1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO.  All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17#include "tree-mod-log.h"
18#include "fs.h"
19#include "accessors.h"
20#include "extent-tree.h"
21#include "relocation.h"
22#include "tree-checker.h"
23
24/* Just arbitrary numbers so we can be sure one of these happened. */
25#define BACKREF_FOUND_SHARED     6
26#define BACKREF_FOUND_NOT_SHARED 7
27
28struct extent_inode_elem {
29	u64 inum;
30	u64 offset;
31	u64 num_bytes;
32	struct extent_inode_elem *next;
33};
34
35static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36			      const struct btrfs_key *key,
37			      const struct extent_buffer *eb,
38			      const struct btrfs_file_extent_item *fi,
39			      struct extent_inode_elem **eie)
40{
41	const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42	u64 offset = key->offset;
43	struct extent_inode_elem *e;
44	const u64 *root_ids;
45	int root_count;
46	bool cached;
47
48	if (!ctx->ignore_extent_item_pos &&
49	    !btrfs_file_extent_compression(eb, fi) &&
50	    !btrfs_file_extent_encryption(eb, fi) &&
51	    !btrfs_file_extent_other_encoding(eb, fi)) {
52		u64 data_offset;
53
54		data_offset = btrfs_file_extent_offset(eb, fi);
55
56		if (ctx->extent_item_pos < data_offset ||
57		    ctx->extent_item_pos >= data_offset + data_len)
58			return 1;
59		offset += ctx->extent_item_pos - data_offset;
60	}
61
62	if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63		goto add_inode_elem;
64
65	cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66				   &root_count);
67	if (!cached)
68		goto add_inode_elem;
69
70	for (int i = 0; i < root_count; i++) {
71		int ret;
72
73		ret = ctx->indirect_ref_iterator(key->objectid, offset,
74						 data_len, root_ids[i],
75						 ctx->user_ctx);
76		if (ret)
77			return ret;
78	}
79
80add_inode_elem:
81	e = kmalloc(sizeof(*e), GFP_NOFS);
82	if (!e)
83		return -ENOMEM;
84
85	e->next = *eie;
86	e->inum = key->objectid;
87	e->offset = offset;
88	e->num_bytes = data_len;
89	*eie = e;
90
91	return 0;
92}
93
94static void free_inode_elem_list(struct extent_inode_elem *eie)
95{
96	struct extent_inode_elem *eie_next;
97
98	for (; eie; eie = eie_next) {
99		eie_next = eie->next;
100		kfree(eie);
101	}
102}
103
104static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105			     const struct extent_buffer *eb,
106			     struct extent_inode_elem **eie)
107{
108	u64 disk_byte;
109	struct btrfs_key key;
110	struct btrfs_file_extent_item *fi;
111	int slot;
112	int nritems;
113	int extent_type;
114	int ret;
115
116	/*
117	 * from the shared data ref, we only have the leaf but we need
118	 * the key. thus, we must look into all items and see that we
119	 * find one (some) with a reference to our extent item.
120	 */
121	nritems = btrfs_header_nritems(eb);
122	for (slot = 0; slot < nritems; ++slot) {
123		btrfs_item_key_to_cpu(eb, &key, slot);
124		if (key.type != BTRFS_EXTENT_DATA_KEY)
125			continue;
126		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127		extent_type = btrfs_file_extent_type(eb, fi);
128		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129			continue;
130		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132		if (disk_byte != ctx->bytenr)
133			continue;
134
135		ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136		if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137			return ret;
138	}
139
140	return 0;
141}
142
143struct preftree {
144	struct rb_root_cached root;
145	unsigned int count;
146};
147
148#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
149
150struct preftrees {
151	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153	struct preftree indirect_missing_keys;
154};
155
156/*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 *  - incremented when a ref->count transitions to >0
162 *  - decremented when a ref->count transitions to <1
163 */
164struct share_check {
165	struct btrfs_backref_share_check_ctx *ctx;
166	struct btrfs_root *root;
167	u64 inum;
168	u64 data_bytenr;
169	u64 data_extent_gen;
170	/*
171	 * Counts number of inodes that refer to an extent (different inodes in
172	 * the same root or different roots) that we could find. The sharedness
173	 * check typically stops once this counter gets greater than 1, so it
174	 * may not reflect the total number of inodes.
175	 */
176	int share_count;
177	/*
178	 * The number of times we found our inode refers to the data extent we
179	 * are determining the sharedness. In other words, how many file extent
180	 * items we could find for our inode that point to our target data
181	 * extent. The value we get here after finishing the extent sharedness
182	 * check may be smaller than reality, but if it ends up being greater
183	 * than 1, then we know for sure the inode has multiple file extent
184	 * items that point to our inode, and we can safely assume it's useful
185	 * to cache the sharedness check result.
186	 */
187	int self_ref_count;
188	bool have_delayed_delete_refs;
189};
190
191static inline int extent_is_shared(struct share_check *sc)
192{
193	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194}
195
196static struct kmem_cache *btrfs_prelim_ref_cache;
197
198int __init btrfs_prelim_ref_init(void)
199{
200	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201					sizeof(struct prelim_ref), 0, 0, NULL);
202	if (!btrfs_prelim_ref_cache)
203		return -ENOMEM;
204	return 0;
205}
206
207void __cold btrfs_prelim_ref_exit(void)
208{
209	kmem_cache_destroy(btrfs_prelim_ref_cache);
210}
211
212static void free_pref(struct prelim_ref *ref)
213{
214	kmem_cache_free(btrfs_prelim_ref_cache, ref);
215}
216
217/*
218 * Return 0 when both refs are for the same block (and can be merged).
219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220 * indicates a 'higher' block.
221 */
222static int prelim_ref_compare(struct prelim_ref *ref1,
223			      struct prelim_ref *ref2)
224{
225	if (ref1->level < ref2->level)
226		return -1;
227	if (ref1->level > ref2->level)
228		return 1;
229	if (ref1->root_id < ref2->root_id)
230		return -1;
231	if (ref1->root_id > ref2->root_id)
232		return 1;
233	if (ref1->key_for_search.type < ref2->key_for_search.type)
234		return -1;
235	if (ref1->key_for_search.type > ref2->key_for_search.type)
236		return 1;
237	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238		return -1;
239	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240		return 1;
241	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242		return -1;
243	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244		return 1;
245	if (ref1->parent < ref2->parent)
246		return -1;
247	if (ref1->parent > ref2->parent)
248		return 1;
249
250	return 0;
251}
252
253static void update_share_count(struct share_check *sc, int oldcount,
254			       int newcount, struct prelim_ref *newref)
255{
256	if ((!sc) || (oldcount == 0 && newcount < 1))
257		return;
258
259	if (oldcount > 0 && newcount < 1)
260		sc->share_count--;
261	else if (oldcount < 1 && newcount > 0)
262		sc->share_count++;
263
264	if (newref->root_id == btrfs_root_id(sc->root) &&
265	    newref->wanted_disk_byte == sc->data_bytenr &&
266	    newref->key_for_search.objectid == sc->inum)
267		sc->self_ref_count += newref->count;
268}
269
270/*
271 * Add @newref to the @root rbtree, merging identical refs.
272 *
273 * Callers should assume that newref has been freed after calling.
274 */
275static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
276			      struct preftree *preftree,
277			      struct prelim_ref *newref,
278			      struct share_check *sc)
279{
280	struct rb_root_cached *root;
281	struct rb_node **p;
282	struct rb_node *parent = NULL;
283	struct prelim_ref *ref;
284	int result;
285	bool leftmost = true;
286
287	root = &preftree->root;
288	p = &root->rb_root.rb_node;
289
290	while (*p) {
291		parent = *p;
292		ref = rb_entry(parent, struct prelim_ref, rbnode);
293		result = prelim_ref_compare(ref, newref);
294		if (result < 0) {
295			p = &(*p)->rb_left;
296		} else if (result > 0) {
297			p = &(*p)->rb_right;
298			leftmost = false;
299		} else {
300			/* Identical refs, merge them and free @newref */
301			struct extent_inode_elem *eie = ref->inode_list;
302
303			while (eie && eie->next)
304				eie = eie->next;
305
306			if (!eie)
307				ref->inode_list = newref->inode_list;
308			else
309				eie->next = newref->inode_list;
310			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
311						     preftree->count);
312			/*
313			 * A delayed ref can have newref->count < 0.
314			 * The ref->count is updated to follow any
315			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
316			 */
317			update_share_count(sc, ref->count,
318					   ref->count + newref->count, newref);
319			ref->count += newref->count;
320			free_pref(newref);
321			return;
322		}
323	}
324
325	update_share_count(sc, 0, newref->count, newref);
326	preftree->count++;
327	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
328	rb_link_node(&newref->rbnode, parent, p);
329	rb_insert_color_cached(&newref->rbnode, root, leftmost);
330}
331
332/*
333 * Release the entire tree.  We don't care about internal consistency so
334 * just free everything and then reset the tree root.
335 */
336static void prelim_release(struct preftree *preftree)
337{
338	struct prelim_ref *ref, *next_ref;
339
340	rbtree_postorder_for_each_entry_safe(ref, next_ref,
341					     &preftree->root.rb_root, rbnode) {
342		free_inode_elem_list(ref->inode_list);
343		free_pref(ref);
344	}
345
346	preftree->root = RB_ROOT_CACHED;
347	preftree->count = 0;
348}
349
350/*
351 * the rules for all callers of this function are:
352 * - obtaining the parent is the goal
353 * - if you add a key, you must know that it is a correct key
354 * - if you cannot add the parent or a correct key, then we will look into the
355 *   block later to set a correct key
356 *
357 * delayed refs
358 * ============
359 *        backref type | shared | indirect | shared | indirect
360 * information         |   tree |     tree |   data |     data
361 * --------------------+--------+----------+--------+----------
362 *      parent logical |    y   |     -    |    -   |     -
363 *      key to resolve |    -   |     y    |    y   |     y
364 *  tree block logical |    -   |     -    |    -   |     -
365 *  root for resolving |    y   |     y    |    y   |     y
366 *
367 * - column 1:       we've the parent -> done
368 * - column 2, 3, 4: we use the key to find the parent
369 *
370 * on disk refs (inline or keyed)
371 * ==============================
372 *        backref type | shared | indirect | shared | indirect
373 * information         |   tree |     tree |   data |     data
374 * --------------------+--------+----------+--------+----------
375 *      parent logical |    y   |     -    |    y   |     -
376 *      key to resolve |    -   |     -    |    -   |     y
377 *  tree block logical |    y   |     y    |    y   |     y
378 *  root for resolving |    -   |     y    |    y   |     y
379 *
380 * - column 1, 3: we've the parent -> done
381 * - column 2:    we take the first key from the block to find the parent
382 *                (see add_missing_keys)
383 * - column 4:    we use the key to find the parent
384 *
385 * additional information that's available but not required to find the parent
386 * block might help in merging entries to gain some speed.
387 */
388static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
389			  struct preftree *preftree, u64 root_id,
390			  const struct btrfs_key *key, int level, u64 parent,
391			  u64 wanted_disk_byte, int count,
392			  struct share_check *sc, gfp_t gfp_mask)
393{
394	struct prelim_ref *ref;
395
396	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
397		return 0;
398
399	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
400	if (!ref)
401		return -ENOMEM;
402
403	ref->root_id = root_id;
404	if (key)
405		ref->key_for_search = *key;
406	else
407		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
408
409	ref->inode_list = NULL;
410	ref->level = level;
411	ref->count = count;
412	ref->parent = parent;
413	ref->wanted_disk_byte = wanted_disk_byte;
414	prelim_ref_insert(fs_info, preftree, ref, sc);
415	return extent_is_shared(sc);
416}
417
418/* direct refs use root == 0, key == NULL */
419static int add_direct_ref(const struct btrfs_fs_info *fs_info,
420			  struct preftrees *preftrees, int level, u64 parent,
421			  u64 wanted_disk_byte, int count,
422			  struct share_check *sc, gfp_t gfp_mask)
423{
424	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
425			      parent, wanted_disk_byte, count, sc, gfp_mask);
426}
427
428/* indirect refs use parent == 0 */
429static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
430			    struct preftrees *preftrees, u64 root_id,
431			    const struct btrfs_key *key, int level,
432			    u64 wanted_disk_byte, int count,
433			    struct share_check *sc, gfp_t gfp_mask)
434{
435	struct preftree *tree = &preftrees->indirect;
436
437	if (!key)
438		tree = &preftrees->indirect_missing_keys;
439	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
440			      wanted_disk_byte, count, sc, gfp_mask);
441}
442
443static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
444{
445	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
446	struct rb_node *parent = NULL;
447	struct prelim_ref *ref = NULL;
448	struct prelim_ref target = {};
449	int result;
450
451	target.parent = bytenr;
452
453	while (*p) {
454		parent = *p;
455		ref = rb_entry(parent, struct prelim_ref, rbnode);
456		result = prelim_ref_compare(ref, &target);
457
458		if (result < 0)
459			p = &(*p)->rb_left;
460		else if (result > 0)
461			p = &(*p)->rb_right;
462		else
463			return 1;
464	}
465	return 0;
466}
467
468static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
469			   struct btrfs_root *root, struct btrfs_path *path,
470			   struct ulist *parents,
471			   struct preftrees *preftrees, struct prelim_ref *ref,
472			   int level)
473{
474	int ret = 0;
475	int slot;
476	struct extent_buffer *eb;
477	struct btrfs_key key;
478	struct btrfs_key *key_for_search = &ref->key_for_search;
479	struct btrfs_file_extent_item *fi;
480	struct extent_inode_elem *eie = NULL, *old = NULL;
481	u64 disk_byte;
482	u64 wanted_disk_byte = ref->wanted_disk_byte;
483	u64 count = 0;
484	u64 data_offset;
485	u8 type;
486
487	if (level != 0) {
488		eb = path->nodes[level];
489		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
490		if (ret < 0)
491			return ret;
492		return 0;
493	}
494
495	/*
496	 * 1. We normally enter this function with the path already pointing to
497	 *    the first item to check. But sometimes, we may enter it with
498	 *    slot == nritems.
499	 * 2. We are searching for normal backref but bytenr of this leaf
500	 *    matches shared data backref
501	 * 3. The leaf owner is not equal to the root we are searching
502	 *
503	 * For these cases, go to the next leaf before we continue.
