1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle.  All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
19#include <linux/sched/mm.h>
20#include <asm/unaligned.h>
21#include <crypto/hash.h>
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "bio.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "dev-replace.h"
33#include "raid56.h"
34#include "sysfs.h"
35#include "qgroup.h"
36#include "compression.h"
37#include "tree-checker.h"
38#include "ref-verify.h"
39#include "block-group.h"
40#include "discard.h"
41#include "space-info.h"
42#include "zoned.h"
43#include "subpage.h"
44#include "fs.h"
45#include "accessors.h"
46#include "extent-tree.h"
47#include "root-tree.h"
48#include "defrag.h"
49#include "uuid-tree.h"
50#include "relocation.h"
51#include "scrub.h"
52#include "super.h"
53
54#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55				 BTRFS_HEADER_FLAG_RELOC |\
56				 BTRFS_SUPER_FLAG_ERROR |\
57				 BTRFS_SUPER_FLAG_SEEDING |\
58				 BTRFS_SUPER_FLAG_METADUMP |\
59				 BTRFS_SUPER_FLAG_METADUMP_V2)
60
61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65{
66	if (fs_info->csum_shash)
67		crypto_free_shash(fs_info->csum_shash);
68}
69
70/*
71 * Compute the csum of a btree block and store the result to provided buffer.
72 */
73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74{
75	struct btrfs_fs_info *fs_info = buf->fs_info;
76	int num_pages;
77	u32 first_page_part;
78	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79	char *kaddr;
80	int i;
81
82	shash->tfm = fs_info->csum_shash;
83	crypto_shash_init(shash);
84
85	if (buf->addr) {
86		/* Pages are contiguous, handle them as a big one. */
87		kaddr = buf->addr;
88		first_page_part = fs_info->nodesize;
89		num_pages = 1;
90	} else {
91		kaddr = folio_address(buf->folios[0]);
92		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93		num_pages = num_extent_pages(buf);
94	}
95
96	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97			    first_page_part - BTRFS_CSUM_SIZE);
98
99	/*
100	 * Multiple single-page folios case would reach here.
101	 *
102	 * nodesize <= PAGE_SIZE and large folio all handled by above
103	 * crypto_shash_update() already.
104	 */
105	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106		kaddr = folio_address(buf->folios[i]);
107		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108	}
109	memset(result, 0, BTRFS_CSUM_SIZE);
110	crypto_shash_final(shash, result);
111}
112
113/*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer.  This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120{
121	if (!extent_buffer_uptodate(eb))
122		return 0;
123
124	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125		return 1;
126
127	if (atomic)
128		return -EAGAIN;
129
130	if (!extent_buffer_uptodate(eb) ||
131	    btrfs_header_generation(eb) != parent_transid) {
132		btrfs_err_rl(eb->fs_info,
133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134			eb->start, eb->read_mirror,
135			parent_transid, btrfs_header_generation(eb));
136		clear_extent_buffer_uptodate(eb);
137		return 0;
138	}
139	return 1;
140}
141
142static bool btrfs_supported_super_csum(u16 csum_type)
143{
144	switch (csum_type) {
145	case BTRFS_CSUM_TYPE_CRC32:
146	case BTRFS_CSUM_TYPE_XXHASH:
147	case BTRFS_CSUM_TYPE_SHA256:
148	case BTRFS_CSUM_TYPE_BLAKE2:
149		return true;
150	default:
151		return false;
152	}
153}
154
155/*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160			   const struct btrfs_super_block *disk_sb)
161{
162	char result[BTRFS_CSUM_SIZE];
163	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165	shash->tfm = fs_info->csum_shash;
166
167	/*
168	 * The super_block structure does not span the whole
169	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170	 * filled with zeros and is included in the checksum.
171	 */
172	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176		return 1;
177
178	return 0;
179}
180
181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182				      int mirror_num)
183{
184	struct btrfs_fs_info *fs_info = eb->fs_info;
185	int num_folios = num_extent_folios(eb);
186	int ret = 0;
187
188	if (sb_rdonly(fs_info->sb))
189		return -EROFS;
190
191	for (int i = 0; i < num_folios; i++) {
192		struct folio *folio = eb->folios[i];
193		u64 start = max_t(u64, eb->start, folio_pos(folio));
194		u64 end = min_t(u64, eb->start + eb->len,
195				folio_pos(folio) + eb->folio_size);
196		u32 len = end - start;
197
198		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199					      start, folio, offset_in_folio(folio, start),
200					      mirror_num);
201		if (ret)
202			break;
203	}
204
205	return ret;
206}
207
208/*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
211 *
212 * @check:		expected tree parentness check, see the comments of the
213 *			structure for details.
214 */
215int btrfs_read_extent_buffer(struct extent_buffer *eb,
216			     struct btrfs_tree_parent_check *check)
217{
218	struct btrfs_fs_info *fs_info = eb->fs_info;
219	int failed = 0;
220	int ret;
221	int num_copies = 0;
222	int mirror_num = 0;
223	int failed_mirror = 0;
224
225	ASSERT(check);
226
227	while (1) {
228		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230		if (!ret)
231			break;
232
233		num_copies = btrfs_num_copies(fs_info,
234					      eb->start, eb->len);
235		if (num_copies == 1)
236			break;
237
238		if (!failed_mirror) {
239			failed = 1;
240			failed_mirror = eb->read_mirror;
241		}
242
243		mirror_num++;
244		if (mirror_num == failed_mirror)
245			mirror_num++;
246
247		if (mirror_num > num_copies)
248			break;
249	}
250
251	if (failed && !ret && failed_mirror)
252		btrfs_repair_eb_io_failure(eb, failed_mirror);
253
254	return ret;
255}
256
257/*
258 * Checksum a dirty tree block before IO.
259 */
260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261{
262	struct extent_buffer *eb = bbio->private;
263	struct btrfs_fs_info *fs_info = eb->fs_info;
264	u64 found_start = btrfs_header_bytenr(eb);
265	u64 last_trans;
266	u8 result[BTRFS_CSUM_SIZE];
267	int ret;
268
269	/* Btree blocks are always contiguous on disk. */
270	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271		return BLK_STS_IOERR;
272	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273		return BLK_STS_IOERR;
274
275	/*
276	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277	 * checksum it but zero-out its content. This is done to preserve
278	 * ordering of I/O without unnecessarily writing out data.
279	 */
280	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281		memzero_extent_buffer(eb, 0, eb->len);
282		return BLK_STS_OK;
283	}
284
285	if (WARN_ON_ONCE(found_start != eb->start))
286		return BLK_STS_IOERR;
287	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288					       eb->start, eb->len)))
289		return BLK_STS_IOERR;
290
291	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292				    offsetof(struct btrfs_header, fsid),
293				    BTRFS_FSID_SIZE) == 0);
294	csum_tree_block(eb, result);
295
296	if (btrfs_header_level(eb))
297		ret = btrfs_check_node(eb);
298	else
299		ret = btrfs_check_leaf(eb);
300
301	if (ret < 0)
302		goto error;
303
304	/*
305	 * Also check the generation, the eb reached here must be newer than
306	 * last committed. Or something seriously wrong happened.
307	 */
308	last_trans = btrfs_get_last_trans_committed(fs_info);
309	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310		ret = -EUCLEAN;
311		btrfs_err(fs_info,
312			"block=%llu bad generation, have %llu expect > %llu",
313			  eb->start, btrfs_header_generation(eb), last_trans);
314		goto error;
315	}
316	write_extent_buffer(eb, result, 0, fs_info->csum_size);
317	return BLK_STS_OK;
318
319error:
320	btrfs_print_tree(eb, 0);
321	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322		  eb->start);
323	/*
324	 * Be noisy if this is an extent buffer from a log tree. We don't abort
325	 * a transaction in case there's a bad log tree extent buffer, we just
326	 * fallback to a transaction commit. Still we want to know when there is
327	 * a bad log tree extent buffer, as that may signal a bug somewhere.
328	 */
329	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331	return errno_to_blk_status(ret);
332}
333
334static bool check_tree_block_fsid(struct extent_buffer *eb)
335{
336	struct btrfs_fs_info *fs_info = eb->fs_info;
337	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338	u8 fsid[BTRFS_FSID_SIZE];
339
340	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341			   BTRFS_FSID_SIZE);
342
343	/*
344	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345	 * This is then overwritten by metadata_uuid if it is present in the
346	 * device_list_add(). The same true for a seed device as well. So use of
347	 * fs_devices::metadata_uuid is appropriate here.
348	 */
349	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350		return false;
351
352	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354			return false;
355
356	return true;
357}
358
359/* Do basic extent buffer checks at read time */
360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361				 struct btrfs_tree_parent_check *check)
362{
363	struct btrfs_fs_info *fs_info = eb->fs_info;
364	u64 found_start;
365	const u32 csum_size = fs_info->csum_size;
366	u8 found_level;
367	u8 result[BTRFS_CSUM_SIZE];
368	const u8 *header_csum;
369	int ret = 0;
370
371	ASSERT(check);
372
373	found_start = btrfs_header_bytenr(eb);
374	if (found_start != eb->start) {
375		btrfs_err_rl(fs_info,
376			"bad tree block start, mirror %u want %llu have %llu",
377			     eb->read_mirror, eb->start, found_start);
378		ret = -EIO;
379		goto out;
380	}
381	if (check_tree_block_fsid(eb)) {
382		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383			     eb->start, eb->read_mirror);
384		ret = -EIO;
385		goto out;
386	}
387	found_level = btrfs_header_level(eb);
388	if (found_level >= BTRFS_MAX_LEVEL) {
389		btrfs_err(fs_info,
390			"bad tree block level, mirror %u level %d on logical %llu",
391			eb->read_mirror, btrfs_header_level(eb), eb->start);
392		ret = -EIO;
393		goto out;
394	}
395
396	csum_tree_block(eb, result);
397	header_csum = folio_address(eb->folios[0]) +
398		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
399
400	if (memcmp(result, header_csum, csum_size) != 0) {
401		btrfs_warn_rl(fs_info,
402"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403			      eb->start, eb->read_mirror,
404			      CSUM_FMT_VALUE(csum_size, header_csum),
405			      CSUM_FMT_VALUE(csum_size, result),
406			      btrfs_header_level(eb));
407		ret = -EUCLEAN;
408		goto out;
409	}
410
411	if (found_level != check->level) {
412		btrfs_err(fs_info,
413		"level verify failed on logical %llu mirror %u wanted %u found %u",
414			  eb->start, eb->read_mirror, check->level, found_level);
415		ret = -EIO;
416		goto out;
417	}
418	if (unlikely(check->transid &&
419		     btrfs_header_generation(eb) != check->transid)) {
420		btrfs_err_rl(eb->fs_info,
421"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422				eb->start, eb->read_mirror, check->transid,
423				btrfs_header_generation(eb));
424		ret = -EIO;
425		goto out;
426	}
427	if (check->has_first_key) {
428		struct btrfs_key *expect_key = &check->first_key;
429		struct btrfs_key found_key;
430
431		if (found_level)
432			btrfs_node_key_to_cpu(eb, &found_key, 0);
433		else
434			btrfs_item_key_to_cpu(eb, &found_key, 0);
435		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436			btrfs_err(fs_info,
437"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438				  eb->start, check->transid,
439				  expect_key->objectid,
440				  expect_key->type, expect_key->offset,
441				  found_key.objectid, found_key.type,
442				  found_key.offset);
443			ret = -EUCLEAN;
444			goto out;
445		}
446	}
447	if (check->owner_root) {
448		ret = btrfs_check_eb_owner(eb, check->owner_root);
449		if (ret < 0)
450			goto out;
451	}
452
453	/*
454	 * If this is a leaf block and it is corrupt, set the corrupt bit so
455	 * that we don't try and read the other copies of this block, just
456	 * return -EIO.
457	 */
458	if (found_level == 0 && btrfs_check_leaf(eb)) {
459		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460		ret = -EIO;
461	}
462
463	if (found_level > 0 && btrfs_check_node(eb))
464		ret = -EIO;
465
466	if (ret)
467		btrfs_err(fs_info,
468		"read time tree block corruption detected on logical %llu mirror %u",
469			  eb->start, eb->read_mirror);
470out:
471	return ret;
472}
473
474#ifdef CONFIG_MIGRATION
475static int btree_migrate_folio(struct address_space *mapping,
476		struct folio *dst, struct folio *src, enum migrate_mode mode)
477{
478	/*
479	 * we can't safely write a btree page from here,
480	 * we haven't done the locking hook
481	 */
482	if (folio_test_dirty(src))
483		return -EAGAIN;
484	/*
485	 * Buffers may be managed in a filesystem specific way.
486	 * We must have no buffers or drop them.
487	 */
488	if (folio_get_private(src) &&
489	    !filemap_release_folio(src, GFP_KERNEL))
490		return -EAGAIN;
491	return migrate_folio(mapping, dst, src, mode);
492}
493#else
494#define btree_migrate_folio NULL
495#endif
496
497static int btree_writepages(struct address_space *mapping,
498			    struct writeback_control *wbc)
499{
500	int ret;
501
502	if (wbc->sync_mode == WB_SYNC_NONE) {
503		struct btrfs_fs_info *fs_info;
504
505		if (wbc->for_kupdate)
506			return 0;
507
508		fs_info = inode_to_fs_info(mapping->host);
509		/* this is a bit racy, but that's ok */
510		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511					     BTRFS_DIRTY_METADATA_THRESH,
512					     fs_info->dirty_metadata_batch);
513		if (ret < 0)
514			return 0;
515	}
516	return btree_write_cache_pages(mapping, wbc);
517}
518
519static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
520{
521	if (folio_test_writeback(folio) || folio_test_dirty(folio))
522		return false;
523
524	return try_release_extent_buffer(&folio->page);
525}
526
527static void btree_invalidate_folio(struct folio *folio, size_t offset,
528				 size_t length)
529{
530	struct extent_io_tree *tree;
531
532	tree = &folio_to_inode(folio)->io_tree;
533	extent_invalidate_folio(tree, folio, offset);
534	btree_release_folio(folio, GFP_NOFS);
535	if (folio_get_private(folio)) {
536		btrfs_warn(folio_to_fs_info(folio),
537			   "folio private not zero on folio %llu",
538			   (unsigned long long)folio_pos(folio));
539		folio_detach_private(folio);
540	}
541}
542
543#ifdef DEBUG
544static bool btree_dirty_folio(struct address_space *mapping,
545		struct folio *folio)
546{
547	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
548	struct btrfs_subpage_info *spi = fs_info->subpage_info;
549	struct btrfs_subpage *subpage;
550	struct extent_buffer *eb;
551	int cur_bit = 0;
552	u64 page_start = folio_pos(folio);
553
554	if (fs_info->sectorsize == PAGE_SIZE) {
555		eb = folio_get_private(folio);
556		BUG_ON(!eb);
557		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558		BUG_ON(!atomic_read(&eb->refs));
559		btrfs_assert_tree_write_locked(eb);
560		return filemap_dirty_folio(mapping, folio);
561	}
562
563	ASSERT(spi);
564	subpage = folio_get_private(folio);
565
566	for (cur_bit = spi->dirty_offset;
567	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568	     cur_bit++) {
569		unsigned long flags;
570		u64 cur;
571
572		spin_lock_irqsave(&subpage->lock, flags);
573		if (!test_bit(cur_bit, subpage->bitmaps)) {
574			spin_unlock_irqrestore(&subpage->lock, flags);
575			continue;
576		}
577		spin_unlock_irqrestore(&subpage->lock, flags);
578		cur = page_start + cur_bit * fs_info->sectorsize;
579
580		eb = find_extent_buffer(fs_info, cur);
581		ASSERT(eb);
582		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583		ASSERT(atomic_read(&eb->refs));
584		btrfs_assert_tree_write_locked(eb);
585		free_extent_buffer(eb);
586
587		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588	}
589	return filemap_dirty_folio(mapping, folio);
590}
591#else
592#define btree_dirty_folio filemap_dirty_folio
593#endif
594
595static const struct address_space_operations btree_aops = {
596	.writepages	= btree_writepages,
597	.release_folio	= btree_release_folio,
598	.invalidate_folio = btree_invalidate_folio,
599	.migrate_folio	= btree_migrate_folio,
600	.dirty_folio	= btree_dirty_folio,
601};
602
603struct extent_buffer *btrfs_find_create_tree_block(
604						struct btrfs_fs_info *fs_info,
605						u64 bytenr, u64 owner_root,
606						int level)
607{
608	if (btrfs_is_testing(fs_info))
609		return alloc_test_extent_buffer(fs_info, bytenr);
610	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611}
612
613/*
614 * Read tree block at logical address @bytenr and do variant basic but critical
615 * verification.
616 *
617 * @check:		expected tree parentness check, see comments of the
618 *			structure for details.
