1// SPDX-License-Identifier: GPL-2.0
2// CCI Cache Coherent Interconnect PMU driver
3// Copyright (C) 2013-2018 Arm Ltd.
4// Author: Punit Agrawal <punit.agrawal@arm.com>, Suzuki Poulose <suzuki.poulose@arm.com>
5
6#include <linux/arm-cci.h>
7#include <linux/io.h>
8#include <linux/interrupt.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/perf_event.h>
12#include <linux/platform_device.h>
13#include <linux/slab.h>
14#include <linux/spinlock.h>
15
16#define DRIVER_NAME		"ARM-CCI PMU"
17
18#define CCI_PMCR		0x0100
19#define CCI_PID2		0x0fe8
20
21#define CCI_PMCR_CEN		0x00000001
22#define CCI_PMCR_NCNT_MASK	0x0000f800
23#define CCI_PMCR_NCNT_SHIFT	11
24
25#define CCI_PID2_REV_MASK	0xf0
26#define CCI_PID2_REV_SHIFT	4
27
28#define CCI_PMU_EVT_SEL		0x000
29#define CCI_PMU_CNTR		0x004
30#define CCI_PMU_CNTR_CTRL	0x008
31#define CCI_PMU_OVRFLW		0x00c
32
33#define CCI_PMU_OVRFLW_FLAG	1
34
35#define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
36#define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
37#define CCI_PMU_CNTR_MASK		((1ULL << 32) - 1)
38#define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
39
40#define CCI_PMU_MAX_HW_CNTRS(model) \
41	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
42
43/* Types of interfaces that can generate events */
44enum {
45	CCI_IF_SLAVE,
46	CCI_IF_MASTER,
47#ifdef CONFIG_ARM_CCI5xx_PMU
48	CCI_IF_GLOBAL,
49#endif
50	CCI_IF_MAX,
51};
52
53#define NUM_HW_CNTRS_CII_4XX	4
54#define NUM_HW_CNTRS_CII_5XX	8
55#define NUM_HW_CNTRS_MAX	NUM_HW_CNTRS_CII_5XX
56
57#define FIXED_HW_CNTRS_CII_4XX	1
58#define FIXED_HW_CNTRS_CII_5XX	0
59#define FIXED_HW_CNTRS_MAX	FIXED_HW_CNTRS_CII_4XX
60
61#define HW_CNTRS_MAX		(NUM_HW_CNTRS_MAX + FIXED_HW_CNTRS_MAX)
62
63struct event_range {
64	u32 min;
65	u32 max;
66};
67
68struct cci_pmu_hw_events {
69	struct perf_event **events;
70	unsigned long *used_mask;
71	raw_spinlock_t pmu_lock;
72};
73
74struct cci_pmu;
75/*
76 * struct cci_pmu_model:
77 * @fixed_hw_cntrs - Number of fixed event counters
78 * @num_hw_cntrs - Maximum number of programmable event counters
79 * @cntr_size - Size of an event counter mapping
80 */
81struct cci_pmu_model {
82	char *name;
83	u32 fixed_hw_cntrs;
84	u32 num_hw_cntrs;
85	u32 cntr_size;
86	struct attribute **format_attrs;
87	struct attribute **event_attrs;
88	struct event_range event_ranges[CCI_IF_MAX];
89	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
90	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
91	void (*write_counters)(struct cci_pmu *, unsigned long *);
92};
93
94static struct cci_pmu_model cci_pmu_models[];
95
96struct cci_pmu {
97	void __iomem *base;
98	void __iomem *ctrl_base;
99	struct pmu pmu;
100	int cpu;
101	int nr_irqs;
102	int *irqs;
103	unsigned long active_irqs;
104	const struct cci_pmu_model *model;
105	struct cci_pmu_hw_events hw_events;
106	struct platform_device *plat_device;
107	int num_cntrs;
108	atomic_t active_events;
109	struct mutex reserve_mutex;
110};
111
112#define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
113
114static struct cci_pmu *g_cci_pmu;
115
116enum cci_models {
117#ifdef CONFIG_ARM_CCI400_PMU
118	CCI400_R0,
119	CCI400_R1,
120#endif
121#ifdef CONFIG_ARM_CCI5xx_PMU
122	CCI500_R0,
123	CCI550_R0,
124#endif
125	CCI_MODEL_MAX
126};
127
128static void pmu_write_counters(struct cci_pmu *cci_pmu,
129				 unsigned long *mask);
130static ssize_t __maybe_unused cci_pmu_event_show(struct device *dev,
131			struct device_attribute *attr, char *buf);
132
133#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) 				\
134	&((struct dev_ext_attribute[]) {					\
135		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }	\
136	})[0].attr.attr
137
138#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
139	CCI_EXT_ATTR_ENTRY(_name, device_show_string, _config)
140#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
141	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
142
143/* CCI400 PMU Specific definitions */
144
145#ifdef CONFIG_ARM_CCI400_PMU
146
147/* Port ids */
148#define CCI400_PORT_S0		0
149#define CCI400_PORT_S1		1
150#define CCI400_PORT_S2		2
151#define CCI400_PORT_S3		3
152#define CCI400_PORT_S4		4
153#define CCI400_PORT_M0		5
154#define CCI400_PORT_M1		6
155#define CCI400_PORT_M2		7
156
157#define CCI400_R1_PX		5
158
159/*
160 * Instead of an event id to monitor CCI cycles, a dedicated counter is
161 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
162 * make use of this event in hardware.
163 */
164enum cci400_perf_events {
165	CCI400_PMU_CYCLES = 0xff
166};
167
168#define CCI400_PMU_CYCLE_CNTR_IDX	0
169#define CCI400_PMU_CNTR0_IDX		1
170
171/*
172 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
173 * ports and bits 4:0 are event codes. There are different event codes
174 * associated with each port type.
175 *
176 * Additionally, the range of events associated with the port types changed
177 * between Rev0 and Rev1.
178 *
179 * The constants below define the range of valid codes for each port type for
180 * the different revisions and are used to validate the event to be monitored.
