1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2020 Linaro Limited
4 *
5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6 *
7 * The powercap based Dynamic Thermal Power Management framework
8 * provides to the userspace a consistent API to set the power limit
9 * on some devices.
10 *
11 * DTPM defines the functions to create a tree of constraints. Each
12 * parent node is a virtual description of the aggregation of the
13 * children. It propagates the constraints set at its level to its
14 * children and collect the children power information. The leaves of
15 * the tree are the real devices which have the ability to get their
16 * current power consumption and set their power limit.
17 */
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/dtpm.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/powercap.h>
24#include <linux/slab.h>
25#include <linux/mutex.h>
26#include <linux/of.h>
27
28#include "dtpm_subsys.h"
29
30#define DTPM_POWER_LIMIT_FLAG 0
31
32static const char *constraint_name[] = {
33	"Instantaneous",
34};
35
36static DEFINE_MUTEX(dtpm_lock);
37static struct powercap_control_type *pct;
38static struct dtpm *root;
39
40static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window)
41{
42	return -ENOSYS;
43}
44
45static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window)
46{
47	return -ENOSYS;
48}
49
50static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw)
51{
52	struct dtpm *dtpm = to_dtpm(pcz);
53
54	*max_power_uw = dtpm->power_max - dtpm->power_min;
55
56	return 0;
57}
58
59static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw)
60{
61	struct dtpm *child;
62	u64 power;
63	int ret = 0;
64
65	if (dtpm->ops) {
66		*power_uw = dtpm->ops->get_power_uw(dtpm);
67		return 0;
68	}
69
70	*power_uw = 0;
71
72	list_for_each_entry(child, &dtpm->children, sibling) {
73		ret = __get_power_uw(child, &power);
74		if (ret)
75			break;
76		*power_uw += power;
77	}
78
79	return ret;
80}
81
82static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw)
83{
84	return __get_power_uw(to_dtpm(pcz), power_uw);
85}
86
87static void __dtpm_rebalance_weight(struct dtpm *dtpm)
88{
89	struct dtpm *child;
90
91	list_for_each_entry(child, &dtpm->children, sibling) {
92
93		pr_debug("Setting weight '%d' for '%s'\n",
94			 child->weight, child->zone.name);
95
96		child->weight = DIV64_U64_ROUND_CLOSEST(
97			child->power_max * 1024, dtpm->power_max);
98
99		__dtpm_rebalance_weight(child);
100	}
101}
102
103static void __dtpm_sub_power(struct dtpm *dtpm)
104{
105	struct dtpm *parent = dtpm->parent;
106
107	while (parent) {
108		parent->power_min -= dtpm->power_min;
109		parent->power_max -= dtpm->power_max;
110		parent->power_limit -= dtpm->power_limit;
111		parent = parent->parent;
112	}
113}
114
115static void __dtpm_add_power(struct dtpm *dtpm)
116{
117	struct dtpm *parent = dtpm->parent;
118
119	while (parent) {
120		parent->power_min += dtpm->power_min;
121		parent->power_max += dtpm->power_max;
122		parent->power_limit += dtpm->power_limit;
123		parent = parent->parent;
124	}
125}
126
127/**
128 * dtpm_update_power - Update the power on the dtpm
129 * @dtpm: a pointer to a dtpm structure to update
130 *
131 * Function to update the power values of the dtpm node specified in
132 * parameter. These new values will be propagated to the tree.
133 *
134 * Return: zero on success, -EINVAL if the values are inconsistent
135 */
136int dtpm_update_power(struct dtpm *dtpm)
137{
138	int ret;
139
140	__dtpm_sub_power(dtpm);
141
142	ret = dtpm->ops->update_power_uw(dtpm);
143	if (ret)
144		pr_err("Failed to update power for '%s': %d\n",
145		       dtpm->zone.name, ret);
146
147	if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags))
148		dtpm->power_limit = dtpm->power_max;
149
150	__dtpm_add_power(dtpm);
151
152	if (root)
153		__dtpm_rebalance_weight(root);
154
155	return ret;
156}
157
158/**
159 * dtpm_release_zone - Cleanup when the node is released
160 * @pcz: a pointer to a powercap_zone structure
161 *
162 * Do some housecleaning and update the weight on the tree. The
163 * release will be denied if the node has children. This function must
164 * be called by the specific release callback of the different
165 * backends.