619 */
620struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621				      struct btrfs_tree_parent_check *check)
622{
623	struct extent_buffer *buf = NULL;
624	int ret;
625
626	ASSERT(check);
627
628	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629					   check->level);
630	if (IS_ERR(buf))
631		return buf;
632
633	ret = btrfs_read_extent_buffer(buf, check);
634	if (ret) {
635		free_extent_buffer_stale(buf);
636		return ERR_PTR(ret);
637	}
638	if (btrfs_check_eb_owner(buf, check->owner_root)) {
639		free_extent_buffer_stale(buf);
640		return ERR_PTR(-EUCLEAN);
641	}
642	return buf;
643
644}
645
646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647			 u64 objectid)
648{
649	bool dummy = btrfs_is_testing(fs_info);
650
651	memset(&root->root_key, 0, sizeof(root->root_key));
652	memset(&root->root_item, 0, sizeof(root->root_item));
653	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654	root->fs_info = fs_info;
655	root->root_key.objectid = objectid;
656	root->node = NULL;
657	root->commit_root = NULL;
658	root->state = 0;
659	RB_CLEAR_NODE(&root->rb_node);
660
661	root->last_trans = 0;
662	root->free_objectid = 0;
663	root->nr_delalloc_inodes = 0;
664	root->nr_ordered_extents = 0;
665	root->inode_tree = RB_ROOT;
666	xa_init(&root->delayed_nodes);
667
668	btrfs_init_root_block_rsv(root);
669
670	INIT_LIST_HEAD(&root->dirty_list);
671	INIT_LIST_HEAD(&root->root_list);
672	INIT_LIST_HEAD(&root->delalloc_inodes);
673	INIT_LIST_HEAD(&root->delalloc_root);
674	INIT_LIST_HEAD(&root->ordered_extents);
675	INIT_LIST_HEAD(&root->ordered_root);
676	INIT_LIST_HEAD(&root->reloc_dirty_list);
677	spin_lock_init(&root->inode_lock);
678	spin_lock_init(&root->delalloc_lock);
679	spin_lock_init(&root->ordered_extent_lock);
680	spin_lock_init(&root->accounting_lock);
681	spin_lock_init(&root->qgroup_meta_rsv_lock);
682	mutex_init(&root->objectid_mutex);
683	mutex_init(&root->log_mutex);
684	mutex_init(&root->ordered_extent_mutex);
685	mutex_init(&root->delalloc_mutex);
686	init_waitqueue_head(&root->qgroup_flush_wait);
687	init_waitqueue_head(&root->log_writer_wait);
688	init_waitqueue_head(&root->log_commit_wait[0]);
689	init_waitqueue_head(&root->log_commit_wait[1]);
690	INIT_LIST_HEAD(&root->log_ctxs[0]);
691	INIT_LIST_HEAD(&root->log_ctxs[1]);
692	atomic_set(&root->log_commit[0], 0);
693	atomic_set(&root->log_commit[1], 0);
694	atomic_set(&root->log_writers, 0);
695	atomic_set(&root->log_batch, 0);
696	refcount_set(&root->refs, 1);
697	atomic_set(&root->snapshot_force_cow, 0);
698	atomic_set(&root->nr_swapfiles, 0);
699	btrfs_set_root_log_transid(root, 0);
700	root->log_transid_committed = -1;
701	btrfs_set_root_last_log_commit(root, 0);
702	root->anon_dev = 0;
703	if (!dummy) {
704		extent_io_tree_init(fs_info, &root->dirty_log_pages,
705				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
706		extent_io_tree_init(fs_info, &root->log_csum_range,
707				    IO_TREE_LOG_CSUM_RANGE);
708	}
709
710	spin_lock_init(&root->root_item_lock);
711	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
712#ifdef CONFIG_BTRFS_DEBUG
713	INIT_LIST_HEAD(&root->leak_list);
714	spin_lock(&fs_info->fs_roots_radix_lock);
715	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
716	spin_unlock(&fs_info->fs_roots_radix_lock);
717#endif
718}
719
720static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
721					   u64 objectid, gfp_t flags)
722{
723	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
724	if (root)
725		__setup_root(root, fs_info, objectid);
726	return root;
727}
728
729#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
730/* Should only be used by the testing infrastructure */
731struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
732{
733	struct btrfs_root *root;
734
735	if (!fs_info)
736		return ERR_PTR(-EINVAL);
737
738	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
739	if (!root)
740		return ERR_PTR(-ENOMEM);
741
742	/* We don't use the stripesize in selftest, set it as sectorsize */
743	root->alloc_bytenr = 0;
744
745	return root;
746}
747#endif
748
749static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
750{
751	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
752	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
753
754	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
755}
756
757static int global_root_key_cmp(const void *k, const struct rb_node *node)
758{
759	const struct btrfs_key *key = k;
760	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
761
762	return btrfs_comp_cpu_keys(key, &root->root_key);
763}
764
765int btrfs_global_root_insert(struct btrfs_root *root)
766{
767	struct btrfs_fs_info *fs_info = root->fs_info;
768	struct rb_node *tmp;
769	int ret = 0;
770
771	write_lock(&fs_info->global_root_lock);
772	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
773	write_unlock(&fs_info->global_root_lock);
774
775	if (tmp) {
776		ret = -EEXIST;
777		btrfs_warn(fs_info, "global root %llu %llu already exists",
778			   btrfs_root_id(root), root->root_key.offset);
779	}
780	return ret;
781}
782
783void btrfs_global_root_delete(struct btrfs_root *root)
784{
785	struct btrfs_fs_info *fs_info = root->fs_info;
786
787	write_lock(&fs_info->global_root_lock);
788	rb_erase(&root->rb_node, &fs_info->global_root_tree);
789	write_unlock(&fs_info->global_root_lock);
790}
791
792struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
793				     struct btrfs_key *key)
794{
795	struct rb_node *node;
796	struct btrfs_root *root = NULL;
797
798	read_lock(&fs_info->global_root_lock);
799	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
800	if (node)
801		root = container_of(node, struct btrfs_root, rb_node);
802	read_unlock(&fs_info->global_root_lock);
803
804	return root;
805}
806
807static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
808{
809	struct btrfs_block_group *block_group;
810	u64 ret;
811
812	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
813		return 0;
814
815	if (bytenr)
816		block_group = btrfs_lookup_block_group(fs_info, bytenr);
817	else
818		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
819	ASSERT(block_group);
820	if (!block_group)
821		return 0;
822	ret = block_group->global_root_id;
823	btrfs_put_block_group(block_group);
824
825	return ret;
826}
827
828struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829{
830	struct btrfs_key key = {
831		.objectid = BTRFS_CSUM_TREE_OBJECTID,
832		.type = BTRFS_ROOT_ITEM_KEY,
833		.offset = btrfs_global_root_id(fs_info, bytenr),
834	};
835
836	return btrfs_global_root(fs_info, &key);
837}
838
839struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
840{
841	struct btrfs_key key = {
842		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
843		.type = BTRFS_ROOT_ITEM_KEY,
844		.offset = btrfs_global_root_id(fs_info, bytenr),
845	};
846
847	return btrfs_global_root(fs_info, &key);
848}
849
850struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
851{
852	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
853		return fs_info->block_group_root;
854	return btrfs_extent_root(fs_info, 0);
855}
856
857struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
858				     u64 objectid)
859{
860	struct btrfs_fs_info *fs_info = trans->fs_info;
861	struct extent_buffer *leaf;
862	struct btrfs_root *tree_root = fs_info->tree_root;
863	struct btrfs_root *root;
864	struct btrfs_key key;
865	unsigned int nofs_flag;
866	int ret = 0;
867
868	/*
869	 * We're holding a transaction handle, so use a NOFS memory allocation
870	 * context to avoid deadlock if reclaim happens.
871	 */
872	nofs_flag = memalloc_nofs_save();
873	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
874	memalloc_nofs_restore(nofs_flag);
875	if (!root)
876		return ERR_PTR(-ENOMEM);
877
878	root->root_key.objectid = objectid;
879	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
880	root->root_key.offset = 0;
881
882	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
883				      0, BTRFS_NESTING_NORMAL);
884	if (IS_ERR(leaf)) {
885		ret = PTR_ERR(leaf);
886		leaf = NULL;
887		goto fail;
888	}
889
890	root->node = leaf;
891	btrfs_mark_buffer_dirty(trans, leaf);
892
893	root->commit_root = btrfs_root_node(root);
894	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
895
896	btrfs_set_root_flags(&root->root_item, 0);
897	btrfs_set_root_limit(&root->root_item, 0);
898	btrfs_set_root_bytenr(&root->root_item, leaf->start);
899	btrfs_set_root_generation(&root->root_item, trans->transid);
900	btrfs_set_root_level(&root->root_item, 0);
901	btrfs_set_root_refs(&root->root_item, 1);
902	btrfs_set_root_used(&root->root_item, leaf->len);
903	btrfs_set_root_last_snapshot(&root->root_item, 0);
904	btrfs_set_root_dirid(&root->root_item, 0);
905	if (is_fstree(objectid))
906		generate_random_guid(root->root_item.uuid);
907	else
908		export_guid(root->root_item.uuid, &guid_null);
909	btrfs_set_root_drop_level(&root->root_item, 0);
910
911	btrfs_tree_unlock(leaf);
912
913	key.objectid = objectid;
914	key.type = BTRFS_ROOT_ITEM_KEY;
915	key.offset = 0;
916	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
917	if (ret)
918		goto fail;
919
920	return root;
921
922fail:
923	btrfs_put_root(root);
924
925	return ERR_PTR(ret);
926}
927
928static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
929					 struct btrfs_fs_info *fs_info)
930{
931	struct btrfs_root *root;
932
933	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
934	if (!root)
935		return ERR_PTR(-ENOMEM);
936
937	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
938	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
939	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
940
941	return root;
942}
943
944int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
945			      struct btrfs_root *root)
946{
947	struct extent_buffer *leaf;
948
949	/*
950	 * DON'T set SHAREABLE bit for log trees.
951	 *
952	 * Log trees are not exposed to user space thus can't be snapshotted,
953	 * and they go away before a real commit is actually done.
954	 *
955	 * They do store pointers to file data extents, and those reference
956	 * counts still get updated (along with back refs to the log tree).
957	 */
958
959	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
960			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
961	if (IS_ERR(leaf))
962		return PTR_ERR(leaf);
963
964	root->node = leaf;
965
966	btrfs_mark_buffer_dirty(trans, root->node);
967	btrfs_tree_unlock(root->node);
968
969	return 0;
970}
971
972int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
973			     struct btrfs_fs_info *fs_info)
974{
975	struct btrfs_root *log_root;
976
977	log_root = alloc_log_tree(trans, fs_info);
978	if (IS_ERR(log_root))
979		return PTR_ERR(log_root);
980
981	if (!btrfs_is_zoned(fs_info)) {
982		int ret = btrfs_alloc_log_tree_node(trans, log_root);
983
984		if (ret) {
985			btrfs_put_root(log_root);
986			return ret;
987		}
988	}
989
990	WARN_ON(fs_info->log_root_tree);
991	fs_info->log_root_tree = log_root;
992	return 0;
993}
994
995int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
996		       struct btrfs_root *root)
997{
998	struct btrfs_fs_info *fs_info = root->fs_info;
999	struct btrfs_root *log_root;
1000	struct btrfs_inode_item *inode_item;
1001	int ret;
1002
1003	log_root = alloc_log_tree(trans, fs_info);
1004	if (IS_ERR(log_root))
1005		return PTR_ERR(log_root);
1006
1007	ret = btrfs_alloc_log_tree_node(trans, log_root);
1008	if (ret) {
1009		btrfs_put_root(log_root);
1010		return ret;
1011	}
1012
1013	log_root->last_trans = trans->transid;
1014	log_root->root_key.offset = btrfs_root_id(root);
1015
1016	inode_item = &log_root->root_item.inode;
1017	btrfs_set_stack_inode_generation(inode_item, 1);
1018	btrfs_set_stack_inode_size(inode_item, 3);
1019	btrfs_set_stack_inode_nlink(inode_item, 1);
1020	btrfs_set_stack_inode_nbytes(inode_item,
1021				     fs_info->nodesize);
1022	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1023
1024	btrfs_set_root_node(&log_root->root_item, log_root->node);
1025
1026	WARN_ON(root->log_root);
1027	root->log_root = log_root;
1028	btrfs_set_root_log_transid(root, 0);
1029	root->log_transid_committed = -1;
1030	btrfs_set_root_last_log_commit(root, 0);
1031	return 0;
1032}
1033
1034static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1035					      struct btrfs_path *path,
1036					      struct btrfs_key *key)
1037{
1038	struct btrfs_root *root;
1039	struct btrfs_tree_parent_check check = { 0 };
1040	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1041	u64 generation;
1042	int ret;
1043	int level;
1044
1045	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1046	if (!root)
1047		return ERR_PTR(-ENOMEM);
1048
1049	ret = btrfs_find_root(tree_root, key, path,
1050			      &root->root_item, &root->root_key);
1051	if (ret) {
1052		if (ret > 0)
1053			ret = -ENOENT;
1054		goto fail;
1055	}
1056
1057	generation = btrfs_root_generation(&root->root_item);
1058	level = btrfs_root_level(&root->root_item);
1059	check.level = level;
1060	check.transid = generation;
1061	check.owner_root = key->objectid;
1062	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1063				     &check);
1064	if (IS_ERR(root->node)) {
1065		ret = PTR_ERR(root->node);
1066		root->node = NULL;
1067		goto fail;
1068	}
1069	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1070		ret = -EIO;
1071		goto fail;
1072	}
1073
1074	/*
1075	 * For real fs, and not log/reloc trees, root owner must
1076	 * match its root node owner
1077	 */
1078	if (!btrfs_is_testing(fs_info) &&
1079	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1080	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1081	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1082		btrfs_crit(fs_info,
1083"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1084			   btrfs_root_id(root), root->node->start,
1085			   btrfs_header_owner(root->node),
1086			   btrfs_root_id(root));
1087		ret = -EUCLEAN;
1088		goto fail;
1089	}
1090	root->commit_root = btrfs_root_node(root);
1091	return root;
1092fail:
1093	btrfs_put_root(root);
1094	return ERR_PTR(ret);
1095}
1096
1097struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1098					struct btrfs_key *key)
1099{
1100	struct btrfs_root *root;
1101	struct btrfs_path *path;
1102
1103	path = btrfs_alloc_path();
1104	if (!path)
1105		return ERR_PTR(-ENOMEM);
1106	root = read_tree_root_path(tree_root, path, key);
1107	btrfs_free_path(path);
1108
1109	return root;
1110}
1111
1112/*
1113 * Initialize subvolume root in-memory structure
1114 *
1115 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1116 */
1117static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1118{
1119	int ret;
1120
1121	btrfs_drew_lock_init(&root->snapshot_lock);
1122
1123	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1124	    !btrfs_is_data_reloc_root(root) &&
1125	    is_fstree(btrfs_root_id(root))) {
1126		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1127		btrfs_check_and_init_root_item(&root->root_item);
1128	}
1129
1130	/*
1131	 * Don't assign anonymous block device to roots that are not exposed to
1132	 * userspace, the id pool is limited to 1M
1133	 */
1134	if (is_fstree(btrfs_root_id(root)) &&
1135	    btrfs_root_refs(&root->root_item) > 0) {
1136		if (!anon_dev) {
1137			ret = get_anon_bdev(&root->anon_dev);
1138			if (ret)
1139				goto fail;
1140		} else {
1141			root->anon_dev = anon_dev;
1142		}
1143	}
1144
1145	mutex_lock(&root->objectid_mutex);
1146	ret = btrfs_init_root_free_objectid(root);
1147	if (ret) {
1148		mutex_unlock(&root->objectid_mutex);
1149		goto fail;
1150	}
1151
1152	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1153
1154	mutex_unlock(&root->objectid_mutex);
1155
1156	return 0;
1157fail:
1158	/* The caller is responsible to call btrfs_free_fs_root */
1159	return ret;
1160}
1161
1162static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1163					       u64 root_id)
1164{
1165	struct btrfs_root *root;
1166
1167	spin_lock(&fs_info->fs_roots_radix_lock);
1168	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169				 (unsigned long)root_id);
1170	root = btrfs_grab_root(root);
1171	spin_unlock(&fs_info->fs_roots_radix_lock);
1172	return root;
1173}
1174
1175static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1176						u64 objectid)
1177{
1178	struct btrfs_key key = {
1179		.objectid = objectid,
1180		.type = BTRFS_ROOT_ITEM_KEY,
1181		.offset = 0,
1182	};
1183
1184	switch (objectid) {
1185	case BTRFS_ROOT_TREE_OBJECTID:
1186		return btrfs_grab_root(fs_info->tree_root);
1187	case BTRFS_EXTENT_TREE_OBJECTID:
1188		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1189	case BTRFS_CHUNK_TREE_OBJECTID:
1190		return btrfs_grab_root(fs_info->chunk_root);
1191	case BTRFS_DEV_TREE_OBJECTID:
1192		return btrfs_grab_root(fs_info->dev_root);
1193	case BTRFS_CSUM_TREE_OBJECTID:
1194		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1195	case BTRFS_QUOTA_TREE_OBJECTID:
1196		return btrfs_grab_root(fs_info->quota_root);
1197	case BTRFS_UUID_TREE_OBJECTID:
1198		return btrfs_grab_root(fs_info->uuid_root);
1199	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1200		return btrfs_grab_root(fs_info->block_group_root);
1201	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1202		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1203	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1204		return btrfs_grab_root(fs_info->stripe_root);
1205	default:
1206		return NULL;
1207	}
1208}
1209
1210int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1211			 struct btrfs_root *root)
1212{
1213	int ret;
1214
1215	ret = radix_tree_preload(GFP_NOFS);
1216	if (ret)
1217		return ret;
1218
1219	spin_lock(&fs_info->fs_roots_radix_lock);
1220	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1221				(unsigned long)btrfs_root_id(root),
1222				root);
1223	if (ret == 0) {
1224		btrfs_grab_root(root);
1225		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1226	}
1227	spin_unlock(&fs_info->fs_roots_radix_lock);
1228	radix_tree_preload_end();
1229
1230	return ret;
1231}
1232
1233void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1234{
1235#ifdef CONFIG_BTRFS_DEBUG
1236	struct btrfs_root *root;
1237
1238	while (!list_empty(&fs_info->allocated_roots)) {
1239		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1240
1241		root = list_first_entry(&fs_info->allocated_roots,
1242					struct btrfs_root, leak_list);
1243		btrfs_err(fs_info, "leaked root %s refcount %d",
1244			  btrfs_root_name(&root->root_key, buf),
1245			  refcount_read(&root->refs));
1246		WARN_ON_ONCE(1);
1247		while (refcount_read(&root->refs) > 1)
1248			btrfs_put_root(root);
1249		btrfs_put_root(root);
1250	}
1251#endif
1252}
1253
1254static void free_global_roots(struct btrfs_fs_info *fs_info)
1255{
1256	struct btrfs_root *root;
1257	struct rb_node *node;
1258
1259	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260		root = rb_entry(node, struct btrfs_root, rb_node);
1261		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262		btrfs_put_root(root);
1263	}
1264}
1265
1266void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267{
1268	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1269
1270	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1271	percpu_counter_destroy(&fs_info->delalloc_bytes);
1272	percpu_counter_destroy(&fs_info->ordered_bytes);
1273	if (percpu_counter_initialized(em_counter))
1274		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1275	percpu_counter_destroy(em_counter);
1276	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1277	btrfs_free_csum_hash(fs_info);
1278	btrfs_free_stripe_hash_table(fs_info);
1279	btrfs_free_ref_cache(fs_info);
1280	kfree(fs_info->balance_ctl);
1281	kfree(fs_info->delayed_root);
1282	free_global_roots(fs_info);
1283	btrfs_put_root(fs_info->tree_root);
1284	btrfs_put_root(fs_info->chunk_root);
1285	btrfs_put_root(fs_info->dev_root);
1286	btrfs_put_root(fs_info->quota_root);
1287	btrfs_put_root(fs_info->uuid_root);
1288	btrfs_put_root(fs_info->fs_root);
1289	btrfs_put_root(fs_info->data_reloc_root);
1290	btrfs_put_root(fs_info->block_group_root);
1291	btrfs_put_root(fs_info->stripe_root);
1292	btrfs_check_leaked_roots(fs_info);
1293	btrfs_extent_buffer_leak_debug_check(fs_info);
1294	kfree(fs_info->super_copy);
1295	kfree(fs_info->super_for_commit);
1296	kfree(fs_info->subpage_info);
1297	kvfree(fs_info);
1298}
1299
1300
1301/*
1302 * Get an in-memory reference of a root structure.
