1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11#include <linux/scatterlist.h>
12#include <linux/blkdev.h>
13#include <linux/slab.h>
14#include <asm/unaligned.h>
15
16#include "sas_internal.h"
17
18#include <scsi/sas_ata.h>
19#include <scsi/scsi_transport.h>
20#include <scsi/scsi_transport_sas.h>
21#include "scsi_sas_internal.h"
22
23static int sas_discover_expander(struct domain_device *dev);
24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25static int sas_configure_phy(struct domain_device *dev, int phy_id,
26			     u8 *sas_addr, int include);
27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28
29static void sas_port_add_ex_phy(struct sas_port *port, struct ex_phy *ex_phy)
30{
31	sas_port_add_phy(port, ex_phy->phy);
32	ex_phy->port = port;
33	ex_phy->phy_state = PHY_DEVICE_DISCOVERED;
34}
35
36static void sas_ex_add_parent_port(struct domain_device *dev, int phy_id)
37{
38	struct expander_device *ex = &dev->ex_dev;
39	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
40
41	if (!ex->parent_port) {
42		ex->parent_port = sas_port_alloc(&dev->rphy->dev, phy_id);
43		/* FIXME: error handling */
44		BUG_ON(!ex->parent_port);
45		BUG_ON(sas_port_add(ex->parent_port));
46		sas_port_mark_backlink(ex->parent_port);
47	}
48	sas_port_add_ex_phy(ex->parent_port, ex_phy);
49}
50
51/* ---------- SMP task management ---------- */
52
53/* Give it some long enough timeout. In seconds. */
54#define SMP_TIMEOUT 10
55
56static int smp_execute_task_sg(struct domain_device *dev,
57		struct scatterlist *req, struct scatterlist *resp)
58{
59	int res, retry;
60	struct sas_task *task = NULL;
61	struct sas_internal *i =
62		to_sas_internal(dev->port->ha->shost->transportt);
63	struct sas_ha_struct *ha = dev->port->ha;
64
65	pm_runtime_get_sync(ha->dev);
66	mutex_lock(&dev->ex_dev.cmd_mutex);
67	for (retry = 0; retry < 3; retry++) {
68		if (test_bit(SAS_DEV_GONE, &dev->state)) {
69			res = -ECOMM;
70			break;
71		}
72
73		task = sas_alloc_slow_task(GFP_KERNEL);
74		if (!task) {
75			res = -ENOMEM;
76			break;
77		}
78		task->dev = dev;
79		task->task_proto = dev->tproto;
80		task->smp_task.smp_req = *req;
81		task->smp_task.smp_resp = *resp;
82
83		task->task_done = sas_task_internal_done;
84
85		task->slow_task->timer.function = sas_task_internal_timedout;
86		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
87		add_timer(&task->slow_task->timer);
88
89		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
90
91		if (res) {
92			del_timer_sync(&task->slow_task->timer);
93			pr_notice("executing SMP task failed:%d\n", res);
94			break;
95		}
96
97		wait_for_completion(&task->slow_task->completion);
98		res = -ECOMM;
99		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
100			pr_notice("smp task timed out or aborted\n");
101			i->dft->lldd_abort_task(task);
102			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
103				pr_notice("SMP task aborted and not done\n");
104				break;
105			}
106		}
107		if (task->task_status.resp == SAS_TASK_COMPLETE &&
108		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
109			res = 0;
110			break;
111		}
112		if (task->task_status.resp == SAS_TASK_COMPLETE &&
113		    task->task_status.stat == SAS_DATA_UNDERRUN) {
114			/* no error, but return the number of bytes of
115			 * underrun */
116			res = task->task_status.residual;
117			break;
118		}
119		if (task->task_status.resp == SAS_TASK_COMPLETE &&
120		    task->task_status.stat == SAS_DATA_OVERRUN) {
121			res = -EMSGSIZE;
122			break;
123		}
124		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
125		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
126			break;
127		else {
128			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
129				  __func__,
130				  SAS_ADDR(dev->sas_addr),
131				  task->task_status.resp,
132				  task->task_status.stat);
133			sas_free_task(task);
134			task = NULL;
135		}
136	}
137	mutex_unlock(&dev->ex_dev.cmd_mutex);
138	pm_runtime_put_sync(ha->dev);
139
140	BUG_ON(retry == 3 && task != NULL);
141	sas_free_task(task);
142	return res;
143}
144
145static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
146			    void *resp, int resp_size)
147{
148	struct scatterlist req_sg;
149	struct scatterlist resp_sg;
150
151	sg_init_one(&req_sg, req, req_size);
152	sg_init_one(&resp_sg, resp, resp_size);
153	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
154}
155
156/* ---------- Allocations ---------- */
157
158static inline void *alloc_smp_req(int size)
159{
160	u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL);
161	if (p)
162		p[0] = SMP_REQUEST;
163	return p;
164}
165
166static inline void *alloc_smp_resp(int size)
167{
168	return kzalloc(size, GFP_KERNEL);
169}
170
171static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
172{
173	switch (phy->routing_attr) {
174	case TABLE_ROUTING:
175		if (dev->ex_dev.t2t_supp)
176			return 'U';
177		else
178			return 'T';
179	case DIRECT_ROUTING:
180		return 'D';
181	case SUBTRACTIVE_ROUTING:
182		return 'S';
183	default:
184		return '?';
185	}
186}
187
188static enum sas_device_type to_dev_type(struct discover_resp *dr)
189{
190	/* This is detecting a failure to transmit initial dev to host
191	 * FIS as described in section J.5 of sas-2 r16
192	 */
193	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
194	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
195		return SAS_SATA_PENDING;
196	else
197		return dr->attached_dev_type;
198}
199
200static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
201			   struct smp_disc_resp *disc_resp)
202{
203	enum sas_device_type dev_type;
204	enum sas_linkrate linkrate;
205	u8 sas_addr[SAS_ADDR_SIZE];
206	struct discover_resp *dr = &disc_resp->disc;
207	struct sas_ha_struct *ha = dev->port->ha;
208	struct expander_device *ex = &dev->ex_dev;
209	struct ex_phy *phy = &ex->ex_phy[phy_id];
210	struct sas_rphy *rphy = dev->rphy;
211	bool new_phy = !phy->phy;
212	char *type;
213
214	if (new_phy) {
215		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
216			return;
217		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
218
219		/* FIXME: error_handling */
220		BUG_ON(!phy->phy);
221	}
222
223	switch (disc_resp->result) {
224	case SMP_RESP_PHY_VACANT:
225		phy->phy_state = PHY_VACANT;
226		break;
227	default:
228		phy->phy_state = PHY_NOT_PRESENT;
229		break;
230	case SMP_RESP_FUNC_ACC:
231		phy->phy_state = PHY_EMPTY; /* do not know yet */
232		break;
233	}
234
235	/* check if anything important changed to squelch debug */
236	dev_type = phy->attached_dev_type;
237	linkrate  = phy->linkrate;
238	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
239
240	/* Handle vacant phy - rest of dr data is not valid so skip it */
241	if (phy->phy_state == PHY_VACANT) {
242		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
243		phy->attached_dev_type = SAS_PHY_UNUSED;
244		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
245			phy->phy_id = phy_id;
246			goto skip;
247		} else
248			goto out;
249	}
250
251	phy->attached_dev_type = to_dev_type(dr);
252	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
253		goto out;
254	phy->phy_id = phy_id;
255	phy->linkrate = dr->linkrate;
256	phy->attached_sata_host = dr->attached_sata_host;
257	phy->attached_sata_dev  = dr->attached_sata_dev;
258	phy->attached_sata_ps   = dr->attached_sata_ps;
259	phy->attached_iproto = dr->iproto << 1;
260	phy->attached_tproto = dr->tproto << 1;
261	/* help some expanders that fail to zero sas_address in the 'no
262	 * device' case
263	 */
264	if (phy->attached_dev_type == SAS_PHY_UNUSED)
265		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
266	else
267		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
268	phy->attached_phy_id = dr->attached_phy_id;
269	phy->phy_change_count = dr->change_count;
270	phy->routing_attr = dr->routing_attr;
271	phy->virtual = dr->virtual;
272	phy->last_da_index = -1;
273
274	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
