1271294Sngie// SPDX-License-Identifier: GPL-2.0-only
2271294Sngie/*
3271294Sngie * Perf support for the Statistical Profiling Extension, introduced as
4271294Sngie * part of ARMv8.2.
5271294Sngie *
6271294Sngie * Copyright (C) 2016 ARM Limited
7271294Sngie *
8271294Sngie * Author: Will Deacon <will.deacon@arm.com>
9271294Sngie */
10271294Sngie
11271294Sngie#define PMUNAME					"arm_spe"
12271294Sngie#define DRVNAME					PMUNAME "_pmu"
13271294Sngie#define pr_fmt(fmt)				DRVNAME ": " fmt
14271294Sngie
15271294Sngie#include <linux/bitfield.h>
16271294Sngie#include <linux/bitops.h>
17271294Sngie#include <linux/bug.h>
18271294Sngie#include <linux/capability.h>
19272087Sngie#include <linux/cpuhotplug.h>
20272087Sngie#include <linux/cpumask.h>
21271294Sngie#include <linux/device.h>
22271294Sngie#include <linux/errno.h>
23271294Sngie#include <linux/interrupt.h>
24271294Sngie#include <linux/irq.h>
25271294Sngie#include <linux/kernel.h>
26271294Sngie#include <linux/list.h>
27271294Sngie#include <linux/module.h>
28271294Sngie#include <linux/of.h>
29271294Sngie#include <linux/perf_event.h>
30271294Sngie#include <linux/perf/arm_pmu.h>
31271294Sngie#include <linux/platform_device.h>
32271294Sngie#include <linux/printk.h>
33271294Sngie#include <linux/slab.h>
34271294Sngie#include <linux/smp.h>
35271294Sngie#include <linux/vmalloc.h>
36271294Sngie
37272087Sngie#include <asm/barrier.h>
38271294Sngie#include <asm/cpufeature.h>
39271294Sngie#include <asm/mmu.h>
40271294Sngie#include <asm/sysreg.h>
41271294Sngie
42271294Sngie/*
43271294Sngie * Cache if the event is allowed to trace Context information.
44271294Sngie * This allows us to perform the check, i.e, perfmon_capable(),
45271294Sngie * in the context of the event owner, once, during the event_init().
46272087Sngie */
47271294Sngie#define SPE_PMU_HW_FLAGS_CX			0x00001
48271294Sngie
49271294Sngiestatic_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50271294Sngie
51271294Sngiestatic void set_spe_event_has_cx(struct perf_event *event)
52271294Sngie{
53271294Sngie	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
54271294Sngie		event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55271294Sngie}
56271294Sngie
57271294Sngiestatic bool get_spe_event_has_cx(struct perf_event *event)
58271294Sngie{
59271294Sngie	return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60271294Sngie}
61271294Sngie
62271294Sngie#define ARM_SPE_BUF_PAD_BYTE			0
63272087Sngie
64271294Sngiestruct arm_spe_pmu_buf {
65271294Sngie	int					nr_pages;
66271294Sngie	bool					snapshot;
67271294Sngie	void					*base;
68271294Sngie};
69
70struct arm_spe_pmu {
71	struct pmu				pmu;
72	struct platform_device			*pdev;
73	cpumask_t				supported_cpus;
74	struct hlist_node			hotplug_node;
75
76	int					irq; /* PPI */
77	u16					pmsver;
78	u16					min_period;
79	u16					counter_sz;
80
81#define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
82#define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
83#define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
84#define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
85#define SPE_PMU_FEAT_LDS			(1UL << 4)
86#define SPE_PMU_FEAT_ERND			(1UL << 5)
87#define SPE_PMU_FEAT_INV_FILT_EVT		(1UL << 6)
88#define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
89	u64					features;
90
91	u16					max_record_sz;
92	u16					align;
93	struct perf_output_handle __percpu	*handle;
94};
95
96#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
97
98/* Convert a free-running index from perf into an SPE buffer offset */
99#define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
100
101/* Keep track of our dynamic hotplug state */
102static enum cpuhp_state arm_spe_pmu_online;
103
104enum arm_spe_pmu_buf_fault_action {
105	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
106	SPE_PMU_BUF_FAULT_ACT_FATAL,
107	SPE_PMU_BUF_FAULT_ACT_OK,
108};
109
110/* This sysfs gunk was really good fun to write. */
111enum arm_spe_pmu_capabilities {
112	SPE_PMU_CAP_ARCH_INST = 0,
113	SPE_PMU_CAP_ERND,
114	SPE_PMU_CAP_FEAT_MAX,
115	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
116	SPE_PMU_CAP_MIN_IVAL,
117};
118
119static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
120	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
121	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
122};
123
124static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
125{
126	if (cap < SPE_PMU_CAP_FEAT_MAX)
127		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
128
129	switch (cap) {
130	case SPE_PMU_CAP_CNT_SZ:
131		return spe_pmu->counter_sz;
132	case SPE_PMU_CAP_MIN_IVAL:
133		return spe_pmu->min_period;
134	default:
135		WARN(1, "unknown cap %d\n", cap);
136	}
137
138	return 0;
139}
140
141static ssize_t arm_spe_pmu_cap_show(struct device *dev,
142				    struct device_attribute *attr,
143				    char *buf)
144{
145	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
146	struct dev_ext_attribute *ea =