1303 *
1304 * For essential trees like root/extent tree, we grab it from fs_info directly.
1305 * For subvolume trees, we check the cached filesystem roots first. If not
1306 * found, then read it from disk and add it to cached fs roots.
1307 *
1308 * Caller should release the root by calling btrfs_put_root() after the usage.
1309 *
1310 * NOTE: Reloc and log trees can't be read by this function as they share the
1311 *	 same root objectid.
1312 *
1313 * @objectid:	root id
1314 * @anon_dev:	preallocated anonymous block device number for new roots,
1315 *		pass NULL for a new allocation.
1316 * @check_ref:	whether to check root item references, If true, return -ENOENT
1317 *		for orphan roots
1318 */
1319static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1320					     u64 objectid, dev_t *anon_dev,
1321					     bool check_ref)
1322{
1323	struct btrfs_root *root;
1324	struct btrfs_path *path;
1325	struct btrfs_key key;
1326	int ret;
1327
1328	root = btrfs_get_global_root(fs_info, objectid);
1329	if (root)
1330		return root;
1331
1332	/*
1333	 * If we're called for non-subvolume trees, and above function didn't
1334	 * find one, do not try to read it from disk.
1335	 *
1336	 * This is namely for free-space-tree and quota tree, which can change
1337	 * at runtime and should only be grabbed from fs_info.
1338	 */
1339	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1340		return ERR_PTR(-ENOENT);
1341again:
1342	root = btrfs_lookup_fs_root(fs_info, objectid);
1343	if (root) {
1344		/*
1345		 * Some other caller may have read out the newly inserted
1346		 * subvolume already (for things like backref walk etc).  Not
1347		 * that common but still possible.  In that case, we just need
1348		 * to free the anon_dev.
1349		 */
1350		if (unlikely(anon_dev && *anon_dev)) {
1351			free_anon_bdev(*anon_dev);
1352			*anon_dev = 0;
1353		}
1354
1355		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1356			btrfs_put_root(root);
1357			return ERR_PTR(-ENOENT);
1358		}
1359		return root;
1360	}
1361
1362	key.objectid = objectid;
1363	key.type = BTRFS_ROOT_ITEM_KEY;
1364	key.offset = (u64)-1;
1365	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1366	if (IS_ERR(root))
1367		return root;
1368
1369	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1370		ret = -ENOENT;
1371		goto fail;
1372	}
1373
1374	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1375	if (ret)
1376		goto fail;
1377
1378	path = btrfs_alloc_path();
1379	if (!path) {
1380		ret = -ENOMEM;
1381		goto fail;
1382	}
1383	key.objectid = BTRFS_ORPHAN_OBJECTID;
1384	key.type = BTRFS_ORPHAN_ITEM_KEY;
1385	key.offset = objectid;
1386
1387	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1388	btrfs_free_path(path);
1389	if (ret < 0)
1390		goto fail;
1391	if (ret == 0)
1392		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1393
1394	ret = btrfs_insert_fs_root(fs_info, root);
1395	if (ret) {
1396		if (ret == -EEXIST) {
1397			btrfs_put_root(root);
1398			goto again;
1399		}
1400		goto fail;
1401	}
1402	return root;
1403fail:
1404	/*
1405	 * If our caller provided us an anonymous device, then it's his
1406	 * responsibility to free it in case we fail. So we have to set our
1407	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1408	 * and once again by our caller.
1409	 */
1410	if (anon_dev && *anon_dev)
1411		root->anon_dev = 0;
1412	btrfs_put_root(root);
1413	return ERR_PTR(ret);
1414}
1415
1416/*
1417 * Get in-memory reference of a root structure
1418 *
1419 * @objectid:	tree objectid
1420 * @check_ref:	if set, verify that the tree exists and the item has at least
1421 *		one reference
1422 */
1423struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1424				     u64 objectid, bool check_ref)
1425{
1426	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1427}
1428
1429/*
1430 * Get in-memory reference of a root structure, created as new, optionally pass
1431 * the anonymous block device id
1432 *
1433 * @objectid:	tree objectid
1434 * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1435 *		parameter value if not NULL
1436 */
1437struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1438					 u64 objectid, dev_t *anon_dev)
1439{
1440	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1441}
1442
1443/*
1444 * Return a root for the given objectid.
1445 *
1446 * @fs_info:	the fs_info
1447 * @objectid:	the objectid we need to lookup
1448 *
1449 * This is exclusively used for backref walking, and exists specifically because
1450 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1451 * creation time, which means we may have to read the tree_root in order to look
1452 * up a fs root that is not in memory.  If the root is not in memory we will
1453 * read the tree root commit root and look up the fs root from there.  This is a
1454 * temporary root, it will not be inserted into the radix tree as it doesn't
1455 * have the most uptodate information, it'll simply be discarded once the
1456 * backref code is finished using the root.
1457 */
1458struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1459						 struct btrfs_path *path,
1460						 u64 objectid)
1461{
1462	struct btrfs_root *root;
1463	struct btrfs_key key;
1464
1465	ASSERT(path->search_commit_root && path->skip_locking);
1466
1467	/*
1468	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1469	 * since this is called via the backref walking code we won't be looking
1470	 * up a root that doesn't exist, unless there's corruption.  So if root
1471	 * != NULL just return it.
1472	 */
1473	root = btrfs_get_global_root(fs_info, objectid);
1474	if (root)
1475		return root;
1476
1477	root = btrfs_lookup_fs_root(fs_info, objectid);
1478	if (root)
1479		return root;
1480
1481	key.objectid = objectid;
1482	key.type = BTRFS_ROOT_ITEM_KEY;
1483	key.offset = (u64)-1;
1484	root = read_tree_root_path(fs_info->tree_root, path, &key);
1485	btrfs_release_path(path);
1486
1487	return root;
1488}
1489
1490static int cleaner_kthread(void *arg)
1491{
1492	struct btrfs_fs_info *fs_info = arg;
1493	int again;
1494
1495	while (1) {
1496		again = 0;
1497
1498		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1499
1500		/* Make the cleaner go to sleep early. */
1501		if (btrfs_need_cleaner_sleep(fs_info))
1502			goto sleep;
1503
1504		/*
1505		 * Do not do anything if we might cause open_ctree() to block
1506		 * before we have finished mounting the filesystem.
1507		 */
1508		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1509			goto sleep;
1510
1511		if (!mutex_trylock(&fs_info->cleaner_mutex))
1512			goto sleep;
1513
1514		/*
1515		 * Avoid the problem that we change the status of the fs
1516		 * during the above check and trylock.
1517		 */
1518		if (btrfs_need_cleaner_sleep(fs_info)) {
1519			mutex_unlock(&fs_info->cleaner_mutex);
1520			goto sleep;
1521		}
1522
1523		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1524			btrfs_sysfs_feature_update(fs_info);
1525
1526		btrfs_run_delayed_iputs(fs_info);
1527
1528		again = btrfs_clean_one_deleted_snapshot(fs_info);
1529		mutex_unlock(&fs_info->cleaner_mutex);
1530
1531		/*
1532		 * The defragger has dealt with the R/O remount and umount,
1533		 * needn't do anything special here.
1534		 */
1535		btrfs_run_defrag_inodes(fs_info);
1536
1537		/*
1538		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1539		 * with relocation (btrfs_relocate_chunk) and relocation
1540		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1541		 * after acquiring fs_info->reclaim_bgs_lock. So we
1542		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1543		 * unused block groups.
1544		 */
1545		btrfs_delete_unused_bgs(fs_info);
1546
1547		/*
1548		 * Reclaim block groups in the reclaim_bgs list after we deleted
1549		 * all unused block_groups. This possibly gives us some more free
1550		 * space.
1551		 */
1552		btrfs_reclaim_bgs(fs_info);
1553sleep:
1554		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1555		if (kthread_should_park())
1556			kthread_parkme();
1557		if (kthread_should_stop())
1558			return 0;
1559		if (!again) {
1560			set_current_state(TASK_INTERRUPTIBLE);
1561			schedule();
1562			__set_current_state(TASK_RUNNING);
1563		}
1564	}
1565}
1566
1567static int transaction_kthread(void *arg)
1568{
1569	struct btrfs_root *root = arg;
1570	struct btrfs_fs_info *fs_info = root->fs_info;
1571	struct btrfs_trans_handle *trans;
1572	struct btrfs_transaction *cur;
1573	u64 transid;
1574	time64_t delta;
1575	unsigned long delay;
1576	bool cannot_commit;
1577
1578	do {
1579		cannot_commit = false;
1580		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1581		mutex_lock(&fs_info->transaction_kthread_mutex);
1582
1583		spin_lock(&fs_info->trans_lock);
1584		cur = fs_info->running_transaction;
1585		if (!cur) {
1586			spin_unlock(&fs_info->trans_lock);
1587			goto sleep;
1588		}
1589
1590		delta = ktime_get_seconds() - cur->start_time;
1591		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1592		    cur->state < TRANS_STATE_COMMIT_PREP &&
1593		    delta < fs_info->commit_interval) {
1594			spin_unlock(&fs_info->trans_lock);
1595			delay -= msecs_to_jiffies((delta - 1) * 1000);
1596			delay = min(delay,
1597				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1598			goto sleep;
1599		}
1600		transid = cur->transid;
1601		spin_unlock(&fs_info->trans_lock);
1602
1603		/* If the file system is aborted, this will always fail. */
1604		trans = btrfs_attach_transaction(root);
1605		if (IS_ERR(trans)) {
1606			if (PTR_ERR(trans) != -ENOENT)
1607				cannot_commit = true;
1608			goto sleep;
1609		}
1610		if (transid == trans->transid) {
1611			btrfs_commit_transaction(trans);
1612		} else {
1613			btrfs_end_transaction(trans);
1614		}
1615sleep:
1616		wake_up_process(fs_info->cleaner_kthread);
1617		mutex_unlock(&fs_info->transaction_kthread_mutex);
1618
1619		if (BTRFS_FS_ERROR(fs_info))
1620			btrfs_cleanup_transaction(fs_info);
1621		if (!kthread_should_stop() &&
1622				(!btrfs_transaction_blocked(fs_info) ||
1623				 cannot_commit))
1624			schedule_timeout_interruptible(delay);
1625	} while (!kthread_should_stop());
1626	return 0;
1627}
1628
1629/*
1630 * This will find the highest generation in the array of root backups.  The
1631 * index of the highest array is returned, or -EINVAL if we can't find
1632 * anything.
1633 *
1634 * We check to make sure the array is valid by comparing the
1635 * generation of the latest  root in the array with the generation
1636 * in the super block.  If they don't match we pitch it.
1637 */
1638static int find_newest_super_backup(struct btrfs_fs_info *info)
1639{
1640	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1641	u64 cur;
1642	struct btrfs_root_backup *root_backup;
1643	int i;
1644
1645	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1646		root_backup = info->super_copy->super_roots + i;
1647		cur = btrfs_backup_tree_root_gen(root_backup);
1648		if (cur == newest_gen)
1649			return i;
1650	}
1651
1652	return -EINVAL;
1653}
1654
1655/*
1656 * copy all the root pointers into the super backup array.
1657 * this will bump the backup pointer by one when it is
1658 * done
1659 */
1660static void backup_super_roots(struct btrfs_fs_info *info)
1661{
1662	const int next_backup = info->backup_root_index;
1663	struct btrfs_root_backup *root_backup;
1664
1665	root_backup = info->super_for_commit->super_roots + next_backup;
1666
1667	/*
1668	 * make sure all of our padding and empty slots get zero filled
1669	 * regardless of which ones we use today
1670	 */
1671	memset(root_backup, 0, sizeof(*root_backup));
1672
1673	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1674
1675	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1676	btrfs_set_backup_tree_root_gen(root_backup,
1677			       btrfs_header_generation(info->tree_root->node));
1678
1679	btrfs_set_backup_tree_root_level(root_backup,
1680			       btrfs_header_level(info->tree_root->node));
1681
1682	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1683	btrfs_set_backup_chunk_root_gen(root_backup,
1684			       btrfs_header_generation(info->chunk_root->node));
1685	btrfs_set_backup_chunk_root_level(root_backup,
1686			       btrfs_header_level(info->chunk_root->node));
1687
1688	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1689		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1690		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1691
1692		btrfs_set_backup_extent_root(root_backup,
1693					     extent_root->node->start);
1694		btrfs_set_backup_extent_root_gen(root_backup,
1695				btrfs_header_generation(extent_root->node));
1696		btrfs_set_backup_extent_root_level(root_backup,
1697					btrfs_header_level(extent_root->node));
1698
1699		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1700		btrfs_set_backup_csum_root_gen(root_backup,
1701					       btrfs_header_generation(csum_root->node));
1702		btrfs_set_backup_csum_root_level(root_backup,
1703						 btrfs_header_level(csum_root->node));
1704	}
1705
1706	/*
1707	 * we might commit during log recovery, which happens before we set
1708	 * the fs_root.  Make sure it is valid before we fill it in.
1709	 */
1710	if (info->fs_root && info->fs_root->node) {
1711		btrfs_set_backup_fs_root(root_backup,
1712					 info->fs_root->node->start);
1713		btrfs_set_backup_fs_root_gen(root_backup,
1714			       btrfs_header_generation(info->fs_root->node));
1715		btrfs_set_backup_fs_root_level(root_backup,
1716			       btrfs_header_level(info->fs_root->node));
1717	}
1718
1719	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1720	btrfs_set_backup_dev_root_gen(root_backup,
1721			       btrfs_header_generation(info->dev_root->node));
1722	btrfs_set_backup_dev_root_level(root_backup,
1723				       btrfs_header_level(info->dev_root->node));
1724
1725	btrfs_set_backup_total_bytes(root_backup,
1726			     btrfs_super_total_bytes(info->super_copy));
1727	btrfs_set_backup_bytes_used(root_backup,
1728			     btrfs_super_bytes_used(info->super_copy));
1729	btrfs_set_backup_num_devices(root_backup,
1730			     btrfs_super_num_devices(info->super_copy));
1731
1732	/*
1733	 * if we don't copy this out to the super_copy, it won't get remembered
1734	 * for the next commit
1735	 */
1736	memcpy(&info->super_copy->super_roots,
1737	       &info->super_for_commit->super_roots,
1738	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1739}
1740
1741/*
1742 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1743 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1744 *
1745 * @fs_info:  filesystem whose backup roots need to be read
1746 * @priority: priority of backup root required
1747 *
1748 * Returns backup root index on success and -EINVAL otherwise.
1749 */
1750static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1751{
1752	int backup_index = find_newest_super_backup(fs_info);
1753	struct btrfs_super_block *super = fs_info->super_copy;
1754	struct btrfs_root_backup *root_backup;
1755
1756	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1757		if (priority == 0)
1758			return backup_index;
1759
1760		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1761		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1762	} else {
1763		return -EINVAL;
1764	}
1765
1766	root_backup = super->super_roots + backup_index;
1767
1768	btrfs_set_super_generation(super,
1769				   btrfs_backup_tree_root_gen(root_backup));
1770	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1771	btrfs_set_super_root_level(super,
1772				   btrfs_backup_tree_root_level(root_backup));
1773	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1774
1775	/*
1776	 * Fixme: the total bytes and num_devices need to match or we should
1777	 * need a fsck
1778	 */
1779	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1780	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1781
1782	return backup_index;
1783}
1784
1785/* helper to cleanup workers */
1786static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1787{
1788	btrfs_destroy_workqueue(fs_info->fixup_workers);
1789	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1790	btrfs_destroy_workqueue(fs_info->workers);
1791	if (fs_info->endio_workers)
1792		destroy_workqueue(fs_info->endio_workers);
1793	if (fs_info->rmw_workers)
1794		destroy_workqueue(fs_info->rmw_workers);
1795	if (fs_info->compressed_write_workers)
1796		destroy_workqueue(fs_info->compressed_write_workers);
1797	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1798	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1799	btrfs_destroy_workqueue(fs_info->delayed_workers);
1800	btrfs_destroy_workqueue(fs_info->caching_workers);
1801	btrfs_destroy_workqueue(fs_info->flush_workers);
1802	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1803	if (fs_info->discard_ctl.discard_workers)
1804		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1805	/*
1806	 * Now that all other work queues are destroyed, we can safely destroy
1807	 * the queues used for metadata I/O, since tasks from those other work
1808	 * queues can do metadata I/O operations.