275	phy->phy->identify.device_type = dr->attached_dev_type;
276	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
277	phy->phy->identify.target_port_protocols = phy->attached_tproto;
278	if (!phy->attached_tproto && dr->attached_sata_dev)
279		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
280	phy->phy->identify.phy_identifier = phy_id;
281	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
282	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
283	phy->phy->minimum_linkrate = dr->pmin_linkrate;
284	phy->phy->maximum_linkrate = dr->pmax_linkrate;
285	phy->phy->negotiated_linkrate = phy->linkrate;
286	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
287
288 skip:
289	if (new_phy)
290		if (sas_phy_add(phy->phy)) {
291			sas_phy_free(phy->phy);
292			return;
293		}
294
295 out:
296	switch (phy->attached_dev_type) {
297	case SAS_SATA_PENDING:
298		type = "stp pending";
299		break;
300	case SAS_PHY_UNUSED:
301		type = "no device";
302		break;
303	case SAS_END_DEVICE:
304		if (phy->attached_iproto) {
305			if (phy->attached_tproto)
306				type = "host+target";
307			else
308				type = "host";
309		} else {
310			if (dr->attached_sata_dev)
311				type = "stp";
312			else
313				type = "ssp";
314		}
315		break;
316	case SAS_EDGE_EXPANDER_DEVICE:
317	case SAS_FANOUT_EXPANDER_DEVICE:
318		type = "smp";
319		break;
320	default:
321		type = "unknown";
322	}
323
324	/* this routine is polled by libata error recovery so filter
325	 * unimportant messages
326	 */
327	if (new_phy || phy->attached_dev_type != dev_type ||
328	    phy->linkrate != linkrate ||
329	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
330		/* pass */;
331	else
332		return;
333
334	/* if the attached device type changed and ata_eh is active,
335	 * make sure we run revalidation when eh completes (see:
336	 * sas_enable_revalidation)
337	 */
338	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
339		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
340
341	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
342		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
343		 SAS_ADDR(dev->sas_addr), phy->phy_id,
344		 sas_route_char(dev, phy), phy->linkrate,
345		 SAS_ADDR(phy->attached_sas_addr), type);
346}
347
348/* check if we have an existing attached ata device on this expander phy */
349struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
350{
351	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
352	struct domain_device *dev;
353	struct sas_rphy *rphy;
354
355	if (!ex_phy->port)
356		return NULL;
357
358	rphy = ex_phy->port->rphy;
359	if (!rphy)
360		return NULL;
361
362	dev = sas_find_dev_by_rphy(rphy);
363
364	if (dev && dev_is_sata(dev))
365		return dev;
366
367	return NULL;
368}
369
370#define DISCOVER_REQ_SIZE  16
371#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
372
373static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
374				      struct smp_disc_resp *disc_resp,
375				      int single)
376{
377	struct discover_resp *dr = &disc_resp->disc;
378	int res;
379
380	disc_req[9] = single;
381
382	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
383			       disc_resp, DISCOVER_RESP_SIZE);
384	if (res)
385		return res;
386	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
387		pr_notice("Found loopback topology, just ignore it!\n");
388		return 0;
389	}
390	sas_set_ex_phy(dev, single, disc_resp);
391	return 0;
392}
393
394int sas_ex_phy_discover(struct domain_device *dev, int single)
395{
396	struct expander_device *ex = &dev->ex_dev;
397	int  res = 0;
398	u8   *disc_req;
399	struct smp_disc_resp *disc_resp;
400
401	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
402	if (!disc_req)
403		return -ENOMEM;
404
405	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
406	if (!disc_resp) {
407		kfree(disc_req);
408		return -ENOMEM;
409	}
410
411	disc_req[1] = SMP_DISCOVER;
412
413	if (0 <= single && single < ex->num_phys) {
414		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
415	} else {
416		int i;
417
418		for (i = 0; i < ex->num_phys; i++) {
419			res = sas_ex_phy_discover_helper(dev, disc_req,
420							 disc_resp, i);
421			if (res)
422				goto out_err;
423		}
424	}
425out_err:
426	kfree(disc_resp);
427	kfree(disc_req);
428	return res;
429}
430
431static int sas_expander_discover(struct domain_device *dev)
432{
433	struct expander_device *ex = &dev->ex_dev;
434	int res;
435
436	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
437	if (!ex->ex_phy)
438		return -ENOMEM;
439
440	res = sas_ex_phy_discover(dev, -1);
441	if (res)
442		goto out_err;
443
444	return 0;
445 out_err:
446	kfree(ex->ex_phy);
447	ex->ex_phy = NULL;
448	return res;
449}
450
451#define MAX_EXPANDER_PHYS 128
452
453#define RG_REQ_SIZE   8
454#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
455
456static int sas_ex_general(struct domain_device *dev)
457{
458	u8 *rg_req;
459	struct smp_rg_resp *rg_resp;
460	struct report_general_resp *rg;
461	int res;
462	int i;
463
464	rg_req = alloc_smp_req(RG_REQ_SIZE);
465	if (!rg_req)
466		return -ENOMEM;
467
468	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
469	if (!rg_resp) {
470		kfree(rg_req);
471		return -ENOMEM;
472	}
473
474	rg_req[1] = SMP_REPORT_GENERAL;
475
476	for (i = 0; i < 5; i++) {
477		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
478				       RG_RESP_SIZE);
479
480		if (res) {
481			pr_notice("RG to ex %016llx failed:0x%x\n",
482				  SAS_ADDR(dev->sas_addr), res);
483			goto out;
484		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
485			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
486				 SAS_ADDR(dev->sas_addr), rg_resp->result);
487			res = rg_resp->result;
488			goto out;
489		}
490
491		rg = &rg_resp->rg;
492		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
493		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
494		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
495		dev->ex_dev.t2t_supp = rg->t2t_supp;
496		dev->ex_dev.conf_route_table = rg->conf_route_table;
497		dev->ex_dev.configuring = rg->configuring;
498		memcpy(dev->ex_dev.enclosure_logical_id,
499		       rg->enclosure_logical_id, 8);
500
501		if (dev->ex_dev.configuring) {
502			pr_debug("RG: ex %016llx self-configuring...\n",
503				 SAS_ADDR(dev->sas_addr));
504			schedule_timeout_interruptible(5*HZ);
505		} else
506			break;
507	}
508out:
509	kfree(rg_req);
510	kfree(rg_resp);
511	return res;
512}
513
514static void ex_assign_manuf_info(struct domain_device *dev, void
515					*_mi_resp)
516{
517	u8 *mi_resp = _mi_resp;
518	struct sas_rphy *rphy = dev->rphy;
519	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
520
521	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
522	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
523	memcpy(edev->product_rev, mi_resp + 36,
524	       SAS_EXPANDER_PRODUCT_REV_LEN);
525
526	if (mi_resp[8] & 1) {
527		memcpy(edev->component_vendor_id, mi_resp + 40,
528		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
529		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
530		edev->component_revision_id = mi_resp[50];
531	}
532}
533
534#define MI_REQ_SIZE   8
535#define MI_RESP_SIZE 64
536
537static int sas_ex_manuf_info(struct domain_device *dev)
538{
539	u8 *mi_req;
540	u8 *mi_resp;
541	int res;
542
543	mi_req = alloc_smp_req(MI_REQ_SIZE);
544	if (!mi_req)
545		return -ENOMEM;
546
547	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
548	if (!mi_resp) {
549		kfree(mi_req);
550		return -ENOMEM;
551	}
552
553	mi_req[1] = SMP_REPORT_MANUF_INFO;
554
555	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
556	if (res) {
557		pr_notice("MI: ex %016llx failed:0x%x\n",
558			  SAS_ADDR(dev->sas_addr), res);
559		goto out;
560	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
561		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
562			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
563		goto out;
564	}
565