166 *
167 * Return: 0 on success, -EBUSY if there are children
168 */
169int dtpm_release_zone(struct powercap_zone *pcz)
170{
171	struct dtpm *dtpm = to_dtpm(pcz);
172	struct dtpm *parent = dtpm->parent;
173
174	if (!list_empty(&dtpm->children))
175		return -EBUSY;
176
177	if (parent)
178		list_del(&dtpm->sibling);
179
180	__dtpm_sub_power(dtpm);
181
182	if (dtpm->ops)
183		dtpm->ops->release(dtpm);
184	else
185		kfree(dtpm);
186
187	return 0;
188}
189
190static int get_power_limit_uw(struct powercap_zone *pcz,
191			      int cid, u64 *power_limit)
192{
193	*power_limit = to_dtpm(pcz)->power_limit;
194
195	return 0;
196}
197
198/*
199 * Set the power limit on the nodes, the power limit is distributed
200 * given the weight of the children.
201 *
202 * The dtpm node lock must be held when calling this function.
203 */
204static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit)
205{
206	struct dtpm *child;
207	int ret = 0;
208	u64 power;
209
210	/*
211	 * A max power limitation means we remove the power limit,
212	 * otherwise we set a constraint and flag the dtpm node.
213	 */
214	if (power_limit == dtpm->power_max) {
215		clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
216	} else {
217		set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
218	}
219
220	pr_debug("Setting power limit for '%s': %llu uW\n",
221		 dtpm->zone.name, power_limit);
222
223	/*
224	 * Only leaves of the dtpm tree has ops to get/set the power
225	 */
226	if (dtpm->ops) {
227		dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit);
228	} else {
229		dtpm->power_limit = 0;
230
231		list_for_each_entry(child, &dtpm->children, sibling) {
232
233			/*
234			 * Integer division rounding will inevitably
235			 * lead to a different min or max value when
236			 * set several times. In order to restore the
237			 * initial value, we force the child's min or
238			 * max power every time if the constraint is
239			 * at the boundaries.
240			 */
241			if (power_limit == dtpm->power_max) {
242				power = child->power_max;
243			} else if (power_limit == dtpm->power_min) {
244				power = child->power_min;
245			} else {
246				power = DIV_ROUND_CLOSEST_ULL(
247					power_limit * child->weight, 1024);
248			}
249
250			pr_debug("Setting power limit for '%s': %llu uW\n",
251				 child->zone.name, power);
252
253			ret = __set_power_limit_uw(child, cid, power);
254			if (!ret)
255				ret = get_power_limit_uw(&child->zone, cid, &power);
256
257			if (ret)
258				break;
259
260			dtpm->power_limit += power;
261		}
262	}
263
264	return ret;
265}
266
267static int set_power_limit_uw(struct powercap_zone *pcz,
268			      int cid, u64 power_limit)
269{
270	struct dtpm *dtpm = to_dtpm(pcz);
271	int ret;
272
273	/*
274	 * Don't allow values outside of the power range previously
275	 * set when initializing the power numbers.
