1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4 *
5 * Copyright (c) 2009-2010 Micrel, Inc.
6 * 	Tristram Ha <Tristram.Ha@micrel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/ioport.h>
16#include <linux/pci.h>
17#include <linux/proc_fs.h>
18#include <linux/mii.h>
19#include <linux/platform_device.h>
20#include <linux/ethtool.h>
21#include <linux/etherdevice.h>
22#include <linux/in.h>
23#include <linux/ip.h>
24#include <linux/if_vlan.h>
25#include <linux/crc32.h>
26#include <linux/sched.h>
27#include <linux/slab.h>
28#include <linux/micrel_phy.h>
29
30
31/* DMA Registers */
32
33#define KS_DMA_TX_CTRL			0x0000
34#define DMA_TX_ENABLE			0x00000001
35#define DMA_TX_CRC_ENABLE		0x00000002
36#define DMA_TX_PAD_ENABLE		0x00000004
37#define DMA_TX_LOOPBACK			0x00000100
38#define DMA_TX_FLOW_ENABLE		0x00000200
39#define DMA_TX_CSUM_IP			0x00010000
40#define DMA_TX_CSUM_TCP			0x00020000
41#define DMA_TX_CSUM_UDP			0x00040000
42#define DMA_TX_BURST_SIZE		0x3F000000
43
44#define KS_DMA_RX_CTRL			0x0004
45#define DMA_RX_ENABLE			0x00000001
46#define KS884X_DMA_RX_MULTICAST		0x00000002
47#define DMA_RX_PROMISCUOUS		0x00000004
48#define DMA_RX_ERROR			0x00000008
49#define DMA_RX_UNICAST			0x00000010
50#define DMA_RX_ALL_MULTICAST		0x00000020
51#define DMA_RX_BROADCAST		0x00000040
52#define DMA_RX_FLOW_ENABLE		0x00000200
53#define DMA_RX_CSUM_IP			0x00010000
54#define DMA_RX_CSUM_TCP			0x00020000
55#define DMA_RX_CSUM_UDP			0x00040000
56#define DMA_RX_BURST_SIZE		0x3F000000
57
58#define DMA_BURST_SHIFT			24
59#define DMA_BURST_DEFAULT		8
60
61#define KS_DMA_TX_START			0x0008
62#define KS_DMA_RX_START			0x000C
63#define DMA_START			0x00000001
64
65#define KS_DMA_TX_ADDR			0x0010
66#define KS_DMA_RX_ADDR			0x0014
67
68#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
69#define DMA_ADDR_LIST_SHIFT		2
70
71/* MTR0 */
72#define KS884X_MULTICAST_0_OFFSET	0x0020
73#define KS884X_MULTICAST_1_OFFSET	0x0021
74#define KS884X_MULTICAST_2_OFFSET	0x0022
75#define KS884x_MULTICAST_3_OFFSET	0x0023
76/* MTR1 */
77#define KS884X_MULTICAST_4_OFFSET	0x0024
78#define KS884X_MULTICAST_5_OFFSET	0x0025
79#define KS884X_MULTICAST_6_OFFSET	0x0026
80#define KS884X_MULTICAST_7_OFFSET	0x0027
81
82/* Interrupt Registers */
83
84/* INTEN */
85#define KS884X_INTERRUPTS_ENABLE	0x0028
86/* INTST */
87#define KS884X_INTERRUPTS_STATUS	0x002C
88
89#define KS884X_INT_RX_STOPPED		0x02000000
90#define KS884X_INT_TX_STOPPED		0x04000000
91#define KS884X_INT_RX_OVERRUN		0x08000000
92#define KS884X_INT_TX_EMPTY		0x10000000
93#define KS884X_INT_RX			0x20000000
94#define KS884X_INT_TX			0x40000000
95#define KS884X_INT_PHY			0x80000000
96
97#define KS884X_INT_RX_MASK		\
98	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
99#define KS884X_INT_TX_MASK		\
100	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
101#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
102
103/* MAC Additional Station Address */
104
105/* MAAL0 */
106#define KS_ADD_ADDR_0_LO		0x0080
107/* MAAH0 */
108#define KS_ADD_ADDR_0_HI		0x0084
109/* MAAL1 */
110#define KS_ADD_ADDR_1_LO		0x0088
111/* MAAH1 */
112#define KS_ADD_ADDR_1_HI		0x008C
113/* MAAL2 */
114#define KS_ADD_ADDR_2_LO		0x0090
115/* MAAH2 */
116#define KS_ADD_ADDR_2_HI		0x0094
117/* MAAL3 */
118#define KS_ADD_ADDR_3_LO		0x0098
119/* MAAH3 */
120#define KS_ADD_ADDR_3_HI		0x009C
121/* MAAL4 */
122#define KS_ADD_ADDR_4_LO		0x00A0
123/* MAAH4 */
124#define KS_ADD_ADDR_4_HI		0x00A4
125/* MAAL5 */
126#define KS_ADD_ADDR_5_LO		0x00A8
127/* MAAH5 */
128#define KS_ADD_ADDR_5_HI		0x00AC
129/* MAAL6 */
130#define KS_ADD_ADDR_6_LO		0x00B0
131/* MAAH6 */
132#define KS_ADD_ADDR_6_HI		0x00B4
133/* MAAL7 */
134#define KS_ADD_ADDR_7_LO		0x00B8
135/* MAAH7 */
136#define KS_ADD_ADDR_7_HI		0x00BC
137/* MAAL8 */
138#define KS_ADD_ADDR_8_LO		0x00C0
139/* MAAH8 */
140#define KS_ADD_ADDR_8_HI		0x00C4
141/* MAAL9 */
142#define KS_ADD_ADDR_9_LO		0x00C8
143/* MAAH9 */
144#define KS_ADD_ADDR_9_HI		0x00CC
145/* MAAL10 */
146#define KS_ADD_ADDR_A_LO		0x00D0
147/* MAAH10 */
148#define KS_ADD_ADDR_A_HI		0x00D4
149/* MAAL11 */
150#define KS_ADD_ADDR_B_LO		0x00D8
151/* MAAH11 */
152#define KS_ADD_ADDR_B_HI		0x00DC
153/* MAAL12 */
154#define KS_ADD_ADDR_C_LO		0x00E0
155/* MAAH12 */
156#define KS_ADD_ADDR_C_HI		0x00E4
157/* MAAL13 */
158#define KS_ADD_ADDR_D_LO		0x00E8
159/* MAAH13 */
160#define KS_ADD_ADDR_D_HI		0x00EC
161/* MAAL14 */
162#define KS_ADD_ADDR_E_LO		0x00F0
163/* MAAH14 */
164#define KS_ADD_ADDR_E_HI		0x00F4
165/* MAAL15 */
166#define KS_ADD_ADDR_F_LO		0x00F8
167/* MAAH15 */
168#define KS_ADD_ADDR_F_HI		0x00FC
169
170#define ADD_ADDR_HI_MASK		0x0000FFFF
171#define ADD_ADDR_ENABLE			0x80000000
172#define ADD_ADDR_INCR			8
173
174/* Miscellaneous Registers */
175
176/* MARL */
177#define KS884X_ADDR_0_OFFSET		0x0200
178#define KS884X_ADDR_1_OFFSET		0x0201
179/* MARM */
180#define KS884X_ADDR_2_OFFSET		0x0202
181#define KS884X_ADDR_3_OFFSET		0x0203
182/* MARH */
183#define KS884X_ADDR_4_OFFSET		0x0204
184#define KS884X_ADDR_5_OFFSET		0x0205
185
186/* OBCR */
187#define KS884X_BUS_CTRL_OFFSET		0x0210
188
189#define BUS_SPEED_125_MHZ		0x0000
190#define BUS_SPEED_62_5_MHZ		0x0001
191#define BUS_SPEED_41_66_MHZ		0x0002
192#define BUS_SPEED_25_MHZ		0x0003
193
194/* EEPCR */
195#define KS884X_EEPROM_CTRL_OFFSET	0x0212
196
197#define EEPROM_CHIP_SELECT		0x0001
198#define EEPROM_SERIAL_CLOCK		0x0002
199#define EEPROM_DATA_OUT			0x0004
200#define EEPROM_DATA_IN			0x0008
201#define EEPROM_ACCESS_ENABLE		0x0010
202
203/* MBIR */
204#define KS884X_MEM_INFO_OFFSET		0x0214
205
206#define RX_MEM_TEST_FAILED		0x0008
207#define RX_MEM_TEST_FINISHED		0x0010
208#define TX_MEM_TEST_FAILED		0x0800
209#define TX_MEM_TEST_FINISHED		0x1000
210
211/* GCR */
212#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
213#define GLOBAL_SOFTWARE_RESET		0x0001
214
215#define KS8841_POWER_MANAGE_OFFSET	0x0218
216
217/* WFCR */
218#define KS8841_WOL_CTRL_OFFSET		0x021A
219#define KS8841_WOL_MAGIC_ENABLE		0x0080
220#define KS8841_WOL_FRAME3_ENABLE	0x0008
221#define KS8841_WOL_FRAME2_ENABLE	0x0004
222#define KS8841_WOL_FRAME1_ENABLE	0x0002
223#define KS8841_WOL_FRAME0_ENABLE	0x0001
224
225/* WF0 */
226#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
227#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
228#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
229
230/* IACR */
231#define KS884X_IACR_P			0x04A0
232#define KS884X_IACR_OFFSET		KS884X_IACR_P
233
234/* IADR1 */
235#define KS884X_IADR1_P			0x04A2
236#define KS884X_IADR2_P			0x04A4
237#define KS884X_IADR3_P			0x04A6
238#define KS884X_IADR4_P			0x04A8
239#define KS884X_IADR5_P			0x04AA
240
241#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
242#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
243
244#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
245#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
246#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
247#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
248#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
249#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
250#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
251#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
252#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
253
254/* P1MBCR */
255#define KS884X_P1MBCR_P			0x04D0
256#define KS884X_P1MBSR_P			0x04D2
257#define KS884X_PHY1ILR_P		0x04D4
258#define KS884X_PHY1IHR_P		0x04D6
259#define KS884X_P1ANAR_P			0x04D8
260#define KS884X_P1ANLPR_P		0x04DA
261
262/* P2MBCR */
263#define KS884X_P2MBCR_P			0x04E0
264#define KS884X_P2MBSR_P			0x04E2
265#define KS884X_PHY2ILR_P		0x04E4
266#define KS884X_PHY2IHR_P		0x04E6
267#define KS884X_P2ANAR_P			0x04E8
268#define KS884X_P2ANLPR_P		0x04EA
269
270#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
271#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
272
273#define KS884X_PHY_CTRL_OFFSET		0x00
274
275#define KS884X_PHY_STATUS_OFFSET	0x02
276
277#define KS884X_PHY_ID_1_OFFSET		0x04
278#define KS884X_PHY_ID_2_OFFSET		0x06
279
280#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
281
282#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
283
284/* P1VCT */
285#define KS884X_P1VCT_P			0x04F0
286#define KS884X_P1PHYCTRL_P		0x04F2
287
288/* P2VCT */
289#define KS884X_P2VCT_P			0x04F4
290#define KS884X_P2PHYCTRL_P		0x04F6
291
292#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
293#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
294
295#define KS884X_PHY_LINK_MD_OFFSET	0x00
296
297#define PHY_START_CABLE_DIAG		0x8000
298#define PHY_CABLE_DIAG_RESULT		0x6000
299#define PHY_CABLE_STAT_NORMAL		0x0000
300#define PHY_CABLE_STAT_OPEN		0x2000
301#define PHY_CABLE_STAT_SHORT		0x4000
302#define PHY_CABLE_STAT_FAILED		0x6000
303#define PHY_CABLE_10M_SHORT		0x1000
304#define PHY_CABLE_FAULT_COUNTER		0x01FF
305
306#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
307
308#define PHY_STAT_REVERSED_POLARITY	0x0020
309#define PHY_STAT_MDIX			0x0010
310#define PHY_FORCE_LINK			0x0008
311#define PHY_POWER_SAVING_DISABLE	0x0004
312#define PHY_REMOTE_LOOPBACK		0x0002
313
314/* SIDER */
315#define KS884X_SIDER_P			0x0400
316#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
317#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
318
319#define REG_FAMILY_ID			0x88
320
321#define REG_CHIP_ID_41			0x8810
322#define REG_CHIP_ID_42			0x8800
323
324#define KS884X_CHIP_ID_MASK_41		0xFF10
325#define KS884X_CHIP_ID_MASK		0xFFF0
326#define KS884X_CHIP_ID_SHIFT		4
327#define KS884X_REVISION_MASK		0x000E
328#define KS884X_REVISION_SHIFT		1
329#define KS8842_START			0x0001
330
331#define CHIP_IP_41_M			0x8810
332#define CHIP_IP_42_M			0x8800
333#define CHIP_IP_61_M			0x8890
334#define CHIP_IP_62_M			0x8880
335
336#define CHIP_IP_41_P			0x8850
337#define CHIP_IP_42_P			0x8840
338#define CHIP_IP_61_P			0x88D0
339#define CHIP_IP_62_P			0x88C0
340
341/* SGCR1 */
342#define KS8842_SGCR1_P			0x0402
343#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
344
345#define SWITCH_PASS_ALL			0x8000
346#define SWITCH_TX_FLOW_CTRL		0x2000
347#define SWITCH_RX_FLOW_CTRL		0x1000
348#define SWITCH_CHECK_LENGTH		0x0800
349#define SWITCH_AGING_ENABLE		0x0400
350#define SWITCH_FAST_AGING		0x0200
351#define SWITCH_AGGR_BACKOFF		0x0100
352#define SWITCH_PASS_PAUSE		0x0008
353#define SWITCH_LINK_AUTO_AGING		0x0001
354
355/* SGCR2 */
356#define KS8842_SGCR2_P			0x0404
357#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
358
359#define SWITCH_VLAN_ENABLE		0x8000
360#define SWITCH_IGMP_SNOOP		0x4000
361#define IPV6_MLD_SNOOP_ENABLE		0x2000
362#define IPV6_MLD_SNOOP_OPTION		0x1000
363#define PRIORITY_SCHEME_SELECT		0x0800
364#define SWITCH_MIRROR_RX_TX		0x0100
365#define UNICAST_VLAN_BOUNDARY		0x0080
366#define MULTICAST_STORM_DISABLE		0x0040
367#define SWITCH_BACK_PRESSURE		0x0020
368#define FAIR_FLOW_CTRL			0x0010
369#define NO_EXC_COLLISION_DROP		0x0008
370#define SWITCH_HUGE_PACKET		0x0004
371#define SWITCH_LEGAL_PACKET		0x0002
372#define SWITCH_BUF_RESERVE		0x0001
373
374/* SGCR3 */
375#define KS8842_SGCR3_P			0x0406
376#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
377
378#define BROADCAST_STORM_RATE_LO		0xFF00
379#define SWITCH_REPEATER			0x0080
380#define SWITCH_HALF_DUPLEX		0x0040
381#define SWITCH_FLOW_CTRL		0x0020
382#define SWITCH_10_MBIT			0x0010
383#define SWITCH_REPLACE_NULL_VID		0x0008
384#define BROADCAST_STORM_RATE_HI		0x0007
385
386#define BROADCAST_STORM_RATE		0x07FF
387
388/* SGCR4 */
389#define KS8842_SGCR4_P			0x0408
390
391/* SGCR5 */
392#define KS8842_SGCR5_P			0x040A
393#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
394
395#define LED_MODE			0x8200
396#define LED_SPEED_DUPLEX_ACT		0x0000
397#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
398#define LED_DUPLEX_10_100		0x0200
399
400/* SGCR6 */
401#define KS8842_SGCR6_P			0x0410
402#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
403
404#define KS8842_PRIORITY_MASK		3
405#define KS8842_PRIORITY_SHIFT		2
406
407/* SGCR7 */
408#define KS8842_SGCR7_P			0x0412
409#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
410
411#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
412#define SWITCH_UNK_DEF_PORT_3		0x0004
413#define SWITCH_UNK_DEF_PORT_2		0x0002
414#define SWITCH_UNK_DEF_PORT_1		0x0001
415
416/* MACAR1 */
417#define KS8842_MACAR1_P			0x0470
418#define KS8842_MACAR2_P			0x0472
419#define KS8842_MACAR3_P			0x0474
420#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
421#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
422#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
423#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
424#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
425#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
426
427/* TOSR1 */
428#define KS8842_TOSR1_P			0x0480
429#define KS8842_TOSR2_P			0x0482
430#define KS8842_TOSR3_P			0x0484
431#define KS8842_TOSR4_P			0x0486
432#define KS8842_TOSR5_P			0x0488
433#define KS8842_TOSR6_P			0x048A
434#define KS8842_TOSR7_P			0x0490
435#define KS8842_TOSR8_P			0x0492
436#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
437#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
438#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
439#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
440#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
441#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
442
443#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
444#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
445
446/* P1CR1 */
447#define KS8842_P1CR1_P			0x0500
448#define KS8842_P1CR2_P			0x0502
449#define KS8842_P1VIDR_P			0x0504
450#define KS8842_P1CR3_P			0x0506
451#define KS8842_P1IRCR_P			0x0508
452#define KS8842_P1ERCR_P			0x050A
453#define KS884X_P1SCSLMD_P		0x0510
454#define KS884X_P1CR4_P			0x0512
455#define KS884X_P1SR_P			0x0514
456
457/* P2CR1 */
458#define KS8842_P2CR1_P			0x0520
459#define KS8842_P2CR2_P			0x0522
460#define KS8842_P2VIDR_P			0x0524
461#define KS8842_P2CR3_P			0x0526
462#define KS8842_P2IRCR_P			0x0528
463#define KS8842_P2ERCR_P			0x052A
464#define KS884X_P2SCSLMD_P		0x0530
465#define KS884X_P2CR4_P			0x0532
466#define KS884X_P2SR_P			0x0534
467
468/* P3CR1 */
469#define KS8842_P3CR1_P			0x0540
470#define KS8842_P3CR2_P			0x0542
471#define KS8842_P3VIDR_P			0x0544
472#define KS8842_P3CR3_P			0x0546
473#define KS8842_P3IRCR_P			0x0548
474#define KS8842_P3ERCR_P			0x054A
475
476#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
477#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
478#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
479
480#define PORT_CTRL_ADDR(port, addr)		\
481	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
482		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
483
484#define KS8842_PORT_CTRL_1_OFFSET	0x00
485
486#define PORT_BROADCAST_STORM		0x0080
487#define PORT_DIFFSERV_ENABLE		0x0040
488#define PORT_802_1P_ENABLE		0x0020
489#define PORT_BASED_PRIORITY_MASK	0x0018
490#define PORT_BASED_PRIORITY_BASE	0x0003
491#define PORT_BASED_PRIORITY_SHIFT	3
492#define PORT_BASED_PRIORITY_0		0x0000
493#define PORT_BASED_PRIORITY_1		0x0008
494#define PORT_BASED_PRIORITY_2		0x0010
495#define PORT_BASED_PRIORITY_3		0x0018
496#define PORT_INSERT_TAG			0x0004
497#define PORT_REMOVE_TAG			0x0002
498#define PORT_PRIO_QUEUE_ENABLE		0x0001
499
500#define KS8842_PORT_CTRL_2_OFFSET	0x02
501
502#define PORT_INGRESS_VLAN_FILTER	0x4000
503#define PORT_DISCARD_NON_VID		0x2000
504#define PORT_FORCE_FLOW_CTRL		0x1000
505#define PORT_BACK_PRESSURE		0x0800
506#define PORT_TX_ENABLE			0x0400
507#define PORT_RX_ENABLE			0x0200
508#define PORT_LEARN_DISABLE		0x0100
509#define PORT_MIRROR_SNIFFER		0x0080
510#define PORT_MIRROR_RX			0x0040
511#define PORT_MIRROR_TX			0x0020
512#define PORT_USER_PRIORITY_CEILING	0x0008
513#define PORT_VLAN_MEMBERSHIP		0x0007
514
515#define KS8842_PORT_CTRL_VID_OFFSET	0x04
516
517#define PORT_DEFAULT_VID		0x0001
518
519#define KS8842_PORT_CTRL_3_OFFSET	0x06
520
521#define PORT_INGRESS_LIMIT_MODE		0x000C
522#define PORT_INGRESS_ALL		0x0000
523#define PORT_INGRESS_UNICAST		0x0004
524#define PORT_INGRESS_MULTICAST		0x0008
525#define PORT_INGRESS_BROADCAST		0x000C
526#define PORT_COUNT_IFG			0x0002
527#define PORT_COUNT_PREAMBLE		0x0001
528
529#define KS8842_PORT_IN_RATE_OFFSET	0x08
530#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
531
532#define PORT_PRIORITY_RATE		0x0F
533#define PORT_PRIORITY_RATE_SHIFT	4
534
535#define KS884X_PORT_LINK_MD		0x10
536
537#define PORT_CABLE_10M_SHORT		0x8000
538#define PORT_CABLE_DIAG_RESULT		0x6000
539#define PORT_CABLE_STAT_NORMAL		0x0000
540#define PORT_CABLE_STAT_OPEN		0x2000
541#define PORT_CABLE_STAT_SHORT		0x4000
542#define PORT_CABLE_STAT_FAILED		0x6000
543#define PORT_START_CABLE_DIAG		0x1000
544#define PORT_FORCE_LINK			0x0800
545#define PORT_POWER_SAVING_DISABLE	0x0400
546#define PORT_PHY_REMOTE_LOOPBACK	0x0200
547#define PORT_CABLE_FAULT_COUNTER	0x01FF
548
549#define KS884X_PORT_CTRL_4_OFFSET	0x12
550
551#define PORT_LED_OFF			0x8000
552#define PORT_TX_DISABLE			0x4000
553#define PORT_AUTO_NEG_RESTART		0x2000
554#define PORT_REMOTE_FAULT_DISABLE	0x1000
555#define PORT_POWER_DOWN			0x0800
556#define PORT_AUTO_MDIX_DISABLE		0x0400
557#define PORT_FORCE_MDIX			0x0200
558#define PORT_LOOPBACK			0x0100
559#define PORT_AUTO_NEG_ENABLE		0x0080
560#define PORT_FORCE_100_MBIT		0x0040
561#define PORT_FORCE_FULL_DUPLEX		0x0020
562#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
563#define PORT_AUTO_NEG_100BTX_FD		0x0008
564#define PORT_AUTO_NEG_100BTX		0x0004
565#define PORT_AUTO_NEG_10BT_FD		0x0002
566#define PORT_AUTO_NEG_10BT		0x0001
567
568#define KS884X_PORT_STATUS_OFFSET	0x14
569
570#define PORT_HP_MDIX			0x8000
571#define PORT_REVERSED_POLARITY		0x2000
572#define PORT_RX_FLOW_CTRL		0x0800
573#define PORT_TX_FLOW_CTRL		0x1000
574#define PORT_STATUS_SPEED_100MBIT	0x0400
575#define PORT_STATUS_FULL_DUPLEX		0x0200
576#define PORT_REMOTE_FAULT		0x0100
577#define PORT_MDIX_STATUS		0x0080
578#define PORT_AUTO_NEG_COMPLETE		0x0040
579#define PORT_STATUS_LINK_GOOD		0x0020
580#define PORT_REMOTE_SYM_PAUSE		0x0010
581#define PORT_REMOTE_100BTX_FD		0x0008
582#define PORT_REMOTE_100BTX		0x0004
583#define PORT_REMOTE_10BT_FD		0x0002
584#define PORT_REMOTE_10BT		0x0001
585
586/*
587#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
588#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
589#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
590#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
591#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
