_dev_extent *dev_extent = NULL;
4974	struct btrfs_path *path;
4975	u64 length;
4976	u64 chunk_offset;
4977	int ret;
4978	int slot;
4979	int failed = 0;
4980	bool retried = false;
4981	struct extent_buffer *l;
4982	struct btrfs_key key;
4983	struct btrfs_super_block *super_copy = fs_info->super_copy;
4984	u64 old_total = btrfs_super_total_bytes(super_copy);
4985	u64 old_size = btrfs_device_get_total_bytes(device);
4986	u64 diff;
4987	u64 start;
4988	u64 free_diff = 0;
4989
4990	new_size = round_down(new_size, fs_info->sectorsize);
4991	start = new_size;
4992	diff = round_down(old_size - new_size, fs_info->sectorsize);
4993
4994	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4995		return -EINVAL;
4996
4997	path = btrfs_alloc_path();
4998	if (!path)
4999		return -ENOMEM;
5000
5001	path->reada = READA_BACK;
5002
5003	trans = btrfs_start_transaction(root, 0);
5004	if (IS_ERR(trans)) {
5005		btrfs_free_path(path);
5006		return PTR_ERR(trans);
5007	}
5008
5009	mutex_lock(&fs_info->chunk_mutex);
5010
5011	btrfs_device_set_total_bytes(device, new_size);
5012	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5013		device->fs_devices->total_rw_bytes -= diff;
5014
5015		/*
5016		 * The new free_chunk_space is new_size - used, so we have to
5017		 * subtract the delta of the old free_chunk_space which included
5018		 * old_size - used.  If used > new_size then just subtract this
5019		 * entire device's free space.
5020		 */
5021		if (device->bytes_used < new_size)
5022			free_diff = (old_size - device->bytes_used) -
5023				    (new_size - device->bytes_used);
5024		else
5025			free_diff = old_size - device->bytes_used;
5026		atomic64_sub(free_diff, &fs_info->free_chunk_space);
5027	}
5028
5029	/*
5030	 * Once the device's size has been set to the new size, ensure all
5031	 * in-memory chunks are synced to disk so that the loop below sees them
5032	 * and relocates them accordingly.
5033	 */
5034	if (contains_pending_extent(device, &start, diff)) {
5035		mutex_unlock(&fs_info->chunk_mutex);
5036		ret = btrfs_commit_transaction(trans);
5037		if (ret)
5038			goto done;
5039	} else {
5040		mutex_unlock(&fs_info->chunk_mutex);
5041		btrfs_end_transaction(trans);
5042	}
5043
5044again:
5045	key.objectid = device->devid;
5046	key.offset = (u64)-1;
5047	key.type = BTRFS_DEV_EXTENT_KEY;
5048
5049	do {
5050		mutex_lock(&fs_info->reclaim_bgs_lock);
5051		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5052		if (ret < 0) {
5053			mutex_unlock(&fs_info->reclaim_bgs_lock);
5054			goto done;
5055		}
5056
5057		ret = btrfs_previous_item(root, path, 0, key.type);
5058		if (ret) {
5059			mutex_unlock(&fs_info->reclaim_bgs_lock);
5060			if (ret < 0)
5061				goto done;
5062			ret = 0;
5063			btrfs_release_path(path);
5064			break;
5065		}
5066
5067		l = path->nodes[0];
5068		slot = path->slots[0];
5069		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5070
5071		if (key.objectid != device->devid) {
5072			mutex_unlock(&fs_info->reclaim_bgs_lock);
5073			btrfs_release_path(path);
5074			break;
5075		}
5076
5077		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5078		length = btrfs_dev_extent_length(l, dev_extent);
5079
5080		if (key.offset + length <= new_size) {
5081			mutex_unlock(&fs_info->reclaim_bgs_lock);
5082			btrfs_release_path(path);
5083			break;
5084		}
5085
5086		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5087		btrfs_release_path(path);
5088
5089		/*
5090		 * We may be relocating the only data chunk we have,
5091		 * which could potentially end up with losing data's
5092		 * raid profile, so lets allocate an empty one in
5093		 * advance.
5094		 */
5095		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5096		if (ret < 0) {
5097			mutex_unlock(&fs_info->reclaim_bgs_lock);
5098			goto done;
5099		}
5100
5101		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5102		mutex_unlock(&fs_info->reclaim_bgs_lock);
5103		if (ret == -ENOSPC) {
5104			failed++;
5105		} else if (ret) {
5106			if (ret == -ETXTBSY) {
5107				btrfs_warn(fs_info,
5108		   "could not shrink block group %llu due to active swapfile",
5109					   chunk_offset);
5110			}
5111			goto done;
5112		}
5113	} while (key.offset-- > 0);
5114
5115	if (failed && !retried) {
5116		failed = 0;
5117		retried = true;
5118		goto again;
5119	} else if (failed && retried) {
5120		ret = -ENOSPC;
5121		goto done;
5122	}
5123
5124	/* Shrinking succeeded, else we would be at "done". */
5125	trans = btrfs_start_transaction(root, 0);
5126	if (IS_ERR(trans)) {
5127		ret = PTR_ERR(trans);
5128		goto done;
5129	}
5130
5131	mutex_lock(&fs_info->chunk_mutex);
5132	/* Clear all state bits beyond the shrunk device size */
5133	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5134			  CHUNK_STATE_MASK);
5135
5136	btrfs_device_set_disk_total_bytes(device, new_size);
5137	if (list_empty(&device->post_commit_list))
5138		list_add_tail(&device->post_commit_list,
5139			      &trans->transaction->dev_update_list);
5140
5141	WARN_ON(diff > old_total);
5142	btrfs_set_super_total_bytes(super_copy,
5143			round_down(old_total - diff, fs_info->sectorsize));
5144	mutex_unlock(&fs_info->chunk_mutex);
5145
5146	btrfs_reserve_chunk_metadata(trans, false);
5147	/* Now btrfs_update_device() will change the on-disk size. */
5148	ret = btrfs_update_device(trans, device);
5149	btrfs_trans_release_chunk_metadata(trans);
5150	if (ret < 0) {
5151		btrfs_abort_transaction(trans, ret);
5152		btrfs_end_transaction(trans);
5153	} else {
5154		ret = btrfs_commit_transaction(trans);
5155	}
5156done:
5157	btrfs_free_path(path);
5158	if (ret) {
5159		mutex_lock(&fs_info->chunk_mutex);
5160		btrfs_device_set_total_bytes(device, old_size);
5161		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5162			device->fs_devices->total_rw_bytes += diff;
5163			atomic64_add(free_diff, &fs_info->free_chunk_space);
5164		}
5165		mutex_unlock(&fs_info->chunk_mutex);
5166	}
5167	return ret;
5168}
5169
5170static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5171			   struct btrfs_key *key,
5172			   struct btrfs_chunk *chunk, int item_size)
5173{
5174	struct btrfs_super_block *super_copy = fs_info->super_copy;
5175	struct btrfs_disk_key disk_key;
5176	u32 array_size;
5177	u8 *ptr;
5178
5179	lockdep_assert_held(&fs_info->chunk_mutex);
5180
5181	array_size = btrfs_super_sys_array_size(super_copy);
5182	if (array_size + item_size + sizeof(disk_key)
5183			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5184		return -EFBIG;
5185
5186	ptr = super_copy->sys_chunk_array + array_size;
5187	btrfs_cpu_key_to_disk(&disk_key, key);
5188	memcpy(ptr, &disk_key, sizeof(disk_key));
5189	ptr += sizeof(disk_key);
5190	memcpy(ptr, chunk, item_size);
5191	item_size += sizeof(disk_key);
5192	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5193
5194	return 0;
5195}
5196
5197/*
5198 * sort the devices in descending order by max_avail, total_avail
5199 */
5200static int btrfs_cmp_device_info(const void *a, const void *b)
5201{
5202	const struct btrfs_device_info *di_a = a;
5203	const struct btrfs_device_info *di_b = b;
5204
5205	if (di_a->max_avail > di_b->max_avail)
5206		return -1;
5207	if (di_a->max_avail < di_b->max_avail)
5208		return 1;
5209	if (di_a->total_avail > di_b->total_avail)
5210		return -1;
5211	if (di_a->total_avail < di_b->total_avail)
5212		return 1;
5213	return 0;
5214}
5215
5216static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5217{
5218	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5219		return;
5220
5221	btrfs_set_fs_incompat(info, RAID56);
5222}
5223
5224static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5225{
5226	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5227		return;
5228
5229	btrfs_set_fs_incompat(info, RAID1C34);
5230}
5231
5232/*
5233 * Structure used internally for btrfs_create_chunk() function.
5234 * Wraps needed parameters.
5235 */
5236struct alloc_chunk_ctl {
5237	u64 start;
5238	u64 type;
5239	/* Total number of stripes to allocate */
5240	int num_stripes;
5241	/* sub_stripes info for map */
5242	int sub_stripes;
5243	/* Stripes per device */
5244	int dev_stripes;
5245	/* Maximum number of devices to use */
5246	int devs_max;
5247	/* Minimum number of devices to use */
5248	int devs_min;
5249	/* ndevs has to be a multiple of this */
5250	int devs_increment;
5251	/* Number of copies */
5252	int ncopies;
5253	/* Number of stripes worth of bytes to store parity information */
5254	int nparity;
5255	u64 max_stripe_size;
5256	u64 max_chunk_size;
5257	u64 dev_extent_min;
5258	u64 stripe_size;
5259	u64 chunk_size;
5260	int ndevs;
5261};
5262
5263static void init_alloc_chunk_ctl_policy_regular(
5264				struct btrfs_fs_devices *fs_devices,
5265				struct alloc_chunk_ctl *ctl)
5266{
5267	struct btrfs_space_info *space_info;
5268
5269	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5270	ASSERT(space_info);
5271
5272	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5273	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5274
5275	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5276		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5277
5278	/* We don't want a chunk larger than 10% of writable space */
5279	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5280				  ctl->max_chunk_size);
5281	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5282}
5283
5284static void init_alloc_chunk_ctl_policy_zoned(
5285				      struct btrfs_fs_devices *fs_devices,
5286				      struct alloc_chunk_ctl *ctl)
5287{
5288	u64 zone_size = fs_devices->fs_info->zone_size;
5289	u64 limit;
5290	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5291	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5292	u64 min_chunk_size = min_data_stripes * zone_size;
5293	u64 type = ctl->type;
5294
5295	ctl->max_stripe_size = zone_size;
5296	if (type & BTRFS_BLOCK_GROUP_DATA) {
5297		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5298						 zone_size);
5299	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5300		ctl->max_chunk_size = ctl->max_stripe_size;
5301	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5302		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5303		ctl->devs_max = min_t(int, ctl->devs_max,
5304				      BTRFS_MAX_DEVS_SYS_CHUNK);
5305	} else {
5306		BUG();
5307	}
5308
5309	/* We don't want a chunk larger than 10% of writable space */
5310	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5311			       zone_size),
5312		    min_chunk_size);
5313	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5314	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5315}
5316
5317static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5318				 struct alloc_chunk_ctl *ctl)
5319{
5320	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5321
5322	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5323	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5324	ctl->devs_max = btrfs_raid_array[index].devs_max;
5325	if (!ctl->devs_max)
5326		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5327	ctl->devs_min = btrfs_raid_array[index].devs_min;
5328	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5329	ctl->ncopies = btrfs_raid_array[index].ncopies;
5330	ctl->nparity = btrfs_raid_array[index].nparity;
5331	ctl->ndevs = 0;
5332
5333	switch (fs_devices->chunk_alloc_policy) {
5334	case BTRFS_CHUNK_ALLOC_REGULAR:
5335		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5336		break;
5337	case BTRFS_CHUNK_ALLOC_ZONED:
5338		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5339		break;
5340	default:
5341		BUG();
5342	}
5343}
5344
5345static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5346			      struct alloc_chunk_ctl *ctl,
5347			      struct btrfs_device_info *devices_info)
5348{
5349	struct btrfs_fs_info *info = fs_devices->fs_info;
5350	struct btrfs_device *device;
5351	u64 total_avail;
5352	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5353	int ret;
5354	int ndevs = 0;
5355	u64 max_avail;
5356	u64 dev_offset;
5357
5358	/*
5359	 * in the first pass through the devices list, we gather information
5360	 * about the available holes on each device.
