1184902Srwatson// SPDX-License-Identifier: GPL-2.0-only
2191273Srwatson/*
3184902Srwatson * Driver for Atmel AT32 and AT91 SPI Controllers
4184902Srwatson *
5184902Srwatson * Copyright (C) 2006 Atmel Corporation
6184902Srwatson */
7184902Srwatson
8184902Srwatson#include <linux/kernel.h>
9184902Srwatson#include <linux/clk.h>
10184902Srwatson#include <linux/module.h>
11184902Srwatson#include <linux/platform_device.h>
12184902Srwatson#include <linux/delay.h>
13184902Srwatson#include <linux/dma-mapping.h>
14184902Srwatson#include <linux/dmaengine.h>
15184902Srwatson#include <linux/err.h>
16184902Srwatson#include <linux/interrupt.h>
17184902Srwatson#include <linux/spi/spi.h>
18184902Srwatson#include <linux/slab.h>
19184902Srwatson#include <linux/of.h>
20184902Srwatson
21184902Srwatson#include <linux/io.h>
22184902Srwatson#include <linux/gpio/consumer.h>
23184902Srwatson#include <linux/pinctrl/consumer.h>
24184902Srwatson#include <linux/pm_runtime.h>
25184902Srwatson#include <linux/iopoll.h>
26184902Srwatson#include <trace/events/spi.h>
27184902Srwatson
28184902Srwatson/* SPI register offsets */
29244265Srwatson#define SPI_CR					0x0000
30184902Srwatson#define SPI_MR					0x0004
31184902Srwatson#define SPI_RDR					0x0008
32184902Srwatson#define SPI_TDR					0x000c
33184902Srwatson#define SPI_SR					0x0010
34184902Srwatson#define SPI_IER					0x0014
35184902Srwatson#define SPI_IDR					0x0018
36191273Srwatson#define SPI_IMR					0x001c
37191273Srwatson#define SPI_CSR0				0x0030
38191273Srwatson#define SPI_CSR1				0x0034
39191273Srwatson#define SPI_CSR2				0x0038
40191273Srwatson#define SPI_CSR3				0x003c
41191273Srwatson#define SPI_FMR					0x0040
42184902Srwatson#define SPI_FLR					0x0044
43184902Srwatson#define SPI_VERSION				0x00fc
44184902Srwatson#define SPI_RPR					0x0100
45184902Srwatson#define SPI_RCR					0x0104
46184902Srwatson#define SPI_TPR					0x0108
47184902Srwatson#define SPI_TCR					0x010c
48184902Srwatson#define SPI_RNPR				0x0110
49184902Srwatson#define SPI_RNCR				0x0114
50184902Srwatson#define SPI_TNPR				0x0118
51184902Srwatson#define SPI_TNCR				0x011c
52184902Srwatson#define SPI_PTCR				0x0120
53184902Srwatson#define SPI_PTSR				0x0124
54184902Srwatson
55184902Srwatson/* Bitfields in CR */
56184902Srwatson#define SPI_SPIEN_OFFSET			0
57184902Srwatson#define SPI_SPIEN_SIZE				1
58184902Srwatson#define SPI_SPIDIS_OFFSET			1
59184902Srwatson#define SPI_SPIDIS_SIZE				1
60184902Srwatson#define SPI_SWRST_OFFSET			7
61184902Srwatson#define SPI_SWRST_SIZE				1
62184902Srwatson#define SPI_LASTXFER_OFFSET			24
63184902Srwatson#define SPI_LASTXFER_SIZE			1
64184902Srwatson#define SPI_TXFCLR_OFFSET			16
65184902Srwatson#define SPI_TXFCLR_SIZE				1
66184902Srwatson#define SPI_RXFCLR_OFFSET			17
67184902Srwatson#define SPI_RXFCLR_SIZE				1
68184902Srwatson#define SPI_FIFOEN_OFFSET			30
69184902Srwatson#define SPI_FIFOEN_SIZE				1
70184902Srwatson#define SPI_FIFODIS_OFFSET			31
71184902Srwatson#define SPI_FIFODIS_SIZE			1
72184902Srwatson
73184902Srwatson/* Bitfields in MR */
74184902Srwatson#define SPI_MSTR_OFFSET				0
75184902Srwatson#define SPI_MSTR_SIZE				1
76184902Srwatson#define SPI_PS_OFFSET				1
77184902Srwatson#define SPI_PS_SIZE				1
78184902Srwatson#define SPI_PCSDEC_OFFSET			2
79184902Srwatson#define SPI_PCSDEC_SIZE				1
80184902Srwatson#define SPI_FDIV_OFFSET				3
81184902Srwatson#define SPI_FDIV_SIZE				1
82184902Srwatson#define SPI_MODFDIS_OFFSET			4
83184902Srwatson#define SPI_MODFDIS_SIZE			1
84184902Srwatson#define SPI_WDRBT_OFFSET			5
85184902Srwatson#define SPI_WDRBT_SIZE				1
86184902Srwatson#define SPI_LLB_OFFSET				7
87184902Srwatson#define SPI_LLB_SIZE				1
88184902Srwatson#define SPI_PCS_OFFSET				16
89184902Srwatson#define SPI_PCS_SIZE				4
90184902Srwatson#define SPI_DLYBCS_OFFSET			24
91184902Srwatson#define SPI_DLYBCS_SIZE				8
92184902Srwatson
93184902Srwatson/* Bitfields in RDR */
94184902Srwatson#define SPI_RD_OFFSET				0
95184902Srwatson#define SPI_RD_SIZE				16
96184902Srwatson
97184902Srwatson/* Bitfields in TDR */
98184902Srwatson#define SPI_TD_OFFSET				0
99184902Srwatson#define SPI_TD_SIZE				16
100184902Srwatson
101184902Srwatson/* Bitfields in SR */
102184902Srwatson#define SPI_RDRF_OFFSET				0
103184902Srwatson#define SPI_RDRF_SIZE				1
104184902Srwatson#define SPI_TDRE_OFFSET				1
105184902Srwatson#define SPI_TDRE_SIZE				1
106184902Srwatson#define SPI_MODF_OFFSET				2
107184902Srwatson#define SPI_MODF_SIZE				1
108184902Srwatson#define SPI_OVRES_OFFSET			3
109184902Srwatson#define SPI_OVRES_SIZE				1
110184902Srwatson#define SPI_ENDRX_OFFSET			4
111184902Srwatson#define SPI_ENDRX_SIZE				1
112184902Srwatson#define SPI_ENDTX_OFFSET			5
113184902Srwatson#define SPI_ENDTX_SIZE				1
114184902Srwatson#define SPI_RXBUFF_OFFSET			6
115184902Srwatson#define SPI_RXBUFF_SIZE				1
116184902Srwatson#define SPI_TXBUFE_OFFSET			7
117184902Srwatson#define SPI_TXBUFE_SIZE				1
118184902Srwatson#define SPI_NSSR_OFFSET				8
119184902Srwatson#define SPI_NSSR_SIZE				1
120184902Srwatson#define SPI_TXEMPTY_OFFSET			9
121184902Srwatson#define SPI_TXEMPTY_SIZE			1
122184902Srwatson#define SPI_SPIENS_OFFSET			16
123184902Srwatson#define SPI_SPIENS_SIZE				1
124184902Srwatson#define SPI_TXFEF_OFFSET			24
125184902Srwatson#define SPI_TXFEF_SIZE				1
126184902Srwatson#define SPI_TXFFF_OFFSET			25
127184902Srwatson#define SPI_TXFFF_SIZE				1
128184902Srwatson#define SPI_TXFTHF_OFFSET			26
129184902Srwatson#define SPI_TXFTHF_SIZE				1
130184902Srwatson#define SPI_RXFEF_OFFSET			27
131184902Srwatson#define SPI_RXFEF_SIZE				1
132184902Srwatson#define SPI_RXFFF_OFFSET			28
133184902Srwatson#define SPI_RXFFF_SIZE				1
134184902Srwatson#define SPI_RXFTHF_OFFSET			29
135184902Srwatson#define SPI_RXFTHF_SIZE				1
136184902Srwatson#define SPI_TXFPTEF_OFFSET			30
137184902Srwatson#define SPI_TXFPTEF_SIZE			1
138184902Srwatson#define SPI_RXFPTEF_OFFSET			31
139184902Srwatson#define SPI_RXFPTEF_SIZE			1
140184902Srwatson
141184902Srwatson/* Bitfields in CSR0 */
142184902Srwatson#define SPI_CPOL_OFFSET				0
143184902Srwatson#define SPI_CPOL_SIZE				1
144184902Srwatson#define SPI_NCPHA_OFFSET			1
145184902Srwatson#define SPI_NCPHA_SIZE				1
146184902Srwatson#define SPI_CSAAT_OFFSET			3
147184902Srwatson#define SPI_CSAAT_SIZE				1
148184902Srwatson#define SPI_BITS_OFFSET				4
149184902Srwatson#define SPI_BITS_SIZE				4
150184902Srwatson#define SPI_SCBR_OFFSET				8
151184902Srwatson#define SPI_SCBR_SIZE				8
152184902Srwatson#define SPI_DLYBS_OFFSET			16
153184902Srwatson#define SPI_DLYBS_SIZE				8
154184902Srwatson#define SPI_DLYBCT_OFFSET			24
155184902Srwatson#define SPI_DLYBCT_SIZE				8
156184902Srwatson
157184902Srwatson/* Bitfields in RCR */
158184902Srwatson#define SPI_RXCTR_OFFSET			0
159184902Srwatson#define SPI_RXCTR_SIZE				16
160184902Srwatson
161184902Srwatson/* Bitfields in TCR */
162184902Srwatson#define SPI_TXCTR_OFFSET			0