181 */
182
183#define CCI400_PMU_EVENT_MASK		0xffUL
184#define CCI400_PMU_EVENT_SOURCE_SHIFT	5
185#define CCI400_PMU_EVENT_SOURCE_MASK	0x7
186#define CCI400_PMU_EVENT_CODE_SHIFT	0
187#define CCI400_PMU_EVENT_CODE_MASK	0x1f
188#define CCI400_PMU_EVENT_SOURCE(event) \
189	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
190			CCI400_PMU_EVENT_SOURCE_MASK)
191#define CCI400_PMU_EVENT_CODE(event) \
192	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
193
194#define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
195#define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
196#define CCI400_R0_MASTER_PORT_MIN_EV	0x14
197#define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
198
199#define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
200#define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
201#define CCI400_R1_MASTER_PORT_MIN_EV	0x00
202#define CCI400_R1_MASTER_PORT_MAX_EV	0x11
203
204#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
205	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
206					(unsigned long)_config)
207
208static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
209			struct device_attribute *attr, char *buf);
210
211static struct attribute *cci400_pmu_format_attrs[] = {
212	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
213	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
214	NULL
215};
216
217static struct attribute *cci400_r0_pmu_event_attrs[] = {
218	/* Slave events */
219	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
220	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
221	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
222	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
223	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
224	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
225	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
226	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
227	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
228	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
229	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
230	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
231	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
232	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
233	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
234	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
235	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
236	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
237	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
238	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
239	/* Master events */
240	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
241	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
242	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
243	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
244	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
245	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
246	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
247	/* Special event for cycles counter */
248	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
249	NULL
250};
251
252static struct attribute *cci400_r1_pmu_event_attrs[] = {
253	/* Slave events */
254	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
255	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
256	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
257	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
258	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
259	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
260	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
261	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
262	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
263	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
264	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
265	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
266	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
267	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
268	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
269	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
270	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
271	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
272	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
273	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
274	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
275	/* Master events */
276	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
277	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
278	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
279	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
280	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
281	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
282	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
283	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
284	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
285	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
286	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
287	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
288	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
289	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
290	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
291	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
292	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
293	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
294	/* Special event for cycles counter */
295	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
296	NULL
297};
298
299static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
300			struct device_attribute *attr, char *buf)
301{
302	struct dev_ext_attribute *eattr = container_of(attr,
303				struct dev_ext_attribute, attr);
304	return sysfs_emit(buf, "config=0x%lx\n", (unsigned long)eattr->var);
305}
306
307static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
308				struct cci_pmu_hw_events *hw,
309				unsigned long cci_event)
310{
311	int idx;
312
313	/* cycles event idx is fixed */
314	if (cci_event == CCI400_PMU_CYCLES) {
315		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
316			return -EAGAIN;
317
318		return CCI400_PMU_CYCLE_CNTR_IDX;
319	}
320
321	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
322		if (!test_and_set_bit(idx, hw->used_mask))
323			return idx;
324
325	/* No counters available */
326	return -EAGAIN;
327}
328
329static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
330{
331	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
332	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
333	int if_type;
334
335	if (hw_event & ~CCI400_PMU_EVENT_MASK)
336		return -ENOENT;
337
338	if (hw_event == CCI400_PMU_CYCLES)
339		return hw_event;
340
341	switch (ev_source) {
342	case CCI400_PORT_S0:
343	case CCI400_PORT_S1:
344	case CCI400_PORT_S2:
345	case CCI400_PORT_S3:
346	case CCI400_PORT_S4:
347		/* Slave Interface */
348		if_type = CCI_IF_SLAVE;
349		break;
350	case CCI400_PORT_M0:
351	case CCI400_PORT_M1:
352	case CCI400_PORT_M2:
353		/* Master Interface */
354		if_type = CCI_IF_MASTER;
355		break;
356	default:
357		return -ENOENT;
358	}
359
360	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
361		ev_code <= cci_pmu->model->event_ranges[if_type].max)
362		return hw_event;
363
364	return -ENOENT;
365}
366
367static int probe_cci400_revision(struct cci_pmu *cci_pmu)
368{
369	int rev;
370	rev = readl_relaxed(cci_pmu->ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
371	rev >>= CCI_PID2_REV_SHIFT;
372
373	if (rev < CCI400_R1_PX)
374		return CCI400_R0;
375	else
376		return CCI400_R1;
377}
378
379static const struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
380{
381	if (platform_has_secure_cci_access())
382		return &cci_pmu_models[probe_cci400_revision(cci_pmu)];
383	return NULL;
384}
385#else	/* !CONFIG_ARM_CCI400_PMU */
386static inline struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
387{
388	return NULL;
389}
390#endif	/* CONFIG_ARM_CCI400_PMU */
391
392#ifdef CONFIG_ARM_CCI5xx_PMU
393
394/*
395 * CCI5xx PMU event id is an 9-bit value made of two parts.