592#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
593*/
594
595#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
596#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
597#define STATIC_MAC_TABLE_VALID		0x00080000
598#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
599#define STATIC_MAC_TABLE_USE_FID	0x00200000
600#define STATIC_MAC_TABLE_FID		0x03C00000
601
602#define STATIC_MAC_FWD_PORTS_SHIFT	16
603#define STATIC_MAC_FID_SHIFT		22
604
605/*
606#define VLAN_TABLE_VID			00-00000000-00000FFF
607#define VLAN_TABLE_FID			00-00000000-0000F000
608#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
609#define VLAN_TABLE_VALID		00-00000000-00080000
610*/
611
612#define VLAN_TABLE_VID			0x00000FFF
613#define VLAN_TABLE_FID			0x0000F000
614#define VLAN_TABLE_MEMBERSHIP		0x00070000
615#define VLAN_TABLE_VALID		0x00080000
616
617#define VLAN_TABLE_FID_SHIFT		12
618#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
619
620/*
621#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
622#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
623#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
624#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
625#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
626#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
627#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
628#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
629*/
630
631#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
632#define DYNAMIC_MAC_TABLE_FID		0x000F0000
633#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
634#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
635#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
636
637#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
638#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
639#define DYNAMIC_MAC_TABLE_RESERVED	0x78
640#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
641
642#define DYNAMIC_MAC_FID_SHIFT		16
643#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
644#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
645#define DYNAMIC_MAC_ENTRIES_SHIFT	24
646#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
647
648/*
649#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
650#define MIB_COUNTER_VALID		00-00000000-40000000
651#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
652*/
653
654#define MIB_COUNTER_VALUE		0x3FFFFFFF
655#define MIB_COUNTER_VALID		0x40000000
656#define MIB_COUNTER_OVERFLOW		0x80000000
657
658#define MIB_PACKET_DROPPED		0x0000FFFF
659
660#define KS_MIB_PACKET_DROPPED_TX_0	0x100
661#define KS_MIB_PACKET_DROPPED_TX_1	0x101
662#define KS_MIB_PACKET_DROPPED_TX	0x102
663#define KS_MIB_PACKET_DROPPED_RX_0	0x103
664#define KS_MIB_PACKET_DROPPED_RX_1	0x104
665#define KS_MIB_PACKET_DROPPED_RX	0x105
666
667/* Change default LED mode. */
668#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
669
670#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
671
672#define MAX_ETHERNET_BODY_SIZE		1500
673#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
674
675#define MAX_ETHERNET_PACKET_SIZE	\
676	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
677
678#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
679#define MAX_RX_BUF_SIZE			(1912 + 4)
680
681#define ADDITIONAL_ENTRIES		16
682#define MAX_MULTICAST_LIST		32
683
684#define HW_MULTICAST_SIZE		8
685
686#define HW_TO_DEV_PORT(port)		(port - 1)
687
688enum {
689	media_connected,
690	media_disconnected
691};
692
693enum {
694	OID_COUNTER_UNKOWN,
695
696	OID_COUNTER_FIRST,
697
698	/* total transmit errors */
699	OID_COUNTER_XMIT_ERROR,
700
701	/* total receive errors */
702	OID_COUNTER_RCV_ERROR,
703
704	OID_COUNTER_LAST
705};
706
707/*
708 * Hardware descriptor definitions
709 */
710
711#define DESC_ALIGNMENT			16
712#define BUFFER_ALIGNMENT		8
713
714#define NUM_OF_RX_DESC			64
715#define NUM_OF_TX_DESC			64
716
717#define KS_DESC_RX_FRAME_LEN		0x000007FF
718#define KS_DESC_RX_FRAME_TYPE		0x00008000
719#define KS_DESC_RX_ERROR_CRC		0x00010000
720#define KS_DESC_RX_ERROR_RUNT		0x00020000
721#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
722#define KS_DESC_RX_ERROR_PHY		0x00080000
723#define KS884X_DESC_RX_PORT_MASK	0x00300000
724#define KS_DESC_RX_MULTICAST		0x01000000
725#define KS_DESC_RX_ERROR		0x02000000
726#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
727#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
728#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
729#define KS_DESC_RX_LAST			0x20000000
730#define KS_DESC_RX_FIRST		0x40000000
731#define KS_DESC_RX_ERROR_COND		\
732	(KS_DESC_RX_ERROR_CRC |		\
733	KS_DESC_RX_ERROR_RUNT |		\
734	KS_DESC_RX_ERROR_PHY |		\
735	KS_DESC_RX_ERROR_TOO_LONG)
736
737#define KS_DESC_HW_OWNED		0x80000000
738
739#define KS_DESC_BUF_SIZE		0x000007FF
740#define KS884X_DESC_TX_PORT_MASK	0x00300000
741#define KS_DESC_END_OF_RING		0x02000000
742#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
743#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
744#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
745#define KS_DESC_TX_LAST			0x20000000
746#define KS_DESC_TX_FIRST		0x40000000
747#define KS_DESC_TX_INTERRUPT		0x80000000
748
749#define KS_DESC_PORT_SHIFT		20
750
751#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
752
753#define KS_DESC_TX_MASK			\
754	(KS_DESC_TX_INTERRUPT |		\
755	KS_DESC_TX_FIRST |		\
756	KS_DESC_TX_LAST |		\
757	KS_DESC_TX_CSUM_GEN_IP |	\
758	KS_DESC_TX_CSUM_GEN_TCP |	\
759	KS_DESC_TX_CSUM_GEN_UDP |	\
760	KS_DESC_BUF_SIZE)
761
762struct ksz_desc_rx_stat {
763#ifdef __BIG_ENDIAN_BITFIELD
764	u32 hw_owned:1;
765	u32 first_desc:1;
766	u32 last_desc:1;
767	u32 csum_err_ip:1;
768	u32 csum_err_tcp:1;
769	u32 csum_err_udp:1;
770	u32 error:1;
771	u32 multicast:1;
772	u32 src_port:4;
773	u32 err_phy:1;
774	u32 err_too_long:1;
775	u32 err_runt:1;
776	u32 err_crc:1;
777	u32 frame_type:1;
778	u32 reserved1:4;
779	u32 frame_len:11;
780#else
781	u32 frame_len:11;
782	u32 reserved1:4;
783	u32 frame_type:1;
784	u32 err_crc:1;
785	u32 err_runt:1;
786	u32 err_too_long:1;
787	u32 err_phy:1;
788	u32 src_port:4;
789	u32 multicast:1;
790	u32 error:1;
791	u32 csum_err_udp:1;
792	u32 csum_err_tcp:1;
793	u32 csum_err_ip:1;
794	u32 last_desc:1;
795	u32 first_desc:1;
796	u32 hw_owned:1;
797#endif
798};
799
800struct ksz_desc_tx_stat {
801#ifdef __BIG_ENDIAN_BITFIELD
802	u32 hw_owned:1;
803	u32 reserved1:31;
804#else
805	u32 reserved1:31;
806	u32 hw_owned:1;
807#endif
808};
809
810struct ksz_desc_rx_buf {
811#ifdef __BIG_ENDIAN_BITFIELD
812	u32 reserved4:6;
813	u32 end_of_ring:1;
814	u32 reserved3:14;
815	u32 buf_size:11;
816#else
817	u32 buf_size:11;
818	u32 reserved3:14;
819	u32 end_of_ring:1;
820	u32 reserved4:6;
821#endif
822};
823
824struct ksz_desc_tx_buf {
825#ifdef __BIG_ENDIAN_BITFIELD
826	u32 intr:1;
827	u32 first_seg:1;
828	u32 last_seg:1;
829	u32 csum_gen_ip:1;
830	u32 csum_gen_tcp:1;
831	u32 csum_gen_udp:1;
832	u32 end_of_ring:1;
833	u32 reserved4:1;
834	u32 dest_port:4;
835	u32 reserved3:9;
836	u32 buf_size:11;
837#else
838	u32 buf_size:11;
839	u32 reserved3:9;
840	u32 dest_port:4;
841	u32 reserved4:1;
842	u32 end_of_ring:1;
843	u32 csum_gen_udp:1;
844	u32 csum_gen_tcp:1;
845	u32 csum_gen_ip:1;
846	u32 last_seg:1;
847	u32 first_seg:1;
848	u32 intr:1;
849#endif
850};
851
852union desc_stat {
853	struct ksz_desc_rx_stat rx;
854	struct ksz_desc_tx_stat tx;
855	u32 data;
856};
857
858union desc_buf {
859	struct ksz_desc_rx_buf rx;
860	struct ksz_desc_tx_buf tx;
861	u32 data;
862};
863
864/**
865 * struct ksz_hw_desc - Hardware descriptor data structure
866 * @ctrl:	Descriptor control value.
867 * @buf:	Descriptor buffer value.
868 * @addr:	Physical address of memory buffer.
869 * @next:	Pointer to next hardware descriptor.
870 */
871struct ksz_hw_desc {
872	union desc_stat ctrl;
873	union desc_buf buf;
874	u32 addr;
875	u32 next;
876};
877
878/**
879 * struct ksz_sw_desc - Software descriptor data structure
880 * @ctrl:	Descriptor control value.
881 * @buf:	Descriptor buffer value.
882 * @buf_size:	Current buffers size value in hardware descriptor.
883 */
884struct ksz_sw_desc {
885	union desc_stat ctrl;
886	union desc_buf buf;
887	u32 buf_size;
888};
889
890/**
891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
892 * @skb:	Associated socket buffer.
893 * @dma:	Associated physical DMA address.
894 * @len:	Actual len used.
895 */
896struct ksz_dma_buf {
897	struct sk_buff *skb;
898	dma_addr_t dma;
899	int len;
900};
901
902/**
903 * struct ksz_desc - Descriptor structure
904 * @phw:	Hardware descriptor pointer to uncached physical memory.
905 * @sw:		Cached memory to hold hardware descriptor values for
906 * 		manipulation.
907 * @dma_buf:	Operating system dependent data structure to hold physical
908 * 		memory buffer allocation information.
909 */
910struct ksz_desc {
911	struct ksz_hw_desc *phw;
912	struct ksz_sw_desc sw;
913	struct ksz_dma_buf dma_buf;
914};
915
916#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
917
918/**
919 * struct ksz_desc_info - Descriptor information data structure
920 * @ring:	First descriptor in the ring.
921 * @cur:	Current descriptor being manipulated.
922 * @ring_virt:	First hardware descriptor in the ring.
923 * @ring_phys:	The physical address of the first descriptor of the ring.
924 * @size:	Size of hardware descriptor.
925 * @alloc:	Number of descriptors allocated.
926 * @avail:	Number of descriptors available for use.
927 * @last:	Index for last descriptor released to hardware.
928 * @next:	Index for next descriptor available for use.
929 * @mask:	Mask for index wrapping.
930 */
931struct ksz_desc_info {
932	struct ksz_desc *ring;
933	struct ksz_desc *cur;
934	struct ksz_hw_desc *ring_virt;
935	u32 ring_phys;
936	int size;
937	int alloc;
938	int avail;
939	int last;
940	int next;
941	int mask;
942};
943
944/*
945 * KSZ8842 switch definitions
946 */
947
948enum {
949	TABLE_STATIC_MAC = 0,
950	TABLE_VLAN,
951	TABLE_DYNAMIC_MAC,
952	TABLE_MIB
953};
954
955#define LEARNED_MAC_TABLE_ENTRIES	1024
956#define STATIC_MAC_TABLE_ENTRIES	8
957
958/**
959 * struct ksz_mac_table - Static MAC table data structure
960 * @mac_addr:	MAC address to filter.
961 * @vid:	VID value.
962 * @fid:	FID value.
963 * @ports:	Port membership.
964 * @override:	Override setting.
965 * @use_fid:	FID use setting.
966 * @valid:	Valid setting indicating the entry is being used.
967 */
968struct ksz_mac_table {
969	u8 mac_addr[ETH_ALEN];
970	u16 vid;
971	u8 fid;
972	u8 ports;
973	u8 override:1;
974	u8 use_fid:1;
975	u8 valid:1;
976};
977
978#define VLAN_TABLE_ENTRIES		16
979
980/**
981 * struct ksz_vlan_table - VLAN table data structure
982 * @vid:	VID value.
983 * @fid:	FID value.
984 * @member:	Port membership.
985 */
986struct ksz_vlan_table {
987	u16 vid;
988	u8 fid;
989	u8 member;
990};
991
992#define DIFFSERV_ENTRIES		64
993#define PRIO_802_1P_ENTRIES		8
994#define PRIO_QUEUES			4
995
996#define SWITCH_PORT_NUM			2
997#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
998#define HOST_MASK			(1 << SWITCH_PORT_NUM)
999#define PORT_MASK			7
1000
1001#define MAIN_PORT			0
1002#define OTHER_PORT			1
1003#define HOST_PORT			SWITCH_PORT_NUM
1004
1005#define PORT_COUNTER_NUM		0x20
1006#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1007
1008#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1009#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1010#define MIB_COUNTER_RX_UNDERSIZE	0x02
1011#define MIB_COUNTER_RX_FRAGMENT		0x03
1012#define MIB_COUNTER_RX_OVERSIZE		0x04
1013#define MIB_COUNTER_RX_JABBER		0x05
1014#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1015#define MIB_COUNTER_RX_CRC_ERR		0x07
1016#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1017#define MIB_COUNTER_RX_CTRL_8808	0x09
1018#define MIB_COUNTER_RX_PAUSE		0x0A
1019#define MIB_COUNTER_RX_BROADCAST	0x0B
1020#define MIB_COUNTER_RX_MULTICAST	0x0C
1021#define MIB_COUNTER_RX_UNICAST		0x0D
1022#define MIB_COUNTER_RX_OCTET_64		0x0E
1023#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1024#define MIB_COUNTER_RX_OCTET_128_255	0x10
1025#define MIB_COUNTER_RX_OCTET_256_511	0x11
1026#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1027#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1028#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1029#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1030#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1031#define MIB_COUNTER_TX_PAUSE		0x17
1032#define MIB_COUNTER_TX_BROADCAST	0x18
1033#define MIB_COUNTER_TX_MULTICAST	0x19
1034#define MIB_COUNTER_TX_UNICAST		0x1A
1035#define MIB_COUNTER_TX_DEFERRED		0x1B
1036#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1037#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1038#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1039#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1040
1041#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1042#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1043
1044/**
1045 * struct ksz_port_mib - Port MIB data structure
1046 * @cnt_ptr:	Current pointer to MIB counter index.
1047 * @link_down:	Indication the link has just gone down.
1048 * @state:	Connection status of the port.
1049 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1050 * @counter:	64-bit MIB counter value.
1051 * @dropped:	Temporary buffer to remember last read packet dropped values.
1052 *
1053 * MIB counters needs to be read periodically so that counters do not get
1054 * overflowed and give incorrect values.  A right balance is needed to
1055 * satisfy this condition and not waste too much CPU time.
1056 *
1057 * It is pointless to read MIB counters when the port is disconnected.  The
1058 * @state provides the connection status so that MIB counters are read only
1059 * when the port is connected.  The @link_down indicates the port is just
1060 * disconnected so that all MIB counters are read one last time to update the
1061 * information.
1062 */
1063struct ksz_port_mib {
1064	u8 cnt_ptr;
1065	u8 link_down;
1066	u8 state;
1067	u8 mib_start;
1068
1069	u64 counter[TOTAL_PORT_COUNTER_NUM];
1070	u32 dropped[2];
1071};
1072
1073/**
1074 * struct ksz_port_cfg - Port configuration data structure
1075 * @vid:	VID value.
1076 * @member:	Port membership.
1077 * @port_prio:	Port priority.
1078 * @rx_rate:	Receive priority rate.
1079 * @tx_rate:	Transmit priority rate.
1080 * @stp_state:	Current Spanning Tree Protocol state.
1081 */
1082struct ksz_port_cfg {
1083	u16 vid;
1084	u8 member;
1085	u8 port_prio;
1086	u32 rx_rate[PRIO_QUEUES];
1087	u32 tx_rate[PRIO_QUEUES];
1088	int stp_state;
1089};
1090
1091/**
1092 * struct ksz_switch - KSZ8842 switch data structure
1093 * @mac_table:	MAC table entries information.
1094 * @vlan_table:	VLAN table entries information.
1095 * @port_cfg:	Port configuration information.
1096 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1097 * 		(bit7 ~ bit2) field.
1098 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1099 * 		Tag priority field.
1100 * @br_addr:	Bridge address.  Used for STP.
1101 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1102 * @broad_per:	Broadcast storm percentage.
1103 * @member:	Current port membership.  Used for STP.
1104 */
1105struct ksz_switch {
1106	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109
1110	u8 diffserv[DIFFSERV_ENTRIES];
1111	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112
1113	u8 br_addr[ETH_ALEN];
1114	u8 other_addr[ETH_ALEN];
1115
1116	u8 broad_per;
1117	u8 member;
1118};
1119
1120#define TX_RATE_UNIT			10000
1121
1122/**
1123 * struct ksz_port_info - Port information data structure
1124 * @state:	Connection status of the port.
1125 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1126 * @duplex:	Duplex mode.
1127 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1128 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1129 * @port_id:	Port index to access actual hardware register.
1130 * @pdev:	Pointer to OS dependent network device.
1131 */
1132struct ksz_port_info {
1133	uint state;
1134	uint tx_rate;
1135	u8 duplex;
1136	u8 advertised;
1137	u8 partner;
1138	u8 port_id;
1139	void *pdev;
1140};
1141
1142#define MAX_TX_HELD_SIZE		52000
1143
1144/* Hardware features and bug fixes. */
1145#define LINK_INT_WORKING		(1 << 0)
1146#define SMALL_PACKET_TX_BUG		(1 << 1)
1147#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1148#define RX_HUGE_FRAME			(1 << 4)
1149#define STP_SUPPORT			(1 << 8)
1150
1151/* Software overrides. */
1152#define PAUSE_FLOW_CTRL			(1 << 0)
1153#define FAST_AGING			(1 << 1)
1154
1155/**
1156 * struct ksz_hw - KSZ884X hardware data structure
1157 * @io:			Virtual address assigned.
1158 * @ksz_switch:		Pointer to KSZ8842 switch.
1159 * @port_info:		Port information.
1160 * @port_mib:		Port MIB information.
1161 * @dev_count:		Number of network devices this hardware supports.
1162 * @dst_ports:		Destination ports in switch for transmission.
1163 * @id:			Hardware ID.  Used for display only.
1164 * @mib_cnt:		Number of MIB counters this hardware has.
1165 * @mib_port_cnt:	Number of ports with MIB counters.
1166 * @tx_cfg:		Cached transmit control settings.
1167 * @rx_cfg:		Cached receive control settings.
1168 * @intr_mask:		Current interrupt mask.
1169 * @intr_set:		Current interrup set.
1170 * @intr_blocked:	Interrupt blocked.
1171 * @rx_desc_info:	Receive descriptor information.
1172 * @tx_desc_info:	Transmit descriptor information.
1173 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1174 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1175 * @tx_size:		Transmit data size.  Used for TX optimization.
1176 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1177 * @perm_addr:		Permanent MAC address.
1178 * @override_addr:	Overridden MAC address.
1179 * @address:		Additional MAC address entries.
1180 * @addr_list_size:	Additional MAC address list size.
1181 * @mac_override:	Indication of MAC address overridden.
1182 * @promiscuous:	Counter to keep track of promiscuous mode set.
1183 * @all_multi:		Counter to keep track of all multicast mode set.
1184 * @multi_list:		Multicast address entries.
1185 * @multi_bits:		Cached multicast hash table settings.
1186 * @multi_list_size:	Multicast address list size.
1187 * @enabled:		Indication of hardware enabled.
1188 * @rx_stop:		Indication of receive process stop.
1189 * @reserved2:		none
1190 * @features:		Hardware features to enable.
1191 * @overrides:		Hardware features to override.
1192 * @parent:		Pointer to parent, network device private structure.