163184902Srwatson#define SPI_TXCTR_SIZE				16
164184902Srwatson
165184902Srwatson/* Bitfields in RNCR */
166184902Srwatson#define SPI_RXNCR_OFFSET			0
167184902Srwatson#define SPI_RXNCR_SIZE				16
168184902Srwatson
169184902Srwatson/* Bitfields in TNCR */
170184902Srwatson#define SPI_TXNCR_OFFSET			0
171184902Srwatson#define SPI_TXNCR_SIZE				16
172184902Srwatson
173184902Srwatson/* Bitfields in PTCR */
174184902Srwatson#define SPI_RXTEN_OFFSET			0
175184902Srwatson#define SPI_RXTEN_SIZE				1
176184902Srwatson#define SPI_RXTDIS_OFFSET			1
177184902Srwatson#define SPI_RXTDIS_SIZE				1
178184902Srwatson#define SPI_TXTEN_OFFSET			8
179184902Srwatson#define SPI_TXTEN_SIZE				1
180184902Srwatson#define SPI_TXTDIS_OFFSET			9
181184902Srwatson#define SPI_TXTDIS_SIZE				1
182184902Srwatson
183184902Srwatson/* Bitfields in FMR */
184184902Srwatson#define SPI_TXRDYM_OFFSET			0
185184902Srwatson#define SPI_TXRDYM_SIZE				2
186184902Srwatson#define SPI_RXRDYM_OFFSET			4
187184902Srwatson#define SPI_RXRDYM_SIZE				2
188184902Srwatson#define SPI_TXFTHRES_OFFSET			16
189184902Srwatson#define SPI_TXFTHRES_SIZE			6
190184902Srwatson#define SPI_RXFTHRES_OFFSET			24
191184902Srwatson#define SPI_RXFTHRES_SIZE			6
192184902Srwatson
193184902Srwatson/* Bitfields in FLR */
194184902Srwatson#define SPI_TXFL_OFFSET				0
195184902Srwatson#define SPI_TXFL_SIZE				6
196184902Srwatson#define SPI_RXFL_OFFSET				16
197184902Srwatson#define SPI_RXFL_SIZE				6
198184902Srwatson
199184902Srwatson/* Constants for BITS */
200184902Srwatson#define SPI_BITS_8_BPT				0
201184902Srwatson#define SPI_BITS_9_BPT				1
202184902Srwatson#define SPI_BITS_10_BPT				2
203184902Srwatson#define SPI_BITS_11_BPT				3
204184902Srwatson#define SPI_BITS_12_BPT				4
205184902Srwatson#define SPI_BITS_13_BPT				5
206184902Srwatson#define SPI_BITS_14_BPT				6
207184902Srwatson#define SPI_BITS_15_BPT				7
208184902Srwatson#define SPI_BITS_16_BPT				8
209184902Srwatson#define SPI_ONE_DATA				0
210184902Srwatson#define SPI_TWO_DATA				1
211184902Srwatson#define SPI_FOUR_DATA				2
212184902Srwatson
213184902Srwatson/* Bit manipulation macros */
214184902Srwatson#define SPI_BIT(name) \
215184902Srwatson	(1 << SPI_##name##_OFFSET)
216184902Srwatson#define SPI_BF(name, value) \
217184902Srwatson	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218184902Srwatson#define SPI_BFEXT(name, value) \
219184902Srwatson	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220184902Srwatson#define SPI_BFINS(name, value, old) \
221184902Srwatson	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222184902Srwatson	  | SPI_BF(name, value))
223184902Srwatson
224184902Srwatson/* Register access macros */
225184902Srwatson#define spi_readl(port, reg) \
226184902Srwatson	readl_relaxed((port)->regs + SPI_##reg)
227184902Srwatson#define spi_writel(port, reg, value) \
228184902Srwatson	writel_relaxed((value), (port)->regs + SPI_##reg)
229184902Srwatson#define spi_writew(port, reg, value) \
230184902Srwatson	writew_relaxed((value), (port)->regs + SPI_##reg)
231184902Srwatson
232184902Srwatson/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233184902Srwatson * cache operations; better heuristics consider wordsize and bitrate.
234184902Srwatson */
235184902Srwatson#define DMA_MIN_BYTES	16
236184902Srwatson
237184902Srwatson#define AUTOSUSPEND_TIMEOUT	2000
238184902Srwatson
239184902Srwatsonstruct atmel_spi_caps {
240184902Srwatson	bool	is_spi2;
241184902Srwatson	bool	has_wdrbt;
242184902Srwatson	bool	has_dma_support;
243184902Srwatson	bool	has_pdc_support;
244184902Srwatson};
245184902Srwatson
246184902Srwatson/*
247184902Srwatson * The core SPI transfer engine just talks to a register bank to set up
248184902Srwatson * DMA transfers; transfer queue progress is driven by IRQs.  The clock
249184902Srwatson * framework provides the base clock, subdivided for each spi_device.
250184902Srwatson */
251184902Srwatsonstruct atmel_spi {
252184902Srwatson	spinlock_t		lock;
253184902Srwatson	unsigned long		flags;
254184902Srwatson
255184902Srwatson	phys_addr_t		phybase;
256184902Srwatson	void __iomem		*regs;
257184902Srwatson	int			irq;
258184902Srwatson	struct clk		*clk;
259184902Srwatson	struct platform_device	*pdev;
260184902Srwatson	unsigned long		spi_clk;
261184902Srwatson
262184902Srwatson	struct spi_transfer	*current_transfer;
263184902Srwatson	int			current_remaining_bytes;
264184902Srwatson	int			done_status;
265184902Srwatson	dma_addr_t		dma_addr_rx_bbuf;
266184902Srwatson	dma_addr_t		dma_addr_tx_bbuf;
267184902Srwatson	void			*addr_rx_bbuf;
268184902Srwatson	void			*addr_tx_bbuf;
269184902Srwatson
270184902Srwatson	struct completion	xfer_completion;
271184902Srwatson
272184902Srwatson	struct atmel_spi_caps	caps;
273184902Srwatson
274184902Srwatson	bool			use_dma;
275184902Srwatson	bool			use_pdc;
276184902Srwatson
277184902Srwatson	bool			keep_cs;
278184902Srwatson
279184902Srwatson	u32			fifo_size;
280184902Srwatson	bool			last_polarity;
281184902Srwatson	u8			native_cs_free;
282184902Srwatson	u8			native_cs_for_gpio;
283184902Srwatson};
284184902Srwatson
285184902Srwatson/* Controller-specific per-slave state */
286184902Srwatsonstruct atmel_spi_device {
287184902Srwatson	u32			csr;
288184902Srwatson};
289184902Srwatson
290184902Srwatson#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
291184902Srwatson#define INVALID_DMA_ADDRESS	0xffffffff
292184902Srwatson
293184902Srwatson/*
294184902Srwatson * This frequency can be anything supported by the controller, but to avoid
295184902Srwatson * unnecessary delay, the highest possible frequency is chosen.
296184902Srwatson *
297184902Srwatson * This frequency is the highest possible which is not interfering with other
298184902Srwatson * chip select registers (see Note for Serial Clock Bit Rate configuration in
299184902Srwatson * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
300184902Srwatson */
301184902Srwatson#define DUMMY_MSG_FREQUENCY	0x02
302184902Srwatson/*
303184902Srwatson * 8 bits is the minimum data the controller is capable of sending.
304184902Srwatson *
305184902Srwatson * This message can be anything as it should not be treated by any SPI device.
306184902Srwatson */
307184902Srwatson#define DUMMY_MSG		0xAA
308184902Srwatson
309184902Srwatson/*
310184902Srwatson * Version 2 of the SPI controller has
311184902Srwatson *  - CR.LASTXFER
312184902Srwatson *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
313184902Srwatson *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
314184902Srwatson *  - SPI_CSRx.CSAAT
315184902Srwatson *  - SPI_CSRx.SBCR allows faster clocking
316184902Srwatson */
317184902Srwatsonstatic bool atmel_spi_is_v2(struct atmel_spi *as)
318184902Srwatson{
319184902Srwatson	return as->caps.is_spi2;
320184902Srwatson}
321184902Srwatson
322184902Srwatson/*
323184902Srwatson * Send a dummy message.