5361	 */
5362	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5363		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5364			WARN(1, KERN_ERR
5365			       "BTRFS: read-only device in alloc_list\n");
5366			continue;
5367		}
5368
5369		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5370					&device->dev_state) ||
5371		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5372			continue;
5373
5374		if (device->total_bytes > device->bytes_used)
5375			total_avail = device->total_bytes - device->bytes_used;
5376		else
5377			total_avail = 0;
5378
5379		/* If there is no space on this device, skip it. */
5380		if (total_avail < ctl->dev_extent_min)
5381			continue;
5382
5383		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5384					   &max_avail);
5385		if (ret && ret != -ENOSPC)
5386			return ret;
5387
5388		if (ret == 0)
5389			max_avail = dev_extent_want;
5390
5391		if (max_avail < ctl->dev_extent_min) {
5392			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5393				btrfs_debug(info,
5394			"%s: devid %llu has no free space, have=%llu want=%llu",
5395					    __func__, device->devid, max_avail,
5396					    ctl->dev_extent_min);
5397			continue;
5398		}
5399
5400		if (ndevs == fs_devices->rw_devices) {
5401			WARN(1, "%s: found more than %llu devices\n",
5402			     __func__, fs_devices->rw_devices);
5403			break;
5404		}
5405		devices_info[ndevs].dev_offset = dev_offset;
5406		devices_info[ndevs].max_avail = max_avail;
5407		devices_info[ndevs].total_avail = total_avail;
5408		devices_info[ndevs].dev = device;
5409		++ndevs;
5410	}
5411	ctl->ndevs = ndevs;
5412
5413	/*
5414	 * now sort the devices by hole size / available space
5415	 */
5416	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5417	     btrfs_cmp_device_info, NULL);
5418
5419	return 0;
5420}
5421
5422static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5423				      struct btrfs_device_info *devices_info)
5424{
5425	/* Number of stripes that count for block group size */
5426	int data_stripes;
5427
5428	/*
5429	 * The primary goal is to maximize the number of stripes, so use as
5430	 * many devices as possible, even if the stripes are not maximum sized.
5431	 *
5432	 * The DUP profile stores more than one stripe per device, the
5433	 * max_avail is the total size so we have to adjust.
5434	 */
5435	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5436				   ctl->dev_stripes);
5437	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5438
5439	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5440	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5441
5442	/*
5443	 * Use the number of data stripes to figure out how big this chunk is
5444	 * really going to be in terms of logical address space, and compare
5445	 * that answer with the max chunk size. If it's higher, we try to
5446	 * reduce stripe_size.
5447	 */
5448	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5449		/*
5450		 * Reduce stripe_size, round it up to a 16MB boundary again and
5451		 * then use it, unless it ends up being even bigger than the
5452		 * previous value we had already.
5453		 */
5454		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5455							data_stripes), SZ_16M),
5456				       ctl->stripe_size);
5457	}
5458
5459	/* Stripe size should not go beyond 1G. */
5460	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5461
5462	/* Align to BTRFS_STRIPE_LEN */
5463	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5464	ctl->chunk_size = ctl->stripe_size * data_stripes;
5465
5466	return 0;
5467}
5468
5469static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5470				    struct btrfs_device_info *devices_info)
5471{
5472	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5473	/* Number of stripes that count for block group size */
5474	int data_stripes;
5475
5476	/*
5477	 * It should hold because:
5478	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5479	 */
5480	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5481
5482	ctl->stripe_size = zone_size;
5483	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5484	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5485
5486	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5487	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5488		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5489					     ctl->stripe_size) + ctl->nparity,
5490				     ctl->dev_stripes);
5491		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5492		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5493		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5494	}
5495
5496	ctl->chunk_size = ctl->stripe_size * data_stripes;
5497
5498	return 0;
5499}
5500
5501static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5502			      struct alloc_chunk_ctl *ctl,
5503			      struct btrfs_device_info *devices_info)
5504{
5505	struct btrfs_fs_info *info = fs_devices->fs_info;
5506
5507	/*
5508	 * Round down to number of usable stripes, devs_increment can be any
5509	 * number so we can't use round_down() that requires power of 2, while
5510	 * rounddown is safe.
5511	 */
5512	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5513
5514	if (ctl->ndevs < ctl->devs_min) {
5515		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5516			btrfs_debug(info,
5517	"%s: not enough devices with free space: have=%d minimum required=%d",
5518				    __func__, ctl->ndevs, ctl->devs_min);
5519		}
5520		return -ENOSPC;
5521	}
5522
5523	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5524
5525	switch (fs_devices->chunk_alloc_policy) {
5526	case BTRFS_CHUNK_ALLOC_REGULAR:
5527		return decide_stripe_size_regular(ctl, devices_info);
5528	case BTRFS_CHUNK_ALLOC_ZONED:
5529		return decide_stripe_size_zoned(ctl, devices_info);
5530	default:
5531		BUG();
5532	}
5533}
5534
5535static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5536{
5537	for (int i = 0; i < map->num_stripes; i++) {
5538		struct btrfs_io_stripe *stripe = &map->stripes[i];
5539		struct btrfs_device *device = stripe->dev;
5540
5541		set_extent_bit(&device->alloc_state, stripe->physical,
5542			       stripe->physical + map->stripe_size - 1,
5543			       bits | EXTENT_NOWAIT, NULL);
5544	}
5545}
5546
5547static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5548{
5549	for (int i = 0; i < map->num_stripes; i++) {
5550		struct btrfs_io_stripe *stripe = &map->stripes[i];
5551		struct btrfs_device *device = stripe->dev;
5552
5553		__clear_extent_bit(&device->alloc_state, stripe->physical,
5554				   stripe->physical + map->stripe_size - 1,
5555				   bits | EXTENT_NOWAIT,
5556				   NULL, NULL);
5557	}
5558}
5559
5560void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5561{
5562	write_lock(&fs_info->mapping_tree_lock);
5563	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5564	RB_CLEAR_NODE(&map->rb_node);
5565	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5566	write_unlock(&fs_info->mapping_tree_lock);
5567
5568	/* Once for the tree reference. */
5569	btrfs_free_chunk_map(map);
5570}
5571
5572EXPORT_FOR_TESTS
5573int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5574{
5575	struct rb_node **p;
5576	struct rb_node *parent = NULL;
5577	bool leftmost = true;
5578
5579	write_lock(&fs_info->mapping_tree_lock);
5580	p = &fs_info->mapping_tree.rb_root.rb_node;
5581	while (*p) {
5582		struct btrfs_chunk_map *entry;
5583
5584		parent = *p;
5585		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5586
5587		if (map->start < entry->start) {
5588			p = &(*p)->rb_left;
5589		} else if (map->start > entry->start) {
5590			p = &(*p)->rb_right;
5591			leftmost = false;
5592		} else {
5593			write_unlock(&fs_info->mapping_tree_lock);
5594			return -EEXIST;
5595		}
5596	}
5597	rb_link_node(&map->rb_node, parent, p);
5598	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5599	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5600	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5601	write_unlock(&fs_info->mapping_tree_lock);
5602
5603	return 0;
5604}
5605
5606EXPORT_FOR_TESTS
5607struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5608{
5609	struct btrfs_chunk_map *map;
5610
5611	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5612	if (!map)
5613		return NULL;
5614
5615	refcount_set(&map->refs, 1);
5616	RB_CLEAR_NODE(&map->rb_node);
5617
5618	return map;
5619}
5620
5621static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5622			struct alloc_chunk_ctl *ctl,
5623			struct btrfs_device_info *devices_info)
5624{
5625	struct btrfs_fs_info *info = trans->fs_info;
5626	struct btrfs_chunk_map *map;
5627	struct btrfs_block_group *block_group;
5628	u64 start = ctl->start;
5629	u64 type = ctl->type;
5630	int ret;
5631	int i;
5632	int j;
5633
5634	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5635	if (!map)
5636		return ERR_PTR(-ENOMEM);
5637
5638	map->start = start;
5639	map->chunk_len = ctl->chunk_size;
5640	map->stripe_size = ctl->stripe_size;
5641	map->type = type;
5642	map->io_align = BTRFS_STRIPE_LEN;
5643	map->io_width = BTRFS_STRIPE_LEN;
5644	map->sub_stripes = ctl->sub_stripes;
5645	map->num_stripes = ctl->num_stripes;
5646
5647	for (i = 0; i < ctl->ndevs; ++i) {
5648		for (j = 0; j < ctl->dev_stripes; ++j) {
5649			int s = i * ctl->dev_stripes + j;
5650			map->stripes[s].dev = devices_info[i].dev;
5651			map->stripes[s].physical = devices_info[i].dev_offset +
5652						   j * ctl->stripe_size;
5653		}
5654	}
5655
5656	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5657
5658	ret = btrfs_add_chunk_map(info, map);
5659	if (ret) {
5660		btrfs_free_chunk_map(map);
5661		return ERR_PTR(ret);
5662	}
5663
5664	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5665	if (IS_ERR(block_group)) {
5666		btrfs_remove_chunk_map(info, map);
5667		return block_group;
5668	}
5669
5670	for (int i = 0; i < map->num_stripes; i++) {
5671		struct btrfs_device *dev = map->stripes[i].dev;
5672
5673		btrfs_device_set_bytes_used(dev,
5674					    dev->bytes_used + ctl->stripe_size);
5675		if (list_empty(&dev->post_commit_list))
5676			list_add_tail(&dev->post_commit_list,
5677				      &trans->transaction->dev_update_list);
5678	}
5679
5680	atomic64_sub(ctl->stripe_size * map->num_stripes,
5681		     &info->free_chunk_space);
5682
5683	check_raid56_incompat_flag(info, type);
5684	check_raid1c34_incompat_flag(info, type);
5685
5686	return block_group;
5687}
5688
5689struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5690					    u64 type)
5691{
5692	struct btrfs_fs_info *info = trans->fs_info;
5693	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5694	struct btrfs_device_info *devices_info = NULL;
5695	struct alloc_chunk_ctl ctl;
5696	struct btrfs_block_group *block_group;
5697	int ret;
5698
5699	lockdep_assert_held(&info->chunk_mutex);
5700
5701	if (!alloc_profile_is_valid(type, 0)) {
5702		ASSERT(0);
5703		return ERR_PTR(-EINVAL);
5704	}
5705
5706	if (list_empty(&fs_devices->alloc_list)) {
5707		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5708			btrfs_debug(info, "%s: no writable device", __func__);
5709		return ERR_PTR(-ENOSPC);
5710	}
5711
5712	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5713		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5714		ASSERT(0);
5715		return ERR_PTR(-EINVAL);
5716	}
5717
5718	ctl.start = find_next_chunk(info);
5719	ctl.type = type;
5720	init_alloc_chunk_ctl(fs_devices, &ctl);
5721
5722	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5723			       GFP_NOFS);
5724	if (!devices_info)
5725		return ERR_PTR(-ENOMEM);
5726
5727	ret = gather_device_info(fs_devices, &ctl, devices_info);
5728	if (ret < 0) {
5729		block_group = ERR_PTR(ret);
5730		goto out;
5731	}
5732
5733	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5734	if (ret < 0) {
5735		block_group = ERR_PTR(ret);
5736		goto out;
5737	}
5738
5739	block_group = create_chunk(trans, &ctl, devices_info);
5740
5741out:
5742	kfree(devices_info);
5743	return block_group;
5744}
5745
5746/*
5747 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5748 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5749 * chunks.
5750 *
5751 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5752 * phases.
5753 */
5754int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5755				     struct btrfs_block_group *bg)
5756{
5757	struct btrfs_fs_info *fs_info = trans->fs_info;
5758	struct btrfs_root *chunk_root = fs_info->chunk_root;
5759	struct btrfs_key key;
5760	struct btrfs_chunk *chunk;
5761	struct btrfs_stripe *stripe;
5762	struct btrfs_chunk_map *map;
5763	size_t item_size;
5764	int i;
5765	int ret;
5766
5767	/*
5768	 * We take the chunk_mutex for 2 reasons:
5769	 *
5770	 * 1) Updates and insertions in the chunk btree must be done while holding
5771	 *    the chunk_mutex, as well as updating the system chunk array in the
5772	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5773	 *    details;
5774	 *
5775	 * 2) To prevent races with the final phase of a device replace operation
5776	 *    that replaces the device object associated with the map's stripes,
5777	 *    because the device object's id can change at any time during that
5778	 *    final phase of the device replace operation
5779	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5780	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5781	 *    which would cause a failure when updating the device item, which does
5782	 *    not exists, or persisting a stripe of the chunk item with such ID.
5783	 *    Here we can't use the device_list_mutex because our caller already
5784	 *    has locked the chunk_mutex, and the final phase of device replace
5785	 *    acquires both mutexes - first the device_list_mutex and then the
5786	 *    chunk_mutex. Using any of those two mutexes protects us from a
5787	 *    concurrent device replace.