566	ex_assign_manuf_info(dev, mi_resp);
567out:
568	kfree(mi_req);
569	kfree(mi_resp);
570	return res;
571}
572
573#define PC_REQ_SIZE  44
574#define PC_RESP_SIZE 8
575
576int sas_smp_phy_control(struct domain_device *dev, int phy_id,
577			enum phy_func phy_func,
578			struct sas_phy_linkrates *rates)
579{
580	u8 *pc_req;
581	u8 *pc_resp;
582	int res;
583
584	pc_req = alloc_smp_req(PC_REQ_SIZE);
585	if (!pc_req)
586		return -ENOMEM;
587
588	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
589	if (!pc_resp) {
590		kfree(pc_req);
591		return -ENOMEM;
592	}
593
594	pc_req[1] = SMP_PHY_CONTROL;
595	pc_req[9] = phy_id;
596	pc_req[10] = phy_func;
597	if (rates) {
598		pc_req[32] = rates->minimum_linkrate << 4;
599		pc_req[33] = rates->maximum_linkrate << 4;
600	}
601
602	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
603	if (res) {
604		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
605		       SAS_ADDR(dev->sas_addr), phy_id, res);
606	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
607		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
608		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
609		res = pc_resp[2];
610	}
611	kfree(pc_resp);
612	kfree(pc_req);
613	return res;
614}
615
616static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
617{
618	struct expander_device *ex = &dev->ex_dev;
619	struct ex_phy *phy = &ex->ex_phy[phy_id];
620
621	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
622	phy->linkrate = SAS_PHY_DISABLED;
623}
624
625static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
626{
627	struct expander_device *ex = &dev->ex_dev;
628	int i;
629
630	for (i = 0; i < ex->num_phys; i++) {
631		struct ex_phy *phy = &ex->ex_phy[i];
632
633		if (phy->phy_state == PHY_VACANT ||
634		    phy->phy_state == PHY_NOT_PRESENT)
635			continue;
636
637		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
638			sas_ex_disable_phy(dev, i);
639	}
640}
641
642static int sas_dev_present_in_domain(struct asd_sas_port *port,
643					    u8 *sas_addr)
644{
645	struct domain_device *dev;
646
647	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
648		return 1;
649	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
650		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
651			return 1;
652	}
653	return 0;
654}
655
656#define RPEL_REQ_SIZE	16
657#define RPEL_RESP_SIZE	32
658int sas_smp_get_phy_events(struct sas_phy *phy)
659{
660	int res;
661	u8 *req;
662	u8 *resp;
663	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
664	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
665
666	req = alloc_smp_req(RPEL_REQ_SIZE);
667	if (!req)
668		return -ENOMEM;
669
670	resp = alloc_smp_resp(RPEL_RESP_SIZE);
671	if (!resp) {
672		kfree(req);
673		return -ENOMEM;
674	}
675
676	req[1] = SMP_REPORT_PHY_ERR_LOG;
677	req[9] = phy->number;
678
679	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
680			       resp, RPEL_RESP_SIZE);
681
682	if (res)
683		goto out;
684
685	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
686	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
687	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
688	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
689
690 out:
691	kfree(req);
692	kfree(resp);
693	return res;
694
695}
696
697#ifdef CONFIG_SCSI_SAS_ATA
698
699#define RPS_REQ_SIZE  16
700#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
701
702int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
703			    struct smp_rps_resp *rps_resp)
704{
705	int res;
706	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
707	u8 *resp = (u8 *)rps_resp;
708
709	if (!rps_req)
710		return -ENOMEM;
711
712	rps_req[1] = SMP_REPORT_PHY_SATA;
713	rps_req[9] = phy_id;
714
715	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
716			       rps_resp, RPS_RESP_SIZE);
717
718	/* 0x34 is the FIS type for the D2H fis.  There's a potential
719	 * standards cockup here.  sas-2 explicitly specifies the FIS
720	 * should be encoded so that FIS type is in resp[24].
721	 * However, some expanders endian reverse this.  Undo the
722	 * reversal here */
723	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
724		int i;
725
726		for (i = 0; i < 5; i++) {
727			int j = 24 + (i*4);
728			u8 a, b;
729			a = resp[j + 0];
730			b = resp[j + 1];
731			resp[j + 0] = resp[j + 3];
732			resp[j + 1] = resp[j + 2];
733			resp[j + 2] = b;
734			resp[j + 3] = a;
735		}
736	}
737
738	kfree(rps_req);
739	return res;
740}
741#endif
742
743static void sas_ex_get_linkrate(struct domain_device *parent,
744				       struct domain_device *child,
745				       struct ex_phy *parent_phy)
746{
747	struct expander_device *parent_ex = &parent->ex_dev;
748	struct sas_port *port;
749	int i;
750
751	child->pathways = 0;
752
753	port = parent_phy->port;
754
755	for (i = 0; i < parent_ex->num_phys; i++) {
756		struct ex_phy *phy = &parent_ex->ex_phy[i];
757
758		if (phy->phy_state == PHY_VACANT ||
759		    phy->phy_state == PHY_NOT_PRESENT)
760			continue;
761
762		if (sas_phy_match_dev_addr(child, phy)) {
763			child->min_linkrate = min(parent->min_linkrate,
764						  phy->linkrate);
765			child->max_linkrate = max(parent->max_linkrate,
766						  phy->linkrate);
767			child->pathways++;
768			sas_port_add_phy(port, phy->phy);
769		}
770	}
771	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
772	child->pathways = min(child->pathways, parent->pathways);
773}
774
775static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
776			  struct domain_device *child, int phy_id)
777{
778	struct sas_rphy *rphy;
779	int res;
780
781	child->dev_type = SAS_END_DEVICE;
782	rphy = sas_end_device_alloc(phy->port);
783	if (!rphy)
784		return -ENOMEM;
785
786	child->tproto = phy->attached_tproto;
787	sas_init_dev(child);
788
789	child->rphy = rphy;
790	get_device(&rphy->dev);
791	rphy->identify.phy_identifier = phy_id;
792	sas_fill_in_rphy(child, rphy);
793
794	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
795
796	res = sas_notify_lldd_dev_found(child);
797	if (res) {
798		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
799			  SAS_ADDR(child->sas_addr),
800			  SAS_ADDR(parent->sas_addr), phy_id, res);
801		sas_rphy_free(child->rphy);
802		list_del(&child->disco_list_node);
803		return res;
804	}
805
806	return 0;
807}
808
809static struct domain_device *sas_ex_discover_end_dev(
810	struct domain_device *parent, int phy_id)
811{
812	struct expander_device *parent_ex = &parent->ex_dev;
813	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
814	struct domain_device *child = NULL;
815	int res;
816
817	if (phy->attached_sata_host || phy->attached_sata_ps)
818		return NULL;
819
820	child = sas_alloc_device();
821	if (!child)
822		return NULL;
823
824	kref_get(&parent->kref);
825	child->parent = parent;
826	child->port   = parent->port;
827	child->iproto = phy->attached_iproto;
828	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
829	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
830	if (!phy->port) {
831		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
832		if (unlikely(!phy->port))
833			goto out_err;
834		if (unlikely(sas_port_add(phy->port) != 0)) {
835			sas_port_free(phy->port);
836			goto out_err;
837		}
838	}
839	sas_ex_get_linkrate(parent, child, phy);
840	sas_device_set_phy(child, phy->port);
841
842	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
843		res = sas_ata_add_dev(parent, phy, child, phy_id);
844	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
845		res = sas_ex_add_dev(parent, phy, child, phy_id);
846	} else {
847		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
848			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849			  phy_id);
850		res = -ENODEV;
851	}
852
853	if (res)
854		goto out_free;
855
856	list_add_tail(&child->siblings, &parent_ex->children);
857	return child;
858
859 out_free:
860	sas_port_delete(phy->port);
861 out_err:
862	phy->port = NULL;
863	sas_put_device(child);
864	return NULL;
865}