147		container_of(attr, struct dev_ext_attribute, attr);
148	int cap = (long)ea->var;
149
150	return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
151}
152
153#define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
154	&((struct dev_ext_attribute[]) {				\
155		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
156	})[0].attr.attr
157
158#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
159	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
160
161static struct attribute *arm_spe_pmu_cap_attr[] = {
162	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
163	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
164	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
165	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
166	NULL,
167};
168
169static const struct attribute_group arm_spe_pmu_cap_group = {
170	.name	= "caps",
171	.attrs	= arm_spe_pmu_cap_attr,
172};
173
174/* User ABI */
175#define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
176#define ATTR_CFG_FLD_ts_enable_LO		0
177#define ATTR_CFG_FLD_ts_enable_HI		0
178#define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
179#define ATTR_CFG_FLD_pa_enable_LO		1
180#define ATTR_CFG_FLD_pa_enable_HI		1
181#define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
182#define ATTR_CFG_FLD_pct_enable_LO		2
183#define ATTR_CFG_FLD_pct_enable_HI		2
184#define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
185#define ATTR_CFG_FLD_jitter_LO			16
186#define ATTR_CFG_FLD_jitter_HI			16
187#define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
188#define ATTR_CFG_FLD_branch_filter_LO		32
189#define ATTR_CFG_FLD_branch_filter_HI		32
190#define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
191#define ATTR_CFG_FLD_load_filter_LO		33
192#define ATTR_CFG_FLD_load_filter_HI		33
193#define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
194#define ATTR_CFG_FLD_store_filter_LO		34
195#define ATTR_CFG_FLD_store_filter_HI		34
196
197#define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
198#define ATTR_CFG_FLD_event_filter_LO		0
199#define ATTR_CFG_FLD_event_filter_HI		63
200
201#define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
202#define ATTR_CFG_FLD_min_latency_LO		0
203#define ATTR_CFG_FLD_min_latency_HI		11
204
205#define ATTR_CFG_FLD_inv_event_filter_CFG	config3	/* PMSNEVFR_EL1 */
206#define ATTR_CFG_FLD_inv_event_filter_LO	0
207#define ATTR_CFG_FLD_inv_event_filter_HI	63
208
209GEN_PMU_FORMAT_ATTR(ts_enable);
210GEN_PMU_FORMAT_ATTR(pa_enable);
211GEN_PMU_FORMAT_ATTR(pct_enable);
212GEN_PMU_FORMAT_ATTR(jitter);
213GEN_PMU_FORMAT_ATTR(branch_filter);
214GEN_PMU_FORMAT_ATTR(load_filter);
215GEN_PMU_FORMAT_ATTR(store_filter);
216GEN_PMU_FORMAT_ATTR(event_filter);
217GEN_PMU_FORMAT_ATTR(inv_event_filter);
218GEN_PMU_FORMAT_ATTR(min_latency);
219
220static struct attribute *arm_spe_pmu_formats_attr[] = {
221	&format_attr_ts_enable.attr,
222	&format_attr_pa_enable.attr,
223	&format_attr_pct_enable.attr,
224	&format_attr_jitter.attr,
225	&format_attr_branch_filter.attr,
226	&format_attr_load_filter.attr,
227	&format_attr_store_filter.attr,
228	&format_attr_event_filter.attr,
229	&format_attr_inv_event_filter.attr,
230	&format_attr_min_latency.attr,
231	NULL,
232};
233
234static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
235						  struct attribute *attr,
236						  int unused)
237	{
238	struct device *dev = kobj_to_dev(kobj);
239	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
240
241	if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
242		return 0;
243
244	return attr->mode;
245}
246
247static const struct attribute_group arm_spe_pmu_format_group = {
248	.name	= "format",
249	.is_visible = arm_spe_pmu_format_attr_is_visible,
250	.attrs	= arm_spe_pmu_formats_attr,
251};
252
253static ssize_t cpumask_show(struct device *dev,
254			    struct device_attribute *attr, char *buf)
255{
256	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
257
258	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
259}
260static DEVICE_ATTR_RO(cpumask);
261
262static struct attribute *arm_spe_pmu_attrs[] = {
263	&dev_attr_cpumask.attr,
264	NULL,
265};
266
267static const struct attribute_group arm_spe_pmu_group = {
268	.attrs	= arm_spe_pmu_attrs,
269};
270
271static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
272	&arm_spe_pmu_group,
273	&arm_spe_pmu_cap_group,
274	&arm_spe_pmu_format_group,
275	NULL,
276};
277
278/* Convert between user ABI and register values */
279static u64 arm_spe_event_to_pmscr(struct perf_event *event)
280{
281	struct perf_event_attr *attr = &event->attr;
282	u64 reg = 0;
283
284	reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
285	reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
286	reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
287
288	if (!attr->exclude_user)
289		reg |= PMSCR_EL1_E0SPE;
290
291	if (!attr->exclude_kernel)
292		reg |= PMSCR_EL1_E1SPE;
293
294	if (get_spe_event_has_cx(event))