1809	 */
1810	if (fs_info->endio_meta_workers)
1811		destroy_workqueue(fs_info->endio_meta_workers);
1812}
1813
1814static void free_root_extent_buffers(struct btrfs_root *root)
1815{
1816	if (root) {
1817		free_extent_buffer(root->node);
1818		free_extent_buffer(root->commit_root);
1819		root->node = NULL;
1820		root->commit_root = NULL;
1821	}
1822}
1823
1824static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1825{
1826	struct btrfs_root *root, *tmp;
1827
1828	rbtree_postorder_for_each_entry_safe(root, tmp,
1829					     &fs_info->global_root_tree,
1830					     rb_node)
1831		free_root_extent_buffers(root);
1832}
1833
1834/* helper to cleanup tree roots */
1835static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1836{
1837	free_root_extent_buffers(info->tree_root);
1838
1839	free_global_root_pointers(info);
1840	free_root_extent_buffers(info->dev_root);
1841	free_root_extent_buffers(info->quota_root);
1842	free_root_extent_buffers(info->uuid_root);
1843	free_root_extent_buffers(info->fs_root);
1844	free_root_extent_buffers(info->data_reloc_root);
1845	free_root_extent_buffers(info->block_group_root);
1846	free_root_extent_buffers(info->stripe_root);
1847	if (free_chunk_root)
1848		free_root_extent_buffers(info->chunk_root);
1849}
1850
1851void btrfs_put_root(struct btrfs_root *root)
1852{
1853	if (!root)
1854		return;
1855
1856	if (refcount_dec_and_test(&root->refs)) {
1857		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1858		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1859		if (root->anon_dev)
1860			free_anon_bdev(root->anon_dev);
1861		free_root_extent_buffers(root);
1862#ifdef CONFIG_BTRFS_DEBUG
1863		spin_lock(&root->fs_info->fs_roots_radix_lock);
1864		list_del_init(&root->leak_list);
1865		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1866#endif
1867		kfree(root);
1868	}
1869}
1870
1871void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1872{
1873	int ret;
1874	struct btrfs_root *gang[8];
1875	int i;
1876
1877	while (!list_empty(&fs_info->dead_roots)) {
1878		gang[0] = list_entry(fs_info->dead_roots.next,
1879				     struct btrfs_root, root_list);
1880		list_del(&gang[0]->root_list);
1881
1882		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1883			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1884		btrfs_put_root(gang[0]);
1885	}
1886
1887	while (1) {
1888		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1889					     (void **)gang, 0,
1890					     ARRAY_SIZE(gang));
1891		if (!ret)
1892			break;
1893		for (i = 0; i < ret; i++)
1894			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1895	}
1896}
1897
1898static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1899{
1900	mutex_init(&fs_info->scrub_lock);
1901	atomic_set(&fs_info->scrubs_running, 0);
1902	atomic_set(&fs_info->scrub_pause_req, 0);
1903	atomic_set(&fs_info->scrubs_paused, 0);
1904	atomic_set(&fs_info->scrub_cancel_req, 0);
1905	init_waitqueue_head(&fs_info->scrub_pause_wait);
1906	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1907}
1908
1909static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1910{
1911	spin_lock_init(&fs_info->balance_lock);
1912	mutex_init(&fs_info->balance_mutex);
1913	atomic_set(&fs_info->balance_pause_req, 0);
1914	atomic_set(&fs_info->balance_cancel_req, 0);
1915	fs_info->balance_ctl = NULL;
1916	init_waitqueue_head(&fs_info->balance_wait_q);
1917	atomic_set(&fs_info->reloc_cancel_req, 0);
1918}
1919
1920static int btrfs_init_btree_inode(struct super_block *sb)
1921{
1922	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1923	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1924					      fs_info->tree_root);
1925	struct inode *inode;
1926
1927	inode = new_inode(sb);
1928	if (!inode)
1929		return -ENOMEM;
1930
1931	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1932	set_nlink(inode, 1);
1933	/*
1934	 * we set the i_size on the btree inode to the max possible int.
1935	 * the real end of the address space is determined by all of
1936	 * the devices in the system
1937	 */
1938	inode->i_size = OFFSET_MAX;
1939	inode->i_mapping->a_ops = &btree_aops;
1940	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1941
1942	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1943	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1944			    IO_TREE_BTREE_INODE_IO);
1945	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1946
1947	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1948	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1949	BTRFS_I(inode)->location.type = 0;
1950	BTRFS_I(inode)->location.offset = 0;
1951	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1952	__insert_inode_hash(inode, hash);
1953	fs_info->btree_inode = inode;
1954
1955	return 0;
1956}
1957
1958static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1959{
1960	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1961	init_rwsem(&fs_info->dev_replace.rwsem);
1962	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1963}
1964
1965static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1966{
1967	spin_lock_init(&fs_info->qgroup_lock);
1968	mutex_init(&fs_info->qgroup_ioctl_lock);
1969	fs_info->qgroup_tree = RB_ROOT;
1970	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1971	fs_info->qgroup_seq = 1;
1972	fs_info->qgroup_ulist = NULL;
1973	fs_info->qgroup_rescan_running = false;
1974	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1975	mutex_init(&fs_info->qgroup_rescan_lock);
1976}
1977
1978static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1979{
1980	u32 max_active = fs_info->thread_pool_size;
1981	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1982	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1983
1984	fs_info->workers =
1985		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1986
1987	fs_info->delalloc_workers =
1988		btrfs_alloc_workqueue(fs_info, "delalloc",
1989				      flags, max_active, 2);
1990
1991	fs_info->flush_workers =
1992		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1993				      flags, max_active, 0);
1994
1995	fs_info->caching_workers =
1996		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1997
1998	fs_info->fixup_workers =
1999		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2000
2001	fs_info->endio_workers =
2002		alloc_workqueue("btrfs-endio", flags, max_active);
2003	fs_info->endio_meta_workers =
2004		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2005	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2006	fs_info->endio_write_workers =
2007		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2008				      max_active, 2);
2009	fs_info->compressed_write_workers =
2010		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2011	fs_info->endio_freespace_worker =
2012		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2013				      max_active, 0);
2014	fs_info->delayed_workers =
2015		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2016				      max_active, 0);
2017	fs_info->qgroup_rescan_workers =
2018		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2019					      ordered_flags);
2020	fs_info->discard_ctl.discard_workers =
2021		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2022
2023	if (!(fs_info->workers &&
2024	      fs_info->delalloc_workers && fs_info->flush_workers &&
2025	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2026	      fs_info->compressed_write_workers &&
2027	      fs_info->endio_write_workers &&
2028	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2029	      fs_info->caching_workers && fs_info->fixup_workers &&
2030	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2031	      fs_info->discard_ctl.discard_workers)) {
2032		return -ENOMEM;
2033	}
2034
2035	return 0;
2036}
2037
2038static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2039{
2040	struct crypto_shash *csum_shash;
2041	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2042
2043	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2044
2045	if (IS_ERR(csum_shash)) {
2046		btrfs_err(fs_info, "error allocating %s hash for checksum",
2047			  csum_driver);
2048		return PTR_ERR(csum_shash);
2049	}
2050
2051	fs_info->csum_shash = csum_shash;
2052
2053	/*
2054	 * Check if the checksum implementation is a fast accelerated one.
2055	 * As-is this is a bit of a hack and should be replaced once the csum
2056	 * implementations provide that information themselves.
2057	 */
2058	switch (csum_type) {
2059	case BTRFS_CSUM_TYPE_CRC32:
2060		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2061			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2062		break;
2063	case BTRFS_CSUM_TYPE_XXHASH:
2064		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2065		break;
2066	default:
2067		break;
2068	}
2069
2070	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2071			btrfs_super_csum_name(csum_type),
2072			crypto_shash_driver_name(csum_shash));
2073	return 0;
2074}
2075
2076static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2077			    struct btrfs_fs_devices *fs_devices)
2078{
2079	int ret;
2080	struct btrfs_tree_parent_check check = { 0 };
2081	struct btrfs_root *log_tree_root;
2082	struct btrfs_super_block *disk_super = fs_info->super_copy;
2083	u64 bytenr = btrfs_super_log_root(disk_super);
2084	int level = btrfs_super_log_root_level(disk_super);
2085
2086	if (fs_devices->rw_devices == 0) {
2087		btrfs_warn(fs_info, "log replay required on RO media");
2088		return -EIO;
2089	}
2090
2091	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2092					 GFP_KERNEL);
2093	if (!log_tree_root)
2094		return -ENOMEM;
2095
2096	check.level = level;
2097	check.transid = fs_info->generation + 1;
2098	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2099	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2100	if (IS_ERR(log_tree_root->node)) {
2101		btrfs_warn(fs_info, "failed to read log tree");
2102		ret = PTR_ERR(log_tree_root->node);
2103		log_tree_root->node = NULL;
2104		btrfs_put_root(log_tree_root);
2105		return ret;
2106	}
2107	if (!extent_buffer_uptodate(log_tree_root->node)) {
2108		btrfs_err(fs_info, "failed to read log tree");
2109		btrfs_put_root(log_tree_root);
2110		return -EIO;
2111	}
2112
2113	/* returns with log_tree_root freed on success */
2114	ret = btrfs_recover_log_trees(log_tree_root);
2115	if (ret) {
2116		btrfs_handle_fs_error(fs_info, ret,
2117				      "Failed to recover log tree");
2118		btrfs_put_root(log_tree_root);
2119		return ret;
2120	}
2121
2122	if (sb_rdonly(fs_info->sb)) {
2123		ret = btrfs_commit_super(fs_info);
2124		if (ret)
2125			return ret;
2126	}
2127
2128	return 0;
2129}
2130
2131static int load_global_roots_objectid(struct btrfs_root *tree_root,
2132				      struct btrfs_path *path, u64 objectid,
2133				      const char *name)
2134{
2135	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2136	struct btrfs_root *root;
2137	u64 max_global_id = 0;
2138	int ret;
2139	struct btrfs_key key = {
2140		.objectid = objectid,
2141		.type = BTRFS_ROOT_ITEM_KEY,
2142		.offset = 0,
2143	};
2144	bool found = false;
2145
2146	/* If we have IGNOREDATACSUMS skip loading these roots. */
2147	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2148	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2149		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2150		return 0;
2151	}
2152
2153	while (1) {
2154		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2155		if (ret < 0)
2156			break;
2157
2158		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2159			ret = btrfs_next_leaf(tree_root, path);
2160			if (ret) {
2161				if (ret > 0)
2162					ret = 0;
2163				break;
2164			}
2165		}
2166		ret = 0;
2167
2168		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2169		if (key.objectid != objectid)
2170			break;
2171		btrfs_release_path(path);
2172
2173		/*
2174		 * Just worry about this for extent tree, it'll be the same for
2175		 * everybody.
2176		 */
2177		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2178			max_global_id = max(max_global_id, key.offset);
2179
2180		found = true;
2181		root = read_tree_root_path(tree_root, path, &key);
2182		if (IS_ERR(root)) {
2183			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2184				ret = PTR_ERR(root);
2185			break;
2186		}
2187		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2188		ret = btrfs_global_root_insert(root);
2189		if (ret) {
2190			btrfs_put_root(root);
2191			break;
2192		}
2193		key.offset++;
2194	}
2195	btrfs_release_path(path);
2196
2197	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2198		fs_info->nr_global_roots = max_global_id + 1;
2199
2200	if (!found || ret) {
2201		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2202			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2203
2204		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2205			ret = ret ? ret : -ENOENT;
2206		else
2207			ret = 0;
2208		btrfs_err(fs_info, "failed to load root %s", name);
2209	}
2210	return ret;
2211}
2212
2213static int load_global_roots(struct btrfs_root *tree_root)
2214{
2215	struct btrfs_path *path;
2216	int ret = 0;
2217
2218	path = btrfs_alloc_path();
2219	if (!path)
2220		return -ENOMEM;
2221
2222	ret = load_global_roots_objectid(tree_root, path,
2223					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2224	if (ret)
2225		goto out;
2226	ret = load_global_roots_objectid(tree_root, path,
2227					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2228	if (ret)
2229		goto out;
2230	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2231		goto out;
2232	ret = load_global_roots_objectid(tree_root, path,
2233					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2234					 "free space");
2235out:
2236	btrfs_free_path(path);
2237	return ret;
2238}
2239
2240static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2241{
2242	struct btrfs_root *tree_root = fs_info->tree_root;
2243	struct btrfs_root *root;
2244	struct btrfs_key location;
2245	int ret;
2246
2247	ASSERT(fs_info->tree_root);
2248
2249	ret = load_global_roots(tree_root);
2250	if (ret)
2251		return ret;
2252
2253	location.type = BTRFS_ROOT_ITEM_KEY;
2254	location.offset = 0;
2255
2256	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2257		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2258		root = btrfs_read_tree_root(tree_root, &location);
2259		if (IS_ERR(root)) {
2260			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261				ret = PTR_ERR(root);
2262				goto out;
2263			}
2264		} else {
2265			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266			fs_info->block_group_root = root;
2267		}
2268	}
2269
2270	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2271	root = btrfs_read_tree_root(tree_root, &location);
2272	if (IS_ERR(root)) {
2273		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2274			ret = PTR_ERR(root);
2275			goto out;
2276		}
2277	} else {
2278		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2279		fs_info->dev_root = root;
2280	}
2281	/* Initialize fs_info for all devices in any case */
2282	ret = btrfs_init_devices_late(fs_info);
2283	if (ret)
2284		goto out;
2285
2286	/*
2287	 * This tree can share blocks with some other fs tree during relocation
2288	 * and we need a proper setup by btrfs_get_fs_root
2289	 */
2290	root = btrfs_get_fs_root(tree_root->fs_info,
2291				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2292	if (IS_ERR(root)) {
2293		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2294			ret = PTR_ERR(root);
2295			goto out;
2296		}
2297	} else {
2298		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2299		fs_info->data_reloc_root = root;
2300	}
2301
2302	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2303	root = btrfs_read_tree_root(tree_root, &location);
2304	if (!IS_ERR(root)) {
2305		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306		fs_info->quota_root = root;
2307	}
2308
2309	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2310	root = btrfs_read_tree_root(tree_root, &location);
2311	if (IS_ERR(root)) {
2312		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2313			ret = PTR_ERR(root);
2314			if (ret != -ENOENT)
2315				goto out;
2316		}
2317	} else {
2318		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319		fs_info->uuid_root = root;
2320	}
2321
2322	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2323		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2324		root = btrfs_read_tree_root(tree_root, &location);
2325		if (IS_ERR(root)) {
2326			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2327				ret = PTR_ERR(root);
2328				goto out;
2329			}
2330		} else {
2331			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332			fs_info->stripe_root = root;
2333		}
2334	}
2335
2336	return 0;
2337out:
2338	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2339		   location.objectid, ret);
2340	return ret;
2341}
2342
2343/*
2344 * Real super block validation
2345 * NOTE: super csum type and incompat features will not be checked here.
2346 *
2347 * @sb:		super block to check
2348 * @mirror_num:	the super block number to check its bytenr:
2349 * 		0	the primary (1st) sb
2350 * 		1, 2	2nd and 3rd backup copy
2351 * 	       -1	skip bytenr check
2352 */
2353int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2354			 struct btrfs_super_block *sb, int mirror_num)
2355{
2356	u64 nodesize = btrfs_super_nodesize(sb);
2357	u64 sectorsize = btrfs_super_sectorsize(sb);
2358	int ret = 0;
2359
2360	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2361		btrfs_err(fs_info, "no valid FS found");
2362		ret = -EINVAL;
2363	}
2364	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2365		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2366				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2367		ret = -EINVAL;
2368	}
2369	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2371				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2372		ret = -EINVAL;
2373	}
2374	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2376				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2377		ret = -EINVAL;
2378	}
2379	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2380		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2381				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2382		ret = -EINVAL;
2383	}
2384
2385	/*
2386	 * Check sectorsize and nodesize first, other check will need it.
2387	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2388	 */
2389	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2390	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2391		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2392		ret = -EINVAL;
2393	}
2394
2395	/*
2396	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2397	 *
2398	 * We can support 16K sectorsize with 64K page size without problem,
2399	 * but such sectorsize/pagesize combination doesn't make much sense.
2400	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2401	 * beginning.
2402	 */
2403	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2404		btrfs_err(fs_info,
2405			"sectorsize %llu not yet supported for page size %lu",
2406			sectorsize, PAGE_SIZE);
2407		ret = -EINVAL;
2408	}
2409
2410	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2411	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2412		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2413		ret = -EINVAL;
2414	}
2415	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2416		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2417			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2418		ret = -EINVAL;
2419	}
2420
2421	/* Root alignment check */
2422	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2423		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2424			   btrfs_super_root(sb));
2425		ret = -EINVAL;
2426	}
2427	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2428		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2429			   btrfs_super_chunk_root(sb));
2430		ret = -EINVAL;
2431	}
2432	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2433		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2434			   btrfs_super_log_root(sb));
2435		ret = -EINVAL;
2436	}
2437
2438	if (!fs_info->fs_devices->temp_fsid &&
2439	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2440		btrfs_err(fs_info,
2441		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2442			  sb->fsid, fs_info->fs_devices->fsid);
2443		ret = -EINVAL;
2444	}
2445
2446	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2447		   BTRFS_FSID_SIZE) != 0) {
2448		btrfs_err(fs_info,
2449"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2450			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2451		ret = -EINVAL;
2452	}
2453
2454	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2455		   BTRFS_FSID_SIZE) != 0) {
2456		btrfs_err(fs_info,
2457			"dev_item UUID does not match metadata fsid: %pU != %pU",
2458			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2459		ret = -EINVAL;
2460	}
2461
2462	/*
2463	 * Artificial requirement for block-group-tree to force newer features
2464	 * (free-space-tree, no-holes) so the test matrix is smaller.
2465	 */
2466	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2467	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2468	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2469		btrfs_err(fs_info,
2470		"block-group-tree feature requires fres-space-tree and no-holes");
2471		ret = -EINVAL;
2472	}
2473
2474	/*
2475	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2476	 * done later
2477	 */
2478	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2479		btrfs_err(fs_info, "bytes_used is too small %llu",
2480			  btrfs_super_bytes_used(sb));
2481		ret = -EINVAL;
2482	}
2483	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2484		btrfs_err(fs_info, "invalid stripesize %u",
2485			  btrfs_super_stripesize(sb));
2486		ret = -EINVAL;
2487	}
2488	if (btrfs_super_num_devices(sb) > (1UL << 31))
2489		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2490			   btrfs_super_num_devices(sb));
2491	if (btrfs_super_num_devices(sb) == 0) {
2492		btrfs_err(fs_info, "number of devices is 0");
2493		ret = -EINVAL;
2494	}
2495
2496	if (mirror_num >= 0 &&
2497	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2498		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2499			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2500		ret = -EINVAL;
2501	}
2502
2503	/*
2504	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2505	 * and one chunk
2506	 */
2507	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2508		btrfs_err(fs_info, "system chunk array too big %u > %u",
2509			  btrfs_super_sys_array_size(sb),
2510			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2511		ret = -EINVAL;
2512	}
2513	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2514			+ sizeof(struct btrfs_chunk)) {
2515		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2516			  btrfs_super_sys_array_size(sb),
2517			  sizeof(struct btrfs_disk_key)
2518			  + sizeof(struct btrfs_chunk));
2519		ret = -EINVAL;
2520	}
2521
2522	/*
2523	 * The generation is a global counter, we'll trust it more than the others
2524	 * but it's still possible that it's the one that's wrong.
2525	 */
2526	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2527		btrfs_warn(fs_info,
2528			"suspicious: generation < chunk_root_generation: %llu < %llu",
2529			btrfs_super_generation(sb),
2530			btrfs_super_chunk_root_generation(sb));
2531	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2532	    && btrfs_super_cache_generation(sb) != (u64)-1)
2533		btrfs_warn(fs_info,
2534			"suspicious: generation < cache_generation: %llu < %llu",
2535			btrfs_super_generation(sb),
2536			btrfs_super_cache_generation(sb));
2537
2538	return ret;
2539}
2540
2541/*
2542 * Validation of super block at mount time.
2543 * Some checks already done early at mount time, like csum type and incompat
2544 * flags will be skipped.
2545 */
2546static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2547{
2548	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2549}
2550
2551/*
2552 * Validation of super block at write time.
2553 * Some checks like bytenr check will be skipped as their values will be
2554 * overwritten soon.
2555 * Extra checks like csum type and incompat flags will be done here.