866
867/* See if this phy is part of a wide port */
868static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
869{
870	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
871	int i;
872
873	for (i = 0; i < parent->ex_dev.num_phys; i++) {
874		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
875
876		if (ephy == phy)
877			continue;
878
879		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
880			    SAS_ADDR_SIZE) && ephy->port) {
881			sas_port_add_ex_phy(ephy->port, phy);
882			return true;
883		}
884	}
885
886	return false;
887}
888
889static struct domain_device *sas_ex_discover_expander(
890	struct domain_device *parent, int phy_id)
891{
892	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
893	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
894	struct domain_device *child = NULL;
895	struct sas_rphy *rphy;
896	struct sas_expander_device *edev;
897	struct asd_sas_port *port;
898	int res;
899
900	if (phy->routing_attr == DIRECT_ROUTING) {
901		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
902			SAS_ADDR(parent->sas_addr), phy_id,
903			SAS_ADDR(phy->attached_sas_addr),
904			phy->attached_phy_id);
905		return NULL;
906	}
907	child = sas_alloc_device();
908	if (!child)
909		return NULL;
910
911	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
912	/* FIXME: better error handling */
913	BUG_ON(sas_port_add(phy->port) != 0);
914
915
916	switch (phy->attached_dev_type) {
917	case SAS_EDGE_EXPANDER_DEVICE:
918		rphy = sas_expander_alloc(phy->port,
919					  SAS_EDGE_EXPANDER_DEVICE);
920		break;
921	case SAS_FANOUT_EXPANDER_DEVICE:
922		rphy = sas_expander_alloc(phy->port,
923					  SAS_FANOUT_EXPANDER_DEVICE);
924		break;
925	default:
926		rphy = NULL;	/* shut gcc up */
927		BUG();
928	}
929	port = parent->port;
930	child->rphy = rphy;
931	get_device(&rphy->dev);
932	edev = rphy_to_expander_device(rphy);
933	child->dev_type = phy->attached_dev_type;
934	kref_get(&parent->kref);
935	child->parent = parent;
936	child->port = port;
937	child->iproto = phy->attached_iproto;
938	child->tproto = phy->attached_tproto;
939	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
940	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
941	sas_ex_get_linkrate(parent, child, phy);
942	edev->level = parent_ex->level + 1;
943	parent->port->disc.max_level = max(parent->port->disc.max_level,
944					   edev->level);
945	sas_init_dev(child);
946	sas_fill_in_rphy(child, rphy);
947	sas_rphy_add(rphy);
948
949	spin_lock_irq(&parent->port->dev_list_lock);
950	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
951	spin_unlock_irq(&parent->port->dev_list_lock);
952
953	res = sas_discover_expander(child);
954	if (res) {
955		sas_rphy_delete(rphy);
956		spin_lock_irq(&parent->port->dev_list_lock);
957		list_del(&child->dev_list_node);
958		spin_unlock_irq(&parent->port->dev_list_lock);
959		sas_put_device(child);
960		sas_port_delete(phy->port);
961		phy->port = NULL;
962		return NULL;
963	}
964	list_add_tail(&child->siblings, &parent->ex_dev.children);
965	return child;
966}
967
968static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
969{
970	struct expander_device *ex = &dev->ex_dev;
971	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
972	struct domain_device *child = NULL;
973	int res = 0;
974
975	/* Phy state */
976	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
977		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
978			res = sas_ex_phy_discover(dev, phy_id);
979		if (res)
980			return res;
981	}
982
983	/* Parent and domain coherency */
984	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
985		sas_ex_add_parent_port(dev, phy_id);
986		return 0;
987	}
988	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
989		sas_ex_add_parent_port(dev, phy_id);
990		if (ex_phy->routing_attr == TABLE_ROUTING)
991			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
992		return 0;
993	}
994
995	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
996		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
997
998	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
999		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1000			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1001			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1002		}
1003		return 0;
1004	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1005		return 0;
1006
1007	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1008	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1009	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1010	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1011		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1012			ex_phy->attached_dev_type,
1013			SAS_ADDR(dev->sas_addr),
1014			phy_id);
1015		return 0;
1016	}
1017
1018	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1019	if (res) {
1020		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1021			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1022		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1023		return res;
1024	}
1025
1026	if (sas_ex_join_wide_port(dev, phy_id)) {
1027		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1028			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1029		return res;
1030	}
1031
1032	switch (ex_phy->attached_dev_type) {
1033	case SAS_END_DEVICE:
1034	case SAS_SATA_PENDING:
1035		child = sas_ex_discover_end_dev(dev, phy_id);
1036		break;
1037	case SAS_FANOUT_EXPANDER_DEVICE:
1038		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1039			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1040				 SAS_ADDR(ex_phy->attached_sas_addr),
1041				 ex_phy->attached_phy_id,
1042				 SAS_ADDR(dev->sas_addr),
1043				 phy_id);
1044			sas_ex_disable_phy(dev, phy_id);
1045			return res;
1046		} else
1047			memcpy(dev->port->disc.fanout_sas_addr,
1048			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1049		fallthrough;
1050	case SAS_EDGE_EXPANDER_DEVICE:
1051		child = sas_ex_discover_expander(dev, phy_id);
1052		break;
1053	default:
1054		break;
1055	}
1056
1057	if (!child)
1058		pr_notice("ex %016llx phy%02d failed to discover\n",
1059			  SAS_ADDR(dev->sas_addr), phy_id);
1060	return res;
1061}
1062
1063static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1064{
1065	struct expander_device *ex = &dev->ex_dev;
1066	int i;
1067
1068	for (i = 0; i < ex->num_phys; i++) {
1069		struct ex_phy *phy = &ex->ex_phy[i];
1070
1071		if (phy->phy_state == PHY_VACANT ||
1072		    phy->phy_state == PHY_NOT_PRESENT)
1073			continue;
1074
1075		if (dev_is_expander(phy->attached_dev_type) &&
1076		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1077
1078			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1079
1080			return 1;
1081		}
1082	}
1083	return 0;
1084}
1085
1086static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1087{
1088	struct expander_device *ex = &dev->ex_dev;
1089	struct domain_device *child;
1090	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1091
1092	list_for_each_entry(child, &ex->children, siblings) {
1093		if (!dev_is_expander(child->dev_type))
1094			continue;
1095		if (sub_addr[0] == 0) {
1096			sas_find_sub_addr(child, sub_addr);
1097			continue;
1098		} else {
1099			u8 s2[SAS_ADDR_SIZE];
1100
1101			if (sas_find_sub_addr(child, s2) &&
1102			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1103
1104				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1105					  SAS_ADDR(dev->sas_addr),
1106					  SAS_ADDR(child->sas_addr),
1107					  SAS_ADDR(s2),
1108					  SAS_ADDR(sub_addr));
1109
1110				sas_ex_disable_port(child, s2);
1111			}
1112		}
1113	}
1114	return 0;
1115}
1116/**
1117 * sas_ex_discover_devices - discover devices attached to this expander
1118 * @dev: pointer to the expander domain device
1119 * @single: if you want to do a single phy, else set to -1;
1120 *
1121 * Configure this expander for use with its devices and register the
1122 * devices of this expander.
