1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "hw-ops.h"
19#include <linux/export.h>
20
21static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22					struct ath9k_tx_queue_info *qi)
23{
24	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28		ah->txurn_interrupt_mask);
29
30	ENABLE_REGWRITE_BUFFER(ah);
31
32	REG_WRITE(ah, AR_IMR_S0,
33		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35	REG_WRITE(ah, AR_IMR_S1,
36		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38
39	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42
43	REGWRITE_BUFFER_FLUSH(ah);
44}
45
46u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47{
48	return REG_READ(ah, AR_QTXDP(q));
49}
50EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51
52void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53{
54	REG_WRITE(ah, AR_QTXDP(q), txdp);
55}
56EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57
58void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59{
60	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62}
63EXPORT_SYMBOL(ath9k_hw_txstart);
64
65u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66{
67	u32 npend;
68
69	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70	if (npend == 0) {
71
72		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73			npend = 1;
74	}
75
76	return npend;
77}
78EXPORT_SYMBOL(ath9k_hw_numtxpending);
79
80/**
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82 *
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
85 *
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91 * first)
92 *
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
99 *
100 * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
104 */
105bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106{
107	u32 txcfg, curLevel, newLevel;
108
109	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110		return false;
111
112	ath9k_hw_disable_interrupts(ah);
113
114	txcfg = REG_READ(ah, AR_TXCFG);
115	curLevel = MS(txcfg, AR_FTRIG);
116	newLevel = curLevel;
117	if (bIncTrigLevel) {
118		if (curLevel < ah->config.max_txtrig_level)
119			newLevel++;
120	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121		newLevel--;
122	if (newLevel != curLevel)
123		REG_WRITE(ah, AR_TXCFG,
124			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125
126	ath9k_hw_enable_interrupts(ah);
127
128	ah->tx_trig_level = newLevel;
129
130	return newLevel != curLevel;
131}
132EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133
134void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135{
136	int maxdelay = 1000;
137	int i, q;
138
139	if (ah->curchan) {
140		if (IS_CHAN_HALF_RATE(ah->curchan))
141			maxdelay *= 2;
142		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143			maxdelay *= 4;
144	}
145
146	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147
148	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151
152	for (q = 0; q < AR_NUM_QCU; q++) {
153		for (i = 0; i < maxdelay; i++) {
154			if (i)
155				udelay(5);
156
157			if (!ath9k_hw_numtxpending(ah, q))
158				break;
159		}
160	}
161
162	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165
166	REG_WRITE(ah, AR_Q_TXD, 0);
167}
168EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169
170bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171{
172#define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
173#define ATH9K_TIME_QUANTUM		100     /* usec */
174	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175	int wait;
176
177	REG_WRITE(ah, AR_Q_TXD, 1 << q);
178
179	for (wait = wait_time; wait != 0; wait--) {
180		if (wait != wait_time)
181			udelay(ATH9K_TIME_QUANTUM);
182
183		if (ath9k_hw_numtxpending(ah, q) == 0)
184			break;
185	}
186
187	REG_WRITE(ah, AR_Q_TXD, 0);
188
189	return wait != 0;
190
191#undef ATH9K_TX_STOP_DMA_TIMEOUT
192#undef ATH9K_TIME_QUANTUM
193}
194EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195
196bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197			    const struct ath9k_tx_queue_info *qinfo)
198{
199	u32 cw;
200	struct ath_common *common = ath9k_hw_common(ah);
201	struct ath9k_tx_queue_info *qi;
202
203	qi = &ah->txq[q];
204	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205		ath_dbg(common, QUEUE,
206			"Set TXQ properties, inactive queue: %u\n", q);
207		return false;
208	}
209
210	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211
212	qi->tqi_ver = qinfo->tqi_ver;
213	qi->tqi_subtype = qinfo->tqi_subtype;
214	qi->tqi_qflags = qinfo->tqi_qflags;
215	qi->tqi_priority = qinfo->tqi_priority;
216	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218	else
219		qi->tqi_aifs = INIT_AIFS;
220	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221		cw = min(qinfo->tqi_cwmin, 1024U);
222		qi->tqi_cwmin = 1;
223		while (qi->tqi_cwmin < cw)
224			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225	} else
226		qi->tqi_cwmin = qinfo->tqi_cwmin;
227	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228		cw = min(qinfo->tqi_cwmax, 1024U);
229		qi->tqi_cwmax = 1;
230		while (qi->tqi_cwmax < cw)
231			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232	} else
233		qi->tqi_cwmax = INIT_CWMAX;
234
235	if (qinfo->tqi_shretry != 0)
236		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237	else
238		qi->tqi_shretry = INIT_SH_RETRY;