2556 */
2557static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2558				      struct btrfs_super_block *sb)
2559{
2560	int ret;
2561
2562	ret = btrfs_validate_super(fs_info, sb, -1);
2563	if (ret < 0)
2564		goto out;
2565	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2566		ret = -EUCLEAN;
2567		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2568			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2569		goto out;
2570	}
2571	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2572		ret = -EUCLEAN;
2573		btrfs_err(fs_info,
2574		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2575			  btrfs_super_incompat_flags(sb),
2576			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2577		goto out;
2578	}
2579out:
2580	if (ret < 0)
2581		btrfs_err(fs_info,
2582		"super block corruption detected before writing it to disk");
2583	return ret;
2584}
2585
2586static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2587{
2588	struct btrfs_tree_parent_check check = {
2589		.level = level,
2590		.transid = gen,
2591		.owner_root = btrfs_root_id(root)
2592	};
2593	int ret = 0;
2594
2595	root->node = read_tree_block(root->fs_info, bytenr, &check);
2596	if (IS_ERR(root->node)) {
2597		ret = PTR_ERR(root->node);
2598		root->node = NULL;
2599		return ret;
2600	}
2601	if (!extent_buffer_uptodate(root->node)) {
2602		free_extent_buffer(root->node);
2603		root->node = NULL;
2604		return -EIO;
2605	}
2606
2607	btrfs_set_root_node(&root->root_item, root->node);
2608	root->commit_root = btrfs_root_node(root);
2609	btrfs_set_root_refs(&root->root_item, 1);
2610	return ret;
2611}
2612
2613static int load_important_roots(struct btrfs_fs_info *fs_info)
2614{
2615	struct btrfs_super_block *sb = fs_info->super_copy;
2616	u64 gen, bytenr;
2617	int level, ret;
2618
2619	bytenr = btrfs_super_root(sb);
2620	gen = btrfs_super_generation(sb);
2621	level = btrfs_super_root_level(sb);
2622	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2623	if (ret) {
2624		btrfs_warn(fs_info, "couldn't read tree root");
2625		return ret;
2626	}
2627	return 0;
2628}
2629
2630static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2631{
2632	int backup_index = find_newest_super_backup(fs_info);
2633	struct btrfs_super_block *sb = fs_info->super_copy;
2634	struct btrfs_root *tree_root = fs_info->tree_root;
2635	bool handle_error = false;
2636	int ret = 0;
2637	int i;
2638
2639	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2640		if (handle_error) {
2641			if (!IS_ERR(tree_root->node))
2642				free_extent_buffer(tree_root->node);
2643			tree_root->node = NULL;
2644
2645			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2646				break;
2647
2648			free_root_pointers(fs_info, 0);
2649
2650			/*
2651			 * Don't use the log in recovery mode, it won't be
2652			 * valid
2653			 */
2654			btrfs_set_super_log_root(sb, 0);
2655
2656			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2657			ret = read_backup_root(fs_info, i);
2658			backup_index = ret;
2659			if (ret < 0)
2660				return ret;
2661		}
2662
2663		ret = load_important_roots(fs_info);
2664		if (ret) {
2665			handle_error = true;
2666			continue;
2667		}
2668
2669		/*
2670		 * No need to hold btrfs_root::objectid_mutex since the fs
2671		 * hasn't been fully initialised and we are the only user
2672		 */
2673		ret = btrfs_init_root_free_objectid(tree_root);
2674		if (ret < 0) {
2675			handle_error = true;
2676			continue;
2677		}
2678
2679		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2680
2681		ret = btrfs_read_roots(fs_info);
2682		if (ret < 0) {
2683			handle_error = true;
2684			continue;
2685		}
2686
2687		/* All successful */
2688		fs_info->generation = btrfs_header_generation(tree_root->node);
2689		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2690		fs_info->last_reloc_trans = 0;
2691
2692		/* Always begin writing backup roots after the one being used */
2693		if (backup_index < 0) {
2694			fs_info->backup_root_index = 0;
2695		} else {
2696			fs_info->backup_root_index = backup_index + 1;
2697			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2698		}
2699		break;
2700	}
2701
2702	return ret;
2703}
2704
2705void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2706{
2707	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2708	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2709	INIT_LIST_HEAD(&fs_info->trans_list);
2710	INIT_LIST_HEAD(&fs_info->dead_roots);
2711	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2712	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2713	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2714	spin_lock_init(&fs_info->delalloc_root_lock);
2715	spin_lock_init(&fs_info->trans_lock);
2716	spin_lock_init(&fs_info->fs_roots_radix_lock);
2717	spin_lock_init(&fs_info->delayed_iput_lock);
2718	spin_lock_init(&fs_info->defrag_inodes_lock);
2719	spin_lock_init(&fs_info->super_lock);
2720	spin_lock_init(&fs_info->buffer_lock);
2721	spin_lock_init(&fs_info->unused_bgs_lock);
2722	spin_lock_init(&fs_info->treelog_bg_lock);
2723	spin_lock_init(&fs_info->zone_active_bgs_lock);
2724	spin_lock_init(&fs_info->relocation_bg_lock);
2725	rwlock_init(&fs_info->tree_mod_log_lock);
2726	rwlock_init(&fs_info->global_root_lock);
2727	mutex_init(&fs_info->unused_bg_unpin_mutex);
2728	mutex_init(&fs_info->reclaim_bgs_lock);
2729	mutex_init(&fs_info->reloc_mutex);
2730	mutex_init(&fs_info->delalloc_root_mutex);
2731	mutex_init(&fs_info->zoned_meta_io_lock);
2732	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2733	seqlock_init(&fs_info->profiles_lock);
2734
2735	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2736	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2737	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2738	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2739	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2740				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2741	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2742				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2743	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2744				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2745	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2746				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2747
2748	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2749	INIT_LIST_HEAD(&fs_info->space_info);
2750	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2751	INIT_LIST_HEAD(&fs_info->unused_bgs);
2752	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2753	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2754#ifdef CONFIG_BTRFS_DEBUG
2755	INIT_LIST_HEAD(&fs_info->allocated_roots);
2756	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2757	spin_lock_init(&fs_info->eb_leak_lock);
2758#endif
2759	fs_info->mapping_tree = RB_ROOT_CACHED;
2760	rwlock_init(&fs_info->mapping_tree_lock);
2761	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2762			     BTRFS_BLOCK_RSV_GLOBAL);
2763	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2764	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2765	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2766	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2767			     BTRFS_BLOCK_RSV_DELOPS);
2768	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2769			     BTRFS_BLOCK_RSV_DELREFS);
2770
2771	atomic_set(&fs_info->async_delalloc_pages, 0);
2772	atomic_set(&fs_info->defrag_running, 0);
2773	atomic_set(&fs_info->nr_delayed_iputs, 0);
2774	atomic64_set(&fs_info->tree_mod_seq, 0);
2775	fs_info->global_root_tree = RB_ROOT;
2776	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2777	fs_info->metadata_ratio = 0;
2778	fs_info->defrag_inodes = RB_ROOT;
2779	atomic64_set(&fs_info->free_chunk_space, 0);
2780	fs_info->tree_mod_log = RB_ROOT;
2781	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2782	btrfs_init_ref_verify(fs_info);
2783
2784	fs_info->thread_pool_size = min_t(unsigned long,
2785					  num_online_cpus() + 2, 8);
2786
2787	INIT_LIST_HEAD(&fs_info->ordered_roots);
2788	spin_lock_init(&fs_info->ordered_root_lock);
2789
2790	btrfs_init_scrub(fs_info);
2791	btrfs_init_balance(fs_info);
2792	btrfs_init_async_reclaim_work(fs_info);
2793
2794	rwlock_init(&fs_info->block_group_cache_lock);
2795	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2796
2797	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2798			    IO_TREE_FS_EXCLUDED_EXTENTS);
2799
2800	mutex_init(&fs_info->ordered_operations_mutex);
2801	mutex_init(&fs_info->tree_log_mutex);
2802	mutex_init(&fs_info->chunk_mutex);
2803	mutex_init(&fs_info->transaction_kthread_mutex);
2804	mutex_init(&fs_info->cleaner_mutex);
2805	mutex_init(&fs_info->ro_block_group_mutex);
2806	init_rwsem(&fs_info->commit_root_sem);
2807	init_rwsem(&fs_info->cleanup_work_sem);
2808	init_rwsem(&fs_info->subvol_sem);
2809	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2810
2811	btrfs_init_dev_replace_locks(fs_info);
2812	btrfs_init_qgroup(fs_info);
2813	btrfs_discard_init(fs_info);
2814
2815	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2816	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2817
2818	init_waitqueue_head(&fs_info->transaction_throttle);
2819	init_waitqueue_head(&fs_info->transaction_wait);
2820	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2821	init_waitqueue_head(&fs_info->async_submit_wait);
2822	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2823
2824	/* Usable values until the real ones are cached from the superblock */
2825	fs_info->nodesize = 4096;
2826	fs_info->sectorsize = 4096;
2827	fs_info->sectorsize_bits = ilog2(4096);
2828	fs_info->stripesize = 4096;
2829
2830	/* Default compress algorithm when user does -o compress */
2831	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
2833	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2834
2835	spin_lock_init(&fs_info->swapfile_pins_lock);
2836	fs_info->swapfile_pins = RB_ROOT;
2837
2838	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2839	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2840}
2841
2842static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2843{
2844	int ret;
2845
2846	fs_info->sb = sb;
2847	/* Temporary fixed values for block size until we read the superblock. */
2848	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2849	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2850
2851	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2852	if (ret)
2853		return ret;
2854
2855	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2856	if (ret)
2857		return ret;
2858
2859	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2860	if (ret)
2861		return ret;
2862
2863	fs_info->dirty_metadata_batch = PAGE_SIZE *
2864					(1 + ilog2(nr_cpu_ids));
2865
2866	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2867	if (ret)
2868		return ret;
2869
2870	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2871			GFP_KERNEL);
2872	if (ret)
2873		return ret;
2874
2875	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2876					GFP_KERNEL);
2877	if (!fs_info->delayed_root)
2878		return -ENOMEM;
2879	btrfs_init_delayed_root(fs_info->delayed_root);
2880
2881	if (sb_rdonly(sb))
2882		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2883
2884	return btrfs_alloc_stripe_hash_table(fs_info);
2885}
2886
2887static int btrfs_uuid_rescan_kthread(void *data)
2888{
2889	struct btrfs_fs_info *fs_info = data;
2890	int ret;
2891
2892	/*
2893	 * 1st step is to iterate through the existing UUID tree and
2894	 * to delete all entries that contain outdated data.
2895	 * 2nd step is to add all missing entries to the UUID tree.
2896	 */
2897	ret = btrfs_uuid_tree_iterate(fs_info);
2898	if (ret < 0) {
2899		if (ret != -EINTR)
2900			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2901				   ret);
2902		up(&fs_info->uuid_tree_rescan_sem);
2903		return ret;
2904	}
2905	return btrfs_uuid_scan_kthread(data);
2906}
2907
2908static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2909{
2910	struct task_struct *task;
2911
2912	down(&fs_info->uuid_tree_rescan_sem);
2913	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2914	if (IS_ERR(task)) {
2915		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2916		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2917		up(&fs_info->uuid_tree_rescan_sem);
2918		return PTR_ERR(task);
2919	}
2920
2921	return 0;
2922}
2923
2924static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2925{
2926	u64 root_objectid = 0;
2927	struct btrfs_root *gang[8];
2928	int i = 0;
2929	int err = 0;
2930	unsigned int ret = 0;
2931
2932	while (1) {
2933		spin_lock(&fs_info->fs_roots_radix_lock);
2934		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2935					     (void **)gang, root_objectid,
2936					     ARRAY_SIZE(gang));
2937		if (!ret) {
2938			spin_unlock(&fs_info->fs_roots_radix_lock);
2939			break;
2940		}
2941		root_objectid = btrfs_root_id(gang[ret - 1]) + 1;
2942
2943		for (i = 0; i < ret; i++) {
2944			/* Avoid to grab roots in dead_roots. */
2945			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2946				gang[i] = NULL;
2947				continue;
2948			}
2949			/* Grab all the search result for later use. */
2950			gang[i] = btrfs_grab_root(gang[i]);
2951		}
2952		spin_unlock(&fs_info->fs_roots_radix_lock);
2953
2954		for (i = 0; i < ret; i++) {
2955			if (!gang[i])
2956				continue;
2957			root_objectid = btrfs_root_id(gang[i]);
2958			err = btrfs_orphan_cleanup(gang[i]);
2959			if (err)
2960				goto out;
2961			btrfs_put_root(gang[i]);
2962		}
2963		root_objectid++;
2964	}
2965out:
2966	/* Release the uncleaned roots due to error. */
2967	for (; i < ret; i++) {
2968		if (gang[i])
2969			btrfs_put_root(gang[i]);
2970	}
2971	return err;
2972}
2973
2974/*
2975 * Mounting logic specific to read-write file systems. Shared by open_ctree
2976 * and btrfs_remount when remounting from read-only to read-write.
2977 */
2978int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2979{
2980	int ret;
2981	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2982	bool rebuild_free_space_tree = false;
2983
2984	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2985	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2986		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2987			btrfs_warn(fs_info,
2988				   "'clear_cache' option is ignored with extent tree v2");
2989		else
2990			rebuild_free_space_tree = true;
2991	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2992		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2993		btrfs_warn(fs_info, "free space tree is invalid");
2994		rebuild_free_space_tree = true;
2995	}
2996
2997	if (rebuild_free_space_tree) {
2998		btrfs_info(fs_info, "rebuilding free space tree");
2999		ret = btrfs_rebuild_free_space_tree(fs_info);
3000		if (ret) {
3001			btrfs_warn(fs_info,
3002				   "failed to rebuild free space tree: %d", ret);
3003			goto out;
3004		}
3005	}
3006
3007	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3008	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3009		btrfs_info(fs_info, "disabling free space tree");
3010		ret = btrfs_delete_free_space_tree(fs_info);
3011		if (ret) {
3012			btrfs_warn(fs_info,
3013				   "failed to disable free space tree: %d", ret);
3014			goto out;
3015		}
3016	}
3017
3018	/*
3019	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3020	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3021	 * them into the fs_info->fs_roots_radix tree. This must be done before
3022	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3023	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3024	 * item before the root's tree is deleted - this means that if we unmount
3025	 * or crash before the deletion completes, on the next mount we will not
3026	 * delete what remains of the tree because the orphan item does not
3027	 * exists anymore, which is what tells us we have a pending deletion.
3028	 */
3029	ret = btrfs_find_orphan_roots(fs_info);
3030	if (ret)
3031		goto out;
3032
3033	ret = btrfs_cleanup_fs_roots(fs_info);
3034	if (ret)
3035		goto out;
3036
3037	down_read(&fs_info->cleanup_work_sem);
3038	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3039	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3040		up_read(&fs_info->cleanup_work_sem);
3041		goto out;
3042	}
3043	up_read(&fs_info->cleanup_work_sem);
3044
3045	mutex_lock(&fs_info->cleaner_mutex);
3046	ret = btrfs_recover_relocation(fs_info);
3047	mutex_unlock(&fs_info->cleaner_mutex);
3048	if (ret < 0) {
3049		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3050		goto out;
3051	}
3052
3053	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3054	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3055		btrfs_info(fs_info, "creating free space tree");
3056		ret = btrfs_create_free_space_tree(fs_info);
3057		if (ret) {
3058			btrfs_warn(fs_info,
3059				"failed to create free space tree: %d", ret);
3060			goto out;
3061		}
3062	}
3063
3064	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3065		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3066		if (ret)
3067			goto out;
3068	}
3069
3070	ret = btrfs_resume_balance_async(fs_info);
3071	if (ret)
3072		goto out;
3073
3074	ret = btrfs_resume_dev_replace_async(fs_info);
3075	if (ret) {
3076		btrfs_warn(fs_info, "failed to resume dev_replace");
3077		goto out;
3078	}
3079
3080	btrfs_qgroup_rescan_resume(fs_info);
3081
3082	if (!fs_info->uuid_root) {
3083		btrfs_info(fs_info, "creating UUID tree");
3084		ret = btrfs_create_uuid_tree(fs_info);
3085		if (ret) {
3086			btrfs_warn(fs_info,
3087				   "failed to create the UUID tree %d", ret);
3088			goto out;
3089		}
3090	}
3091
3092out:
3093	return ret;
3094}
3095
3096/*
3097 * Do various sanity and dependency checks of different features.
3098 *
3099 * @is_rw_mount:	If the mount is read-write.
3100 *
3101 * This is the place for less strict checks (like for subpage or artificial
3102 * feature dependencies).
3103 *
3104 * For strict checks or possible corruption detection, see
3105 * btrfs_validate_super().
3106 *
3107 * This should be called after btrfs_parse_options(), as some mount options
3108 * (space cache related) can modify on-disk format like free space tree and
3109 * screw up certain feature dependencies.
3110 */
3111int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3112{
3113	struct btrfs_super_block *disk_super = fs_info->super_copy;
3114	u64 incompat = btrfs_super_incompat_flags(disk_super);
3115	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3116	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3117
3118	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3119		btrfs_err(fs_info,
3120		"cannot mount because of unknown incompat features (0x%llx)",
3121		    incompat);
3122		return -EINVAL;
3123	}
3124
3125	/* Runtime limitation for mixed block groups. */
3126	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3127	    (fs_info->sectorsize != fs_info->nodesize)) {
3128		btrfs_err(fs_info,
3129"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3130			fs_info->nodesize, fs_info->sectorsize);
3131		return -EINVAL;
3132	}
3133
3134	/* Mixed backref is an always-enabled feature. */
3135	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3136
3137	/* Set compression related flags just in case. */
3138	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3139		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3140	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3141		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3142
3143	/*
3144	 * An ancient flag, which should really be marked deprecated.
3145	 * Such runtime limitation doesn't really need a incompat flag.
3146	 */
3147	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3148		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3149
3150	if (compat_ro_unsupp && is_rw_mount) {
3151		btrfs_err(fs_info,
3152	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3153		       compat_ro);
3154		return -EINVAL;
3155	}
3156
3157	/*
3158	 * We have unsupported RO compat features, although RO mounted, we
3159	 * should not cause any metadata writes, including log replay.
3160	 * Or we could screw up whatever the new feature requires.
3161	 */
3162	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3163	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3164		btrfs_err(fs_info,
3165"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3166			  compat_ro);
3167		return -EINVAL;
3168	}
3169
3170	/*
3171	 * Artificial limitations for block group tree, to force
3172	 * block-group-tree to rely on no-holes and free-space-tree.