5788	 */
5789	lockdep_assert_held(&fs_info->chunk_mutex);
5790
5791	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5792	if (IS_ERR(map)) {
5793		ret = PTR_ERR(map);
5794		btrfs_abort_transaction(trans, ret);
5795		return ret;
5796	}
5797
5798	item_size = btrfs_chunk_item_size(map->num_stripes);
5799
5800	chunk = kzalloc(item_size, GFP_NOFS);
5801	if (!chunk) {
5802		ret = -ENOMEM;
5803		btrfs_abort_transaction(trans, ret);
5804		goto out;
5805	}
5806
5807	for (i = 0; i < map->num_stripes; i++) {
5808		struct btrfs_device *device = map->stripes[i].dev;
5809
5810		ret = btrfs_update_device(trans, device);
5811		if (ret)
5812			goto out;
5813	}
5814
5815	stripe = &chunk->stripe;
5816	for (i = 0; i < map->num_stripes; i++) {
5817		struct btrfs_device *device = map->stripes[i].dev;
5818		const u64 dev_offset = map->stripes[i].physical;
5819
5820		btrfs_set_stack_stripe_devid(stripe, device->devid);
5821		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5822		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5823		stripe++;
5824	}
5825
5826	btrfs_set_stack_chunk_length(chunk, bg->length);
5827	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5828	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5829	btrfs_set_stack_chunk_type(chunk, map->type);
5830	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5831	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5832	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5833	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5834	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5835
5836	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5837	key.type = BTRFS_CHUNK_ITEM_KEY;
5838	key.offset = bg->start;
5839
5840	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5841	if (ret)
5842		goto out;
5843
5844	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5845
5846	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5847		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5848		if (ret)
5849			goto out;
5850	}
5851
5852out:
5853	kfree(chunk);
5854	btrfs_free_chunk_map(map);
5855	return ret;
5856}
5857
5858static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5859{
5860	struct btrfs_fs_info *fs_info = trans->fs_info;
5861	u64 alloc_profile;
5862	struct btrfs_block_group *meta_bg;
5863	struct btrfs_block_group *sys_bg;
5864
5865	/*
5866	 * When adding a new device for sprouting, the seed device is read-only
5867	 * so we must first allocate a metadata and a system chunk. But before
5868	 * adding the block group items to the extent, device and chunk btrees,
5869	 * we must first:
5870	 *
5871	 * 1) Create both chunks without doing any changes to the btrees, as
5872	 *    otherwise we would get -ENOSPC since the block groups from the
5873	 *    seed device are read-only;
5874	 *
5875	 * 2) Add the device item for the new sprout device - finishing the setup
5876	 *    of a new block group requires updating the device item in the chunk
5877	 *    btree, so it must exist when we attempt to do it. The previous step
5878	 *    ensures this does not fail with -ENOSPC.
5879	 *
5880	 * After that we can add the block group items to their btrees:
5881	 * update existing device item in the chunk btree, add a new block group
5882	 * item to the extent btree, add a new chunk item to the chunk btree and
5883	 * finally add the new device extent items to the devices btree.
5884	 */
5885
5886	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5887	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5888	if (IS_ERR(meta_bg))
5889		return PTR_ERR(meta_bg);
5890
5891	alloc_profile = btrfs_system_alloc_profile(fs_info);
5892	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5893	if (IS_ERR(sys_bg))
5894		return PTR_ERR(sys_bg);
5895
5896	return 0;
5897}
5898
5899static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5900{
5901	const int index = btrfs_bg_flags_to_raid_index(map->type);
5902
5903	return btrfs_raid_array[index].tolerated_failures;
5904}
5905
5906bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5907{
5908	struct btrfs_chunk_map *map;
5909	int miss_ndevs = 0;
5910	int i;
5911	bool ret = true;
5912
5913	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5914	if (IS_ERR(map))
5915		return false;
5916
5917	for (i = 0; i < map->num_stripes; i++) {
5918		if (test_bit(BTRFS_DEV_STATE_MISSING,
5919					&map->stripes[i].dev->dev_state)) {
5920			miss_ndevs++;
5921			continue;
5922		}
5923		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5924					&map->stripes[i].dev->dev_state)) {
5925			ret = false;
5926			goto end;
5927		}
5928	}
5929
5930	/*
5931	 * If the number of missing devices is larger than max errors, we can
5932	 * not write the data into that chunk successfully.
5933	 */
5934	if (miss_ndevs > btrfs_chunk_max_errors(map))
5935		ret = false;
5936end:
5937	btrfs_free_chunk_map(map);
5938	return ret;
5939}
5940
5941void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5942{
5943	write_lock(&fs_info->mapping_tree_lock);
5944	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5945		struct btrfs_chunk_map *map;
5946		struct rb_node *node;
5947
5948		node = rb_first_cached(&fs_info->mapping_tree);
5949		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5950		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5951		RB_CLEAR_NODE(&map->rb_node);
5952		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5953		/* Once for the tree ref. */
5954		btrfs_free_chunk_map(map);
5955		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5956	}
5957	write_unlock(&fs_info->mapping_tree_lock);
5958}
5959
5960int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5961{
5962	struct btrfs_chunk_map *map;
5963	enum btrfs_raid_types index;
5964	int ret = 1;
5965
5966	map = btrfs_get_chunk_map(fs_info, logical, len);
5967	if (IS_ERR(map))
5968		/*
5969		 * We could return errors for these cases, but that could get
5970		 * ugly and we'd probably do the same thing which is just not do
5971		 * anything else and exit, so return 1 so the callers don't try
5972		 * to use other copies.
5973		 */
5974		return 1;
5975
5976	index = btrfs_bg_flags_to_raid_index(map->type);
5977
5978	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5979	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5980		ret = btrfs_raid_array[index].ncopies;
5981	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5982		ret = 2;
5983	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5984		/*
5985		 * There could be two corrupted data stripes, we need
5986		 * to loop retry in order to rebuild the correct data.
5987		 *
5988		 * Fail a stripe at a time on every retry except the
5989		 * stripe under reconstruction.
5990		 */
5991		ret = map->num_stripes;
5992	btrfs_free_chunk_map(map);
5993	return ret;
5994}
5995
5996unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5997				    u64 logical)
5998{
5999	struct btrfs_chunk_map *map;
6000	unsigned long len = fs_info->sectorsize;
6001
6002	if (!btrfs_fs_incompat(fs_info, RAID56))
6003		return len;
6004
6005	map = btrfs_get_chunk_map(fs_info, logical, len);
6006
6007	if (!WARN_ON(IS_ERR(map))) {
6008		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6009			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6010		btrfs_free_chunk_map(map);
6011	}
6012	return len;
6013}
6014
6015int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6016{
6017	struct btrfs_chunk_map *map;
6018	int ret = 0;
6019
6020	if (!btrfs_fs_incompat(fs_info, RAID56))
6021		return 0;
6022
6023	map = btrfs_get_chunk_map(fs_info, logical, len);
6024
6025	if (!WARN_ON(IS_ERR(map))) {
6026		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6027			ret = 1;
6028		btrfs_free_chunk_map(map);
6029	}
6030	return ret;
6031}
6032
6033static int find_live_mirror(struct btrfs_fs_info *fs_info,
6034			    struct btrfs_chunk_map *map, int first,
6035			    int dev_replace_is_ongoing)
6036{
6037	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6038	int i;
6039	int num_stripes;
6040	int preferred_mirror;
6041	int tolerance;
6042	struct btrfs_device *srcdev;
6043
6044	ASSERT((map->type &
6045		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6046
6047	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6048		num_stripes = map->sub_stripes;
6049	else
6050		num_stripes = map->num_stripes;
6051
6052	switch (policy) {
6053	default:
6054		/* Shouldn't happen, just warn and use pid instead of failing */
6055		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6056			      policy);
6057		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6058		fallthrough;
6059	case BTRFS_READ_POLICY_PID:
6060		preferred_mirror = first + (current->pid % num_stripes);
6061		break;
6062	}
6063
6064	if (dev_replace_is_ongoing &&
6065	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6066	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6067		srcdev = fs_info->dev_replace.srcdev;
6068	else
6069		srcdev = NULL;
6070
6071	/*
6072	 * try to avoid the drive that is the source drive for a
6073	 * dev-replace procedure, only choose it if no other non-missing
6074	 * mirror is available
6075	 */
6076	for (tolerance = 0; tolerance < 2; tolerance++) {
6077		if (map->stripes[preferred_mirror].dev->bdev &&
6078		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6079			return preferred_mirror;
6080		for (i = first; i < first + num_stripes; i++) {
6081			if (map->stripes[i].dev->bdev &&
6082			    (tolerance || map->stripes[i].dev != srcdev))
6083				return i;
6084		}
6085	}
6086
6087	/* we couldn't find one that doesn't fail.  Just return something
6088	 * and the io error handling code will clean up eventually
6089	 */
6090	return preferred_mirror;
6091}
6092
6093static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6094						       u64 logical,
6095						       u16 total_stripes)
6096{
6097	struct btrfs_io_context *bioc;
6098
6099	bioc = kzalloc(
6100		 /* The size of btrfs_io_context */
6101		sizeof(struct btrfs_io_context) +
6102		/* Plus the variable array for the stripes */
6103		sizeof(struct btrfs_io_stripe) * (total_stripes),
6104		GFP_NOFS);
6105
6106	if (!bioc)
6107		return NULL;
6108
6109	refcount_set(&bioc->refs, 1);
6110
6111	bioc->fs_info = fs_info;
6112	bioc->replace_stripe_src = -1;
6113	bioc->full_stripe_logical = (u64)-1;
6114	bioc->logical = logical;
6115
6116	return bioc;
6117}
6118
6119void btrfs_get_bioc(struct btrfs_io_context *bioc)
6120{
6121	WARN_ON(!refcount_read(&bioc->refs));
6122	refcount_inc(&bioc->refs);
6123}
6124
6125void btrfs_put_bioc(struct btrfs_io_context *bioc)
6126{
6127	if (!bioc)
6128		return;
6129	if (refcount_dec_and_test(&bioc->refs))
6130		kfree(bioc);
6131}
6132
6133/*
6134 * Please note that, discard won't be sent to target device of device
6135 * replace.
6136 */
6137struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6138					       u64 logical, u64 *length_ret,
6139					       u32 *num_stripes)
6140{
6141	struct btrfs_chunk_map *map;
6142	struct btrfs_discard_stripe *stripes;
6143	u64 length = *length_ret;
6144	u64 offset;
6145	u32 stripe_nr;
6146	u32 stripe_nr_end;
6147	u32 stripe_cnt;
6148	u64 stripe_end_offset;
6149	u64 stripe_offset;
6150	u32 stripe_index;
6151	u32 factor = 0;
6152	u32 sub_stripes = 0;
6153	u32 stripes_per_dev = 0;
6154	u32 remaining_stripes = 0;
6155	u32 last_stripe = 0;
6156	int ret;
6157	int i;
6158
6159	map = btrfs_get_chunk_map(fs_info, logical, length);
6160	if (IS_ERR(map))
6161		return ERR_CAST(map);
6162
6163	/* we don't discard raid56 yet */
6164	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6165		ret = -EOPNOTSUPP;
6166		goto out_free_map;
6167	}
6168
6169	offset = logical - map->start;
6170	length = min_t(u64, map->start + map->chunk_len - logical, length);
6171	*length_ret = length;
6172
6173	/*
6174	 * stripe_nr counts the total number of stripes we have to stride
6175	 * to get to this block
6176	 */
6177	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6178
6179	/* stripe_offset is the offset of this block in its stripe */
6180	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6181
6182	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6183			BTRFS_STRIPE_LEN_SHIFT;
6184	stripe_cnt = stripe_nr_end - stripe_nr;
6185	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6186			    (offset + length);
6187	/*
6188	 * after this, stripe_nr is the number of stripes on this
6189	 * device we have to walk to find the data, and stripe_index is
6190	 * the number of our device in the stripe array
6191	 */
6192	*num_stripes = 1;
6193	stripe_index = 0;
6194	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6195			 BTRFS_BLOCK_GROUP_RAID10)) {
6196		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6197			sub_stripes = 1;
6198		else
6199			sub_stripes = map->sub_stripes;
6200
6201		factor = map->num_stripes / sub_stripes;
6202		*num_stripes = min_t(u64, map->num_stripes,
6203				    sub_stripes * stripe_cnt);
6204		stripe_index = stripe_nr % factor;
6205		stripe_nr /= factor;
6206		stripe_index *= sub_stripes;
6207
6208		remaining_stripes = stripe_cnt % factor;
6209		stripes_per_dev = stripe_cnt / factor;
6210		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6211	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6212				BTRFS_BLOCK_GROUP_DUP)) {
6213		*num_stripes = map->num_stripes;
6214	} else {
6215		stripe_index = stripe_nr % map->num_stripes;
6216		stripe_nr /= map->num_stripes;
6217	}
6218
6219	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6220	if (!stripes) {
6221		ret = -ENOMEM;
6222		goto out_free_map;
6223	}
6224
6225	for (i = 0; i < *num_stripes; i++) {
6226		stripes[i].physical =
6227			map->stripes[stripe_index].physical +
6228			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6229		stripes[i].dev = map->stripes[stripe_index].dev;
6230
6231		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6232				 BTRFS_BLOCK_GROUP_RAID10)) {
6233			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6234
6235			if (i / sub_stripes < remaining_stripes)
6236				stripes[i].length += BTRFS_STRIPE_LEN;
6237
6238			/*
6239			 * Special for the first stripe and
6240			 * the last stripe:
6241			 *
6242			 * |-------|...|-------|
6243			 *     |----------|
6244			 *    off     end_off
6245			 */
6246			if (i < sub_stripes)
6247				stripes[i].length -= stripe_offset;
6248
6249			if (stripe_index >= last_stripe &&
6250			    stripe_index <= (last_stripe +
6251					     sub_stripes - 1))
6252				stripes[i].length -= stripe_end_offset;
6253
6254			if (i == sub_stripes - 1)
6255				stripe_offset = 0;
6256		} else {
6257			stripes[i].length = length;
6258		}
6259
6260		stripe_index++;
6261		if (stripe_index == map->num_stripes) {
6262			stripe_index = 0;
6263			stripe_nr++;
6264		}
6265	}
6266
6267	btrfs_free_chunk_map(map);
6268	return stripes;
6269out_free_map:
6270	btrfs_free_chunk_map(map);
6271	return ERR_PTR(ret);
6272}
6273
6274static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6275{
6276	struct btrfs_block_group *cache;
6277	bool ret;
6278
6279	/* Non zoned filesystem does not use "to_copy" flag */
6280	if (!btrfs_is_zoned(fs_info))
6281		return false;
6282
6283	cache = btrfs_lookup_block_group(fs_info, logical);
6284
6285	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6286
6287	btrfs_put_block_group(cache);
6288	return ret;
6289}
6290
6291static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6292				      struct btrfs_io_context *bioc,
6293				      struct btrfs_dev_replace *dev_replace,
6294				      u64 logical,
6295				      int *num_stripes_ret, int *max_errors_ret)
6296{
6297	u64 srcdev_devid = dev_replace->srcdev->devid;
6298	/*
6299	 * At this stage, num_stripes is still the real number of stripes,
6300	 * excluding the duplicated stripes.