239	if (qinfo->tqi_lgretry != 0)
240		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241	else
242		qi->tqi_lgretry = INIT_LG_RETRY;
243	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245	qi->tqi_burstTime = qinfo->tqi_burstTime;
246	qi->tqi_readyTime = qinfo->tqi_readyTime;
247
248	switch (qinfo->tqi_subtype) {
249	case ATH9K_WME_UPSD:
250		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252		break;
253	default:
254		break;
255	}
256
257	return true;
258}
259EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260
261bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262			    struct ath9k_tx_queue_info *qinfo)
263{
264	struct ath_common *common = ath9k_hw_common(ah);
265	struct ath9k_tx_queue_info *qi;
266
267	qi = &ah->txq[q];
268	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269		ath_dbg(common, QUEUE,
270			"Get TXQ properties, inactive queue: %u\n", q);
271		return false;
272	}
273
274	qinfo->tqi_qflags = qi->tqi_qflags;
275	qinfo->tqi_ver = qi->tqi_ver;
276	qinfo->tqi_subtype = qi->tqi_subtype;
277	qinfo->tqi_qflags = qi->tqi_qflags;
278	qinfo->tqi_priority = qi->tqi_priority;
279	qinfo->tqi_aifs = qi->tqi_aifs;
280	qinfo->tqi_cwmin = qi->tqi_cwmin;
281	qinfo->tqi_cwmax = qi->tqi_cwmax;
282	qinfo->tqi_shretry = qi->tqi_shretry;
283	qinfo->tqi_lgretry = qi->tqi_lgretry;
284	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286	qinfo->tqi_burstTime = qi->tqi_burstTime;
287	qinfo->tqi_readyTime = qi->tqi_readyTime;
288
289	return true;
290}
291EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292
293int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294			  const struct ath9k_tx_queue_info *qinfo)
295{
296	struct ath_common *common = ath9k_hw_common(ah);
297	struct ath9k_tx_queue_info *qi;
298	int q;
299
300	switch (type) {
301	case ATH9K_TX_QUEUE_BEACON:
302		q = ATH9K_NUM_TX_QUEUES - 1;
303		break;
304	case ATH9K_TX_QUEUE_CAB:
305		q = ATH9K_NUM_TX_QUEUES - 2;
306		break;
307	case ATH9K_TX_QUEUE_PSPOLL:
308		q = 1;
309		break;
310	case ATH9K_TX_QUEUE_UAPSD:
311		q = ATH9K_NUM_TX_QUEUES - 3;
312		break;
313	case ATH9K_TX_QUEUE_DATA:
314		q = qinfo->tqi_subtype;
315		break;
316	default:
317		ath_err(common, "Invalid TX queue type: %u\n", type);
318		return -1;
319	}
320
321	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
322
323	qi = &ah->txq[q];
324	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
325		ath_err(common, "TX queue: %u already active\n", q);
326		return -1;
327	}
328	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
329	qi->tqi_type = type;
330	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
331	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
332
333	return q;
334}
335EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
336
337static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
338{
339	ah->txok_interrupt_mask &= ~(1 << q);
340	ah->txerr_interrupt_mask &= ~(1 << q);
341	ah->txdesc_interrupt_mask &= ~(1 << q);
342	ah->txeol_interrupt_mask &= ~(1 << q);
343	ah->txurn_interrupt_mask &= ~(1 << q);
344}
345
346bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
347{
348	struct ath_common *common = ath9k_hw_common(ah);
349	struct ath9k_tx_queue_info *qi;
350
351	qi = &ah->txq[q];
352	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
353		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
354		return false;
355	}
356
357	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
358
359	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
360	ath9k_hw_clear_queue_interrupts(ah, q);
361	ath9k_hw_set_txq_interrupts(ah, qi);
362
363	return true;
364}
365EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
366
367bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
368{
369	struct ath_common *common = ath9k_hw_common(ah);
370	struct ath9k_tx_queue_info *qi;
371	u32 cwMin, chanCwMin, value;
372
373	qi = &ah->txq[q];
374	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
376		return true;
377	}
378
379	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
380
381	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
382		chanCwMin = INIT_CWMIN;
383
384		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
385	} else
386		cwMin = qi->tqi_cwmin;
387
388	ENABLE_REGWRITE_BUFFER(ah);
389
390	REG_WRITE(ah, AR_DLCL_IFS(q),
391		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
392		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
393		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
394
395	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
396		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
397		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
398		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
399
400	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
401
402	if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
403		REG_WRITE(ah, AR_DMISC(q),
404			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
405	else
406		REG_WRITE(ah, AR_DMISC(q),
407			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
408
409	if (qi->tqi_cbrPeriod) {
410		REG_WRITE(ah, AR_QCBRCFG(q),
411			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
412			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
413		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
414			    (qi->tqi_cbrOverflowLimit ?