396 *	 bits [8:5] - Source for the event
397 *	 bits [4:0] - Event code (specific to type of interface)
398 *
399 *
400 */
401
402/* Port ids */
403#define CCI5xx_PORT_S0			0x0
404#define CCI5xx_PORT_S1			0x1
405#define CCI5xx_PORT_S2			0x2
406#define CCI5xx_PORT_S3			0x3
407#define CCI5xx_PORT_S4			0x4
408#define CCI5xx_PORT_S5			0x5
409#define CCI5xx_PORT_S6			0x6
410
411#define CCI5xx_PORT_M0			0x8
412#define CCI5xx_PORT_M1			0x9
413#define CCI5xx_PORT_M2			0xa
414#define CCI5xx_PORT_M3			0xb
415#define CCI5xx_PORT_M4			0xc
416#define CCI5xx_PORT_M5			0xd
417#define CCI5xx_PORT_M6			0xe
418
419#define CCI5xx_PORT_GLOBAL		0xf
420
421#define CCI5xx_PMU_EVENT_MASK		0x1ffUL
422#define CCI5xx_PMU_EVENT_SOURCE_SHIFT	0x5
423#define CCI5xx_PMU_EVENT_SOURCE_MASK	0xf
424#define CCI5xx_PMU_EVENT_CODE_SHIFT	0x0
425#define CCI5xx_PMU_EVENT_CODE_MASK	0x1f
426
427#define CCI5xx_PMU_EVENT_SOURCE(event)	\
428	((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
429#define CCI5xx_PMU_EVENT_CODE(event)	\
430	((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
431
432#define CCI5xx_SLAVE_PORT_MIN_EV	0x00
433#define CCI5xx_SLAVE_PORT_MAX_EV	0x1f
434#define CCI5xx_MASTER_PORT_MIN_EV	0x00
435#define CCI5xx_MASTER_PORT_MAX_EV	0x06
436#define CCI5xx_GLOBAL_PORT_MIN_EV	0x00
437#define CCI5xx_GLOBAL_PORT_MAX_EV	0x0f
438
439
440#define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
441	CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
442					(unsigned long) _config)
443
444static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
445				struct device_attribute *attr, char *buf);
446
447static struct attribute *cci5xx_pmu_format_attrs[] = {
448	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
449	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
450	NULL,
451};
452
453static struct attribute *cci5xx_pmu_event_attrs[] = {
454	/* Slave events */
455	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
456	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
457	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
458	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
459	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
460	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
461	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
462	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
463	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
464	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
465	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
466	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
467	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
468	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
469	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
470	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
471	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
472	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
473	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
474	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
475	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
476	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
477	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
478	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
479	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
480	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
481	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
482	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
483	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
484	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
485	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
486	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
487
488	/* Master events */
489	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
490	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
491	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
492	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
493	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
494	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
495	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
496
497	/* Global events */
498	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
499	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
500	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
501	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
502	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
503	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
504	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
505	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
506	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
507	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
508	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
509	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
510	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
511	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
512	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
513	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
514	NULL
515};
516
517static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
518				struct device_attribute *attr, char *buf)
519{
520	struct dev_ext_attribute *eattr = container_of(attr,
521					struct dev_ext_attribute, attr);
522	/* Global events have single fixed source code */
523	return sysfs_emit(buf, "event=0x%lx,source=0x%x\n",
524			  (unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
525}
526
527/*
528 * CCI500 provides 8 independent event counters that can count
529 * any of the events available.
530 * CCI500 PMU event source ids
531 *	0x0-0x6 - Slave interfaces
532 *	0x8-0xD - Master interfaces
533 *	0xf     - Global Events
534 *	0x7,0xe - Reserved
535 */
536static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
537					unsigned long hw_event)
538{
539	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
540	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
541	int if_type;
542
543	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
544		return -ENOENT;
545
546	switch (ev_source) {
547	case CCI5xx_PORT_S0:
548	case CCI5xx_PORT_S1:
549	case CCI5xx_PORT_S2:
550	case CCI5xx_PORT_S3:
551	case CCI5xx_PORT_S4:
552	case CCI5xx_PORT_S5:
553	case CCI5xx_PORT_S6:
554		if_type = CCI_IF_SLAVE;
555		break;
556	case CCI5xx_PORT_M0:
557	case CCI5xx_PORT_M1:
558	case CCI5xx_PORT_M2:
559	case CCI5xx_PORT_M3:
560	case CCI5xx_PORT_M4:
561	case CCI5xx_PORT_M5:
562		if_type = CCI_IF_MASTER;
563		break;
564	case CCI5xx_PORT_GLOBAL:
565		if_type = CCI_IF_GLOBAL;
566		break;
567	default:
568		return -ENOENT;
569	}
570
571	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
572		ev_code <= cci_pmu->model->event_ranges[if_type].max)
573		return hw_event;
574
575	return -ENOENT;
576}
577
578/*
579 * CCI550 provides 8 independent event counters that can count
580 * any of the events available.
581 * CCI550 PMU event source ids
582 *	0x0-0x6 - Slave interfaces
583 *	0x8-0xe - Master interfaces
584 *	0xf     - Global Events
585 *	0x7	- Reserved
586 */
587static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
588					unsigned long hw_event)
589{
590	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
591	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
592	int if_type;
593
594	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
595		return -ENOENT;
596
597	switch (ev_source) {
598	case CCI5xx_PORT_S0:
599	case CCI5xx_PORT_S1:
600	case CCI5xx_PORT_S2:
601	case CCI5xx_PORT_S3:
602	case CCI5xx_PORT_S4:
603	case CCI5xx_PORT_S5:
604	case CCI5xx_PORT_S6:
605		if_type = CCI_IF_SLAVE;
606		break;
607	case CCI5xx_PORT_M0:
608	case CCI5xx_PORT_M1:
609	case CCI5xx_PORT_M2:
610	case CCI5xx_PORT_M3:
611	case CCI5xx_PORT_M4:
612	case CCI5xx_PORT_M5:
613	case CCI5xx_PORT_M6:
614		if_type = CCI_IF_MASTER;
615		break;
616	case CCI5xx_PORT_GLOBAL:
617		if_type = CCI_IF_GLOBAL;
618		break;
619	default:
620		return -ENOENT;
621	}
622
623	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
624		ev_code <= cci_pmu->model->event_ranges[if_type].max)
625		return hw_event;
626
627	return -ENOENT;
628}
629
630#endif	/* CONFIG_ARM_CCI5xx_PMU */
631
632/*
633 * Program the CCI PMU counters which have PERF_HES_ARCH set
634 * with the event period and mark them ready before we enable
635 * PMU.
636 */
637static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
638{
639	int i;
640	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
641	DECLARE_BITMAP(mask, HW_CNTRS_MAX);
642
643	bitmap_zero(mask, HW_CNTRS_MAX);
644	for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
645		struct perf_event *event = cci_hw->events[i];
646
647		if (WARN_ON(!event))
648			continue;
649
650		/* Leave the events which are not counting */
651		if (event->hw.state & PERF_HES_STOPPED)
652			continue;
653		if (event->hw.state & PERF_HES_ARCH) {
654			__set_bit(i, mask);
655			event->hw.state &= ~PERF_HES_ARCH;
656		}
657	}
658
659	pmu_write_counters(cci_pmu, mask);
660}
661
662/* Should be called with cci_pmu->hw_events->pmu_lock held */
663static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
664{
665	u32 val;
666
667	/* Enable all the PMU counters. */
668	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
669	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
670}
671
672/* Should be called with cci_pmu->hw_events->pmu_lock held */
673static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
674{
675	cci_pmu_sync_counters(cci_pmu);
676	__cci_pmu_enable_nosync(cci_pmu);
677}
678
679/* Should be called with cci_pmu->hw_events->pmu_lock held */
680static void __cci_pmu_disable(struct cci_pmu *cci_pmu)
681{
682	u32 val;
683
684	/* Disable all the PMU counters. */
685	val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
686	writel(val, cci_pmu->ctrl_base + CCI_PMCR);
687}
688
689static ssize_t cci_pmu_event_show(struct device *dev,
690			struct device_attribute *attr, char *buf)
691{
692	struct dev_ext_attribute *eattr = container_of(attr,
693				struct dev_ext_attribute, attr);
694	/* source parameter is mandatory for normal PMU events */
695	return sysfs_emit(buf, "source=?,event=0x%lx\n",
696			  (unsigned long)eattr->var);
697}
698
699static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
700{
701	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
702}
703
704static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
705{
706	return readl_relaxed(cci_pmu->base +
707			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
708}
709
710static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
711			       int idx, unsigned int offset)
712{
713	writel_relaxed(value, cci_pmu->base +
714		       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
715}
716
717static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
718{
719	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
720}
721
722static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
723{
724	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
725}
726
727static bool __maybe_unused
728pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
729{
730	return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
731}
732
733static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
734{
735	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
736}
737
738/*
739 * For all counters on the CCI-PMU, disable any 'enabled' counters,
740 * saving the changed counters in the mask, so that we can restore
741 * it later using pmu_restore_counters. The mask is private to the
742 * caller. We cannot rely on the used_mask maintained by the CCI_PMU
743 * as it only tells us if the counter is assigned to perf_event or not.