504	 */
505	eb = path->nodes[0];
506	if (path->slots[0] >= btrfs_header_nritems(eb) ||
507	    is_shared_data_backref(preftrees, eb->start) ||
508	    ref->root_id != btrfs_header_owner(eb)) {
509		if (ctx->time_seq == BTRFS_SEQ_LAST)
510			ret = btrfs_next_leaf(root, path);
511		else
512			ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
513	}
514
515	while (!ret && count < ref->count) {
516		eb = path->nodes[0];
517		slot = path->slots[0];
518
519		btrfs_item_key_to_cpu(eb, &key, slot);
520
521		if (key.objectid != key_for_search->objectid ||
522		    key.type != BTRFS_EXTENT_DATA_KEY)
523			break;
524
525		/*
526		 * We are searching for normal backref but bytenr of this leaf
527		 * matches shared data backref, OR
528		 * the leaf owner is not equal to the root we are searching for
529		 */
530		if (slot == 0 &&
531		    (is_shared_data_backref(preftrees, eb->start) ||
532		     ref->root_id != btrfs_header_owner(eb))) {
533			if (ctx->time_seq == BTRFS_SEQ_LAST)
534				ret = btrfs_next_leaf(root, path);
535			else
536				ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
537			continue;
538		}
539		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
540		type = btrfs_file_extent_type(eb, fi);
541		if (type == BTRFS_FILE_EXTENT_INLINE)
542			goto next;
543		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
544		data_offset = btrfs_file_extent_offset(eb, fi);
545
546		if (disk_byte == wanted_disk_byte) {
547			eie = NULL;
548			old = NULL;
549			if (ref->key_for_search.offset == key.offset - data_offset)
550				count++;
551			else
552				goto next;
553			if (!ctx->skip_inode_ref_list) {
554				ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
555				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
556				    ret < 0)
557					break;
558			}
559			if (ret > 0)
560				goto next;
561			ret = ulist_add_merge_ptr(parents, eb->start,
562						  eie, (void **)&old, GFP_NOFS);
563			if (ret < 0)
564				break;
565			if (!ret && !ctx->skip_inode_ref_list) {
566				while (old->next)
567					old = old->next;
568				old->next = eie;
569			}
570			eie = NULL;
571		}
572next:
573		if (ctx->time_seq == BTRFS_SEQ_LAST)
574			ret = btrfs_next_item(root, path);
575		else
576			ret = btrfs_next_old_item(root, path, ctx->time_seq);
577	}
578
579	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
580		free_inode_elem_list(eie);
581	else if (ret > 0)
582		ret = 0;
583
584	return ret;
585}
586
587/*
588 * resolve an indirect backref in the form (root_id, key, level)
589 * to a logical address
590 */
591static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
592				struct btrfs_path *path,
593				struct preftrees *preftrees,
594				struct prelim_ref *ref, struct ulist *parents)
595{
596	struct btrfs_root *root;
597	struct extent_buffer *eb;
598	int ret = 0;
599	int root_level;
600	int level = ref->level;
601	struct btrfs_key search_key = ref->key_for_search;
602
603	/*
604	 * If we're search_commit_root we could possibly be holding locks on
605	 * other tree nodes.  This happens when qgroups does backref walks when
606	 * adding new delayed refs.  To deal with this we need to look in cache
607	 * for the root, and if we don't find it then we need to search the
608	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
609	 * here.
610	 */
611	if (path->search_commit_root)
612		root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
613	else
614		root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
615	if (IS_ERR(root)) {
616		ret = PTR_ERR(root);
617		goto out_free;
618	}
619
620	if (!path->search_commit_root &&
621	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
622		ret = -ENOENT;
623		goto out;
624	}
625
626	if (btrfs_is_testing(ctx->fs_info)) {
627		ret = -ENOENT;
628		goto out;
629	}
630
631	if (path->search_commit_root)
632		root_level = btrfs_header_level(root->commit_root);
633	else if (ctx->time_seq == BTRFS_SEQ_LAST)
634		root_level = btrfs_header_level(root->node);
635	else
636		root_level = btrfs_old_root_level(root, ctx->time_seq);
637
638	if (root_level + 1 == level)
639		goto out;
640
641	/*
642	 * We can often find data backrefs with an offset that is too large
643	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
644	 * subtracting a file's offset with the data offset of its
645	 * corresponding extent data item. This can happen for example in the
646	 * clone ioctl.
647	 *
648	 * So if we detect such case we set the search key's offset to zero to
649	 * make sure we will find the matching file extent item at
650	 * add_all_parents(), otherwise we will miss it because the offset
651	 * taken form the backref is much larger then the offset of the file
652	 * extent item. This can make us scan a very large number of file
653	 * extent items, but at least it will not make us miss any.
654	 *
655	 * This is an ugly workaround for a behaviour that should have never
656	 * existed, but it does and a fix for the clone ioctl would touch a lot
657	 * of places, cause backwards incompatibility and would not fix the
658	 * problem for extents cloned with older kernels.
659	 */
660	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
661	    search_key.offset >= LLONG_MAX)
662		search_key.offset = 0;
663	path->lowest_level = level;
664	if (ctx->time_seq == BTRFS_SEQ_LAST)
665		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
666	else
667		ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
668
669	btrfs_debug(ctx->fs_info,
670		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
671		 ref->root_id, level, ref->count, ret,
672		 ref->key_for_search.objectid, ref->key_for_search.type,
673		 ref->key_for_search.offset);
674	if (ret < 0)
675		goto out;
676
677	eb = path->nodes[level];
678	while (!eb) {
679		if (WARN_ON(!level)) {
680			ret = 1;
681			goto out;
682		}
683		level--;
684		eb = path->nodes[level];
685	}
686
687	ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
688out:
689	btrfs_put_root(root);
690out_free:
691	path->lowest_level = 0;
692	btrfs_release_path(path);
693	return ret;
694}
695
696static struct extent_inode_elem *
697unode_aux_to_inode_list(struct ulist_node *node)
698{
699	if (!node)
700		return NULL;
701	return (struct extent_inode_elem *)(uintptr_t)node->aux;
702}
703
704static void free_leaf_list(struct ulist *ulist)
705{
706	struct ulist_node *node;
707	struct ulist_iterator uiter;
708
709	ULIST_ITER_INIT(&uiter);
710	while ((node = ulist_next(ulist, &uiter)))
711		free_inode_elem_list(unode_aux_to_inode_list(node));
712
713	ulist_free(ulist);
714}
715
716/*
717 * We maintain three separate rbtrees: one for direct refs, one for
718 * indirect refs which have a key, and one for indirect refs which do not
719 * have a key. Each tree does merge on insertion.
720 *
721 * Once all of the references are located, we iterate over the tree of
722 * indirect refs with missing keys. An appropriate key is located and
723 * the ref is moved onto the tree for indirect refs. After all missing
724 * keys are thus located, we iterate over the indirect ref tree, resolve
725 * each reference, and then insert the resolved reference onto the
726 * direct tree (merging there too).
727 *
728 * New backrefs (i.e., for parent nodes) are added to the appropriate
729 * rbtree as they are encountered. The new backrefs are subsequently
730 * resolved as above.
731 */
732static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
733				 struct btrfs_path *path,
734				 struct preftrees *preftrees,
735				 struct share_check *sc)
736{
737	int err;
738	int ret = 0;
739	struct ulist *parents;
740	struct ulist_node *node;
741	struct ulist_iterator uiter;
742	struct rb_node *rnode;
743
744	parents = ulist_alloc(GFP_NOFS);
745	if (!parents)
746		return -ENOMEM;
747
748	/*
749	 * We could trade memory usage for performance here by iterating
750	 * the tree, allocating new refs for each insertion, and then
751	 * freeing the entire indirect tree when we're done.  In some test
752	 * cases, the tree can grow quite large (~200k objects).
753	 */
754	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
755		struct prelim_ref *ref;
756
757		ref = rb_entry(rnode, struct prelim_ref, rbnode);
758		if (WARN(ref->parent,
759			 "BUG: direct ref found in indirect tree")) {
760			ret = -EINVAL;
761			goto out;
762		}
763
764		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
765		preftrees->indirect.count--;
766
767		if (ref->count == 0) {
768			free_pref(ref);
769			continue;
770		}
771
772		if (sc && ref->root_id != btrfs_root_id(sc->root)) {
773			free_pref(ref);
774			ret = BACKREF_FOUND_SHARED;
775			goto out;
776		}
777		err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
778		/*
779		 * we can only tolerate ENOENT,otherwise,we should catch error
780		 * and return directly.
781		 */
782		if (err == -ENOENT) {
783			prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
784					  NULL);
785			continue;
786		} else if (err) {
787			free_pref(ref);
788			ret = err;
789			goto out;
790		}
791
792		/* we put the first parent into the ref at hand */
793		ULIST_ITER_INIT(&uiter);
794		node = ulist_next(parents, &uiter);
795		ref->parent = node ? node->val : 0;
796		ref->inode_list = unode_aux_to_inode_list(node);
797
798		/* Add a prelim_ref(s) for any other parent(s). */
799		while ((node = ulist_next(parents, &uiter))) {
800			struct prelim_ref *new_ref;
801
802			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
803						   GFP_NOFS);
804			if (!new_ref) {
805				free_pref(ref);
806				ret = -ENOMEM;
807				goto out;
808			}
809			memcpy(new_ref, ref, sizeof(*ref));
810			new_ref->parent = node->val;
811			new_ref->inode_list = unode_aux_to_inode_list(node);
812			prelim_ref_insert(ctx->fs_info, &preftrees->direct,
813					  new_ref, NULL);
814		}
815
816		/*
817		 * Now it's a direct ref, put it in the direct tree. We must
818		 * do this last because the ref could be merged/freed here.
819		 */
820		prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
821
822		ulist_reinit(parents);
823		cond_resched();
824	}
825out:
826	/*
827	 * We may have inode lists attached to refs in the parents ulist, so we
828	 * must free them before freeing the ulist and its refs.
829	 */
830	free_leaf_list(parents);
831	return ret;
832}
833
834/*
835 * read tree blocks and add keys where required.
836 */
837static int add_missing_keys(struct btrfs_fs_info *fs_info,
838			    struct preftrees *preftrees, bool lock)
839{
840	struct prelim_ref *ref;
841	struct extent_buffer *eb;
842	struct preftree *tree = &preftrees->indirect_missing_keys;
843	struct rb_node *node;
844
845	while ((node = rb_first_cached(&tree->root))) {
846		struct btrfs_tree_parent_check check = { 0 };
847
848		ref = rb_entry(node, struct prelim_ref, rbnode);
849		rb_erase_cached(node, &tree->root);
850
851		BUG_ON(ref->parent);	/* should not be a direct ref */
852		BUG_ON(ref->key_for_search.type);
853		BUG_ON(!ref->wanted_disk_byte);
854
855		check.level = ref->level - 1;
856		check.owner_root = ref->root_id;
857
858		eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
859		if (IS_ERR(eb)) {
860			free_pref(ref);
861			return PTR_ERR(eb);
862		}
863		if (!extent_buffer_uptodate(eb)) {
864			free_pref(ref);
865			free_extent_buffer(eb);
866			return -EIO;
867		}
868
869		if (lock)
870			btrfs_tree_read_lock(eb);
871		if (btrfs_header_level(eb) == 0)
872			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
873		else
874			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
875		if (lock)
876			btrfs_tree_read_unlock(eb);
877		free_extent_buffer(eb);
878		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
879		cond_resched();
880	}
881	return 0;
882}
883
884/*
885 * add all currently queued delayed refs from this head whose seq nr is
886 * smaller or equal that seq to the list
887 */
888static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
889			    struct btrfs_delayed_ref_head *head, u64 seq,
890			    struct preftrees *preftrees, struct share_check *sc)
891{
892	struct btrfs_delayed_ref_node *node;
893	struct btrfs_key key;
894	struct rb_node *n;
895	int count;
896	int ret = 0;
897
898	spin_lock(&head->lock);
899	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
900		node = rb_entry(n, struct btrfs_delayed_ref_node,
901				ref_node);
902		if (node->seq > seq)
903			continue;
904
905		switch (node->action) {
906		case BTRFS_ADD_DELAYED_EXTENT:
907		case BTRFS_UPDATE_DELAYED_HEAD:
908			WARN_ON(1);
909			continue;
910		case BTRFS_ADD_DELAYED_REF:
911			count = node->ref_mod;
912			break;
913		case BTRFS_DROP_DELAYED_REF:
914			count = node->ref_mod * -1;
915			break;
916		default:
917			BUG();
918		}
919		switch (node->type) {
920		case BTRFS_TREE_BLOCK_REF_KEY: {
921			/* NORMAL INDIRECT METADATA backref */
922			struct btrfs_key *key_ptr = NULL;
923			/* The owner of a tree block ref is the level. */
924			int level = btrfs_delayed_ref_owner(node);
925
926			if (head->extent_op && head->extent_op->update_key) {
927				btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
928				key_ptr = &key;
929			}
930
931			ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
932					       key_ptr, level + 1, node->bytenr,
933					       count, sc, GFP_ATOMIC);
934			break;
935		}
936		case BTRFS_SHARED_BLOCK_REF_KEY: {
937			/*
938			 * SHARED DIRECT METADATA backref
939			 *
940			 * The owner of a tree block ref is the level.
941			 */
942			int level = btrfs_delayed_ref_owner(node);
943
944			ret = add_direct_ref(fs_info, preftrees, level + 1,
945					     node->parent, node->bytenr, count,
946					     sc, GFP_ATOMIC);
947			break;
948		}
949		case BTRFS_EXTENT_DATA_REF_KEY: {
950			/* NORMAL INDIRECT DATA backref */
951			key.objectid = btrfs_delayed_ref_owner(node);
952			key.type = BTRFS_EXTENT_DATA_KEY;
953			key.offset = btrfs_delayed_ref_offset(node);
954
955			/*
956			 * If we have a share check context and a reference for
957			 * another inode, we can't exit immediately. This is
958			 * because even if this is a BTRFS_ADD_DELAYED_REF
959			 * reference we may find next a BTRFS_DROP_DELAYED_REF
960			 * which cancels out this ADD reference.
961			 *
962			 * If this is a DROP reference and there was no previous
963			 * ADD reference, then we need to signal that when we
964			 * process references from the extent tree (through
965			 * add_inline_refs() and add_keyed_refs()), we should
966			 * not exit early if we find a reference for another
967			 * inode, because one of the delayed DROP references
968			 * may cancel that reference in the extent tree.