415			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
416	}
417	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
418		REG_WRITE(ah, AR_QRDYTIMECFG(q),
419			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
420			  AR_Q_RDYTIMECFG_EN);
421	}
422
423	REG_WRITE(ah, AR_DCHNTIME(q),
424		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
425		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
426
427	if (qi->tqi_burstTime
428	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
429		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
430
431	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
432		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
433
434	REGWRITE_BUFFER_FLUSH(ah);
435
436	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
437		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
438
439	switch (qi->tqi_type) {
440	case ATH9K_TX_QUEUE_BEACON:
441		ENABLE_REGWRITE_BUFFER(ah);
442
443		REG_SET_BIT(ah, AR_QMISC(q),
444			    AR_Q_MISC_FSP_DBA_GATED
445			    | AR_Q_MISC_BEACON_USE
446			    | AR_Q_MISC_CBR_INCR_DIS1);
447
448		REG_SET_BIT(ah, AR_DMISC(q),
449			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
450			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
451			    | AR_D_MISC_BEACON_USE
452			    | AR_D_MISC_POST_FR_BKOFF_DIS);
453
454		REGWRITE_BUFFER_FLUSH(ah);
455
456		/*
457		 * cwmin and cwmax should be 0 for beacon queue
458		 * but not for IBSS as we would create an imbalance
459		 * on beaconing fairness for participating nodes.
460		 */
461		if (AR_SREV_9300_20_OR_LATER(ah) &&
462		    ah->opmode != NL80211_IFTYPE_ADHOC) {
463			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
464				  | SM(0, AR_D_LCL_IFS_CWMAX)
465				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
466		}
467		break;
468	case ATH9K_TX_QUEUE_CAB:
469		ENABLE_REGWRITE_BUFFER(ah);
470
471		REG_SET_BIT(ah, AR_QMISC(q),
472			    AR_Q_MISC_FSP_DBA_GATED
473			    | AR_Q_MISC_CBR_INCR_DIS1
474			    | AR_Q_MISC_CBR_INCR_DIS0);
475		value = (qi->tqi_readyTime -
476			 (ah->config.sw_beacon_response_time -
477			  ah->config.dma_beacon_response_time)) * 1024;
478		REG_WRITE(ah, AR_QRDYTIMECFG(q),
479			  value | AR_Q_RDYTIMECFG_EN);
480		REG_SET_BIT(ah, AR_DMISC(q),
481			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
483
484		REGWRITE_BUFFER_FLUSH(ah);
485
486		break;
487	case ATH9K_TX_QUEUE_PSPOLL:
488		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
489		break;
490	case ATH9K_TX_QUEUE_UAPSD:
491		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
492		break;
493	default:
494		break;
495	}
496
497	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
498		REG_SET_BIT(ah, AR_DMISC(q),
499			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
500			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
501			    AR_D_MISC_POST_FR_BKOFF_DIS);
502	}
503
504	if (AR_SREV_9300_20_OR_LATER(ah))
505		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
506
507	ath9k_hw_clear_queue_interrupts(ah, q);
508	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
509		ah->txok_interrupt_mask |= 1 << q;
510		ah->txerr_interrupt_mask |= 1 << q;
511	}
512	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
513		ah->txdesc_interrupt_mask |= 1 << q;
514	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
515		ah->txeol_interrupt_mask |= 1 << q;
516	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
517		ah->txurn_interrupt_mask |= 1 << q;
518	ath9k_hw_set_txq_interrupts(ah, qi);
519
520	return true;
521}
522EXPORT_SYMBOL(ath9k_hw_resettxqueue);
523
524int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
525			struct ath_rx_status *rs)
526{
527	struct ar5416_desc ads;
528	struct ar5416_desc *adsp = AR5416DESC(ds);
529	u32 phyerr;
530
531	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
532		return -EINPROGRESS;
533
534	ads.u.rx = adsp->u.rx;
535
536	rs->rs_status = 0;
537	rs->rs_flags = 0;
538	rs->enc_flags = 0;
539	rs->bw = RATE_INFO_BW_20;