295		reg |= PMSCR_EL1_CX;
296
297	return reg;
298}
299
300static void arm_spe_event_sanitise_period(struct perf_event *event)
301{
302	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
303	u64 period = event->hw.sample_period;
304	u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
305
306	if (period < spe_pmu->min_period)
307		period = spe_pmu->min_period;
308	else if (period > max_period)
309		period = max_period;
310	else
311		period &= max_period;
312
313	event->hw.sample_period = period;
314}
315
316static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
317{
318	struct perf_event_attr *attr = &event->attr;
319	u64 reg = 0;
320
321	arm_spe_event_sanitise_period(event);
322
323	reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
324	reg |= event->hw.sample_period;
325
326	return reg;
327}
328
329static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
330{
331	struct perf_event_attr *attr = &event->attr;
332	u64 reg = 0;
333
334	reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
335	reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
336	reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
337
338	if (reg)
339		reg |= PMSFCR_EL1_FT;
340
341	if (ATTR_CFG_GET_FLD(attr, event_filter))
342		reg |= PMSFCR_EL1_FE;
343
344	if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
345		reg |= PMSFCR_EL1_FnE;
346
347	if (ATTR_CFG_GET_FLD(attr, min_latency))
348		reg |= PMSFCR_EL1_FL;
349
350	return reg;
351}
352
353static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
354{
355	struct perf_event_attr *attr = &event->attr;
356	return ATTR_CFG_GET_FLD(attr, event_filter);
357}
358
359static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
360{
361	struct perf_event_attr *attr = &event->attr;
362	return ATTR_CFG_GET_FLD(attr, inv_event_filter);
363}
364
365static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
366{
367	struct perf_event_attr *attr = &event->attr;
368	return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
369}
370
371static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
372{
373	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
374	u64 head = PERF_IDX2OFF(handle->head, buf);
375
376	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
377	if (!buf->snapshot)
378		perf_aux_output_skip(handle, len);
379}
380
381static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
382{
383	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
384	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
385	u64 head = PERF_IDX2OFF(handle->head, buf);
386	u64 limit = buf->nr_pages * PAGE_SIZE;
387
388	/*
389	 * The trace format isn't parseable in reverse, so clamp
390	 * the limit to half of the buffer size in snapshot mode
391	 * so that the worst case is half a buffer of records, as
392	 * opposed to a single record.
393	 */
394	if (head < limit >> 1)
395		limit >>= 1;
396
397	/*
398	 * If we're within max_record_sz of the limit, we must
399	 * pad, move the head index and recompute the limit.
400	 */
401	if (limit - head < spe_pmu->max_record_sz) {
402		arm_spe_pmu_pad_buf(handle, limit - head);
403		handle->head = PERF_IDX2OFF(limit, buf);
404		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
405	}
406
407	return limit;
408}
409
410static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
411{
412	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
413	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
414	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
415	u64 limit = bufsize;
416	u64 head, tail, wakeup;
417
418	/*
419	 * The head can be misaligned for two reasons:
420	 *
421	 * 1. The hardware left PMBPTR pointing to the first byte after
422	 *    a record when generating a buffer management event.
423	 *
424	 * 2. We used perf_aux_output_skip to consume handle->size bytes
425	 *    and CIRC_SPACE was used to compute the size, which always
426	 *    leaves one entry free.
427	 *
428	 * Deal with this by padding to the next alignment boundary and
429	 * moving the head index. If we run out of buffer space, we'll
430	 * reduce handle->size to zero and end up reporting truncation.
431	 */
432	head = PERF_IDX2OFF(handle->head, buf);
433	if (!IS_ALIGNED(head, spe_pmu->align)) {
434		unsigned long delta = roundup(head, spe_pmu->align) - head;
435
436		delta = min(delta, handle->size);
437		arm_spe_pmu_pad_buf(handle, delta);
438		head = PERF_IDX2OFF(handle->head, buf);
439	}
440
441	/* If we've run out of free space, then nothing more to do */
442	if (!handle->size)
443		goto no_space;
444
445	/* Compute the tail and wakeup indices now that we've aligned head */
446	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
447	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
448
449	/*
450	 * Avoid clobbering unconsumed data. We know we have space, so
451	 * if we see head == tail we know that the buffer is empty. If
452	 * head > tail, then there's nothing to clobber prior to
453	 * wrapping.