6301	 */
6302	int num_stripes = *num_stripes_ret;
6303	int nr_extra_stripes = 0;
6304	int max_errors = *max_errors_ret;
6305	int i;
6306
6307	/*
6308	 * A block group which has "to_copy" set will eventually be copied by
6309	 * the dev-replace process. We can avoid cloning IO here.
6310	 */
6311	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6312		return;
6313
6314	/*
6315	 * Duplicate the write operations while the dev-replace procedure is
6316	 * running. Since the copying of the old disk to the new disk takes
6317	 * place at run time while the filesystem is mounted writable, the
6318	 * regular write operations to the old disk have to be duplicated to go
6319	 * to the new disk as well.
6320	 *
6321	 * Note that device->missing is handled by the caller, and that the
6322	 * write to the old disk is already set up in the stripes array.
6323	 */
6324	for (i = 0; i < num_stripes; i++) {
6325		struct btrfs_io_stripe *old = &bioc->stripes[i];
6326		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6327
6328		if (old->dev->devid != srcdev_devid)
6329			continue;
6330
6331		new->physical = old->physical;
6332		new->dev = dev_replace->tgtdev;
6333		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6334			bioc->replace_stripe_src = i;
6335		nr_extra_stripes++;
6336	}
6337
6338	/* We can only have at most 2 extra nr_stripes (for DUP). */
6339	ASSERT(nr_extra_stripes <= 2);
6340	/*
6341	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6342	 * replace.
6343	 * If we have 2 extra stripes, only choose the one with smaller physical.
6344	 */
6345	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6346		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6347		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6348
6349		/* Only DUP can have two extra stripes. */
6350		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6351
6352		/*
6353		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6354		 * The extra stripe would still be there, but won't be accessed.
6355		 */
6356		if (first->physical > second->physical) {
6357			swap(second->physical, first->physical);
6358			swap(second->dev, first->dev);
6359			nr_extra_stripes--;
6360		}
6361	}
6362
6363	*num_stripes_ret = num_stripes + nr_extra_stripes;
6364	*max_errors_ret = max_errors + nr_extra_stripes;
6365	bioc->replace_nr_stripes = nr_extra_stripes;
6366}
6367
6368static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6369			    struct btrfs_io_geometry *io_geom)
6370{
6371	/*
6372	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6373	 * the offset of this block in its stripe.
6374	 */
6375	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6376	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6377	ASSERT(io_geom->stripe_offset < U32_MAX);
6378
6379	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6380		unsigned long full_stripe_len =
6381			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6382
6383		/*
6384		 * For full stripe start, we use previously calculated
6385		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6386		 * STRIPE_LEN.
6387		 *
6388		 * By this we can avoid u64 division completely.  And we have
6389		 * to go rounddown(), not round_down(), as nr_data_stripes is
6390		 * not ensured to be power of 2.
6391		 */
6392		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6393			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6394
6395		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6396		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6397		/*
6398		 * For writes to RAID56, allow to write a full stripe set, but
6399		 * no straddling of stripe sets.
6400		 */
6401		if (io_geom->op == BTRFS_MAP_WRITE)
6402			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6403	}
6404
6405	/*
6406	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6407	 * a single disk).
6408	 */
6409	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6410		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6411	return U64_MAX;
6412}
6413
6414static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6415			 u64 *length, struct btrfs_io_stripe *dst,
6416			 struct btrfs_chunk_map *map,
6417			 struct btrfs_io_geometry *io_geom)
6418{
6419	dst->dev = map->stripes[io_geom->stripe_index].dev;
6420
6421	if (io_geom->op == BTRFS_MAP_READ &&
6422	    btrfs_need_stripe_tree_update(fs_info, map->type))
6423		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6424						    map->type,
6425						    io_geom->stripe_index, dst);
6426
6427	dst->physical = map->stripes[io_geom->stripe_index].physical +
6428			io_geom->stripe_offset +
6429			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6430	return 0;
6431}
6432
6433static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6434				const struct btrfs_io_stripe *smap,
6435				const struct btrfs_chunk_map *map,
6436				int num_alloc_stripes,
6437				enum btrfs_map_op op, int mirror_num)
6438{
6439	if (!smap)
6440		return false;
6441
6442	if (num_alloc_stripes != 1)
6443		return false;
6444
6445	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6446		return false;
6447
6448	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6449		return false;
6450
6451	return true;
6452}
6453
6454static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6455			     struct btrfs_io_geometry *io_geom)
6456{
6457	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6458	io_geom->stripe_nr /= map->num_stripes;
6459	if (io_geom->op == BTRFS_MAP_READ)
6460		io_geom->mirror_num = 1;
6461}
6462
6463static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6464			     struct btrfs_chunk_map *map,
6465			     struct btrfs_io_geometry *io_geom,
6466			     bool dev_replace_is_ongoing)
6467{
6468	if (io_geom->op != BTRFS_MAP_READ) {
6469		io_geom->num_stripes = map->num_stripes;
6470		return;
6471	}
6472
6473	if (io_geom->mirror_num) {
6474		io_geom->stripe_index = io_geom->mirror_num - 1;
6475		return;
6476	}
6477
6478	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6479						 dev_replace_is_ongoing);
6480	io_geom->mirror_num = io_geom->stripe_index + 1;
6481}
6482
6483static void map_blocks_dup(const struct btrfs_chunk_map *map,
6484			   struct btrfs_io_geometry *io_geom)
6485{
6486	if (io_geom->op != BTRFS_MAP_READ) {
6487		io_geom->num_stripes = map->num_stripes;
6488		return;
6489	}
6490
6491	if (io_geom->mirror_num) {
6492		io_geom->stripe_index = io_geom->mirror_num - 1;
6493		return;
6494	}
6495
6496	io_geom->mirror_num = 1;
6497}
6498
6499static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6500			      struct btrfs_chunk_map *map,
6501			      struct btrfs_io_geometry *io_geom,
6502			      bool dev_replace_is_ongoing)
6503{
6504	u32 factor = map->num_stripes / map->sub_stripes;
6505	int old_stripe_index;
6506
6507	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6508	io_geom->stripe_nr /= factor;
6509
6510	if (io_geom->op != BTRFS_MAP_READ) {
6511		io_geom->num_stripes = map->sub_stripes;
6512		return;
6513	}
6514
6515	if (io_geom->mirror_num) {
6516		io_geom->stripe_index += io_geom->mirror_num - 1;
6517		return;
6518	}
6519
6520	old_stripe_index = io_geom->stripe_index;
6521	io_geom->stripe_index = find_live_mirror(fs_info, map,
6522						 io_geom->stripe_index,
6523						 dev_replace_is_ongoing);
6524	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6525}
6526
6527static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6528				    struct btrfs_io_geometry *io_geom,
6529				    u64 logical, u64 *length)
6530{
6531	int data_stripes = nr_data_stripes(map);
6532
6533	/*
6534	 * Needs full stripe mapping.
6535	 *
6536	 * Push stripe_nr back to the start of the full stripe For those cases
6537	 * needing a full stripe, @stripe_nr is the full stripe number.
6538	 *
6539	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6540	 * that can be expensive.  Here we just divide @stripe_nr with
6541	 * @data_stripes.
6542	 */
6543	io_geom->stripe_nr /= data_stripes;
6544
6545	/* RAID[56] write or recovery. Return all stripes */
6546	io_geom->num_stripes = map->num_stripes;
6547	io_geom->max_errors = btrfs_chunk_max_errors(map);
6548
6549	/* Return the length to the full stripe end. */
6550	*length = min(logical + *length,
6551		      io_geom->raid56_full_stripe_start + map->start +
6552		      btrfs_stripe_nr_to_offset(data_stripes)) -
6553		logical;
6554	io_geom->stripe_index = 0;
6555	io_geom->stripe_offset = 0;
6556}
6557
6558static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6559				   struct btrfs_io_geometry *io_geom)
6560{
6561	int data_stripes = nr_data_stripes(map);
6562
6563	ASSERT(io_geom->mirror_num <= 1);
6564	/* Just grab the data stripe directly. */
6565	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6566	io_geom->stripe_nr /= data_stripes;
6567
6568	/* We distribute the parity blocks across stripes. */
6569	io_geom->stripe_index =
6570		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6571
6572	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6573		io_geom->mirror_num = 1;
6574}
6575
6576static void map_blocks_single(const struct btrfs_chunk_map *map,
6577			      struct btrfs_io_geometry *io_geom)
6578{
6579	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6580	io_geom->stripe_nr /= map->num_stripes;
6581	io_geom->mirror_num = io_geom->stripe_index + 1;
6582}
6583
6584/*
6585 * Map one logical range to one or more physical ranges.
6586 *
6587 * @length:		(Mandatory) mapped length of this run.
6588 *			One logical range can be split into different segments
6589 *			due to factors like zones and RAID0/5/6/10 stripe
6590 *			boundaries.
6591 *
6592 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6593 *			which has one or more physical ranges (btrfs_io_stripe)
6594 *			recorded inside.
6595 *			Caller should call btrfs_put_bioc() to free it after use.
6596 *
6597 * @smap:		(Optional) single physical range optimization.
6598 *			If the map request can be fulfilled by one single
6599 *			physical range, and this is parameter is not NULL,
6600 *			then @bioc_ret would be NULL, and @smap would be
6601 *			updated.
6602 *
6603 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6604 *			value is 0.
6605 *
6606 *			Mirror number 0 means to choose any live mirrors.
6607 *
6608 *			For non-RAID56 profiles, non-zero mirror_num means
6609 *			the Nth mirror. (e.g. mirror_num 1 means the first
6610 *			copy).
6611 *
6612 *			For RAID56 profile, mirror 1 means rebuild from P and
6613 *			the remaining data stripes.
6614 *
6615 *			For RAID6 profile, mirror > 2 means mark another
6616 *			data/P stripe error and rebuild from the remaining
6617 *			stripes..
6618 */
6619int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6620		    u64 logical, u64 *length,
6621		    struct btrfs_io_context **bioc_ret,
6622		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6623{
6624	struct btrfs_chunk_map *map;
6625	struct btrfs_io_geometry io_geom = { 0 };
6626	u64 map_offset;
6627	int i;
6628	int ret = 0;
6629	int num_copies;
6630	struct btrfs_io_context *bioc = NULL;
6631	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6632	int dev_replace_is_ongoing = 0;
6633	u16 num_alloc_stripes;
6634	u64 max_len;
6635
6636	ASSERT(bioc_ret);
6637
6638	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6639	io_geom.num_stripes = 1;
6640	io_geom.stripe_index = 0;
6641	io_geom.op = op;
6642
6643	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6644	if (io_geom.mirror_num > num_copies)
6645		return -EINVAL;
6646
6647	map = btrfs_get_chunk_map(fs_info, logical, *length);
6648	if (IS_ERR(map))
6649		return PTR_ERR(map);
6650
6651	map_offset = logical - map->start;
6652	io_geom.raid56_full_stripe_start = (u64)-1;
6653	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6654	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6655
6656	down_read(&dev_replace->rwsem);
6657	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6658	/*
6659	 * Hold the semaphore for read during the whole operation, write is
6660	 * requested at commit time but must wait.