540
541	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
542	rs->rs_tstamp = ads.AR_RcvTimestamp;
543
544	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
545		rs->rs_rssi = ATH9K_RSSI_BAD;
546		rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
547		rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
548		rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
549		rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
550		rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
551		rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
552	} else {
553		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
554		rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
555						AR_RxRSSIAnt00);
556		rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
557						AR_RxRSSIAnt01);
558		rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
559						AR_RxRSSIAnt02);
560		rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
561						AR_RxRSSIAnt10);
562		rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
563						AR_RxRSSIAnt11);
564		rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
565						AR_RxRSSIAnt12);
566	}
567	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
568		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
569	else
570		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
571
572	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
573	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
574
575	rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
576	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
577	rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
578	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
579
580	/* directly mapped flags for ieee80211_rx_status */
581	rs->enc_flags |=
582		(ads.ds_rxstatus3 & AR_GI) ? RX_ENC_FLAG_SHORT_GI : 0;
583	rs->bw = (ads.ds_rxstatus3 & AR_2040) ? RATE_INFO_BW_40 :
584						RATE_INFO_BW_20;
585	if (AR_SREV_9280_20_OR_LATER(ah))
586		rs->enc_flags |=
587			(ads.ds_rxstatus3 & AR_STBC) ?
588				/* we can only Nss=1 STBC */
589				(1 << RX_ENC_FLAG_STBC_SHIFT) : 0;
590
591	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
592		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
593	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
594		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
595	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
596		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
597
598	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
599		/*
600		 * Treat these errors as mutually exclusive to avoid spurious
601		 * extra error reports from the hardware. If a CRC error is
602		 * reported, then decryption and MIC errors are irrelevant,
603		 * the frame is going to be dropped either way
604		 */
605		if (ads.ds_rxstatus8 & AR_PHYErr) {
606			rs->rs_status |= ATH9K_RXERR_PHY;
607			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
608			rs->rs_phyerr = phyerr;
609		} else if (ads.ds_rxstatus8 & AR_CRCErr)
610			rs->rs_status |= ATH9K_RXERR_CRC;
611		else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
612			rs->rs_status |= ATH9K_RXERR_DECRYPT;
613		else if (ads.ds_rxstatus8 & AR_MichaelErr)
614			rs->rs_status |= ATH9K_RXERR_MIC;
615	} else {
616		if (ads.ds_rxstatus8 &
617		    (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
618			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
619
620		/* Only up to MCS16 supported, everything above is invalid */
621		if (rs->rs_rate >= 0x90)
622			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
623	}
624
625	if (ads.ds_rxstatus8 & AR_KeyMiss)
626		rs->rs_status |= ATH9K_RXERR_KEYMISS;
627
628	return 0;
629}
630EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
631
632/*
633 * This can stop or re-enables RX.
634 *
635 * If bool is set this will kill any frame which is currently being
636 * transferred between the MAC and baseband and also prevent any new
637 * frames from getting started.