454	 */
455	if (head < tail)
456		limit = round_down(tail, PAGE_SIZE);
457
458	/*
459	 * Wakeup may be arbitrarily far into the future. If it's not in
460	 * the current generation, either we'll wrap before hitting it,
461	 * or it's in the past and has been handled already.
462	 *
463	 * If there's a wakeup before we wrap, arrange to be woken up by
464	 * the page boundary following it. Keep the tail boundary if
465	 * that's lower.
466	 */
467	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
468		limit = min(limit, round_up(wakeup, PAGE_SIZE));
469
470	if (limit > head)
471		return limit;
472
473	arm_spe_pmu_pad_buf(handle, handle->size);
474no_space:
475	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
476	perf_aux_output_end(handle, 0);
477	return 0;
478}
479
480static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
481{
482	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
483	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
484	u64 limit = __arm_spe_pmu_next_off(handle);
485	u64 head = PERF_IDX2OFF(handle->head, buf);
486
487	/*
488	 * If the head has come too close to the end of the buffer,
489	 * then pad to the end and recompute the limit.
490	 */
491	if (limit && (limit - head < spe_pmu->max_record_sz)) {
492		arm_spe_pmu_pad_buf(handle, limit - head);
493		limit = __arm_spe_pmu_next_off(handle);
494	}
495
496	return limit;
497}
498
499static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
500					  struct perf_event *event)
501{
502	u64 base, limit;
503	struct arm_spe_pmu_buf *buf;
504
505	/* Start a new aux session */
506	buf = perf_aux_output_begin(handle, event);
507	if (!buf) {
508		event->hw.state |= PERF_HES_STOPPED;
509		/*
510		 * We still need to clear the limit pointer, since the
511		 * profiler might only be disabled by virtue of a fault.
512		 */
513		limit = 0;
514		goto out_write_limit;
515	}
516
517	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
518			      : arm_spe_pmu_next_off(handle);
519	if (limit)
520		limit |= PMBLIMITR_EL1_E;
521
522	limit += (u64)buf->base;
523	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
524	write_sysreg_s(base, SYS_PMBPTR_EL1);
525
526out_write_limit:
527	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
528}
529
530static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
531{
532	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
533	u64 offset, size;
534
535	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
536	size = offset - PERF_IDX2OFF(handle->head, buf);
537
538	if (buf->snapshot)
539		handle->head = offset;
540
541	perf_aux_output_end(handle, size);
542}
543
544static void arm_spe_pmu_disable_and_drain_local(void)
545{
546	/* Disable profiling at EL0 and EL1 */
547	write_sysreg_s(0, SYS_PMSCR_EL1);
548	isb();
549
550	/* Drain any buffered data */
551	psb_csync();
552	dsb(nsh);
553
554	/* Disable the profiling buffer */
555	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
556	isb();
557}
558
559/* IRQ handling */
560static enum arm_spe_pmu_buf_fault_action
561arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
562{
563	const char *err_str;
564	u64 pmbsr;
565	enum arm_spe_pmu_buf_fault_action ret;
566
567	/*
568	 * Ensure new profiling data is visible to the CPU and any external
569	 * aborts have been resolved.
570	 */
571	psb_csync();
572	dsb(nsh);
573
574	/* Ensure hardware updates to PMBPTR_EL1 are visible */
575	isb();
576
577	/* Service required? */
578	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
579	if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
580		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
581
582	/*
583	 * If we've lost data, disable profiling and also set the PARTIAL
584	 * flag to indicate that the last record is corrupted.
585	 */
586	if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
587		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
588					     PERF_AUX_FLAG_PARTIAL);
589
590	/* Report collisions to userspace so that it can up the period */
591	if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
592		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
593
594	/* We only expect buffer management events */
595	switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
596	case PMBSR_EL1_EC_BUF:
597		/* Handled below */
598		break;
599	case PMBSR_EL1_EC_FAULT_S1:
600	case PMBSR_EL1_EC_FAULT_S2:
601		err_str = "Unexpected buffer fault";
602		goto out_err;
603	default:
604		err_str = "Unknown error code";
605		goto out_err;
606	}
607
608	/* Buffer management event */
609	switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
610	case PMBSR_EL1_BUF_BSC_FULL:
611		ret = SPE_PMU_BUF_FAULT_ACT_OK;
612		goto out_stop;
613	default:
614		err_str = "Unknown buffer status code";
615	}
616
617out_err:
618	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
619			   err_str, smp_processor_id(), pmbsr,
620			   read_sysreg_s(SYS_PMBPTR_EL1),
621			   read_sysreg_s(SYS_PMBLIMITR_EL1));
622	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
623
624out_stop:
625	arm_spe_perf_aux_output_end(handle);
626	return ret;
627}
628
629static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
630{
631	struct perf_output_handle *handle = dev;
632	struct perf_event *event = handle->event;
633	enum arm_spe_pmu_buf_fault_action act;
634
635	if (!perf_get_aux(handle))
636		return IRQ_NONE;
637
638	act = arm_spe_pmu_buf_get_fault_act(handle);
639	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
640		return IRQ_NONE;
641
642	/*
643	 * Ensure perf callbacks have completed, which may disable the
644	 * profiling buffer in response to a TRUNCATION flag.