744 * The state of the perf_event cannot be locked by the PMU layer, hence
745 * we check the individual counter status (which can be locked by
746 * cci_pm->hw_events->pmu_lock).
747 *
748 * @mask should be initialised to empty by the caller.
749 */
750static void __maybe_unused
751pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
752{
753	int i;
754
755	for (i = 0; i < cci_pmu->num_cntrs; i++) {
756		if (pmu_counter_is_enabled(cci_pmu, i)) {
757			set_bit(i, mask);
758			pmu_disable_counter(cci_pmu, i);
759		}
760	}
761}
762
763/*
764 * Restore the status of the counters. Reversal of the pmu_save_counters().
765 * For each counter set in the mask, enable the counter back.
766 */
767static void __maybe_unused
768pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
769{
770	int i;
771
772	for_each_set_bit(i, mask, cci_pmu->num_cntrs)
773		pmu_enable_counter(cci_pmu, i);
774}
775
776/*
777 * Returns the number of programmable counters actually implemented
778 * by the cci
779 */
780static u32 pmu_get_max_counters(struct cci_pmu *cci_pmu)
781{
782	return (readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) &
783		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
784}
785
786static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
787{
788	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
789	unsigned long cci_event = event->hw.config_base;
790	int idx;
791
792	if (cci_pmu->model->get_event_idx)
793		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
794
795	/* Generic code to find an unused idx from the mask */
796	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
797		if (!test_and_set_bit(idx, hw->used_mask))
798			return idx;
799
800	/* No counters available */
801	return -EAGAIN;
802}
803
804static int pmu_map_event(struct perf_event *event)
805{
806	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
807
808	if (event->attr.type < PERF_TYPE_MAX ||
809			!cci_pmu->model->validate_hw_event)
810		return -ENOENT;
811
812	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
813}
814
815static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
816{
817	int i;
818	struct platform_device *pmu_device = cci_pmu->plat_device;
819
820	if (unlikely(!pmu_device))
821		return -ENODEV;
822
823	if (cci_pmu->nr_irqs < 1) {
824		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
825		return -ENODEV;
826	}
827
828	/*
829	 * Register all available CCI PMU interrupts. In the interrupt handler
830	 * we iterate over the counters checking for interrupt source (the
831	 * overflowing counter) and clear it.
832	 *
833	 * This should allow handling of non-unique interrupt for the counters.
834	 */
835	for (i = 0; i < cci_pmu->nr_irqs; i++) {
836		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
837				"arm-cci-pmu", cci_pmu);
838		if (err) {
839			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
840				cci_pmu->irqs[i]);
841			return err;
842		}
843
844		set_bit(i, &cci_pmu->active_irqs);
845	}
846
847	return 0;
848}
849
850static void pmu_free_irq(struct cci_pmu *cci_pmu)
851{
852	int i;
853
854	for (i = 0; i < cci_pmu->nr_irqs; i++) {
855		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
856			continue;
857
858		free_irq(cci_pmu->irqs[i], cci_pmu);
859	}
860}
861
862static u32 pmu_read_counter(struct perf_event *event)
863{
864	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
865	struct hw_perf_event *hw_counter = &event->hw;
866	int idx = hw_counter->idx;
867	u32 value;
868
869	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
870		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
871		return 0;
872	}
873	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
874
875	return value;
876}
877
878static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
879{
880	pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
881}
882
883static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
884{
885	int i;
886	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
887
888	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
889		struct perf_event *event = cci_hw->events[i];
890
891		if (WARN_ON(!event))
892			continue;
893		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
894	}
895}
896
897static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
898{
899	if (cci_pmu->model->write_counters)
900		cci_pmu->model->write_counters(cci_pmu, mask);
901	else
902		__pmu_write_counters(cci_pmu, mask);
903}
904
905#ifdef CONFIG_ARM_CCI5xx_PMU
906
907/*
908 * CCI-500/CCI-550 has advanced power saving policies, which could gate the
909 * clocks to the PMU counters, which makes the writes to them ineffective.
910 * The only way to write to those counters is when the global counters
911 * are enabled and the particular counter is enabled.
912 *
913 * So we do the following :
914 *
915 * 1) Disable all the PMU counters, saving their current state
916 * 2) Enable the global PMU profiling, now that all counters are
917 *    disabled.
918 *
919 * For each counter to be programmed, repeat steps 3-7:
920 *
921 * 3) Write an invalid event code to the event control register for the
922      counter, so that the counters are not modified.
923 * 4) Enable the counter control for the counter.
924 * 5) Set the counter value
925 * 6) Disable the counter
926 * 7) Restore the event in the target counter
927 *
928 * 8) Disable the global PMU.
929 * 9) Restore the status of the rest of the counters.
930 *
931 * We choose an event which for CCI-5xx is guaranteed not to count.
932 * We use the highest possible event code (0x1f) for the master interface 0.