3173	 */
3174	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3175	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3176	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3177		btrfs_err(fs_info,
3178"block-group-tree feature requires no-holes and free-space-tree features");
3179		return -EINVAL;
3180	}
3181
3182	/*
3183	 * Subpage runtime limitation on v1 cache.
3184	 *
3185	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3186	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3187	 * going to be deprecated anyway.
3188	 */
3189	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3190		btrfs_warn(fs_info,
3191	"v1 space cache is not supported for page size %lu with sectorsize %u",
3192			   PAGE_SIZE, fs_info->sectorsize);
3193		return -EINVAL;
3194	}
3195
3196	/* This can be called by remount, we need to protect the super block. */
3197	spin_lock(&fs_info->super_lock);
3198	btrfs_set_super_incompat_flags(disk_super, incompat);
3199	spin_unlock(&fs_info->super_lock);
3200
3201	return 0;
3202}
3203
3204int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3205		      char *options)
3206{
3207	u32 sectorsize;
3208	u32 nodesize;
3209	u32 stripesize;
3210	u64 generation;
3211	u16 csum_type;
3212	struct btrfs_super_block *disk_super;
3213	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3214	struct btrfs_root *tree_root;
3215	struct btrfs_root *chunk_root;
3216	int ret;
3217	int level;
3218
3219	ret = init_mount_fs_info(fs_info, sb);
3220	if (ret)
3221		goto fail;
3222
3223	/* These need to be init'ed before we start creating inodes and such. */
3224	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3225				     GFP_KERNEL);
3226	fs_info->tree_root = tree_root;
3227	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3228				      GFP_KERNEL);
3229	fs_info->chunk_root = chunk_root;
3230	if (!tree_root || !chunk_root) {
3231		ret = -ENOMEM;
3232		goto fail;
3233	}
3234
3235	ret = btrfs_init_btree_inode(sb);
3236	if (ret)
3237		goto fail;
3238
3239	invalidate_bdev(fs_devices->latest_dev->bdev);
3240
3241	/*
3242	 * Read super block and check the signature bytes only
3243	 */
3244	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3245	if (IS_ERR(disk_super)) {
3246		ret = PTR_ERR(disk_super);
3247		goto fail_alloc;
3248	}
3249
3250	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3251	/*
3252	 * Verify the type first, if that or the checksum value are
3253	 * corrupted, we'll find out
3254	 */
3255	csum_type = btrfs_super_csum_type(disk_super);
3256	if (!btrfs_supported_super_csum(csum_type)) {
3257		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3258			  csum_type);
3259		ret = -EINVAL;
3260		btrfs_release_disk_super(disk_super);
3261		goto fail_alloc;
3262	}
3263
3264	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3265
3266	ret = btrfs_init_csum_hash(fs_info, csum_type);
3267	if (ret) {
3268		btrfs_release_disk_super(disk_super);
3269		goto fail_alloc;
3270	}
3271
3272	/*
3273	 * We want to check superblock checksum, the type is stored inside.
3274	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3275	 */
3276	if (btrfs_check_super_csum(fs_info, disk_super)) {
3277		btrfs_err(fs_info, "superblock checksum mismatch");
3278		ret = -EINVAL;
3279		btrfs_release_disk_super(disk_super);
3280		goto fail_alloc;
3281	}
3282
3283	/*
3284	 * super_copy is zeroed at allocation time and we never touch the
3285	 * following bytes up to INFO_SIZE, the checksum is calculated from
3286	 * the whole block of INFO_SIZE
3287	 */
3288	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3289	btrfs_release_disk_super(disk_super);
3290
3291	disk_super = fs_info->super_copy;
3292
3293	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3294	       sizeof(*fs_info->super_for_commit));
3295
3296	ret = btrfs_validate_mount_super(fs_info);
3297	if (ret) {
3298		btrfs_err(fs_info, "superblock contains fatal errors");
3299		ret = -EINVAL;
3300		goto fail_alloc;
3301	}
3302
3303	if (!btrfs_super_root(disk_super)) {
3304		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3305		ret = -EINVAL;
3306		goto fail_alloc;
3307	}
3308
3309	/* check FS state, whether FS is broken. */
3310	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3311		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3312
3313	/* Set up fs_info before parsing mount options */
3314	nodesize = btrfs_super_nodesize(disk_super);
3315	sectorsize = btrfs_super_sectorsize(disk_super);
3316	stripesize = sectorsize;
3317	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3318	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3319
3320	fs_info->nodesize = nodesize;
3321	fs_info->sectorsize = sectorsize;
3322	fs_info->sectorsize_bits = ilog2(sectorsize);
3323	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3324	fs_info->stripesize = stripesize;
3325
3326	/*
3327	 * Handle the space caching options appropriately now that we have the
3328	 * super block loaded and validated.
3329	 */
3330	btrfs_set_free_space_cache_settings(fs_info);
3331
3332	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3333		ret = -EINVAL;
3334		goto fail_alloc;
3335	}
3336
3337	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3338	if (ret < 0)
3339		goto fail_alloc;
3340
3341	/*
3342	 * At this point our mount options are validated, if we set ->max_inline
3343	 * to something non-standard make sure we truncate it to sectorsize.
3344	 */
3345	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3346
3347	if (sectorsize < PAGE_SIZE) {
3348		struct btrfs_subpage_info *subpage_info;
3349
3350		btrfs_warn(fs_info,
3351		"read-write for sector size %u with page size %lu is experimental",
3352			   sectorsize, PAGE_SIZE);
3353		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3354		if (!subpage_info) {
3355			ret = -ENOMEM;
3356			goto fail_alloc;
3357		}
3358		btrfs_init_subpage_info(subpage_info, sectorsize);
3359		fs_info->subpage_info = subpage_info;
3360	}
3361
3362	ret = btrfs_init_workqueues(fs_info);
3363	if (ret)
3364		goto fail_sb_buffer;
3365
3366	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3367	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3368
3369	/* Update the values for the current filesystem. */
3370	sb->s_blocksize = sectorsize;
3371	sb->s_blocksize_bits = blksize_bits(sectorsize);
3372	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3373
3374	mutex_lock(&fs_info->chunk_mutex);
3375	ret = btrfs_read_sys_array(fs_info);
3376	mutex_unlock(&fs_info->chunk_mutex);
3377	if (ret) {
3378		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3379		goto fail_sb_buffer;
3380	}
3381
3382	generation = btrfs_super_chunk_root_generation(disk_super);
3383	level = btrfs_super_chunk_root_level(disk_super);
3384	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3385			      generation, level);
3386	if (ret) {
3387		btrfs_err(fs_info, "failed to read chunk root");
3388		goto fail_tree_roots;
3389	}
3390
3391	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3392			   offsetof(struct btrfs_header, chunk_tree_uuid),
3393			   BTRFS_UUID_SIZE);
3394
3395	ret = btrfs_read_chunk_tree(fs_info);
3396	if (ret) {
3397		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3398		goto fail_tree_roots;
3399	}
3400
3401	/*
3402	 * At this point we know all the devices that make this filesystem,
3403	 * including the seed devices but we don't know yet if the replace
3404	 * target is required. So free devices that are not part of this
3405	 * filesystem but skip the replace target device which is checked
3406	 * below in btrfs_init_dev_replace().
3407	 */
3408	btrfs_free_extra_devids(fs_devices);
3409	if (!fs_devices->latest_dev->bdev) {
3410		btrfs_err(fs_info, "failed to read devices");
3411		ret = -EIO;
3412		goto fail_tree_roots;
3413	}
3414
3415	ret = init_tree_roots(fs_info);
3416	if (ret)
3417		goto fail_tree_roots;
3418
3419	/*
3420	 * Get zone type information of zoned block devices. This will also
3421	 * handle emulation of a zoned filesystem if a regular device has the
3422	 * zoned incompat feature flag set.
3423	 */
3424	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3425	if (ret) {
3426		btrfs_err(fs_info,
3427			  "zoned: failed to read device zone info: %d", ret);
3428		goto fail_block_groups;
3429	}
3430
3431	/*
3432	 * If we have a uuid root and we're not being told to rescan we need to
3433	 * check the generation here so we can set the
3434	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3435	 * transaction during a balance or the log replay without updating the
3436	 * uuid generation, and then if we crash we would rescan the uuid tree,
3437	 * even though it was perfectly fine.
3438	 */
3439	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3440	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3441		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3442
3443	ret = btrfs_verify_dev_extents(fs_info);
3444	if (ret) {
3445		btrfs_err(fs_info,
3446			  "failed to verify dev extents against chunks: %d",
3447			  ret);
3448		goto fail_block_groups;
3449	}
3450	ret = btrfs_recover_balance(fs_info);
3451	if (ret) {
3452		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3453		goto fail_block_groups;
3454	}
3455
3456	ret = btrfs_init_dev_stats(fs_info);
3457	if (ret) {
3458		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3459		goto fail_block_groups;
3460	}
3461
3462	ret = btrfs_init_dev_replace(fs_info);
3463	if (ret) {
3464		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3465		goto fail_block_groups;
3466	}
3467
3468	ret = btrfs_check_zoned_mode(fs_info);
3469	if (ret) {
3470		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3471			  ret);
3472		goto fail_block_groups;
3473	}
3474
3475	ret = btrfs_sysfs_add_fsid(fs_devices);
3476	if (ret) {
3477		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3478				ret);
3479		goto fail_block_groups;
3480	}
3481
3482	ret = btrfs_sysfs_add_mounted(fs_info);
3483	if (ret) {
3484		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3485		goto fail_fsdev_sysfs;
3486	}
3487
3488	ret = btrfs_init_space_info(fs_info);
3489	if (ret) {
3490		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3491		goto fail_sysfs;
3492	}
3493
3494	ret = btrfs_read_block_groups(fs_info);
3495	if (ret) {
3496		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3497		goto fail_sysfs;
3498	}
3499
3500	btrfs_free_zone_cache(fs_info);
3501
3502	btrfs_check_active_zone_reservation(fs_info);
3503
3504	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3505	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3506		btrfs_warn(fs_info,
3507		"writable mount is not allowed due to too many missing devices");
3508		ret = -EINVAL;
3509		goto fail_sysfs;
3510	}
3511
3512	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3513					       "btrfs-cleaner");
3514	if (IS_ERR(fs_info->cleaner_kthread)) {
3515		ret = PTR_ERR(fs_info->cleaner_kthread);
3516		goto fail_sysfs;
3517	}
3518
3519	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3520						   tree_root,
3521						   "btrfs-transaction");
3522	if (IS_ERR(fs_info->transaction_kthread)) {
3523		ret = PTR_ERR(fs_info->transaction_kthread);
3524		goto fail_cleaner;
3525	}
3526
3527	ret = btrfs_read_qgroup_config(fs_info);
3528	if (ret)
3529		goto fail_trans_kthread;
3530
3531	if (btrfs_build_ref_tree(fs_info))
3532		btrfs_err(fs_info, "couldn't build ref tree");
3533
3534	/* do not make disk changes in broken FS or nologreplay is given */
3535	if (btrfs_super_log_root(disk_super) != 0 &&
3536	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3537		btrfs_info(fs_info, "start tree-log replay");
3538		ret = btrfs_replay_log(fs_info, fs_devices);
3539		if (ret)
3540			goto fail_qgroup;
3541	}
3542
3543	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3544	if (IS_ERR(fs_info->fs_root)) {
3545		ret = PTR_ERR(fs_info->fs_root);
3546		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3547		fs_info->fs_root = NULL;
3548		goto fail_qgroup;
3549	}
3550
3551	if (sb_rdonly(sb))
3552		return 0;
3553
3554	ret = btrfs_start_pre_rw_mount(fs_info);
3555	if (ret) {
3556		close_ctree(fs_info);
3557		return ret;
3558	}
3559	btrfs_discard_resume(fs_info);
3560
3561	if (fs_info->uuid_root &&
3562	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3563	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3564		btrfs_info(fs_info, "checking UUID tree");
3565		ret = btrfs_check_uuid_tree(fs_info);
3566		if (ret) {
3567			btrfs_warn(fs_info,
3568				"failed to check the UUID tree: %d", ret);
3569			close_ctree(fs_info);
3570			return ret;
3571		}
3572	}
3573
3574	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3575
3576	/* Kick the cleaner thread so it'll start deleting snapshots. */
3577	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3578		wake_up_process(fs_info->cleaner_kthread);
3579
3580	return 0;
3581
3582fail_qgroup:
3583	btrfs_free_qgroup_config(fs_info);
3584fail_trans_kthread:
3585	kthread_stop(fs_info->transaction_kthread);
3586	btrfs_cleanup_transaction(fs_info);
3587	btrfs_free_fs_roots(fs_info);
3588fail_cleaner:
3589	kthread_stop(fs_info->cleaner_kthread);
3590
3591	/*
3592	 * make sure we're done with the btree inode before we stop our
3593	 * kthreads
3594	 */
3595	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3596
3597fail_sysfs:
3598	btrfs_sysfs_remove_mounted(fs_info);
3599
3600fail_fsdev_sysfs:
3601	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3602
3603fail_block_groups:
3604	btrfs_put_block_group_cache(fs_info);
3605
3606fail_tree_roots:
3607	if (fs_info->data_reloc_root)
3608		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3609	free_root_pointers(fs_info, true);
3610	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3611
3612fail_sb_buffer:
3613	btrfs_stop_all_workers(fs_info);
3614	btrfs_free_block_groups(fs_info);
3615fail_alloc:
3616	btrfs_mapping_tree_free(fs_info);
3617
3618	iput(fs_info->btree_inode);
3619fail:
3620	btrfs_close_devices(fs_info->fs_devices);
3621	ASSERT(ret < 0);
3622	return ret;
3623}
3624ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3625
3626static void btrfs_end_super_write(struct bio *bio)
3627{
3628	struct btrfs_device *device = bio->bi_private;
3629	struct folio_iter fi;
3630
3631	bio_for_each_folio_all(fi, bio) {
3632		if (bio->bi_status) {
3633			btrfs_warn_rl_in_rcu(device->fs_info,
3634				"lost super block write due to IO error on %s (%d)",
3635				btrfs_dev_name(device),
3636				blk_status_to_errno(bio->bi_status));
3637			btrfs_dev_stat_inc_and_print(device,
3638						     BTRFS_DEV_STAT_WRITE_ERRS);
3639			/* Ensure failure if the primary sb fails. */
3640			if (bio->bi_opf & REQ_FUA)
3641				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3642					   &device->sb_write_errors);
3643			else
3644				atomic_inc(&device->sb_write_errors);
3645		}
3646		folio_unlock(fi.folio);
3647		folio_put(fi.folio);
3648	}
3649
3650	bio_put(bio);
3651}
3652
3653struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3654						   int copy_num, bool drop_cache)
3655{
3656	struct btrfs_super_block *super;
3657	struct page *page;
3658	u64 bytenr, bytenr_orig;
3659	struct address_space *mapping = bdev->bd_mapping;
3660	int ret;
3661
3662	bytenr_orig = btrfs_sb_offset(copy_num);
3663	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3664	if (ret == -ENOENT)
3665		return ERR_PTR(-EINVAL);
3666	else if (ret)
3667		return ERR_PTR(ret);
3668
3669	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3670		return ERR_PTR(-EINVAL);
3671
3672	if (drop_cache) {
3673		/* This should only be called with the primary sb. */
3674		ASSERT(copy_num == 0);
3675
3676		/*
3677		 * Drop the page of the primary superblock, so later read will
3678		 * always read from the device.
3679		 */
3680		invalidate_inode_pages2_range(mapping,
3681				bytenr >> PAGE_SHIFT,
3682				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3683	}
3684
3685	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3686	if (IS_ERR(page))
3687		return ERR_CAST(page);
3688
3689	super = page_address(page);
3690	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3691		btrfs_release_disk_super(super);
3692		return ERR_PTR(-ENODATA);
3693	}
3694
3695	if (btrfs_super_bytenr(super) != bytenr_orig) {
3696		btrfs_release_disk_super(super);
3697		return ERR_PTR(-EINVAL);
3698	}
3699
3700	return super;
3701}
3702
3703
3704struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3705{
3706	struct btrfs_super_block *super, *latest = NULL;
3707	int i;
3708	u64 transid = 0;
3709
3710	/* we would like to check all the supers, but that would make
3711	 * a btrfs mount succeed after a mkfs from a different FS.
3712	 * So, we need to add a special mount option to scan for
3713	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3714	 */
3715	for (i = 0; i < 1; i++) {
3716		super = btrfs_read_dev_one_super(bdev, i, false);
3717		if (IS_ERR(super))
3718			continue;
3719
3720		if (!latest || btrfs_super_generation(super) > transid) {
3721			if (latest)
3722				btrfs_release_disk_super(super);
3723
3724			latest = super;
3725			transid = btrfs_super_generation(super);
3726		}
3727	}
3728
3729	return super;
3730}
3731
3732/*
3733 * Write superblock @sb to the @device. Do not wait for completion, all the
3734 * folios we use for writing are locked.
3735 *
3736 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3737 * the expected device size at commit time. Note that max_mirrors must be
3738 * same for write and wait phases.
3739 *
3740 * Return number of errors when folio is not found or submission fails.
3741 */
3742static int write_dev_supers(struct btrfs_device *device,
3743			    struct btrfs_super_block *sb, int max_mirrors)
3744{
3745	struct btrfs_fs_info *fs_info = device->fs_info;
3746	struct address_space *mapping = device->bdev->bd_mapping;
3747	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3748	int i;
3749	int ret;
3750	u64 bytenr, bytenr_orig;
3751
3752	atomic_set(&device->sb_write_errors, 0);
3753
3754	if (max_mirrors == 0)
3755		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3756
3757	shash->tfm = fs_info->csum_shash;
3758
3759	for (i = 0; i < max_mirrors; i++) {
3760		struct folio *folio;
3761		struct bio *bio;
3762		struct btrfs_super_block *disk_super;
3763		size_t offset;
3764
3765		bytenr_orig = btrfs_sb_offset(i);
3766		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3767		if (ret == -ENOENT) {
3768			continue;
3769		} else if (ret < 0) {
3770			btrfs_err(device->fs_info,
3771				"couldn't get super block location for mirror %d",
3772				i);
3773			atomic_inc(&device->sb_write_errors);
3774			continue;
3775		}
3776		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3777		    device->commit_total_bytes)
3778			break;
3779
3780		btrfs_set_super_bytenr(sb, bytenr_orig);
3781
3782		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3783				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3784				    sb->csum);
3785
3786		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3787					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3788					    GFP_NOFS);
3789		if (IS_ERR(folio)) {
3790			btrfs_err(device->fs_info,
3791			    "couldn't get super block page for bytenr %llu",
3792			    bytenr);
3793			atomic_inc(&device->sb_write_errors);
3794			continue;
3795		}
3796		ASSERT(folio_order(folio) == 0);
3797
3798		offset = offset_in_folio(folio, bytenr);
3799		disk_super = folio_address(folio) + offset;
3800		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3801
3802		/*
3803		 * Directly use bios here instead of relying on the page cache
3804		 * to do I/O, so we don't lose the ability to do integrity
3805		 * checking.