969			 */
970			if (sc && count < 0)
971				sc->have_delayed_delete_refs = true;
972
973			ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
974					       &key, 0, node->bytenr, count, sc,
975					       GFP_ATOMIC);
976			break;
977		}
978		case BTRFS_SHARED_DATA_REF_KEY: {
979			/* SHARED DIRECT FULL backref */
980			ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
981					     node->bytenr, count, sc,
982					     GFP_ATOMIC);
983			break;
984		}
985		default:
986			WARN_ON(1);
987		}
988		/*
989		 * We must ignore BACKREF_FOUND_SHARED until all delayed
990		 * refs have been checked.
991		 */
992		if (ret && (ret != BACKREF_FOUND_SHARED))
993			break;
994	}
995	if (!ret)
996		ret = extent_is_shared(sc);
997
998	spin_unlock(&head->lock);
999	return ret;
1000}
1001
1002/*
1003 * add all inline backrefs for bytenr to the list
1004 *
1005 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1006 */
1007static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1008			   struct btrfs_path *path,
1009			   int *info_level, struct preftrees *preftrees,
1010			   struct share_check *sc)
1011{
1012	int ret = 0;
1013	int slot;
1014	struct extent_buffer *leaf;
1015	struct btrfs_key key;
1016	struct btrfs_key found_key;
1017	unsigned long ptr;
1018	unsigned long end;
1019	struct btrfs_extent_item *ei;
1020	u64 flags;
1021	u64 item_size;
1022
1023	/*
1024	 * enumerate all inline refs
1025	 */
1026	leaf = path->nodes[0];
1027	slot = path->slots[0];
1028
1029	item_size = btrfs_item_size(leaf, slot);
1030	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1031
1032	if (ctx->check_extent_item) {
1033		ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1034		if (ret)
1035			return ret;
1036	}
1037
1038	flags = btrfs_extent_flags(leaf, ei);
1039	btrfs_item_key_to_cpu(leaf, &found_key, slot);
1040
1041	ptr = (unsigned long)(ei + 1);
1042	end = (unsigned long)ei + item_size;
1043
1044	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1045	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1046		struct btrfs_tree_block_info *info;
1047
1048		info = (struct btrfs_tree_block_info *)ptr;
1049		*info_level = btrfs_tree_block_level(leaf, info);
1050		ptr += sizeof(struct btrfs_tree_block_info);
1051		BUG_ON(ptr > end);
1052	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1053		*info_level = found_key.offset;
1054	} else {
1055		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1056	}
1057
1058	while (ptr < end) {
1059		struct btrfs_extent_inline_ref *iref;
1060		u64 offset;
1061		int type;
1062
1063		iref = (struct btrfs_extent_inline_ref *)ptr;
1064		type = btrfs_get_extent_inline_ref_type(leaf, iref,
1065							BTRFS_REF_TYPE_ANY);
1066		if (type == BTRFS_REF_TYPE_INVALID)
1067			return -EUCLEAN;
1068
1069		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1070
1071		switch (type) {
1072		case BTRFS_SHARED_BLOCK_REF_KEY:
1073			ret = add_direct_ref(ctx->fs_info, preftrees,
1074					     *info_level + 1, offset,
1075					     ctx->bytenr, 1, NULL, GFP_NOFS);
1076			break;
1077		case BTRFS_SHARED_DATA_REF_KEY: {
1078			struct btrfs_shared_data_ref *sdref;
1079			int count;
1080
1081			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1082			count = btrfs_shared_data_ref_count(leaf, sdref);
1083
1084			ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1085					     ctx->bytenr, count, sc, GFP_NOFS);
1086			break;
1087		}
1088		case BTRFS_TREE_BLOCK_REF_KEY:
1089			ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1090					       NULL, *info_level + 1,
1091					       ctx->bytenr, 1, NULL, GFP_NOFS);
1092			break;
1093		case BTRFS_EXTENT_DATA_REF_KEY: {
1094			struct btrfs_extent_data_ref *dref;
1095			int count;
1096			u64 root;
1097
1098			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1099			count = btrfs_extent_data_ref_count(leaf, dref);
1100			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1101								      dref);
1102			key.type = BTRFS_EXTENT_DATA_KEY;
1103			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1104
1105			if (sc && key.objectid != sc->inum &&
1106			    !sc->have_delayed_delete_refs) {
1107				ret = BACKREF_FOUND_SHARED;
1108				break;
1109			}
1110
1111			root = btrfs_extent_data_ref_root(leaf, dref);
1112
1113			if (!ctx->skip_data_ref ||
1114			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1115						ctx->user_ctx))
1116				ret = add_indirect_ref(ctx->fs_info, preftrees,
1117						       root, &key, 0, ctx->bytenr,
1118						       count, sc, GFP_NOFS);
1119			break;
1120		}
1121		case BTRFS_EXTENT_OWNER_REF_KEY:
1122			ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1123			break;
1124		default:
1125			WARN_ON(1);
1126		}
1127		if (ret)
1128			return ret;
1129		ptr += btrfs_extent_inline_ref_size(type);
1130	}
1131
1132	return 0;
1133}
1134
1135/*
1136 * add all non-inline backrefs for bytenr to the list
1137 *
1138 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1139 */
1140static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1141			  struct btrfs_root *extent_root,
1142			  struct btrfs_path *path,
1143			  int info_level, struct preftrees *preftrees,
1144			  struct share_check *sc)
1145{
1146	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1147	int ret;
1148	int slot;
1149	struct extent_buffer *leaf;
1150	struct btrfs_key key;
1151
1152	while (1) {
1153		ret = btrfs_next_item(extent_root, path);
1154		if (ret < 0)
1155			break;
1156		if (ret) {
1157			ret = 0;
1158			break;
1159		}
1160
1161		slot = path->slots[0];
1162		leaf = path->nodes[0];
1163		btrfs_item_key_to_cpu(leaf, &key, slot);
1164
1165		if (key.objectid != ctx->bytenr)
1166			break;
1167		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1168			continue;
1169		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1170			break;
1171
1172		switch (key.type) {
1173		case BTRFS_SHARED_BLOCK_REF_KEY:
1174			/* SHARED DIRECT METADATA backref */
1175			ret = add_direct_ref(fs_info, preftrees,
1176					     info_level + 1, key.offset,
1177					     ctx->bytenr, 1, NULL, GFP_NOFS);
1178			break;
1179		case BTRFS_SHARED_DATA_REF_KEY: {
1180			/* SHARED DIRECT FULL backref */
1181			struct btrfs_shared_data_ref *sdref;
1182			int count;
1183
1184			sdref = btrfs_item_ptr(leaf, slot,
1185					      struct btrfs_shared_data_ref);
1186			count = btrfs_shared_data_ref_count(leaf, sdref);
1187			ret = add_direct_ref(fs_info, preftrees, 0,
1188					     key.offset, ctx->bytenr, count,
1189					     sc, GFP_NOFS);
1190			break;
1191		}
1192		case BTRFS_TREE_BLOCK_REF_KEY:
1193			/* NORMAL INDIRECT METADATA backref */
1194			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1195					       NULL, info_level + 1, ctx->bytenr,
1196					       1, NULL, GFP_NOFS);
1197			break;
1198		case BTRFS_EXTENT_DATA_REF_KEY: {
1199			/* NORMAL INDIRECT DATA backref */
1200			struct btrfs_extent_data_ref *dref;
1201			int count;
1202			u64 root;
1203
1204			dref = btrfs_item_ptr(leaf, slot,
1205					      struct btrfs_extent_data_ref);
1206			count = btrfs_extent_data_ref_count(leaf, dref);
1207			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1208								      dref);
1209			key.type = BTRFS_EXTENT_DATA_KEY;
1210			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1211
1212			if (sc && key.objectid != sc->inum &&
1213			    !sc->have_delayed_delete_refs) {
1214				ret = BACKREF_FOUND_SHARED;
1215				break;
1216			}
1217
1218			root = btrfs_extent_data_ref_root(leaf, dref);
1219
1220			if (!ctx->skip_data_ref ||
1221			    !ctx->skip_data_ref(root, key.objectid, key.offset,
1222						ctx->user_ctx))
1223				ret = add_indirect_ref(fs_info, preftrees, root,
1224						       &key, 0, ctx->bytenr,
1225						       count, sc, GFP_NOFS);
1226			break;
1227		}
1228		default:
1229			WARN_ON(1);
1230		}
1231		if (ret)
1232			return ret;
1233
1234	}
1235
1236	return ret;
1237}
1238
1239/*
1240 * The caller has joined a transaction or is holding a read lock on the
1241 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1242 * snapshot field changing while updating or checking the cache.
1243 */
1244static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1245					struct btrfs_root *root,
1246					u64 bytenr, int level, bool *is_shared)
1247{
1248	const struct btrfs_fs_info *fs_info = root->fs_info;
1249	struct btrfs_backref_shared_cache_entry *entry;
1250
1251	if (!current->journal_info)
1252		lockdep_assert_held(&fs_info->commit_root_sem);
1253
1254	if (!ctx->use_path_cache)
1255		return false;
1256
1257	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1258		return false;
1259
1260	/*
1261	 * Level -1 is used for the data extent, which is not reliable to cache
1262	 * because its reference count can increase or decrease without us
1263	 * realizing. We cache results only for extent buffers that lead from
1264	 * the root node down to the leaf with the file extent item.
1265	 */
1266	ASSERT(level >= 0);
1267
1268	entry = &ctx->path_cache_entries[level];
1269
1270	/* Unused cache entry or being used for some other extent buffer. */
1271	if (entry->bytenr != bytenr)
1272		return false;
1273
1274	/*
1275	 * We cached a false result, but the last snapshot generation of the
1276	 * root changed, so we now have a snapshot. Don't trust the result.
1277	 */
1278	if (!entry->is_shared &&
1279	    entry->gen != btrfs_root_last_snapshot(&root->root_item))
1280		return false;
1281
1282	/*
1283	 * If we cached a true result and the last generation used for dropping
1284	 * a root changed, we can not trust the result, because the dropped root
1285	 * could be a snapshot sharing this extent buffer.
1286	 */
1287	if (entry->is_shared &&
1288	    entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1289		return false;
1290
1291	*is_shared = entry->is_shared;
1292	/*
1293	 * If the node at this level is shared, than all nodes below are also
1294	 * shared. Currently some of the nodes below may be marked as not shared
1295	 * because we have just switched from one leaf to another, and switched
1296	 * also other nodes above the leaf and below the current level, so mark
1297	 * them as shared.
1298	 */
1299	if (*is_shared) {
1300		for (int i = 0; i < level; i++) {
1301			ctx->path_cache_entries[i].is_shared = true;
1302			ctx->path_cache_entries[i].gen = entry->gen;
1303		}
1304	}
1305
1306	return true;
1307}
1308
1309/*
1310 * The caller has joined a transaction or is holding a read lock on the
1311 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1312 * snapshot field changing while updating or checking the cache.
1313 */
1314static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1315				       struct btrfs_root *root,
1316				       u64 bytenr, int level, bool is_shared)
1317{
1318	const struct btrfs_fs_info *fs_info = root->fs_info;
1319	struct btrfs_backref_shared_cache_entry *entry;
1320	u64 gen;
1321
1322	if (!current->journal_info)
1323		lockdep_assert_held(&fs_info->commit_root_sem);
1324
1325	if (!ctx->use_path_cache)
1326		return;
1327
1328	if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1329		return;
1330
1331	/*
1332	 * Level -1 is used for the data extent, which is not reliable to cache
1333	 * because its reference count can increase or decrease without us
1334	 * realizing. We cache results only for extent buffers that lead from
1335	 * the root node down to the leaf with the file extent item.
1336	 */
1337	ASSERT(level >= 0);
1338
1339	if (is_shared)
1340		gen = btrfs_get_last_root_drop_gen(fs_info);
1341	else
1342		gen = btrfs_root_last_snapshot(&root->root_item);
1343
1344	entry = &ctx->path_cache_entries[level];
1345	entry->bytenr = bytenr;
1346	entry->is_shared = is_shared;
1347	entry->gen = gen;
1348
1349	/*
1350	 * If we found an extent buffer is shared, set the cache result for all
1351	 * extent buffers below it to true. As nodes in the path are COWed,
1352	 * their sharedness is moved to their children, and if a leaf is COWed,
1353	 * then the sharedness of a data extent becomes direct, the refcount of
1354	 * data extent is increased in the extent item at the extent tree.
1355	 */
1356	if (is_shared) {
1357		for (int i = 0; i < level; i++) {
1358			entry = &ctx->path_cache_entries[i];
1359			entry->is_shared = is_shared;
1360			entry->gen = gen;
1361		}
1362	}
1363}
1364
1365/*
1366 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1367 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1368 * indirect refs to their parent bytenr.
1369 * When roots are found, they're added to the roots list
1370 *
1371 * @ctx:     Backref walking context object, must be not NULL.
1372 * @sc:      If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1373 *           shared extent is detected.
1374 *
1375 * Otherwise this returns 0 for success and <0 for an error.
1376 *
1377 * FIXME some caching might speed things up
1378 */
1379static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1380			     struct share_check *sc)
1381{
1382	struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1383	struct btrfs_key key;
1384	struct btrfs_path *path;
1385	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1386	struct btrfs_delayed_ref_head *head;
1387	int info_level = 0;
1388	int ret;
1389	struct prelim_ref *ref;
1390	struct rb_node *node;
1391	struct extent_inode_elem *eie = NULL;
1392	struct preftrees preftrees = {
1393		.direct = PREFTREE_INIT,
1394		.indirect = PREFTREE_INIT,
1395		.indirect_missing_keys = PREFTREE_INIT
1396	};
1397
1398	/* Roots ulist is not needed when using a sharedness check context. */
1399	if (sc)
1400		ASSERT(ctx->roots == NULL);
1401
1402	key.objectid = ctx->bytenr;
1403	key.offset = (u64)-1;
1404	if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1405		key.type = BTRFS_METADATA_ITEM_KEY;
1406	else
1407		key.type = BTRFS_EXTENT_ITEM_KEY;
1408
1409	path = btrfs_alloc_path();
1410	if (!path)
1411		return -ENOMEM;
1412	if (!ctx->trans) {
1413		path->search_commit_root = 1;
1414		path->skip_locking = 1;
1415	}
1416
1417	if (ctx->time_seq == BTRFS_SEQ_LAST)
1418		path->skip_locking = 1;
1419
1420again:
1421	head = NULL;
1422
1423	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1424	if (ret < 0)
1425		goto out;
1426	if (ret == 0) {
1427		/*
1428		 * Key with offset -1 found, there would have to exist an extent
1429		 * item with such offset, but this is out of the valid range.