638 */
639bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
640{
641	u32 reg;
642
643	if (set) {
644		REG_SET_BIT(ah, AR_DIAG_SW,
645			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
646
647		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
648				   0, AH_WAIT_TIMEOUT)) {
649			REG_CLR_BIT(ah, AR_DIAG_SW,
650				    (AR_DIAG_RX_DIS |
651				     AR_DIAG_RX_ABORT));
652
653			reg = REG_READ(ah, AR_OBS_BUS_1);
654			ath_err(ath9k_hw_common(ah),
655				"RX failed to go idle in 10 ms RXSM=0x%x\n",
656				reg);
657
658			return false;
659		}
660	} else {
661		REG_CLR_BIT(ah, AR_DIAG_SW,
662			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
663	}
664
665	return true;
666}
667EXPORT_SYMBOL(ath9k_hw_setrxabort);
668
669void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
670{
671	REG_WRITE(ah, AR_RXDP, rxdp);
672}
673EXPORT_SYMBOL(ath9k_hw_putrxbuf);
674
675void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
676{
677	ath9k_enable_mib_counters(ah);
678
679	ath9k_ani_reset(ah, is_scanning);
680
681	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
682}
683EXPORT_SYMBOL(ath9k_hw_startpcureceive);
684
685void ath9k_hw_abortpcurecv(struct ath_hw *ah)
686{
687	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
688
689	ath9k_hw_disable_mib_counters(ah);
690}
691EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
692
693bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
694{
695#define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
696	struct ath_common *common = ath9k_hw_common(ah);
697	u32 mac_status, last_mac_status = 0;
698	int i;
699
700	/* Enable access to the DMA observation bus */
701	REG_WRITE(ah, AR_MACMISC,
702		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
703		   (AR_MACMISC_MISC_OBS_BUS_1 <<
704		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
705
706	REG_WRITE(ah, AR_CR, AR_CR_RXD);
707
708	/* Wait for rx enable bit to go low */
709	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
710		if ((REG_READ(ah, AR_CR) & AR_CR_RXE(ah)) == 0)
711			break;
712
713		if (!AR_SREV_9300_20_OR_LATER(ah)) {
714			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
715			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
716				*reset = true;
717				break;
718			}
719
720			last_mac_status = mac_status;
721		}
722
723		udelay(AH_TIME_QUANTUM);
724	}
725
726	if (i == 0) {
727		ath_err(common,
728			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
729			AH_RX_STOP_DMA_TIMEOUT / 1000,
730			REG_READ(ah, AR_CR),
731			REG_READ(ah, AR_DIAG_SW),
732			REG_READ(ah, AR_DMADBG_7));
733		return false;
734	} else {
735		return true;
736	}
737
738#undef AH_RX_STOP_DMA_TIMEOUT
739}
740EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
741
742int ath9k_hw_beaconq_setup(struct ath_hw *ah)
743{
744	struct ath9k_tx_queue_info qi;
745
746	memset(&qi, 0, sizeof(qi));
747	qi.tqi_aifs = 1;
748	qi.tqi_cwmin = 0;
749	qi.tqi_cwmax = 0;
750
751	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
752		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
753
754	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
755}
756EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
757
758bool ath9k_hw_intrpend(struct ath_hw *ah)
759{
760	u32 host_isr;
761
762	if (AR_SREV_9100(ah))
763		return true;
764
765	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE(ah));
766
767	if (((host_isr & AR_INTR_MAC_IRQ) ||
768	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
769	    (host_isr != AR_INTR_SPURIOUS))
770		return true;
771
772	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE(ah));
773	if ((host_isr & AR_INTR_SYNC_DEFAULT)
774	    && (host_isr != AR_INTR_SPURIOUS))
775		return true;
776
777	return false;
778}
779EXPORT_SYMBOL(ath9k_hw_intrpend);
780
781void ath9k_hw_kill_interrupts(struct ath_hw *ah)
782{
783	struct ath_common *common = ath9k_hw_common(ah);
784
785	ath_dbg(common, INTERRUPT, "disable IER\n");
786	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
787	(void) REG_READ(ah, AR_IER);
788	if (!AR_SREV_9100(ah)) {
789		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE(ah), 0);