324184902Srwatson *
325184902Srwatson * This is sometimes needed when using a CS GPIO to force clock transition when
326184902Srwatson * switching between devices with different polarities.
327184902Srwatson */
328184902Srwatsonstatic void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
329184902Srwatson{
330184902Srwatson	u32 status;
331184902Srwatson	u32 csr;
332184902Srwatson
333184902Srwatson	/*
334184902Srwatson	 * Set a clock frequency to allow sending message on SPI bus.
335184902Srwatson	 * The frequency here can be anything, but is needed for
336184902Srwatson	 * the controller to send the data.
337184902Srwatson	 */
338184902Srwatson	csr = spi_readl(as, CSR0 + 4 * chip_select);
339184902Srwatson	csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
340184902Srwatson	spi_writel(as, CSR0 + 4 * chip_select, csr);
341184902Srwatson
342184902Srwatson	/*
343184902Srwatson	 * Read all data coming from SPI bus, needed to be able to send
344184902Srwatson	 * the message.
345184902Srwatson	 */
346184902Srwatson	spi_readl(as, RDR);
347184902Srwatson	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
348184902Srwatson		spi_readl(as, RDR);
349184902Srwatson		cpu_relax();
350184902Srwatson	}
351184902Srwatson
352184902Srwatson	spi_writel(as, TDR, DUMMY_MSG);
353184902Srwatson
354184902Srwatson	readl_poll_timeout_atomic(as->regs + SPI_SR, status,
355184902Srwatson				  (status & SPI_BIT(TXEMPTY)), 1, 1000);
356184902Srwatson}
357184902Srwatson
358184902Srwatson
359184902Srwatson/*
360184902Srwatson * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
361184902Srwatson * they assume that spi slave device state will not change on deselect, so
362184902Srwatson * that automagic deselection is OK.  ("NPCSx rises if no data is to be
363184902Srwatson * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
364184902Srwatson * controllers have CSAAT and friends.
365184902Srwatson *
366184902Srwatson * Even controller newer than ar91rm9200, using GPIOs can make sens as
367184902Srwatson * it lets us support active-high chipselects despite the controller's
368184902Srwatson * belief that only active-low devices/systems exists.
369184902Srwatson *
370184902Srwatson * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
371184902Srwatson * right when driven with GPIO.  ("Mode Fault does not allow more than one
372184902Srwatson * Master on Chip Select 0.")  No workaround exists for that ... so for
373184902Srwatson * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
374184902Srwatson * and (c) will trigger that first erratum in some cases.
375184902Srwatson *
376184902Srwatson * When changing the clock polarity, the SPI controller waits for the next
377184902Srwatson * transmission to enforce the default clock state. This may be an issue when
378184902Srwatson * using a GPIO as Chip Select: the clock level is applied only when the first
379184902Srwatson * packet is sent, once the CS has already been asserted. The workaround is to
380184902Srwatson * avoid this by sending a first (dummy) message before toggling the CS state.
381184902Srwatson */
382184902Srwatsonstatic void cs_activate(struct atmel_spi *as, struct spi_device *spi)
383184902Srwatson{
384184902Srwatson	struct atmel_spi_device *asd = spi->controller_state;
385184902Srwatson	bool new_polarity;
386184902Srwatson	int chip_select;
387184902Srwatson	u32 mr;
388184902Srwatson
389184902Srwatson	if (spi_get_csgpiod(spi, 0))
390184902Srwatson		chip_select = as->native_cs_for_gpio;
391184902Srwatson	else
392184902Srwatson		chip_select = spi_get_chipselect(spi, 0);
393184902Srwatson
394184902Srwatson	if (atmel_spi_is_v2(as)) {
395184902Srwatson		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
396184902Srwatson		/* For the low SPI version, there is a issue that PDC transfer
397184902Srwatson		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
398184902Srwatson		 */
399184902Srwatson		spi_writel(as, CSR0, asd->csr);
400184902Srwatson		if (as->caps.has_wdrbt) {
401184902Srwatson			spi_writel(as, MR,
402184902Srwatson					SPI_BF(PCS, ~(0x01 << chip_select))
403184902Srwatson					| SPI_BIT(WDRBT)
404184902Srwatson					| SPI_BIT(MODFDIS)
405184902Srwatson					| SPI_BIT(MSTR));
406184902Srwatson		} else {
407184902Srwatson			spi_writel(as, MR,
408184902Srwatson					SPI_BF(PCS, ~(0x01 << chip_select))
409184902Srwatson					| SPI_BIT(MODFDIS)
410184902Srwatson					| SPI_BIT(MSTR));
411184902Srwatson		}
412184902Srwatson
413184902Srwatson		mr = spi_readl(as, MR);
414184902Srwatson
415184902Srwatson		/*
416184902Srwatson		 * Ensures the clock polarity is valid before we actually
417184902Srwatson		 * assert the CS to avoid spurious clock edges to be
418184902Srwatson		 * processed by the spi devices.
419184902Srwatson		 */
420184902Srwatson		if (spi_get_csgpiod(spi, 0)) {
421184902Srwatson			new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
422184902Srwatson			if (new_polarity != as->last_polarity) {
423184902Srwatson				/*
424184902Srwatson				 * Need to disable the GPIO before sending the dummy
425184902Srwatson				 * message because it is already set by the spi core.
426184902Srwatson				 */
427184902Srwatson				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
428184902Srwatson				atmel_spi_send_dummy(as, spi, chip_select);
429184902Srwatson				as->last_polarity = new_polarity;
430184902Srwatson				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
431184902Srwatson			}
432184902Srwatson		}
433184902Srwatson	} else {
434184902Srwatson		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
435184902Srwatson		int i;
436184902Srwatson		u32 csr;
437184902Srwatson
438184902Srwatson		/* Make sure clock polarity is correct */
439184902Srwatson		for (i = 0; i < spi->controller->num_chipselect; i++) {
440184902Srwatson			csr = spi_readl(as, CSR0 + 4 * i);
441184902Srwatson			if ((csr ^ cpol) & SPI_BIT(CPOL))
442184902Srwatson				spi_writel(as, CSR0 + 4 * i,
443184902Srwatson						csr ^ SPI_BIT(CPOL));
444184902Srwatson		}
445184902Srwatson
446184902Srwatson		mr = spi_readl(as, MR);
447184902Srwatson		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
448184902Srwatson		spi_writel(as, MR, mr);
449184902Srwatson	}
450184902Srwatson
451184902Srwatson	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
452184902Srwatson}
453184902Srwatson
454184902Srwatsonstatic void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
455184902Srwatson{
456184902Srwatson	int chip_select;
457184902Srwatson	u32 mr;
458184902Srwatson
459184902Srwatson	if (spi_get_csgpiod(spi, 0))
460184902Srwatson		chip_select = as->native_cs_for_gpio;
461184902Srwatson	else
462184902Srwatson		chip_select = spi_get_chipselect(spi, 0);
463184902Srwatson
464184902Srwatson	/* only deactivate *this* device; sometimes transfers to
465184902Srwatson	 * another device may be active when this routine is called.
466184902Srwatson	 */
467184902Srwatson	mr = spi_readl(as, MR);
468184902Srwatson	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
469184902Srwatson		mr = SPI_BFINS(PCS, 0xf, mr);
470184902Srwatson		spi_writel(as, MR, mr);
471184902Srwatson	}
472184902Srwatson
473184902Srwatson	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
474184902Srwatson
475184902Srwatson	if (!spi_get_csgpiod(spi, 0))
476184902Srwatson		spi_writel(as, CR, SPI_BIT(LASTXFER));
477184902Srwatson}
478184902Srwatson
479184902Srwatsonstatic void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
480184902Srwatson{
481184902Srwatson	spin_lock_irqsave(&as->lock, as->flags);
482184902Srwatson}
483184902Srwatson
484184902Srwatsonstatic void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
485184902Srwatson{
486184902Srwatson	spin_unlock_irqrestore(&as->lock, as->flags);
487184902Srwatson}
488184902Srwatson
489184902Srwatsonstatic inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
490184902Srwatson{
491184902Srwatson	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
492184902Srwatson}
493184902Srwatson
494184902Srwatsonstatic inline bool atmel_spi_use_dma(struct atmel_spi *as,
495184902Srwatson				struct spi_transfer *xfer)
496184902Srwatson{
497184902Srwatson	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
498184902Srwatson}
499184902Srwatson
500184902Srwatsonstatic bool atmel_spi_can_dma(struct spi_controller *host,
501184902Srwatson			      struct spi_device *spi,
502184902Srwatson			      struct spi_transfer *xfer)
503184902Srwatson{
504184902Srwatson	struct atmel_spi *as = spi_controller_get_devdata(host);
505184902Srwatson
506184902Srwatson	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
507184902Srwatson		return atmel_spi_use_dma(as, xfer) &&
508184902Srwatson			!atmel_spi_is_vmalloc_xfer(xfer);
509184902Srwatson	else
510184902Srwatson		return atmel_spi_use_dma(as, xfer);
511184902Srwatson
512184902Srwatson}
513184902Srwatson
514184902Srwatsonstatic int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
515184902Srwatson{
516184902Srwatson	struct spi_controller *host = platform_get_drvdata(as->pdev);
517184902Srwatson	struct dma_slave_config	slave_config;
518184902Srwatson	int err = 0;
519184902Srwatson
520184902Srwatson	if (bits_per_word > 8) {
521184902Srwatson		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
522184902Srwatson		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
523184902Srwatson	} else {
524184902Srwatson		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
525184902Srwatson		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
526184902Srwatson	}
527184902Srwatson
528184902Srwatson	slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
529184902Srwatson	slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
530184902Srwatson	slave_config.src_maxburst = 1;
531184902Srwatson	slave_config.dst_maxburst = 1;
532184902Srwatson	slave_config.device_fc = false;
533184902Srwatson
534184902Srwatson	/*
535184902Srwatson	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
536184902Srwatson	 * the Mode Register).