933 */
934#define CCI5xx_INVALID_EVENT	((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
935				 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
936static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
937{
938	int i;
939	DECLARE_BITMAP(saved_mask, HW_CNTRS_MAX);
940
941	bitmap_zero(saved_mask, cci_pmu->num_cntrs);
942	pmu_save_counters(cci_pmu, saved_mask);
943
944	/*
945	 * Now that all the counters are disabled, we can safely turn the PMU on,
946	 * without syncing the status of the counters
947	 */
948	__cci_pmu_enable_nosync(cci_pmu);
949
950	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
951		struct perf_event *event = cci_pmu->hw_events.events[i];
952
953		if (WARN_ON(!event))
954			continue;
955
956		pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
957		pmu_enable_counter(cci_pmu, i);
958		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
959		pmu_disable_counter(cci_pmu, i);
960		pmu_set_event(cci_pmu, i, event->hw.config_base);
961	}
962
963	__cci_pmu_disable(cci_pmu);
964
965	pmu_restore_counters(cci_pmu, saved_mask);
966}
967
968#endif	/* CONFIG_ARM_CCI5xx_PMU */
969
970static u64 pmu_event_update(struct perf_event *event)
971{
972	struct hw_perf_event *hwc = &event->hw;
973	u64 delta, prev_raw_count, new_raw_count;
974
975	do {
976		prev_raw_count = local64_read(&hwc->prev_count);
977		new_raw_count = pmu_read_counter(event);
978	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
979		 new_raw_count) != prev_raw_count);
980
981	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
982
983	local64_add(delta, &event->count);
984
985	return new_raw_count;
986}
987
988static void pmu_read(struct perf_event *event)
989{
990	pmu_event_update(event);
991}
992
993static void pmu_event_set_period(struct perf_event *event)
994{
995	struct hw_perf_event *hwc = &event->hw;
996	/*
997	 * The CCI PMU counters have a period of 2^32. To account for the
998	 * possiblity of extreme interrupt latency we program for a period of
999	 * half that. Hopefully we can handle the interrupt before another 2^31
1000	 * events occur and the counter overtakes its previous value.
1001	 */
1002	u64 val = 1ULL << 31;
1003	local64_set(&hwc->prev_count, val);
1004
1005	/*
1006	 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1007	 * values needs to be sync-ed with the s/w state before the PMU is
1008	 * enabled.
1009	 * Mark this counter for sync.
1010	 */
1011	hwc->state |= PERF_HES_ARCH;
1012}
1013
1014static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1015{
1016	struct cci_pmu *cci_pmu = dev;
1017	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1018	int idx, handled = IRQ_NONE;
1019
1020	raw_spin_lock(&events->pmu_lock);
1021
1022	/* Disable the PMU while we walk through the counters */
1023	__cci_pmu_disable(cci_pmu);
1024	/*
1025	 * Iterate over counters and update the corresponding perf events.
1026	 * This should work regardless of whether we have per-counter overflow
1027	 * interrupt or a combined overflow interrupt.
1028	 */
1029	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1030		struct perf_event *event = events->events[idx];
1031
1032		if (!event)
1033			continue;
1034
1035		/* Did this counter overflow? */
1036		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1037		      CCI_PMU_OVRFLW_FLAG))
1038			continue;
1039
1040		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1041							CCI_PMU_OVRFLW);
1042
1043		pmu_event_update(event);
1044		pmu_event_set_period(event);
1045		handled = IRQ_HANDLED;
1046	}
1047
1048	/* Enable the PMU and sync possibly overflowed counters */
1049	__cci_pmu_enable_sync(cci_pmu);
1050	raw_spin_unlock(&events->pmu_lock);
1051
1052	return IRQ_RETVAL(handled);
1053}
1054
1055static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1056{
1057	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1058	if (ret) {
1059		pmu_free_irq(cci_pmu);
1060		return ret;
1061	}
1062	return 0;
1063}
1064
1065static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1066{
1067	pmu_free_irq(cci_pmu);
1068}
1069
1070static void hw_perf_event_destroy(struct perf_event *event)
1071{
1072	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1073	atomic_t *active_events = &cci_pmu->active_events;
1074	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1075
1076	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1077		cci_pmu_put_hw(cci_pmu);
1078		mutex_unlock(reserve_mutex);
1079	}
1080}
1081
1082static void cci_pmu_enable(struct pmu *pmu)
1083{
1084	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1085	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1086	bool enabled = !bitmap_empty(hw_events->used_mask, cci_pmu->num_cntrs);
1087	unsigned long flags;
1088
1089	if (!enabled)
1090		return;
1091
1092	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1093	__cci_pmu_enable_sync(cci_pmu);
1094	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1095
1096}
1097
1098static void cci_pmu_disable(struct pmu *pmu)
1099{
1100	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1101	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1102	unsigned long flags;
1103
1104	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1105	__cci_pmu_disable(cci_pmu);
1106	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1107}
1108
1109/*
1110 * Check if the idx represents a non-programmable counter.
1111 * All the fixed event counters are mapped before the programmable
1112 * counters.
1113 */
1114static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1115{
1116	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1117}
1118
1119static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1120{
1121	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1122	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1123	struct hw_perf_event *hwc = &event->hw;
1124	int idx = hwc->idx;
1125	unsigned long flags;
1126
1127	/*
1128	 * To handle interrupt latency, we always reprogram the period
1129	 * regardless of PERF_EF_RELOAD.