1123 */
1124static int sas_ex_discover_devices(struct domain_device *dev, int single)
1125{
1126	struct expander_device *ex = &dev->ex_dev;
1127	int i = 0, end = ex->num_phys;
1128	int res = 0;
1129
1130	if (0 <= single && single < end) {
1131		i = single;
1132		end = i+1;
1133	}
1134
1135	for ( ; i < end; i++) {
1136		struct ex_phy *ex_phy = &ex->ex_phy[i];
1137
1138		if (ex_phy->phy_state == PHY_VACANT ||
1139		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1140		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1141			continue;
1142
1143		switch (ex_phy->linkrate) {
1144		case SAS_PHY_DISABLED:
1145		case SAS_PHY_RESET_PROBLEM:
1146		case SAS_SATA_PORT_SELECTOR:
1147			continue;
1148		default:
1149			res = sas_ex_discover_dev(dev, i);
1150			if (res)
1151				break;
1152			continue;
1153		}
1154	}
1155
1156	if (!res)
1157		sas_check_level_subtractive_boundary(dev);
1158
1159	return res;
1160}
1161
1162static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1163{
1164	struct expander_device *ex = &dev->ex_dev;
1165	int i;
1166	u8  *sub_sas_addr = NULL;
1167
1168	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1169		return 0;
1170
1171	for (i = 0; i < ex->num_phys; i++) {
1172		struct ex_phy *phy = &ex->ex_phy[i];
1173
1174		if (phy->phy_state == PHY_VACANT ||
1175		    phy->phy_state == PHY_NOT_PRESENT)
1176			continue;
1177
1178		if (dev_is_expander(phy->attached_dev_type) &&
1179		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1180
1181			if (!sub_sas_addr)
1182				sub_sas_addr = &phy->attached_sas_addr[0];
1183			else if (SAS_ADDR(sub_sas_addr) !=
1184				 SAS_ADDR(phy->attached_sas_addr)) {
1185
1186				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1187					  SAS_ADDR(dev->sas_addr), i,
1188					  SAS_ADDR(phy->attached_sas_addr),
1189					  SAS_ADDR(sub_sas_addr));
1190				sas_ex_disable_phy(dev, i);
1191			}
1192		}
1193	}
1194	return 0;
1195}
1196
1197static void sas_print_parent_topology_bug(struct domain_device *child,
1198						 struct ex_phy *parent_phy,
1199						 struct ex_phy *child_phy)
1200{
1201	static const char *ex_type[] = {
1202		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1203		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1204	};
1205	struct domain_device *parent = child->parent;
1206
1207	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1208		  ex_type[parent->dev_type],
1209		  SAS_ADDR(parent->sas_addr),
1210		  parent_phy->phy_id,
1211
1212		  ex_type[child->dev_type],
1213		  SAS_ADDR(child->sas_addr),
1214		  child_phy->phy_id,
1215
1216		  sas_route_char(parent, parent_phy),
1217		  sas_route_char(child, child_phy));
1218}
1219
1220static bool sas_eeds_valid(struct domain_device *parent,
1221			   struct domain_device *child)
1222{
1223	struct sas_discovery *disc = &parent->port->disc;
1224
1225	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1226		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1227	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1228		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1229}
1230
1231static int sas_check_eeds(struct domain_device *child,
1232			  struct ex_phy *parent_phy,
1233			  struct ex_phy *child_phy)
1234{
1235	int res = 0;
1236	struct domain_device *parent = child->parent;
1237	struct sas_discovery *disc = &parent->port->disc;
1238
1239	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1240		res = -ENODEV;
1241		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1242			SAS_ADDR(parent->sas_addr),
1243			parent_phy->phy_id,
1244			SAS_ADDR(child->sas_addr),
1245			child_phy->phy_id,
1246			SAS_ADDR(disc->fanout_sas_addr));
1247	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1248		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1249		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1250	} else if (!sas_eeds_valid(parent, child)) {
1251		res = -ENODEV;
1252		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1253			SAS_ADDR(parent->sas_addr),
1254			parent_phy->phy_id,
1255			SAS_ADDR(child->sas_addr),
1256			child_phy->phy_id);
1257	}
1258
1259	return res;
1260}
1261
1262static int sas_check_edge_expander_topo(struct domain_device *child,
1263					struct ex_phy *parent_phy)
1264{
1265	struct expander_device *child_ex = &child->ex_dev;
1266	struct expander_device *parent_ex = &child->parent->ex_dev;
1267	struct ex_phy *child_phy;
1268
1269	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1270
1271	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1272		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1273		    child_phy->routing_attr != TABLE_ROUTING)
1274			goto error;
1275	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1276		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1277			return sas_check_eeds(child, parent_phy, child_phy);
1278		else if (child_phy->routing_attr != TABLE_ROUTING)
1279			goto error;
1280	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1281		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1282		    (child_phy->routing_attr != TABLE_ROUTING ||
1283		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1284			goto error;
1285	}
1286
1287	return 0;
1288error:
1289	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1290	return -ENODEV;
1291}
1292
1293static int sas_check_fanout_expander_topo(struct domain_device *child,
1294					  struct ex_phy *parent_phy)
1295{
1296	struct expander_device *child_ex = &child->ex_dev;
1297	struct ex_phy *child_phy;
1298
1299	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1300
1301	if (parent_phy->routing_attr == TABLE_ROUTING &&
1302	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1303		return 0;
1304
1305	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1306
1307	return -ENODEV;
1308}
1309
1310static int sas_check_parent_topology(struct domain_device *child)
1311{
1312	struct expander_device *parent_ex;
1313	int i;
1314	int res = 0;
1315
1316	if (!child->parent)
1317		return 0;
1318
1319	if (!dev_is_expander(child->parent->dev_type))
1320		return 0;
1321
1322	parent_ex = &child->parent->ex_dev;
1323
1324	for (i = 0; i < parent_ex->num_phys; i++) {
1325		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1326
1327		if (parent_phy->phy_state == PHY_VACANT ||
1328		    parent_phy->phy_state == PHY_NOT_PRESENT)
1329			continue;
1330
1331		if (!sas_phy_match_dev_addr(child, parent_phy))
1332			continue;
1333
1334		switch (child->parent->dev_type) {
1335		case SAS_EDGE_EXPANDER_DEVICE:
1336			if (sas_check_edge_expander_topo(child, parent_phy))
1337				res = -ENODEV;
1338			break;
1339		case SAS_FANOUT_EXPANDER_DEVICE:
1340			if (sas_check_fanout_expander_topo(child, parent_phy))
1341				res = -ENODEV;
1342			break;
1343		default:
1344			break;
1345		}
1346	}
1347
1348	return res;
1349}
1350
1351#define RRI_REQ_SIZE  16
1352#define RRI_RESP_SIZE 44
1353
1354static int sas_configure_present(struct domain_device *dev, int phy_id,
1355				 u8 *sas_addr, int *index, int *present)
1356{
1357	int i, res = 0;
1358	struct expander_device *ex = &dev->ex_dev;
1359	struct ex_phy *phy = &ex->ex_phy[phy_id];
1360	u8 *rri_req;
1361	u8 *rri_resp;
1362
1363	*present = 0;
1364	*index = 0;
1365
1366	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1367	if (!rri_req)
1368		return -ENOMEM;
1369
1370	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1371	if (!rri_resp) {
1372		kfree(rri_req);
1373		return -ENOMEM;
1374	}
1375
1376	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1377	rri_req[9] = phy_id;
1378
1379	for (i = 0; i < ex->max_route_indexes ; i++) {
1380		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1381		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1382				       RRI_RESP_SIZE);
1383		if (res)
1384			goto out;
1385		res = rri_resp[2];
1386		if (res == SMP_RESP_NO_INDEX) {
1387			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1388				SAS_ADDR(dev->sas_addr), phy_id, i);
1389			goto out;
1390		} else if (res != SMP_RESP_FUNC_ACC) {
1391			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1392				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1393				  i, res);
1394			goto out;
1395		}
1396		if (SAS_ADDR(sas_addr) != 0) {
1397			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1398				*index = i;
1399				if ((rri_resp[12] & 0x80) == 0x80)
1400					*present = 0;
1401				else
1402					*present = 1;
1403				goto out;