6661	 */
6662	if (!dev_replace_is_ongoing)
6663		up_read(&dev_replace->rwsem);
6664
6665	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6666	case BTRFS_BLOCK_GROUP_RAID0:
6667		map_blocks_raid0(map, &io_geom);
6668		break;
6669	case BTRFS_BLOCK_GROUP_RAID1:
6670	case BTRFS_BLOCK_GROUP_RAID1C3:
6671	case BTRFS_BLOCK_GROUP_RAID1C4:
6672		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6673		break;
6674	case BTRFS_BLOCK_GROUP_DUP:
6675		map_blocks_dup(map, &io_geom);
6676		break;
6677	case BTRFS_BLOCK_GROUP_RAID10:
6678		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6679		break;
6680	case BTRFS_BLOCK_GROUP_RAID5:
6681	case BTRFS_BLOCK_GROUP_RAID6:
6682		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6683			map_blocks_raid56_write(map, &io_geom, logical, length);
6684		else
6685			map_blocks_raid56_read(map, &io_geom);
6686		break;
6687	default:
6688		/*
6689		 * After this, stripe_nr is the number of stripes on this
6690		 * device we have to walk to find the data, and stripe_index is
6691		 * the number of our device in the stripe array
6692		 */
6693		map_blocks_single(map, &io_geom);
6694		break;
6695	}
6696	if (io_geom.stripe_index >= map->num_stripes) {
6697		btrfs_crit(fs_info,
6698			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6699			   io_geom.stripe_index, map->num_stripes);
6700		ret = -EINVAL;
6701		goto out;
6702	}
6703
6704	num_alloc_stripes = io_geom.num_stripes;
6705	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6706	    op != BTRFS_MAP_READ)
6707		/*
6708		 * For replace case, we need to add extra stripes for extra
6709		 * duplicated stripes.
6710		 *
6711		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6712		 * 2 more stripes (DUP types, otherwise 1).
6713		 */
6714		num_alloc_stripes += 2;
6715
6716	/*
6717	 * If this I/O maps to a single device, try to return the device and
6718	 * physical block information on the stack instead of allocating an
6719	 * I/O context structure.
6720	 */
6721	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6722				io_geom.mirror_num)) {
6723		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6724		if (mirror_num_ret)
6725			*mirror_num_ret = io_geom.mirror_num;
6726		*bioc_ret = NULL;
6727		goto out;
6728	}
6729
6730	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6731	if (!bioc) {
6732		ret = -ENOMEM;
6733		goto out;
6734	}
6735	bioc->map_type = map->type;
6736
6737	/*
6738	 * For RAID56 full map, we need to make sure the stripes[] follows the
6739	 * rule that data stripes are all ordered, then followed with P and Q
6740	 * (if we have).
6741	 *
6742	 * It's still mostly the same as other profiles, just with extra rotation.
6743	 */
6744	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6745	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6746		/*
6747		 * For RAID56 @stripe_nr is already the number of full stripes
6748		 * before us, which is also the rotation value (needs to modulo
6749		 * with num_stripes).
6750		 *
6751		 * In this case, we just add @stripe_nr with @i, then do the
6752		 * modulo, to reduce one modulo call.
6753		 */
6754		bioc->full_stripe_logical = map->start +
6755			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6756						  nr_data_stripes(map));
6757		for (int i = 0; i < io_geom.num_stripes; i++) {
6758			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6759			u32 stripe_index;
6760
6761			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6762			dst->dev = map->stripes[stripe_index].dev;
6763			dst->physical =
6764				map->stripes[stripe_index].physical +
6765				io_geom.stripe_offset +
6766				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6767		}
6768	} else {
6769		/*
6770		 * For all other non-RAID56 profiles, just copy the target
6771		 * stripe into the bioc.
6772		 */
6773		for (i = 0; i < io_geom.num_stripes; i++) {
6774			ret = set_io_stripe(fs_info, logical, length,
6775					    &bioc->stripes[i], map, &io_geom);
6776			if (ret < 0)
6777				break;
6778			io_geom.stripe_index++;
6779		}
6780	}
6781
6782	if (ret) {
6783		*bioc_ret = NULL;
6784		btrfs_put_bioc(bioc);
6785		goto out;
6786	}
6787
6788	if (op != BTRFS_MAP_READ)
6789		io_geom.max_errors = btrfs_chunk_max_errors(map);
6790
6791	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6792	    op != BTRFS_MAP_READ) {
6793		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6794					  &io_geom.num_stripes, &io_geom.max_errors);
6795	}
6796
6797	*bioc_ret = bioc;
6798	bioc->num_stripes = io_geom.num_stripes;
6799	bioc->max_errors = io_geom.max_errors;
6800	bioc->mirror_num = io_geom.mirror_num;
6801
6802out:
6803	if (dev_replace_is_ongoing) {
6804		lockdep_assert_held(&dev_replace->rwsem);
6805		/* Unlock and let waiting writers proceed */
6806		up_read(&dev_replace->rwsem);
6807	}
6808	btrfs_free_chunk_map(map);
6809	return ret;
6810}
6811
6812static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6813				      const struct btrfs_fs_devices *fs_devices)
6814{
6815	if (args->fsid == NULL)
6816		return true;
6817	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6818		return true;
6819	return false;
6820}
6821
6822static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6823				  const struct btrfs_device *device)
6824{
6825	if (args->missing) {
6826		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6827		    !device->bdev)
6828			return true;
6829		return false;
6830	}
6831
6832	if (device->devid != args->devid)
6833		return false;
6834	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6835		return false;
6836	return true;
6837}
6838
6839/*
6840 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6841 * return NULL.
6842 *
6843 * If devid and uuid are both specified, the match must be exact, otherwise
6844 * only devid is used.
6845 */
6846struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6847				       const struct btrfs_dev_lookup_args *args)
6848{
6849	struct btrfs_device *device;
6850	struct btrfs_fs_devices *seed_devs;
6851
6852	if (dev_args_match_fs_devices(args, fs_devices)) {
6853		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6854			if (dev_args_match_device(args, device))
6855				return device;
6856		}
6857	}
6858
6859	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6860		if (!dev_args_match_fs_devices(args, seed_devs))
6861			continue;
6862		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6863			if (dev_args_match_device(args, device))
6864				return device;
6865		}
6866	}
6867
6868	return NULL;
6869}
6870
6871static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6872					    u64 devid, u8 *dev_uuid)
6873{
6874	struct btrfs_device *device;
6875	unsigned int nofs_flag;
6876
6877	/*
6878	 * We call this under the chunk_mutex, so we want to use NOFS for this
6879	 * allocation, however we don't want to change btrfs_alloc_device() to
6880	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6881	 * places.
6882	 */
6883
6884	nofs_flag = memalloc_nofs_save();
6885	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6886	memalloc_nofs_restore(nofs_flag);
6887	if (IS_ERR(device))
6888		return device;
6889
6890	list_add(&device->dev_list, &fs_devices->devices);
6891	device->fs_devices = fs_devices;
6892	fs_devices->num_devices++;
6893
6894	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6895	fs_devices->missing_devices++;
6896
6897	return device;
6898}
6899
6900/*
6901 * Allocate new device struct, set up devid and UUID.
6902 *
6903 * @fs_info:	used only for generating a new devid, can be NULL if
6904 *		devid is provided (i.e. @devid != NULL).
6905 * @devid:	a pointer to devid for this device.  If NULL a new devid
6906 *		is generated.
6907 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6908 *		is generated.
6909 * @path:	a pointer to device path if available, NULL otherwise.
6910 *
6911 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6912 * on error.  Returned struct is not linked onto any lists and must be
6913 * destroyed with btrfs_free_device.
6914 */
6915struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6916					const u64 *devid, const u8 *uuid,
6917					const char *path)
6918{
6919	struct btrfs_device *dev;
6920	u64 tmp;
6921
6922	if (WARN_ON(!devid && !fs_info))
6923		return ERR_PTR(-EINVAL);
6924
6925	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6926	if (!dev)
6927		return ERR_PTR(-ENOMEM);
6928
6929	INIT_LIST_HEAD(&dev->dev_list);
6930	INIT_LIST_HEAD(&dev->dev_alloc_list);
6931	INIT_LIST_HEAD(&dev->post_commit_list);
6932
6933	atomic_set(&dev->dev_stats_ccnt, 0);
6934	btrfs_device_data_ordered_init(dev);
6935	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6936
6937	if (devid)
6938		tmp = *devid;
6939	else {
6940		int ret;
6941
6942		ret = find_next_devid(fs_info, &tmp);
6943		if (ret) {
6944			btrfs_free_device(dev);
6945			return ERR_PTR(ret);
6946		}
6947	}
6948	dev->devid = tmp;
6949
6950	if (uuid)
6951		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6952	else
6953		generate_random_uuid(dev->uuid);
6954
6955	if (path) {
6956		struct rcu_string *name;
6957
6958		name = rcu_string_strdup(path, GFP_KERNEL);
6959		if (!name) {
6960			btrfs_free_device(dev);
6961			return ERR_PTR(-ENOMEM);
6962		}
6963		rcu_assign_pointer(dev->name, name);
6964	}
6965
6966	return dev;
6967}
6968
6969static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6970					u64 devid, u8 *uuid, bool error)
6971{
6972	if (error)
6973		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6974			      devid, uuid);
6975	else
6976		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6977			      devid, uuid);
6978}
6979
6980u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6981{
6982	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6983
6984	return div_u64(map->chunk_len, data_stripes);
6985}
6986
6987#if BITS_PER_LONG == 32
6988/*
6989 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6990 * can't be accessed on 32bit systems.
6991 *
6992 * This function do mount time check to reject the fs if it already has
6993 * metadata chunk beyond that limit.
6994 */
6995static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6996				  u64 logical, u64 length, u64 type)
6997{
6998	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6999		return 0;
7000
7001	if (logical + length < MAX_LFS_FILESIZE)
7002		return 0;
7003
7004	btrfs_err_32bit_limit(fs_info);
7005	return -EOVERFLOW;
7006}
7007
7008/*
7009 * This is to give early warning for any metadata chunk reaching
7010 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7011 * Although we can still access the metadata, it's not going to be possible
7012 * once the limit is reached.
7013 */
7014static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7015				  u64 logical, u64 length, u64 type)
7016{
7017	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7018		return;
7019
7020	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7021		return;
7022
7023	btrfs_warn_32bit_limit(fs_info);
7024}
7025#endif
7026
7027static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7028						  u64 devid, u8 *uuid)
7029{
7030	struct btrfs_device *dev;
7031
7032	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7033		btrfs_report_missing_device(fs_info, devid, uuid, true);
7034		return ERR_PTR(-ENOENT);
7035	}
7036
7037	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7038	if (IS_ERR(dev)) {
7039		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7040			  devid, PTR_ERR(dev));
7041		return dev;
7042	}
7043	btrfs_report_missing_device(fs_info, devid, uuid, false);
7044
7045	return dev;
7046}
7047
7048static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7049			  struct btrfs_chunk *chunk)
7050{
7051	BTRFS_DEV_LOOKUP_ARGS(args);
7052	struct btrfs_fs_info *fs_info = leaf->fs_info;
7053	struct btrfs_chunk_map *map;
7054	u64 logical;
7055	u64 length;
7056	u64 devid;
7057	u64 type;
7058	u8 uuid[BTRFS_UUID_SIZE];
7059	int index;
7060	int num_stripes;
7061	int ret;
7062	int i;
7063
7064	logical = key->offset;
7065	length = btrfs_chunk_length(leaf, chunk);
7066	type = btrfs_chunk_type(leaf, chunk);
7067	index = btrfs_bg_flags_to_raid_index(type);
7068	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7069
7070#if BITS_PER_LONG == 32
7071	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7072	if (ret < 0)
7073		return ret;
7074	warn_32bit_meta_chunk(fs_info, logical, length, type);
7075#endif
7076
7077	/*
7078	 * Only need to verify chunk item if we're reading from sys chunk array,
7079	 * as chunk item in tree block is already verified by tree-checker.
7080	 */
7081	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7082		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7083		if (ret)
7084			return ret;
7085	}
7086
7087	map = btrfs_find_chunk_map(fs_info, logical, 1);
7088
7089	/* already mapped? */
7090	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7091		btrfs_free_chunk_map(map);
7092		return 0;
7093	} else if (map) {
7094		btrfs_free_chunk_map(map);
7095	}
7096
7097	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7098	if (!map)
7099		return -ENOMEM;
7100
7101	map->start = logical;
7102	map->chunk_len = length;
7103	map->num_stripes = num_stripes;
7104	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7105	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7106	map->type = type;
7107	/*
7108	 * We can't use the sub_stripes value, as for profiles other than
7109	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7110	 * older mkfs (<v5.4).