537184902Srwatson	 * So according to the datasheet, when FIFOs are available (and
538184902Srwatson	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
539184902Srwatson	 * In this mode, up to 2 data, not 4, can be written into the Transmit
540184902Srwatson	 * Data Register in a single access.
541184902Srwatson	 * However, the first data has to be written into the lowest 16 bits and
542184902Srwatson	 * the second data into the highest 16 bits of the Transmit
543184902Srwatson	 * Data Register. For 8bit data (the most frequent case), it would
544184902Srwatson	 * require to rework tx_buf so each data would actually fit 16 bits.
545184902Srwatson	 * So we'd rather write only one data at the time. Hence the transmit
546184902Srwatson	 * path works the same whether FIFOs are available (and enabled) or not.
547184902Srwatson	 */
548184902Srwatson	if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
549184902Srwatson		dev_err(&as->pdev->dev,
550184902Srwatson			"failed to configure tx dma channel\n");
551184902Srwatson		err = -EINVAL;
552184902Srwatson	}
553184902Srwatson
554184902Srwatson	/*
555184902Srwatson	 * This driver configures the spi controller for host mode (MSTR bit
556184902Srwatson	 * set to '1' in the Mode Register).
557184902Srwatson	 * So according to the datasheet, when FIFOs are available (and
558184902Srwatson	 * enabled), the Receive FIFO operates in Single Data Mode.
559184902Srwatson	 * So the receive path works the same whether FIFOs are available (and
560184902Srwatson	 * enabled) or not.
561184902Srwatson	 */
562184902Srwatson	if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
563184902Srwatson		dev_err(&as->pdev->dev,
564184902Srwatson			"failed to configure rx dma channel\n");
565184902Srwatson		err = -EINVAL;
566184902Srwatson	}
567184902Srwatson
568186647Srwatson	return err;
569184902Srwatson}
570184902Srwatson
571184902Srwatsonstatic int atmel_spi_configure_dma(struct spi_controller *host,
572184902Srwatson				   struct atmel_spi *as)
573184902Srwatson{
574184902Srwatson	struct device *dev = &as->pdev->dev;
575184902Srwatson	int err;
576184902Srwatson
577184902Srwatson	host->dma_tx = dma_request_chan(dev, "tx");
578184902Srwatson	if (IS_ERR(host->dma_tx)) {
579184902Srwatson		err = PTR_ERR(host->dma_tx);
580184902Srwatson		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
581184902Srwatson		goto error_clear;
582184902Srwatson	}
583184902Srwatson
584184902Srwatson	host->dma_rx = dma_request_chan(dev, "rx");
585184902Srwatson	if (IS_ERR(host->dma_rx)) {
586184902Srwatson		err = PTR_ERR(host->dma_rx);
587184902Srwatson		/*
588184902Srwatson		 * No reason to check EPROBE_DEFER here since we have already
589184902Srwatson		 * requested tx channel.
590184902Srwatson		 */
591184902Srwatson		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
592184902Srwatson		goto error;
593186647Srwatson	}
594186647Srwatson
595189279Srwatson	err = atmel_spi_dma_slave_config(as, 8);
596189279Srwatson	if (err)
597191273Srwatson		goto error;
598191273Srwatson
599195740Srwatson	dev_info(&as->pdev->dev,
600243750Srwatson			"Using %s (tx) and %s (rx) for DMA transfers\n",
601243750Srwatson			dma_chan_name(host->dma_tx),
602243750Srwatson			dma_chan_name(host->dma_rx));
603243750Srwatson
604244265Srwatson	return 0;
605184902Srwatsonerror:
606184902Srwatson	if (!IS_ERR(host->dma_rx))
607184902Srwatson		dma_release_channel(host->dma_rx);
608184902Srwatson	if (!IS_ERR(host->dma_tx))
609184902Srwatson		dma_release_channel(host->dma_tx);
610184902Srwatsonerror_clear:
611184902Srwatson	host->dma_tx = host->dma_rx = NULL;
612184902Srwatson	return err;
613184902Srwatson}
614184902Srwatson
615184902Srwatsonstatic void atmel_spi_stop_dma(struct spi_controller *host)
616184902Srwatson{
617184902Srwatson	if (host->dma_rx)
618184902Srwatson		dmaengine_terminate_all(host->dma_rx);
619184902Srwatson	if (host->dma_tx)
620184902Srwatson		dmaengine_terminate_all(host->dma_tx);
621184902Srwatson}
622184902Srwatson
623184902Srwatsonstatic void atmel_spi_release_dma(struct spi_controller *host)
624184902Srwatson{
625184902Srwatson	if (host->dma_rx) {
626184902Srwatson		dma_release_channel(host->dma_rx);
627184902Srwatson		host->dma_rx = NULL;
628184902Srwatson	}
629184902Srwatson	if (host->dma_tx) {
630184902Srwatson		dma_release_channel(host->dma_tx);
631184902Srwatson		host->dma_tx = NULL;
632184902Srwatson	}
633184902Srwatson}
634184902Srwatson
635184902Srwatson/* This function is called by the DMA driver from tasklet context */
636184902Srwatsonstatic void dma_callback(void *data)
637184902Srwatson{
638184902Srwatson	struct spi_controller	*host = data;
639184902Srwatson	struct atmel_spi	*as = spi_controller_get_devdata(host);
640184902Srwatson
641184902Srwatson	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
642184902Srwatson	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
643184902Srwatson		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
644184902Srwatson		       as->current_transfer->len);
645184902Srwatson	}
646184902Srwatson	complete(&as->xfer_completion);
647184902Srwatson}
648184902Srwatson
649184902Srwatson/*
650184902Srwatson * Next transfer using PIO without FIFO.
651184902Srwatson */
652184902Srwatsonstatic void atmel_spi_next_xfer_single(struct spi_controller *host,
653184902Srwatson				       struct spi_transfer *xfer)
654184902Srwatson{
655184902Srwatson	struct atmel_spi	*as = spi_controller_get_devdata(host);
656184902Srwatson	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
657184902Srwatson
658184902Srwatson	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
659184902Srwatson
660184902Srwatson	/* Make sure data is not remaining in RDR */
661184902Srwatson	spi_readl(as, RDR);
662184902Srwatson	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
663184902Srwatson		spi_readl(as, RDR);
664184902Srwatson		cpu_relax();
665184902Srwatson	}
666184902Srwatson
667184902Srwatson	if (xfer->bits_per_word > 8)
668184902Srwatson		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
669184902Srwatson	else
670184902Srwatson		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
671184902Srwatson
672184902Srwatson	dev_dbg(host->dev.parent,
673184902Srwatson		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
674184902Srwatson		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
675184902Srwatson		xfer->bits_per_word);
676186647Srwatson
677186647Srwatson	/* Enable relevant interrupts */
678186647Srwatson	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
679186647Srwatson}
680186647Srwatson
681186647Srwatson/*
682186647Srwatson * Next transfer using PIO with FIFO.
683186647Srwatson */
684186647Srwatsonstatic void atmel_spi_next_xfer_fifo(struct spi_controller *host,
685186647Srwatson				     struct spi_transfer *xfer)
686186647Srwatson{
687186647Srwatson	struct atmel_spi *as = spi_controller_get_devdata(host);
688184902Srwatson	u32 current_remaining_data, num_data;
689186647Srwatson	u32 offset = xfer->len - as->current_remaining_bytes;
690186647Srwatson	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
691186647Srwatson	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
692186647Srwatson	u16 td0, td1;
693186647Srwatson	u32 fifomr;
694186647Srwatson
695186647Srwatson	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
696186647Srwatson
697184902Srwatson	/* Compute the number of data to transfer in the current iteration */
698186647Srwatson	current_remaining_data = ((xfer->bits_per_word > 8) ?