3806		 */
3807		bio = bio_alloc(device->bdev, 1,
3808				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3809				GFP_NOFS);
3810		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3811		bio->bi_private = device;
3812		bio->bi_end_io = btrfs_end_super_write;
3813		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3814
3815		/*
3816		 * We FUA only the first super block.  The others we allow to
3817		 * go down lazy and there's a short window where the on-disk
3818		 * copies might still contain the older version.
3819		 */
3820		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3821			bio->bi_opf |= REQ_FUA;
3822		submit_bio(bio);
3823
3824		if (btrfs_advance_sb_log(device, i))
3825			atomic_inc(&device->sb_write_errors);
3826	}
3827	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3828}
3829
3830/*
3831 * Wait for write completion of superblocks done by write_dev_supers,
3832 * @max_mirrors same for write and wait phases.
3833 *
3834 * Return -1 if primary super block write failed or when there were no super block
3835 * copies written. Otherwise 0.
3836 */
3837static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3838{
3839	int i;
3840	int errors = 0;
3841	bool primary_failed = false;
3842	int ret;
3843	u64 bytenr;
3844
3845	if (max_mirrors == 0)
3846		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3847
3848	for (i = 0; i < max_mirrors; i++) {
3849		struct folio *folio;
3850
3851		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3852		if (ret == -ENOENT) {
3853			break;
3854		} else if (ret < 0) {
3855			errors++;
3856			if (i == 0)
3857				primary_failed = true;
3858			continue;
3859		}
3860		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3861		    device->commit_total_bytes)
3862			break;
3863
3864		folio = filemap_get_folio(device->bdev->bd_mapping,
3865					  bytenr >> PAGE_SHIFT);
3866		/* If the folio has been removed, then we know it completed. */
3867		if (IS_ERR(folio))
3868			continue;
3869		ASSERT(folio_order(folio) == 0);
3870
3871		/* Folio will be unlocked once the write completes. */
3872		folio_wait_locked(folio);
3873		folio_put(folio);
3874	}
3875
3876	errors += atomic_read(&device->sb_write_errors);
3877	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3878		primary_failed = true;
3879	if (primary_failed) {
3880		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3881			  device->devid);
3882		return -1;
3883	}
3884
3885	return errors < i ? 0 : -1;
3886}
3887
3888/*
3889 * endio for the write_dev_flush, this will wake anyone waiting
3890 * for the barrier when it is done
3891 */
3892static void btrfs_end_empty_barrier(struct bio *bio)
3893{
3894	bio_uninit(bio);
3895	complete(bio->bi_private);
3896}
3897
3898/*
3899 * Submit a flush request to the device if it supports it. Error handling is
3900 * done in the waiting counterpart.
3901 */
3902static void write_dev_flush(struct btrfs_device *device)
3903{
3904	struct bio *bio = &device->flush_bio;
3905
3906	device->last_flush_error = BLK_STS_OK;
3907
3908	bio_init(bio, device->bdev, NULL, 0,
3909		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3910	bio->bi_end_io = btrfs_end_empty_barrier;
3911	init_completion(&device->flush_wait);
3912	bio->bi_private = &device->flush_wait;
3913	submit_bio(bio);
3914	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3915}
3916
3917/*
3918 * If the flush bio has been submitted by write_dev_flush, wait for it.
3919 * Return true for any error, and false otherwise.
3920 */
3921static bool wait_dev_flush(struct btrfs_device *device)
3922{
3923	struct bio *bio = &device->flush_bio;
3924
3925	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3926		return false;
3927
3928	wait_for_completion_io(&device->flush_wait);
3929
3930	if (bio->bi_status) {
3931		device->last_flush_error = bio->bi_status;
3932		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3933		return true;
3934	}
3935
3936	return false;
3937}
3938
3939/*
3940 * send an empty flush down to each device in parallel,
3941 * then wait for them
3942 */
3943static int barrier_all_devices(struct btrfs_fs_info *info)
3944{
3945	struct list_head *head;
3946	struct btrfs_device *dev;
3947	int errors_wait = 0;
3948
3949	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3950	/* send down all the barriers */
3951	head = &info->fs_devices->devices;
3952	list_for_each_entry(dev, head, dev_list) {
3953		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3954			continue;
3955		if (!dev->bdev)
3956			continue;
3957		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3958		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3959			continue;
3960
3961		write_dev_flush(dev);
3962	}
3963
3964	/* wait for all the barriers */
3965	list_for_each_entry(dev, head, dev_list) {
3966		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3967			continue;
3968		if (!dev->bdev) {
3969			errors_wait++;
3970			continue;
3971		}
3972		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3973		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3974			continue;
3975
3976		if (wait_dev_flush(dev))
3977			errors_wait++;
3978	}
3979
3980	/*
3981	 * Checks last_flush_error of disks in order to determine the device
3982	 * state.
3983	 */
3984	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3985		return -EIO;
3986
3987	return 0;
3988}
3989
3990int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3991{
3992	int raid_type;
3993	int min_tolerated = INT_MAX;
3994
3995	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3996	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3997		min_tolerated = min_t(int, min_tolerated,
3998				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3999				    tolerated_failures);
4000
4001	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4002		if (raid_type == BTRFS_RAID_SINGLE)
4003			continue;
4004		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4005			continue;
4006		min_tolerated = min_t(int, min_tolerated,
4007				    btrfs_raid_array[raid_type].
4008				    tolerated_failures);
4009	}
4010
4011	if (min_tolerated == INT_MAX) {
4012		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4013		min_tolerated = 0;
4014	}
4015
4016	return min_tolerated;
4017}
4018
4019int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4020{
4021	struct list_head *head;
4022	struct btrfs_device *dev;
4023	struct btrfs_super_block *sb;
4024	struct btrfs_dev_item *dev_item;
4025	int ret;
4026	int do_barriers;
4027	int max_errors;
4028	int total_errors = 0;
4029	u64 flags;
4030
4031	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4032
4033	/*
4034	 * max_mirrors == 0 indicates we're from commit_transaction,
4035	 * not from fsync where the tree roots in fs_info have not
4036	 * been consistent on disk.
4037	 */
4038	if (max_mirrors == 0)
4039		backup_super_roots(fs_info);
4040
4041	sb = fs_info->super_for_commit;
4042	dev_item = &sb->dev_item;
4043
4044	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045	head = &fs_info->fs_devices->devices;
4046	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4047
4048	if (do_barriers) {
4049		ret = barrier_all_devices(fs_info);
4050		if (ret) {
4051			mutex_unlock(
4052				&fs_info->fs_devices->device_list_mutex);
4053			btrfs_handle_fs_error(fs_info, ret,
4054					      "errors while submitting device barriers.");
4055			return ret;
4056		}
4057	}
4058
4059	list_for_each_entry(dev, head, dev_list) {
4060		if (!dev->bdev) {
4061			total_errors++;
4062			continue;
4063		}
4064		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4065		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4066			continue;
4067
4068		btrfs_set_stack_device_generation(dev_item, 0);
4069		btrfs_set_stack_device_type(dev_item, dev->type);
4070		btrfs_set_stack_device_id(dev_item, dev->devid);
4071		btrfs_set_stack_device_total_bytes(dev_item,
4072						   dev->commit_total_bytes);
4073		btrfs_set_stack_device_bytes_used(dev_item,
4074						  dev->commit_bytes_used);
4075		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4076		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4077		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4078		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4079		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4080		       BTRFS_FSID_SIZE);
4081
4082		flags = btrfs_super_flags(sb);
4083		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4084
4085		ret = btrfs_validate_write_super(fs_info, sb);
4086		if (ret < 0) {
4087			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4089				"unexpected superblock corruption detected");
4090			return -EUCLEAN;
4091		}
4092
4093		ret = write_dev_supers(dev, sb, max_mirrors);
4094		if (ret)
4095			total_errors++;
4096	}
4097	if (total_errors > max_errors) {
4098		btrfs_err(fs_info, "%d errors while writing supers",
4099			  total_errors);
4100		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4101
4102		/* FUA is masked off if unsupported and can't be the reason */
4103		btrfs_handle_fs_error(fs_info, -EIO,
4104				      "%d errors while writing supers",
4105				      total_errors);
4106		return -EIO;
4107	}
4108
4109	total_errors = 0;
4110	list_for_each_entry(dev, head, dev_list) {
4111		if (!dev->bdev)
4112			continue;
4113		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4114		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4115			continue;
4116
4117		ret = wait_dev_supers(dev, max_mirrors);
4118		if (ret)
4119			total_errors++;
4120	}
4121	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122	if (total_errors > max_errors) {
4123		btrfs_handle_fs_error(fs_info, -EIO,
4124				      "%d errors while writing supers",
4125				      total_errors);
4126		return -EIO;
4127	}
4128	return 0;
4129}
4130
4131/* Drop a fs root from the radix tree and free it. */
4132void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4133				  struct btrfs_root *root)
4134{
4135	bool drop_ref = false;
4136
4137	spin_lock(&fs_info->fs_roots_radix_lock);
4138	radix_tree_delete(&fs_info->fs_roots_radix,
4139			  (unsigned long)btrfs_root_id(root));
4140	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4141		drop_ref = true;
4142	spin_unlock(&fs_info->fs_roots_radix_lock);
4143
4144	if (BTRFS_FS_ERROR(fs_info)) {
4145		ASSERT(root->log_root == NULL);
4146		if (root->reloc_root) {
4147			btrfs_put_root(root->reloc_root);
4148			root->reloc_root = NULL;
4149		}
4150	}
4151
4152	if (drop_ref)
4153		btrfs_put_root(root);
4154}
4155
4156int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4157{
4158	struct btrfs_root *root = fs_info->tree_root;
4159	struct btrfs_trans_handle *trans;
4160
4161	mutex_lock(&fs_info->cleaner_mutex);
4162	btrfs_run_delayed_iputs(fs_info);
4163	mutex_unlock(&fs_info->cleaner_mutex);
4164	wake_up_process(fs_info->cleaner_kthread);
4165
4166	/* wait until ongoing cleanup work done */
4167	down_write(&fs_info->cleanup_work_sem);
4168	up_write(&fs_info->cleanup_work_sem);
4169
4170	trans = btrfs_join_transaction(root);
4171	if (IS_ERR(trans))
4172		return PTR_ERR(trans);
4173	return btrfs_commit_transaction(trans);
4174}
4175
4176static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4177{
4178	struct btrfs_transaction *trans;
4179	struct btrfs_transaction *tmp;
4180	bool found = false;
4181
4182	/*
4183	 * This function is only called at the very end of close_ctree(),
4184	 * thus no other running transaction, no need to take trans_lock.
4185	 */
4186	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4187	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4188		struct extent_state *cached = NULL;
4189		u64 dirty_bytes = 0;
4190		u64 cur = 0;
4191		u64 found_start;
4192		u64 found_end;
4193
4194		found = true;
4195		while (find_first_extent_bit(&trans->dirty_pages, cur,
4196			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4197			dirty_bytes += found_end + 1 - found_start;
4198			cur = found_end + 1;
4199		}
4200		btrfs_warn(fs_info,
4201	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4202			   trans->transid, dirty_bytes);
4203		btrfs_cleanup_one_transaction(trans, fs_info);
4204
4205		if (trans == fs_info->running_transaction)
4206			fs_info->running_transaction = NULL;
4207		list_del_init(&trans->list);
4208
4209		btrfs_put_transaction(trans);
4210		trace_btrfs_transaction_commit(fs_info);
4211	}
4212	ASSERT(!found);
4213}
4214
4215void __cold close_ctree(struct btrfs_fs_info *fs_info)
4216{
4217	int ret;
4218
4219	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4220
4221	/*
4222	 * If we had UNFINISHED_DROPS we could still be processing them, so
4223	 * clear that bit and wake up relocation so it can stop.
4224	 * We must do this before stopping the block group reclaim task, because
4225	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4226	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4227	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4228	 * return 1.
4229	 */
4230	btrfs_wake_unfinished_drop(fs_info);
4231
4232	/*
4233	 * We may have the reclaim task running and relocating a data block group,
4234	 * in which case it may create delayed iputs. So stop it before we park
4235	 * the cleaner kthread otherwise we can get new delayed iputs after
4236	 * parking the cleaner, and that can make the async reclaim task to hang
4237	 * if it's waiting for delayed iputs to complete, since the cleaner is
4238	 * parked and can not run delayed iputs - this will make us hang when
4239	 * trying to stop the async reclaim task.
4240	 */
4241	cancel_work_sync(&fs_info->reclaim_bgs_work);
4242	/*
4243	 * We don't want the cleaner to start new transactions, add more delayed
4244	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4245	 * because that frees the task_struct, and the transaction kthread might
4246	 * still try to wake up the cleaner.
4247	 */
4248	kthread_park(fs_info->cleaner_kthread);
4249
4250	/* wait for the qgroup rescan worker to stop */
4251	btrfs_qgroup_wait_for_completion(fs_info, false);
4252
4253	/* wait for the uuid_scan task to finish */
4254	down(&fs_info->uuid_tree_rescan_sem);
4255	/* avoid complains from lockdep et al., set sem back to initial state */
4256	up(&fs_info->uuid_tree_rescan_sem);
4257
4258	/* pause restriper - we want to resume on mount */
4259	btrfs_pause_balance(fs_info);
4260
4261	btrfs_dev_replace_suspend_for_unmount(fs_info);
4262
4263	btrfs_scrub_cancel(fs_info);
4264
4265	/* wait for any defraggers to finish */
4266	wait_event(fs_info->transaction_wait,
4267		   (atomic_read(&fs_info->defrag_running) == 0));
4268
4269	/* clear out the rbtree of defraggable inodes */
4270	btrfs_cleanup_defrag_inodes(fs_info);
4271
4272	/*
4273	 * After we parked the cleaner kthread, ordered extents may have
4274	 * completed and created new delayed iputs. If one of the async reclaim
4275	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4276	 * can hang forever trying to stop it, because if a delayed iput is
4277	 * added after it ran btrfs_run_delayed_iputs() and before it called
4278	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4279	 * no one else to run iputs.
4280	 *
4281	 * So wait for all ongoing ordered extents to complete and then run
4282	 * delayed iputs. This works because once we reach this point no one
4283	 * can either create new ordered extents nor create delayed iputs
4284	 * through some other means.
4285	 *
4286	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4287	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4288	 * but the delayed iput for the respective inode is made only when doing
4289	 * the final btrfs_put_ordered_extent() (which must happen at
4290	 * btrfs_finish_ordered_io() when we are unmounting).
4291	 */
4292	btrfs_flush_workqueue(fs_info->endio_write_workers);
4293	/* Ordered extents for free space inodes. */
4294	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4295	btrfs_run_delayed_iputs(fs_info);
4296
4297	cancel_work_sync(&fs_info->async_reclaim_work);
4298	cancel_work_sync(&fs_info->async_data_reclaim_work);
4299	cancel_work_sync(&fs_info->preempt_reclaim_work);
4300
4301	/* Cancel or finish ongoing discard work */
4302	btrfs_discard_cleanup(fs_info);
4303
4304	if (!sb_rdonly(fs_info->sb)) {
4305		/*
4306		 * The cleaner kthread is stopped, so do one final pass over
4307		 * unused block groups.
4308		 */
4309		btrfs_delete_unused_bgs(fs_info);
4310
4311		/*
4312		 * There might be existing delayed inode workers still running
4313		 * and holding an empty delayed inode item. We must wait for
4314		 * them to complete first because they can create a transaction.
4315		 * This happens when someone calls btrfs_balance_delayed_items()
4316		 * and then a transaction commit runs the same delayed nodes
4317		 * before any delayed worker has done something with the nodes.
4318		 * We must wait for any worker here and not at transaction
4319		 * commit time since that could cause a deadlock.
4320		 * This is a very rare case.
4321		 */
4322		btrfs_flush_workqueue(fs_info->delayed_workers);
4323
4324		ret = btrfs_commit_super(fs_info);
4325		if (ret)
4326			btrfs_err(fs_info, "commit super ret %d", ret);
4327	}
4328
4329	if (BTRFS_FS_ERROR(fs_info))
4330		btrfs_error_commit_super(fs_info);
4331
4332	kthread_stop(fs_info->transaction_kthread);
4333	kthread_stop(fs_info->cleaner_kthread);
4334
4335	ASSERT(list_empty(&fs_info->delayed_iputs));
4336	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4337
4338	if (btrfs_check_quota_leak(fs_info)) {
4339		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4340		btrfs_err(fs_info, "qgroup reserved space leaked");
4341	}
4342
4343	btrfs_free_qgroup_config(fs_info);
4344	ASSERT(list_empty(&fs_info->delalloc_roots));
4345
4346	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4347		btrfs_info(fs_info, "at unmount delalloc count %lld",
4348		       percpu_counter_sum(&fs_info->delalloc_bytes));
4349	}
4350
4351	if (percpu_counter_sum(&fs_info->ordered_bytes))
4352		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4353			   percpu_counter_sum(&fs_info->ordered_bytes));
4354
4355	btrfs_sysfs_remove_mounted(fs_info);
4356	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4357
4358	btrfs_put_block_group_cache(fs_info);
4359
4360	/*
4361	 * we must make sure there is not any read request to
4362	 * submit after we stopping all workers.
4363	 */
4364	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4365	btrfs_stop_all_workers(fs_info);
4366
4367	/* We shouldn't have any transaction open at this point */
4368	warn_about_uncommitted_trans(fs_info);
4369
4370	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4371	free_root_pointers(fs_info, true);
4372	btrfs_free_fs_roots(fs_info);
4373
4374	/*
4375	 * We must free the block groups after dropping the fs_roots as we could
4376	 * have had an IO error and have left over tree log blocks that aren't
4377	 * cleaned up until the fs roots are freed.  This makes the block group
4378	 * accounting appear to be wrong because there's pending reserved bytes,
4379	 * so make sure we do the block group cleanup afterwards.