645	 */
646	irq_work_run();
647
648	switch (act) {
649	case SPE_PMU_BUF_FAULT_ACT_FATAL:
650		/*
651		 * If a fatal exception occurred then leaving the profiling
652		 * buffer enabled is a recipe waiting to happen. Since
653		 * fatal faults don't always imply truncation, make sure
654		 * that the profiling buffer is disabled explicitly before
655		 * clearing the syndrome register.
656		 */
657		arm_spe_pmu_disable_and_drain_local();
658		break;
659	case SPE_PMU_BUF_FAULT_ACT_OK:
660		/*
661		 * We handled the fault (the buffer was full), so resume
662		 * profiling as long as we didn't detect truncation.
663		 * PMBPTR might be misaligned, but we'll burn that bridge
664		 * when we get to it.
665		 */
666		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
667			arm_spe_perf_aux_output_begin(handle, event);
668			isb();
669		}
670		break;
671	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
672		/* We've seen you before, but GCC has the memory of a sieve. */
673		break;
674	}
675
676	/* The buffer pointers are now sane, so resume profiling. */
677	write_sysreg_s(0, SYS_PMBSR_EL1);
678	return IRQ_HANDLED;
679}
680
681static u64 arm_spe_pmsevfr_res0(u16 pmsver)
682{
683	switch (pmsver) {
684	case ID_AA64DFR0_EL1_PMSVer_IMP:
685		return PMSEVFR_EL1_RES0_IMP;
686	case ID_AA64DFR0_EL1_PMSVer_V1P1:
687		return PMSEVFR_EL1_RES0_V1P1;
688	case ID_AA64DFR0_EL1_PMSVer_V1P2:
689	/* Return the highest version we support in default */
690	default:
691		return PMSEVFR_EL1_RES0_V1P2;
692	}
693}
694
695/* Perf callbacks */
696static int arm_spe_pmu_event_init(struct perf_event *event)
697{
698	u64 reg;
699	struct perf_event_attr *attr = &event->attr;
700	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
701
702	/* This is, of course, deeply driver-specific */
703	if (attr->type != event->pmu->type)
704		return -ENOENT;
705
706	if (event->cpu >= 0 &&
707	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
708		return -ENOENT;
709
710	if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
711		return -EOPNOTSUPP;
712
713	if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
714		return -EOPNOTSUPP;
715
716	if (attr->exclude_idle)
717		return -EOPNOTSUPP;
718
719	/*
720	 * Feedback-directed frequency throttling doesn't work when we
721	 * have a buffer of samples. We'd need to manually count the
722	 * samples in the buffer when it fills up and adjust the event
723	 * count to reflect that. Instead, just force the user to specify
724	 * a sample period.
725	 */
726	if (attr->freq)
727		return -EINVAL;
728
729	reg = arm_spe_event_to_pmsfcr(event);
730	if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
731	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
732		return -EOPNOTSUPP;
733
734	if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
735	    !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
736		return -EOPNOTSUPP;
737
738	if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
739	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
740		return -EOPNOTSUPP;
741
742	if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
743	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
744		return -EOPNOTSUPP;
745
746	set_spe_event_has_cx(event);
747	reg = arm_spe_event_to_pmscr(event);
748	if (!perfmon_capable() &&
749	    (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)))
750		return -EACCES;
751
752	return 0;
753}
754
755static void arm_spe_pmu_start(struct perf_event *event, int flags)
756{
757	u64 reg;
758	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
759	struct hw_perf_event *hwc = &event->hw;
760	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
761
762	hwc->state = 0;
763	arm_spe_perf_aux_output_begin(handle, event);
764	if (hwc->state)
765		return;
766
767	reg = arm_spe_event_to_pmsfcr(event);
768	write_sysreg_s(reg, SYS_PMSFCR_EL1);
769
770	reg = arm_spe_event_to_pmsevfr(event);
771	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
772
773	if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
774		reg = arm_spe_event_to_pmsnevfr(event);
775		write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
776	}
777
778	reg = arm_spe_event_to_pmslatfr(event);
779	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
780
781	if (flags & PERF_EF_RELOAD) {
782		reg = arm_spe_event_to_pmsirr(event);
783		write_sysreg_s(reg, SYS_PMSIRR_EL1);
784		isb();
785		reg = local64_read(&hwc->period_left);
786		write_sysreg_s(reg, SYS_PMSICR_EL1);
787	}
788
789	reg = arm_spe_event_to_pmscr(event);
790	isb();
791	write_sysreg_s(reg, SYS_PMSCR_EL1);
792}
793
794static void arm_spe_pmu_stop(struct perf_event *event, int flags)
795{
796	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
797	struct hw_perf_event *hwc = &event->hw;
798	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
799
800	/* If we're already stopped, then nothing to do */
801	if (hwc->state & PERF_HES_STOPPED)
802		return;
803
804	/* Stop all trace generation */
805	arm_spe_pmu_disable_and_drain_local();
806
807	if (flags & PERF_EF_UPDATE) {
808		/*
809		 * If there's a fault pending then ensure we contain it
810		 * to this buffer, since we might be on the context-switch
811		 * path.