1430		 */
1431		ret = -EUCLEAN;
1432		goto out;
1433	}
1434
1435	if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1436	    ctx->time_seq != BTRFS_SEQ_LAST) {
1437		/*
1438		 * We have a specific time_seq we care about and trans which
1439		 * means we have the path lock, we need to grab the ref head and
1440		 * lock it so we have a consistent view of the refs at the given
1441		 * time.
1442		 */
1443		delayed_refs = &ctx->trans->transaction->delayed_refs;
1444		spin_lock(&delayed_refs->lock);
1445		head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
1446		if (head) {
1447			if (!mutex_trylock(&head->mutex)) {
1448				refcount_inc(&head->refs);
1449				spin_unlock(&delayed_refs->lock);
1450
1451				btrfs_release_path(path);
1452
1453				/*
1454				 * Mutex was contended, block until it's
1455				 * released and try again
1456				 */
1457				mutex_lock(&head->mutex);
1458				mutex_unlock(&head->mutex);
1459				btrfs_put_delayed_ref_head(head);
1460				goto again;
1461			}
1462			spin_unlock(&delayed_refs->lock);
1463			ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1464					       &preftrees, sc);
1465			mutex_unlock(&head->mutex);
1466			if (ret)
1467				goto out;
1468		} else {
1469			spin_unlock(&delayed_refs->lock);
1470		}
1471	}
1472
1473	if (path->slots[0]) {
1474		struct extent_buffer *leaf;
1475		int slot;
1476
1477		path->slots[0]--;
1478		leaf = path->nodes[0];
1479		slot = path->slots[0];
1480		btrfs_item_key_to_cpu(leaf, &key, slot);
1481		if (key.objectid == ctx->bytenr &&
1482		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1483		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1484			ret = add_inline_refs(ctx, path, &info_level,
1485					      &preftrees, sc);
1486			if (ret)
1487				goto out;
1488			ret = add_keyed_refs(ctx, root, path, info_level,
1489					     &preftrees, sc);
1490			if (ret)
1491				goto out;
1492		}
1493	}
1494
1495	/*
1496	 * If we have a share context and we reached here, it means the extent
1497	 * is not directly shared (no multiple reference items for it),
1498	 * otherwise we would have exited earlier with a return value of
1499	 * BACKREF_FOUND_SHARED after processing delayed references or while
1500	 * processing inline or keyed references from the extent tree.
1501	 * The extent may however be indirectly shared through shared subtrees
1502	 * as a result from creating snapshots, so we determine below what is
1503	 * its parent node, in case we are dealing with a metadata extent, or
1504	 * what's the leaf (or leaves), from a fs tree, that has a file extent
1505	 * item pointing to it in case we are dealing with a data extent.
1506	 */
1507	ASSERT(extent_is_shared(sc) == 0);
1508
1509	/*
1510	 * If we are here for a data extent and we have a share_check structure
1511	 * it means the data extent is not directly shared (does not have
1512	 * multiple reference items), so we have to check if a path in the fs
1513	 * tree (going from the root node down to the leaf that has the file
1514	 * extent item pointing to the data extent) is shared, that is, if any
1515	 * of the extent buffers in the path is referenced by other trees.
1516	 */
1517	if (sc && ctx->bytenr == sc->data_bytenr) {
1518		/*
1519		 * If our data extent is from a generation more recent than the
1520		 * last generation used to snapshot the root, then we know that
1521		 * it can not be shared through subtrees, so we can skip
1522		 * resolving indirect references, there's no point in
1523		 * determining the extent buffers for the path from the fs tree
1524		 * root node down to the leaf that has the file extent item that
1525		 * points to the data extent.
1526		 */
1527		if (sc->data_extent_gen >
1528		    btrfs_root_last_snapshot(&sc->root->root_item)) {
1529			ret = BACKREF_FOUND_NOT_SHARED;
1530			goto out;
1531		}
1532
1533		/*
1534		 * If we are only determining if a data extent is shared or not
1535		 * and the corresponding file extent item is located in the same
1536		 * leaf as the previous file extent item, we can skip resolving
1537		 * indirect references for a data extent, since the fs tree path
1538		 * is the same (same leaf, so same path). We skip as long as the
1539		 * cached result for the leaf is valid and only if there's only
1540		 * one file extent item pointing to the data extent, because in
1541		 * the case of multiple file extent items, they may be located
1542		 * in different leaves and therefore we have multiple paths.
1543		 */
1544		if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1545		    sc->self_ref_count == 1) {
1546			bool cached;
1547			bool is_shared;
1548
1549			cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1550						     sc->ctx->curr_leaf_bytenr,
1551						     0, &is_shared);
1552			if (cached) {
1553				if (is_shared)
1554					ret = BACKREF_FOUND_SHARED;
1555				else
1556					ret = BACKREF_FOUND_NOT_SHARED;
1557				goto out;
1558			}
1559		}
1560	}
1561
1562	btrfs_release_path(path);
1563
1564	ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1565	if (ret)
1566		goto out;
1567
1568	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1569
1570	ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1571	if (ret)
1572		goto out;
1573
1574	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1575
1576	/*
1577	 * This walks the tree of merged and resolved refs. Tree blocks are
1578	 * read in as needed. Unique entries are added to the ulist, and
1579	 * the list of found roots is updated.
1580	 *
1581	 * We release the entire tree in one go before returning.
1582	 */
1583	node = rb_first_cached(&preftrees.direct.root);
1584	while (node) {
1585		ref = rb_entry(node, struct prelim_ref, rbnode);
1586		node = rb_next(&ref->rbnode);
1587		/*
1588		 * ref->count < 0 can happen here if there are delayed
1589		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1590		 * prelim_ref_insert() relies on this when merging
1591		 * identical refs to keep the overall count correct.
1592		 * prelim_ref_insert() will merge only those refs
1593		 * which compare identically.  Any refs having
1594		 * e.g. different offsets would not be merged,
1595		 * and would retain their original ref->count < 0.
1596		 */
1597		if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1598			/* no parent == root of tree */
1599			ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1600			if (ret < 0)
1601				goto out;
1602		}
1603		if (ref->count && ref->parent) {
1604			if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1605			    ref->level == 0) {
1606				struct btrfs_tree_parent_check check = { 0 };
1607				struct extent_buffer *eb;
1608
1609				check.level = ref->level;
1610
1611				eb = read_tree_block(ctx->fs_info, ref->parent,
1612						     &check);
1613				if (IS_ERR(eb)) {
1614					ret = PTR_ERR(eb);
1615					goto out;
1616				}
1617				if (!extent_buffer_uptodate(eb)) {
1618					free_extent_buffer(eb);
1619					ret = -EIO;
1620					goto out;
1621				}
1622
1623				if (!path->skip_locking)
1624					btrfs_tree_read_lock(eb);
1625				ret = find_extent_in_eb(ctx, eb, &eie);
1626				if (!path->skip_locking)
1627					btrfs_tree_read_unlock(eb);
1628				free_extent_buffer(eb);
1629				if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1630				    ret < 0)
1631					goto out;
1632				ref->inode_list = eie;
1633				/*
1634				 * We transferred the list ownership to the ref,
1635				 * so set to NULL to avoid a double free in case
1636				 * an error happens after this.
1637				 */
1638				eie = NULL;
1639			}
1640			ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1641						  ref->inode_list,
1642						  (void **)&eie, GFP_NOFS);
1643			if (ret < 0)
1644				goto out;
1645			if (!ret && !ctx->skip_inode_ref_list) {
1646				/*
1647				 * We've recorded that parent, so we must extend
1648				 * its inode list here.
1649				 *
1650				 * However if there was corruption we may not
1651				 * have found an eie, return an error in this
1652				 * case.
1653				 */
1654				ASSERT(eie);
1655				if (!eie) {
1656					ret = -EUCLEAN;
1657					goto out;
1658				}
1659				while (eie->next)
1660					eie = eie->next;
1661				eie->next = ref->inode_list;
1662			}
1663			eie = NULL;
1664			/*
1665			 * We have transferred the inode list ownership from
1666			 * this ref to the ref we added to the 'refs' ulist.
1667			 * So set this ref's inode list to NULL to avoid
1668			 * use-after-free when our caller uses it or double
1669			 * frees in case an error happens before we return.
1670			 */
1671			ref->inode_list = NULL;
1672		}
1673		cond_resched();
1674	}
1675
1676out:
1677	btrfs_free_path(path);
1678
1679	prelim_release(&preftrees.direct);
1680	prelim_release(&preftrees.indirect);
1681	prelim_release(&preftrees.indirect_missing_keys);
1682
1683	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1684		free_inode_elem_list(eie);
1685	return ret;
1686}
1687
1688/*
1689 * Finds all leaves with a reference to the specified combination of
1690 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1691 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1692 * function. The caller should free the ulist with free_leaf_list() if
1693 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1694 * enough.
1695 *
1696 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1697 */
1698int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1699{
1700	int ret;
1701
1702	ASSERT(ctx->refs == NULL);
1703
1704	ctx->refs = ulist_alloc(GFP_NOFS);
1705	if (!ctx->refs)
1706		return -ENOMEM;
1707
1708	ret = find_parent_nodes(ctx, NULL);
1709	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1710	    (ret < 0 && ret != -ENOENT)) {
1711		free_leaf_list(ctx->refs);
1712		ctx->refs = NULL;
1713		return ret;
1714	}
1715
1716	return 0;
1717}
1718
1719/*
1720 * Walk all backrefs for a given extent to find all roots that reference this
1721 * extent. Walking a backref means finding all extents that reference this
1722 * extent and in turn walk the backrefs of those, too. Naturally this is a
1723 * recursive process, but here it is implemented in an iterative fashion: We
1724 * find all referencing extents for the extent in question and put them on a
1725 * list. In turn, we find all referencing extents for those, further appending
1726 * to the list. The way we iterate the list allows adding more elements after
1727 * the current while iterating. The process stops when we reach the end of the
1728 * list.
1729 *
1730 * Found roots are added to @ctx->roots, which is allocated by this function if
1731 * it points to NULL, in which case the caller is responsible for freeing it
1732 * after it's not needed anymore.
1733 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1734 * ulist to do temporary work, and frees it before returning.
1735 *
1736 * Returns 0 on success, < 0 on error.
1737 */
1738static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1739{
1740	const u64 orig_bytenr = ctx->bytenr;
1741	const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1742	bool roots_ulist_allocated = false;
1743	struct ulist_iterator uiter;
1744	int ret = 0;
1745
1746	ASSERT(ctx->refs == NULL);
1747
1748	ctx->refs = ulist_alloc(GFP_NOFS);
1749	if (!ctx->refs)
1750		return -ENOMEM;
1751
1752	if (!ctx->roots) {
1753		ctx->roots = ulist_alloc(GFP_NOFS);
1754		if (!ctx->roots) {
1755			ulist_free(ctx->refs);
1756			ctx->refs = NULL;
1757			return -ENOMEM;
1758		}
1759		roots_ulist_allocated = true;
1760	}
1761
1762	ctx->skip_inode_ref_list = true;
1763
1764	ULIST_ITER_INIT(&uiter);
1765	while (1) {
1766		struct ulist_node *node;
1767
1768		ret = find_parent_nodes(ctx, NULL);
1769		if (ret < 0 && ret != -ENOENT) {
1770			if (roots_ulist_allocated) {
1771				ulist_free(ctx->roots);
1772				ctx->roots = NULL;
1773			}
1774			break;
1775		}
1776		ret = 0;
1777		node = ulist_next(ctx->refs, &uiter);
1778		if (!node)
1779			break;
1780		ctx->bytenr = node->val;
1781		cond_resched();
1782	}
1783
1784	ulist_free(ctx->refs);
1785	ctx->refs = NULL;
1786	ctx->bytenr = orig_bytenr;
1787	ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1788
1789	return ret;
1790}
1791
1792int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1793			 bool skip_commit_root_sem)
1794{
1795	int ret;
1796
1797	if (!ctx->trans && !skip_commit_root_sem)
1798		down_read(&ctx->fs_info->commit_root_sem);
1799	ret = btrfs_find_all_roots_safe(ctx);
1800	if (!ctx->trans && !skip_commit_root_sem)
1801		up_read(&ctx->fs_info->commit_root_sem);
1802	return ret;
1803}
1804
1805struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1806{
1807	struct btrfs_backref_share_check_ctx *ctx;
1808
1809	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1810	if (!ctx)
1811		return NULL;
1812
1813	ulist_init(&ctx->refs);
1814
1815	return ctx;
1816}
1817
1818void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1819{
1820	if (!ctx)
1821		return;
1822
1823	ulist_release(&ctx->refs);
1824	kfree(ctx);
1825}
1826
1827/*
1828 * Check if a data extent is shared or not.
1829 *
1830 * @inode:       The inode whose extent we are checking.
1831 * @bytenr:      Logical bytenr of the extent we are checking.
1832 * @extent_gen:  Generation of the extent (file extent item) or 0 if it is
1833 *               not known.
1834 * @ctx:         A backref sharedness check context.
1835 *
1836 * btrfs_is_data_extent_shared uses the backref walking code but will short
1837 * circuit as soon as it finds a root or inode that doesn't match the
1838 * one passed in. This provides a significant performance benefit for
1839 * callers (such as fiemap) which want to know whether the extent is
1840 * shared but do not need a ref count.
1841 *
1842 * This attempts to attach to the running transaction in order to account for
1843 * delayed refs, but continues on even when no running transaction exists.
1844 *
1845 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1846 */
1847int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1848				u64 extent_gen,
1849				struct btrfs_backref_share_check_ctx *ctx)
1850{
1851	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1852	struct btrfs_root *root = inode->root;
1853	struct btrfs_fs_info *fs_info = root->fs_info;
1854	struct btrfs_trans_handle *trans;
1855	struct ulist_iterator uiter;
1856	struct ulist_node *node;
1857	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1858	int ret = 0;
1859	struct share_check shared = {
1860		.ctx = ctx,
1861		.root = root,
1862		.inum = btrfs_ino(inode),
1863		.data_bytenr = bytenr,
1864		.data_extent_gen = extent_gen,
1865		.share_count = 0,
1866		.self_ref_count = 0,
1867		.have_delayed_delete_refs = false,
1868	};
1869	int level;
1870	bool leaf_cached;
1871	bool leaf_is_shared;
1872
1873	for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1874		if (ctx->prev_extents_cache[i].bytenr == bytenr)
1875			return ctx->prev_extents_cache[i].is_shared;
1876	}
1877
1878	ulist_init(&ctx->refs);
1879
1880	trans = btrfs_join_transaction_nostart(root);
1881	if (IS_ERR(trans)) {
1882		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1883			ret = PTR_ERR(trans);
1884			goto out;
1885		}
1886		trans = NULL;
1887		down_read(&fs_info->commit_root_sem);
1888	} else {
1889		btrfs_get_tree_mod_seq(fs_info, &elem);
1890		walk_ctx.time_seq = elem.seq;
1891	}
1892
1893	ctx->use_path_cache = true;
1894
1895	/*
1896	 * We may have previously determined that the current leaf is shared.