7111	 * In that case, it can cause divide-by-zero errors later.
7112	 * Since currently sub_stripes is fixed for each profile, let's
7113	 * use the trusted value instead.
7114	 */
7115	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7116	map->verified_stripes = 0;
7117	map->stripe_size = btrfs_calc_stripe_length(map);
7118	for (i = 0; i < num_stripes; i++) {
7119		map->stripes[i].physical =
7120			btrfs_stripe_offset_nr(leaf, chunk, i);
7121		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7122		args.devid = devid;
7123		read_extent_buffer(leaf, uuid, (unsigned long)
7124				   btrfs_stripe_dev_uuid_nr(chunk, i),
7125				   BTRFS_UUID_SIZE);
7126		args.uuid = uuid;
7127		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7128		if (!map->stripes[i].dev) {
7129			map->stripes[i].dev = handle_missing_device(fs_info,
7130								    devid, uuid);
7131			if (IS_ERR(map->stripes[i].dev)) {
7132				ret = PTR_ERR(map->stripes[i].dev);
7133				btrfs_free_chunk_map(map);
7134				return ret;
7135			}
7136		}
7137
7138		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7139				&(map->stripes[i].dev->dev_state));
7140	}
7141
7142	ret = btrfs_add_chunk_map(fs_info, map);
7143	if (ret < 0) {
7144		btrfs_err(fs_info,
7145			  "failed to add chunk map, start=%llu len=%llu: %d",
7146			  map->start, map->chunk_len, ret);
7147	}
7148
7149	return ret;
7150}
7151
7152static void fill_device_from_item(struct extent_buffer *leaf,
7153				 struct btrfs_dev_item *dev_item,
7154				 struct btrfs_device *device)
7155{
7156	unsigned long ptr;
7157
7158	device->devid = btrfs_device_id(leaf, dev_item);
7159	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7160	device->total_bytes = device->disk_total_bytes;
7161	device->commit_total_bytes = device->disk_total_bytes;
7162	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7163	device->commit_bytes_used = device->bytes_used;
7164	device->type = btrfs_device_type(leaf, dev_item);
7165	device->io_align = btrfs_device_io_align(leaf, dev_item);
7166	device->io_width = btrfs_device_io_width(leaf, dev_item);
7167	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7168	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7169	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7170
7171	ptr = btrfs_device_uuid(dev_item);
7172	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7173}
7174
7175static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7176						  u8 *fsid)
7177{
7178	struct btrfs_fs_devices *fs_devices;
7179	int ret;
7180
7181	lockdep_assert_held(&uuid_mutex);
7182	ASSERT(fsid);
7183
7184	/* This will match only for multi-device seed fs */
7185	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7186		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7187			return fs_devices;
7188
7189
7190	fs_devices = find_fsid(fsid, NULL);
7191	if (!fs_devices) {
7192		if (!btrfs_test_opt(fs_info, DEGRADED))
7193			return ERR_PTR(-ENOENT);
7194
7195		fs_devices = alloc_fs_devices(fsid);
7196		if (IS_ERR(fs_devices))
7197			return fs_devices;
7198
7199		fs_devices->seeding = true;
7200		fs_devices->opened = 1;
7201		return fs_devices;
7202	}
7203
7204	/*
7205	 * Upon first call for a seed fs fsid, just create a private copy of the
7206	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7207	 */
7208	fs_devices = clone_fs_devices(fs_devices);
7209	if (IS_ERR(fs_devices))
7210		return fs_devices;
7211
7212	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7213	if (ret) {
7214		free_fs_devices(fs_devices);
7215		return ERR_PTR(ret);
7216	}
7217
7218	if (!fs_devices->seeding) {
7219		close_fs_devices(fs_devices);
7220		free_fs_devices(fs_devices);
7221		return ERR_PTR(-EINVAL);
7222	}
7223
7224	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7225
7226	return fs_devices;
7227}
7228
7229static int read_one_dev(struct extent_buffer *leaf,
7230			struct btrfs_dev_item *dev_item)
7231{
7232	BTRFS_DEV_LOOKUP_ARGS(args);
7233	struct btrfs_fs_info *fs_info = leaf->fs_info;
7234	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7235	struct btrfs_device *device;
7236	u64 devid;
7237	int ret;
7238	u8 fs_uuid[BTRFS_FSID_SIZE];
7239	u8 dev_uuid[BTRFS_UUID_SIZE];
7240
7241	devid = btrfs_device_id(leaf, dev_item);
7242	args.devid = devid;
7243	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7244			   BTRFS_UUID_SIZE);
7245	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7246			   BTRFS_FSID_SIZE);
7247	args.uuid = dev_uuid;
7248	args.fsid = fs_uuid;
7249
7250	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7251		fs_devices = open_seed_devices(fs_info, fs_uuid);
7252		if (IS_ERR(fs_devices))
7253			return PTR_ERR(fs_devices);
7254	}
7255
7256	device = btrfs_find_device(fs_info->fs_devices, &args);
7257	if (!device) {
7258		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7259			btrfs_report_missing_device(fs_info, devid,
7260							dev_uuid, true);
7261			return -ENOENT;
7262		}
7263
7264		device = add_missing_dev(fs_devices, devid, dev_uuid);
7265		if (IS_ERR(device)) {
7266			btrfs_err(fs_info,
7267				"failed to add missing dev %llu: %ld",
7268				devid, PTR_ERR(device));
7269			return PTR_ERR(device);
7270		}
7271		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7272	} else {
7273		if (!device->bdev) {
7274			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7275				btrfs_report_missing_device(fs_info,
7276						devid, dev_uuid, true);
7277				return -ENOENT;
7278			}
7279			btrfs_report_missing_device(fs_info, devid,
7280							dev_uuid, false);
7281		}
7282
7283		if (!device->bdev &&
7284		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7285			/*
7286			 * this happens when a device that was properly setup
7287			 * in the device info lists suddenly goes bad.
7288			 * device->bdev is NULL, and so we have to set
7289			 * device->missing to one here
7290			 */
7291			device->fs_devices->missing_devices++;
7292			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7293		}
7294
7295		/* Move the device to its own fs_devices */
7296		if (device->fs_devices != fs_devices) {
7297			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7298							&device->dev_state));
7299
7300			list_move(&device->dev_list, &fs_devices->devices);
7301			device->fs_devices->num_devices--;
7302			fs_devices->num_devices++;
7303
7304			device->fs_devices->missing_devices--;
7305			fs_devices->missing_devices++;
7306
7307			device->fs_devices = fs_devices;
7308		}
7309	}
7310
7311	if (device->fs_devices != fs_info->fs_devices) {
7312		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7313		if (device->generation !=
7314		    btrfs_device_generation(leaf, dev_item))
7315			return -EINVAL;
7316	}
7317
7318	fill_device_from_item(leaf, dev_item, device);
7319	if (device->bdev) {
7320		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7321
7322		if (device->total_bytes > max_total_bytes) {
7323			btrfs_err(fs_info,
7324			"device total_bytes should be at most %llu but found %llu",
7325				  max_total_bytes, device->total_bytes);
7326			return -EINVAL;
7327		}
7328	}
7329	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7330	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7331	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7332		device->fs_devices->total_rw_bytes += device->total_bytes;
7333		atomic64_add(device->total_bytes - device->bytes_used,
7334				&fs_info->free_chunk_space);
7335	}
7336	ret = 0;
7337	return ret;
7338}
7339
7340int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7341{
7342	struct btrfs_super_block *super_copy = fs_info->super_copy;
7343	struct extent_buffer *sb;
7344	struct btrfs_disk_key *disk_key;
7345	struct btrfs_chunk *chunk;
7346	u8 *array_ptr;
7347	unsigned long sb_array_offset;
7348	int ret = 0;
7349	u32 num_stripes;
7350	u32 array_size;
7351	u32 len = 0;
7352	u32 cur_offset;
7353	u64 type;
7354	struct btrfs_key key;
7355
7356	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7357
7358	/*
7359	 * We allocated a dummy extent, just to use extent buffer accessors.
7360	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7361	 * that's fine, we will not go beyond system chunk array anyway.
7362	 */
7363	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7364	if (!sb)
7365		return -ENOMEM;
7366	set_extent_buffer_uptodate(sb);
7367
7368	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7369	array_size = btrfs_super_sys_array_size(super_copy);
7370
7371	array_ptr = super_copy->sys_chunk_array;
7372	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7373	cur_offset = 0;
7374
7375	while (cur_offset < array_size) {
7376		disk_key = (struct btrfs_disk_key *)array_ptr;
7377		len = sizeof(*disk_key);
7378		if (cur_offset + len > array_size)
7379			goto out_short_read;
7380
7381		btrfs_disk_key_to_cpu(&key, disk_key);
7382
7383		array_ptr += len;
7384		sb_array_offset += len;
7385		cur_offset += len;
7386
7387		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7388			btrfs_err(fs_info,
7389			    "unexpected item type %u in sys_array at offset %u",
7390				  (u32)key.type, cur_offset);
7391			ret = -EIO;
7392			break;
7393		}
7394
7395		chunk = (struct btrfs_chunk *)sb_array_offset;
7396		/*
7397		 * At least one btrfs_chunk with one stripe must be present,
7398		 * exact stripe count check comes afterwards
7399		 */
7400		len = btrfs_chunk_item_size(1);
7401		if (cur_offset + len > array_size)
7402			goto out_short_read;
7403
7404		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7405		if (!num_stripes) {
7406			btrfs_err(fs_info,
7407			"invalid number of stripes %u in sys_array at offset %u",
7408				  num_stripes, cur_offset);
7409			ret = -EIO;
7410			break;
7411		}
7412
7413		type = btrfs_chunk_type(sb, chunk);
7414		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7415			btrfs_err(fs_info,
7416			"invalid chunk type %llu in sys_array at offset %u",
7417				  type, cur_offset);
7418			ret = -EIO;
7419			break;
7420		}
7421
7422		len = btrfs_chunk_item_size(num_stripes);
7423		if (cur_offset + len > array_size)
7424			goto out_short_read;
7425
7426		ret = read_one_chunk(&key, sb, chunk);
7427		if (ret)
7428			break;
7429
7430		array_ptr += len;
7431		sb_array_offset += len;
7432		cur_offset += len;
7433	}
7434	clear_extent_buffer_uptodate(sb);
7435	free_extent_buffer_stale(sb);
7436	return ret;
7437
7438out_short_read:
7439	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7440			len, cur_offset);
7441	clear_extent_buffer_uptodate(sb);
7442	free_extent_buffer_stale(sb);
7443	return -EIO;
7444}
7445
7446/*
7447 * Check if all chunks in the fs are OK for read-write degraded mount
7448 *
7449 * If the @failing_dev is specified, it's accounted as missing.
7450 *
7451 * Return true if all chunks meet the minimal RW mount requirements.
7452 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7453 */
7454bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7455					struct btrfs_device *failing_dev)
7456{
7457	struct btrfs_chunk_map *map;
7458	u64 next_start;
7459	bool ret = true;
7460
7461	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7462	/* No chunk at all? Return false anyway */
7463	if (!map) {
7464		ret = false;
7465		goto out;
7466	}
7467	while (map) {
7468		int missing = 0;
7469		int max_tolerated;
7470		int i;
7471
7472		max_tolerated =
7473			btrfs_get_num_tolerated_disk_barrier_failures(
7474					map->type);
7475		for (i = 0; i < map->num_stripes; i++) {
7476			struct btrfs_device *dev = map->stripes[i].dev;
7477
7478			if (!dev || !dev->bdev ||
7479			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7480			    dev->last_flush_error)
7481				missing++;
7482			else if (failing_dev && failing_dev == dev)
7483				missing++;
7484		}
7485		if (missing > max_tolerated) {
7486			if (!failing_dev)
7487				btrfs_warn(fs_info,
7488	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7489				   map->start, missing, max_tolerated);
7490			btrfs_free_chunk_map(map);
7491			ret = false;
7492			goto out;
7493		}
7494		next_start = map->start + map->chunk_len;
7495		btrfs_free_chunk_map(map);
7496
7497		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7498	}
7499out:
7500	return ret;
7501}
7502
7503static void readahead_tree_node_children(struct extent_buffer *node)
7504{
7505	int i;
7506	const int nr_items = btrfs_header_nritems(node);
7507
7508	for (i = 0; i < nr_items; i++)
7509		btrfs_readahead_node_child(node, i);
7510}
7511
7512int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7513{
7514	struct btrfs_root *root = fs_info->chunk_root;
7515	struct btrfs_path *path;
7516	struct extent_buffer *leaf;
7517	struct btrfs_key key;
7518	struct btrfs_key found_key;
7519	int ret;
7520	int slot;
7521	int iter_ret = 0;
7522	u64 total_dev = 0;
7523	u64 last_ra_node = 0;
7524
7525	path = btrfs_alloc_path();
7526	if (!path)
7527		return -ENOMEM;
7528
7529	/*
7530	 * uuid_mutex is needed only if we are mounting a sprout FS
7531	 * otherwise we don't need it.