812		 */
813		if (perf_get_aux(handle)) {
814			enum arm_spe_pmu_buf_fault_action act;
815
816			act = arm_spe_pmu_buf_get_fault_act(handle);
817			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
818				arm_spe_perf_aux_output_end(handle);
819			else
820				write_sysreg_s(0, SYS_PMBSR_EL1);
821		}
822
823		/*
824		 * This may also contain ECOUNT, but nobody else should
825		 * be looking at period_left, since we forbid frequency
826		 * based sampling.
827		 */
828		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
829		hwc->state |= PERF_HES_UPTODATE;
830	}
831
832	hwc->state |= PERF_HES_STOPPED;
833}
834
835static int arm_spe_pmu_add(struct perf_event *event, int flags)
836{
837	int ret = 0;
838	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
839	struct hw_perf_event *hwc = &event->hw;
840	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
841
842	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
843		return -ENOENT;
844
845	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
846
847	if (flags & PERF_EF_START) {
848		arm_spe_pmu_start(event, PERF_EF_RELOAD);
849		if (hwc->state & PERF_HES_STOPPED)
850			ret = -EINVAL;
851	}
852
853	return ret;
854}
855
856static void arm_spe_pmu_del(struct perf_event *event, int flags)
857{
858	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
859}
860
861static void arm_spe_pmu_read(struct perf_event *event)
862{
863}
864
865static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
866				   int nr_pages, bool snapshot)
867{
868	int i, cpu = event->cpu;
869	struct page **pglist;
870	struct arm_spe_pmu_buf *buf;
871
872	/* We need at least two pages for this to work. */
873	if (nr_pages < 2)
874		return NULL;
875
876	/*
877	 * We require an even number of pages for snapshot mode, so that
878	 * we can effectively treat the buffer as consisting of two equal
879	 * parts and give userspace a fighting chance of getting some
880	 * useful data out of it.
881	 */
882	if (snapshot && (nr_pages & 1))
883		return NULL;
884
885	if (cpu == -1)
886		cpu = raw_smp_processor_id();
887
888	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
889	if (!buf)
890		return NULL;
891
892	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
893	if (!pglist)
894		goto out_free_buf;
895
896	for (i = 0; i < nr_pages; ++i)
897		pglist[i] = virt_to_page(pages[i]);
898
899	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
900	if (!buf->base)
901		goto out_free_pglist;
902
903	buf->nr_pages	= nr_pages;
904	buf->snapshot	= snapshot;
905
906	kfree(pglist);
907	return buf;
908
909out_free_pglist:
910	kfree(pglist);
911out_free_buf:
912	kfree(buf);
913	return NULL;
914}
915
916static void arm_spe_pmu_free_aux(void *aux)
917{
918	struct arm_spe_pmu_buf *buf = aux;
919
920	vunmap(buf->base);
921	kfree(buf);
922}
923
924/* Initialisation and teardown functions */
925static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
926{
927	static atomic_t pmu_idx = ATOMIC_INIT(-1);
928
929	int idx;
930	char *name;
931	struct device *dev = &spe_pmu->pdev->dev;
932
933	spe_pmu->pmu = (struct pmu) {
934		.module = THIS_MODULE,
935		.parent		= &spe_pmu->pdev->dev,
936		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
937		.attr_groups	= arm_spe_pmu_attr_groups,
938		/*
939		 * We hitch a ride on the software context here, so that
940		 * we can support per-task profiling (which is not possible
941		 * with the invalid context as it doesn't get sched callbacks).
942		 * This requires that userspace either uses a dummy event for
943		 * perf_event_open, since the aux buffer is not setup until
944		 * a subsequent mmap, or creates the profiling event in a
945		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
946		 * once the buffer has been created.