1897	 * If it is, then we have a data extent that is shared due to a shared
1898	 * subtree (caused by snapshotting) and we don't need to check for data
1899	 * backrefs. If the leaf is not shared, then we must do backref walking
1900	 * to determine if the data extent is shared through reflinks.
1901	 */
1902	leaf_cached = lookup_backref_shared_cache(ctx, root,
1903						  ctx->curr_leaf_bytenr, 0,
1904						  &leaf_is_shared);
1905	if (leaf_cached && leaf_is_shared) {
1906		ret = 1;
1907		goto out_trans;
1908	}
1909
1910	walk_ctx.skip_inode_ref_list = true;
1911	walk_ctx.trans = trans;
1912	walk_ctx.fs_info = fs_info;
1913	walk_ctx.refs = &ctx->refs;
1914
1915	/* -1 means we are in the bytenr of the data extent. */
1916	level = -1;
1917	ULIST_ITER_INIT(&uiter);
1918	while (1) {
1919		const unsigned long prev_ref_count = ctx->refs.nnodes;
1920
1921		walk_ctx.bytenr = bytenr;
1922		ret = find_parent_nodes(&walk_ctx, &shared);
1923		if (ret == BACKREF_FOUND_SHARED ||
1924		    ret == BACKREF_FOUND_NOT_SHARED) {
1925			/* If shared must return 1, otherwise return 0. */
1926			ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1927			if (level >= 0)
1928				store_backref_shared_cache(ctx, root, bytenr,
1929							   level, ret == 1);
1930			break;
1931		}
1932		if (ret < 0 && ret != -ENOENT)
1933			break;
1934		ret = 0;
1935
1936		/*
1937		 * More than one extent buffer (bytenr) may have been added to
1938		 * the ctx->refs ulist, in which case we have to check multiple
1939		 * tree paths in case the first one is not shared, so we can not
1940		 * use the path cache which is made for a single path. Multiple
1941		 * extent buffers at the current level happen when:
1942		 *
1943		 * 1) level -1, the data extent: If our data extent was not
1944		 *    directly shared (without multiple reference items), then
1945		 *    it might have a single reference item with a count > 1 for
1946		 *    the same offset, which means there are 2 (or more) file
1947		 *    extent items that point to the data extent - this happens
1948		 *    when a file extent item needs to be split and then one
1949		 *    item gets moved to another leaf due to a b+tree leaf split
1950		 *    when inserting some item. In this case the file extent
1951		 *    items may be located in different leaves and therefore
1952		 *    some of the leaves may be referenced through shared
1953		 *    subtrees while others are not. Since our extent buffer
1954		 *    cache only works for a single path (by far the most common
1955		 *    case and simpler to deal with), we can not use it if we
1956		 *    have multiple leaves (which implies multiple paths).
1957		 *
1958		 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1959		 *    and indirect references on a b+tree node/leaf, so we have
1960		 *    to check multiple paths, and the extent buffer (the
1961		 *    current bytenr) may be shared or not. One example is
1962		 *    during relocation as we may get a shared tree block ref
1963		 *    (direct ref) and a non-shared tree block ref (indirect
1964		 *    ref) for the same node/leaf.
1965		 */
1966		if ((ctx->refs.nnodes - prev_ref_count) > 1)
1967			ctx->use_path_cache = false;
1968
1969		if (level >= 0)
1970			store_backref_shared_cache(ctx, root, bytenr,
1971						   level, false);
1972		node = ulist_next(&ctx->refs, &uiter);
1973		if (!node)
1974			break;
1975		bytenr = node->val;
1976		if (ctx->use_path_cache) {
1977			bool is_shared;
1978			bool cached;
1979
1980			level++;
1981			cached = lookup_backref_shared_cache(ctx, root, bytenr,
1982							     level, &is_shared);
1983			if (cached) {
1984				ret = (is_shared ? 1 : 0);
1985				break;
1986			}
1987		}
1988		shared.share_count = 0;
1989		shared.have_delayed_delete_refs = false;
1990		cond_resched();
1991	}
1992
1993	/*
1994	 * If the path cache is disabled, then it means at some tree level we
1995	 * got multiple parents due to a mix of direct and indirect backrefs or
1996	 * multiple leaves with file extent items pointing to the same data
1997	 * extent. We have to invalidate the cache and cache only the sharedness
1998	 * result for the levels where we got only one node/reference.
1999	 */
2000	if (!ctx->use_path_cache) {
2001		int i = 0;
2002
2003		level--;
2004		if (ret >= 0 && level >= 0) {
2005			bytenr = ctx->path_cache_entries[level].bytenr;
2006			ctx->use_path_cache = true;
2007			store_backref_shared_cache(ctx, root, bytenr, level, ret);
2008			i = level + 1;
2009		}
2010
2011		for ( ; i < BTRFS_MAX_LEVEL; i++)
2012			ctx->path_cache_entries[i].bytenr = 0;
2013	}
2014
2015	/*
2016	 * Cache the sharedness result for the data extent if we know our inode
2017	 * has more than 1 file extent item that refers to the data extent.
2018	 */
2019	if (ret >= 0 && shared.self_ref_count > 1) {
2020		int slot = ctx->prev_extents_cache_slot;
2021
2022		ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2023		ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2024
2025		slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2026		ctx->prev_extents_cache_slot = slot;
2027	}
2028
2029out_trans:
2030	if (trans) {
2031		btrfs_put_tree_mod_seq(fs_info, &elem);
2032		btrfs_end_transaction(trans);
2033	} else {
2034		up_read(&fs_info->commit_root_sem);
2035	}
2036out:
2037	ulist_release(&ctx->refs);
2038	ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2039
2040	return ret;
2041}
2042
2043int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2044			  u64 start_off, struct btrfs_path *path,
2045			  struct btrfs_inode_extref **ret_extref,
2046			  u64 *found_off)
2047{
2048	int ret, slot;
2049	struct btrfs_key key;
2050	struct btrfs_key found_key;
2051	struct btrfs_inode_extref *extref;
2052	const struct extent_buffer *leaf;
2053	unsigned long ptr;
2054
2055	key.objectid = inode_objectid;
2056	key.type = BTRFS_INODE_EXTREF_KEY;
2057	key.offset = start_off;
2058
2059	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2060	if (ret < 0)
2061		return ret;
2062
2063	while (1) {
2064		leaf = path->nodes[0];
2065		slot = path->slots[0];
2066		if (slot >= btrfs_header_nritems(leaf)) {
2067			/*
2068			 * If the item at offset is not found,
2069			 * btrfs_search_slot will point us to the slot
2070			 * where it should be inserted. In our case
2071			 * that will be the slot directly before the
2072			 * next INODE_REF_KEY_V2 item. In the case
2073			 * that we're pointing to the last slot in a
2074			 * leaf, we must move one leaf over.
2075			 */
2076			ret = btrfs_next_leaf(root, path);
2077			if (ret) {
2078				if (ret >= 1)
2079					ret = -ENOENT;
2080				break;
2081			}
2082			continue;
2083		}
2084
2085		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2086
2087		/*
2088		 * Check that we're still looking at an extended ref key for
2089		 * this particular objectid. If we have different
2090		 * objectid or type then there are no more to be found
2091		 * in the tree and we can exit.
2092		 */
2093		ret = -ENOENT;
2094		if (found_key.objectid != inode_objectid)
2095			break;
2096		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2097			break;
2098
2099		ret = 0;
2100		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2101		extref = (struct btrfs_inode_extref *)ptr;
2102		*ret_extref = extref;
2103		if (found_off)
2104			*found_off = found_key.offset;
2105		break;
2106	}
2107
2108	return ret;
2109}
2110
2111/*
2112 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2113 * Elements of the path are separated by '/' and the path is guaranteed to be
2114 * 0-terminated. the path is only given within the current file system.
2115 * Therefore, it never starts with a '/'. the caller is responsible to provide
2116 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2117 * the start point of the resulting string is returned. this pointer is within
2118 * dest, normally.
2119 * in case the path buffer would overflow, the pointer is decremented further
2120 * as if output was written to the buffer, though no more output is actually
2121 * generated. that way, the caller can determine how much space would be
2122 * required for the path to fit into the buffer. in that case, the returned
2123 * value will be smaller than dest. callers must check this!
2124 */
2125char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2126			u32 name_len, unsigned long name_off,
2127			struct extent_buffer *eb_in, u64 parent,
2128			char *dest, u32 size)
2129{
2130	int slot;
2131	u64 next_inum;
2132	int ret;
2133	s64 bytes_left = ((s64)size) - 1;
2134	struct extent_buffer *eb = eb_in;
2135	struct btrfs_key found_key;
2136	struct btrfs_inode_ref *iref;
2137
2138	if (bytes_left >= 0)
2139		dest[bytes_left] = '\0';
2140
2141	while (1) {
2142		bytes_left -= name_len;
2143		if (bytes_left >= 0)
2144			read_extent_buffer(eb, dest + bytes_left,
2145					   name_off, name_len);
2146		if (eb != eb_in) {
2147			if (!path->skip_locking)
2148				btrfs_tree_read_unlock(eb);
2149			free_extent_buffer(eb);
2150		}
2151		ret = btrfs_find_item(fs_root, path, parent, 0,
2152				BTRFS_INODE_REF_KEY, &found_key);
2153		if (ret > 0)
2154			ret = -ENOENT;
2155		if (ret)
2156			break;
2157
2158		next_inum = found_key.offset;
2159
2160		/* regular exit ahead */
2161		if (parent == next_inum)
2162			break;
2163
2164		slot = path->slots[0];
2165		eb = path->nodes[0];
2166		/* make sure we can use eb after releasing the path */
2167		if (eb != eb_in) {
2168			path->nodes[0] = NULL;
2169			path->locks[0] = 0;
2170		}
2171		btrfs_release_path(path);
2172		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2173
2174		name_len = btrfs_inode_ref_name_len(eb, iref);
2175		name_off = (unsigned long)(iref + 1);
2176
2177		parent = next_inum;
2178		--bytes_left;
2179		if (bytes_left >= 0)
2180			dest[bytes_left] = '/';
2181	}
2182
2183	btrfs_release_path(path);
2184
2185	if (ret)
2186		return ERR_PTR(ret);
2187
2188	return dest + bytes_left;
2189}
2190
2191/*
2192 * this makes the path point to (logical EXTENT_ITEM *)
2193 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2194 * tree blocks and <0 on error.
2195 */
2196int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2197			struct btrfs_path *path, struct btrfs_key *found_key,
2198			u64 *flags_ret)
2199{
2200	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2201	int ret;
2202	u64 flags;
2203	u64 size = 0;
2204	u32 item_size;
2205	const struct extent_buffer *eb;
2206	struct btrfs_extent_item *ei;
2207	struct btrfs_key key;
2208
2209	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2210		key.type = BTRFS_METADATA_ITEM_KEY;
2211	else
2212		key.type = BTRFS_EXTENT_ITEM_KEY;
2213	key.objectid = logical;
2214	key.offset = (u64)-1;
2215
2216	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2217	if (ret < 0)
2218		return ret;
2219	if (ret == 0) {
2220		/*
2221		 * Key with offset -1 found, there would have to exist an extent
2222		 * item with such offset, but this is out of the valid range.
2223		 */
2224		return -EUCLEAN;
2225	}
2226
2227	ret = btrfs_previous_extent_item(extent_root, path, 0);
2228	if (ret) {
2229		if (ret > 0)
2230			ret = -ENOENT;
2231		return ret;
2232	}
2233	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2234	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2235		size = fs_info->nodesize;
2236	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2237		size = found_key->offset;
2238
2239	if (found_key->objectid > logical ||
2240	    found_key->objectid + size <= logical) {
2241		btrfs_debug(fs_info,
2242			"logical %llu is not within any extent", logical);
2243		return -ENOENT;
2244	}
2245
2246	eb = path->nodes[0];
2247	item_size = btrfs_item_size(eb, path->slots[0]);
2248
2249	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2250	flags = btrfs_extent_flags(eb, ei);
2251
2252	btrfs_debug(fs_info,
2253		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2254		 logical, logical - found_key->objectid, found_key->objectid,
2255		 found_key->offset, flags, item_size);
2256
2257	WARN_ON(!flags_ret);
2258	if (flags_ret) {
2259		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2260			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2261		else if (flags & BTRFS_EXTENT_FLAG_DATA)
2262			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2263		else
2264			BUG();
2265		return 0;
2266	}
2267
2268	return -EIO;
2269}
2270
2271/*
2272 * helper function to iterate extent inline refs. ptr must point to a 0 value
2273 * for the first call and may be modified. it is used to track state.
2274 * if more refs exist, 0 is returned and the next call to
2275 * get_extent_inline_ref must pass the modified ptr parameter to get the
2276 * next ref. after the last ref was processed, 1 is returned.
2277 * returns <0 on error
2278 */
2279static int get_extent_inline_ref(unsigned long *ptr,
2280				 const struct extent_buffer *eb,
2281				 const struct btrfs_key *key,
2282				 const struct btrfs_extent_item *ei,
2283				 u32 item_size,
2284				 struct btrfs_extent_inline_ref **out_eiref,
2285				 int *out_type)
2286{
2287	unsigned long end;
2288	u64 flags;
2289	struct btrfs_tree_block_info *info;
2290
2291	if (!*ptr) {
2292		/* first call */
2293		flags = btrfs_extent_flags(eb, ei);
2294		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2295			if (key->type == BTRFS_METADATA_ITEM_KEY) {
2296				/* a skinny metadata extent */
2297				*out_eiref =
2298				     (struct btrfs_extent_inline_ref *)(ei + 1);
2299			} else {
2300				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2301				info = (struct btrfs_tree_block_info *)(ei + 1);
2302				*out_eiref =
2303				   (struct btrfs_extent_inline_ref *)(info + 1);
2304			}
2305		} else {
2306			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2307		}
2308		*ptr = (unsigned long)*out_eiref;
2309		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2310			return -ENOENT;
2311	}
2312
2313	end = (unsigned long)ei + item_size;
2314	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2315	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2316						     BTRFS_REF_TYPE_ANY);
2317	if (*out_type == BTRFS_REF_TYPE_INVALID)
2318		return -EUCLEAN;
2319
2320	*ptr += btrfs_extent_inline_ref_size(*out_type);
2321	WARN_ON(*ptr > end);
2322	if (*ptr == end)
2323		return 1; /* last */
2324
2325	return 0;
2326}
2327
2328/*
2329 * reads the tree block backref for an extent. tree level and root are returned
2330 * through out_level and out_root. ptr must point to a 0 value for the first
2331 * call and may be modified (see get_extent_inline_ref comment).