699189279Srwatson				  ((u32)as->current_remaining_bytes >> 1) :
700184902Srwatson				  (u32)as->current_remaining_bytes);
701186647Srwatson	num_data = min(current_remaining_data, as->fifo_size);
702184902Srwatson
703184902Srwatson	/* Flush RX and TX FIFOs */
704184902Srwatson	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
705186647Srwatson	while (spi_readl(as, FLR))
706184902Srwatson		cpu_relax();
707184902Srwatson
708184902Srwatson	/* Set RX FIFO Threshold to the number of data to transfer */
709184902Srwatson	fifomr = spi_readl(as, FMR);
710184902Srwatson	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
711184902Srwatson
712184902Srwatson	/* Clear FIFO flags in the Status Register, especially RXFTHF */
713184902Srwatson	(void)spi_readl(as, SR);
714184902Srwatson
715184902Srwatson	/* Fill TX FIFO */
716184902Srwatson	while (num_data >= 2) {
717184902Srwatson		if (xfer->bits_per_word > 8) {
718186647Srwatson			td0 = *words++;
719184902Srwatson			td1 = *words++;
720184902Srwatson		} else {
721184902Srwatson			td0 = *bytes++;
722186647Srwatson			td1 = *bytes++;
723184902Srwatson		}
724184902Srwatson
725186647Srwatson		spi_writel(as, TDR, (td1 << 16) | td0);
726186647Srwatson		num_data -= 2;
727186647Srwatson	}
728186647Srwatson
729186647Srwatson	if (num_data) {
730184902Srwatson		if (xfer->bits_per_word > 8)
731186647Srwatson			td0 = *words++;
732186647Srwatson		else
733184902Srwatson			td0 = *bytes++;
734186647Srwatson
735189279Srwatson		spi_writew(as, TDR, td0);
736184902Srwatson		num_data--;
737184902Srwatson	}
738184902Srwatson
739184902Srwatson	dev_dbg(host->dev.parent,
740184902Srwatson		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
741184902Srwatson		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
742184902Srwatson		xfer->bits_per_word);
743186647Srwatson
744186647Srwatson	/*
745186647Srwatson	 * Enable RX FIFO Threshold Flag interrupt to be notified about
746186647Srwatson	 * transfer completion.
747186647Srwatson	 */
748186647Srwatson	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
749186647Srwatson}
750186647Srwatson
751186647Srwatson/*
752186647Srwatson * Next transfer using PIO.
753186647Srwatson */
754186647Srwatsonstatic void atmel_spi_next_xfer_pio(struct spi_controller *host,
755186647Srwatson				    struct spi_transfer *xfer)
756186647Srwatson{
757184902Srwatson	struct atmel_spi *as = spi_controller_get_devdata(host);
758186647Srwatson
759184902Srwatson	if (as->fifo_size)
760184902Srwatson		atmel_spi_next_xfer_fifo(host, xfer);
761184902Srwatson	else
762184902Srwatson		atmel_spi_next_xfer_single(host, xfer);
763184902Srwatson}
764184902Srwatson
765184902Srwatson/*
766184902Srwatson * Submit next transfer for DMA.
767186647Srwatson */
768184902Srwatsonstatic int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
769186647Srwatson				struct spi_transfer *xfer,
770186647Srwatson				u32 *plen)
771186647Srwatson{
772186647Srwatson	struct atmel_spi	*as = spi_controller_get_devdata(host);
773186647Srwatson	struct dma_chan		*rxchan = host->dma_rx;
774186647Srwatson	struct dma_chan		*txchan = host->dma_tx;
775186647Srwatson	struct dma_async_tx_descriptor *rxdesc;
776184902Srwatson	struct dma_async_tx_descriptor *txdesc;
777184902Srwatson	dma_cookie_t		cookie;
778184902Srwatson
779184902Srwatson	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
780184902Srwatson
781184902Srwatson	/* Check that the channels are available */
782184902Srwatson	if (!rxchan || !txchan)
783184902Srwatson		return -ENODEV;
784186647Srwatson
785186647Srwatson
786184902Srwatson	*plen = xfer->len;
787186647Srwatson
788189279Srwatson	if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
789184902Srwatson		goto err_exit;
790184902Srwatson
791184902Srwatson	/* Send both scatterlists */
792186647Srwatson	if (atmel_spi_is_vmalloc_xfer(xfer) &&
793184902Srwatson	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
794186647Srwatson		rxdesc = dmaengine_prep_slave_single(rxchan,
795184902Srwatson						     as->dma_addr_rx_bbuf,
796186647Srwatson						     xfer->len,
797186647Srwatson						     DMA_DEV_TO_MEM,
798184902Srwatson						     DMA_PREP_INTERRUPT |
799184902Srwatson						     DMA_CTRL_ACK);
800	} else {
801		rxdesc = dmaengine_prep_slave_sg(rxchan,
802						 xfer->rx_sg.sgl,
803						 xfer->rx_sg.nents,
804						 DMA_DEV_TO_MEM,
805						 DMA_PREP_INTERRUPT |
806						 DMA_CTRL_ACK);
807	}
808	if (!rxdesc)
809		goto err_dma;
810
811	if (atmel_spi_is_vmalloc_xfer(xfer) &&
812	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
813		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
814		txdesc = dmaengine_prep_slave_single(txchan,
815						     as->dma_addr_tx_bbuf,
816						     xfer->len, DMA_MEM_TO_DEV,
817						     DMA_PREP_INTERRUPT |
818						     DMA_CTRL_ACK);
819	} else {
820		txdesc = dmaengine_prep_slave_sg(txchan,
821						 xfer->tx_sg.sgl,
822						 xfer->tx_sg.nents,
823						 DMA_MEM_TO_DEV,
824						 DMA_PREP_INTERRUPT |
825						 DMA_CTRL_ACK);
826	}
827	if (!txdesc)
828		goto err_dma;
829
830	dev_dbg(host->dev.parent,
831		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
832		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
833		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
834
835	/* Enable relevant interrupts */
836	spi_writel(as, IER, SPI_BIT(OVRES));
837
838	/* Put the callback on the RX transfer only, that should finish last */
839	rxdesc->callback = dma_callback;
840	rxdesc->callback_param = host;
841
842	/* Submit and fire RX and TX with TX last so we're ready to read! */
843	cookie = rxdesc->tx_submit(rxdesc);
844	if (dma_submit_error(cookie))
845		goto err_dma;
846	cookie = txdesc->tx_submit(txdesc);
847	if (dma_submit_error(cookie))
848		goto err_dma;
849	rxchan->device->device_issue_pending(rxchan);
850	txchan->device->device_issue_pending(txchan);
851
852	return 0;
853
854err_dma:
855	spi_writel(as, IDR, SPI_BIT(OVRES));
856	atmel_spi_stop_dma(host);
857err_exit:
858	return -ENOMEM;
859}
860
861static void atmel_spi_next_xfer_data(struct spi_controller *host,
862				struct spi_transfer *xfer,
863				dma_addr_t *tx_dma,
864				dma_addr_t *rx_dma,
865				u32 *plen)
866{
867	*rx_dma = xfer->rx_dma + xfer->len - *plen;
868	*tx_dma = xfer->tx_dma + xfer->len - *plen;
869	if (*plen > host->max_dma_len)
870		*plen = host->max_dma_len;
871}
872
873static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
874				    struct spi_device *spi,
875				    struct spi_transfer *xfer)
876{
877	u32			scbr, csr;
878	unsigned long		bus_hz;
879	int chip_select;
880
881	if (spi_get_csgpiod(spi, 0))
882		chip_select = as->native_cs_for_gpio;
883	else
884		chip_select = spi_get_chipselect(spi, 0);
885
886	/* v1 chips start out at half the peripheral bus speed. */
887	bus_hz = as->spi_clk;
888	if (!atmel_spi_is_v2(as))
889		bus_hz /= 2;
890
891	/*
892	 * Calculate the lowest divider that satisfies the
893	 * constraint, assuming div32/fdiv/mbz == 0.
894	 */
895	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
896
897	/*
898	 * If the resulting divider doesn't fit into the
899	 * register bitfield, we can't satisfy the constraint.
900	 */
901	if (scbr >= (1 << SPI_SCBR_SIZE)) {
902		dev_err(&spi->dev,
903			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
904			xfer->speed_hz, scbr, bus_hz/255);
905		return -EINVAL;
906	}
907	if (scbr == 0) {
908		dev_err(&spi->dev,
909			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
910			xfer->speed_hz, scbr, bus_hz);
911		return -EINVAL;
912	}
913	csr = spi_readl(as, CSR0 + 4 * chip_select);
914	csr = SPI_BFINS(SCBR, scbr, csr);
915	spi_writel(as, CSR0 + 4 * chip_select, csr);
916	xfer->effective_speed_hz = bus_hz / scbr;
917
918	return 0;
919}
920
921/*
922 * Submit next transfer for PDC.