947		 */
948		.task_ctx_nr	= perf_sw_context,
949		.event_init	= arm_spe_pmu_event_init,
950		.add		= arm_spe_pmu_add,
951		.del		= arm_spe_pmu_del,
952		.start		= arm_spe_pmu_start,
953		.stop		= arm_spe_pmu_stop,
954		.read		= arm_spe_pmu_read,
955		.setup_aux	= arm_spe_pmu_setup_aux,
956		.free_aux	= arm_spe_pmu_free_aux,
957	};
958
959	idx = atomic_inc_return(&pmu_idx);
960	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
961	if (!name) {
962		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
963		return -ENOMEM;
964	}
965
966	return perf_pmu_register(&spe_pmu->pmu, name, -1);
967}
968
969static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
970{
971	perf_pmu_unregister(&spe_pmu->pmu);
972}
973
974static void __arm_spe_pmu_dev_probe(void *info)
975{
976	int fld;
977	u64 reg;
978	struct arm_spe_pmu *spe_pmu = info;
979	struct device *dev = &spe_pmu->pdev->dev;
980
981	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
982						   ID_AA64DFR0_EL1_PMSVer_SHIFT);
983	if (!fld) {
984		dev_err(dev,
985			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
986			fld, smp_processor_id());
987		return;
988	}
989	spe_pmu->pmsver = (u16)fld;
990
991	/* Read PMBIDR first to determine whether or not we have access */
992	reg = read_sysreg_s(SYS_PMBIDR_EL1);
993	if (FIELD_GET(PMBIDR_EL1_P, reg)) {
994		dev_err(dev,
995			"profiling buffer owned by higher exception level\n");
996		return;
997	}
998
999	/* Minimum alignment. If it's out-of-range, then fail the probe */
1000	fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1001	spe_pmu->align = 1 << fld;
1002	if (spe_pmu->align > SZ_2K) {
1003		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1004			fld, smp_processor_id());
1005		return;
1006	}
1007
1008	/* It's now safe to read PMSIDR and figure out what we've got */
1009	reg = read_sysreg_s(SYS_PMSIDR_EL1);
1010	if (FIELD_GET(PMSIDR_EL1_FE, reg))
1011		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1012
1013	if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1014		spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1015
1016	if (FIELD_GET(PMSIDR_EL1_FT, reg))
1017		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1018
1019	if (FIELD_GET(PMSIDR_EL1_FL, reg))
1020		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1021
1022	if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1023		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1024
1025	if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1026		spe_pmu->features |= SPE_PMU_FEAT_LDS;
1027
1028	if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1029		spe_pmu->features |= SPE_PMU_FEAT_ERND;
1030
1031	/* This field has a spaced out encoding, so just use a look-up */
1032	fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1033	switch (fld) {
1034	case PMSIDR_EL1_INTERVAL_256:
1035		spe_pmu->min_period = 256;
1036		break;
1037	case PMSIDR_EL1_INTERVAL_512:
1038		spe_pmu->min_period = 512;
1039		break;
1040	case PMSIDR_EL1_INTERVAL_768:
1041		spe_pmu->min_period = 768;
1042		break;
1043	case PMSIDR_EL1_INTERVAL_1024:
1044		spe_pmu->min_period = 1024;
1045		break;
1046	case PMSIDR_EL1_INTERVAL_1536:
1047		spe_pmu->min_period = 1536;
1048		break;
1049	case PMSIDR_EL1_INTERVAL_2048:
1050		spe_pmu->min_period = 2048;
1051		break;
1052	case PMSIDR_EL1_INTERVAL_3072:
1053		spe_pmu->min_period = 3072;
1054		break;
1055	default:
1056		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1057			 fld);
1058		fallthrough;
1059	case PMSIDR_EL1_INTERVAL_4096:
1060		spe_pmu->min_period = 4096;
1061	}
1062
1063	/* Maximum record size. If it's out-of-range, then fail the probe */
1064	fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1065	spe_pmu->max_record_sz = 1 << fld;
1066	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1067		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1068			fld, smp_processor_id());
1069		return;
1070	}
1071
1072	fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1073	switch (fld) {
1074	default:
1075		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1076			 fld);
1077		fallthrough;
1078	case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1079		spe_pmu->counter_sz = 12;
1080		break;
1081	case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1082		spe_pmu->counter_sz = 16;
1083	}
1084
1085	dev_info(dev,
1086		 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1087		 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1088		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1089
1090	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1091}
1092
1093static void __arm_spe_pmu_reset_local(void)
1094{
1095	/*
1096	 * This is probably overkill, as we have no idea where we're
1097	 * draining any buffered data to...
1098	 */
1099	arm_spe_pmu_disable_and_drain_local();
1100
1101	/* Reset the buffer base pointer */
1102	write_sysreg_s(0, SYS_PMBPTR_EL1);
1103	isb();
1104
1105	/* Clear any pending management interrupts */
1106	write_sysreg_s(0, SYS_PMBSR_EL1);
1107	isb();
1108}
1109
1110static void __arm_spe_pmu_setup_one(void *info)
1111{
1112	struct arm_spe_pmu *spe_pmu = info;
1113
1114	__arm_spe_pmu_reset_local();
1115	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1116}
1117
1118static void __arm_spe_pmu_stop_one(void *info)
1119{
1120	struct arm_spe_pmu *spe_pmu = info;
1121
1122	disable_percpu_irq(spe_pmu->irq);
1123	__arm_spe_pmu_reset_local();
1124}
1125
1126static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1127{
1128	struct arm_spe_pmu *spe_pmu;
1129
1130	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1131	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1132		return 0;
1133
1134	__arm_spe_pmu_setup_one(spe_pmu);
1135	return 0;
1136}
1137
1138static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1139{
1140	struct arm_spe_pmu *spe_pmu;
1141
1142	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1143	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1144		return 0;
1145
1146	__arm_spe_pmu_stop_one(spe_pmu);
1147	return 0;
1148}
1149
1150static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1151{
1152	int ret;
1153	cpumask_t *mask = &spe_pmu->supported_cpus;
1154
1155	/* Make sure we probe the hardware on a relevant CPU */
1156	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1157	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1158		return -ENXIO;
1159
1160	/* Request our PPIs (note that the IRQ is still disabled) */
1161	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1162				 spe_pmu->handle);
1163	if (ret)
1164		return ret;
1165
1166	/*
1167	 * Register our hotplug notifier now so we don't miss any events.