7532	 */
7533	mutex_lock(&uuid_mutex);
7534
7535	/*
7536	 * It is possible for mount and umount to race in such a way that
7537	 * we execute this code path, but open_fs_devices failed to clear
7538	 * total_rw_bytes. We certainly want it cleared before reading the
7539	 * device items, so clear it here.
7540	 */
7541	fs_info->fs_devices->total_rw_bytes = 0;
7542
7543	/*
7544	 * Lockdep complains about possible circular locking dependency between
7545	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7546	 * used for freeze procection of a fs (struct super_block.s_writers),
7547	 * which we take when starting a transaction, and extent buffers of the
7548	 * chunk tree if we call read_one_dev() while holding a lock on an
7549	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7550	 * and at this point there can't be any concurrent task modifying the
7551	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7552	 */
7553	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7554	path->skip_locking = 1;
7555
7556	/*
7557	 * Read all device items, and then all the chunk items. All
7558	 * device items are found before any chunk item (their object id
7559	 * is smaller than the lowest possible object id for a chunk
7560	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7561	 */
7562	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7563	key.offset = 0;
7564	key.type = 0;
7565	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7566		struct extent_buffer *node = path->nodes[1];
7567
7568		leaf = path->nodes[0];
7569		slot = path->slots[0];
7570
7571		if (node) {
7572			if (last_ra_node != node->start) {
7573				readahead_tree_node_children(node);
7574				last_ra_node = node->start;
7575			}
7576		}
7577		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7578			struct btrfs_dev_item *dev_item;
7579			dev_item = btrfs_item_ptr(leaf, slot,
7580						  struct btrfs_dev_item);
7581			ret = read_one_dev(leaf, dev_item);
7582			if (ret)
7583				goto error;
7584			total_dev++;
7585		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7586			struct btrfs_chunk *chunk;
7587
7588			/*
7589			 * We are only called at mount time, so no need to take
7590			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7591			 * we always lock first fs_info->chunk_mutex before
7592			 * acquiring any locks on the chunk tree. This is a
7593			 * requirement for chunk allocation, see the comment on
7594			 * top of btrfs_chunk_alloc() for details.
7595			 */
7596			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7597			ret = read_one_chunk(&found_key, leaf, chunk);
7598			if (ret)
7599				goto error;
7600		}
7601	}
7602	/* Catch error found during iteration */
7603	if (iter_ret < 0) {
7604		ret = iter_ret;
7605		goto error;
7606	}
7607
7608	/*
7609	 * After loading chunk tree, we've got all device information,
7610	 * do another round of validation checks.
7611	 */
7612	if (total_dev != fs_info->fs_devices->total_devices) {
7613		btrfs_warn(fs_info,
7614"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7615			  btrfs_super_num_devices(fs_info->super_copy),
7616			  total_dev);
7617		fs_info->fs_devices->total_devices = total_dev;
7618		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7619	}
7620	if (btrfs_super_total_bytes(fs_info->super_copy) <
7621	    fs_info->fs_devices->total_rw_bytes) {
7622		btrfs_err(fs_info,
7623	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7624			  btrfs_super_total_bytes(fs_info->super_copy),
7625			  fs_info->fs_devices->total_rw_bytes);
7626		ret = -EINVAL;
7627		goto error;
7628	}
7629	ret = 0;
7630error:
7631	mutex_unlock(&uuid_mutex);
7632
7633	btrfs_free_path(path);
7634	return ret;
7635}
7636
7637int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7638{
7639	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7640	struct btrfs_device *device;
7641	int ret = 0;
7642
7643	fs_devices->fs_info = fs_info;
7644
7645	mutex_lock(&fs_devices->device_list_mutex);
7646	list_for_each_entry(device, &fs_devices->devices, dev_list)
7647		device->fs_info = fs_info;
7648
7649	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7650		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7651			device->fs_info = fs_info;
7652			ret = btrfs_get_dev_zone_info(device, false);
7653			if (ret)
7654				break;
7655		}
7656
7657		seed_devs->fs_info = fs_info;
7658	}
7659	mutex_unlock(&fs_devices->device_list_mutex);
7660
7661	return ret;
7662}
7663
7664static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7665				 const struct btrfs_dev_stats_item *ptr,
7666				 int index)
7667{
7668	u64 val;
7669
7670	read_extent_buffer(eb, &val,
7671			   offsetof(struct btrfs_dev_stats_item, values) +
7672			    ((unsigned long)ptr) + (index * sizeof(u64)),
7673			   sizeof(val));
7674	return val;
7675}
7676
7677static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7678				      struct btrfs_dev_stats_item *ptr,
7679				      int index, u64 val)
7680{
7681	write_extent_buffer(eb, &val,
7682			    offsetof(struct btrfs_dev_stats_item, values) +
7683			     ((unsigned long)ptr) + (index * sizeof(u64)),
7684			    sizeof(val));
7685}
7686
7687static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7688				       struct btrfs_path *path)
7689{
7690	struct btrfs_dev_stats_item *ptr;
7691	struct extent_buffer *eb;
7692	struct btrfs_key key;
7693	int item_size;
7694	int i, ret, slot;
7695
7696	if (!device->fs_info->dev_root)
7697		return 0;
7698
7699	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7700	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7701	key.offset = device->devid;
7702	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7703	if (ret) {
7704		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7705			btrfs_dev_stat_set(device, i, 0);
7706		device->dev_stats_valid = 1;
7707		btrfs_release_path(path);
7708		return ret < 0 ? ret : 0;
7709	}
7710	slot = path->slots[0];
7711	eb = path->nodes[0];
7712	item_size = btrfs_item_size(eb, slot);
7713
7714	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7715
7716	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7717		if (item_size >= (1 + i) * sizeof(__le64))
7718			btrfs_dev_stat_set(device, i,
7719					   btrfs_dev_stats_value(eb, ptr, i));
7720		else
7721			btrfs_dev_stat_set(device, i, 0);
7722	}
7723
7724	device->dev_stats_valid = 1;
7725	btrfs_dev_stat_print_on_load(device);
7726	btrfs_release_path(path);
7727
7728	return 0;
7729}
7730
7731int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7732{
7733	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7734	struct btrfs_device *device;
7735	struct btrfs_path *path = NULL;
7736	int ret = 0;
7737
7738	path = btrfs_alloc_path();
7739	if (!path)
7740		return -ENOMEM;
7741
7742	mutex_lock(&fs_devices->device_list_mutex);
7743	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7744		ret = btrfs_device_init_dev_stats(device, path);
7745		if (ret)
7746			goto out;
7747	}
7748	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7749		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7750			ret = btrfs_device_init_dev_stats(device, path);
7751			if (ret)
7752				goto out;
7753		}
7754	}
7755out:
7756	mutex_unlock(&fs_devices->device_list_mutex);
7757
7758	btrfs_free_path(path);
7759	return ret;
7760}
7761
7762static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7763				struct btrfs_device *device)
7764{
7765	struct btrfs_fs_info *fs_info = trans->fs_info;
7766	struct btrfs_root *dev_root = fs_info->dev_root;
7767	struct btrfs_path *path;
7768	struct btrfs_key key;
7769	struct extent_buffer *eb;
7770	struct btrfs_dev_stats_item *ptr;
7771	int ret;
7772	int i;
7773
7774	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7775	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7776	key.offset = device->devid;
7777
7778	path = btrfs_alloc_path();
7779	if (!path)
7780		return -ENOMEM;
7781	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7782	if (ret < 0) {
7783		btrfs_warn_in_rcu(fs_info,
7784			"error %d while searching for dev_stats item for device %s",
7785				  ret, btrfs_dev_name(device));
7786		goto out;
7787	}
7788
7789	if (ret == 0 &&
7790	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7791		/* need to delete old one and insert a new one */
7792		ret = btrfs_del_item(trans, dev_root, path);
7793		if (ret != 0) {
7794			btrfs_warn_in_rcu(fs_info,
7795				"delete too small dev_stats item for device %s failed %d",
7796					  btrfs_dev_name(device), ret);
7797			goto out;
7798		}
7799		ret = 1;
7800	}
7801
7802	if (ret == 1) {
7803		/* need to insert a new item */
7804		btrfs_release_path(path);
7805		ret = btrfs_insert_empty_item(trans, dev_root, path,
7806					      &key, sizeof(*ptr));
7807		if (ret < 0) {
7808			btrfs_warn_in_rcu(fs_info,
7809				"insert dev_stats item for device %s failed %d",
7810				btrfs_dev_name(device), ret);
7811			goto out;
7812		}
7813	}
7814
7815	eb = path->nodes[0];
7816	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7817	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7818		btrfs_set_dev_stats_value(eb, ptr, i,
7819					  btrfs_dev_stat_read(device, i));
7820	btrfs_mark_buffer_dirty(trans, eb);
7821
7822out:
7823	btrfs_free_path(path);
7824	return ret;
7825}
7826
7827/*
7828 * called from commit_transaction. Writes all changed device stats to disk.
7829 */
7830int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7831{
7832	struct btrfs_fs_info *fs_info = trans->fs_info;
7833	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7834	struct btrfs_device *device;
7835	int stats_cnt;
7836	int ret = 0;
7837
7838	mutex_lock(&fs_devices->device_list_mutex);
7839	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7840		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7841		if (!device->dev_stats_valid || stats_cnt == 0)
7842			continue;
7843
7844
7845		/*
7846		 * There is a LOAD-LOAD control dependency between the value of
7847		 * dev_stats_ccnt and updating the on-disk values which requires
7848		 * reading the in-memory counters. Such control dependencies
7849		 * require explicit read memory barriers.
7850		 *
7851		 * This memory barriers pairs with smp_mb__before_atomic in
7852		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7853		 * barrier implied by atomic_xchg in
7854		 * btrfs_dev_stats_read_and_reset
7855		 */
7856		smp_rmb();
7857
7858		ret = update_dev_stat_item(trans, device);
7859		if (!ret)
7860			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7861	}
7862	mutex_unlock(&fs_devices->device_list_mutex);
7863
7864	return ret;
7865}
7866
7867void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7868{
7869	btrfs_dev_stat_inc(dev, index);
7870
7871	if (!dev->dev_stats_valid)
7872		return;
7873	btrfs_err_rl_in_rcu(dev->fs_info,
7874		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7875			   btrfs_dev_name(dev),
7876			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7877			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7878			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7879			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7880			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7881}
7882
7883static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7884{
7885	int i;
7886
7887	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7888		if (btrfs_dev_stat_read(dev, i) != 0)
7889			break;
7890	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7891		return; /* all values == 0, suppress message */
7892
7893	btrfs_info_in_rcu(dev->fs_info,
7894		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7895	       btrfs_dev_name(dev),
7896	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7897	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7898	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7899	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7900	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7901}
7902
7903int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7904			struct btrfs_ioctl_get_dev_stats *stats)
7905{
7906	BTRFS_DEV_LOOKUP_ARGS(args);
7907	struct btrfs_device *dev;
7908	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7909	int i;
7910
7911	mutex_lock(&fs_devices->device_list_mutex);
7912	args.devid = stats->devid;
7913	dev = btrfs_find_device(fs_info->fs_devices, &args);
7914	mutex_unlock(&fs_devices->device_list_mutex);
7915
7916	if (!dev) {
7917		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7918		return -ENODEV;
7919	} else if (!dev->dev_stats_valid) {
7920		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7921		return -ENODEV;
7922	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7923		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7924			if (stats->nr_items > i)
7925				stats->values[i] =
7926					btrfs_dev_stat_read_and_reset(dev, i);
7927			else
7928				btrfs_dev_stat_set(dev, i, 0);
7929		}
7930		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7931			   current->comm, task_pid_nr(current));
7932	} else {
7933		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7934			if (stats->nr_items > i)
7935				stats->values[i] = btrfs_dev_stat_read(dev, i);
7936	}
7937	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7938		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7939	return 0;
7940}
7941
7942/*
7943 * Update the size and bytes used for each device where it changed.  This is
7944 * delayed since we would otherwise get errors while writing out the
7945 * superblocks.
7946 *
7947 * Must be invoked during transaction commit.
7948 */
7949void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7950{
7951	struct btrfs_device *curr, *next;
7952
7953	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7954
7955	if (list_empty(&trans->dev_update_list))
7956		return;
7957
7958	/*
7959	 * We don't need the device_list_mutex here.  This list is owned by the
7960	 * transaction and the transaction must complete before the device is
7961	 * released.