923 * lock is held, spi irq is blocked
924 */
925static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
926					struct spi_transfer *xfer)
927{
928	struct atmel_spi	*as = spi_controller_get_devdata(host);
929	u32			len;
930	dma_addr_t		tx_dma, rx_dma;
931
932	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
933
934	len = as->current_remaining_bytes;
935	atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
936	as->current_remaining_bytes -= len;
937
938	spi_writel(as, RPR, rx_dma);
939	spi_writel(as, TPR, tx_dma);
940
941	if (xfer->bits_per_word > 8)
942		len >>= 1;
943	spi_writel(as, RCR, len);
944	spi_writel(as, TCR, len);
945
946	dev_dbg(&host->dev,
947		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
948		xfer, xfer->len, xfer->tx_buf,
949		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
950		(unsigned long long)xfer->rx_dma);
951
952	if (as->current_remaining_bytes) {
953		len = as->current_remaining_bytes;
954		atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
955		as->current_remaining_bytes -= len;
956
957		spi_writel(as, RNPR, rx_dma);
958		spi_writel(as, TNPR, tx_dma);
959
960		if (xfer->bits_per_word > 8)
961			len >>= 1;
962		spi_writel(as, RNCR, len);
963		spi_writel(as, TNCR, len);
964
965		dev_dbg(&host->dev,
966			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
967			xfer, xfer->len, xfer->tx_buf,
968			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
969			(unsigned long long)xfer->rx_dma);
970	}
971
972	/* REVISIT: We're waiting for RXBUFF before we start the next
973	 * transfer because we need to handle some difficult timing
974	 * issues otherwise. If we wait for TXBUFE in one transfer and
975	 * then starts waiting for RXBUFF in the next, it's difficult
976	 * to tell the difference between the RXBUFF interrupt we're
977	 * actually waiting for and the RXBUFF interrupt of the
978	 * previous transfer.
979	 *
980	 * It should be doable, though. Just not now...
981	 */
982	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
983	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
984}
985
986/*
987 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
988 *  - The buffer is either valid for CPU access, else NULL
989 *  - If the buffer is valid, so is its DMA address
990 */
991static int
992atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
993{
994	struct device	*dev = &as->pdev->dev;
995
996	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
997	if (xfer->tx_buf) {
998		/* tx_buf is a const void* where we need a void * for the dma
999		 * mapping */
1000		void *nonconst_tx = (void *)xfer->tx_buf;
1001
1002		xfer->tx_dma = dma_map_single(dev,
1003				nonconst_tx, xfer->len,
1004				DMA_TO_DEVICE);
1005		if (dma_mapping_error(dev, xfer->tx_dma))
1006			return -ENOMEM;
1007	}
1008	if (xfer->rx_buf) {
1009		xfer->rx_dma = dma_map_single(dev,
1010				xfer->rx_buf, xfer->len,
1011				DMA_FROM_DEVICE);
1012		if (dma_mapping_error(dev, xfer->rx_dma)) {
1013			if (xfer->tx_buf)
1014				dma_unmap_single(dev,
1015						xfer->tx_dma, xfer->len,
1016						DMA_TO_DEVICE);
1017			return -ENOMEM;
1018		}
1019	}
1020	return 0;
1021}
1022
1023static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1024				     struct spi_transfer *xfer)
1025{
1026	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1027		dma_unmap_single(host->dev.parent, xfer->tx_dma,
1028				 xfer->len, DMA_TO_DEVICE);
1029	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1030		dma_unmap_single(host->dev.parent, xfer->rx_dma,
1031				 xfer->len, DMA_FROM_DEVICE);
1032}
1033
1034static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1035{
1036	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1037}
1038
1039static void
1040atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1041{
1042	u8		*rxp;
1043	u16		*rxp16;
1044	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1045
1046	if (xfer->bits_per_word > 8) {
1047		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1048		*rxp16 = spi_readl(as, RDR);
1049	} else {
1050		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1051		*rxp = spi_readl(as, RDR);
1052	}
1053	if (xfer->bits_per_word > 8) {
1054		if (as->current_remaining_bytes > 2)
1055			as->current_remaining_bytes -= 2;
1056		else
1057			as->current_remaining_bytes = 0;
1058	} else {
1059		as->current_remaining_bytes--;
1060	}
1061}
1062
1063static void
1064atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1065{
1066	u32 fifolr = spi_readl(as, FLR);
1067	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1068	u32 offset = xfer->len - as->current_remaining_bytes;
1069	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1070	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1071	u16 rd; /* RD field is the lowest 16 bits of RDR */
1072
1073	/* Update the number of remaining bytes to transfer */
1074	num_bytes = ((xfer->bits_per_word > 8) ?
1075		     (num_data << 1) :
1076		     num_data);
1077
1078	if (as->current_remaining_bytes > num_bytes)
1079		as->current_remaining_bytes -= num_bytes;
1080	else
1081		as->current_remaining_bytes = 0;
1082
1083	/* Handle odd number of bytes when data are more than 8bit width */
1084	if (xfer->bits_per_word > 8)
1085		as->current_remaining_bytes &= ~0x1;
1086
1087	/* Read data */
1088	while (num_data) {
1089		rd = spi_readl(as, RDR);
1090		if (xfer->bits_per_word > 8)
1091			*words++ = rd;
1092		else
1093			*bytes++ = rd;
1094		num_data--;
1095	}
1096}
1097
1098/* Called from IRQ
1099 *
1100 * Must update "current_remaining_bytes" to keep track of data
1101 * to transfer.
1102 */
1103static void
1104atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1105{
1106	if (as->fifo_size)
1107		atmel_spi_pump_fifo_data(as, xfer);
1108	else
1109		atmel_spi_pump_single_data(as, xfer);
1110}
1111
1112/* Interrupt
1113 *
1114 */
1115static irqreturn_t
1116atmel_spi_pio_interrupt(int irq, void *dev_id)
1117{
1118	struct spi_controller	*host = dev_id;
1119	struct atmel_spi	*as = spi_controller_get_devdata(host);
1120	u32			status, pending, imr;
1121	struct spi_transfer	*xfer;
1122	int			ret = IRQ_NONE;
1123
1124	imr = spi_readl(as, IMR);
1125	status = spi_readl(as, SR);
1126	pending = status & imr;
1127
1128	if (pending & SPI_BIT(OVRES)) {
1129		ret = IRQ_HANDLED;
1130		spi_writel(as, IDR, SPI_BIT(OVRES));
1131		dev_warn(host->dev.parent, "overrun\n");
1132
1133		/*
1134		 * When we get an overrun, we disregard the current
1135		 * transfer. Data will not be copied back from any
1136		 * bounce buffer and msg->actual_len will not be
1137		 * updated with the last xfer.
1138		 *
1139		 * We will also not process any remaning transfers in
1140		 * the message.