790		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE(ah));
791
792		REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), 0);
793		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE(ah));
794	}
795}
796EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
797
798void ath9k_hw_disable_interrupts(struct ath_hw *ah)
799{
800	if (!(ah->imask & ATH9K_INT_GLOBAL))
801		atomic_set(&ah->intr_ref_cnt, -1);
802	else
803		atomic_dec(&ah->intr_ref_cnt);
804
805	ath9k_hw_kill_interrupts(ah);
806}
807EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
808
809static void __ath9k_hw_enable_interrupts(struct ath_hw *ah)
810{
811	struct ath_common *common = ath9k_hw_common(ah);
812	u32 sync_default = AR_INTR_SYNC_DEFAULT;
813	u32 async_mask;
814
815	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
816	    AR_SREV_9561(ah))
817		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
818
819	async_mask = AR_INTR_MAC_IRQ;
820
821	if (ah->imask & ATH9K_INT_MCI)
822		async_mask |= AR_INTR_ASYNC_MASK_MCI;
823
824	ath_dbg(common, INTERRUPT, "enable IER\n");
825	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
826	if (!AR_SREV_9100(ah)) {
827		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE(ah), async_mask);
828		REG_WRITE(ah, AR_INTR_ASYNC_MASK(ah), async_mask);
829
830		REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), sync_default);
831		REG_WRITE(ah, AR_INTR_SYNC_MASK(ah), sync_default);
832	}
833	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
834		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
835
836	if (ah->msi_enabled) {
837		u32 _msi_reg = 0;
838		u32 i = 0;
839		u32 msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
840
841		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
842			"Enabling MSI, msi_mask=0x%X\n", ah->msi_mask);
843
844		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah), ah->msi_mask);
845		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK(ah), ah->msi_mask);
846		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
847			"AR_INTR_PRIO_ASYNC_ENABLE=0x%X, AR_INTR_PRIO_ASYNC_MASK=0x%X\n",
848			REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah)),
849			REG_READ(ah, AR_INTR_PRIO_ASYNC_MASK(ah)));
850
851		if (ah->msi_reg == 0)
852			ah->msi_reg = REG_READ(ah, AR_PCIE_MSI(ah));
853
854		ath_dbg(ath9k_hw_common(ah), INTERRUPT,
855			"AR_PCIE_MSI=0x%X, ah->msi_reg = 0x%X\n",
856			AR_PCIE_MSI(ah), ah->msi_reg);
857
858		i = 0;
859		do {
860			REG_WRITE(ah, AR_PCIE_MSI(ah),
861				  (ah->msi_reg | AR_PCIE_MSI_ENABLE)
862				  & msi_pend_addr_mask);
863			_msi_reg = REG_READ(ah, AR_PCIE_MSI(ah));
864			i++;
865		} while ((_msi_reg & AR_PCIE_MSI_ENABLE) == 0 && i < 200);
866
867		if (i >= 200)
868			ath_err(ath9k_hw_common(ah),
869				"%s: _msi_reg = 0x%X\n",
870				__func__, _msi_reg);
871	}
872}
873
874void ath9k_hw_resume_interrupts(struct ath_hw *ah)
875{
876	struct ath_common *common = ath9k_hw_common(ah);
877
878	if (!(ah->imask & ATH9K_INT_GLOBAL))
879		return;
880
881	if (atomic_read(&ah->intr_ref_cnt) != 0) {
882		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
883			atomic_read(&ah->intr_ref_cnt));
884		return;
885	}
886
887	__ath9k_hw_enable_interrupts(ah);
888}
889EXPORT_SYMBOL(ath9k_hw_resume_interrupts);
890
891void ath9k_hw_enable_interrupts(struct ath_hw *ah)
892{
893	struct ath_common *common = ath9k_hw_common(ah);
894
895	if (!(ah->imask & ATH9K_INT_GLOBAL))
896		return;
897
898	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
899		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
900			atomic_read(&ah->intr_ref_cnt));
901		return;
902	}
903
904	__ath9k_hw_enable_interrupts(ah);
905}
906EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
907
908void ath9k_hw_set_interrupts(struct ath_hw *ah)
909{
910	enum ath9k_int ints = ah->imask;
911	u32 mask, mask2;
912	struct ath9k_hw_capabilities *pCap = &ah->caps;
913	struct ath_common *common = ath9k_hw_common(ah);
914
915	if (!(ints & ATH9K_INT_GLOBAL))
916		ath9k_hw_disable_interrupts(ah);
917
918	if (ah->msi_enabled) {