1193 */
1194struct ksz_hw {
1195	void __iomem *io;
1196
1197	struct ksz_switch *ksz_switch;
1198	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200	int dev_count;
1201	int dst_ports;
1202	int id;
1203	int mib_cnt;
1204	int mib_port_cnt;
1205
1206	u32 tx_cfg;
1207	u32 rx_cfg;
1208	u32 intr_mask;
1209	u32 intr_set;
1210	uint intr_blocked;
1211
1212	struct ksz_desc_info rx_desc_info;
1213	struct ksz_desc_info tx_desc_info;
1214
1215	int tx_int_cnt;
1216	int tx_int_mask;
1217	int tx_size;
1218
1219	u8 perm_addr[ETH_ALEN];
1220	u8 override_addr[ETH_ALEN];
1221	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222	u8 addr_list_size;
1223	u8 mac_override;
1224	u8 promiscuous;
1225	u8 all_multi;
1226	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227	u8 multi_bits[HW_MULTICAST_SIZE];
1228	u8 multi_list_size;
1229
1230	u8 enabled;
1231	u8 rx_stop;
1232	u8 reserved2[1];
1233
1234	uint features;
1235	uint overrides;
1236
1237	void *parent;
1238};
1239
1240enum {
1241	PHY_NO_FLOW_CTRL,
1242	PHY_FLOW_CTRL,
1243	PHY_TX_ONLY,
1244	PHY_RX_ONLY
1245};
1246
1247/**
1248 * struct ksz_port - Virtual port data structure
1249 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1250 * 			duplex, and 0 for auto, which normally results in full
1251 * 			duplex.
1252 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1253 * 			0 for auto, which normally results in 100 Mbit.
1254 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1255 * 			force.
1256 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1257 * 			control, and PHY_FLOW_CTRL for flow control.
1258 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259 * 			Mbit PHY.
1260 * @first_port:		Index of first port this port supports.
1261 * @mib_port_cnt:	Number of ports with MIB counters.
1262 * @port_cnt:		Number of ports this port supports.
1263 * @counter:		Port statistics counter.
1264 * @hw:			Pointer to hardware structure.
1265 * @linked:		Pointer to port information linked to this port.
1266 */
1267struct ksz_port {
1268	u8 duplex;
1269	u8 speed;
1270	u8 force_link;
1271	u8 flow_ctrl;
1272
1273	int first_port;
1274	int mib_port_cnt;
1275	int port_cnt;
1276	u64 counter[OID_COUNTER_LAST];
1277
1278	struct ksz_hw *hw;
1279	struct ksz_port_info *linked;
1280};
1281
1282/**
1283 * struct ksz_timer_info - Timer information data structure
1284 * @timer:	Kernel timer.
1285 * @cnt:	Running timer counter.
1286 * @max:	Number of times to run timer; -1 for infinity.
1287 * @period:	Timer period in jiffies.
1288 */
1289struct ksz_timer_info {
1290	struct timer_list timer;
1291	int cnt;
1292	int max;
1293	int period;
1294};
1295
1296/**
1297 * struct ksz_shared_mem - OS dependent shared memory data structure
1298 * @dma_addr:	Physical DMA address allocated.
1299 * @alloc_size:	Allocation size.
1300 * @phys:	Actual physical address used.
1301 * @alloc_virt:	Virtual address allocated.
1302 * @virt:	Actual virtual address used.
1303 */
1304struct ksz_shared_mem {
1305	dma_addr_t dma_addr;
1306	uint alloc_size;
1307	uint phys;
1308	u8 *alloc_virt;
1309	u8 *virt;
1310};
1311
1312/**
1313 * struct ksz_counter_info - OS dependent counter information data structure
1314 * @counter:	Wait queue to wakeup after counters are read.
1315 * @time:	Next time in jiffies to read counter.
1316 * @read:	Indication of counters read in full or not.
1317 */
1318struct ksz_counter_info {
1319	wait_queue_head_t counter;
1320	unsigned long time;
1321	int read;
1322};
1323
1324/**
1325 * struct dev_info - Network device information data structure
1326 * @dev:		Pointer to network device.
1327 * @pdev:		Pointer to PCI device.
1328 * @hw:			Hardware structure.
1329 * @desc_pool:		Physical memory used for descriptor pool.
1330 * @hwlock:		Spinlock to prevent hardware from accessing.
1331 * @lock:		Mutex lock to prevent device from accessing.
1332 * @dev_rcv:		Receive process function used.
1333 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1334 * @skb_index:		Buffer index for receiving fragments.
1335 * @skb_len:		Buffer length for receiving fragments.
1336 * @mib_read:		Workqueue to read MIB counters.
1337 * @mib_timer_info:	Timer to read MIB counters.
1338 * @counter:		Used for MIB reading.
1339 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1340 * 			the maximum is MAX_RX_BUF_SIZE.
1341 * @opened:		Counter to keep track of device open.
1342 * @rx_tasklet:		Receive processing tasklet.
1343 * @tx_tasklet:		Transmit processing tasklet.
1344 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1345 * @wol_support:	Wake-on-LAN support used by ethtool.
1346 * @pme_wait:		Used for KSZ8841 power management.
1347 */
1348struct dev_info {
1349	struct net_device *dev;
1350	struct pci_dev *pdev;
1351
1352	struct ksz_hw hw;
1353	struct ksz_shared_mem desc_pool;
1354
1355	spinlock_t hwlock;
1356	struct mutex lock;
1357
1358	int (*dev_rcv)(struct dev_info *);
1359
1360	struct sk_buff *last_skb;
1361	int skb_index;
1362	int skb_len;
1363
1364	struct work_struct mib_read;
1365	struct ksz_timer_info mib_timer_info;
1366	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367
1368	int mtu;
1369	int opened;
1370
1371	struct tasklet_struct rx_tasklet;
1372	struct tasklet_struct tx_tasklet;
1373
1374	int wol_enable;
1375	int wol_support;
1376	unsigned long pme_wait;
1377};
1378
1379/**
1380 * struct dev_priv - Network device private data structure
1381 * @adapter:		Adapter device information.
1382 * @port:		Port information.
1383 * @monitor_timer_info:	Timer to monitor ports.
1384 * @proc_sem:		Semaphore for proc accessing.
1385 * @id:			Device ID.
1386 * @mii_if:		MII interface information.
1387 * @advertising:	Temporary variable to store advertised settings.
1388 * @msg_enable:		The message flags controlling driver output.
1389 * @media_state:	The connection status of the device.
1390 * @multicast:		The all multicast state of the device.
1391 * @promiscuous:	The promiscuous state of the device.
1392 */
1393struct dev_priv {
1394	struct dev_info *adapter;
1395	struct ksz_port port;
1396	struct ksz_timer_info monitor_timer_info;
1397
1398	struct semaphore proc_sem;
1399	int id;
1400
1401	struct mii_if_info mii_if;
1402	u32 advertising;
1403
1404	u32 msg_enable;
1405	int media_state;
1406	int multicast;
1407	int promiscuous;
1408};
1409
1410#define DRV_NAME		"KSZ884X PCI"
1411#define DEVICE_NAME		"KSZ884x PCI"
1412#define DRV_VERSION		"1.0.0"
1413#define DRV_RELDATE		"Feb 8, 2010"
1414
1415static char version[] =
1416	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417
1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419
1420/*
1421 * Interrupt processing primary routines
1422 */
1423
1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425{
1426	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427}
1428
1429static inline void hw_dis_intr(struct ksz_hw *hw)
1430{
1431	hw->intr_blocked = hw->intr_mask;
1432	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434}
1435
1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437{
1438	hw->intr_set = interrupt;
1439	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440}
1441
1442static inline void hw_ena_intr(struct ksz_hw *hw)
1443{
1444	hw->intr_blocked = 0;
1445	hw_set_intr(hw, hw->intr_mask);
1446}
1447
1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449{
1450	hw->intr_mask &= ~(bit);
1451}
1452
1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454{
1455	u32 read_intr;
1456
1457	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458	hw->intr_set = read_intr & ~interrupt;
1459	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460	hw_dis_intr_bit(hw, interrupt);
1461}
1462
1463/**
1464 * hw_turn_on_intr - turn on specified interrupts
1465 * @hw: 	The hardware instance.
1466 * @bit:	The interrupt bits to be on.
1467 *
1468 * This routine turns on the specified interrupts in the interrupt mask so that
1469 * those interrupts will be enabled.
1470 */
1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472{
1473	hw->intr_mask |= bit;
1474
1475	if (!hw->intr_blocked)
1476		hw_set_intr(hw, hw->intr_mask);
1477}
1478
1479static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1480{
1481	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1482	*status = *status & hw->intr_set;
1483}
1484
1485static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1486{
1487	if (interrupt)
1488		hw_ena_intr(hw);
1489}
1490
1491/**
1492 * hw_block_intr - block hardware interrupts
1493 * @hw: The hardware instance.
1494 *
1495 * This function blocks all interrupts of the hardware and returns the current
1496 * interrupt enable mask so that interrupts can be restored later.
1497 *
1498 * Return the current interrupt enable mask.
1499 */
1500static uint hw_block_intr(struct ksz_hw *hw)
1501{
1502	uint interrupt = 0;
1503
1504	if (!hw->intr_blocked) {
1505		hw_dis_intr(hw);
1506		interrupt = hw->intr_blocked;
1507	}
1508	return interrupt;
1509}
1510
1511/*
1512 * Hardware descriptor routines
1513 */
1514
1515static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1516{
1517	status.rx.hw_owned = 0;
1518	desc->phw->ctrl.data = cpu_to_le32(status.data);
1519}
1520
1521static inline void release_desc(struct ksz_desc *desc)
1522{
1523	desc->sw.ctrl.tx.hw_owned = 1;
1524	if (desc->sw.buf_size != desc->sw.buf.data) {
1525		desc->sw.buf_size = desc->sw.buf.data;
1526		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1527	}
1528	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1529}
1530
1531static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1532{
1533	*desc = &info->ring[info->last];
1534	info->last++;
1535	info->last &= info->mask;
1536	info->avail--;
1537	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1538}
1539
1540static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1541{
1542	desc->phw->addr = cpu_to_le32(addr);
1543}
1544
1545static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1546{
1547	desc->sw.buf.rx.buf_size = len;
1548}
1549
1550static inline void get_tx_pkt(struct ksz_desc_info *info,
1551	struct ksz_desc **desc)
1552{
1553	*desc = &info->ring[info->next];
1554	info->next++;
1555	info->next &= info->mask;
1556	info->avail--;
1557	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1558}
1559
1560static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1561{
1562	desc->phw->addr = cpu_to_le32(addr);
1563}
1564
1565static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1566{
1567	desc->sw.buf.tx.buf_size = len;
1568}
1569
1570/* Switch functions */
1571
1572#define TABLE_READ			0x10
1573#define TABLE_SEL_SHIFT			2
1574
1575#define HW_DELAY(hw, reg)			\
1576	do {					\
1577		readw(hw->io + reg);		\
1578	} while (0)
1579
1580/**
1581 * sw_r_table - read 4 bytes of data from switch table
1582 * @hw:		The hardware instance.
1583 * @table:	The table selector.
1584 * @addr:	The address of the table entry.
1585 * @data:	Buffer to store the read data.
1586 *
1587 * This routine reads 4 bytes of data from the table of the switch.
1588 * Hardware interrupts are disabled to minimize corruption of read data.
1589 */
1590static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1591{
1592	u16 ctrl_addr;
1593	uint interrupt;
1594
1595	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1596
1597	interrupt = hw_block_intr(hw);
1598
1599	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1600	HW_DELAY(hw, KS884X_IACR_OFFSET);
1601	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1602
1603	hw_restore_intr(hw, interrupt);
1604}
1605
1606/**
1607 * sw_w_table_64 - write 8 bytes of data to the switch table
1608 * @hw:		The hardware instance.
1609 * @table:	The table selector.
1610 * @addr:	The address of the table entry.
1611 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1612 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1613 *
1614 * This routine writes 8 bytes of data to the table of the switch.
1615 * Hardware interrupts are disabled to minimize corruption of written data.
1616 */
1617static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1618	u32 data_lo)
1619{
1620	u16 ctrl_addr;
1621	uint interrupt;
1622
1623	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1624
1625	interrupt = hw_block_intr(hw);
1626
1627	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1628	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1629
1630	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1631	HW_DELAY(hw, KS884X_IACR_OFFSET);
1632
1633	hw_restore_intr(hw, interrupt);
1634}
1635
1636/**
1637 * sw_w_sta_mac_table - write to the static MAC table
1638 * @hw: 	The hardware instance.
1639 * @addr:	The address of the table entry.
1640 * @mac_addr:	The MAC address.
1641 * @ports:	The port members.
1642 * @override:	The flag to override the port receive/transmit settings.
1643 * @valid:	The flag to indicate entry is valid.
1644 * @use_fid:	The flag to indicate the FID is valid.
1645 * @fid:	The FID value.
1646 *
1647 * This routine writes an entry of the static MAC table of the switch.  It
1648 * calls sw_w_table_64() to write the data.
1649 */
1650static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1651	u8 ports, int override, int valid, int use_fid, u8 fid)
1652{
1653	u32 data_hi;
1654	u32 data_lo;
1655
1656	data_lo = ((u32) mac_addr[2] << 24) |
1657		((u32) mac_addr[3] << 16) |
1658		((u32) mac_addr[4] << 8) | mac_addr[5];
1659	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1660	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1661
1662	if (override)
1663		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1664	if (use_fid) {
1665		data_hi |= STATIC_MAC_TABLE_USE_FID;
1666		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1667	}
1668	if (valid)
1669		data_hi |= STATIC_MAC_TABLE_VALID;
1670
1671	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1672}
1673
1674/**
1675 * sw_r_vlan_table - read from the VLAN table
1676 * @hw: 	The hardware instance.
1677 * @addr:	The address of the table entry.
1678 * @vid:	Buffer to store the VID.
1679 * @fid:	Buffer to store the VID.
1680 * @member:	Buffer to store the port membership.
1681 *
1682 * This function reads an entry of the VLAN table of the switch.  It calls
1683 * sw_r_table() to get the data.
1684 *
1685 * Return 0 if the entry is valid; otherwise -1.
1686 */
1687static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1688	u8 *member)
1689{
1690	u32 data;
1691
1692	sw_r_table(hw, TABLE_VLAN, addr, &data);
1693	if (data & VLAN_TABLE_VALID) {
1694		*vid = (u16)(data & VLAN_TABLE_VID);
1695		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1696		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1697			VLAN_TABLE_MEMBERSHIP_SHIFT);
1698		return 0;
1699	}
1700	return -1;
1701}
1702
1703/**
1704 * port_r_mib_cnt - read MIB counter
1705 * @hw: 	The hardware instance.
1706 * @port:	The port index.
1707 * @addr:	The address of the counter.
1708 * @cnt:	Buffer to store the counter.
1709 *
1710 * This routine reads a MIB counter of the port.
1711 * Hardware interrupts are disabled to minimize corruption of read data.
1712 */
1713static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1714{
1715	u32 data;
1716	u16 ctrl_addr;
1717	uint interrupt;
1718	int timeout;
1719
1720	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1721
1722	interrupt = hw_block_intr(hw);
1723
1724	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1725	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1726	HW_DELAY(hw, KS884X_IACR_OFFSET);
1727
1728	for (timeout = 100; timeout > 0; timeout--) {
1729		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1730
1731		if (data & MIB_COUNTER_VALID) {
1732			if (data & MIB_COUNTER_OVERFLOW)
1733				*cnt += MIB_COUNTER_VALUE + 1;
1734			*cnt += data & MIB_COUNTER_VALUE;
1735			break;
1736		}
1737	}
1738
1739	hw_restore_intr(hw, interrupt);
1740}
1741
1742/**
1743 * port_r_mib_pkt - read dropped packet counts
1744 * @hw: 	The hardware instance.
1745 * @port:	The port index.
1746 * @last:	last one
1747 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1748 *
1749 * This routine reads the dropped packet counts of the port.
1750 * Hardware interrupts are disabled to minimize corruption of read data.
1751 */
1752static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1753{
1754	u32 cur;
1755	u32 data;
1756	u16 ctrl_addr;
1757	uint interrupt;
1758	int index;
1759
1760	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1761	do {
1762		interrupt = hw_block_intr(hw);
1763
1764		ctrl_addr = (u16) index;
1765		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1766			<< 8);
1767		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1768		HW_DELAY(hw, KS884X_IACR_OFFSET);
1769		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1770
1771		hw_restore_intr(hw, interrupt);
1772
1773		data &= MIB_PACKET_DROPPED;
1774		cur = *last;
1775		if (data != cur) {
1776			*last = data;
1777			if (data < cur)
1778				data += MIB_PACKET_DROPPED + 1;
1779			data -= cur;
1780			*cnt += data;
1781		}
1782		++last;
1783		++cnt;
1784		index -= KS_MIB_PACKET_DROPPED_TX -
1785			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1786	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1787}
1788
1789/**
1790 * port_r_cnt - read MIB counters periodically
1791 * @hw: 	The hardware instance.
1792 * @port:	The port index.
1793 *
1794 * This routine is used to read the counters of the port periodically to avoid
1795 * counter overflow.  The hardware should be acquired first before calling this
1796 * routine.
1797 *
1798 * Return non-zero when not all counters not read.
1799 */
1800static int port_r_cnt(struct ksz_hw *hw, int port)
1801{
1802	struct ksz_port_mib *mib = &hw->port_mib[port];
1803
1804	if (mib->mib_start < PORT_COUNTER_NUM)
1805		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1806			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1807				&mib->counter[mib->cnt_ptr]);
1808			++mib->cnt_ptr;
1809		}
1810	if (hw->mib_cnt > PORT_COUNTER_NUM)
1811		port_r_mib_pkt(hw, port, mib->dropped,
1812			&mib->counter[PORT_COUNTER_NUM]);
1813	mib->cnt_ptr = 0;
1814	return 0;
1815}
1816
1817/**
1818 * port_init_cnt - initialize MIB counter values
1819 * @hw: 	The hardware instance.
1820 * @port:	The port index.
1821 *
1822 * This routine is used to initialize all counters to zero if the hardware
1823 * cannot do it after reset.
1824 */
1825static void port_init_cnt(struct ksz_hw *hw, int port)
1826{
1827	struct ksz_port_mib *mib = &hw->port_mib[port];
1828
1829	mib->cnt_ptr = 0;
1830	if (mib->mib_start < PORT_COUNTER_NUM)
1831		do {
1832			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1833				&mib->counter[mib->cnt_ptr]);
1834			++mib->cnt_ptr;
1835		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1836	if (hw->mib_cnt > PORT_COUNTER_NUM)
1837		port_r_mib_pkt(hw, port, mib->dropped,
1838			&mib->counter[PORT_COUNTER_NUM]);
1839	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1840	mib->cnt_ptr = 0;
1841}
1842
1843/*
1844 * Port functions
1845 */
1846
1847/**
1848 * port_cfg - set port register bits
1849 * @hw: 	The hardware instance.
1850 * @port:	The port index.
1851 * @offset:	The offset of the port register.
1852 * @bits:	The data bits to set.
1853 * @set:	The flag indicating whether the bits are to be set or not.
1854 *
1855 * This routine sets or resets the specified bits of the port register.
1856 */
1857static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1858	int set)
1859{
1860	u32 addr;
1861	u16 data;
1862
1863	PORT_CTRL_ADDR(port, addr);
1864	addr += offset;
1865	data = readw(hw->io + addr);
1866	if (set)
1867		data |= bits;
1868	else
1869		data &= ~bits;
1870	writew(data, hw->io + addr);
1871}
1872
1873/**
1874 * port_r8 - read byte from port register
1875 * @hw: 	The hardware instance.
1876 * @port:	The port index.
1877 * @offset:	The offset of the port register.
1878 * @data:	Buffer to store the data.
1879 *
1880 * This routine reads a byte from the port register.
1881 */
1882static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1883{
1884	u32 addr;
1885
1886	PORT_CTRL_ADDR(port, addr);
1887	addr += offset;
1888	*data = readb(hw->io + addr);
1889}
1890
1891/**
1892 * port_r16 - read word from port register.
1893 * @hw: 	The hardware instance.
1894 * @port:	The port index.
1895 * @offset:	The offset of the port register.
1896 * @data:	Buffer to store the data.
1897 *
1898 * This routine reads a word from the port register.
1899 */
1900static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1901{
1902	u32 addr;
1903
1904	PORT_CTRL_ADDR(port, addr);
1905	addr += offset;
1906	*data = readw(hw->io + addr);
1907}
1908
1909/**
1910 * port_w16 - write word to port register.
1911 * @hw: 	The hardware instance.
1912 * @port:	The port index.
1913 * @offset:	The offset of the port register.
1914 * @data:	Data to write.
1915 *
1916 * This routine writes a word to the port register.
1917 */
1918static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1919{
1920	u32 addr;
1921
1922	PORT_CTRL_ADDR(port, addr);
1923	addr += offset;
1924	writew(data, hw->io + addr);
1925}
1926
1927/**
1928 * sw_chk - check switch register bits
1929 * @hw: 	The hardware instance.
1930 * @addr:	The address of the switch register.
1931 * @bits:	The data bits to check.
1932 *
1933 * This function checks whether the specified bits of the switch register are
1934 * set or not.
1935 *
1936 * Return 0 if the bits are not set.
1937 */
1938static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
1939{
1940	u16 data;
1941
1942	data = readw(hw->io + addr);
1943	return (data & bits) == bits;
1944}
1945
1946/**
1947 * sw_cfg - set switch register bits
1948 * @hw: 	The hardware instance.
1949 * @addr:	The address of the switch register.
1950 * @bits:	The data bits to set.
1951 * @set:	The flag indicating whether the bits are to be set or not.
1952 *
1953 * This function sets or resets the specified bits of the switch register.
1954 */
1955static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
1956{
1957	u16 data;
1958
1959	data = readw(hw->io + addr);
1960	if (set)
1961		data |= bits;
1962	else
1963		data &= ~bits;
1964	writew(data, hw->io + addr);
1965}
1966
1967/* Bandwidth */
1968
1969static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
1970{
1971	port_cfg(hw, p,
1972		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
1973}
1974
1975/* Driver set switch broadcast storm protection at 10% rate. */
1976#define BROADCAST_STORM_PROTECTION_RATE	10
1977
1978/* 148,800 frames * 67 ms / 100 */
1979#define BROADCAST_STORM_VALUE		9969
1980
1981/**
1982 * sw_cfg_broad_storm - configure broadcast storm threshold
1983 * @hw: 	The hardware instance.