2332 * returns 0 if data was provided, 1 if there was no more data to provide or
2333 * <0 on error.
2334 */
2335int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2336			    struct btrfs_key *key, struct btrfs_extent_item *ei,
2337			    u32 item_size, u64 *out_root, u8 *out_level)
2338{
2339	int ret;
2340	int type;
2341	struct btrfs_extent_inline_ref *eiref;
2342
2343	if (*ptr == (unsigned long)-1)
2344		return 1;
2345
2346	while (1) {
2347		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2348					      &eiref, &type);
2349		if (ret < 0)
2350			return ret;
2351
2352		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2353		    type == BTRFS_SHARED_BLOCK_REF_KEY)
2354			break;
2355
2356		if (ret == 1)
2357			return 1;
2358	}
2359
2360	/* we can treat both ref types equally here */
2361	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2362
2363	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2364		struct btrfs_tree_block_info *info;
2365
2366		info = (struct btrfs_tree_block_info *)(ei + 1);
2367		*out_level = btrfs_tree_block_level(eb, info);
2368	} else {
2369		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2370		*out_level = (u8)key->offset;
2371	}
2372
2373	if (ret == 1)
2374		*ptr = (unsigned long)-1;
2375
2376	return 0;
2377}
2378
2379static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2380			     struct extent_inode_elem *inode_list,
2381			     u64 root, u64 extent_item_objectid,
2382			     iterate_extent_inodes_t *iterate, void *ctx)
2383{
2384	struct extent_inode_elem *eie;
2385	int ret = 0;
2386
2387	for (eie = inode_list; eie; eie = eie->next) {
2388		btrfs_debug(fs_info,
2389			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2390			    extent_item_objectid, eie->inum,
2391			    eie->offset, root);
2392		ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2393		if (ret) {
2394			btrfs_debug(fs_info,
2395				    "stopping iteration for %llu due to ret=%d",
2396				    extent_item_objectid, ret);
2397			break;
2398		}
2399	}
2400
2401	return ret;
2402}
2403
2404/*
2405 * calls iterate() for every inode that references the extent identified by
2406 * the given parameters.
2407 * when the iterator function returns a non-zero value, iteration stops.
2408 */
2409int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2410			  bool search_commit_root,
2411			  iterate_extent_inodes_t *iterate, void *user_ctx)
2412{
2413	int ret;
2414	struct ulist *refs;
2415	struct ulist_node *ref_node;
2416	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2417	struct ulist_iterator ref_uiter;
2418
2419	btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2420		    ctx->bytenr);
2421
2422	ASSERT(ctx->trans == NULL);
2423	ASSERT(ctx->roots == NULL);
2424
2425	if (!search_commit_root) {
2426		struct btrfs_trans_handle *trans;
2427
2428		trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2429		if (IS_ERR(trans)) {
2430			if (PTR_ERR(trans) != -ENOENT &&
2431			    PTR_ERR(trans) != -EROFS)
2432				return PTR_ERR(trans);
2433			trans = NULL;
2434		}
2435		ctx->trans = trans;
2436	}
2437
2438	if (ctx->trans) {
2439		btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2440		ctx->time_seq = seq_elem.seq;
2441	} else {
2442		down_read(&ctx->fs_info->commit_root_sem);
2443	}
2444
2445	ret = btrfs_find_all_leafs(ctx);
2446	if (ret)
2447		goto out;
2448	refs = ctx->refs;
2449	ctx->refs = NULL;
2450
2451	ULIST_ITER_INIT(&ref_uiter);
2452	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2453		const u64 leaf_bytenr = ref_node->val;
2454		struct ulist_node *root_node;
2455		struct ulist_iterator root_uiter;
2456		struct extent_inode_elem *inode_list;
2457
2458		inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2459
2460		if (ctx->cache_lookup) {
2461			const u64 *root_ids;
2462			int root_count;
2463			bool cached;
2464
2465			cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2466						   &root_ids, &root_count);
2467			if (cached) {
2468				for (int i = 0; i < root_count; i++) {
2469					ret = iterate_leaf_refs(ctx->fs_info,
2470								inode_list,
2471								root_ids[i],
2472								leaf_bytenr,
2473								iterate,
2474								user_ctx);
2475					if (ret)
2476						break;
2477				}
2478				continue;
2479			}
2480		}
2481
2482		if (!ctx->roots) {
2483			ctx->roots = ulist_alloc(GFP_NOFS);
2484			if (!ctx->roots) {
2485				ret = -ENOMEM;
2486				break;
2487			}
2488		}
2489
2490		ctx->bytenr = leaf_bytenr;
2491		ret = btrfs_find_all_roots_safe(ctx);
2492		if (ret)
2493			break;
2494
2495		if (ctx->cache_store)
2496			ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2497
2498		ULIST_ITER_INIT(&root_uiter);
2499		while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2500			btrfs_debug(ctx->fs_info,
2501				    "root %llu references leaf %llu, data list %#llx",
2502				    root_node->val, ref_node->val,
2503				    ref_node->aux);
2504			ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2505						root_node->val, ctx->bytenr,
2506						iterate, user_ctx);
2507		}
2508		ulist_reinit(ctx->roots);
2509	}
2510
2511	free_leaf_list(refs);
2512out:
2513	if (ctx->trans) {
2514		btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2515		btrfs_end_transaction(ctx->trans);
2516		ctx->trans = NULL;
2517	} else {
2518		up_read(&ctx->fs_info->commit_root_sem);
2519	}
2520
2521	ulist_free(ctx->roots);
2522	ctx->roots = NULL;
2523
2524	if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2525		ret = 0;
2526
2527	return ret;
2528}
2529
2530static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2531{
2532	struct btrfs_data_container *inodes = ctx;
2533	const size_t c = 3 * sizeof(u64);
2534
2535	if (inodes->bytes_left >= c) {
2536		inodes->bytes_left -= c;
2537		inodes->val[inodes->elem_cnt] = inum;
2538		inodes->val[inodes->elem_cnt + 1] = offset;
2539		inodes->val[inodes->elem_cnt + 2] = root;
2540		inodes->elem_cnt += 3;
2541	} else {
2542		inodes->bytes_missing += c - inodes->bytes_left;
2543		inodes->bytes_left = 0;
2544		inodes->elem_missed += 3;
2545	}
2546
2547	return 0;
2548}
2549
2550int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2551				struct btrfs_path *path,
2552				void *ctx, bool ignore_offset)
2553{
2554	struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2555	int ret;
2556	u64 flags = 0;
2557	struct btrfs_key found_key;
2558	int search_commit_root = path->search_commit_root;
2559
2560	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561	btrfs_release_path(path);
2562	if (ret < 0)
2563		return ret;
2564	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565		return -EINVAL;
2566
2567	walk_ctx.bytenr = found_key.objectid;
2568	if (ignore_offset)
2569		walk_ctx.ignore_extent_item_pos = true;
2570	else
2571		walk_ctx.extent_item_pos = logical - found_key.objectid;
2572	walk_ctx.fs_info = fs_info;
2573
2574	return iterate_extent_inodes(&walk_ctx, search_commit_root,
2575				     build_ino_list, ctx);
2576}
2577
2578static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579			 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580
2581static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582{
2583	int ret = 0;
2584	int slot;
2585	u32 cur;
2586	u32 len;
2587	u32 name_len;
2588	u64 parent = 0;
2589	int found = 0;
2590	struct btrfs_root *fs_root = ipath->fs_root;
2591	struct btrfs_path *path = ipath->btrfs_path;
2592	struct extent_buffer *eb;
2593	struct btrfs_inode_ref *iref;
2594	struct btrfs_key found_key;
2595
2596	while (!ret) {
2597		ret = btrfs_find_item(fs_root, path, inum,
2598				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599				&found_key);
2600
2601		if (ret < 0)
2602			break;
2603		if (ret) {
2604			ret = found ? 0 : -ENOENT;
2605			break;
2606		}
2607		++found;
2608
2609		parent = found_key.offset;
2610		slot = path->slots[0];
2611		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612		if (!eb) {
2613			ret = -ENOMEM;
2614			break;
2615		}
2616		btrfs_release_path(path);
2617
2618		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619
2620		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621			name_len = btrfs_inode_ref_name_len(eb, iref);
2622			/* path must be released before calling iterate()! */
2623			btrfs_debug(fs_root->fs_info,
2624				"following ref at offset %u for inode %llu in tree %llu",
2625				cur, found_key.objectid,
2626				btrfs_root_id(fs_root));
2627			ret = inode_to_path(parent, name_len,
2628				      (unsigned long)(iref + 1), eb, ipath);
2629			if (ret)
2630				break;
2631			len = sizeof(*iref) + name_len;
2632			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633		}
2634		free_extent_buffer(eb);
2635	}
2636
2637	btrfs_release_path(path);
2638
2639	return ret;
2640}
2641
2642static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643{
2644	int ret;
2645	int slot;
2646	u64 offset = 0;
2647	u64 parent;
2648	int found = 0;
2649	struct btrfs_root *fs_root = ipath->fs_root;
2650	struct btrfs_path *path = ipath->btrfs_path;
2651	struct extent_buffer *eb;
2652	struct btrfs_inode_extref *extref;
2653	u32 item_size;
2654	u32 cur_offset;
2655	unsigned long ptr;
2656
2657	while (1) {
2658		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659					    &offset);
2660		if (ret < 0)
2661			break;
2662		if (ret) {
2663			ret = found ? 0 : -ENOENT;
2664			break;
2665		}
2666		++found;
2667
2668		slot = path->slots[0];
2669		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670		if (!eb) {
2671			ret = -ENOMEM;
2672			break;
2673		}
2674		btrfs_release_path(path);
2675
2676		item_size = btrfs_item_size(eb, slot);
2677		ptr = btrfs_item_ptr_offset(eb, slot);
2678		cur_offset = 0;
2679
2680		while (cur_offset < item_size) {
2681			u32 name_len;
2682
2683			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684			parent = btrfs_inode_extref_parent(eb, extref);
2685			name_len = btrfs_inode_extref_name_len(eb, extref);
2686			ret = inode_to_path(parent, name_len,
2687				      (unsigned long)&extref->name, eb, ipath);
2688			if (ret)
2689				break;
2690
2691			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692			cur_offset += sizeof(*extref);
2693		}
2694		free_extent_buffer(eb);
2695
2696		offset++;
2697	}
2698
2699	btrfs_release_path(path);
2700
2701	return ret;
2702}
2703
2704/*
2705 * returns 0 if the path could be dumped (probably truncated)
2706 * returns <0 in case of an error
2707 */
2708static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709			 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710{
2711	char *fspath;
2712	char *fspath_min;
2713	int i = ipath->fspath->elem_cnt;
2714	const int s_ptr = sizeof(char *);
2715	u32 bytes_left;
2716
2717	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718					ipath->fspath->bytes_left - s_ptr : 0;
2719
2720	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722				   name_off, eb, inum, fspath_min, bytes_left);
2723	if (IS_ERR(fspath))
2724		return PTR_ERR(fspath);
2725
2726	if (fspath > fspath_min) {
2727		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728		++ipath->fspath->elem_cnt;
2729		ipath->fspath->bytes_left = fspath - fspath_min;
2730	} else {
2731		++ipath->fspath->elem_missed;
2732		ipath->fspath->bytes_missing += fspath_min - fspath;
2733		ipath->fspath->bytes_left = 0;
2734	}
2735
2736	return 0;
2737}
2738
2739/*
2740 * this dumps all file system paths to the inode into the ipath struct, provided
2741 * is has been created large enough. each path is zero-terminated and accessed
2742 * from ipath->fspath->val[i].
2743 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2744 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747 * have been needed to return all paths.
2748 */
2749int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750{
2751	int ret;
2752	int found_refs = 0;
2753
2754	ret = iterate_inode_refs(inum, ipath);
2755	if (!ret)
2756		++found_refs;
2757	else if (ret != -ENOENT)
2758		return ret;
2759
2760	ret = iterate_inode_extrefs(inum, ipath);
2761	if (ret == -ENOENT && found_refs)
2762		return 0;
2763
2764	return ret;
2765}
2766
2767struct btrfs_data_container *init_data_container(u32 total_bytes)
2768{
2769	struct btrfs_data_container *data;
2770	size_t alloc_bytes;
2771
2772	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773	data = kvzalloc(alloc_bytes, GFP_KERNEL);
2774	if (!data)
2775		return ERR_PTR(-ENOMEM);
2776
2777	if (total_bytes >= sizeof(*data))
2778		data->bytes_left = total_bytes - sizeof(*data);
2779	else
2780		data->bytes_missing = sizeof(*data) - total_bytes;
2781
2782	return data;
2783}
2784
2785/*
2786 * allocates space to return multiple file system paths for an inode.
2787 * total_bytes to allocate are passed, note that space usable for actual path
2788 * information will be total_bytes - sizeof(struct inode_fs_paths).
2789 * the returned pointer must be freed with free_ipath() in the end.