919		ath_dbg(common, INTERRUPT, "Clearing AR_INTR_PRIO_ASYNC_ENABLE\n");
920
921		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah), 0);
922		REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah));
923	}
924
925	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
926
927	mask = ints & ATH9K_INT_COMMON;
928	mask2 = 0;
929
930	ah->msi_mask = 0;
931	if (ints & ATH9K_INT_TX) {
932		ah->msi_mask |= AR_INTR_PRIO_TX;
933		if (ah->config.tx_intr_mitigation)
934			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
935		else {
936			if (ah->txok_interrupt_mask)
937				mask |= AR_IMR_TXOK;
938			if (ah->txdesc_interrupt_mask)
939				mask |= AR_IMR_TXDESC;
940		}
941		if (ah->txerr_interrupt_mask)
942			mask |= AR_IMR_TXERR;
943		if (ah->txeol_interrupt_mask)
944			mask |= AR_IMR_TXEOL;
945	}
946	if (ints & ATH9K_INT_RX) {
947		ah->msi_mask |= AR_INTR_PRIO_RXLP | AR_INTR_PRIO_RXHP;
948		if (AR_SREV_9300_20_OR_LATER(ah)) {
949			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
950			if (ah->config.rx_intr_mitigation) {
951				mask &= ~AR_IMR_RXOK_LP;
952				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
953			} else {
954				mask |= AR_IMR_RXOK_LP;
955			}
956		} else {
957			if (ah->config.rx_intr_mitigation)
958				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
959			else
960				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
961		}
962		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
963			mask |= AR_IMR_GENTMR;
964	}
965
966	if (ints & ATH9K_INT_GENTIMER)
967		mask |= AR_IMR_GENTMR;
968
969	if (ints & (ATH9K_INT_BMISC)) {
970		mask |= AR_IMR_BCNMISC;
971		if (ints & ATH9K_INT_TIM)
972			mask2 |= AR_IMR_S2_TIM;
973		if (ints & ATH9K_INT_DTIM)
974			mask2 |= AR_IMR_S2_DTIM;
975		if (ints & ATH9K_INT_DTIMSYNC)
976			mask2 |= AR_IMR_S2_DTIMSYNC;
977		if (ints & ATH9K_INT_CABEND)
978			mask2 |= AR_IMR_S2_CABEND;
979		if (ints & ATH9K_INT_TSFOOR)
980			mask2 |= AR_IMR_S2_TSFOOR;
981	}
982
983	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
984		mask |= AR_IMR_BCNMISC;
985		if (ints & ATH9K_INT_GTT)
986			mask2 |= AR_IMR_S2_GTT;
987		if (ints & ATH9K_INT_CST)
988			mask2 |= AR_IMR_S2_CST;
989	}
990
991	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
992		if (ints & ATH9K_INT_BB_WATCHDOG) {
993			mask |= AR_IMR_BCNMISC;
994			mask2 |= AR_IMR_S2_BB_WATCHDOG;
995		}
996	}
997
998	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
999	REG_WRITE(ah, AR_IMR, mask);
1000	ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
1001			   AR_IMR_S2_DTIM |
1002			   AR_IMR_S2_DTIMSYNC |
1003			   AR_IMR_S2_CABEND |
1004			   AR_IMR_S2_CABTO |
1005			   AR_IMR_S2_TSFOOR |
1006			   AR_IMR_S2_GTT |
1007			   AR_IMR_S2_CST);
1008
1009	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
1010		if (ints & ATH9K_INT_BB_WATCHDOG)
1011			ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
1012	}
1013
1014	ah->imrs2_reg |= mask2;
1015	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1016
1017	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1018		if (ints & ATH9K_INT_TIM_TIMER)
1019			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1020		else
1021			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1022	}
1023
1024	return;
1025}
1026EXPORT_SYMBOL(ath9k_hw_set_interrupts);
1027
1028#define ATH9K_HW_MAX_DCU       10
1029#define ATH9K_HW_SLICE_PER_DCU 16
1030#define ATH9K_HW_BIT_IN_SLICE  16
1031void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
1032{
1033	int dcu_idx;
1034	u32 filter;
1035
1036	for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
1037		filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
1038		filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
1039		filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
1040			     AR_D_TXBLK_WRITE_SLICE);
1041		filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
1042		ath_dbg(ath9k_hw_common(ah), PS,
1043			"DCU%d staid %d set %d txfilter %08x\n",
1044			dcu_idx, destidx, set, filter);
1045		REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
1046	}
1047}
1048EXPORT_SYMBOL(ath9k_hw_set_tx_filter);
1049