1984 * @percent:	Broadcast storm threshold in percent of transmit rate.
1985 *
1986 * This routine configures the broadcast storm threshold of the switch.
1987 */
1988static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
1989{
1990	u16 data;
1991	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
1992
1993	if (value > BROADCAST_STORM_RATE)
1994		value = BROADCAST_STORM_RATE;
1995
1996	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
1997	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
1998	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
1999	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2000}
2001
2002/**
2003 * sw_get_broad_storm - get broadcast storm threshold
2004 * @hw: 	The hardware instance.
2005 * @percent:	Buffer to store the broadcast storm threshold percentage.
2006 *
2007 * This routine retrieves the broadcast storm threshold of the switch.
2008 */
2009static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2010{
2011	int num;
2012	u16 data;
2013
2014	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2015	num = (data & BROADCAST_STORM_RATE_HI);
2016	num <<= 8;
2017	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2018	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2019	*percent = (u8) num;
2020}
2021
2022/**
2023 * sw_dis_broad_storm - disable broadstorm
2024 * @hw: 	The hardware instance.
2025 * @port:	The port index.
2026 *
2027 * This routine disables the broadcast storm limit function of the switch.
2028 */
2029static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2030{
2031	port_cfg_broad_storm(hw, port, 0);
2032}
2033
2034/**
2035 * sw_ena_broad_storm - enable broadcast storm
2036 * @hw: 	The hardware instance.
2037 * @port:	The port index.
2038 *
2039 * This routine enables the broadcast storm limit function of the switch.
2040 */
2041static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2042{
2043	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2044	port_cfg_broad_storm(hw, port, 1);
2045}
2046
2047/**
2048 * sw_init_broad_storm - initialize broadcast storm
2049 * @hw: 	The hardware instance.
2050 *
2051 * This routine initializes the broadcast storm limit function of the switch.
2052 */
2053static void sw_init_broad_storm(struct ksz_hw *hw)
2054{
2055	int port;
2056
2057	hw->ksz_switch->broad_per = 1;
2058	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2059	for (port = 0; port < TOTAL_PORT_NUM; port++)
2060		sw_dis_broad_storm(hw, port);
2061	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2062}
2063
2064/**
2065 * hw_cfg_broad_storm - configure broadcast storm
2066 * @hw: 	The hardware instance.
2067 * @percent:	Broadcast storm threshold in percent of transmit rate.
2068 *
2069 * This routine configures the broadcast storm threshold of the switch.
2070 * It is called by user functions.  The hardware should be acquired first.
2071 */
2072static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2073{
2074	if (percent > 100)
2075		percent = 100;
2076
2077	sw_cfg_broad_storm(hw, percent);
2078	sw_get_broad_storm(hw, &percent);
2079	hw->ksz_switch->broad_per = percent;
2080}
2081
2082/**
2083 * sw_dis_prio_rate - disable switch priority rate
2084 * @hw: 	The hardware instance.
2085 * @port:	The port index.
2086 *
2087 * This routine disables the priority rate function of the switch.
2088 */
2089static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2090{
2091	u32 addr;
2092
2093	PORT_CTRL_ADDR(port, addr);
2094	addr += KS8842_PORT_IN_RATE_OFFSET;
2095	writel(0, hw->io + addr);
2096}
2097
2098/**
2099 * sw_init_prio_rate - initialize switch prioirty rate
2100 * @hw: 	The hardware instance.
2101 *
2102 * This routine initializes the priority rate function of the switch.
2103 */
2104static void sw_init_prio_rate(struct ksz_hw *hw)
2105{
2106	int port;
2107	int prio;
2108	struct ksz_switch *sw = hw->ksz_switch;
2109
2110	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2111		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2112			sw->port_cfg[port].rx_rate[prio] =
2113			sw->port_cfg[port].tx_rate[prio] = 0;
2114		}
2115		sw_dis_prio_rate(hw, port);
2116	}
2117}
2118
2119/* Communication */
2120
2121static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2122{
2123	port_cfg(hw, p,
2124		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2125}
2126
2127/* Mirroring */
2128
2129static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2130{
2131	port_cfg(hw, p,
2132		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2133}
2134
2135static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2136{
2137	port_cfg(hw, p,
2138		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2139}
2140
2141static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2142{
2143	port_cfg(hw, p,
2144		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2145}
2146
2147static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2148{
2149	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2150}
2151
2152static void sw_init_mirror(struct ksz_hw *hw)
2153{
2154	int port;
2155
2156	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2157		port_cfg_mirror_sniffer(hw, port, 0);
2158		port_cfg_mirror_rx(hw, port, 0);
2159		port_cfg_mirror_tx(hw, port, 0);
2160	}
2161	sw_cfg_mirror_rx_tx(hw, 0);
2162}
2163
2164/* Priority */
2165
2166static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2167{
2168	port_cfg(hw, p,
2169		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2170}
2171
2172static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2173{
2174	port_cfg(hw, p,
2175		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2176}
2177
2178static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2179{
2180	port_cfg(hw, p,
2181		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2182}
2183
2184static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2185{
2186	port_cfg(hw, p,
2187		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2188}
2189
2190/**
2191 * sw_dis_diffserv - disable switch DiffServ priority
2192 * @hw: 	The hardware instance.
2193 * @port:	The port index.
2194 *
2195 * This routine disables the DiffServ priority function of the switch.
2196 */
2197static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2198{
2199	port_cfg_diffserv(hw, port, 0);
2200}
2201
2202/**
2203 * sw_dis_802_1p - disable switch 802.1p priority
2204 * @hw: 	The hardware instance.
2205 * @port:	The port index.
2206 *
2207 * This routine disables the 802.1p priority function of the switch.
2208 */
2209static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2210{
2211	port_cfg_802_1p(hw, port, 0);
2212}
2213
2214/**
2215 * sw_cfg_replace_null_vid -
2216 * @hw: 	The hardware instance.
2217 * @set:	The flag to disable or enable.
2218 *
2219 */
2220static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2221{
2222	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2223}
2224
2225/**
2226 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2227 * @hw: 	The hardware instance.
2228 * @port:	The port index.
2229 * @set:	The flag to disable or enable.
2230 *
2231 * This routine enables the 802.1p priority re-mapping function of the switch.
2232 * That allows 802.1p priority field to be replaced with the port's default
2233 * tag's priority value if the ingress packet's 802.1p priority has a higher
2234 * priority than port's default tag's priority.
2235 */
2236static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2237{
2238	port_cfg_replace_vid(hw, port, set);
2239}
2240
2241/**
2242 * sw_cfg_port_based - configure switch port based priority
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 * @prio:	The priority to set.
2246 *
2247 * This routine configures the port based priority of the switch.
2248 */
2249static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2250{
2251	u16 data;
2252
2253	if (prio > PORT_BASED_PRIORITY_BASE)
2254		prio = PORT_BASED_PRIORITY_BASE;
2255
2256	hw->ksz_switch->port_cfg[port].port_prio = prio;
2257
2258	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2259	data &= ~PORT_BASED_PRIORITY_MASK;
2260	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2261	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2262}
2263
2264/**
2265 * sw_dis_multi_queue - disable transmit multiple queues
2266 * @hw: 	The hardware instance.
2267 * @port:	The port index.
2268 *
2269 * This routine disables the transmit multiple queues selection of the switch
2270 * port.  Only single transmit queue on the port.
2271 */
2272static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2273{
2274	port_cfg_prio(hw, port, 0);
2275}
2276
2277/**
2278 * sw_init_prio - initialize switch priority
2279 * @hw: 	The hardware instance.
2280 *
2281 * This routine initializes the switch QoS priority functions.
2282 */
2283static void sw_init_prio(struct ksz_hw *hw)
2284{
2285	int port;
2286	int tos;
2287	struct ksz_switch *sw = hw->ksz_switch;
2288
2289	/*
2290	 * Init all the 802.1p tag priority value to be assigned to different
2291	 * priority queue.
2292	 */
2293	sw->p_802_1p[0] = 0;
2294	sw->p_802_1p[1] = 0;
2295	sw->p_802_1p[2] = 1;
2296	sw->p_802_1p[3] = 1;
2297	sw->p_802_1p[4] = 2;
2298	sw->p_802_1p[5] = 2;
2299	sw->p_802_1p[6] = 3;
2300	sw->p_802_1p[7] = 3;
2301
2302	/*
2303	 * Init all the DiffServ priority value to be assigned to priority
2304	 * queue 0.
2305	 */
2306	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2307		sw->diffserv[tos] = 0;
2308
2309	/* All QoS functions disabled. */
2310	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2311		sw_dis_multi_queue(hw, port);
2312		sw_dis_diffserv(hw, port);
2313		sw_dis_802_1p(hw, port);
2314		sw_cfg_replace_vid(hw, port, 0);
2315
2316		sw->port_cfg[port].port_prio = 0;
2317		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2318	}
2319	sw_cfg_replace_null_vid(hw, 0);
2320}
2321
2322/**
2323 * port_get_def_vid - get port default VID.
2324 * @hw: 	The hardware instance.
2325 * @port:	The port index.
2326 * @vid:	Buffer to store the VID.
2327 *
2328 * This routine retrieves the default VID of the port.
2329 */
2330static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2331{
2332	u32 addr;
2333
2334	PORT_CTRL_ADDR(port, addr);
2335	addr += KS8842_PORT_CTRL_VID_OFFSET;
2336	*vid = readw(hw->io + addr);
2337}
2338
2339/**
2340 * sw_init_vlan - initialize switch VLAN
2341 * @hw: 	The hardware instance.
2342 *
2343 * This routine initializes the VLAN function of the switch.
2344 */
2345static void sw_init_vlan(struct ksz_hw *hw)
2346{
2347	int port;
2348	int entry;
2349	struct ksz_switch *sw = hw->ksz_switch;
2350
2351	/* Read 16 VLAN entries from device's VLAN table. */
2352	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2353		sw_r_vlan_table(hw, entry,
2354			&sw->vlan_table[entry].vid,
2355			&sw->vlan_table[entry].fid,
2356			&sw->vlan_table[entry].member);
2357	}
2358
2359	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2360		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2361		sw->port_cfg[port].member = PORT_MASK;
2362	}
2363}
2364
2365/**
2366 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2367 * @hw: 	The hardware instance.
2368 * @port:	The port index.
2369 * @member:	The port-based VLAN membership.
2370 *
2371 * This routine configures the port-based VLAN membership of the port.
2372 */
2373static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2374{
2375	u32 addr;
2376	u8 data;
2377
2378	PORT_CTRL_ADDR(port, addr);
2379	addr += KS8842_PORT_CTRL_2_OFFSET;
2380
2381	data = readb(hw->io + addr);
2382	data &= ~PORT_VLAN_MEMBERSHIP;
2383	data |= (member & PORT_MASK);
2384	writeb(data, hw->io + addr);
2385
2386	hw->ksz_switch->port_cfg[port].member = member;
2387}
2388
2389/**
2390 * sw_set_addr - configure switch MAC address
2391 * @hw: 	The hardware instance.
2392 * @mac_addr:	The MAC address.
2393 *
2394 * This function configures the MAC address of the switch.
2395 */
2396static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2397{
2398	int i;
2399
2400	for (i = 0; i < 6; i += 2) {
2401		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2402		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2403	}
2404}
2405
2406/**
2407 * sw_set_global_ctrl - set switch global control
2408 * @hw: 	The hardware instance.
2409 *
2410 * This routine sets the global control of the switch function.
2411 */
2412static void sw_set_global_ctrl(struct ksz_hw *hw)
2413{
2414	u16 data;
2415
2416	/* Enable switch MII flow control. */
2417	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2418	data |= SWITCH_FLOW_CTRL;
2419	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2420
2421	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2422
2423	/* Enable aggressive back off algorithm in half duplex mode. */
2424	data |= SWITCH_AGGR_BACKOFF;
2425
2426	/* Enable automatic fast aging when link changed detected. */
2427	data |= SWITCH_AGING_ENABLE;
2428	data |= SWITCH_LINK_AUTO_AGING;
2429
2430	if (hw->overrides & FAST_AGING)
2431		data |= SWITCH_FAST_AGING;
2432	else
2433		data &= ~SWITCH_FAST_AGING;
2434	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2435
2436	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2437
2438	/* Enable no excessive collision drop. */
2439	data |= NO_EXC_COLLISION_DROP;
2440	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2441}
2442
2443enum {
2444	STP_STATE_DISABLED = 0,
2445	STP_STATE_LISTENING,
2446	STP_STATE_LEARNING,
2447	STP_STATE_FORWARDING,
2448	STP_STATE_BLOCKED,
2449	STP_STATE_SIMPLE
2450};
2451
2452/**
2453 * port_set_stp_state - configure port spanning tree state
2454 * @hw: 	The hardware instance.
2455 * @port:	The port index.
2456 * @state:	The spanning tree state.
2457 *
2458 * This routine configures the spanning tree state of the port.
2459 */
2460static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2461{
2462	u16 data;
2463
2464	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2465	switch (state) {
2466	case STP_STATE_DISABLED:
2467		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2468		data |= PORT_LEARN_DISABLE;
2469		break;
2470	case STP_STATE_LISTENING:
2471/*
2472 * No need to turn on transmit because of port direct mode.
2473 * Turning on receive is required if static MAC table is not setup.
2474 */
2475		data &= ~PORT_TX_ENABLE;
2476		data |= PORT_RX_ENABLE;
2477		data |= PORT_LEARN_DISABLE;
2478		break;
2479	case STP_STATE_LEARNING:
2480		data &= ~PORT_TX_ENABLE;
2481		data |= PORT_RX_ENABLE;
2482		data &= ~PORT_LEARN_DISABLE;
2483		break;
2484	case STP_STATE_FORWARDING:
2485		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2486		data &= ~PORT_LEARN_DISABLE;
2487		break;
2488	case STP_STATE_BLOCKED:
2489/*
2490 * Need to setup static MAC table with override to keep receiving BPDU
2491 * messages.  See sw_init_stp routine.
2492 */
2493		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2494		data |= PORT_LEARN_DISABLE;
2495		break;
2496	case STP_STATE_SIMPLE:
2497		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2498		data |= PORT_LEARN_DISABLE;
2499		break;
2500	}
2501	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2502	hw->ksz_switch->port_cfg[port].stp_state = state;
2503}
2504
2505#define STP_ENTRY			0
2506#define BROADCAST_ENTRY			1
2507#define BRIDGE_ADDR_ENTRY		2
2508#define IPV6_ADDR_ENTRY			3
2509
2510/**
2511 * sw_clr_sta_mac_table - clear static MAC table
2512 * @hw: 	The hardware instance.
2513 *
2514 * This routine clears the static MAC table.
2515 */
2516static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2517{
2518	struct ksz_mac_table *entry;
2519	int i;
2520
2521	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2522		entry = &hw->ksz_switch->mac_table[i];
2523		sw_w_sta_mac_table(hw, i,
2524			entry->mac_addr, entry->ports,
2525			entry->override, 0,
2526			entry->use_fid, entry->fid);
2527	}
2528}
2529
2530/**
2531 * sw_init_stp - initialize switch spanning tree support
2532 * @hw: 	The hardware instance.
2533 *
2534 * This routine initializes the spanning tree support of the switch.
2535 */
2536static void sw_init_stp(struct ksz_hw *hw)
2537{
2538	struct ksz_mac_table *entry;
2539
2540	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2541	entry->mac_addr[0] = 0x01;
2542	entry->mac_addr[1] = 0x80;
2543	entry->mac_addr[2] = 0xC2;
2544	entry->mac_addr[3] = 0x00;
2545	entry->mac_addr[4] = 0x00;
2546	entry->mac_addr[5] = 0x00;
2547	entry->ports = HOST_MASK;
2548	entry->override = 1;
2549	entry->valid = 1;
2550	sw_w_sta_mac_table(hw, STP_ENTRY,
2551		entry->mac_addr, entry->ports,
2552		entry->override, entry->valid,
2553		entry->use_fid, entry->fid);
2554}
2555
2556/**
2557 * sw_block_addr - block certain packets from the host port
2558 * @hw: 	The hardware instance.
2559 *
2560 * This routine blocks certain packets from reaching to the host port.
2561 */
2562static void sw_block_addr(struct ksz_hw *hw)
2563{
2564	struct ksz_mac_table *entry;
2565	int i;
2566
2567	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2568		entry = &hw->ksz_switch->mac_table[i];
2569		entry->valid = 0;
2570		sw_w_sta_mac_table(hw, i,
2571			entry->mac_addr, entry->ports,
2572			entry->override, entry->valid,
2573			entry->use_fid, entry->fid);
2574	}
2575}
2576
2577static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2578{
2579	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2580}
2581
2582static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2583{
2584	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2585}
2586
2587/**
2588 * hw_r_phy - read data from PHY register
2589 * @hw: 	The hardware instance.
2590 * @port:	Port to read.
2591 * @reg:	PHY register to read.
2592 * @val:	Buffer to store the read data.
2593 *
2594 * This routine reads data from the PHY register.
2595 */
2596static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2597{
2598	int phy;
2599
2600	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2601	*val = readw(hw->io + phy);
2602}
2603
2604/**
2605 * hw_w_phy - write data to PHY register
2606 * @hw: 	The hardware instance.
2607 * @port:	Port to write.
2608 * @reg:	PHY register to write.
2609 * @val:	Word data to write.
2610 *
2611 * This routine writes data to the PHY register.
2612 */
2613static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2614{
2615	int phy;
2616
2617	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2618	writew(val, hw->io + phy);
2619}
2620
2621/*
2622 * EEPROM access functions
2623 */
2624
2625#define AT93C_CODE			0
2626#define AT93C_WR_OFF			0x00
2627#define AT93C_WR_ALL			0x10
2628#define AT93C_ER_ALL			0x20
2629#define AT93C_WR_ON			0x30
2630
2631#define AT93C_WRITE			1
2632#define AT93C_READ			2
2633#define AT93C_ERASE			3
2634
2635#define EEPROM_DELAY			4
2636
2637static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2638{
2639	u16 data;
2640
2641	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2642	data &= ~gpio;
2643	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2644}
2645
2646static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2647{
2648	u16 data;
2649
2650	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2651	data |= gpio;
2652	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2653}
2654
2655static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2656{
2657	u16 data;
2658
2659	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2660	return (u8)(data & gpio);
2661}
2662
2663static void eeprom_clk(struct ksz_hw *hw)
2664{
2665	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2666	udelay(EEPROM_DELAY);
2667	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2668	udelay(EEPROM_DELAY);
2669}
2670
2671static u16 spi_r(struct ksz_hw *hw)
2672{
2673	int i;
2674	u16 temp = 0;
2675
2676	for (i = 15; i >= 0; i--) {
2677		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2678		udelay(EEPROM_DELAY);
2679
2680		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2681
2682		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2683		udelay(EEPROM_DELAY);
2684	}
2685	return temp;
2686}
2687
2688static void spi_w(struct ksz_hw *hw, u16 data)
2689{
2690	int i;
2691
2692	for (i = 15; i >= 0; i--) {
2693		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2694			drop_gpio(hw, EEPROM_DATA_OUT);
2695		eeprom_clk(hw);
2696	}
2697}
2698
2699static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2700{
2701	int i;
2702
2703	/* Initial start bit */
2704	raise_gpio(hw, EEPROM_DATA_OUT);
2705	eeprom_clk(hw);
2706
2707	/* AT93C operation */
2708	for (i = 1; i >= 0; i--) {
2709		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2710			drop_gpio(hw, EEPROM_DATA_OUT);
2711		eeprom_clk(hw);
2712	}
2713
2714	/* Address location */
2715	for (i = 5; i >= 0; i--) {
2716		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2717			drop_gpio(hw, EEPROM_DATA_OUT);
2718		eeprom_clk(hw);
2719	}
2720}
2721
2722#define EEPROM_DATA_RESERVED		0
2723#define EEPROM_DATA_MAC_ADDR_0		1
2724#define EEPROM_DATA_MAC_ADDR_1		2
2725#define EEPROM_DATA_MAC_ADDR_2		3
2726#define EEPROM_DATA_SUBSYS_ID		4
2727#define EEPROM_DATA_SUBSYS_VEN_ID	5
2728#define EEPROM_DATA_PM_CAP		6
2729
2730/* User defined EEPROM data */
2731#define EEPROM_DATA_OTHER_MAC_ADDR	9
2732
2733/**
2734 * eeprom_read - read from AT93C46 EEPROM
2735 * @hw: 	The hardware instance.
2736 * @reg:	The register offset.
2737 *
2738 * This function reads a word from the AT93C46 EEPROM.
2739 *
2740 * Return the data value.
2741 */
2742static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
2743{
2744	u16 data;
2745
2746	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2747
2748	spi_reg(hw, AT93C_READ, reg);
2749	data = spi_r(hw);
2750
2751	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2752
2753	return data;
2754}
2755
2756/**
2757 * eeprom_write - write to AT93C46 EEPROM
2758 * @hw: 	The hardware instance.
2759 * @reg:	The register offset.
2760 * @data:	The data value.
2761 *
2762 * This procedure writes a word to the AT93C46 EEPROM.