2790 */
2791struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2792					struct btrfs_path *path)
2793{
2794	struct inode_fs_paths *ifp;
2795	struct btrfs_data_container *fspath;
2796
2797	fspath = init_data_container(total_bytes);
2798	if (IS_ERR(fspath))
2799		return ERR_CAST(fspath);
2800
2801	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2802	if (!ifp) {
2803		kvfree(fspath);
2804		return ERR_PTR(-ENOMEM);
2805	}
2806
2807	ifp->btrfs_path = path;
2808	ifp->fspath = fspath;
2809	ifp->fs_root = fs_root;
2810
2811	return ifp;
2812}
2813
2814void free_ipath(struct inode_fs_paths *ipath)
2815{
2816	if (!ipath)
2817		return;
2818	kvfree(ipath->fspath);
2819	kfree(ipath);
2820}
2821
2822struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2823{
2824	struct btrfs_backref_iter *ret;
2825
2826	ret = kzalloc(sizeof(*ret), GFP_NOFS);
2827	if (!ret)
2828		return NULL;
2829
2830	ret->path = btrfs_alloc_path();
2831	if (!ret->path) {
2832		kfree(ret);
2833		return NULL;
2834	}
2835
2836	/* Current backref iterator only supports iteration in commit root */
2837	ret->path->search_commit_root = 1;
2838	ret->path->skip_locking = 1;
2839	ret->fs_info = fs_info;
2840
2841	return ret;
2842}
2843
2844static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2845{
2846	iter->bytenr = 0;
2847	iter->item_ptr = 0;
2848	iter->cur_ptr = 0;
2849	iter->end_ptr = 0;
2850	btrfs_release_path(iter->path);
2851	memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2852}
2853
2854int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2855{
2856	struct btrfs_fs_info *fs_info = iter->fs_info;
2857	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2858	struct btrfs_path *path = iter->path;
2859	struct btrfs_extent_item *ei;
2860	struct btrfs_key key;
2861	int ret;
2862
2863	key.objectid = bytenr;
2864	key.type = BTRFS_METADATA_ITEM_KEY;
2865	key.offset = (u64)-1;
2866	iter->bytenr = bytenr;
2867
2868	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2869	if (ret < 0)
2870		return ret;
2871	if (ret == 0) {
2872		/*
2873		 * Key with offset -1 found, there would have to exist an extent
2874		 * item with such offset, but this is out of the valid range.
2875		 */
2876		ret = -EUCLEAN;
2877		goto release;
2878	}
2879	if (path->slots[0] == 0) {
2880		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2881		ret = -EUCLEAN;
2882		goto release;
2883	}
2884	path->slots[0]--;
2885
2886	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2887	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2888	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2889		ret = -ENOENT;
2890		goto release;
2891	}
2892	memcpy(&iter->cur_key, &key, sizeof(key));
2893	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2894						    path->slots[0]);
2895	iter->end_ptr = (u32)(iter->item_ptr +
2896			btrfs_item_size(path->nodes[0], path->slots[0]));
2897	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2898			    struct btrfs_extent_item);
2899
2900	/*
2901	 * Only support iteration on tree backref yet.
2902	 *
2903	 * This is an extra precaution for non skinny-metadata, where
2904	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2905	 * extent flags to determine if it's a tree block.
2906	 */
2907	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2908		ret = -ENOTSUPP;
2909		goto release;
2910	}
2911	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2912
2913	/* If there is no inline backref, go search for keyed backref */
2914	if (iter->cur_ptr >= iter->end_ptr) {
2915		ret = btrfs_next_item(extent_root, path);
2916
2917		/* No inline nor keyed ref */
2918		if (ret > 0) {
2919			ret = -ENOENT;
2920			goto release;
2921		}
2922		if (ret < 0)
2923			goto release;
2924
2925		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2926				path->slots[0]);
2927		if (iter->cur_key.objectid != bytenr ||
2928		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2929		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2930			ret = -ENOENT;
2931			goto release;
2932		}
2933		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2934							   path->slots[0]);
2935		iter->item_ptr = iter->cur_ptr;
2936		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2937				      path->nodes[0], path->slots[0]));
2938	}
2939
2940	return 0;
2941release:
2942	btrfs_backref_iter_release(iter);
2943	return ret;
2944}
2945
2946static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2947{
2948	if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2949	    iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2950		return true;
2951	return false;
2952}
2953
2954/*
2955 * Go to the next backref item of current bytenr, can be either inlined or
2956 * keyed.
2957 *
2958 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2959 *
2960 * Return 0 if we get next backref without problem.
2961 * Return >0 if there is no extra backref for this bytenr.
2962 * Return <0 if there is something wrong happened.
2963 */
2964int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2965{
2966	struct extent_buffer *eb = iter->path->nodes[0];
2967	struct btrfs_root *extent_root;
2968	struct btrfs_path *path = iter->path;
2969	struct btrfs_extent_inline_ref *iref;
2970	int ret;
2971	u32 size;
2972
2973	if (btrfs_backref_iter_is_inline_ref(iter)) {
2974		/* We're still inside the inline refs */
2975		ASSERT(iter->cur_ptr < iter->end_ptr);
2976
2977		if (btrfs_backref_has_tree_block_info(iter)) {
2978			/* First tree block info */
2979			size = sizeof(struct btrfs_tree_block_info);
2980		} else {
2981			/* Use inline ref type to determine the size */
2982			int type;
2983
2984			iref = (struct btrfs_extent_inline_ref *)
2985				((unsigned long)iter->cur_ptr);
2986			type = btrfs_extent_inline_ref_type(eb, iref);
2987
2988			size = btrfs_extent_inline_ref_size(type);
2989		}
2990		iter->cur_ptr += size;
2991		if (iter->cur_ptr < iter->end_ptr)
2992			return 0;
2993
2994		/* All inline items iterated, fall through */
2995	}
2996
2997	/* We're at keyed items, there is no inline item, go to the next one */
2998	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2999	ret = btrfs_next_item(extent_root, iter->path);
3000	if (ret)
3001		return ret;
3002
3003	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3004	if (iter->cur_key.objectid != iter->bytenr ||
3005	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3006	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3007		return 1;
3008	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3009					path->slots[0]);
3010	iter->cur_ptr = iter->item_ptr;
3011	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3012						path->slots[0]);
3013	return 0;
3014}
3015
3016void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3017			      struct btrfs_backref_cache *cache, bool is_reloc)
3018{
3019	int i;
3020
3021	cache->rb_root = RB_ROOT;
3022	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3023		INIT_LIST_HEAD(&cache->pending[i]);
3024	INIT_LIST_HEAD(&cache->changed);
3025	INIT_LIST_HEAD(&cache->detached);
3026	INIT_LIST_HEAD(&cache->leaves);
3027	INIT_LIST_HEAD(&cache->pending_edge);
3028	INIT_LIST_HEAD(&cache->useless_node);
3029	cache->fs_info = fs_info;
3030	cache->is_reloc = is_reloc;
3031}
3032
3033struct btrfs_backref_node *btrfs_backref_alloc_node(
3034		struct btrfs_backref_cache *cache, u64 bytenr, int level)
3035{
3036	struct btrfs_backref_node *node;
3037
3038	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3039	node = kzalloc(sizeof(*node), GFP_NOFS);
3040	if (!node)
3041		return node;
3042
3043	INIT_LIST_HEAD(&node->list);
3044	INIT_LIST_HEAD(&node->upper);
3045	INIT_LIST_HEAD(&node->lower);
3046	RB_CLEAR_NODE(&node->rb_node);
3047	cache->nr_nodes++;
3048	node->level = level;
3049	node->bytenr = bytenr;
3050
3051	return node;
3052}
3053
3054void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3055			     struct btrfs_backref_node *node)
3056{
3057	if (node) {
3058		ASSERT(list_empty(&node->list));
3059		ASSERT(list_empty(&node->lower));
3060		ASSERT(node->eb == NULL);
3061		cache->nr_nodes--;
3062		btrfs_put_root(node->root);
3063		kfree(node);
3064	}
3065}
3066
3067struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3068		struct btrfs_backref_cache *cache)
3069{
3070	struct btrfs_backref_edge *edge;
3071
3072	edge = kzalloc(sizeof(*edge), GFP_NOFS);
3073	if (edge)
3074		cache->nr_edges++;
3075	return edge;
3076}
3077
3078void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3079			     struct btrfs_backref_edge *edge)
3080{
3081	if (edge) {
3082		cache->nr_edges--;
3083		kfree(edge);
3084	}
3085}
3086
3087void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3088{
3089	if (node->locked) {
3090		btrfs_tree_unlock(node->eb);
3091		node->locked = 0;
3092	}
3093}
3094
3095void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3096{
3097	if (node->eb) {
3098		btrfs_backref_unlock_node_buffer(node);
3099		free_extent_buffer(node->eb);
3100		node->eb = NULL;
3101	}
3102}
3103
3104/*
3105 * Drop the backref node from cache without cleaning up its children
3106 * edges.
3107 *
3108 * This can only be called on node without parent edges.
3109 * The children edges are still kept as is.
3110 */
3111void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3112			     struct btrfs_backref_node *node)
3113{
3114	ASSERT(list_empty(&node->upper));
3115
3116	btrfs_backref_drop_node_buffer(node);
3117	list_del_init(&node->list);
3118	list_del_init(&node->lower);
3119	if (!RB_EMPTY_NODE(&node->rb_node))
3120		rb_erase(&node->rb_node, &tree->rb_root);
3121	btrfs_backref_free_node(tree, node);
3122}
3123
3124/*
3125 * Drop the backref node from cache, also cleaning up all its
3126 * upper edges and any uncached nodes in the path.
3127 *
3128 * This cleanup happens bottom up, thus the node should either
3129 * be the lowest node in the cache or a detached node.
3130 */
3131void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3132				struct btrfs_backref_node *node)
3133{
3134	struct btrfs_backref_node *upper;
3135	struct btrfs_backref_edge *edge;
3136
3137	if (!node)
3138		return;
3139
3140	BUG_ON(!node->lowest && !node->detached);
3141	while (!list_empty(&node->upper)) {
3142		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3143				  list[LOWER]);
3144		upper = edge->node[UPPER];
3145		list_del(&edge->list[LOWER]);
3146		list_del(&edge->list[UPPER]);
3147		btrfs_backref_free_edge(cache, edge);
3148
3149		/*
3150		 * Add the node to leaf node list if no other child block
3151		 * cached.
3152		 */
3153		if (list_empty(&upper->lower)) {
3154			list_add_tail(&upper->lower, &cache->leaves);
3155			upper->lowest = 1;
3156		}
3157	}
3158
3159	btrfs_backref_drop_node(cache, node);
3160}
3161
3162/*
3163 * Release all nodes/edges from current cache
3164 */
3165void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3166{
3167	struct btrfs_backref_node *node;
3168	int i;
3169
3170	while (!list_empty(&cache->detached)) {
3171		node = list_entry(cache->detached.next,
3172				  struct btrfs_backref_node, list);
3173		btrfs_backref_cleanup_node(cache, node);
3174	}
3175
3176	while (!list_empty(&cache->leaves)) {
3177		node = list_entry(cache->leaves.next,
3178				  struct btrfs_backref_node, lower);
3179		btrfs_backref_cleanup_node(cache, node);
3180	}
3181
3182	cache->last_trans = 0;
3183
3184	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3185		ASSERT(list_empty(&cache->pending[i]));
3186	ASSERT(list_empty(&cache->pending_edge));
3187	ASSERT(list_empty(&cache->useless_node));
3188	ASSERT(list_empty(&cache->changed));
3189	ASSERT(list_empty(&cache->detached));
3190	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3191	ASSERT(!cache->nr_nodes);
3192	ASSERT(!cache->nr_edges);
3193}
3194
3195void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3196			     struct btrfs_backref_node *lower,
3197			     struct btrfs_backref_node *upper,
3198			     int link_which)
3199{
3200	ASSERT(upper && lower && upper->level == lower->level + 1);
3201	edge->node[LOWER] = lower;
3202	edge->node[UPPER] = upper;
3203	if (link_which & LINK_LOWER)
3204		list_add_tail(&edge->list[LOWER], &lower->upper);
3205	if (link_which & LINK_UPPER)
3206		list_add_tail(&edge->list[UPPER], &upper->lower);
3207}
3208/*
3209 * Handle direct tree backref
3210 *
3211 * Direct tree backref means, the backref item shows its parent bytenr
3212 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3213 *
3214 * @ref_key:	The converted backref key.
3215 *		For keyed backref, it's the item key.
3216 *		For inlined backref, objectid is the bytenr,
3217 *		type is btrfs_inline_ref_type, offset is
3218 *		btrfs_inline_ref_offset.
3219 */
3220static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3221				      struct btrfs_key *ref_key,
3222				      struct btrfs_backref_node *cur)
3223{
3224	struct btrfs_backref_edge *edge;
3225	struct btrfs_backref_node *upper;
3226	struct rb_node *rb_node;
3227
3228	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3229
3230	/* Only reloc root uses backref pointing to itself */
3231	if (ref_key->objectid == ref_key->offset) {
3232		struct btrfs_root *root;
3233
3234		cur->is_reloc_root = 1;
3235		/* Only reloc backref cache cares about a specific root */
3236		if (cache->is_reloc) {
3237			root = find_reloc_root(cache->fs_info, cur->bytenr);
3238			if (!root)
3239				return -ENOENT;
3240			cur->root = root;
3241		} else {
3242			/*
3243			 * For generic purpose backref cache, reloc root node
3244			 * is useless.
3245			 */
3246			list_add(&cur->list, &cache->useless_node);
3247		}
3248		return 0;
3249	}
3250
3251	edge = btrfs_backref_alloc_edge(cache);
3252	if (!edge)
3253		return -ENOMEM;
3254
3255	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3256	if (!rb_node) {
3257		/* Parent node not yet cached */
3258		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3259					   cur->level + 1);
3260		if (!upper) {
3261			btrfs_backref_free_edge(cache, edge);
3262			return -ENOMEM;
3263		}
3264
3265		/*
3266		 *  Backrefs for the upper level block isn't cached, add the
3267		 *  block to pending list
3268		 */
3269		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3270	} else {
3271		/* Parent node already cached */
3272		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3273		ASSERT(upper->checked);
3274		INIT_LIST_HEAD(&edge->list[UPPER]);
3275	}
3276	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3277	return 0;
3278}
3279
3280/*
3281 * Handle indirect tree backref
3282 *
3283 * Indirect tree backref means, we only know which tree the node belongs to.
3284 * We still need to do a tree search to find out the parents. This is for
3285 * TREE_BLOCK_REF backref (keyed or inlined).
3286 *
3287 * @trans:	Transaction handle.
3288 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
3289 * @tree_key:	The first key of this tree block.
3290 * @path:	A clean (released) path, to avoid allocating path every time
3291 *		the function get called.