276	 */
277	power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max);
278
279	ret = __set_power_limit_uw(dtpm, cid, power_limit);
280
281	pr_debug("%s: power limit: %llu uW, power max: %llu uW\n",
282		 dtpm->zone.name, dtpm->power_limit, dtpm->power_max);
283
284	return ret;
285}
286
287static const char *get_constraint_name(struct powercap_zone *pcz, int cid)
288{
289	return constraint_name[cid];
290}
291
292static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power)
293{
294	*max_power = to_dtpm(pcz)->power_max;
295
296	return 0;
297}
298
299static struct powercap_zone_constraint_ops constraint_ops = {
300	.set_power_limit_uw = set_power_limit_uw,
301	.get_power_limit_uw = get_power_limit_uw,
302	.set_time_window_us = set_time_window_us,
303	.get_time_window_us = get_time_window_us,
304	.get_max_power_uw = get_max_power_uw,
305	.get_name = get_constraint_name,
306};
307
308static struct powercap_zone_ops zone_ops = {
309	.get_max_power_range_uw = get_max_power_range_uw,
310	.get_power_uw = get_power_uw,
311	.release = dtpm_release_zone,
312};
313
314/**
315 * dtpm_init - Allocate and initialize a dtpm struct
316 * @dtpm: The dtpm struct pointer to be initialized
317 * @ops: The dtpm device specific ops, NULL for a virtual node
318 */
319void dtpm_init(struct dtpm *dtpm, struct dtpm_ops *ops)
320{
321	if (dtpm) {
322		INIT_LIST_HEAD(&dtpm->children);
323		INIT_LIST_HEAD(&dtpm->sibling);
324		dtpm->weight = 1024;
325		dtpm->ops = ops;
326	}
327}
328
329/**
330 * dtpm_unregister - Unregister a dtpm node from the hierarchy tree
331 * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed
332 *
333 * Call the underlying powercap unregister function. That will call
334 * the release callback of the powercap zone.
335 */
336void dtpm_unregister(struct dtpm *dtpm)
337{
338	powercap_unregister_zone(pct, &dtpm->zone);
339
340	pr_debug("Unregistered dtpm node '%s'\n", dtpm->zone.name);
341}
342
343/**
344 * dtpm_register - Register a dtpm node in the hierarchy tree
345 * @name: a string specifying the name of the node
346 * @dtpm: a pointer to a dtpm structure corresponding to the new node
347 * @parent: a pointer to a dtpm structure corresponding to the parent node
348 *
349 * Create a dtpm node in the tree. If no parent is specified, the node
350 * is the root node of the hierarchy. If the root node already exists,
351 * then the registration will fail. The powercap controller must be
352 * initialized before calling this function.
353 *
354 * The dtpm structure must be initialized with the power numbers
355 * before calling this function.
356 *
357 * Return: zero on success, a negative value in case of error:
358 *  -EAGAIN: the function is called before the framework is initialized.
359 *  -EBUSY: the root node is already inserted
360 *  -EINVAL: * there is no root node yet and @parent is specified
361 *           * no all ops are defined
362 *           * parent have ops which are reserved for leaves
363 *   Other negative values are reported back from the powercap framework
364 */
365int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent)
366{
367	struct powercap_zone *pcz;
368
369	if (!pct)
370		return -EAGAIN;
371
372	if (root && !parent)
373		return -EBUSY;
374
375	if (!root && parent)
376		return -EINVAL;
377
378	if (parent && parent->ops)
379		return -EINVAL;
380
381	if (!dtpm)
382		return -EINVAL;
383
384	if (dtpm->ops && !(dtpm->ops->set_power_uw &&
385			   dtpm->ops->get_power_uw &&
386			   dtpm->ops->update_power_uw &&
387			   dtpm->ops->release))
388		return -EINVAL;
389
390	pcz = powercap_register_zone(&dtpm->zone, pct, name,
391				     parent ? &parent->zone : NULL,
392				     &zone_ops, MAX_DTPM_CONSTRAINTS,
393				     &constraint_ops);