1168	 * This will enable the IRQ for any supported CPUs that are already
1169	 * up.
1170	 */
1171	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1172				       &spe_pmu->hotplug_node);
1173	if (ret)
1174		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1175
1176	return ret;
1177}
1178
1179static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1180{
1181	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1182	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1183}
1184
1185/* Driver and device probing */
1186static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1187{
1188	struct platform_device *pdev = spe_pmu->pdev;
1189	int irq = platform_get_irq(pdev, 0);
1190
1191	if (irq < 0)
1192		return -ENXIO;
1193
1194	if (!irq_is_percpu(irq)) {
1195		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1196		return -EINVAL;
1197	}
1198
1199	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1200		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1201		return -EINVAL;
1202	}
1203
1204	spe_pmu->irq = irq;
1205	return 0;
1206}
1207
1208static const struct of_device_id arm_spe_pmu_of_match[] = {
1209	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1210	{ /* Sentinel */ },
1211};
1212MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1213
1214static const struct platform_device_id arm_spe_match[] = {
1215	{ ARMV8_SPE_PDEV_NAME, 0},
1216	{ }
1217};
1218MODULE_DEVICE_TABLE(platform, arm_spe_match);
1219
1220static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1221{
1222	int ret;
1223	struct arm_spe_pmu *spe_pmu;
1224	struct device *dev = &pdev->dev;
1225
1226	/*
1227	 * If kernelspace is unmapped when running at EL0, then the SPE
1228	 * buffer will fault and prematurely terminate the AUX session.
1229	 */
1230	if (arm64_kernel_unmapped_at_el0()) {
1231		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1232		return -EPERM;
1233	}
1234
1235	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1236	if (!spe_pmu)
1237		return -ENOMEM;
1238
1239	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1240	if (!spe_pmu->handle)
1241		return -ENOMEM;
1242
1243	spe_pmu->pdev = pdev;
1244	platform_set_drvdata(pdev, spe_pmu);
1245
1246	ret = arm_spe_pmu_irq_probe(spe_pmu);
1247	if (ret)
1248		goto out_free_handle;
1249
1250	ret = arm_spe_pmu_dev_init(spe_pmu);
1251	if (ret)
1252		goto out_free_handle;
1253
1254	ret = arm_spe_pmu_perf_init(spe_pmu);
1255	if (ret)
1256		goto out_teardown_dev;
1257
1258	return 0;
1259
1260out_teardown_dev:
1261	arm_spe_pmu_dev_teardown(spe_pmu);
1262out_free_handle:
1263	free_percpu(spe_pmu->handle);
1264	return ret;
1265}
1266
1267static void arm_spe_pmu_device_remove(struct platform_device *pdev)
1268{
1269	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1270
1271	arm_spe_pmu_perf_destroy(spe_pmu);
1272	arm_spe_pmu_dev_teardown(spe_pmu);
1273	free_percpu(spe_pmu->handle);
1274}
1275
1276static struct platform_driver arm_spe_pmu_driver = {
1277	.id_table = arm_spe_match,
1278	.driver	= {
1279		.name		= DRVNAME,
1280		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1281		.suppress_bind_attrs = true,
1282	},
1283	.probe	= arm_spe_pmu_device_probe,
1284	.remove_new = arm_spe_pmu_device_remove,
1285};
1286
1287static int __init arm_spe_pmu_init(void)
1288{
1289	int ret;
1290
1291	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1292				      arm_spe_pmu_cpu_startup,
1293				      arm_spe_pmu_cpu_teardown);
1294	if (ret < 0)
1295		return ret;
1296	arm_spe_pmu_online = ret;
1297
1298	ret = platform_driver_register(&arm_spe_pmu_driver);
1299	if (ret)
1300		cpuhp_remove_multi_state(arm_spe_pmu_online);
1301
1302	return ret;
1303}
1304
1305static void __exit arm_spe_pmu_exit(void)
1306{
1307	platform_driver_unregister(&arm_spe_pmu_driver);
1308	cpuhp_remove_multi_state(arm_spe_pmu_online);
1309}
1310
1311module_init(arm_spe_pmu_init);
1312module_exit(arm_spe_pmu_exit);
1313
1314MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1315MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1316MODULE_LICENSE("GPL v2");
1317