1141		 */
1142		as->done_status = -EIO;
1143		smp_wmb();
1144
1145		/* Clear any overrun happening while cleaning up */
1146		spi_readl(as, SR);
1147
1148		complete(&as->xfer_completion);
1149
1150	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1151		atmel_spi_lock(as);
1152
1153		if (as->current_remaining_bytes) {
1154			ret = IRQ_HANDLED;
1155			xfer = as->current_transfer;
1156			atmel_spi_pump_pio_data(as, xfer);
1157			if (!as->current_remaining_bytes)
1158				spi_writel(as, IDR, pending);
1159
1160			complete(&as->xfer_completion);
1161		}
1162
1163		atmel_spi_unlock(as);
1164	} else {
1165		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1166		ret = IRQ_HANDLED;
1167		spi_writel(as, IDR, pending);
1168	}
1169
1170	return ret;
1171}
1172
1173static irqreturn_t
1174atmel_spi_pdc_interrupt(int irq, void *dev_id)
1175{
1176	struct spi_controller	*host = dev_id;
1177	struct atmel_spi	*as = spi_controller_get_devdata(host);
1178	u32			status, pending, imr;
1179	int			ret = IRQ_NONE;
1180
1181	imr = spi_readl(as, IMR);
1182	status = spi_readl(as, SR);
1183	pending = status & imr;
1184
1185	if (pending & SPI_BIT(OVRES)) {
1186
1187		ret = IRQ_HANDLED;
1188
1189		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1190				     | SPI_BIT(OVRES)));
1191
1192		/* Clear any overrun happening while cleaning up */
1193		spi_readl(as, SR);
1194
1195		as->done_status = -EIO;
1196
1197		complete(&as->xfer_completion);
1198
1199	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1200		ret = IRQ_HANDLED;
1201
1202		spi_writel(as, IDR, pending);
1203
1204		complete(&as->xfer_completion);
1205	}
1206
1207	return ret;
1208}
1209
1210static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1211{
1212	struct spi_delay *delay = &spi->word_delay;
1213	u32 value = delay->value;
1214
1215	switch (delay->unit) {
1216	case SPI_DELAY_UNIT_NSECS:
1217		value /= 1000;
1218		break;
1219	case SPI_DELAY_UNIT_USECS:
1220		break;
1221	default:
1222		return -EINVAL;
1223	}
1224
1225	return (as->spi_clk / 1000000 * value) >> 5;
1226}
1227
1228static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1229{
1230	int i;
1231	struct spi_controller *host = platform_get_drvdata(as->pdev);
1232
1233	if (!as->native_cs_free)
1234		return; /* already initialized */
1235
1236	if (!host->cs_gpiods)
1237		return; /* No CS GPIO */
1238
1239	/*
1240	 * On the first version of the controller (AT91RM9200), CS0
1241	 * can't be used associated with GPIO
1242	 */
1243	if (atmel_spi_is_v2(as))
1244		i = 0;
1245	else
1246		i = 1;
1247
1248	for (; i < 4; i++)
1249		if (host->cs_gpiods[i])
1250			as->native_cs_free |= BIT(i);
1251
1252	if (as->native_cs_free)
1253		as->native_cs_for_gpio = ffs(as->native_cs_free);
1254}
1255
1256static int atmel_spi_setup(struct spi_device *spi)
1257{
1258	struct atmel_spi	*as;
1259	struct atmel_spi_device	*asd;
1260	u32			csr;
1261	unsigned int		bits = spi->bits_per_word;
1262	int chip_select;
1263	int			word_delay_csr;
1264
1265	as = spi_controller_get_devdata(spi->controller);
1266
1267	/* see notes above re chipselect */
1268	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1269		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1270		return -EINVAL;
1271	}
1272
1273	/* Setup() is called during spi_register_controller(aka
1274	 * spi_register_master) but after all membmers of the cs_gpiod
1275	 * array have been filled, so we can looked for which native
1276	 * CS will be free for using with GPIO
1277	 */
1278	initialize_native_cs_for_gpio(as);
1279
1280	if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1281		dev_err(&spi->dev,
1282			"No native CS available to support this GPIO CS\n");
1283		return -EBUSY;
1284	}
1285
1286	if (spi_get_csgpiod(spi, 0))
1287		chip_select = as->native_cs_for_gpio;
1288	else
1289		chip_select = spi_get_chipselect(spi, 0);
1290
1291	csr = SPI_BF(BITS, bits - 8);
1292	if (spi->mode & SPI_CPOL)
1293		csr |= SPI_BIT(CPOL);
1294	if (!(spi->mode & SPI_CPHA))
1295		csr |= SPI_BIT(NCPHA);
1296
1297	if (!spi_get_csgpiod(spi, 0))
1298		csr |= SPI_BIT(CSAAT);
1299	csr |= SPI_BF(DLYBS, 0);
1300
1301	word_delay_csr = atmel_word_delay_csr(spi, as);
1302	if (word_delay_csr < 0)
1303		return word_delay_csr;
1304
1305	/* DLYBCT adds delays between words.  This is useful for slow devices
1306	 * that need a bit of time to setup the next transfer.
1307	 */
1308	csr |= SPI_BF(DLYBCT, word_delay_csr);
1309
1310	asd = spi->controller_state;
1311	if (!asd) {
1312		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1313		if (!asd)
1314			return -ENOMEM;
1315
1316		spi->controller_state = asd;
1317	}
1318
1319	asd->csr = csr;
1320
1321	dev_dbg(&spi->dev,
1322		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1323		bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1324
1325	if (!atmel_spi_is_v2(as))
1326		spi_writel(as, CSR0 + 4 * chip_select, csr);
1327
1328	return 0;
1329}
1330
1331static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1332{
1333	struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1334	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1335	 * since we already have routines for activate/deactivate translate
1336	 * high/low to active/inactive
1337	 */
1338	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1339
1340	if (enable) {
1341		cs_activate(as, spi);
1342	} else {
1343		cs_deactivate(as, spi);
1344	}
1345
1346}
1347
1348static int atmel_spi_one_transfer(struct spi_controller *host,
1349					struct spi_device *spi,
1350					struct spi_transfer *xfer)
1351{
1352	struct atmel_spi	*as;
1353	u8			bits;
1354	u32			len;
1355	struct atmel_spi_device	*asd;
1356	int			timeout;
1357	int			ret;
1358	unsigned int		dma_timeout;
1359	long			ret_timeout;
1360
1361	as = spi_controller_get_devdata(host);
1362
1363	asd = spi->controller_state;
1364	bits = (asd->csr >> 4) & 0xf;
1365	if (bits != xfer->bits_per_word - 8) {
1366		dev_dbg(&spi->dev,
1367			"you can't yet change bits_per_word in transfers\n");
1368		return -ENOPROTOOPT;
1369	}
1370
1371	/*
1372	 * DMA map early, for performance (empties dcache ASAP) and
1373	 * better fault reporting.
1374	 */
1375	if (as->use_pdc) {
1376		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1377			return -ENOMEM;
1378	}
1379
1380	atmel_spi_set_xfer_speed(as, spi, xfer);
1381
1382	as->done_status = 0;
1383	as->current_transfer = xfer;
1384	as->current_remaining_bytes = xfer->len;
1385	while (as->current_remaining_bytes) {
1386		reinit_completion(&as->xfer_completion);
1387
1388		if (as->use_pdc) {
1389			atmel_spi_lock(as);
1390			atmel_spi_pdc_next_xfer(host, xfer);
1391			atmel_spi_unlock(as);
1392		} else if (atmel_spi_use_dma(as, xfer)) {
1393			len = as->current_remaining_bytes;
1394			ret = atmel_spi_next_xfer_dma_submit(host,
1395								xfer, &len);
1396			if (ret) {
1397				dev_err(&spi->dev,
1398					"unable to use DMA, fallback to PIO\n");
1399				as->done_status = ret;
1400				break;
1401			} else {
1402				as->current_remaining_bytes -= len;
1403				if (as->current_remaining_bytes < 0)
1404					as->current_remaining_bytes = 0;
1405			}
1406		} else {
1407			atmel_spi_lock(as);
1408			atmel_spi_next_xfer_pio(host, xfer);
1409			atmel_spi_unlock(as);
1410		}
1411
1412		dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1413		ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1414		if (!ret_timeout) {
1415			dev_err(&spi->dev, "spi transfer timeout\n");
1416			as->done_status = -EIO;
1417		}
1418
1419		if (as->done_status)
1420			break;
1421	}
1422
1423	if (as->done_status) {
1424		if (as->use_pdc) {
1425			dev_warn(host->dev.parent,
1426				"overrun (%u/%u remaining)\n",
1427				spi_readl(as, TCR), spi_readl(as, RCR));
1428
1429			/*
1430			 * Clean up DMA registers and make sure the data
1431			 * registers are empty.