394	if (IS_ERR(pcz))
395		return PTR_ERR(pcz);
396
397	if (parent) {
398		list_add_tail(&dtpm->sibling, &parent->children);
399		dtpm->parent = parent;
400	} else {
401		root = dtpm;
402	}
403
404	if (dtpm->ops && !dtpm->ops->update_power_uw(dtpm)) {
405		__dtpm_add_power(dtpm);
406		dtpm->power_limit = dtpm->power_max;
407	}
408
409	pr_debug("Registered dtpm node '%s' / %llu-%llu uW, \n",
410		 dtpm->zone.name, dtpm->power_min, dtpm->power_max);
411
412	return 0;
413}
414
415static struct dtpm *dtpm_setup_virtual(const struct dtpm_node *hierarchy,
416				       struct dtpm *parent)
417{
418	struct dtpm *dtpm;
419	int ret;
420
421	dtpm = kzalloc(sizeof(*dtpm), GFP_KERNEL);
422	if (!dtpm)
423		return ERR_PTR(-ENOMEM);
424	dtpm_init(dtpm, NULL);
425
426	ret = dtpm_register(hierarchy->name, dtpm, parent);
427	if (ret) {
428		pr_err("Failed to register dtpm node '%s': %d\n",
429		       hierarchy->name, ret);
430		kfree(dtpm);
431		return ERR_PTR(ret);
432	}
433
434	return dtpm;
435}
436
437static struct dtpm *dtpm_setup_dt(const struct dtpm_node *hierarchy,
438				  struct dtpm *parent)
439{
440	struct device_node *np;
441	int i, ret;
442
443	np = of_find_node_by_path(hierarchy->name);
444	if (!np) {
445		pr_err("Failed to find '%s'\n", hierarchy->name);
446		return ERR_PTR(-ENXIO);
447	}
448
449	for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) {
450
451		if (!dtpm_subsys[i]->setup)
452			continue;
453
454		ret = dtpm_subsys[i]->setup(parent, np);
455		if (ret) {
456			pr_err("Failed to setup '%s': %d\n", dtpm_subsys[i]->name, ret);
457			of_node_put(np);
458			return ERR_PTR(ret);
459		}
460	}
461
462	of_node_put(np);
463
464	/*
465	 * By returning a NULL pointer, we let know the caller there
466	 * is no child for us as we are a leaf of the tree
467	 */
468	return NULL;
469}
470
471typedef struct dtpm * (*dtpm_node_callback_t)(const struct dtpm_node *, struct dtpm *);
472
473static dtpm_node_callback_t dtpm_node_callback[] = {
474	[DTPM_NODE_VIRTUAL] = dtpm_setup_virtual,
475	[DTPM_NODE_DT] = dtpm_setup_dt,
476};
477
478static int dtpm_for_each_child(const struct dtpm_node *hierarchy,
479			       const struct dtpm_node *it, struct dtpm *parent)
480{
481	struct dtpm *dtpm;
482	int i, ret;
483
484	for (i = 0; hierarchy[i].name; i++) {
485
486		if (hierarchy[i].parent != it)
487			continue;
488
489		dtpm = dtpm_node_callback[hierarchy[i].type](&hierarchy[i], parent);
490
491		/*
492		 * A NULL pointer means there is no children, hence we
493		 * continue without going deeper in the recursivity.
494		 */
495		if (!dtpm)
496			continue;
497
498		/*
499		 * There are multiple reasons why the callback could
500		 * fail. The generic glue is abstracting the backend
501		 * and therefore it is not possible to report back or
502		 * take a decision based on the error.  In any case,
503		 * if this call fails, it is not critical in the
504		 * hierarchy creation, we can assume the underlying
505		 * service is not found, so we continue without this
506		 * branch in the tree but with a warning to log the
507		 * information the node was not created.
508		 */
509		if (IS_ERR(dtpm)) {
510			pr_warn("Failed to create '%s' in the hierarchy\n",
511				hierarchy[i].name);
512			continue;
513		}
514
515		ret = dtpm_for_each_child(hierarchy, &hierarchy[i], dtpm);
516		if (ret)
517			return ret;
518	}
519
520	return 0;
521}
522
523/**
524 * dtpm_create_hierarchy - Create the dtpm hierarchy
525 * @dtpm_match_table: Pointer to the array of device ID structures
526 *
527 * The function is called by the platform specific code with the
528 * description of the different node in the hierarchy. It creates the
529 * tree in the sysfs filesystem under the powercap dtpm entry.