1404			} else if (SAS_ADDR(rri_resp+16) == 0) {
1405				*index = i;
1406				*present = 0;
1407				goto out;
1408			}
1409		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1410			   phy->last_da_index < i) {
1411			phy->last_da_index = i;
1412			*index = i;
1413			*present = 0;
1414			goto out;
1415		}
1416	}
1417	res = -1;
1418out:
1419	kfree(rri_req);
1420	kfree(rri_resp);
1421	return res;
1422}
1423
1424#define CRI_REQ_SIZE  44
1425#define CRI_RESP_SIZE  8
1426
1427static int sas_configure_set(struct domain_device *dev, int phy_id,
1428			     u8 *sas_addr, int index, int include)
1429{
1430	int res;
1431	u8 *cri_req;
1432	u8 *cri_resp;
1433
1434	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1435	if (!cri_req)
1436		return -ENOMEM;
1437
1438	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1439	if (!cri_resp) {
1440		kfree(cri_req);
1441		return -ENOMEM;
1442	}
1443
1444	cri_req[1] = SMP_CONF_ROUTE_INFO;
1445	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1446	cri_req[9] = phy_id;
1447	if (SAS_ADDR(sas_addr) == 0 || !include)
1448		cri_req[12] |= 0x80;
1449	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1450
1451	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1452			       CRI_RESP_SIZE);
1453	if (res)
1454		goto out;
1455	res = cri_resp[2];
1456	if (res == SMP_RESP_NO_INDEX) {
1457		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1458			SAS_ADDR(dev->sas_addr), phy_id, index);
1459	}
1460out:
1461	kfree(cri_req);
1462	kfree(cri_resp);
1463	return res;
1464}
1465
1466static int sas_configure_phy(struct domain_device *dev, int phy_id,
1467				    u8 *sas_addr, int include)
1468{
1469	int index;
1470	int present;
1471	int res;
1472
1473	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1474	if (res)
1475		return res;
1476	if (include ^ present)
1477		return sas_configure_set(dev, phy_id, sas_addr, index,
1478					 include);
1479
1480	return res;
1481}
1482
1483/**
1484 * sas_configure_parent - configure routing table of parent
1485 * @parent: parent expander
1486 * @child: child expander
1487 * @sas_addr: SAS port identifier of device directly attached to child
1488 * @include: whether or not to include @child in the expander routing table
1489 */
1490static int sas_configure_parent(struct domain_device *parent,
1491				struct domain_device *child,
1492				u8 *sas_addr, int include)
1493{
1494	struct expander_device *ex_parent = &parent->ex_dev;
1495	int res = 0;
1496	int i;
1497
1498	if (parent->parent) {
1499		res = sas_configure_parent(parent->parent, parent, sas_addr,
1500					   include);
1501		if (res)
1502			return res;
1503	}
1504
1505	if (ex_parent->conf_route_table == 0) {
1506		pr_debug("ex %016llx has self-configuring routing table\n",
1507			 SAS_ADDR(parent->sas_addr));
1508		return 0;
1509	}
1510
1511	for (i = 0; i < ex_parent->num_phys; i++) {
1512		struct ex_phy *phy = &ex_parent->ex_phy[i];
1513
1514		if ((phy->routing_attr == TABLE_ROUTING) &&
1515		    sas_phy_match_dev_addr(child, phy)) {
1516			res = sas_configure_phy(parent, i, sas_addr, include);
1517			if (res)
1518				return res;
1519		}
1520	}
1521
1522	return res;
1523}
1524
1525/**
1526 * sas_configure_routing - configure routing
1527 * @dev: expander device
1528 * @sas_addr: port identifier of device directly attached to the expander device
1529 */
1530static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1531{
1532	if (dev->parent)
1533		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1534	return 0;
1535}
1536
1537static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1538{
1539	if (dev->parent)
1540		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1541	return 0;
1542}
1543
1544/**
1545 * sas_discover_expander - expander discovery
1546 * @dev: pointer to expander domain device
1547 *
1548 * See comment in sas_discover_sata().
1549 */
1550static int sas_discover_expander(struct domain_device *dev)
1551{
1552	int res;
1553
1554	res = sas_notify_lldd_dev_found(dev);
1555	if (res)
1556		return res;
1557
1558	res = sas_ex_general(dev);
1559	if (res)
1560		goto out_err;
1561	res = sas_ex_manuf_info(dev);
1562	if (res)
1563		goto out_err;
1564
1565	res = sas_expander_discover(dev);
1566	if (res) {
1567		pr_warn("expander %016llx discovery failed(0x%x)\n",
1568			SAS_ADDR(dev->sas_addr), res);
1569		goto out_err;
1570	}
1571
1572	sas_check_ex_subtractive_boundary(dev);
1573	res = sas_check_parent_topology(dev);
1574	if (res)
1575		goto out_err;
1576	return 0;
1577out_err:
1578	sas_notify_lldd_dev_gone(dev);
1579	return res;
1580}
1581
1582static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1583{
1584	int res = 0;
1585	struct domain_device *dev;
1586
1587	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1588		if (dev_is_expander(dev->dev_type)) {
1589			struct sas_expander_device *ex =
1590				rphy_to_expander_device(dev->rphy);
1591
1592			if (level == ex->level)
1593				res = sas_ex_discover_devices(dev, -1);
1594			else if (level > 0)
1595				res = sas_ex_discover_devices(port->port_dev, -1);
1596
1597		}
1598	}
1599
1600	return res;
1601}
1602
1603static int sas_ex_bfs_disc(struct asd_sas_port *port)
1604{
1605	int res;
1606	int level;
1607
1608	do {
1609		level = port->disc.max_level;
1610		res = sas_ex_level_discovery(port, level);
1611		mb();
1612	} while (level < port->disc.max_level);
1613
1614	return res;
1615}
1616
1617int sas_discover_root_expander(struct domain_device *dev)
1618{
1619	int res;
1620	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1621
1622	res = sas_rphy_add(dev->rphy);
1623	if (res)
1624		goto out_err;
1625
1626	ex->level = dev->port->disc.max_level; /* 0 */
1627	res = sas_discover_expander(dev);
1628	if (res)
1629		goto out_err2;
1630
1631	sas_ex_bfs_disc(dev->port);
1632
1633	return res;
1634
1635out_err2:
1636	sas_rphy_remove(dev->rphy);
1637out_err:
1638	return res;
1639}
1640
1641/* ---------- Domain revalidation ---------- */
1642
1643static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp,
1644					  u8 *sas_addr,
1645					  enum sas_device_type *type)
1646{
1647	memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE);
1648	*type = to_dev_type(&disc_resp->disc);
1649	if (*type == SAS_PHY_UNUSED)
1650		memset(sas_addr, 0, SAS_ADDR_SIZE);
1651}
1652
1653static int sas_get_phy_discover(struct domain_device *dev,
1654				int phy_id, struct smp_disc_resp *disc_resp)
1655{
1656	int res;
1657	u8 *disc_req;
1658
1659	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1660	if (!disc_req)
1661		return -ENOMEM;
1662
1663	disc_req[1] = SMP_DISCOVER;
1664	disc_req[9] = phy_id;
1665
1666	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1667			       disc_resp, DISCOVER_RESP_SIZE);
1668	if (res)
1669		goto out;
1670	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1671		res = disc_resp->result;
1672out:
1673	kfree(disc_req);
1674	return res;
1675}
1676
1677static int sas_get_phy_change_count(struct domain_device *dev,
1678				    int phy_id, int *pcc)
1679{
1680	int res;
1681	struct smp_disc_resp *disc_resp;
1682
1683	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1684	if (!disc_resp)
1685		return -ENOMEM;
1686
1687	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1688	if (!res)
1689		*pcc = disc_resp->disc.change_count;
1690
1691	kfree(disc_resp);
1692	return res;
1693}
1694
1695int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1696			     u8 *sas_addr, enum sas_device_type *type)
1697{
1698	int res;
1699	struct smp_disc_resp *disc_resp;
1700
1701	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1702	if (!disc_resp)
1703		return -ENOMEM;
1704
1705	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1706	if (res == 0)
1707		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type);
1708	kfree(disc_resp);
1709	return res;
1710}
1711
1712static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1713			      int from_phy, bool update)
1714{
1715	struct expander_device *ex = &dev->ex_dev;
1716	int res = 0;
1717	int i;
1718
1719	for (i = from_phy; i < ex->num_phys; i++) {
1720		int phy_change_count = 0;
1721
1722		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1723		switch (res) {
1724		case SMP_RESP_PHY_VACANT:
1725		case SMP_RESP_NO_PHY:
1726			continue;
1727		case SMP_RESP_FUNC_ACC:
1728			break;
1729		default:
1730			return res;
1731		}
1732
1733		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1734			if (update)