2763 */
2764static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
2765{
2766	int timeout;
2767
2768	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2769
2770	/* Enable write. */
2771	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
2772	drop_gpio(hw, EEPROM_CHIP_SELECT);
2773	udelay(1);
2774
2775	/* Erase the register. */
2776	raise_gpio(hw, EEPROM_CHIP_SELECT);
2777	spi_reg(hw, AT93C_ERASE, reg);
2778	drop_gpio(hw, EEPROM_CHIP_SELECT);
2779	udelay(1);
2780
2781	/* Check operation complete. */
2782	raise_gpio(hw, EEPROM_CHIP_SELECT);
2783	timeout = 8;
2784	mdelay(2);
2785	do {
2786		mdelay(1);
2787	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2788	drop_gpio(hw, EEPROM_CHIP_SELECT);
2789	udelay(1);
2790
2791	/* Write the register. */
2792	raise_gpio(hw, EEPROM_CHIP_SELECT);
2793	spi_reg(hw, AT93C_WRITE, reg);
2794	spi_w(hw, data);
2795	drop_gpio(hw, EEPROM_CHIP_SELECT);
2796	udelay(1);
2797
2798	/* Check operation complete. */
2799	raise_gpio(hw, EEPROM_CHIP_SELECT);
2800	timeout = 8;
2801	mdelay(2);
2802	do {
2803		mdelay(1);
2804	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2805	drop_gpio(hw, EEPROM_CHIP_SELECT);
2806	udelay(1);
2807
2808	/* Disable write. */
2809	raise_gpio(hw, EEPROM_CHIP_SELECT);
2810	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
2811
2812	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2813}
2814
2815/*
2816 * Link detection routines
2817 */
2818
2819static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
2820{
2821	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
2822	switch (port->flow_ctrl) {
2823	case PHY_FLOW_CTRL:
2824		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
2825		break;
2826	/* Not supported. */
2827	case PHY_TX_ONLY:
2828	case PHY_RX_ONLY:
2829	default:
2830		break;
2831	}
2832	return ctrl;
2833}
2834
2835static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
2836{
2837	u32 rx_cfg;
2838	u32 tx_cfg;
2839
2840	rx_cfg = hw->rx_cfg;
2841	tx_cfg = hw->tx_cfg;
2842	if (rx)
2843		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
2844	else
2845		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
2846	if (tx)
2847		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
2848	else
2849		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2850	if (hw->enabled) {
2851		if (rx_cfg != hw->rx_cfg)
2852			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
2853		if (tx_cfg != hw->tx_cfg)
2854			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2855	}
2856}
2857
2858static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
2859	u16 local, u16 remote)
2860{
2861	int rx;
2862	int tx;
2863
2864	if (hw->overrides & PAUSE_FLOW_CTRL)
2865		return;
2866
2867	rx = tx = 0;
2868	if (port->force_link)
2869		rx = tx = 1;
2870	if (remote & LPA_PAUSE_CAP) {
2871		if (local & ADVERTISE_PAUSE_CAP) {
2872			rx = tx = 1;
2873		} else if ((remote & LPA_PAUSE_ASYM) &&
2874			   (local &
2875			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
2876			   ADVERTISE_PAUSE_ASYM) {
2877			tx = 1;
2878		}
2879	} else if (remote & LPA_PAUSE_ASYM) {
2880		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2881		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2882			rx = 1;
2883	}
2884	if (!hw->ksz_switch)
2885		set_flow_ctrl(hw, rx, tx);
2886}
2887
2888static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
2889	struct ksz_port_info *info, u16 link_status)
2890{
2891	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
2892			!(hw->overrides & PAUSE_FLOW_CTRL)) {
2893		u32 cfg = hw->tx_cfg;
2894
2895		/* Disable flow control in the half duplex mode. */
2896		if (1 == info->duplex)
2897			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2898		if (hw->enabled && cfg != hw->tx_cfg)
2899			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2900	}
2901}
2902
2903/**
2904 * port_get_link_speed - get current link status
2905 * @port: 	The port instance.
2906 *
2907 * This routine reads PHY registers to determine the current link status of the
2908 * switch ports.
2909 */
2910static void port_get_link_speed(struct ksz_port *port)
2911{
2912	uint interrupt;
2913	struct ksz_port_info *info;
2914	struct ksz_port_info *linked = NULL;
2915	struct ksz_hw *hw = port->hw;
2916	u16 data;
2917	u16 status;
2918	u8 local;
2919	u8 remote;
2920	int i;
2921	int p;
2922
2923	interrupt = hw_block_intr(hw);
2924
2925	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
2926		info = &hw->port_info[p];
2927		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
2928		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
2929
2930		/*
2931		 * Link status is changing all the time even when there is no
2932		 * cable connection!
2933		 */
2934		remote = status & (PORT_AUTO_NEG_COMPLETE |
2935			PORT_STATUS_LINK_GOOD);
2936		local = (u8) data;
2937
2938		/* No change to status. */
2939		if (local == info->advertised && remote == info->partner)
2940			continue;
2941
2942		info->advertised = local;
2943		info->partner = remote;
2944		if (status & PORT_STATUS_LINK_GOOD) {
2945
2946			/* Remember the first linked port. */
2947			if (!linked)
2948				linked = info;
2949
2950			info->tx_rate = 10 * TX_RATE_UNIT;
2951			if (status & PORT_STATUS_SPEED_100MBIT)
2952				info->tx_rate = 100 * TX_RATE_UNIT;
2953
2954			info->duplex = 1;
2955			if (status & PORT_STATUS_FULL_DUPLEX)
2956				info->duplex = 2;
2957
2958			if (media_connected != info->state) {
2959				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
2960					&data);
2961				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
2962					&status);
2963				determine_flow_ctrl(hw, port, data, status);
2964				if (hw->ksz_switch) {
2965					port_cfg_back_pressure(hw, p,
2966						(1 == info->duplex));
2967				}
2968				port_cfg_change(hw, port, info, status);
2969			}
2970			info->state = media_connected;
2971		} else {
2972			/* Indicate the link just goes down. */
2973			if (media_disconnected != info->state)
2974				hw->port_mib[p].link_down = 1;
2975
2976			info->state = media_disconnected;
2977		}
2978		hw->port_mib[p].state = (u8) info->state;
2979	}
2980
2981	if (linked && media_disconnected == port->linked->state)
2982		port->linked = linked;
2983
2984	hw_restore_intr(hw, interrupt);
2985}
2986
2987#define PHY_RESET_TIMEOUT		10
2988
2989/**
2990 * port_set_link_speed - set port speed
2991 * @port: 	The port instance.
2992 *
2993 * This routine sets the link speed of the switch ports.
2994 */
2995static void port_set_link_speed(struct ksz_port *port)
2996{
2997	struct ksz_hw *hw = port->hw;
2998	u16 data;
2999	u16 cfg;
3000	u8 status;
3001	int i;
3002	int p;
3003
3004	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3005		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3006		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3007
3008		cfg = 0;
3009		if (status & PORT_STATUS_LINK_GOOD)
3010			cfg = data;
3011
3012		data |= PORT_AUTO_NEG_ENABLE;
3013		data = advertised_flow_ctrl(port, data);
3014
3015		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3016			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3017
3018		/* Check if manual configuration is specified by the user. */
3019		if (port->speed || port->duplex) {
3020			if (10 == port->speed)
3021				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3022					PORT_AUTO_NEG_100BTX);
3023			else if (100 == port->speed)
3024				data &= ~(PORT_AUTO_NEG_10BT_FD |
3025					PORT_AUTO_NEG_10BT);
3026			if (1 == port->duplex)
3027				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3028					PORT_AUTO_NEG_10BT_FD);
3029			else if (2 == port->duplex)
3030				data &= ~(PORT_AUTO_NEG_100BTX |
3031					PORT_AUTO_NEG_10BT);
3032		}
3033		if (data != cfg) {
3034			data |= PORT_AUTO_NEG_RESTART;
3035			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3036		}
3037	}
3038}
3039
3040/**
3041 * port_force_link_speed - force port speed
3042 * @port: 	The port instance.
3043 *
3044 * This routine forces the link speed of the switch ports.
3045 */
3046static void port_force_link_speed(struct ksz_port *port)
3047{
3048	struct ksz_hw *hw = port->hw;
3049	u16 data;
3050	int i;
3051	int phy;
3052	int p;
3053
3054	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3055		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3056		hw_r_phy_ctrl(hw, phy, &data);
3057
3058		data &= ~BMCR_ANENABLE;
3059
3060		if (10 == port->speed)
3061			data &= ~BMCR_SPEED100;
3062		else if (100 == port->speed)
3063			data |= BMCR_SPEED100;
3064		if (1 == port->duplex)
3065			data &= ~BMCR_FULLDPLX;
3066		else if (2 == port->duplex)
3067			data |= BMCR_FULLDPLX;
3068		hw_w_phy_ctrl(hw, phy, data);
3069	}
3070}
3071
3072static void port_set_power_saving(struct ksz_port *port, int enable)
3073{
3074	struct ksz_hw *hw = port->hw;
3075	int i;
3076	int p;
3077
3078	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3079		port_cfg(hw, p,
3080			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3081}
3082
3083/*
3084 * KSZ8841 power management functions
3085 */
3086
3087/**
3088 * hw_chk_wol_pme_status - check PMEN pin
3089 * @hw: 	The hardware instance.
3090 *
3091 * This function is used to check PMEN pin is asserted.
3092 *
3093 * Return 1 if PMEN pin is asserted; otherwise, 0.
3094 */
3095static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3096{
3097	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3098	struct pci_dev *pdev = hw_priv->pdev;
3099	u16 data;
3100
3101	if (!pdev->pm_cap)
3102		return 0;
3103	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3104	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3105}
3106
3107/**
3108 * hw_clr_wol_pme_status - clear PMEN pin
3109 * @hw: 	The hardware instance.
3110 *
3111 * This routine is used to clear PME_Status to deassert PMEN pin.
3112 */
3113static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3114{
3115	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3116	struct pci_dev *pdev = hw_priv->pdev;
3117	u16 data;
3118
3119	if (!pdev->pm_cap)
3120		return;
3121
3122	/* Clear PME_Status to deassert PMEN pin. */
3123	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3124	data |= PCI_PM_CTRL_PME_STATUS;
3125	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3126}
3127
3128/**
3129 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3130 * @hw: 	The hardware instance.
3131 * @set:	The flag indicating whether to enable or disable.
3132 *
3133 * This routine is used to enable or disable Wake-on-LAN.
3134 */
3135static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3136{
3137	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3138	struct pci_dev *pdev = hw_priv->pdev;
3139	u16 data;
3140
3141	if (!pdev->pm_cap)
3142		return;
3143	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3144	data &= ~PCI_PM_CTRL_STATE_MASK;
3145	if (set)
3146		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3147	else
3148		data &= ~PCI_PM_CTRL_PME_ENABLE;
3149	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3150}
3151
3152/**
3153 * hw_cfg_wol - configure Wake-on-LAN features
3154 * @hw: 	The hardware instance.
3155 * @frame:	The pattern frame bit.
3156 * @set:	The flag indicating whether to enable or disable.
3157 *
3158 * This routine is used to enable or disable certain Wake-on-LAN features.
3159 */
3160static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3161{
3162	u16 data;
3163
3164	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3165	if (set)
3166		data |= frame;
3167	else
3168		data &= ~frame;
3169	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3170}
3171
3172/**
3173 * hw_set_wol_frame - program Wake-on-LAN pattern
3174 * @hw: 	The hardware instance.
3175 * @i:		The frame index.
3176 * @mask_size:	The size of the mask.
3177 * @mask:	Mask to ignore certain bytes in the pattern.
3178 * @frame_size:	The size of the frame.
3179 * @pattern:	The frame data.
3180 *
3181 * This routine is used to program Wake-on-LAN pattern.
3182 */
3183static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3184	const u8 *mask, uint frame_size, const u8 *pattern)
3185{
3186	int bits;
3187	int from;
3188	int len;
3189	int to;
3190	u32 crc;
3191	u8 data[64];
3192	u8 val = 0;
3193
3194	if (frame_size > mask_size * 8)
3195		frame_size = mask_size * 8;
3196	if (frame_size > 64)
3197		frame_size = 64;
3198
3199	i *= 0x10;
3200	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3201	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3202
3203	bits = len = from = to = 0;
3204	do {
3205		if (bits) {
3206			if ((val & 1))
3207				data[to++] = pattern[from];
3208			val >>= 1;
3209			++from;
3210			--bits;
3211		} else {
3212			val = mask[len];
3213			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3214				+ len);
3215			++len;
3216			if (val)
3217				bits = 8;
3218			else
3219				from += 8;
3220		}
3221	} while (from < (int) frame_size);
3222	if (val) {
3223		bits = mask[len - 1];
3224		val <<= (from % 8);
3225		bits &= ~val;
3226		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3227			1);
3228	}
3229	crc = ether_crc(to, data);
3230	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3231}
3232
3233/**
3234 * hw_add_wol_arp - add ARP pattern
3235 * @hw: 	The hardware instance.
3236 * @ip_addr:	The IPv4 address assigned to the device.
3237 *
3238 * This routine is used to add ARP pattern for waking up the host.
3239 */
3240static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3241{
3242	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3243	u8 pattern[42] = {
3244		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3245		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3246		0x08, 0x06,
3247		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3248		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3249		0x00, 0x00, 0x00, 0x00,
3250		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3251		0x00, 0x00, 0x00, 0x00 };
3252
3253	memcpy(&pattern[38], ip_addr, 4);
3254	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3255}
3256
3257/**
3258 * hw_add_wol_bcast - add broadcast pattern
3259 * @hw: 	The hardware instance.
3260 *
3261 * This routine is used to add broadcast pattern for waking up the host.
3262 */
3263static void hw_add_wol_bcast(struct ksz_hw *hw)
3264{
3265	static const u8 mask[] = { 0x3F };
3266	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3267
3268	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3269}
3270
3271/**
3272 * hw_add_wol_mcast - add multicast pattern
3273 * @hw: 	The hardware instance.
3274 *
3275 * This routine is used to add multicast pattern for waking up the host.
3276 *
3277 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3278 * by IPv6 ping command.  Note that multicast packets are filtred through the
3279 * multicast hash table, so not all multicast packets can wake up the host.
3280 */
3281static void hw_add_wol_mcast(struct ksz_hw *hw)
3282{
3283	static const u8 mask[] = { 0x3F };
3284	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3285
3286	memcpy(&pattern[3], &hw->override_addr[3], 3);
3287	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3288}
3289
3290/**
3291 * hw_add_wol_ucast - add unicast pattern
3292 * @hw: 	The hardware instance.
3293 *
3294 * This routine is used to add unicast pattern to wakeup the host.
3295 *
3296 * It is assumed the unicast packet is directed to the device, as the hardware
3297 * can only receive them in normal case.
3298 */
3299static void hw_add_wol_ucast(struct ksz_hw *hw)
3300{
3301	static const u8 mask[] = { 0x3F };
3302
3303	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3304}
3305
3306/**
3307 * hw_enable_wol - enable Wake-on-LAN
3308 * @hw: 	The hardware instance.
3309 * @wol_enable:	The Wake-on-LAN settings.
3310 * @net_addr:	The IPv4 address assigned to the device.
3311 *
3312 * This routine is used to enable Wake-on-LAN depending on driver settings.
3313 */
3314static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3315{
3316	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3317	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3318	hw_add_wol_ucast(hw);
3319	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3320	hw_add_wol_mcast(hw);
3321	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3322	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3323	hw_add_wol_arp(hw, net_addr);
3324}
3325
3326/**
3327 * hw_init - check driver is correct for the hardware
3328 * @hw: 	The hardware instance.
3329 *
3330 * This function checks the hardware is correct for this driver and sets the
3331 * hardware up for proper initialization.
3332 *
3333 * Return number of ports or 0 if not right.
3334 */
3335static int hw_init(struct ksz_hw *hw)
3336{
3337	int rc = 0;
3338	u16 data;
3339	u16 revision;
3340
3341	/* Set bus speed to 125MHz. */
3342	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3343
3344	/* Check KSZ884x chip ID. */
3345	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3346
3347	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3348	data &= KS884X_CHIP_ID_MASK_41;
3349	if (REG_CHIP_ID_41 == data)
3350		rc = 1;
3351	else if (REG_CHIP_ID_42 == data)
3352		rc = 2;
3353	else
3354		return 0;
3355
3356	/* Setup hardware features or bug workarounds. */
3357	if (revision <= 1) {
3358		hw->features |= SMALL_PACKET_TX_BUG;
3359		if (1 == rc)
3360			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3361	}
3362	return rc;
3363}
3364
3365/**
3366 * hw_reset - reset the hardware
3367 * @hw: 	The hardware instance.
3368 *
3369 * This routine resets the hardware.
3370 */
3371static void hw_reset(struct ksz_hw *hw)
3372{
3373	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3374
3375	/* Wait for device to reset. */
3376	mdelay(10);
3377
3378	/* Write 0 to clear device reset. */
3379	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3380}
3381
3382/**
3383 * hw_setup - setup the hardware
3384 * @hw: 	The hardware instance.
3385 *
3386 * This routine setup the hardware for proper operation.
3387 */
3388static void hw_setup(struct ksz_hw *hw)
3389{
3390#if SET_DEFAULT_LED
3391	u16 data;
3392
3393	/* Change default LED mode. */
3394	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3395	data &= ~LED_MODE;
3396	data |= SET_DEFAULT_LED;
3397	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3398#endif
3399
3400	/* Setup transmit control. */
3401	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3402		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3403
3404	/* Setup receive control. */
3405	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3406		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3407	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3408
3409	/* Hardware cannot handle UDP packet in IP fragments. */
3410	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3411
3412	if (hw->all_multi)
3413		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3414	if (hw->promiscuous)
3415		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3416}
3417
3418/**
3419 * hw_setup_intr - setup interrupt mask
3420 * @hw: 	The hardware instance.
3421 *
3422 * This routine setup the interrupt mask for proper operation.
3423 */
3424static void hw_setup_intr(struct ksz_hw *hw)
3425{
3426	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3427}
3428
3429static void ksz_check_desc_num(struct ksz_desc_info *info)
3430{
3431#define MIN_DESC_SHIFT  2
3432
3433	int alloc = info->alloc;
3434	int shift;
3435
3436	shift = 0;
3437	while (!(alloc & 1)) {
3438		shift++;
3439		alloc >>= 1;
3440	}
3441	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3442		pr_alert("Hardware descriptor numbers not right!\n");
3443		while (alloc) {
3444			shift++;
3445			alloc >>= 1;
3446		}
3447		if (shift < MIN_DESC_SHIFT)
3448			shift = MIN_DESC_SHIFT;
3449		alloc = 1 << shift;
3450		info->alloc = alloc;
3451	}
3452	info->mask = info->alloc - 1;
3453}
3454
3455static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3456{
3457	int i;
3458	u32 phys = desc_info->ring_phys;
3459	struct ksz_hw_desc *desc = desc_info->ring_virt;
3460	struct ksz_desc *cur = desc_info->ring;
3461	struct ksz_desc *previous = NULL;
3462
3463	for (i = 0; i < desc_info->alloc; i++) {
3464		cur->phw = desc++;
3465		phys += desc_info->size;
3466		previous = cur++;
3467		previous->phw->next = cpu_to_le32(phys);
3468	}
3469	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3470	previous->sw.buf.rx.end_of_ring = 1;
3471	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3472
3473	desc_info->avail = desc_info->alloc;
3474	desc_info->last = desc_info->next = 0;
3475
3476	desc_info->cur = desc_info->ring;
3477}
3478
3479/**
3480 * hw_set_desc_base - set descriptor base addresses
3481 * @hw: 	The hardware instance.
3482 * @tx_addr:	The transmit descriptor base.
3483 * @rx_addr:	The receive descriptor base.
3484 *
3485 * This routine programs the descriptor base addresses after reset.
3486 */
3487static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3488{
3489	/* Set base address of Tx/Rx descriptors. */
3490	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3491	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3492}
3493
3494static void hw_reset_pkts(struct ksz_desc_info *info)
3495{
3496	info->cur = info->ring;
3497	info->avail = info->alloc;
3498	info->last = info->next = 0;
3499}
3500
3501static inline void hw_resume_rx(struct ksz_hw *hw)
3502{
3503	writel(DMA_START, hw->io + KS_DMA_RX_START);
3504}
3505
3506/**
3507 * hw_start_rx - start receiving
3508 * @hw: 	The hardware instance.
3509 *
3510 * This routine starts the receive function of the hardware.
3511 */
3512static void hw_start_rx(struct ksz_hw *hw)
3513{
3514	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3515
3516	/* Notify when the receive stops. */
3517	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3518
3519	writel(DMA_START, hw->io + KS_DMA_RX_START);
3520	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3521	hw->rx_stop++;
3522
3523	/* Variable overflows. */
3524	if (0 == hw->rx_stop)
3525		hw->rx_stop = 2;
3526}
3527
3528/**
3529 * hw_stop_rx - stop receiving
3530 * @hw: 	The hardware instance.
3531 *
3532 * This routine stops the receive function of the hardware.
3533 */
3534static void hw_stop_rx(struct ksz_hw *hw)
3535{
3536	hw->rx_stop = 0;
3537	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3538	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3539}
3540
3541/**
3542 * hw_start_tx - start transmitting
3543 * @hw: 	The hardware instance.
3544 *
3545 * This routine starts the transmit function of the hardware.
3546 */
3547static void hw_start_tx(struct ksz_hw *hw)
3548{
3549	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3550}
3551
3552/**
3553 * hw_stop_tx - stop transmitting
3554 * @hw: 	The hardware instance.
3555 *
3556 * This routine stops the transmit function of the hardware.
3557 */
3558static void hw_stop_tx(struct ksz_hw *hw)
3559{
3560	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3561}
3562
3563/**
3564 * hw_disable - disable hardware
3565 * @hw: 	The hardware instance.
3566 *
3567 * This routine disables the hardware.
3568 */
3569static void hw_disable(struct ksz_hw *hw)
3570{
3571	hw_stop_rx(hw);
3572	hw_stop_tx(hw);
3573	hw->enabled = 0;
3574}
3575
3576/**
3577 * hw_enable - enable hardware
3578 * @hw: 	The hardware instance.
3579 *
3580 * This routine enables the hardware.
3581 */
3582static void hw_enable(struct ksz_hw *hw)
3583{
3584	hw_start_tx(hw);
3585	hw_start_rx(hw);
3586	hw->enabled = 1;
3587}
3588
3589/**
3590 * hw_alloc_pkt - allocate enough descriptors for transmission
3591 * @hw: 	The hardware instance.
3592 * @length:	The length of the packet.
3593 * @physical:	Number of descriptors required.
3594 *
3595 * This function allocates descriptors for transmission.