7962	 */
7963	mutex_lock(&trans->fs_info->chunk_mutex);
7964	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7965				 post_commit_list) {
7966		list_del_init(&curr->post_commit_list);
7967		curr->commit_total_bytes = curr->disk_total_bytes;
7968		curr->commit_bytes_used = curr->bytes_used;
7969	}
7970	mutex_unlock(&trans->fs_info->chunk_mutex);
7971}
7972
7973/*
7974 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7975 */
7976int btrfs_bg_type_to_factor(u64 flags)
7977{
7978	const int index = btrfs_bg_flags_to_raid_index(flags);
7979
7980	return btrfs_raid_array[index].ncopies;
7981}
7982
7983
7984
7985static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7986				 u64 chunk_offset, u64 devid,
7987				 u64 physical_offset, u64 physical_len)
7988{
7989	struct btrfs_dev_lookup_args args = { .devid = devid };
7990	struct btrfs_chunk_map *map;
7991	struct btrfs_device *dev;
7992	u64 stripe_len;
7993	bool found = false;
7994	int ret = 0;
7995	int i;
7996
7997	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7998	if (!map) {
7999		btrfs_err(fs_info,
8000"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8001			  physical_offset, devid);
8002		ret = -EUCLEAN;
8003		goto out;
8004	}
8005
8006	stripe_len = btrfs_calc_stripe_length(map);
8007	if (physical_len != stripe_len) {
8008		btrfs_err(fs_info,
8009"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8010			  physical_offset, devid, map->start, physical_len,
8011			  stripe_len);
8012		ret = -EUCLEAN;
8013		goto out;
8014	}
8015
8016	/*
8017	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8018	 * space. Although kernel can handle it without problem, better to warn
8019	 * the users.
8020	 */
8021	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8022		btrfs_warn(fs_info,
8023		"devid %llu physical %llu len %llu inside the reserved space",
8024			   devid, physical_offset, physical_len);
8025
8026	for (i = 0; i < map->num_stripes; i++) {
8027		if (map->stripes[i].dev->devid == devid &&
8028		    map->stripes[i].physical == physical_offset) {
8029			found = true;
8030			if (map->verified_stripes >= map->num_stripes) {
8031				btrfs_err(fs_info,
8032				"too many dev extents for chunk %llu found",
8033					  map->start);
8034				ret = -EUCLEAN;
8035				goto out;
8036			}
8037			map->verified_stripes++;
8038			break;
8039		}
8040	}
8041	if (!found) {
8042		btrfs_err(fs_info,
8043	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8044			physical_offset, devid);
8045		ret = -EUCLEAN;
8046	}
8047
8048	/* Make sure no dev extent is beyond device boundary */
8049	dev = btrfs_find_device(fs_info->fs_devices, &args);
8050	if (!dev) {
8051		btrfs_err(fs_info, "failed to find devid %llu", devid);
8052		ret = -EUCLEAN;
8053		goto out;
8054	}
8055
8056	if (physical_offset + physical_len > dev->disk_total_bytes) {
8057		btrfs_err(fs_info,
8058"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8059			  devid, physical_offset, physical_len,
8060			  dev->disk_total_bytes);
8061		ret = -EUCLEAN;
8062		goto out;
8063	}
8064
8065	if (dev->zone_info) {
8066		u64 zone_size = dev->zone_info->zone_size;
8067
8068		if (!IS_ALIGNED(physical_offset, zone_size) ||
8069		    !IS_ALIGNED(physical_len, zone_size)) {
8070			btrfs_err(fs_info,
8071"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8072				  devid, physical_offset, physical_len);
8073			ret = -EUCLEAN;
8074			goto out;
8075		}
8076	}
8077
8078out:
8079	btrfs_free_chunk_map(map);
8080	return ret;
8081}
8082
8083static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8084{
8085	struct rb_node *node;
8086	int ret = 0;
8087
8088	read_lock(&fs_info->mapping_tree_lock);
8089	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8090		struct btrfs_chunk_map *map;
8091
8092		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8093		if (map->num_stripes != map->verified_stripes) {
8094			btrfs_err(fs_info,
8095			"chunk %llu has missing dev extent, have %d expect %d",
8096				  map->start, map->verified_stripes, map->num_stripes);
8097			ret = -EUCLEAN;
8098			goto out;
8099		}
8100	}
8101out:
8102	read_unlock(&fs_info->mapping_tree_lock);
8103	return ret;
8104}
8105
8106/*
8107 * Ensure that all dev extents are mapped to correct chunk, otherwise
8108 * later chunk allocation/free would cause unexpected behavior.
8109 *
8110 * NOTE: This will iterate through the whole device tree, which should be of
8111 * the same size level as the chunk tree.  This slightly increases mount time.
8112 */
8113int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8114{
8115	struct btrfs_path *path;
8116	struct btrfs_root *root = fs_info->dev_root;
8117	struct btrfs_key key;
8118	u64 prev_devid = 0;
8119	u64 prev_dev_ext_end = 0;
8120	int ret = 0;
8121
8122	/*
8123	 * We don't have a dev_root because we mounted with ignorebadroots and
8124	 * failed to load the root, so we want to skip the verification in this
8125	 * case for sure.
8126	 *
8127	 * However if the dev root is fine, but the tree itself is corrupted
8128	 * we'd still fail to mount.  This verification is only to make sure
8129	 * writes can happen safely, so instead just bypass this check
8130	 * completely in the case of IGNOREBADROOTS.
8131	 */
8132	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8133		return 0;
8134
8135	key.objectid = 1;
8136	key.type = BTRFS_DEV_EXTENT_KEY;
8137	key.offset = 0;
8138
8139	path = btrfs_alloc_path();
8140	if (!path)
8141		return -ENOMEM;
8142
8143	path->reada = READA_FORWARD;
8144	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8145	if (ret < 0)
8146		goto out;
8147
8148	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8149		ret = btrfs_next_leaf(root, path);
8150		if (ret < 0)
8151			goto out;
8152		/* No dev extents at all? Not good */
8153		if (ret > 0) {
8154			ret = -EUCLEAN;
8155			goto out;
8156		}
8157	}
8158	while (1) {
8159		struct extent_buffer *leaf = path->nodes[0];
8160		struct btrfs_dev_extent *dext;
8161		int slot = path->slots[0];
8162		u64 chunk_offset;
8163		u64 physical_offset;
8164		u64 physical_len;
8165		u64 devid;
8166
8167		btrfs_item_key_to_cpu(leaf, &key, slot);
8168		if (key.type != BTRFS_DEV_EXTENT_KEY)
8169			break;
8170		devid = key.objectid;
8171		physical_offset = key.offset;
8172
8173		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8174		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8175		physical_len = btrfs_dev_extent_length(leaf, dext);
8176
8177		/* Check if this dev extent overlaps with the previous one */
8178		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8179			btrfs_err(fs_info,
8180"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8181				  devid, physical_offset, prev_dev_ext_end);
8182			ret = -EUCLEAN;
8183			goto out;
8184		}
8185
8186		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8187					    physical_offset, physical_len);
8188		if (ret < 0)
8189			goto out;
8190		prev_devid = devid;
8191		prev_dev_ext_end = physical_offset + physical_len;
8192
8193		ret = btrfs_next_item(root, path);
8194		if (ret < 0)
8195			goto out;
8196		if (ret > 0) {
8197			ret = 0;
8198			break;
8199		}
8200	}
8201
8202	/* Ensure all chunks have corresponding dev extents */
8203	ret = verify_chunk_dev_extent_mapping(fs_info);
8204out:
8205	btrfs_free_path(path);
8206	return ret;
8207}
8208
8209/*
8210 * Check whether the given block group or device is pinned by any inode being
8211 * used as a swapfile.
8212 */
8213bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8214{
8215	struct btrfs_swapfile_pin *sp;
8216	struct rb_node *node;
8217
8218	spin_lock(&fs_info->swapfile_pins_lock);
8219	node = fs_info->swapfile_pins.rb_node;
8220	while (node) {
8221		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8222		if (ptr < sp->ptr)
8223			node = node->rb_left;
8224		else if (ptr > sp->ptr)
8225			node = node->rb_right;
8226		else
8227			break;
8228	}
8229	spin_unlock(&fs_info->swapfile_pins_lock);
8230	return node != NULL;
8231}
8232
8233static int relocating_repair_kthread(void *data)
8234{
8235	struct btrfs_block_group *cache = data;
8236	struct btrfs_fs_info *fs_info = cache->fs_info;
8237	u64 target;
8238	int ret = 0;
8239
8240	target = cache->start;
8241	btrfs_put_block_group(cache);
8242
8243	sb_start_write(fs_info->sb);
8244	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8245		btrfs_info(fs_info,
8246			   "zoned: skip relocating block group %llu to repair: EBUSY",
8247			   target);
8248		sb_end_write(fs_info->sb);
8249		return -EBUSY;
8250	}
8251
8252	mutex_lock(&fs_info->reclaim_bgs_lock);
8253
8254	/* Ensure block group still exists */
8255	cache = btrfs_lookup_block_group(fs_info, target);
8256	if (!cache)
8257		goto out;
8258
8259	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8260		goto out;
8261
8262	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8263	if (ret < 0)
8264		goto out;
8265
8266	btrfs_info(fs_info,
8267		   "zoned: relocating block group %llu to repair IO failure",
8268		   target);
8269	ret = btrfs_relocate_chunk(fs_info, target);
8270
8271out:
8272	if (cache)
8273		btrfs_put_block_group(cache);
8274	mutex_unlock(&fs_info->reclaim_bgs_lock);
8275	btrfs_exclop_finish(fs_info);
8276	sb_end_write(fs_info->sb);
8277
8278	return ret;
8279}
8280
8281bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8282{
8283	struct btrfs_block_group *cache;
8284
8285	if (!btrfs_is_zoned(fs_info))
8286		return false;
8287
8288	/* Do not attempt to repair in degraded state */
8289	if (btrfs_test_opt(fs_info, DEGRADED))
8290		return true;
8291
8292	cache = btrfs_lookup_block_group(fs_info, logical);
8293	if (!cache)
8294		return true;
8295
8296	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8297		btrfs_put_block_group(cache);
8298		return true;
8299	}
8300
8301	kthread_run(relocating_repair_kthread, cache,
8302		    "btrfs-relocating-repair");
8303
8304	return true;
8305}
8306
8307static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8308				    struct btrfs_io_stripe *smap,
8309				    u64 logical)
8310{
8311	int data_stripes = nr_bioc_data_stripes(bioc);
8312	int i;
8313
8314	for (i = 0; i < data_stripes; i++) {
8315		u64 stripe_start = bioc->full_stripe_logical +
8316				   btrfs_stripe_nr_to_offset(i);
8317
8318		if (logical >= stripe_start &&
8319		    logical < stripe_start + BTRFS_STRIPE_LEN)
8320			break;
8321	}
8322	ASSERT(i < data_stripes);
8323	smap->dev = bioc->stripes[i].dev;
8324	smap->physical = bioc->stripes[i].physical +
8325			((logical - bioc->full_stripe_logical) &
8326			 BTRFS_STRIPE_LEN_MASK);
8327}
8328
8329/*
8330 * Map a repair write into a single device.
8331 *
8332 * A repair write is triggered by read time repair or scrub, which would only
8333 * update the contents of a single device.
8334 * Not update any other mirrors nor go through RMW path.
8335 *
8336 * Callers should ensure:
8337 *
8338 * - Call btrfs_bio_counter_inc_blocked() first
8339 * - The range does not cross stripe boundary
8340 * - Has a valid @mirror_num passed in.
8341 */
8342int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8343			   struct btrfs_io_stripe *smap, u64 logical,
8344			   u32 length, int mirror_num)
8345{
8346	struct btrfs_io_context *bioc = NULL;
8347	u64 map_length = length;
8348	int mirror_ret = mirror_num;
8349	int ret;
8350
8351	ASSERT(mirror_num > 0);
8352
8353	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8354			      &bioc, smap, &mirror_ret);
8355	if (ret < 0)
8356		return ret;
8357
8358	/* The map range should not cross stripe boundary. */
8359	ASSERT(map_length >= length);
8360
8361	/* Already mapped to single stripe. */
8362	if (!bioc)
8363		goto out;
8364
8365	/* Map the RAID56 multi-stripe writes to a single one. */
8366	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8367		map_raid56_repair_block(bioc, smap, logical);
8368		goto out;
8369	}
8370
8371	ASSERT(mirror_num <= bioc->num_stripes);
8372	smap->dev = bioc->stripes[mirror_num - 1].dev;
8373	smap->physical = bioc->stripes[mirror_num - 1].physical;
8374out:
8375	btrfs_put_bioc(bioc);
8376	ASSERT(smap->dev);
8377	return 0;
8378}
8379