1735				ex->ex_phy[i].phy_change_count =
1736					phy_change_count;
1737			*phy_id = i;
1738			return 0;
1739		}
1740	}
1741	return 0;
1742}
1743
1744static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1745{
1746	int res;
1747	u8  *rg_req;
1748	struct smp_rg_resp  *rg_resp;
1749
1750	rg_req = alloc_smp_req(RG_REQ_SIZE);
1751	if (!rg_req)
1752		return -ENOMEM;
1753
1754	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1755	if (!rg_resp) {
1756		kfree(rg_req);
1757		return -ENOMEM;
1758	}
1759
1760	rg_req[1] = SMP_REPORT_GENERAL;
1761
1762	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1763			       RG_RESP_SIZE);
1764	if (res)
1765		goto out;
1766	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1767		res = rg_resp->result;
1768		goto out;
1769	}
1770
1771	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1772out:
1773	kfree(rg_resp);
1774	kfree(rg_req);
1775	return res;
1776}
1777/**
1778 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1779 * @dev:domain device to be detect.
1780 * @src_dev: the device which originated BROADCAST(CHANGE).
1781 *
1782 * Add self-configuration expander support. Suppose two expander cascading,
1783 * when the first level expander is self-configuring, hotplug the disks in
1784 * second level expander, BROADCAST(CHANGE) will not only be originated
1785 * in the second level expander, but also be originated in the first level
1786 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1787 * expander changed count in two level expanders will all increment at least
1788 * once, but the phy which chang count has changed is the source device which
1789 * we concerned.
1790 */
1791
1792static int sas_find_bcast_dev(struct domain_device *dev,
1793			      struct domain_device **src_dev)
1794{
1795	struct expander_device *ex = &dev->ex_dev;
1796	int ex_change_count = -1;
1797	int phy_id = -1;
1798	int res;
1799	struct domain_device *ch;
1800
1801	res = sas_get_ex_change_count(dev, &ex_change_count);
1802	if (res)
1803		goto out;
1804	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1805		/* Just detect if this expander phys phy change count changed,
1806		* in order to determine if this expander originate BROADCAST,
1807		* and do not update phy change count field in our structure.
1808		*/
1809		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1810		if (phy_id != -1) {
1811			*src_dev = dev;
1812			ex->ex_change_count = ex_change_count;
1813			pr_info("ex %016llx phy%02d change count has changed\n",
1814				SAS_ADDR(dev->sas_addr), phy_id);
1815			return res;
1816		} else
1817			pr_info("ex %016llx phys DID NOT change\n",
1818				SAS_ADDR(dev->sas_addr));
1819	}
1820	list_for_each_entry(ch, &ex->children, siblings) {
1821		if (dev_is_expander(ch->dev_type)) {
1822			res = sas_find_bcast_dev(ch, src_dev);
1823			if (*src_dev)
1824				return res;
1825		}
1826	}
1827out:
1828	return res;
1829}
1830
1831static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1832{
1833	struct expander_device *ex = &dev->ex_dev;
1834	struct domain_device *child, *n;
1835
1836	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1837		set_bit(SAS_DEV_GONE, &child->state);
1838		if (dev_is_expander(child->dev_type))
1839			sas_unregister_ex_tree(port, child);
1840		else
1841			sas_unregister_dev(port, child);
1842	}
1843	sas_unregister_dev(port, dev);
1844}
1845
1846static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1847					 int phy_id, bool last)
1848{
1849	struct expander_device *ex_dev = &parent->ex_dev;
1850	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1851	struct domain_device *child, *n, *found = NULL;
1852	if (last) {
1853		list_for_each_entry_safe(child, n,
1854			&ex_dev->children, siblings) {
1855			if (sas_phy_match_dev_addr(child, phy)) {
1856				set_bit(SAS_DEV_GONE, &child->state);
1857				if (dev_is_expander(child->dev_type))
1858					sas_unregister_ex_tree(parent->port, child);
1859				else
1860					sas_unregister_dev(parent->port, child);
1861				found = child;
1862				break;
1863			}
1864		}
1865		sas_disable_routing(parent, phy->attached_sas_addr);
1866	}
1867	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1868	if (phy->port) {
1869		sas_port_delete_phy(phy->port, phy->phy);
1870		sas_device_set_phy(found, phy->port);
1871		if (phy->port->num_phys == 0) {
1872			list_add_tail(&phy->port->del_list,
1873				&parent->port->sas_port_del_list);
1874			if (ex_dev->parent_port == phy->port)
1875				ex_dev->parent_port = NULL;
1876		}
1877		phy->port = NULL;
1878	}
1879}
1880
1881static int sas_discover_bfs_by_root_level(struct domain_device *root,
1882					  const int level)
1883{
1884	struct expander_device *ex_root = &root->ex_dev;
1885	struct domain_device *child;
1886	int res = 0;
1887
1888	list_for_each_entry(child, &ex_root->children, siblings) {
1889		if (dev_is_expander(child->dev_type)) {
1890			struct sas_expander_device *ex =
1891				rphy_to_expander_device(child->rphy);
1892
1893			if (level > ex->level)
1894				res = sas_discover_bfs_by_root_level(child,
1895								     level);
1896			else if (level == ex->level)
1897				res = sas_ex_discover_devices(child, -1);
1898		}
1899	}
1900	return res;
1901}
1902
1903static int sas_discover_bfs_by_root(struct domain_device *dev)
1904{
1905	int res;
1906	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1907	int level = ex->level+1;
1908
1909	res = sas_ex_discover_devices(dev, -1);
1910	if (res)
1911		goto out;
1912	do {
1913		res = sas_discover_bfs_by_root_level(dev, level);
1914		mb();
1915		level += 1;
1916	} while (level <= dev->port->disc.max_level);
1917out:
1918	return res;
1919}
1920
1921static int sas_discover_new(struct domain_device *dev, int phy_id)
1922{
1923	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1924	struct domain_device *child;
1925	int res;
1926
1927	pr_debug("ex %016llx phy%02d new device attached\n",
1928		 SAS_ADDR(dev->sas_addr), phy_id);
1929	res = sas_ex_phy_discover(dev, phy_id);
1930	if (res)
1931		return res;
1932
1933	if (sas_ex_join_wide_port(dev, phy_id))
1934		return 0;
1935
1936	res = sas_ex_discover_devices(dev, phy_id);
1937	if (res)
1938		return res;
1939	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1940		if (sas_phy_match_dev_addr(child, ex_phy)) {
1941			if (dev_is_expander(child->dev_type))
1942				res = sas_discover_bfs_by_root(child);
1943			break;
1944		}
1945	}
1946	return res;
1947}
1948
1949static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1950{
1951	if (old == new)
1952		return true;
1953
1954	/* treat device directed resets as flutter, if we went
1955	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1956	 */
1957	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1958	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1959		return true;
1960
1961	return false;
1962}
1963
1964static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1965			      bool last, int sibling)
1966{
1967	struct expander_device *ex = &dev->ex_dev;
1968	struct ex_phy *phy = &ex->ex_phy[phy_id];
1969	enum sas_device_type type = SAS_PHY_UNUSED;
1970	struct smp_disc_resp *disc_resp;
1971	u8 sas_addr[SAS_ADDR_SIZE];
1972	char msg[80] = "";
1973	int res;
1974
1975	if (!last)
1976		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1977
1978	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1979		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1980
1981	memset(sas_addr, 0, SAS_ADDR_SIZE);
1982	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1983	if (!disc_resp)
1984		return -ENOMEM;
1985
1986	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1987	switch (res) {
1988	case SMP_RESP_NO_PHY:
1989		phy->phy_state = PHY_NOT_PRESENT;
1990		sas_unregister_devs_sas_addr(dev, phy_id, last);
1991		goto out_free_resp;
1992	case SMP_RESP_PHY_VACANT:
1993		phy->phy_state = PHY_VACANT;
1994		sas_unregister_devs_sas_addr(dev, phy_id, last);
1995		goto out_free_resp;
1996	case SMP_RESP_FUNC_ACC:
1997		break;
1998	case -ECOMM:
1999		break;
2000	default:
2001		goto out_free_resp;
2002	}
2003
2004	if (res == 0)
2005		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type);
2006
2007	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2008		phy->phy_state = PHY_EMPTY;
2009		sas_unregister_devs_sas_addr(dev, phy_id, last);
2010		/*
2011		 * Even though the PHY is empty, for convenience we update
2012		 * the PHY info, like negotiated linkrate.