4380	 */
4381	btrfs_free_block_groups(fs_info);
4382
4383	iput(fs_info->btree_inode);
4384
4385	btrfs_mapping_tree_free(fs_info);
4386	btrfs_close_devices(fs_info->fs_devices);
4387}
4388
4389void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4390			     struct extent_buffer *buf)
4391{
4392	struct btrfs_fs_info *fs_info = buf->fs_info;
4393	u64 transid = btrfs_header_generation(buf);
4394
4395#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4396	/*
4397	 * This is a fast path so only do this check if we have sanity tests
4398	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4399	 * outside of the sanity tests.
4400	 */
4401	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4402		return;
4403#endif
4404	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4405	ASSERT(trans->transid == fs_info->generation);
4406	btrfs_assert_tree_write_locked(buf);
4407	if (unlikely(transid != fs_info->generation)) {
4408		btrfs_abort_transaction(trans, -EUCLEAN);
4409		btrfs_crit(fs_info,
4410"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4411			   buf->start, transid, fs_info->generation);
4412	}
4413	set_extent_buffer_dirty(buf);
4414}
4415
4416static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4417					int flush_delayed)
4418{
4419	/*
4420	 * looks as though older kernels can get into trouble with
4421	 * this code, they end up stuck in balance_dirty_pages forever
4422	 */
4423	int ret;
4424
4425	if (current->flags & PF_MEMALLOC)
4426		return;
4427
4428	if (flush_delayed)
4429		btrfs_balance_delayed_items(fs_info);
4430
4431	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4432				     BTRFS_DIRTY_METADATA_THRESH,
4433				     fs_info->dirty_metadata_batch);
4434	if (ret > 0) {
4435		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4436	}
4437}
4438
4439void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4440{
4441	__btrfs_btree_balance_dirty(fs_info, 1);
4442}
4443
4444void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4445{
4446	__btrfs_btree_balance_dirty(fs_info, 0);
4447}
4448
4449static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4450{
4451	/* cleanup FS via transaction */
4452	btrfs_cleanup_transaction(fs_info);
4453
4454	mutex_lock(&fs_info->cleaner_mutex);
4455	btrfs_run_delayed_iputs(fs_info);
4456	mutex_unlock(&fs_info->cleaner_mutex);
4457
4458	down_write(&fs_info->cleanup_work_sem);
4459	up_write(&fs_info->cleanup_work_sem);
4460}
4461
4462static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4463{
4464	struct btrfs_root *gang[8];
4465	u64 root_objectid = 0;
4466	int ret;
4467
4468	spin_lock(&fs_info->fs_roots_radix_lock);
4469	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4470					     (void **)gang, root_objectid,
4471					     ARRAY_SIZE(gang))) != 0) {
4472		int i;
4473
4474		for (i = 0; i < ret; i++)
4475			gang[i] = btrfs_grab_root(gang[i]);
4476		spin_unlock(&fs_info->fs_roots_radix_lock);
4477
4478		for (i = 0; i < ret; i++) {
4479			if (!gang[i])
4480				continue;
4481			root_objectid = btrfs_root_id(gang[i]);
4482			btrfs_free_log(NULL, gang[i]);
4483			btrfs_put_root(gang[i]);
4484		}
4485		root_objectid++;
4486		spin_lock(&fs_info->fs_roots_radix_lock);
4487	}
4488	spin_unlock(&fs_info->fs_roots_radix_lock);
4489	btrfs_free_log_root_tree(NULL, fs_info);
4490}
4491
4492static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4493{
4494	struct btrfs_ordered_extent *ordered;
4495
4496	spin_lock(&root->ordered_extent_lock);
4497	/*
4498	 * This will just short circuit the ordered completion stuff which will
4499	 * make sure the ordered extent gets properly cleaned up.
4500	 */
4501	list_for_each_entry(ordered, &root->ordered_extents,
4502			    root_extent_list)
4503		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4504	spin_unlock(&root->ordered_extent_lock);
4505}
4506
4507static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4508{
4509	struct btrfs_root *root;
4510	LIST_HEAD(splice);
4511
4512	spin_lock(&fs_info->ordered_root_lock);
4513	list_splice_init(&fs_info->ordered_roots, &splice);
4514	while (!list_empty(&splice)) {
4515		root = list_first_entry(&splice, struct btrfs_root,
4516					ordered_root);
4517		list_move_tail(&root->ordered_root,
4518			       &fs_info->ordered_roots);
4519
4520		spin_unlock(&fs_info->ordered_root_lock);
4521		btrfs_destroy_ordered_extents(root);
4522
4523		cond_resched();
4524		spin_lock(&fs_info->ordered_root_lock);
4525	}
4526	spin_unlock(&fs_info->ordered_root_lock);
4527
4528	/*
4529	 * We need this here because if we've been flipped read-only we won't
4530	 * get sync() from the umount, so we need to make sure any ordered
4531	 * extents that haven't had their dirty pages IO start writeout yet
4532	 * actually get run and error out properly.
4533	 */
4534	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4535}
4536
4537static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4538				       struct btrfs_fs_info *fs_info)
4539{
4540	struct rb_node *node;
4541	struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
4542	struct btrfs_delayed_ref_node *ref;
4543
4544	spin_lock(&delayed_refs->lock);
4545	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4546		struct btrfs_delayed_ref_head *head;
4547		struct rb_node *n;
4548		bool pin_bytes = false;
4549
4550		head = rb_entry(node, struct btrfs_delayed_ref_head,
4551				href_node);
4552		if (btrfs_delayed_ref_lock(delayed_refs, head))
4553			continue;
4554
4555		spin_lock(&head->lock);
4556		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4557			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4558				       ref_node);
4559			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4560			RB_CLEAR_NODE(&ref->ref_node);
4561			if (!list_empty(&ref->add_list))
4562				list_del(&ref->add_list);
4563			atomic_dec(&delayed_refs->num_entries);
4564			btrfs_put_delayed_ref(ref);
4565			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4566		}
4567		if (head->must_insert_reserved)
4568			pin_bytes = true;
4569		btrfs_free_delayed_extent_op(head->extent_op);
4570		btrfs_delete_ref_head(delayed_refs, head);
4571		spin_unlock(&head->lock);
4572		spin_unlock(&delayed_refs->lock);
4573		mutex_unlock(&head->mutex);
4574
4575		if (pin_bytes) {
4576			struct btrfs_block_group *cache;
4577
4578			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4579			BUG_ON(!cache);
4580
4581			spin_lock(&cache->space_info->lock);
4582			spin_lock(&cache->lock);
4583			cache->pinned += head->num_bytes;
4584			btrfs_space_info_update_bytes_pinned(fs_info,
4585				cache->space_info, head->num_bytes);
4586			cache->reserved -= head->num_bytes;
4587			cache->space_info->bytes_reserved -= head->num_bytes;
4588			spin_unlock(&cache->lock);
4589			spin_unlock(&cache->space_info->lock);
4590
4591			btrfs_put_block_group(cache);
4592
4593			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4594				head->bytenr + head->num_bytes - 1);
4595		}
4596		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4597		btrfs_put_delayed_ref_head(head);
4598		cond_resched();
4599		spin_lock(&delayed_refs->lock);
4600	}
4601	btrfs_qgroup_destroy_extent_records(trans);
4602
4603	spin_unlock(&delayed_refs->lock);
4604}
4605
4606static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4607{
4608	struct btrfs_inode *btrfs_inode;
4609	LIST_HEAD(splice);
4610
4611	spin_lock(&root->delalloc_lock);
4612	list_splice_init(&root->delalloc_inodes, &splice);
4613
4614	while (!list_empty(&splice)) {
4615		struct inode *inode = NULL;
4616		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4617					       delalloc_inodes);
4618		btrfs_del_delalloc_inode(btrfs_inode);
4619		spin_unlock(&root->delalloc_lock);
4620
4621		/*
4622		 * Make sure we get a live inode and that it'll not disappear
4623		 * meanwhile.
4624		 */
4625		inode = igrab(&btrfs_inode->vfs_inode);
4626		if (inode) {
4627			unsigned int nofs_flag;
4628
4629			nofs_flag = memalloc_nofs_save();
4630			invalidate_inode_pages2(inode->i_mapping);
4631			memalloc_nofs_restore(nofs_flag);
4632			iput(inode);
4633		}
4634		spin_lock(&root->delalloc_lock);
4635	}
4636	spin_unlock(&root->delalloc_lock);
4637}
4638
4639static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4640{
4641	struct btrfs_root *root;
4642	LIST_HEAD(splice);
4643
4644	spin_lock(&fs_info->delalloc_root_lock);
4645	list_splice_init(&fs_info->delalloc_roots, &splice);
4646	while (!list_empty(&splice)) {
4647		root = list_first_entry(&splice, struct btrfs_root,
4648					 delalloc_root);
4649		root = btrfs_grab_root(root);
4650		BUG_ON(!root);
4651		spin_unlock(&fs_info->delalloc_root_lock);
4652
4653		btrfs_destroy_delalloc_inodes(root);
4654		btrfs_put_root(root);
4655
4656		spin_lock(&fs_info->delalloc_root_lock);
4657	}
4658	spin_unlock(&fs_info->delalloc_root_lock);
4659}
4660
4661static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4662					 struct extent_io_tree *dirty_pages,
4663					 int mark)
4664{
4665	struct extent_buffer *eb;
4666	u64 start = 0;
4667	u64 end;
4668
4669	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4670				     mark, NULL)) {
4671		clear_extent_bits(dirty_pages, start, end, mark);
4672		while (start <= end) {
4673			eb = find_extent_buffer(fs_info, start);
4674			start += fs_info->nodesize;
4675			if (!eb)
4676				continue;
4677
4678			btrfs_tree_lock(eb);
4679			wait_on_extent_buffer_writeback(eb);
4680			btrfs_clear_buffer_dirty(NULL, eb);
4681			btrfs_tree_unlock(eb);
4682
4683			free_extent_buffer_stale(eb);
4684		}
4685	}
4686}
4687
4688static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4689					struct extent_io_tree *unpin)
4690{
4691	u64 start;
4692	u64 end;
4693
4694	while (1) {
4695		struct extent_state *cached_state = NULL;
4696
4697		/*
4698		 * The btrfs_finish_extent_commit() may get the same range as
4699		 * ours between find_first_extent_bit and clear_extent_dirty.
4700		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4701		 * the same extent range.
4702		 */
4703		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4704		if (!find_first_extent_bit(unpin, 0, &start, &end,
4705					   EXTENT_DIRTY, &cached_state)) {
4706			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4707			break;
4708		}
4709
4710		clear_extent_dirty(unpin, start, end, &cached_state);
4711		free_extent_state(cached_state);
4712		btrfs_error_unpin_extent_range(fs_info, start, end);
4713		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4714		cond_resched();
4715	}
4716}
4717
4718static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4719{
4720	struct inode *inode;
4721
4722	inode = cache->io_ctl.inode;
4723	if (inode) {
4724		unsigned int nofs_flag;
4725
4726		nofs_flag = memalloc_nofs_save();
4727		invalidate_inode_pages2(inode->i_mapping);
4728		memalloc_nofs_restore(nofs_flag);
4729
4730		BTRFS_I(inode)->generation = 0;
4731		cache->io_ctl.inode = NULL;
4732		iput(inode);
4733	}
4734	ASSERT(cache->io_ctl.pages == NULL);
4735	btrfs_put_block_group(cache);
4736}
4737
4738void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4739			     struct btrfs_fs_info *fs_info)
4740{
4741	struct btrfs_block_group *cache;
4742
4743	spin_lock(&cur_trans->dirty_bgs_lock);
4744	while (!list_empty(&cur_trans->dirty_bgs)) {
4745		cache = list_first_entry(&cur_trans->dirty_bgs,
4746					 struct btrfs_block_group,
4747					 dirty_list);
4748
4749		if (!list_empty(&cache->io_list)) {
4750			spin_unlock(&cur_trans->dirty_bgs_lock);
4751			list_del_init(&cache->io_list);
4752			btrfs_cleanup_bg_io(cache);
4753			spin_lock(&cur_trans->dirty_bgs_lock);
4754		}
4755
4756		list_del_init(&cache->dirty_list);
4757		spin_lock(&cache->lock);
4758		cache->disk_cache_state = BTRFS_DC_ERROR;
4759		spin_unlock(&cache->lock);
4760
4761		spin_unlock(&cur_trans->dirty_bgs_lock);
4762		btrfs_put_block_group(cache);
4763		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4764		spin_lock(&cur_trans->dirty_bgs_lock);
4765	}
4766	spin_unlock(&cur_trans->dirty_bgs_lock);
4767
4768	/*
4769	 * Refer to the definition of io_bgs member for details why it's safe
4770	 * to use it without any locking
4771	 */
4772	while (!list_empty(&cur_trans->io_bgs)) {
4773		cache = list_first_entry(&cur_trans->io_bgs,
4774					 struct btrfs_block_group,
4775					 io_list);
4776
4777		list_del_init(&cache->io_list);
4778		spin_lock(&cache->lock);
4779		cache->disk_cache_state = BTRFS_DC_ERROR;
4780		spin_unlock(&cache->lock);
4781		btrfs_cleanup_bg_io(cache);
4782	}
4783}
4784
4785static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4786{
4787	struct btrfs_root *gang[8];
4788	int i;
4789	int ret;
4790
4791	spin_lock(&fs_info->fs_roots_radix_lock);
4792	while (1) {
4793		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4794						 (void **)gang, 0,
4795						 ARRAY_SIZE(gang),
4796						 BTRFS_ROOT_TRANS_TAG);
4797		if (ret == 0)
4798			break;
4799		for (i = 0; i < ret; i++) {
4800			struct btrfs_root *root = gang[i];
4801
4802			btrfs_qgroup_free_meta_all_pertrans(root);
4803			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4804					(unsigned long)btrfs_root_id(root),
4805					BTRFS_ROOT_TRANS_TAG);
4806		}
4807	}
4808	spin_unlock(&fs_info->fs_roots_radix_lock);
4809}
4810
4811void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4812				   struct btrfs_fs_info *fs_info)
4813{
4814	struct btrfs_device *dev, *tmp;
4815
4816	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4817	ASSERT(list_empty(&cur_trans->dirty_bgs));
4818	ASSERT(list_empty(&cur_trans->io_bgs));
4819
4820	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4821				 post_commit_list) {
4822		list_del_init(&dev->post_commit_list);
4823	}
4824
4825	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4826
4827	cur_trans->state = TRANS_STATE_COMMIT_START;
4828	wake_up(&fs_info->transaction_blocked_wait);
4829
4830	cur_trans->state = TRANS_STATE_UNBLOCKED;
4831	wake_up(&fs_info->transaction_wait);
4832
4833	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4834				     EXTENT_DIRTY);
4835	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4836
4837	cur_trans->state =TRANS_STATE_COMPLETED;
4838	wake_up(&cur_trans->commit_wait);
4839}
4840
4841static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4842{
4843	struct btrfs_transaction *t;
4844
4845	mutex_lock(&fs_info->transaction_kthread_mutex);
4846
4847	spin_lock(&fs_info->trans_lock);
4848	while (!list_empty(&fs_info->trans_list)) {
4849		t = list_first_entry(&fs_info->trans_list,
4850				     struct btrfs_transaction, list);
4851		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4852			refcount_inc(&t->use_count);
4853			spin_unlock(&fs_info->trans_lock);
4854			btrfs_wait_for_commit(fs_info, t->transid);
4855			btrfs_put_transaction(t);
4856			spin_lock(&fs_info->trans_lock);
4857			continue;
4858		}
4859		if (t == fs_info->running_transaction) {
4860			t->state = TRANS_STATE_COMMIT_DOING;
4861			spin_unlock(&fs_info->trans_lock);
4862			/*
4863			 * We wait for 0 num_writers since we don't hold a trans
4864			 * handle open currently for this transaction.
4865			 */
4866			wait_event(t->writer_wait,
4867				   atomic_read(&t->num_writers) == 0);
4868		} else {
4869			spin_unlock(&fs_info->trans_lock);
4870		}
4871		btrfs_cleanup_one_transaction(t, fs_info);
4872
4873		spin_lock(&fs_info->trans_lock);
4874		if (t == fs_info->running_transaction)
4875			fs_info->running_transaction = NULL;
4876		list_del_init(&t->list);
4877		spin_unlock(&fs_info->trans_lock);
4878
4879		btrfs_put_transaction(t);
4880		trace_btrfs_transaction_commit(fs_info);
4881		spin_lock(&fs_info->trans_lock);
4882	}
4883	spin_unlock(&fs_info->trans_lock);
4884	btrfs_destroy_all_ordered_extents(fs_info);
4885	btrfs_destroy_delayed_inodes(fs_info);
4886	btrfs_assert_delayed_root_empty(fs_info);
4887	btrfs_destroy_all_delalloc_inodes(fs_info);
4888	btrfs_drop_all_logs(fs_info);
4889	btrfs_free_all_qgroup_pertrans(fs_info);
4890	mutex_unlock(&fs_info->transaction_kthread_mutex);
4891
4892	return 0;
4893}
4894
4895int btrfs_init_root_free_objectid(struct btrfs_root *root)
4896{
4897	struct btrfs_path *path;
4898	int ret;
4899	struct extent_buffer *l;
4900	struct btrfs_key search_key;
4901	struct btrfs_key found_key;
4902	int slot;
4903
4904	path = btrfs_alloc_path();
4905	if (!path)
4906		return -ENOMEM;
4907
4908	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4909	search_key.type = -1;
4910	search_key.offset = (u64)-1;
4911	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4912	if (ret < 0)
4913		goto error;
4914	if (ret == 0) {
4915		/*
4916		 * Key with offset -1 found, there would have to exist a root
4917		 * with such id, but this is out of valid range.
4918		 */
4919		ret = -EUCLEAN;
4920		goto error;
4921	}
4922	if (path->slots[0] > 0) {
4923		slot = path->slots[0] - 1;
4924		l = path->nodes[0];
4925		btrfs_item_key_to_cpu(l, &found_key, slot);
4926		root->free_objectid = max_t(u64, found_key.objectid + 1,
4927					    BTRFS_FIRST_FREE_OBJECTID);
4928	} else {
4929		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4930	}
4931	ret = 0;
4932error:
4933	btrfs_free_path(path);
4934	return ret;
4935}
4936
4937int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4938{
4939	int ret;
4940	mutex_lock(&root->objectid_mutex);
4941
4942	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4943		btrfs_warn(root->fs_info,
4944			   "the objectid of root %llu reaches its highest value",
4945			   btrfs_root_id(root));
4946		ret = -ENOSPC;
4947		goto out;
4948	}
4949
4950	*objectid = root->free_objectid++;
4951	ret = 0;
4952out:
4953	mutex_unlock(&root->objectid_mutex);
4954	return ret;
4955}
4956