1432			 */
1433			spi_writel(as, RNCR, 0);
1434			spi_writel(as, TNCR, 0);
1435			spi_writel(as, RCR, 0);
1436			spi_writel(as, TCR, 0);
1437			for (timeout = 1000; timeout; timeout--)
1438				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1439					break;
1440			if (!timeout)
1441				dev_warn(host->dev.parent,
1442					 "timeout waiting for TXEMPTY");
1443			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1444				spi_readl(as, RDR);
1445
1446			/* Clear any overrun happening while cleaning up */
1447			spi_readl(as, SR);
1448
1449		} else if (atmel_spi_use_dma(as, xfer)) {
1450			atmel_spi_stop_dma(host);
1451		}
1452	}
1453
1454	if (as->use_pdc)
1455		atmel_spi_dma_unmap_xfer(host, xfer);
1456
1457	if (as->use_pdc)
1458		atmel_spi_disable_pdc_transfer(as);
1459
1460	return as->done_status;
1461}
1462
1463static void atmel_spi_cleanup(struct spi_device *spi)
1464{
1465	struct atmel_spi_device	*asd = spi->controller_state;
1466
1467	if (!asd)
1468		return;
1469
1470	spi->controller_state = NULL;
1471	kfree(asd);
1472}
1473
1474static inline unsigned int atmel_get_version(struct atmel_spi *as)
1475{
1476	return spi_readl(as, VERSION) & 0x00000fff;
1477}
1478
1479static void atmel_get_caps(struct atmel_spi *as)
1480{
1481	unsigned int version;
1482
1483	version = atmel_get_version(as);
1484
1485	as->caps.is_spi2 = version > 0x121;
1486	as->caps.has_wdrbt = version >= 0x210;
1487	as->caps.has_dma_support = version >= 0x212;
1488	as->caps.has_pdc_support = version < 0x212;
1489}
1490
1491static void atmel_spi_init(struct atmel_spi *as)
1492{
1493	spi_writel(as, CR, SPI_BIT(SWRST));
1494	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1495
1496	/* It is recommended to enable FIFOs first thing after reset */
1497	if (as->fifo_size)
1498		spi_writel(as, CR, SPI_BIT(FIFOEN));
1499
1500	if (as->caps.has_wdrbt) {
1501		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1502				| SPI_BIT(MSTR));
1503	} else {
1504		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1505	}
1506
1507	if (as->use_pdc)
1508		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1509	spi_writel(as, CR, SPI_BIT(SPIEN));
1510}
1511
1512static int atmel_spi_probe(struct platform_device *pdev)
1513{
1514	struct resource		*regs;
1515	int			irq;
1516	struct clk		*clk;
1517	int			ret;
1518	struct spi_controller	*host;
1519	struct atmel_spi	*as;
1520
1521	/* Select default pin state */
1522	pinctrl_pm_select_default_state(&pdev->dev);
1523
1524	irq = platform_get_irq(pdev, 0);
1525	if (irq < 0)
1526		return irq;
1527
1528	clk = devm_clk_get(&pdev->dev, "spi_clk");
1529	if (IS_ERR(clk))
1530		return PTR_ERR(clk);
1531
1532	/* setup spi core then atmel-specific driver state */
1533	host = spi_alloc_host(&pdev->dev, sizeof(*as));
1534	if (!host)
1535		return -ENOMEM;
1536
1537	/* the spi->mode bits understood by this driver: */
1538	host->use_gpio_descriptors = true;
1539	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1540	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1541	host->dev.of_node = pdev->dev.of_node;
1542	host->bus_num = pdev->id;
1543	host->num_chipselect = 4;
1544	host->setup = atmel_spi_setup;
1545	host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1546			SPI_CONTROLLER_GPIO_SS);
1547	host->transfer_one = atmel_spi_one_transfer;
1548	host->set_cs = atmel_spi_set_cs;
1549	host->cleanup = atmel_spi_cleanup;
1550	host->auto_runtime_pm = true;
1551	host->max_dma_len = SPI_MAX_DMA_XFER;
1552	host->can_dma = atmel_spi_can_dma;
1553	platform_set_drvdata(pdev, host);
1554
1555	as = spi_controller_get_devdata(host);
1556
1557	spin_lock_init(&as->lock);
1558
1559	as->pdev = pdev;
1560	as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1561	if (IS_ERR(as->regs)) {
1562		ret = PTR_ERR(as->regs);
1563		goto out_unmap_regs;
1564	}
1565	as->phybase = regs->start;
1566	as->irq = irq;
1567	as->clk = clk;
1568
1569	init_completion(&as->xfer_completion);
1570
1571	atmel_get_caps(as);
1572
1573	as->use_dma = false;
1574	as->use_pdc = false;
1575	if (as->caps.has_dma_support) {
1576		ret = atmel_spi_configure_dma(host, as);
1577		if (ret == 0) {
1578			as->use_dma = true;
1579		} else if (ret == -EPROBE_DEFER) {
1580			goto out_unmap_regs;
1581		}
1582	} else if (as->caps.has_pdc_support) {
1583		as->use_pdc = true;
1584	}
1585
1586	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1587		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1588						      SPI_MAX_DMA_XFER,
1589						      &as->dma_addr_rx_bbuf,
1590						      GFP_KERNEL | GFP_DMA);
1591		if (!as->addr_rx_bbuf) {
1592			as->use_dma = false;
1593		} else {
1594			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1595					SPI_MAX_DMA_XFER,
1596					&as->dma_addr_tx_bbuf,
1597					GFP_KERNEL | GFP_DMA);
1598			if (!as->addr_tx_bbuf) {
1599				as->use_dma = false;
1600				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1601						  as->addr_rx_bbuf,
1602						  as->dma_addr_rx_bbuf);
1603			}
1604		}
1605		if (!as->use_dma)
1606			dev_info(host->dev.parent,
1607				 "  can not allocate dma coherent memory\n");
1608	}
1609
1610	if (as->caps.has_dma_support && !as->use_dma)
1611		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1612
1613	if (as->use_pdc) {
1614		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1615					0, dev_name(&pdev->dev), host);
1616	} else {
1617		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1618					0, dev_name(&pdev->dev), host);
1619	}
1620	if (ret)
1621		goto out_unmap_regs;
1622
1623	/* Initialize the hardware */
1624	ret = clk_prepare_enable(clk);
1625	if (ret)
1626		goto out_free_irq;
1627
1628	as->spi_clk = clk_get_rate(clk);
1629
1630	as->fifo_size = 0;
1631	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1632				  &as->fifo_size)) {
1633		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1634	}
1635
1636	atmel_spi_init(as);
1637
1638	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1639	pm_runtime_use_autosuspend(&pdev->dev);
1640	pm_runtime_set_active(&pdev->dev);
1641	pm_runtime_enable(&pdev->dev);
1642
1643	ret = devm_spi_register_controller(&pdev->dev, host);
1644	if (ret)
1645		goto out_free_dma;
1646
1647	/* go! */
1648	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1649			atmel_get_version(as), (unsigned long)regs->start,
1650			irq);
1651
1652	return 0;
1653
1654out_free_dma:
1655	pm_runtime_disable(&pdev->dev);
1656	pm_runtime_set_suspended(&pdev->dev);
1657
1658	if (as->use_dma)
1659		atmel_spi_release_dma(host);
1660
1661	spi_writel(as, CR, SPI_BIT(SWRST));
1662	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1663	clk_disable_unprepare(clk);
1664out_free_irq:
1665out_unmap_regs:
1666	spi_controller_put(host);
1667	return ret;
1668}
1669
1670static void atmel_spi_remove(struct platform_device *pdev)
1671{
1672	struct spi_controller	*host = platform_get_drvdata(pdev);
1673	struct atmel_spi	*as = spi_controller_get_devdata(host);
1674
1675	pm_runtime_get_sync(&pdev->dev);
1676
1677	/* reset the hardware and block queue progress */
1678	if (as->use_dma) {
1679		atmel_spi_stop_dma(host);
1680		atmel_spi_release_dma(host);
1681		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1682			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1683					  as->addr_tx_bbuf,
1684					  as->dma_addr_tx_bbuf);
1685			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1686					  as->addr_rx_bbuf,
1687					  as->dma_addr_rx_bbuf);
1688		}
1689	}
1690
1691	spin_lock_irq(&as->lock);
1692	spi_writel(as, CR, SPI_BIT(SWRST));
1693	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1694	spi_readl(as, SR);
1695	spin_unlock_irq(&as->lock);
1696
1697	clk_disable_unprepare(as->clk);
1698
1699	pm_runtime_put_noidle(&pdev->dev);
1700	pm_runtime_disable(&pdev->dev);
1701}
1702
1703static int atmel_spi_runtime_suspend(struct device *dev)
1704{
1705	struct spi_controller *host = dev_get_drvdata(dev);
1706	struct atmel_spi *as = spi_controller_get_devdata(host);
1707
1708	clk_disable_unprepare(as->clk);
1709	pinctrl_pm_select_sleep_state(dev);
1710
1711	return 0;
1712}
1713
1714static int atmel_spi_runtime_resume(struct device *dev)
1715{
1716	struct spi_controller *host = dev_get_drvdata(dev);
1717	struct atmel_spi *as = spi_controller_get_devdata(host);
1718
1719	pinctrl_pm_select_default_state(dev);
1720
1721	return clk_prepare_enable(as->clk);
1722}
1723
1724static int atmel_spi_suspend(struct device *dev)
1725{
1726	struct spi_controller *host = dev_get_drvdata(dev);
1727	int ret;
1728
1729	/* Stop the queue running */
1730	ret = spi_controller_suspend(host);
1731	if (ret)
1732		return ret;
1733
1734	if (!pm_runtime_suspended(dev))
1735		atmel_spi_runtime_suspend(dev);
1736
1737	return 0;
1738}
1739
1740static int atmel_spi_resume(struct device *dev)
1741{
1742	struct spi_controller *host = dev_get_drvdata(dev);
1743	struct atmel_spi *as = spi_controller_get_devdata(host);
1744	int ret;
1745
1746	ret = clk_prepare_enable(as->clk);
1747	if (ret)
1748		return ret;
1749
1750	atmel_spi_init(as);
1751
1752	clk_disable_unprepare(as->clk);
1753
1754	if (!pm_runtime_suspended(dev)) {
1755		ret = atmel_spi_runtime_resume(dev);
1756		if (ret)
1757			return ret;
1758	}
1759
1760	/* Start the queue running */
1761	return spi_controller_resume(host);
1762}
1763
1764static const struct dev_pm_ops atmel_spi_pm_ops = {
1765	SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1766	RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1767		       atmel_spi_runtime_resume, NULL)
1768};
1769
1770static const struct of_device_id atmel_spi_dt_ids[] = {
1771	{ .compatible = "atmel,at91rm9200-spi" },
1772	{ /* sentinel */ }
1773};
1774
1775MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1776
1777static struct platform_driver atmel_spi_driver = {
1778	.driver		= {
1779		.name	= "atmel_spi",
1780		.pm	= pm_ptr(&atmel_spi_pm_ops),
1781		.of_match_table	= atmel_spi_dt_ids,
1782	},
1783	.probe		= atmel_spi_probe,
1784	.remove_new	= atmel_spi_remove,
1785};
1786module_platform_driver(atmel_spi_driver);
1787
1788MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1789MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1790MODULE_LICENSE("GPL");
1791MODULE_ALIAS("platform:atmel_spi");
1792