2013		 */
2014		if (res == 0)
2015			sas_set_ex_phy(dev, phy_id, disc_resp);
2016		goto out_free_resp;
2017	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2018		   dev_type_flutter(type, phy->attached_dev_type)) {
2019		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2020		char *action = "";
2021
2022		sas_ex_phy_discover(dev, phy_id);
2023
2024		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2025			action = ", needs recovery";
2026		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2027			 SAS_ADDR(dev->sas_addr), phy_id, action);
2028		goto out_free_resp;
2029	}
2030
2031	/* we always have to delete the old device when we went here */
2032	pr_info("ex %016llx phy%02d replace %016llx\n",
2033		SAS_ADDR(dev->sas_addr), phy_id,
2034		SAS_ADDR(phy->attached_sas_addr));
2035	sas_unregister_devs_sas_addr(dev, phy_id, last);
2036
2037	res = sas_discover_new(dev, phy_id);
2038out_free_resp:
2039	kfree(disc_resp);
2040	return res;
2041}
2042
2043/**
2044 * sas_rediscover - revalidate the domain.
2045 * @dev:domain device to be detect.
2046 * @phy_id: the phy id will be detected.
2047 *
2048 * NOTE: this process _must_ quit (return) as soon as any connection
2049 * errors are encountered.  Connection recovery is done elsewhere.
2050 * Discover process only interrogates devices in order to discover the
2051 * domain.For plugging out, we un-register the device only when it is
2052 * the last phy in the port, for other phys in this port, we just delete it
2053 * from the port.For inserting, we do discovery when it is the
2054 * first phy,for other phys in this port, we add it to the port to
2055 * forming the wide-port.
2056 */
2057static int sas_rediscover(struct domain_device *dev, const int phy_id)
2058{
2059	struct expander_device *ex = &dev->ex_dev;
2060	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2061	int res = 0;
2062	int i;
2063	bool last = true;	/* is this the last phy of the port */
2064
2065	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2066		 SAS_ADDR(dev->sas_addr), phy_id);
2067
2068	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2069		for (i = 0; i < ex->num_phys; i++) {
2070			struct ex_phy *phy = &ex->ex_phy[i];
2071
2072			if (i == phy_id)
2073				continue;
2074			if (sas_phy_addr_match(phy, changed_phy)) {
2075				last = false;
2076				break;
2077			}
2078		}
2079		res = sas_rediscover_dev(dev, phy_id, last, i);
2080	} else
2081		res = sas_discover_new(dev, phy_id);
2082	return res;
2083}
2084
2085/**
2086 * sas_ex_revalidate_domain - revalidate the domain
2087 * @port_dev: port domain device.
2088 *
2089 * NOTE: this process _must_ quit (return) as soon as any connection
2090 * errors are encountered.  Connection recovery is done elsewhere.
2091 * Discover process only interrogates devices in order to discover the
2092 * domain.
2093 */
2094int sas_ex_revalidate_domain(struct domain_device *port_dev)
2095{
2096	int res;
2097	struct domain_device *dev = NULL;
2098
2099	res = sas_find_bcast_dev(port_dev, &dev);
2100	if (res == 0 && dev) {
2101		struct expander_device *ex = &dev->ex_dev;
2102		int i = 0, phy_id;
2103
2104		do {
2105			phy_id = -1;
2106			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2107			if (phy_id == -1)
2108				break;
2109			res = sas_rediscover(dev, phy_id);
2110			i = phy_id + 1;
2111		} while (i < ex->num_phys);
2112	}
2113	return res;
2114}
2115
2116int sas_find_attached_phy_id(struct expander_device *ex_dev,
2117			     struct domain_device *dev)
2118{
2119	struct ex_phy *phy;
2120	int phy_id;
2121
2122	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2123		phy = &ex_dev->ex_phy[phy_id];
2124		if (sas_phy_match_dev_addr(dev, phy))
2125			return phy_id;
2126	}
2127
2128	return -ENODEV;
2129}
2130EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2131
2132void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2133		struct sas_rphy *rphy)
2134{
2135	struct domain_device *dev;
2136	unsigned int rcvlen = 0;
2137	int ret = -EINVAL;
2138
2139	/* no rphy means no smp target support (ie aic94xx host) */
2140	if (!rphy)
2141		return sas_smp_host_handler(job, shost);
2142
2143	switch (rphy->identify.device_type) {
2144	case SAS_EDGE_EXPANDER_DEVICE:
2145	case SAS_FANOUT_EXPANDER_DEVICE:
2146		break;
2147	default:
2148		pr_err("%s: can we send a smp request to a device?\n",
2149		       __func__);
2150		goto out;
2151	}
2152
2153	dev = sas_find_dev_by_rphy(rphy);
2154	if (!dev) {
2155		pr_err("%s: fail to find a domain_device?\n", __func__);
2156		goto out;
2157	}
2158
2159	/* do we need to support multiple segments? */
2160	if (job->request_payload.sg_cnt > 1 ||
2161	    job->reply_payload.sg_cnt > 1) {
2162		pr_info("%s: multiple segments req %u, rsp %u\n",
2163			__func__, job->request_payload.payload_len,
2164			job->reply_payload.payload_len);
2165		goto out;
2166	}
2167
2168	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2169			job->reply_payload.sg_list);
2170	if (ret >= 0) {
2171		/* bsg_job_done() requires the length received  */
2172		rcvlen = job->reply_payload.payload_len - ret;
2173		ret = 0;
2174	}
2175
2176out:
2177	bsg_job_done(job, ret, rcvlen);
2178}
2179