3596 *
3597 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3598 */
3599static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3600{
3601	/* Always leave one descriptor free. */
3602	if (hw->tx_desc_info.avail <= 1)
3603		return 0;
3604
3605	/* Allocate a descriptor for transmission and mark it current. */
3606	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3607	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3608
3609	/* Keep track of number of transmit descriptors used so far. */
3610	++hw->tx_int_cnt;
3611	hw->tx_size += length;
3612
3613	/* Cannot hold on too much data. */
3614	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3615		hw->tx_int_cnt = hw->tx_int_mask + 1;
3616
3617	if (physical > hw->tx_desc_info.avail)
3618		return 1;
3619
3620	return hw->tx_desc_info.avail;
3621}
3622
3623/**
3624 * hw_send_pkt - mark packet for transmission
3625 * @hw: 	The hardware instance.
3626 *
3627 * This routine marks the packet for transmission in PCI version.
3628 */
3629static void hw_send_pkt(struct ksz_hw *hw)
3630{
3631	struct ksz_desc *cur = hw->tx_desc_info.cur;
3632
3633	cur->sw.buf.tx.last_seg = 1;
3634
3635	/* Interrupt only after specified number of descriptors used. */
3636	if (hw->tx_int_cnt > hw->tx_int_mask) {
3637		cur->sw.buf.tx.intr = 1;
3638		hw->tx_int_cnt = 0;
3639		hw->tx_size = 0;
3640	}
3641
3642	/* KSZ8842 supports port directed transmission. */
3643	cur->sw.buf.tx.dest_port = hw->dst_ports;
3644
3645	release_desc(cur);
3646
3647	writel(0, hw->io + KS_DMA_TX_START);
3648}
3649
3650static int empty_addr(u8 *addr)
3651{
3652	u32 *addr1 = (u32 *) addr;
3653	u16 *addr2 = (u16 *) &addr[4];
3654
3655	return 0 == *addr1 && 0 == *addr2;
3656}
3657
3658/**
3659 * hw_set_addr - set MAC address
3660 * @hw: 	The hardware instance.
3661 *
3662 * This routine programs the MAC address of the hardware when the address is
3663 * overridden.
3664 */
3665static void hw_set_addr(struct ksz_hw *hw)
3666{
3667	int i;
3668
3669	for (i = 0; i < ETH_ALEN; i++)
3670		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3671			hw->io + KS884X_ADDR_0_OFFSET + i);
3672
3673	sw_set_addr(hw, hw->override_addr);
3674}
3675
3676/**
3677 * hw_read_addr - read MAC address
3678 * @hw: 	The hardware instance.
3679 *
3680 * This routine retrieves the MAC address of the hardware.
3681 */
3682static void hw_read_addr(struct ksz_hw *hw)
3683{
3684	int i;
3685
3686	for (i = 0; i < ETH_ALEN; i++)
3687		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3688			KS884X_ADDR_0_OFFSET + i);
3689
3690	if (!hw->mac_override) {
3691		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3692		if (empty_addr(hw->override_addr)) {
3693			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3694			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3695			       ETH_ALEN);
3696			hw->override_addr[5] += hw->id;
3697			hw_set_addr(hw);
3698		}
3699	}
3700}
3701
3702static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
3703{
3704	int i;
3705	u32 mac_addr_lo;
3706	u32 mac_addr_hi;
3707
3708	mac_addr_hi = 0;
3709	for (i = 0; i < 2; i++) {
3710		mac_addr_hi <<= 8;
3711		mac_addr_hi |= mac_addr[i];
3712	}
3713	mac_addr_hi |= ADD_ADDR_ENABLE;
3714	mac_addr_lo = 0;
3715	for (i = 2; i < 6; i++) {
3716		mac_addr_lo <<= 8;
3717		mac_addr_lo |= mac_addr[i];
3718	}
3719	index *= ADD_ADDR_INCR;
3720
3721	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
3722	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
3723}
3724
3725static void hw_set_add_addr(struct ksz_hw *hw)
3726{
3727	int i;
3728
3729	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
3730		if (empty_addr(hw->address[i]))
3731			writel(0, hw->io + ADD_ADDR_INCR * i +
3732				KS_ADD_ADDR_0_HI);
3733		else
3734			hw_ena_add_addr(hw, i, hw->address[i]);
3735	}
3736}
3737
3738static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
3739{
3740	int i;
3741	int j = ADDITIONAL_ENTRIES;
3742
3743	if (ether_addr_equal(hw->override_addr, mac_addr))
3744		return 0;
3745	for (i = 0; i < hw->addr_list_size; i++) {
3746		if (ether_addr_equal(hw->address[i], mac_addr))
3747			return 0;
3748		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
3749			j = i;
3750	}
3751	if (j < ADDITIONAL_ENTRIES) {
3752		memcpy(hw->address[j], mac_addr, ETH_ALEN);
3753		hw_ena_add_addr(hw, j, hw->address[j]);
3754		return 0;
3755	}
3756	return -1;
3757}
3758
3759static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
3760{
3761	int i;
3762
3763	for (i = 0; i < hw->addr_list_size; i++) {
3764		if (ether_addr_equal(hw->address[i], mac_addr)) {
3765			eth_zero_addr(hw->address[i]);
3766			writel(0, hw->io + ADD_ADDR_INCR * i +
3767				KS_ADD_ADDR_0_HI);
3768			return 0;
3769		}
3770	}
3771	return -1;
3772}
3773
3774/**
3775 * hw_clr_multicast - clear multicast addresses
3776 * @hw: 	The hardware instance.
3777 *
3778 * This routine removes all multicast addresses set in the hardware.
3779 */
3780static void hw_clr_multicast(struct ksz_hw *hw)
3781{
3782	int i;
3783
3784	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
3785		hw->multi_bits[i] = 0;
3786
3787		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
3788	}
3789}
3790
3791/**
3792 * hw_set_grp_addr - set multicast addresses
3793 * @hw: 	The hardware instance.
3794 *
3795 * This routine programs multicast addresses for the hardware to accept those
3796 * addresses.
3797 */
3798static void hw_set_grp_addr(struct ksz_hw *hw)
3799{
3800	int i;
3801	int index;
3802	int position;
3803	int value;
3804
3805	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
3806
3807	for (i = 0; i < hw->multi_list_size; i++) {
3808		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
3809		index = position >> 3;
3810		value = 1 << (position & 7);
3811		hw->multi_bits[index] |= (u8) value;
3812	}
3813
3814	for (i = 0; i < HW_MULTICAST_SIZE; i++)
3815		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
3816			i);
3817}
3818
3819/**
3820 * hw_set_multicast - enable or disable all multicast receiving
3821 * @hw: 	The hardware instance.
3822 * @multicast:	To turn on or off the all multicast feature.
3823 *
3824 * This routine enables/disables the hardware to accept all multicast packets.
3825 */
3826static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
3827{
3828	/* Stop receiving for reconfiguration. */
3829	hw_stop_rx(hw);
3830
3831	if (multicast)
3832		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3833	else
3834		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
3835
3836	if (hw->enabled)
3837		hw_start_rx(hw);
3838}
3839
3840/**
3841 * hw_set_promiscuous - enable or disable promiscuous receiving
3842 * @hw: 	The hardware instance.
3843 * @prom:	To turn on or off the promiscuous feature.
3844 *
3845 * This routine enables/disables the hardware to accept all packets.
3846 */
3847static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
3848{
3849	/* Stop receiving for reconfiguration. */
3850	hw_stop_rx(hw);
3851
3852	if (prom)
3853		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3854	else
3855		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
3856
3857	if (hw->enabled)
3858		hw_start_rx(hw);
3859}
3860
3861/**
3862 * sw_enable - enable the switch
3863 * @hw: 	The hardware instance.
3864 * @enable:	The flag to enable or disable the switch
3865 *
3866 * This routine is used to enable/disable the switch in KSZ8842.
3867 */
3868static void sw_enable(struct ksz_hw *hw, int enable)
3869{
3870	int port;
3871
3872	for (port = 0; port < SWITCH_PORT_NUM; port++) {
3873		if (hw->dev_count > 1) {
3874			/* Set port-base vlan membership with host port. */
3875			sw_cfg_port_base_vlan(hw, port,
3876				HOST_MASK | (1 << port));
3877			port_set_stp_state(hw, port, STP_STATE_DISABLED);
3878		} else {
3879			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
3880			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
3881		}
3882	}
3883	if (hw->dev_count > 1)
3884		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
3885	else
3886		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
3887
3888	if (enable)
3889		enable = KS8842_START;
3890	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
3891}
3892
3893/**
3894 * sw_setup - setup the switch
3895 * @hw: 	The hardware instance.
3896 *
3897 * This routine setup the hardware switch engine for default operation.
3898 */
3899static void sw_setup(struct ksz_hw *hw)
3900{
3901	int port;
3902
3903	sw_set_global_ctrl(hw);
3904
3905	/* Enable switch broadcast storm protection at 10% percent rate. */
3906	sw_init_broad_storm(hw);
3907	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
3908	for (port = 0; port < SWITCH_PORT_NUM; port++)
3909		sw_ena_broad_storm(hw, port);
3910
3911	sw_init_prio(hw);
3912
3913	sw_init_mirror(hw);
3914
3915	sw_init_prio_rate(hw);
3916
3917	sw_init_vlan(hw);
3918
3919	if (hw->features & STP_SUPPORT)
3920		sw_init_stp(hw);
3921	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
3922			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
3923		hw->overrides |= PAUSE_FLOW_CTRL;
3924	sw_enable(hw, 1);
3925}
3926
3927/**
3928 * ksz_start_timer - start kernel timer
3929 * @info:	Kernel timer information.
3930 * @time:	The time tick.
3931 *
3932 * This routine starts the kernel timer after the specified time tick.
3933 */
3934static void ksz_start_timer(struct ksz_timer_info *info, int time)
3935{
3936	info->cnt = 0;
3937	info->timer.expires = jiffies + time;
3938	add_timer(&info->timer);
3939
3940	/* infinity */
3941	info->max = -1;
3942}
3943
3944/**
3945 * ksz_stop_timer - stop kernel timer
3946 * @info:	Kernel timer information.
3947 *
3948 * This routine stops the kernel timer.
3949 */
3950static void ksz_stop_timer(struct ksz_timer_info *info)
3951{
3952	if (info->max) {
3953		info->max = 0;
3954		del_timer_sync(&info->timer);
3955	}
3956}
3957
3958static void ksz_init_timer(struct ksz_timer_info *info, int period,
3959	void (*function)(struct timer_list *))
3960{
3961	info->max = 0;
3962	info->period = period;
3963	timer_setup(&info->timer, function, 0);
3964}
3965
3966static void ksz_update_timer(struct ksz_timer_info *info)
3967{
3968	++info->cnt;
3969	if (info->max > 0) {
3970		if (info->cnt < info->max) {
3971			info->timer.expires = jiffies + info->period;
3972			add_timer(&info->timer);
3973		} else
3974			info->max = 0;
3975	} else if (info->max < 0) {
3976		info->timer.expires = jiffies + info->period;
3977		add_timer(&info->timer);
3978	}
3979}
3980
3981/**
3982 * ksz_alloc_soft_desc - allocate software descriptors
3983 * @desc_info:	Descriptor information structure.
3984 * @transmit:	Indication that descriptors are for transmit.
3985 *
3986 * This local function allocates software descriptors for manipulation in
3987 * memory.
3988 *
3989 * Return 0 if successful.
3990 */
3991static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
3992{
3993	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
3994				  GFP_KERNEL);
3995	if (!desc_info->ring)
3996		return 1;
3997	hw_init_desc(desc_info, transmit);
3998	return 0;
3999}
4000
4001/**
4002 * ksz_alloc_desc - allocate hardware descriptors
4003 * @adapter:	Adapter information structure.
4004 *
4005 * This local function allocates hardware descriptors for receiving and
4006 * transmitting.
4007 *
4008 * Return 0 if successful.
4009 */
4010static int ksz_alloc_desc(struct dev_info *adapter)
4011{
4012	struct ksz_hw *hw = &adapter->hw;
4013	int offset;
4014
4015	/* Allocate memory for RX & TX descriptors. */
4016	adapter->desc_pool.alloc_size =
4017		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4018		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4019		DESC_ALIGNMENT;
4020
4021	adapter->desc_pool.alloc_virt =
4022		dma_alloc_coherent(&adapter->pdev->dev,
4023				   adapter->desc_pool.alloc_size,
4024				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4025	if (adapter->desc_pool.alloc_virt == NULL) {
4026		adapter->desc_pool.alloc_size = 0;
4027		return 1;
4028	}
4029
4030	/* Align to the next cache line boundary. */
4031	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4032		(DESC_ALIGNMENT -
4033		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4034	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4035	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4036
4037	/* Allocate receive/transmit descriptors. */
4038	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4039		adapter->desc_pool.virt;
4040	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4041	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4042	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4043		(adapter->desc_pool.virt + offset);
4044	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4045
4046	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4047		return 1;
4048	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4049		return 1;
4050
4051	return 0;
4052}
4053
4054/**
4055 * free_dma_buf - release DMA buffer resources
4056 * @adapter:	Adapter information structure.
4057 * @dma_buf:	pointer to buf
4058 * @direction:	to or from device
4059 *
4060 * This routine is just a helper function to release the DMA buffer resources.
4061 */
4062static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4063	int direction)
4064{
4065	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4066			 direction);
4067	dev_kfree_skb(dma_buf->skb);
4068	dma_buf->skb = NULL;
4069	dma_buf->dma = 0;
4070}
4071
4072/**
4073 * ksz_init_rx_buffers - initialize receive descriptors
4074 * @adapter:	Adapter information structure.
4075 *
4076 * This routine initializes DMA buffers for receiving.
4077 */
4078static void ksz_init_rx_buffers(struct dev_info *adapter)
4079{
4080	int i;
4081	struct ksz_desc *desc;
4082	struct ksz_dma_buf *dma_buf;
4083	struct ksz_hw *hw = &adapter->hw;
4084	struct ksz_desc_info *info = &hw->rx_desc_info;
4085
4086	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4087		get_rx_pkt(info, &desc);
4088
4089		dma_buf = DMA_BUFFER(desc);
4090		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4091			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4092		dma_buf->len = adapter->mtu;
4093		if (!dma_buf->skb)
4094			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4095		if (dma_buf->skb && !dma_buf->dma)
4096			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4097						skb_tail_pointer(dma_buf->skb),
4098						dma_buf->len,
4099						DMA_FROM_DEVICE);
4100
4101		/* Set descriptor. */
4102		set_rx_buf(desc, dma_buf->dma);
4103		set_rx_len(desc, dma_buf->len);
4104		release_desc(desc);
4105	}
4106}
4107
4108/**
4109 * ksz_alloc_mem - allocate memory for hardware descriptors
4110 * @adapter:	Adapter information structure.
4111 *
4112 * This function allocates memory for use by hardware descriptors for receiving
4113 * and transmitting.
4114 *
4115 * Return 0 if successful.
4116 */
4117static int ksz_alloc_mem(struct dev_info *adapter)
4118{
4119	struct ksz_hw *hw = &adapter->hw;
4120
4121	/* Determine the number of receive and transmit descriptors. */
4122	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4123	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4124
4125	/* Determine how many descriptors to skip transmit interrupt. */
4126	hw->tx_int_cnt = 0;
4127	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4128	if (hw->tx_int_mask > 8)
4129		hw->tx_int_mask = 8;
4130	while (hw->tx_int_mask) {
4131		hw->tx_int_cnt++;
4132		hw->tx_int_mask >>= 1;
4133	}
4134	if (hw->tx_int_cnt) {
4135		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4136		hw->tx_int_cnt = 0;
4137	}
4138
4139	/* Determine the descriptor size. */
4140	hw->rx_desc_info.size =
4141		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4142		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4143	hw->tx_desc_info.size =
4144		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4145		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4146	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4147		pr_alert("Hardware descriptor size not right!\n");
4148	ksz_check_desc_num(&hw->rx_desc_info);
4149	ksz_check_desc_num(&hw->tx_desc_info);
4150
4151	/* Allocate descriptors. */
4152	if (ksz_alloc_desc(adapter))
4153		return 1;
4154
4155	return 0;
4156}
4157
4158/**
4159 * ksz_free_desc - free software and hardware descriptors
4160 * @adapter:	Adapter information structure.
4161 *
4162 * This local routine frees the software and hardware descriptors allocated by
4163 * ksz_alloc_desc().
4164 */
4165static void ksz_free_desc(struct dev_info *adapter)
4166{
4167	struct ksz_hw *hw = &adapter->hw;
4168
4169	/* Reset descriptor. */
4170	hw->rx_desc_info.ring_virt = NULL;
4171	hw->tx_desc_info.ring_virt = NULL;
4172	hw->rx_desc_info.ring_phys = 0;
4173	hw->tx_desc_info.ring_phys = 0;
4174
4175	/* Free memory. */
4176	if (adapter->desc_pool.alloc_virt)
4177		dma_free_coherent(&adapter->pdev->dev,
4178				  adapter->desc_pool.alloc_size,
4179				  adapter->desc_pool.alloc_virt,
4180				  adapter->desc_pool.dma_addr);
4181
4182	/* Reset resource pool. */
4183	adapter->desc_pool.alloc_size = 0;
4184	adapter->desc_pool.alloc_virt = NULL;
4185
4186	kfree(hw->rx_desc_info.ring);
4187	hw->rx_desc_info.ring = NULL;
4188	kfree(hw->tx_desc_info.ring);
4189	hw->tx_desc_info.ring = NULL;
4190}
4191
4192/**
4193 * ksz_free_buffers - free buffers used in the descriptors
4194 * @adapter:	Adapter information structure.
4195 * @desc_info:	Descriptor information structure.
4196 * @direction:	to or from device
4197 *
4198 * This local routine frees buffers used in the DMA buffers.
4199 */
4200static void ksz_free_buffers(struct dev_info *adapter,
4201	struct ksz_desc_info *desc_info, int direction)
4202{
4203	int i;
4204	struct ksz_dma_buf *dma_buf;
4205	struct ksz_desc *desc = desc_info->ring;
4206
4207	for (i = 0; i < desc_info->alloc; i++) {
4208		dma_buf = DMA_BUFFER(desc);
4209		if (dma_buf->skb)
4210			free_dma_buf(adapter, dma_buf, direction);
4211		desc++;
4212	}
4213}
4214
4215/**
4216 * ksz_free_mem - free all resources used by descriptors
4217 * @adapter:	Adapter information structure.
4218 *
4219 * This local routine frees all the resources allocated by ksz_alloc_mem().
4220 */
4221static void ksz_free_mem(struct dev_info *adapter)
4222{
4223	/* Free transmit buffers. */
4224	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4225
4226	/* Free receive buffers. */
4227	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4228
4229	/* Free descriptors. */
4230	ksz_free_desc(adapter);
4231}
4232
4233static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4234	u64 *counter)
4235{
4236	int i;
4237	int mib;
4238	int port;
4239	struct ksz_port_mib *port_mib;
4240
4241	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4242	for (i = 0, port = first; i < cnt; i++, port++) {
4243		port_mib = &hw->port_mib[port];
4244		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4245			counter[mib] += port_mib->counter[mib];
4246	}
4247}
4248
4249/**
4250 * send_packet - send packet
4251 * @skb:	Socket buffer.
4252 * @dev:	Network device.
4253 *
4254 * This routine is used to send a packet out to the network.
4255 */
4256static void send_packet(struct sk_buff *skb, struct net_device *dev)
4257{
4258	struct ksz_desc *desc;
4259	struct ksz_desc *first;
4260	struct dev_priv *priv = netdev_priv(dev);
4261	struct dev_info *hw_priv = priv->adapter;
4262	struct ksz_hw *hw = &hw_priv->hw;
4263	struct ksz_desc_info *info = &hw->tx_desc_info;
4264	struct ksz_dma_buf *dma_buf;
4265	int len;
4266	int last_frag = skb_shinfo(skb)->nr_frags;
4267
4268	/*
4269	 * KSZ8842 with multiple device interfaces needs to be told which port
4270	 * to send.
4271	 */
4272	if (hw->dev_count > 1)
4273		hw->dst_ports = 1 << priv->port.first_port;
4274
4275	/* Hardware will pad the length to 60. */
4276	len = skb->len;
4277
4278	/* Remember the very first descriptor. */
4279	first = info->cur;
4280	desc = first;
4281
4282	dma_buf = DMA_BUFFER(desc);
4283	if (last_frag) {
4284		int frag;
4285		skb_frag_t *this_frag;
4286
4287		dma_buf->len = skb_headlen(skb);
4288
4289		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4290					      dma_buf->len, DMA_TO_DEVICE);
4291		set_tx_buf(desc, dma_buf->dma);
4292		set_tx_len(desc, dma_buf->len);
4293
4294		frag = 0;
4295		do {
4296			this_frag = &skb_shinfo(skb)->frags[frag];
4297
4298			/* Get a new descriptor. */
4299			get_tx_pkt(info, &desc);
4300
4301			/* Keep track of descriptors used so far. */
4302			++hw->tx_int_cnt;
4303
4304			dma_buf = DMA_BUFFER(desc);
4305			dma_buf->len = skb_frag_size(this_frag);
4306
4307			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4308						      skb_frag_address(this_frag),
4309						      dma_buf->len,
4310						      DMA_TO_DEVICE);
4311			set_tx_buf(desc, dma_buf->dma);
4312			set_tx_len(desc, dma_buf->len);
4313
4314			frag++;
4315			if (frag == last_frag)
4316				break;
4317
4318			/* Do not release the last descriptor here. */
4319			release_desc(desc);
4320		} while (1);
4321
4322		/* current points to the last descriptor. */
4323		info->cur = desc;
4324
4325		/* Release the first descriptor. */
4326		release_desc(first);
4327	} else {
4328		dma_buf->len = len;
4329
4330		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4331					      dma_buf->len, DMA_TO_DEVICE);
4332		set_tx_buf(desc, dma_buf->dma);
4333		set_tx_len(desc, dma_buf->len);
4334	}
4335
4336	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4337		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4338		(desc)->sw.buf.tx.csum_gen_udp = 1;
4339	}
4340
4341	/*
4342	 * The last descriptor holds the packet so that it can be returned to
4343	 * network subsystem after all descriptors are transmitted.