1130	 */
1131	if (pmu_flags & PERF_EF_RELOAD)
1132		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1133
1134	hwc->state = 0;
1135
1136	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1137		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1138		return;
1139	}
1140
1141	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1142
1143	/* Configure the counter unless you are counting a fixed event */
1144	if (!pmu_fixed_hw_idx(cci_pmu, idx))
1145		pmu_set_event(cci_pmu, idx, hwc->config_base);
1146
1147	pmu_event_set_period(event);
1148	pmu_enable_counter(cci_pmu, idx);
1149
1150	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1151}
1152
1153static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1154{
1155	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1156	struct hw_perf_event *hwc = &event->hw;
1157	int idx = hwc->idx;
1158
1159	if (hwc->state & PERF_HES_STOPPED)
1160		return;
1161
1162	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1163		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1164		return;
1165	}
1166
1167	/*
1168	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1169	 * cci_pmu_start()
1170	 */
1171	pmu_disable_counter(cci_pmu, idx);
1172	pmu_event_update(event);
1173	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1174}
1175
1176static int cci_pmu_add(struct perf_event *event, int flags)
1177{
1178	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1179	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1180	struct hw_perf_event *hwc = &event->hw;
1181	int idx;
1182
1183	/* If we don't have a space for the counter then finish early. */
1184	idx = pmu_get_event_idx(hw_events, event);
1185	if (idx < 0)
1186		return idx;
1187
1188	event->hw.idx = idx;
1189	hw_events->events[idx] = event;
1190
1191	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1192	if (flags & PERF_EF_START)
1193		cci_pmu_start(event, PERF_EF_RELOAD);
1194
1195	/* Propagate our changes to the userspace mapping. */
1196	perf_event_update_userpage(event);
1197
1198	return 0;
1199}
1200
1201static void cci_pmu_del(struct perf_event *event, int flags)
1202{
1203	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1204	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1205	struct hw_perf_event *hwc = &event->hw;
1206	int idx = hwc->idx;
1207
1208	cci_pmu_stop(event, PERF_EF_UPDATE);
1209	hw_events->events[idx] = NULL;
1210	clear_bit(idx, hw_events->used_mask);
1211
1212	perf_event_update_userpage(event);
1213}
1214
1215static int validate_event(struct pmu *cci_pmu,
1216			  struct cci_pmu_hw_events *hw_events,
1217			  struct perf_event *event)
1218{
1219	if (is_software_event(event))
1220		return 1;
1221
1222	/*
1223	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1224	 * core perf code won't check that the pmu->ctx == leader->ctx
1225	 * until after pmu->event_init(event).
1226	 */
1227	if (event->pmu != cci_pmu)
1228		return 0;
1229
1230	if (event->state < PERF_EVENT_STATE_OFF)
1231		return 1;
1232
1233	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1234		return 1;
1235
1236	return pmu_get_event_idx(hw_events, event) >= 0;
1237}
1238
1239static int validate_group(struct perf_event *event)
1240{
1241	struct perf_event *sibling, *leader = event->group_leader;
1242	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1243	unsigned long mask[BITS_TO_LONGS(HW_CNTRS_MAX)];
1244	struct cci_pmu_hw_events fake_pmu = {
1245		/*
1246		 * Initialise the fake PMU. We only need to populate the
1247		 * used_mask for the purposes of validation.
1248		 */
1249		.used_mask = mask,
1250	};
1251	bitmap_zero(mask, cci_pmu->num_cntrs);
1252
1253	if (!validate_event(event->pmu, &fake_pmu, leader))
1254		return -EINVAL;
1255
1256	for_each_sibling_event(sibling, leader) {
1257		if (!validate_event(event->pmu, &fake_pmu, sibling))
1258			return -EINVAL;
1259	}
1260
1261	if (!validate_event(event->pmu, &fake_pmu, event))
1262		return -EINVAL;
1263
1264	return 0;
1265}
1266
1267static int __hw_perf_event_init(struct perf_event *event)
1268{
1269	struct hw_perf_event *hwc = &event->hw;
1270	int mapping;
1271
1272	mapping = pmu_map_event(event);
1273
1274	if (mapping < 0) {
1275		pr_debug("event %x:%llx not supported\n", event->attr.type,
1276			 event->attr.config);
1277		return mapping;
1278	}
1279
1280	/*
1281	 * We don't assign an index until we actually place the event onto
1282	 * hardware. Use -1 to signify that we haven't decided where to put it
1283	 * yet.
1284	 */
1285	hwc->idx		= -1;
1286	hwc->config_base	= 0;
1287	hwc->config		= 0;
1288	hwc->event_base		= 0;
1289
1290	/*
1291	 * Store the event encoding into the config_base field.
1292	 */
1293	hwc->config_base	    |= (unsigned long)mapping;
1294
1295	if (event->group_leader != event) {
1296		if (validate_group(event) != 0)
1297			return -EINVAL;
1298	}
1299
1300	return 0;
1301}
1302
1303static int cci_pmu_event_init(struct perf_event *event)
1304{
1305	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1306	atomic_t *active_events = &cci_pmu->active_events;
1307	int err = 0;
1308
1309	if (event->attr.type != event->pmu->type)
1310		return -ENOENT;
1311
1312	/* Shared by all CPUs, no meaningful state to sample */
1313	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1314		return -EOPNOTSUPP;
1315
1316	/*
1317	 * Following the example set by other "uncore" PMUs, we accept any CPU
1318	 * and rewrite its affinity dynamically rather than having perf core
1319	 * handle cpu == -1 and pid == -1 for this case.
1320	 *
1321	 * The perf core will pin online CPUs for the duration of this call and
1322	 * the event being installed into its context, so the PMU's CPU can't
1323	 * change under our feet.