3292 */
3293static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3294					struct btrfs_backref_cache *cache,
3295					struct btrfs_path *path,
3296					struct btrfs_key *ref_key,
3297					struct btrfs_key *tree_key,
3298					struct btrfs_backref_node *cur)
3299{
3300	struct btrfs_fs_info *fs_info = cache->fs_info;
3301	struct btrfs_backref_node *upper;
3302	struct btrfs_backref_node *lower;
3303	struct btrfs_backref_edge *edge;
3304	struct extent_buffer *eb;
3305	struct btrfs_root *root;
3306	struct rb_node *rb_node;
3307	int level;
3308	bool need_check = true;
3309	int ret;
3310
3311	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3312	if (IS_ERR(root))
3313		return PTR_ERR(root);
3314	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3315		cur->cowonly = 1;
3316
3317	if (btrfs_root_level(&root->root_item) == cur->level) {
3318		/* Tree root */
3319		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3320		/*
3321		 * For reloc backref cache, we may ignore reloc root.  But for
3322		 * general purpose backref cache, we can't rely on
3323		 * btrfs_should_ignore_reloc_root() as it may conflict with
3324		 * current running relocation and lead to missing root.
3325		 *
3326		 * For general purpose backref cache, reloc root detection is
3327		 * completely relying on direct backref (key->offset is parent
3328		 * bytenr), thus only do such check for reloc cache.
3329		 */
3330		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3331			btrfs_put_root(root);
3332			list_add(&cur->list, &cache->useless_node);
3333		} else {
3334			cur->root = root;
3335		}
3336		return 0;
3337	}
3338
3339	level = cur->level + 1;
3340
3341	/* Search the tree to find parent blocks referring to the block */
3342	path->search_commit_root = 1;
3343	path->skip_locking = 1;
3344	path->lowest_level = level;
3345	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3346	path->lowest_level = 0;
3347	if (ret < 0) {
3348		btrfs_put_root(root);
3349		return ret;
3350	}
3351	if (ret > 0 && path->slots[level] > 0)
3352		path->slots[level]--;
3353
3354	eb = path->nodes[level];
3355	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3356		btrfs_err(fs_info,
3357"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3358			  cur->bytenr, level - 1, btrfs_root_id(root),
3359			  tree_key->objectid, tree_key->type, tree_key->offset);
3360		btrfs_put_root(root);
3361		ret = -ENOENT;
3362		goto out;
3363	}
3364	lower = cur;
3365
3366	/* Add all nodes and edges in the path */
3367	for (; level < BTRFS_MAX_LEVEL; level++) {
3368		if (!path->nodes[level]) {
3369			ASSERT(btrfs_root_bytenr(&root->root_item) ==
3370			       lower->bytenr);
3371			/* Same as previous should_ignore_reloc_root() call */
3372			if (btrfs_should_ignore_reloc_root(root) &&
3373			    cache->is_reloc) {
3374				btrfs_put_root(root);
3375				list_add(&lower->list, &cache->useless_node);
3376			} else {
3377				lower->root = root;
3378			}
3379			break;
3380		}
3381
3382		edge = btrfs_backref_alloc_edge(cache);
3383		if (!edge) {
3384			btrfs_put_root(root);
3385			ret = -ENOMEM;
3386			goto out;
3387		}
3388
3389		eb = path->nodes[level];
3390		rb_node = rb_simple_search(&cache->rb_root, eb->start);
3391		if (!rb_node) {
3392			upper = btrfs_backref_alloc_node(cache, eb->start,
3393							 lower->level + 1);
3394			if (!upper) {
3395				btrfs_put_root(root);
3396				btrfs_backref_free_edge(cache, edge);
3397				ret = -ENOMEM;
3398				goto out;
3399			}
3400			upper->owner = btrfs_header_owner(eb);
3401			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
3402				upper->cowonly = 1;
3403
3404			/*
3405			 * If we know the block isn't shared we can avoid
3406			 * checking its backrefs.
3407			 */
3408			if (btrfs_block_can_be_shared(trans, root, eb))
3409				upper->checked = 0;
3410			else
3411				upper->checked = 1;
3412
3413			/*
3414			 * Add the block to pending list if we need to check its
3415			 * backrefs, we only do this once while walking up a
3416			 * tree as we will catch anything else later on.
3417			 */
3418			if (!upper->checked && need_check) {
3419				need_check = false;
3420				list_add_tail(&edge->list[UPPER],
3421					      &cache->pending_edge);
3422			} else {
3423				if (upper->checked)
3424					need_check = true;
3425				INIT_LIST_HEAD(&edge->list[UPPER]);
3426			}
3427		} else {
3428			upper = rb_entry(rb_node, struct btrfs_backref_node,
3429					 rb_node);
3430			ASSERT(upper->checked);
3431			INIT_LIST_HEAD(&edge->list[UPPER]);
3432			if (!upper->owner)
3433				upper->owner = btrfs_header_owner(eb);
3434		}
3435		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3436
3437		if (rb_node) {
3438			btrfs_put_root(root);
3439			break;
3440		}
3441		lower = upper;
3442		upper = NULL;
3443	}
3444out:
3445	btrfs_release_path(path);
3446	return ret;
3447}
3448
3449/*
3450 * Add backref node @cur into @cache.
3451 *
3452 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3453 *	 links aren't yet bi-directional. Needs to finish such links.
3454 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
3455 *
3456 * @trans:	Transaction handle.
3457 * @path:	Released path for indirect tree backref lookup
3458 * @iter:	Released backref iter for extent tree search
3459 * @node_key:	The first key of the tree block
3460 */
3461int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3462				struct btrfs_backref_cache *cache,
3463				struct btrfs_path *path,
3464				struct btrfs_backref_iter *iter,
3465				struct btrfs_key *node_key,
3466				struct btrfs_backref_node *cur)
3467{
3468	struct btrfs_backref_edge *edge;
3469	struct btrfs_backref_node *exist;
3470	int ret;
3471
3472	ret = btrfs_backref_iter_start(iter, cur->bytenr);
3473	if (ret < 0)
3474		return ret;
3475	/*
3476	 * We skip the first btrfs_tree_block_info, as we don't use the key
3477	 * stored in it, but fetch it from the tree block
3478	 */
3479	if (btrfs_backref_has_tree_block_info(iter)) {
3480		ret = btrfs_backref_iter_next(iter);
3481		if (ret < 0)
3482			goto out;
3483		/* No extra backref? This means the tree block is corrupted */
3484		if (ret > 0) {
3485			ret = -EUCLEAN;
3486			goto out;
3487		}
3488	}
3489	WARN_ON(cur->checked);
3490	if (!list_empty(&cur->upper)) {
3491		/*
3492		 * The backref was added previously when processing backref of
3493		 * type BTRFS_TREE_BLOCK_REF_KEY
3494		 */
3495		ASSERT(list_is_singular(&cur->upper));
3496		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3497				  list[LOWER]);
3498		ASSERT(list_empty(&edge->list[UPPER]));
3499		exist = edge->node[UPPER];
3500		/*
3501		 * Add the upper level block to pending list if we need check
3502		 * its backrefs
3503		 */
3504		if (!exist->checked)
3505			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3506	} else {
3507		exist = NULL;
3508	}
3509
3510	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3511		struct extent_buffer *eb;
3512		struct btrfs_key key;
3513		int type;
3514
3515		cond_resched();
3516		eb = iter->path->nodes[0];
3517
3518		key.objectid = iter->bytenr;
3519		if (btrfs_backref_iter_is_inline_ref(iter)) {
3520			struct btrfs_extent_inline_ref *iref;
3521
3522			/* Update key for inline backref */
3523			iref = (struct btrfs_extent_inline_ref *)
3524				((unsigned long)iter->cur_ptr);
3525			type = btrfs_get_extent_inline_ref_type(eb, iref,
3526							BTRFS_REF_TYPE_BLOCK);
3527			if (type == BTRFS_REF_TYPE_INVALID) {
3528				ret = -EUCLEAN;
3529				goto out;
3530			}
3531			key.type = type;
3532			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3533		} else {
3534			key.type = iter->cur_key.type;
3535			key.offset = iter->cur_key.offset;
3536		}
3537
3538		/*
3539		 * Parent node found and matches current inline ref, no need to
3540		 * rebuild this node for this inline ref
3541		 */
3542		if (exist &&
3543		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3544		      exist->owner == key.offset) ||
3545		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3546		      exist->bytenr == key.offset))) {
3547			exist = NULL;
3548			continue;
3549		}
3550
3551		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3552		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3553			ret = handle_direct_tree_backref(cache, &key, cur);
3554			if (ret < 0)
3555				goto out;
3556		} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3557			/*
3558			 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3559			 * offset means the root objectid. We need to search
3560			 * the tree to get its parent bytenr.
3561			 */
3562			ret = handle_indirect_tree_backref(trans, cache, path,
3563							   &key, node_key, cur);
3564			if (ret < 0)
3565				goto out;
3566		}
3567		/*
3568		 * Unrecognized tree backref items (if it can pass tree-checker)
3569		 * would be ignored.
3570		 */
3571	}
3572	ret = 0;
3573	cur->checked = 1;
3574	WARN_ON(exist);
3575out:
3576	btrfs_backref_iter_release(iter);
3577	return ret;
3578}
3579
3580/*
3581 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3582 */
3583int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3584				     struct btrfs_backref_node *start)
3585{
3586	struct list_head *useless_node = &cache->useless_node;
3587	struct btrfs_backref_edge *edge;
3588	struct rb_node *rb_node;
3589	LIST_HEAD(pending_edge);
3590
3591	ASSERT(start->checked);
3592
3593	/* Insert this node to cache if it's not COW-only */
3594	if (!start->cowonly) {
3595		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3596					   &start->rb_node);
3597		if (rb_node)
3598			btrfs_backref_panic(cache->fs_info, start->bytenr,
3599					    -EEXIST);
3600		list_add_tail(&start->lower, &cache->leaves);
3601	}
3602
3603	/*
3604	 * Use breadth first search to iterate all related edges.
3605	 *
3606	 * The starting points are all the edges of this node
3607	 */
3608	list_for_each_entry(edge, &start->upper, list[LOWER])
3609		list_add_tail(&edge->list[UPPER], &pending_edge);
3610
3611	while (!list_empty(&pending_edge)) {
3612		struct btrfs_backref_node *upper;
3613		struct btrfs_backref_node *lower;
3614
3615		edge = list_first_entry(&pending_edge,
3616				struct btrfs_backref_edge, list[UPPER]);
3617		list_del_init(&edge->list[UPPER]);
3618		upper = edge->node[UPPER];
3619		lower = edge->node[LOWER];
3620
3621		/* Parent is detached, no need to keep any edges */
3622		if (upper->detached) {
3623			list_del(&edge->list[LOWER]);
3624			btrfs_backref_free_edge(cache, edge);
3625
3626			/* Lower node is orphan, queue for cleanup */
3627			if (list_empty(&lower->upper))
3628				list_add(&lower->list, useless_node);
3629			continue;
3630		}
3631
3632		/*
3633		 * All new nodes added in current build_backref_tree() haven't
3634		 * been linked to the cache rb tree.
3635		 * So if we have upper->rb_node populated, this means a cache
3636		 * hit. We only need to link the edge, as @upper and all its
3637		 * parents have already been linked.
3638		 */
3639		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3640			if (upper->lowest) {
3641				list_del_init(&upper->lower);
3642				upper->lowest = 0;
3643			}
3644
3645			list_add_tail(&edge->list[UPPER], &upper->lower);
3646			continue;
3647		}
3648
3649		/* Sanity check, we shouldn't have any unchecked nodes */
3650		if (!upper->checked) {
3651			ASSERT(0);
3652			return -EUCLEAN;
3653		}
3654
3655		/* Sanity check, COW-only node has non-COW-only parent */
3656		if (start->cowonly != upper->cowonly) {
3657			ASSERT(0);
3658			return -EUCLEAN;
3659		}
3660
3661		/* Only cache non-COW-only (subvolume trees) tree blocks */
3662		if (!upper->cowonly) {
3663			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3664						   &upper->rb_node);
3665			if (rb_node) {
3666				btrfs_backref_panic(cache->fs_info,
3667						upper->bytenr, -EEXIST);
3668				return -EUCLEAN;
3669			}
3670		}
3671
3672		list_add_tail(&edge->list[UPPER], &upper->lower);
3673
3674		/*
3675		 * Also queue all the parent edges of this uncached node
3676		 * to finish the upper linkage
3677		 */
3678		list_for_each_entry(edge, &upper->upper, list[LOWER])
3679			list_add_tail(&edge->list[UPPER], &pending_edge);
3680	}
3681	return 0;
3682}
3683
3684void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3685				 struct btrfs_backref_node *node)
3686{
3687	struct btrfs_backref_node *lower;
3688	struct btrfs_backref_node *upper;
3689	struct btrfs_backref_edge *edge;
3690
3691	while (!list_empty(&cache->useless_node)) {
3692		lower = list_first_entry(&cache->useless_node,
3693				   struct btrfs_backref_node, list);
3694		list_del_init(&lower->list);
3695	}
3696	while (!list_empty(&cache->pending_edge)) {
3697		edge = list_first_entry(&cache->pending_edge,
3698				struct btrfs_backref_edge, list[UPPER]);
3699		list_del(&edge->list[UPPER]);
3700		list_del(&edge->list[LOWER]);
3701		lower = edge->node[LOWER];
3702		upper = edge->node[UPPER];
3703		btrfs_backref_free_edge(cache, edge);
3704
3705		/*
3706		 * Lower is no longer linked to any upper backref nodes and
3707		 * isn't in the cache, we can free it ourselves.
3708		 */
3709		if (list_empty(&lower->upper) &&
3710		    RB_EMPTY_NODE(&lower->rb_node))
3711			list_add(&lower->list, &cache->useless_node);
3712
3713		if (!RB_EMPTY_NODE(&upper->rb_node))
3714			continue;
3715
3716		/* Add this guy's upper edges to the list to process */
3717		list_for_each_entry(edge, &upper->upper, list[LOWER])
3718			list_add_tail(&edge->list[UPPER],
3719				      &cache->pending_edge);
3720		if (list_empty(&upper->upper))
3721			list_add(&upper->list, &cache->useless_node);
3722	}
3723
3724	while (!list_empty(&cache->useless_node)) {
3725		lower = list_first_entry(&cache->useless_node,
3726				   struct btrfs_backref_node, list);
3727		list_del_init(&lower->list);
3728		if (lower == node)
3729			node = NULL;
3730		btrfs_backref_drop_node(cache, lower);
3731	}
3732
3733	btrfs_backref_cleanup_node(cache, node);
3734	ASSERT(list_empty(&cache->useless_node) &&
3735	       list_empty(&cache->pending_edge));
3736}
3737