530 *
531 * The expected tree has the format:
532 *
533 * struct dtpm_node hierarchy[] = {
534 *	[0] { .name = "topmost", type =  DTPM_NODE_VIRTUAL },
535 *	[1] { .name = "package", .type = DTPM_NODE_VIRTUAL, .parent = &hierarchy[0] },
536 *	[2] { .name = "/cpus/cpu0", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
537 *	[3] { .name = "/cpus/cpu1", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
538 *	[4] { .name = "/cpus/cpu2", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
539 *	[5] { .name = "/cpus/cpu3", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
540 *	[6] { }
541 * };
542 *
543 * The last element is always an empty one and marks the end of the
544 * array.
545 *
546 * Return: zero on success, a negative value in case of error. Errors
547 * are reported back from the underlying functions.
548 */
549int dtpm_create_hierarchy(struct of_device_id *dtpm_match_table)
550{
551	const struct of_device_id *match;
552	const struct dtpm_node *hierarchy;
553	struct device_node *np;
554	int i, ret;
555
556	mutex_lock(&dtpm_lock);
557
558	if (pct) {
559		ret = -EBUSY;
560		goto out_unlock;
561	}
562
563	pct = powercap_register_control_type(NULL, "dtpm", NULL);
564	if (IS_ERR(pct)) {
565		pr_err("Failed to register control type\n");
566		ret = PTR_ERR(pct);
567		goto out_pct;
568	}
569
570	ret = -ENODEV;
571	np = of_find_node_by_path("/");
572	if (!np)
573		goto out_err;
574
575	match = of_match_node(dtpm_match_table, np);
576
577	of_node_put(np);
578
579	if (!match)
580		goto out_err;
581
582	hierarchy = match->data;
583	if (!hierarchy) {
584		ret = -EFAULT;
585		goto out_err;
586	}
587
588	ret = dtpm_for_each_child(hierarchy, NULL, NULL);
589	if (ret)
590		goto out_err;
591
592	for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) {
593
594		if (!dtpm_subsys[i]->init)
595			continue;
596
597		ret = dtpm_subsys[i]->init();
598		if (ret)
599			pr_info("Failed to initialize '%s': %d",
600				dtpm_subsys[i]->name, ret);
601	}
602
603	mutex_unlock(&dtpm_lock);
604
605	return 0;
606
607out_err:
608	powercap_unregister_control_type(pct);
609out_pct:
610	pct = NULL;
611out_unlock:
612	mutex_unlock(&dtpm_lock);
613
614	return ret;
615}
616EXPORT_SYMBOL_GPL(dtpm_create_hierarchy);
617
618static void __dtpm_destroy_hierarchy(struct dtpm *dtpm)
619{
620	struct dtpm *child, *aux;
621
622	list_for_each_entry_safe(child, aux, &dtpm->children, sibling)
623		__dtpm_destroy_hierarchy(child);
624
625	/*
626	 * At this point, we know all children were removed from the
627	 * recursive call before
628	 */
629	dtpm_unregister(dtpm);
630}
631
632void dtpm_destroy_hierarchy(void)
633{
634	int i;
635
636	mutex_lock(&dtpm_lock);
637
638	if (!pct)
639		goto out_unlock;
640
641	__dtpm_destroy_hierarchy(root);
642
643
644	for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) {
645
646		if (!dtpm_subsys[i]->exit)
647			continue;
648
649		dtpm_subsys[i]->exit();
650	}
651
652	powercap_unregister_control_type(pct);
653
654	pct = NULL;
655
656	root = NULL;
657
658out_unlock:
659	mutex_unlock(&dtpm_lock);
660}
661EXPORT_SYMBOL_GPL(dtpm_destroy_hierarchy);
662