1324	 */
1325	if (event->cpu < 0)
1326		return -EINVAL;
1327	event->cpu = cci_pmu->cpu;
1328
1329	event->destroy = hw_perf_event_destroy;
1330	if (!atomic_inc_not_zero(active_events)) {
1331		mutex_lock(&cci_pmu->reserve_mutex);
1332		if (atomic_read(active_events) == 0)
1333			err = cci_pmu_get_hw(cci_pmu);
1334		if (!err)
1335			atomic_inc(active_events);
1336		mutex_unlock(&cci_pmu->reserve_mutex);
1337	}
1338	if (err)
1339		return err;
1340
1341	err = __hw_perf_event_init(event);
1342	if (err)
1343		hw_perf_event_destroy(event);
1344
1345	return err;
1346}
1347
1348static ssize_t pmu_cpumask_attr_show(struct device *dev,
1349				     struct device_attribute *attr, char *buf)
1350{
1351	struct pmu *pmu = dev_get_drvdata(dev);
1352	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1353
1354	return cpumap_print_to_pagebuf(true, buf, cpumask_of(cci_pmu->cpu));
1355}
1356
1357static struct device_attribute pmu_cpumask_attr =
1358	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1359
1360static struct attribute *pmu_attrs[] = {
1361	&pmu_cpumask_attr.attr,
1362	NULL,
1363};
1364
1365static const struct attribute_group pmu_attr_group = {
1366	.attrs = pmu_attrs,
1367};
1368
1369static struct attribute_group pmu_format_attr_group = {
1370	.name = "format",
1371	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1372};
1373
1374static struct attribute_group pmu_event_attr_group = {
1375	.name = "events",
1376	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1377};
1378
1379static const struct attribute_group *pmu_attr_groups[] = {
1380	&pmu_attr_group,
1381	&pmu_format_attr_group,
1382	&pmu_event_attr_group,
1383	NULL
1384};
1385
1386static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1387{
1388	const struct cci_pmu_model *model = cci_pmu->model;
1389	char *name = model->name;
1390	u32 num_cntrs;
1391
1392	if (WARN_ON(model->num_hw_cntrs > NUM_HW_CNTRS_MAX))
1393		return -EINVAL;
1394	if (WARN_ON(model->fixed_hw_cntrs > FIXED_HW_CNTRS_MAX))
1395		return -EINVAL;
1396
1397	pmu_event_attr_group.attrs = model->event_attrs;
1398	pmu_format_attr_group.attrs = model->format_attrs;
1399
1400	cci_pmu->pmu = (struct pmu) {
1401		.module		= THIS_MODULE,
1402		.parent		= &pdev->dev,
1403		.name		= cci_pmu->model->name,
1404		.task_ctx_nr	= perf_invalid_context,
1405		.pmu_enable	= cci_pmu_enable,
1406		.pmu_disable	= cci_pmu_disable,
1407		.event_init	= cci_pmu_event_init,
1408		.add		= cci_pmu_add,
1409		.del		= cci_pmu_del,
1410		.start		= cci_pmu_start,
1411		.stop		= cci_pmu_stop,
1412		.read		= pmu_read,
1413		.attr_groups	= pmu_attr_groups,
1414		.capabilities	= PERF_PMU_CAP_NO_EXCLUDE,
1415	};
1416
1417	cci_pmu->plat_device = pdev;
1418	num_cntrs = pmu_get_max_counters(cci_pmu);
1419	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1420		dev_warn(&pdev->dev,
1421			"PMU implements more counters(%d) than supported by"
1422			" the model(%d), truncated.",
1423			num_cntrs, cci_pmu->model->num_hw_cntrs);
1424		num_cntrs = cci_pmu->model->num_hw_cntrs;
1425	}
1426	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1427
1428	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1429}
1430
1431static int cci_pmu_offline_cpu(unsigned int cpu)
1432{
1433	int target;
1434
1435	if (!g_cci_pmu || cpu != g_cci_pmu->cpu)
1436		return 0;
1437
1438	target = cpumask_any_but(cpu_online_mask, cpu);
1439	if (target >= nr_cpu_ids)
1440		return 0;
1441
1442	perf_pmu_migrate_context(&g_cci_pmu->pmu, cpu, target);
1443	g_cci_pmu->cpu = target;
1444	return 0;
1445}
1446
1447static __maybe_unused struct cci_pmu_model cci_pmu_models[] = {
1448#ifdef CONFIG_ARM_CCI400_PMU
1449	[CCI400_R0] = {
1450		.name = "CCI_400",
1451		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1452		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1453		.cntr_size = SZ_4K,
1454		.format_attrs = cci400_pmu_format_attrs,
1455		.event_attrs = cci400_r0_pmu_event_attrs,
1456		.event_ranges = {
1457			[CCI_IF_SLAVE] = {
1458				CCI400_R0_SLAVE_PORT_MIN_EV,
1459				CCI400_R0_SLAVE_PORT_MAX_EV,
1460			},
1461			[CCI_IF_MASTER] = {
1462				CCI400_R0_MASTER_PORT_MIN_EV,
1463				CCI400_R0_MASTER_PORT_MAX_EV,
1464			},
1465		},
1466		.validate_hw_event = cci400_validate_hw_event,
1467		.get_event_idx = cci400_get_event_idx,
1468	},
1469	[CCI400_R1] = {
1470		.name = "CCI_400_r1",
1471		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
1472		.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
1473		.cntr_size = SZ_4K,
1474		.format_attrs = cci400_pmu_format_attrs,
1475		.event_attrs = cci400_r1_pmu_event_attrs,
1476		.event_ranges = {
1477			[CCI_IF_SLAVE] = {
1478				CCI400_R1_SLAVE_PORT_MIN_EV,
1479				CCI400_R1_SLAVE_PORT_MAX_EV,
1480			},
1481			[CCI_IF_MASTER] = {
1482				CCI400_R1_MASTER_PORT_MIN_EV,
1483				CCI400_R1_MASTER_PORT_MAX_EV,
1484			},
1485		},
1486		.validate_hw_event = cci400_validate_hw_event,
1487		.get_event_idx = cci400_get_event_idx,
1488	},
1489#endif
1490#ifdef CONFIG_ARM_CCI5xx_PMU
1491	[CCI500_R0] = {
1492		.name = "CCI_500",
1493		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1494		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1495		.cntr_size = SZ_64K,
1496		.format_attrs = cci5xx_pmu_format_attrs,
1497		.event_attrs = cci5xx_pmu_event_attrs,
1498		.event_ranges = {
1499			[CCI_IF_SLAVE] = {
1500				CCI5xx_SLAVE_PORT_MIN_EV,
1501				CCI5xx_SLAVE_PORT_MAX_EV,
1502			},
1503			[CCI_IF_MASTER] = {
1504				CCI5xx_MASTER_PORT_MIN_EV,
1505				CCI5xx_MASTER_PORT_MAX_EV,
1506			},
1507			[CCI_IF_GLOBAL] = {
1508				CCI5xx_GLOBAL_PORT_MIN_EV,
1509				CCI5xx_GLOBAL_PORT_MAX_EV,
1510			},
1511		},
1512		.validate_hw_event = cci500_validate_hw_event,