4344	 */
4345	dma_buf->skb = skb;
4346
4347	hw_send_pkt(hw);
4348
4349	/* Update transmit statistics. */
4350	dev->stats.tx_packets++;
4351	dev->stats.tx_bytes += len;
4352}
4353
4354/**
4355 * transmit_cleanup - clean up transmit descriptors
4356 * @hw_priv:	Network device.
4357 * @normal:	break if owned
4358 *
4359 * This routine is called to clean up the transmitted buffers.
4360 */
4361static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4362{
4363	int last;
4364	union desc_stat status;
4365	struct ksz_hw *hw = &hw_priv->hw;
4366	struct ksz_desc_info *info = &hw->tx_desc_info;
4367	struct ksz_desc *desc;
4368	struct ksz_dma_buf *dma_buf;
4369	struct net_device *dev = NULL;
4370
4371	spin_lock_irq(&hw_priv->hwlock);
4372	last = info->last;
4373
4374	while (info->avail < info->alloc) {
4375		/* Get next descriptor which is not hardware owned. */
4376		desc = &info->ring[last];
4377		status.data = le32_to_cpu(desc->phw->ctrl.data);
4378		if (status.tx.hw_owned) {
4379			if (normal)
4380				break;
4381			else
4382				reset_desc(desc, status);
4383		}
4384
4385		dma_buf = DMA_BUFFER(desc);
4386		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4387				 dma_buf->len, DMA_TO_DEVICE);
4388
4389		/* This descriptor contains the last buffer in the packet. */
4390		if (dma_buf->skb) {
4391			dev = dma_buf->skb->dev;
4392
4393			/* Release the packet back to network subsystem. */
4394			dev_kfree_skb_irq(dma_buf->skb);
4395			dma_buf->skb = NULL;
4396		}
4397
4398		/* Free the transmitted descriptor. */
4399		last++;
4400		last &= info->mask;
4401		info->avail++;
4402	}
4403	info->last = last;
4404	spin_unlock_irq(&hw_priv->hwlock);
4405
4406	/* Notify the network subsystem that the packet has been sent. */
4407	if (dev)
4408		netif_trans_update(dev);
4409}
4410
4411/**
4412 * tx_done - transmit done processing
4413 * @hw_priv:	Network device.
4414 *
4415 * This routine is called when the transmit interrupt is triggered, indicating
4416 * either a packet is sent successfully or there are transmit errors.
4417 */
4418static void tx_done(struct dev_info *hw_priv)
4419{
4420	struct ksz_hw *hw = &hw_priv->hw;
4421	int port;
4422
4423	transmit_cleanup(hw_priv, 1);
4424
4425	for (port = 0; port < hw->dev_count; port++) {
4426		struct net_device *dev = hw->port_info[port].pdev;
4427
4428		if (netif_running(dev) && netif_queue_stopped(dev))
4429			netif_wake_queue(dev);
4430	}
4431}
4432
4433static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4434{
4435	skb->dev = old->dev;
4436	skb->protocol = old->protocol;
4437	skb->ip_summed = old->ip_summed;
4438	skb->csum = old->csum;
4439	skb_set_network_header(skb, ETH_HLEN);
4440
4441	dev_consume_skb_any(old);
4442}
4443
4444/**
4445 * netdev_tx - send out packet
4446 * @skb:	Socket buffer.
4447 * @dev:	Network device.
4448 *
4449 * This function is used by the upper network layer to send out a packet.
4450 *
4451 * Return 0 if successful; otherwise an error code indicating failure.
4452 */
4453static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4454{
4455	struct dev_priv *priv = netdev_priv(dev);
4456	struct dev_info *hw_priv = priv->adapter;
4457	struct ksz_hw *hw = &hw_priv->hw;
4458	int left;
4459	int num = 1;
4460	int rc = 0;
4461
4462	if (hw->features & SMALL_PACKET_TX_BUG) {
4463		struct sk_buff *org_skb = skb;
4464
4465		if (skb->len <= 48) {
4466			if (skb_end_pointer(skb) - skb->data >= 50) {
4467				memset(&skb->data[skb->len], 0, 50 - skb->len);
4468				skb->len = 50;
4469			} else {
4470				skb = netdev_alloc_skb(dev, 50);
4471				if (!skb)
4472					return NETDEV_TX_BUSY;
4473				memcpy(skb->data, org_skb->data, org_skb->len);
4474				memset(&skb->data[org_skb->len], 0,
4475					50 - org_skb->len);
4476				skb->len = 50;
4477				copy_old_skb(org_skb, skb);
4478			}
4479		}
4480	}
4481
4482	spin_lock_irq(&hw_priv->hwlock);
4483
4484	num = skb_shinfo(skb)->nr_frags + 1;
4485	left = hw_alloc_pkt(hw, skb->len, num);
4486	if (left) {
4487		if (left < num ||
4488		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4489		     skb->protocol == htons(ETH_P_IPV6))) {
4490			struct sk_buff *org_skb = skb;
4491
4492			skb = netdev_alloc_skb(dev, org_skb->len);
4493			if (!skb) {
4494				rc = NETDEV_TX_BUSY;
4495				goto unlock;
4496			}
4497			skb_copy_and_csum_dev(org_skb, skb->data);
4498			org_skb->ip_summed = CHECKSUM_NONE;
4499			skb->len = org_skb->len;
4500			copy_old_skb(org_skb, skb);
4501		}
4502		send_packet(skb, dev);
4503		if (left <= num)
4504			netif_stop_queue(dev);
4505	} else {
4506		/* Stop the transmit queue until packet is allocated. */
4507		netif_stop_queue(dev);
4508		rc = NETDEV_TX_BUSY;
4509	}
4510unlock:
4511	spin_unlock_irq(&hw_priv->hwlock);
4512
4513	return rc;
4514}
4515
4516/**
4517 * netdev_tx_timeout - transmit timeout processing
4518 * @dev:	Network device.
4519 * @txqueue:	index of hanging queue
4520 *
4521 * This routine is called when the transmit timer expires.  That indicates the
4522 * hardware is not running correctly because transmit interrupts are not
4523 * triggered to free up resources so that the transmit routine can continue
4524 * sending out packets.  The hardware is reset to correct the problem.
4525 */
4526static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4527{
4528	static unsigned long last_reset;
4529
4530	struct dev_priv *priv = netdev_priv(dev);
4531	struct dev_info *hw_priv = priv->adapter;
4532	struct ksz_hw *hw = &hw_priv->hw;
4533	int port;
4534
4535	if (hw->dev_count > 1) {
4536		/*
4537		 * Only reset the hardware if time between calls is long
4538		 * enough.
4539		 */
4540		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4541			hw_priv = NULL;
4542	}
4543
4544	last_reset = jiffies;
4545	if (hw_priv) {
4546		hw_dis_intr(hw);
4547		hw_disable(hw);
4548
4549		transmit_cleanup(hw_priv, 0);
4550		hw_reset_pkts(&hw->rx_desc_info);
4551		hw_reset_pkts(&hw->tx_desc_info);
4552		ksz_init_rx_buffers(hw_priv);
4553
4554		hw_reset(hw);
4555
4556		hw_set_desc_base(hw,
4557			hw->tx_desc_info.ring_phys,
4558			hw->rx_desc_info.ring_phys);
4559		hw_set_addr(hw);
4560		if (hw->all_multi)
4561			hw_set_multicast(hw, hw->all_multi);
4562		else if (hw->multi_list_size)
4563			hw_set_grp_addr(hw);
4564
4565		if (hw->dev_count > 1) {
4566			hw_set_add_addr(hw);
4567			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4568				struct net_device *port_dev;
4569
4570				port_set_stp_state(hw, port,
4571					STP_STATE_DISABLED);
4572
4573				port_dev = hw->port_info[port].pdev;
4574				if (netif_running(port_dev))
4575					port_set_stp_state(hw, port,
4576						STP_STATE_SIMPLE);
4577			}
4578		}
4579
4580		hw_enable(hw);
4581		hw_ena_intr(hw);
4582	}
4583
4584	netif_trans_update(dev);
4585	netif_wake_queue(dev);
4586}
4587
4588static inline void csum_verified(struct sk_buff *skb)
4589{
4590	unsigned short protocol;
4591	struct iphdr *iph;
4592
4593	protocol = skb->protocol;
4594	skb_reset_network_header(skb);
4595	iph = (struct iphdr *) skb_network_header(skb);
4596	if (protocol == htons(ETH_P_8021Q)) {
4597		protocol = iph->tot_len;
4598		skb_set_network_header(skb, VLAN_HLEN);
4599		iph = (struct iphdr *) skb_network_header(skb);
4600	}
4601	if (protocol == htons(ETH_P_IP)) {
4602		if (iph->protocol == IPPROTO_TCP)
4603			skb->ip_summed = CHECKSUM_UNNECESSARY;
4604	}
4605}
4606
4607static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4608	struct ksz_desc *desc, union desc_stat status)
4609{
4610	int packet_len;
4611	struct dev_priv *priv = netdev_priv(dev);
4612	struct dev_info *hw_priv = priv->adapter;
4613	struct ksz_dma_buf *dma_buf;
4614	struct sk_buff *skb;
4615
4616	/* Received length includes 4-byte CRC. */
4617	packet_len = status.rx.frame_len - 4;
4618
4619	dma_buf = DMA_BUFFER(desc);
4620	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4621				packet_len + 4, DMA_FROM_DEVICE);
4622
4623	do {
4624		/* skb->data != skb->head */
4625		skb = netdev_alloc_skb(dev, packet_len + 2);
4626		if (!skb) {
4627			dev->stats.rx_dropped++;
4628			return -ENOMEM;
4629		}
4630
4631		/*
4632		 * Align socket buffer in 4-byte boundary for better
4633		 * performance.
4634		 */
4635		skb_reserve(skb, 2);
4636
4637		skb_put_data(skb, dma_buf->skb->data, packet_len);
4638	} while (0);
4639
4640	skb->protocol = eth_type_trans(skb, dev);
4641
4642	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4643		csum_verified(skb);
4644
4645	/* Update receive statistics. */
4646	dev->stats.rx_packets++;
4647	dev->stats.rx_bytes += packet_len;
4648
4649	/* Notify upper layer for received packet. */
4650	netif_rx(skb);
4651
4652	return 0;
4653}
4654
4655static int dev_rcv_packets(struct dev_info *hw_priv)
4656{
4657	int next;
4658	union desc_stat status;
4659	struct ksz_hw *hw = &hw_priv->hw;
4660	struct net_device *dev = hw->port_info[0].pdev;
4661	struct ksz_desc_info *info = &hw->rx_desc_info;
4662	int left = info->alloc;
4663	struct ksz_desc *desc;
4664	int received = 0;
4665
4666	next = info->next;
4667	while (left--) {
4668		/* Get next descriptor which is not hardware owned. */
4669		desc = &info->ring[next];
4670		status.data = le32_to_cpu(desc->phw->ctrl.data);
4671		if (status.rx.hw_owned)
4672			break;
4673
4674		/* Status valid only when last descriptor bit is set. */
4675		if (status.rx.last_desc && status.rx.first_desc) {
4676			if (rx_proc(dev, hw, desc, status))
4677				goto release_packet;
4678			received++;
4679		}
4680
4681release_packet:
4682		release_desc(desc);
4683		next++;
4684		next &= info->mask;
4685	}
4686	info->next = next;
4687
4688	return received;
4689}
4690
4691static int port_rcv_packets(struct dev_info *hw_priv)
4692{
4693	int next;
4694	union desc_stat status;
4695	struct ksz_hw *hw = &hw_priv->hw;
4696	struct net_device *dev = hw->port_info[0].pdev;
4697	struct ksz_desc_info *info = &hw->rx_desc_info;
4698	int left = info->alloc;
4699	struct ksz_desc *desc;
4700	int received = 0;
4701
4702	next = info->next;
4703	while (left--) {
4704		/* Get next descriptor which is not hardware owned. */
4705		desc = &info->ring[next];
4706		status.data = le32_to_cpu(desc->phw->ctrl.data);
4707		if (status.rx.hw_owned)
4708			break;
4709
4710		if (hw->dev_count > 1) {
4711			/* Get received port number. */
4712			int p = HW_TO_DEV_PORT(status.rx.src_port);
4713
4714			dev = hw->port_info[p].pdev;
4715			if (!netif_running(dev))
4716				goto release_packet;
4717		}
4718
4719		/* Status valid only when last descriptor bit is set. */
4720		if (status.rx.last_desc && status.rx.first_desc) {
4721			if (rx_proc(dev, hw, desc, status))
4722				goto release_packet;
4723			received++;
4724		}
4725
4726release_packet:
4727		release_desc(desc);
4728		next++;
4729		next &= info->mask;
4730	}
4731	info->next = next;
4732
4733	return received;
4734}
4735
4736static int dev_rcv_special(struct dev_info *hw_priv)
4737{
4738	int next;
4739	union desc_stat status;
4740	struct ksz_hw *hw = &hw_priv->hw;
4741	struct net_device *dev = hw->port_info[0].pdev;
4742	struct ksz_desc_info *info = &hw->rx_desc_info;
4743	int left = info->alloc;
4744	struct ksz_desc *desc;
4745	int received = 0;
4746
4747	next = info->next;
4748	while (left--) {
4749		/* Get next descriptor which is not hardware owned. */
4750		desc = &info->ring[next];
4751		status.data = le32_to_cpu(desc->phw->ctrl.data);
4752		if (status.rx.hw_owned)
4753			break;
4754
4755		if (hw->dev_count > 1) {
4756			/* Get received port number. */
4757			int p = HW_TO_DEV_PORT(status.rx.src_port);
4758
4759			dev = hw->port_info[p].pdev;
4760			if (!netif_running(dev))
4761				goto release_packet;
4762		}
4763
4764		/* Status valid only when last descriptor bit is set. */
4765		if (status.rx.last_desc && status.rx.first_desc) {
4766			/*
4767			 * Receive without error.  With receive errors
4768			 * disabled, packets with receive errors will be
4769			 * dropped, so no need to check the error bit.
4770			 */
4771			if (!status.rx.error || (status.data &
4772					KS_DESC_RX_ERROR_COND) ==
4773					KS_DESC_RX_ERROR_TOO_LONG) {
4774				if (rx_proc(dev, hw, desc, status))
4775					goto release_packet;
4776				received++;
4777			} else {
4778				struct dev_priv *priv = netdev_priv(dev);
4779
4780				/* Update receive error statistics. */
4781				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
4782			}
4783		}
4784
4785release_packet:
4786		release_desc(desc);
4787		next++;
4788		next &= info->mask;
4789	}
4790	info->next = next;
4791
4792	return received;
4793}
4794
4795static void rx_proc_task(struct tasklet_struct *t)
4796{
4797	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
4798	struct ksz_hw *hw = &hw_priv->hw;
4799
4800	if (!hw->enabled)
4801		return;
4802	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
4803
4804		/* In case receive process is suspended because of overrun. */
4805		hw_resume_rx(hw);
4806
4807		/* tasklets are interruptible. */
4808		spin_lock_irq(&hw_priv->hwlock);
4809		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
4810		spin_unlock_irq(&hw_priv->hwlock);
4811	} else {
4812		hw_ack_intr(hw, KS884X_INT_RX);
4813		tasklet_schedule(&hw_priv->rx_tasklet);
4814	}
4815}
4816
4817static void tx_proc_task(struct tasklet_struct *t)
4818{
4819	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
4820	struct ksz_hw *hw = &hw_priv->hw;
4821
4822	hw_ack_intr(hw, KS884X_INT_TX_MASK);
4823
4824	tx_done(hw_priv);
4825
4826	/* tasklets are interruptible. */
4827	spin_lock_irq(&hw_priv->hwlock);
4828	hw_turn_on_intr(hw, KS884X_INT_TX);
4829	spin_unlock_irq(&hw_priv->hwlock);
4830}
4831
4832static inline void handle_rx_stop(struct ksz_hw *hw)
4833{
4834	/* Receive just has been stopped. */
4835	if (0 == hw->rx_stop)
4836		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4837	else if (hw->rx_stop > 1) {
4838		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
4839			hw_start_rx(hw);
4840		} else {
4841			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4842			hw->rx_stop = 0;
4843		}
4844	} else
4845		/* Receive just has been started. */
4846		hw->rx_stop++;
4847}
4848
4849/**
4850 * netdev_intr - interrupt handling
4851 * @irq:	Interrupt number.
4852 * @dev_id:	Network device.
4853 *
4854 * This function is called by upper network layer to signal interrupt.
4855 *
4856 * Return IRQ_HANDLED if interrupt is handled.
4857 */
4858static irqreturn_t netdev_intr(int irq, void *dev_id)
4859{
4860	uint int_enable = 0;
4861	struct net_device *dev = (struct net_device *) dev_id;
4862	struct dev_priv *priv = netdev_priv(dev);
4863	struct dev_info *hw_priv = priv->adapter;
4864	struct ksz_hw *hw = &hw_priv->hw;
4865
4866	spin_lock(&hw_priv->hwlock);
4867
4868	hw_read_intr(hw, &int_enable);
4869
4870	/* Not our interrupt! */
4871	if (!int_enable) {
4872		spin_unlock(&hw_priv->hwlock);
4873		return IRQ_NONE;
4874	}
4875
4876	do {
4877		hw_ack_intr(hw, int_enable);
4878		int_enable &= hw->intr_mask;
4879
4880		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
4881			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
4882			tasklet_schedule(&hw_priv->tx_tasklet);
4883		}
4884
4885		if (likely(int_enable & KS884X_INT_RX)) {
4886			hw_dis_intr_bit(hw, KS884X_INT_RX);
4887			tasklet_schedule(&hw_priv->rx_tasklet);
4888		}
4889
4890		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
4891			dev->stats.rx_fifo_errors++;
4892			hw_resume_rx(hw);
4893		}
4894
4895		if (unlikely(int_enable & KS884X_INT_PHY)) {
4896			struct ksz_port *port = &priv->port;
4897
4898			hw->features |= LINK_INT_WORKING;
4899			port_get_link_speed(port);
4900		}
4901
4902		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
4903			handle_rx_stop(hw);
4904			break;
4905		}
4906
4907		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
4908			u32 data;
4909
4910			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
4911			pr_info("Tx stopped\n");
4912			data = readl(hw->io + KS_DMA_TX_CTRL);
4913			if (!(data & DMA_TX_ENABLE))
4914				pr_info("Tx disabled\n");
4915			break;
4916		}
4917	} while (0);
4918
4919	hw_ena_intr(hw);
4920
4921	spin_unlock(&hw_priv->hwlock);
4922
4923	return IRQ_HANDLED;
4924}
4925
4926/*
4927 * Linux network device functions
4928 */
4929
4930
4931#ifdef CONFIG_NET_POLL_CONTROLLER
4932static void netdev_netpoll(struct net_device *dev)
4933{
4934	struct dev_priv *priv = netdev_priv(dev);
4935	struct dev_info *hw_priv = priv->adapter;
4936
4937	hw_dis_intr(&hw_priv->hw);
4938	netdev_intr(dev->irq, dev);
4939}
4940#endif
4941
4942static void bridge_change(struct ksz_hw *hw)
4943{
4944	int port;
4945	u8  member;
4946	struct ksz_switch *sw = hw->ksz_switch;
4947
4948	/* No ports in forwarding state. */
4949	if (!sw->member) {
4950		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4951		sw_block_addr(hw);
4952	}
4953	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4954		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
4955			member = HOST_MASK | sw->member;
4956		else
4957			member = HOST_MASK | (1 << port);
4958		if (member != sw->port_cfg[port].member)
4959			sw_cfg_port_base_vlan(hw, port, member);
4960	}
4961}
4962
4963/**
4964 * netdev_close - close network device
4965 * @dev:	Network device.
4966 *
4967 * This function process the close operation of network device.  This is caused
4968 * by the user command "ifconfig ethX down."
4969 *
4970 * Return 0 if successful; otherwise an error code indicating failure.