1513		.write_counters	= cci5xx_pmu_write_counters,
1514	},
1515	[CCI550_R0] = {
1516		.name = "CCI_550",
1517		.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
1518		.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
1519		.cntr_size = SZ_64K,
1520		.format_attrs = cci5xx_pmu_format_attrs,
1521		.event_attrs = cci5xx_pmu_event_attrs,
1522		.event_ranges = {
1523			[CCI_IF_SLAVE] = {
1524				CCI5xx_SLAVE_PORT_MIN_EV,
1525				CCI5xx_SLAVE_PORT_MAX_EV,
1526			},
1527			[CCI_IF_MASTER] = {
1528				CCI5xx_MASTER_PORT_MIN_EV,
1529				CCI5xx_MASTER_PORT_MAX_EV,
1530			},
1531			[CCI_IF_GLOBAL] = {
1532				CCI5xx_GLOBAL_PORT_MIN_EV,
1533				CCI5xx_GLOBAL_PORT_MAX_EV,
1534			},
1535		},
1536		.validate_hw_event = cci550_validate_hw_event,
1537		.write_counters	= cci5xx_pmu_write_counters,
1538	},
1539#endif
1540};
1541
1542static const struct of_device_id arm_cci_pmu_matches[] = {
1543#ifdef CONFIG_ARM_CCI400_PMU
1544	{
1545		.compatible = "arm,cci-400-pmu",
1546		.data	= NULL,
1547	},
1548	{
1549		.compatible = "arm,cci-400-pmu,r0",
1550		.data	= &cci_pmu_models[CCI400_R0],
1551	},
1552	{
1553		.compatible = "arm,cci-400-pmu,r1",
1554		.data	= &cci_pmu_models[CCI400_R1],
1555	},
1556#endif
1557#ifdef CONFIG_ARM_CCI5xx_PMU
1558	{
1559		.compatible = "arm,cci-500-pmu,r0",
1560		.data = &cci_pmu_models[CCI500_R0],
1561	},
1562	{
1563		.compatible = "arm,cci-550-pmu,r0",
1564		.data = &cci_pmu_models[CCI550_R0],
1565	},
1566#endif
1567	{},
1568};
1569MODULE_DEVICE_TABLE(of, arm_cci_pmu_matches);
1570
1571static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1572{
1573	int i;
1574
1575	for (i = 0; i < nr_irqs; i++)
1576		if (irq == irqs[i])
1577			return true;
1578
1579	return false;
1580}
1581
1582static struct cci_pmu *cci_pmu_alloc(struct device *dev)
1583{
1584	struct cci_pmu *cci_pmu;
1585	const struct cci_pmu_model *model;
1586
1587	/*
1588	 * All allocations are devm_* hence we don't have to free
1589	 * them explicitly on an error, as it would end up in driver
1590	 * detach.
1591	 */
1592	cci_pmu = devm_kzalloc(dev, sizeof(*cci_pmu), GFP_KERNEL);
1593	if (!cci_pmu)
1594		return ERR_PTR(-ENOMEM);
1595
1596	cci_pmu->ctrl_base = *(void __iomem **)dev->platform_data;
1597
1598	model = of_device_get_match_data(dev);
1599	if (!model) {
1600		dev_warn(dev,
1601			 "DEPRECATED compatible property, requires secure access to CCI registers");
1602		model = probe_cci_model(cci_pmu);
1603	}
1604	if (!model) {
1605		dev_warn(dev, "CCI PMU version not supported\n");
1606		return ERR_PTR(-ENODEV);
1607	}
1608
1609	cci_pmu->model = model;
1610	cci_pmu->irqs = devm_kcalloc(dev, CCI_PMU_MAX_HW_CNTRS(model),
1611					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1612	if (!cci_pmu->irqs)
1613		return ERR_PTR(-ENOMEM);
1614	cci_pmu->hw_events.events = devm_kcalloc(dev,
1615					     CCI_PMU_MAX_HW_CNTRS(model),
1616					     sizeof(*cci_pmu->hw_events.events),
1617					     GFP_KERNEL);
1618	if (!cci_pmu->hw_events.events)
1619		return ERR_PTR(-ENOMEM);
1620	cci_pmu->hw_events.used_mask = devm_bitmap_zalloc(dev,
1621							  CCI_PMU_MAX_HW_CNTRS(model),
1622							  GFP_KERNEL);
1623	if (!cci_pmu->hw_events.used_mask)
1624		return ERR_PTR(-ENOMEM);
1625
1626	return cci_pmu;
1627}
1628
1629static int cci_pmu_probe(struct platform_device *pdev)
1630{
1631	struct cci_pmu *cci_pmu;
1632	int i, ret, irq;
1633
1634	cci_pmu = cci_pmu_alloc(&pdev->dev);
1635	if (IS_ERR(cci_pmu))
1636		return PTR_ERR(cci_pmu);
1637
1638	cci_pmu->base = devm_platform_ioremap_resource(pdev, 0);
1639	if (IS_ERR(cci_pmu->base))
1640		return -ENOMEM;
1641
1642	/*
1643	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1644	 * together to a common interrupt.
1645	 */
1646	cci_pmu->nr_irqs = 0;
1647	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1648		irq = platform_get_irq(pdev, i);
1649		if (irq < 0)
1650			break;
1651
1652		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1653			continue;
1654
1655		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1656	}
1657
1658	/*
1659	 * Ensure that the device tree has as many interrupts as the number
1660	 * of counters.
1661	 */
1662	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1663		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1664			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1665		return -EINVAL;
1666	}
1667
1668	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1669	mutex_init(&cci_pmu->reserve_mutex);
1670	atomic_set(&cci_pmu->active_events, 0);
1671
1672	cci_pmu->cpu = raw_smp_processor_id();
1673	g_cci_pmu = cci_pmu;
1674	cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1675				  "perf/arm/cci:online", NULL,
1676				  cci_pmu_offline_cpu);
1677
1678	ret = cci_pmu_init(cci_pmu, pdev);
1679	if (ret)
1680		goto error_pmu_init;
1681
1682	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1683	return 0;
1684
1685error_pmu_init:
1686	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1687	g_cci_pmu = NULL;
1688	return ret;
1689}
1690
1691static void cci_pmu_remove(struct platform_device *pdev)
1692{
1693	if (!g_cci_pmu)
1694		return;
1695
1696	cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
1697	perf_pmu_unregister(&g_cci_pmu->pmu);
1698	g_cci_pmu = NULL;
1699}
1700
1701static struct platform_driver cci_pmu_driver = {
1702	.driver = {
1703		   .name = DRIVER_NAME,
1704		   .of_match_table = arm_cci_pmu_matches,
1705		   .suppress_bind_attrs = true,
1706		  },
1707	.probe = cci_pmu_probe,
1708	.remove_new = cci_pmu_remove,
1709};
1710
1711module_platform_driver(cci_pmu_driver);
1712MODULE_LICENSE("GPL v2");
1713MODULE_DESCRIPTION("ARM CCI PMU support");
1714