4971 */
4972static int netdev_close(struct net_device *dev)
4973{
4974	struct dev_priv *priv = netdev_priv(dev);
4975	struct dev_info *hw_priv = priv->adapter;
4976	struct ksz_port *port = &priv->port;
4977	struct ksz_hw *hw = &hw_priv->hw;
4978	int pi;
4979
4980	netif_stop_queue(dev);
4981
4982	ksz_stop_timer(&priv->monitor_timer_info);
4983
4984	/* Need to shut the port manually in multiple device interfaces mode. */
4985	if (hw->dev_count > 1) {
4986		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
4987
4988		/* Port is closed.  Need to change bridge setting. */
4989		if (hw->features & STP_SUPPORT) {
4990			pi = 1 << port->first_port;
4991			if (hw->ksz_switch->member & pi) {
4992				hw->ksz_switch->member &= ~pi;
4993				bridge_change(hw);
4994			}
4995		}
4996	}
4997	if (port->first_port > 0)
4998		hw_del_addr(hw, dev->dev_addr);
4999	if (!hw_priv->wol_enable)
5000		port_set_power_saving(port, true);
5001
5002	if (priv->multicast)
5003		--hw->all_multi;
5004	if (priv->promiscuous)
5005		--hw->promiscuous;
5006
5007	hw_priv->opened--;
5008	if (!(hw_priv->opened)) {
5009		ksz_stop_timer(&hw_priv->mib_timer_info);
5010		flush_work(&hw_priv->mib_read);
5011
5012		hw_dis_intr(hw);
5013		hw_disable(hw);
5014		hw_clr_multicast(hw);
5015
5016		/* Delay for receive task to stop scheduling itself. */
5017		msleep(2000 / HZ);
5018
5019		tasklet_kill(&hw_priv->rx_tasklet);
5020		tasklet_kill(&hw_priv->tx_tasklet);
5021		free_irq(dev->irq, hw_priv->dev);
5022
5023		transmit_cleanup(hw_priv, 0);
5024		hw_reset_pkts(&hw->rx_desc_info);
5025		hw_reset_pkts(&hw->tx_desc_info);
5026
5027		/* Clean out static MAC table when the switch is shutdown. */
5028		if (hw->features & STP_SUPPORT)
5029			sw_clr_sta_mac_table(hw);
5030	}
5031
5032	return 0;
5033}
5034
5035static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5036{
5037	if (hw->ksz_switch) {
5038		u32 data;
5039
5040		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5041		if (hw->features & RX_HUGE_FRAME)
5042			data |= SWITCH_HUGE_PACKET;
5043		else
5044			data &= ~SWITCH_HUGE_PACKET;
5045		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5046	}
5047	if (hw->features & RX_HUGE_FRAME) {
5048		hw->rx_cfg |= DMA_RX_ERROR;
5049		hw_priv->dev_rcv = dev_rcv_special;
5050	} else {
5051		hw->rx_cfg &= ~DMA_RX_ERROR;
5052		if (hw->dev_count > 1)
5053			hw_priv->dev_rcv = port_rcv_packets;
5054		else
5055			hw_priv->dev_rcv = dev_rcv_packets;
5056	}
5057}
5058
5059static int prepare_hardware(struct net_device *dev)
5060{
5061	struct dev_priv *priv = netdev_priv(dev);
5062	struct dev_info *hw_priv = priv->adapter;
5063	struct ksz_hw *hw = &hw_priv->hw;
5064	int rc = 0;
5065
5066	/* Remember the network device that requests interrupts. */
5067	hw_priv->dev = dev;
5068	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5069	if (rc)
5070		return rc;
5071	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5072	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5073
5074	hw->promiscuous = 0;
5075	hw->all_multi = 0;
5076	hw->multi_list_size = 0;
5077
5078	hw_reset(hw);
5079
5080	hw_set_desc_base(hw,
5081		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5082	hw_set_addr(hw);
5083	hw_cfg_huge_frame(hw_priv, hw);
5084	ksz_init_rx_buffers(hw_priv);
5085	return 0;
5086}
5087
5088static void set_media_state(struct net_device *dev, int media_state)
5089{
5090	struct dev_priv *priv = netdev_priv(dev);
5091
5092	if (media_state == priv->media_state)
5093		netif_carrier_on(dev);
5094	else
5095		netif_carrier_off(dev);
5096	netif_info(priv, link, dev, "link %s\n",
5097		   media_state == priv->media_state ? "on" : "off");
5098}
5099
5100/**
5101 * netdev_open - open network device
5102 * @dev:	Network device.
5103 *
5104 * This function process the open operation of network device.  This is caused
5105 * by the user command "ifconfig ethX up."
5106 *
5107 * Return 0 if successful; otherwise an error code indicating failure.
5108 */
5109static int netdev_open(struct net_device *dev)
5110{
5111	struct dev_priv *priv = netdev_priv(dev);
5112	struct dev_info *hw_priv = priv->adapter;
5113	struct ksz_hw *hw = &hw_priv->hw;
5114	struct ksz_port *port = &priv->port;
5115	unsigned long next_jiffies;
5116	int i;
5117	int p;
5118	int rc = 0;
5119
5120	next_jiffies = jiffies + HZ * 2;
5121	priv->multicast = 0;
5122	priv->promiscuous = 0;
5123
5124	/* Reset device statistics. */
5125	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5126	memset((void *) port->counter, 0,
5127		(sizeof(u64) * OID_COUNTER_LAST));
5128
5129	if (!(hw_priv->opened)) {
5130		rc = prepare_hardware(dev);
5131		if (rc)
5132			return rc;
5133		for (i = 0; i < hw->mib_port_cnt; i++) {
5134			next_jiffies += HZ * 1;
5135			hw_priv->counter[i].time = next_jiffies;
5136			hw->port_mib[i].state = media_disconnected;
5137			port_init_cnt(hw, i);
5138		}
5139		if (hw->ksz_switch)
5140			hw->port_mib[HOST_PORT].state = media_connected;
5141		else {
5142			hw_add_wol_bcast(hw);
5143			hw_cfg_wol_pme(hw, 0);
5144			hw_clr_wol_pme_status(&hw_priv->hw);
5145		}
5146	}
5147	port_set_power_saving(port, false);
5148
5149	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5150		/*
5151		 * Initialize to invalid value so that link detection
5152		 * is done.
5153		 */
5154		hw->port_info[p].partner = 0xFF;
5155		hw->port_info[p].state = media_disconnected;
5156	}
5157
5158	/* Need to open the port in multiple device interfaces mode. */
5159	if (hw->dev_count > 1) {
5160		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5161		if (port->first_port > 0)
5162			hw_add_addr(hw, dev->dev_addr);
5163	}
5164
5165	port_get_link_speed(port);
5166	if (port->force_link)
5167		port_force_link_speed(port);
5168	else
5169		port_set_link_speed(port);
5170
5171	if (!(hw_priv->opened)) {
5172		hw_setup_intr(hw);
5173		hw_enable(hw);
5174		hw_ena_intr(hw);
5175
5176		if (hw->mib_port_cnt)
5177			ksz_start_timer(&hw_priv->mib_timer_info,
5178				hw_priv->mib_timer_info.period);
5179	}
5180
5181	hw_priv->opened++;
5182
5183	ksz_start_timer(&priv->monitor_timer_info,
5184		priv->monitor_timer_info.period);
5185
5186	priv->media_state = port->linked->state;
5187
5188	set_media_state(dev, media_connected);
5189	netif_start_queue(dev);
5190
5191	return 0;
5192}
5193
5194/* RX errors = rx_errors */
5195/* RX dropped = rx_dropped */
5196/* RX overruns = rx_fifo_errors */
5197/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5198/* TX errors = tx_errors */
5199/* TX dropped = tx_dropped */
5200/* TX overruns = tx_fifo_errors */
5201/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5202/* collisions = collisions */
5203
5204/**
5205 * netdev_query_statistics - query network device statistics
5206 * @dev:	Network device.
5207 *
5208 * This function returns the statistics of the network device.  The device
5209 * needs not be opened.
5210 *
5211 * Return network device statistics.
5212 */
5213static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5214{
5215	struct dev_priv *priv = netdev_priv(dev);
5216	struct ksz_port *port = &priv->port;
5217	struct ksz_hw *hw = &priv->adapter->hw;
5218	struct ksz_port_mib *mib;
5219	int i;
5220	int p;
5221
5222	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5223	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5224
5225	/* Reset to zero to add count later. */
5226	dev->stats.multicast = 0;
5227	dev->stats.collisions = 0;
5228	dev->stats.rx_length_errors = 0;
5229	dev->stats.rx_crc_errors = 0;
5230	dev->stats.rx_frame_errors = 0;
5231	dev->stats.tx_window_errors = 0;
5232
5233	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5234		mib = &hw->port_mib[p];
5235
5236		dev->stats.multicast += (unsigned long)
5237			mib->counter[MIB_COUNTER_RX_MULTICAST];
5238
5239		dev->stats.collisions += (unsigned long)
5240			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5241
5242		dev->stats.rx_length_errors += (unsigned long)(
5243			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5244			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5245			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5246			mib->counter[MIB_COUNTER_RX_JABBER]);
5247		dev->stats.rx_crc_errors += (unsigned long)
5248			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5249		dev->stats.rx_frame_errors += (unsigned long)(
5250			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5251			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5252
5253		dev->stats.tx_window_errors += (unsigned long)
5254			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5255	}
5256
5257	return &dev->stats;
5258}
5259
5260/**
5261 * netdev_set_mac_address - set network device MAC address
5262 * @dev:	Network device.
5263 * @addr:	Buffer of MAC address.
5264 *
5265 * This function is used to set the MAC address of the network device.
5266 *
5267 * Return 0 to indicate success.
5268 */
5269static int netdev_set_mac_address(struct net_device *dev, void *addr)
5270{
5271	struct dev_priv *priv = netdev_priv(dev);
5272	struct dev_info *hw_priv = priv->adapter;
5273	struct ksz_hw *hw = &hw_priv->hw;
5274	struct sockaddr *mac = addr;
5275	uint interrupt;
5276
5277	if (priv->port.first_port > 0)
5278		hw_del_addr(hw, dev->dev_addr);
5279	else {
5280		hw->mac_override = 1;
5281		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5282	}
5283
5284	eth_hw_addr_set(dev, mac->sa_data);
5285
5286	interrupt = hw_block_intr(hw);
5287
5288	if (priv->port.first_port > 0)
5289		hw_add_addr(hw, dev->dev_addr);
5290	else
5291		hw_set_addr(hw);
5292	hw_restore_intr(hw, interrupt);
5293
5294	return 0;
5295}
5296
5297static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5298	struct ksz_hw *hw, int promiscuous)
5299{
5300	if (promiscuous != priv->promiscuous) {
5301		u8 prev_state = hw->promiscuous;
5302
5303		if (promiscuous)
5304			++hw->promiscuous;
5305		else
5306			--hw->promiscuous;
5307		priv->promiscuous = promiscuous;
5308
5309		/* Turn on/off promiscuous mode. */
5310		if (hw->promiscuous <= 1 && prev_state <= 1)
5311			hw_set_promiscuous(hw, hw->promiscuous);
5312
5313		/*
5314		 * Port is not in promiscuous mode, meaning it is released
5315		 * from the bridge.
5316		 */
5317		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5318		    netif_is_bridge_port(dev)) {
5319			struct ksz_switch *sw = hw->ksz_switch;
5320			int port = priv->port.first_port;
5321
5322			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5323			port = 1 << port;
5324			if (sw->member & port) {
5325				sw->member &= ~port;
5326				bridge_change(hw);
5327			}
5328		}
5329	}
5330}
5331
5332static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5333	int multicast)
5334{
5335	if (multicast != priv->multicast) {
5336		u8 all_multi = hw->all_multi;
5337
5338		if (multicast)
5339			++hw->all_multi;
5340		else
5341			--hw->all_multi;
5342		priv->multicast = multicast;
5343
5344		/* Turn on/off all multicast mode. */
5345		if (hw->all_multi <= 1 && all_multi <= 1)
5346			hw_set_multicast(hw, hw->all_multi);
5347	}
5348}
5349
5350/**
5351 * netdev_set_rx_mode
5352 * @dev:	Network device.
5353 *
5354 * This routine is used to set multicast addresses or put the network device
5355 * into promiscuous mode.
5356 */
5357static void netdev_set_rx_mode(struct net_device *dev)
5358{
5359	struct dev_priv *priv = netdev_priv(dev);
5360	struct dev_info *hw_priv = priv->adapter;
5361	struct ksz_hw *hw = &hw_priv->hw;
5362	struct netdev_hw_addr *ha;
5363	int multicast = (dev->flags & IFF_ALLMULTI);
5364
5365	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5366
5367	if (hw_priv->hw.dev_count > 1)
5368		multicast |= (dev->flags & IFF_MULTICAST);
5369	dev_set_multicast(priv, hw, multicast);
5370
5371	/* Cannot use different hashes in multiple device interfaces mode. */
5372	if (hw_priv->hw.dev_count > 1)
5373		return;
5374
5375	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5376		int i = 0;
5377
5378		/* List too big to support so turn on all multicast mode. */
5379		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5380			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5381				hw->multi_list_size = MAX_MULTICAST_LIST;
5382				++hw->all_multi;
5383				hw_set_multicast(hw, hw->all_multi);
5384			}
5385			return;
5386		}
5387
5388		netdev_for_each_mc_addr(ha, dev) {
5389			if (i >= MAX_MULTICAST_LIST)
5390				break;
5391			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5392		}
5393		hw->multi_list_size = (u8) i;
5394		hw_set_grp_addr(hw);
5395	} else {
5396		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5397			--hw->all_multi;
5398			hw_set_multicast(hw, hw->all_multi);
5399		}
5400		hw->multi_list_size = 0;
5401		hw_clr_multicast(hw);
5402	}
5403}
5404
5405static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5406{
5407	struct dev_priv *priv = netdev_priv(dev);
5408	struct dev_info *hw_priv = priv->adapter;
5409	struct ksz_hw *hw = &hw_priv->hw;
5410	int hw_mtu;
5411
5412	if (netif_running(dev))
5413		return -EBUSY;
5414
5415	/* Cannot use different MTU in multiple device interfaces mode. */
5416	if (hw->dev_count > 1)
5417		if (dev != hw_priv->dev)
5418			return 0;
5419
5420	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5421	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5422		hw->features |= RX_HUGE_FRAME;
5423		hw_mtu = MAX_RX_BUF_SIZE;
5424	} else {
5425		hw->features &= ~RX_HUGE_FRAME;
5426		hw_mtu = REGULAR_RX_BUF_SIZE;
5427	}
5428	hw_mtu = (hw_mtu + 3) & ~3;
5429	hw_priv->mtu = hw_mtu;
5430	WRITE_ONCE(dev->mtu, new_mtu);
5431
5432	return 0;
5433}
5434
5435/**
5436 * netdev_ioctl - I/O control processing
5437 * @dev:	Network device.
5438 * @ifr:	Interface request structure.
5439 * @cmd:	I/O control code.
5440 *
5441 * This function is used to process I/O control calls.
5442 *
5443 * Return 0 to indicate success.
5444 */
5445static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5446{
5447	struct dev_priv *priv = netdev_priv(dev);
5448	struct dev_info *hw_priv = priv->adapter;
5449	struct ksz_hw *hw = &hw_priv->hw;
5450	struct ksz_port *port = &priv->port;
5451	int result = 0;
5452	struct mii_ioctl_data *data = if_mii(ifr);
5453
5454	if (down_interruptible(&priv->proc_sem))
5455		return -ERESTARTSYS;
5456
5457	switch (cmd) {
5458	/* Get address of MII PHY in use. */
5459	case SIOCGMIIPHY:
5460		data->phy_id = priv->id;
5461		fallthrough;
5462
5463	/* Read MII PHY register. */
5464	case SIOCGMIIREG:
5465		if (data->phy_id != priv->id || data->reg_num >= 6)
5466			result = -EIO;
5467		else
5468			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5469				&data->val_out);
5470		break;
5471
5472	/* Write MII PHY register. */
5473	case SIOCSMIIREG:
5474		if (!capable(CAP_NET_ADMIN))
5475			result = -EPERM;
5476		else if (data->phy_id != priv->id || data->reg_num >= 6)
5477			result = -EIO;
5478		else
5479			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5480				data->val_in);
5481		break;
5482
5483	default:
5484		result = -EOPNOTSUPP;
5485	}
5486
5487	up(&priv->proc_sem);
5488
5489	return result;
5490}
5491
5492/*
5493 * MII support
5494 */
5495
5496/**
5497 * mdio_read - read PHY register
5498 * @dev:	Network device.
5499 * @phy_id:	The PHY id.
5500 * @reg_num:	The register number.
5501 *
5502 * This function returns the PHY register value.
5503 *
5504 * Return the register value.
5505 */
5506static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5507{
5508	struct dev_priv *priv = netdev_priv(dev);
5509	struct ksz_port *port = &priv->port;
5510	struct ksz_hw *hw = port->hw;
5511	u16 val_out;
5512
5513	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5514	return val_out;
5515}
5516
5517/**
5518 * mdio_write - set PHY register
5519 * @dev:	Network device.
5520 * @phy_id:	The PHY id.
5521 * @reg_num:	The register number.
5522 * @val:	The register value.
5523 *
5524 * This procedure sets the PHY register value.
5525 */
5526static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5527{
5528	struct dev_priv *priv = netdev_priv(dev);
5529	struct ksz_port *port = &priv->port;
5530	struct ksz_hw *hw = port->hw;
5531	int i;
5532	int pi;
5533
5534	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5535		hw_w_phy(hw, pi, reg_num << 1, val);
5536}
5537
5538/*
5539 * ethtool support
5540 */
5541
5542#define EEPROM_SIZE			0x40
5543
5544static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5545
5546#define ADVERTISED_ALL			\
5547	(ADVERTISED_10baseT_Half |	\
5548	ADVERTISED_10baseT_Full |	\
5549	ADVERTISED_100baseT_Half |	\
5550	ADVERTISED_100baseT_Full)
5551
5552/* These functions use the MII functions in mii.c. */
5553
5554/**
5555 * netdev_get_link_ksettings - get network device settings
5556 * @dev:	Network device.
5557 * @cmd:	Ethtool command.
5558 *
5559 * This function queries the PHY and returns its state in the ethtool command.
5560 *
5561 * Return 0 if successful; otherwise an error code.
5562 */
5563static int netdev_get_link_ksettings(struct net_device *dev,
5564				     struct ethtool_link_ksettings *cmd)
5565{
5566	struct dev_priv *priv = netdev_priv(dev);
5567	struct dev_info *hw_priv = priv->adapter;
5568
5569	mutex_lock(&hw_priv->lock);
5570	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5571	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5572	mutex_unlock(&hw_priv->lock);
5573
5574	/* Save advertised settings for workaround in next function. */
5575	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5576						cmd->link_modes.advertising);
5577
5578	return 0;
5579}
5580
5581/**
5582 * netdev_set_link_ksettings - set network device settings
5583 * @dev:	Network device.
5584 * @cmd:	Ethtool command.
5585 *
5586 * This function sets the PHY according to the ethtool command.
5587 *
5588 * Return 0 if successful; otherwise an error code.
5589 */
5590static int netdev_set_link_ksettings(struct net_device *dev,
5591				     const struct ethtool_link_ksettings *cmd)
5592{
5593	struct dev_priv *priv = netdev_priv(dev);
5594	struct dev_info *hw_priv = priv->adapter;
5595	struct ksz_port *port = &priv->port;
5596	struct ethtool_link_ksettings copy_cmd;
5597	u32 speed = cmd->base.speed;
5598	u32 advertising;
5599	int rc;
5600
5601	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5602						cmd->link_modes.advertising);
5603
5604	/*
5605	 * ethtool utility does not change advertised setting if auto
5606	 * negotiation is not specified explicitly.
5607	 */
5608	if (cmd->base.autoneg && priv->advertising == advertising) {
5609		advertising |= ADVERTISED_ALL;
5610		if (10 == speed)
5611			advertising &=
5612				~(ADVERTISED_100baseT_Full |
5613				ADVERTISED_100baseT_Half);
5614		else if (100 == speed)
5615			advertising &=
5616				~(ADVERTISED_10baseT_Full |
5617				ADVERTISED_10baseT_Half);
5618		if (0 == cmd->base.duplex)
5619			advertising &=
5620				~(ADVERTISED_100baseT_Full |
5621				ADVERTISED_10baseT_Full);
5622		else if (1 == cmd->base.duplex)
5623			advertising &=
5624				~(ADVERTISED_100baseT_Half |
5625				ADVERTISED_10baseT_Half);
5626	}
5627	mutex_lock(&hw_priv->lock);
5628	if (cmd->base.autoneg &&
5629	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5630		port->duplex = 0;
5631		port->speed = 0;
5632		port->force_link = 0;
5633	} else {
5634		port->duplex = cmd->base.duplex + 1;
5635		if (1000 != speed)
5636			port->speed = speed;
5637		if (cmd->base.autoneg)
5638			port->force_link = 0;
5639		else
5640			port->force_link = 1;
5641	}
5642
5643	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5644	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5645						advertising);
5646	rc = mii_ethtool_set_link_ksettings(
5647		&priv->mii_if,
5648		(const struct ethtool_link_ksettings *)&copy_cmd);
5649	mutex_unlock(&hw_priv->lock);
5650	return rc;
5651}
5652
5653/**
5654 * netdev_nway_reset - restart auto-negotiation
5655 * @dev:	Network device.
5656 *
5657 * This function restarts the PHY for auto-negotiation.
5658 *
5659 * Return 0 if successful; otherwise an error code.
5660 */
5661static int netdev_nway_reset(struct net_device *dev)
5662{
5663	struct dev_priv *priv = netdev_priv(dev);
5664	struct dev_info *hw_priv = priv->adapter;
5665	int rc;
5666
5667	mutex_lock(&hw_priv->lock);
5668	rc = mii_nway_restart(&priv->mii_if);
5669	mutex_unlock(&hw_priv->lock);
5670	return rc;
5671}
5672
5673/**
5674 * netdev_get_link - get network device link status
5675 * @dev:	Network device.
5676 *
5677 * This function gets the link status from the PHY.
5678 *
5679 * Return true if PHY is linked and false otherwise.
5680 */
5681static u32 netdev_get_link(struct net_device *dev)
5682{
5683	struct dev_priv *priv = netdev_priv(dev);
5684	int rc;
5685
5686	rc = mii_link_ok(&priv->mii_if);
5687	return rc;
5688}
5689
5690/**
5691 * netdev_get_drvinfo - get network driver information
5692 * @dev:	Network device.
5693 * @info:	Ethtool driver info data structure.
5694 *
5695 * This procedure returns the driver information.
5696 */
5697static void netdev_get_drvinfo(struct net_device *dev,
5698	struct ethtool_drvinfo *info)
5699{
5700	struct dev_priv *priv = netdev_priv(dev);
5701	struct dev_info *hw_priv = priv->adapter;
5702
5703	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5704	strscpy(info->version, DRV_VERSION, sizeof(info->version));
5705	strscpy(info->bus_info, pci_name(hw_priv->pdev),
5706		sizeof(info->bus_info));
5707}
5708
5709static struct hw_regs {
5710	int start;
5711	int end;
5712} hw_regs_range[] = {
5713	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
5714	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
5715	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
5716	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
5717	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
5718	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
5719	{ 0, 0 }
5720};
5721
5722/**
5723 * netdev_get_regs_len - get length of register dump
5724 * @dev:	Network device.
5725 *
5726 * This function returns the length of the register dump.
5727 *
5728 * Return length of the register dump.
5729 */
5730static int netdev_get_regs_len(struct net_device *dev)
5731{
5732	struct hw_regs *range = hw_regs_range;
5733	int regs_len = 0x10 * sizeof(u32);
5734
5735	while (range->end > range->start) {
5736		regs_len += (range->end - range->start + 3) / 4 * 4;
5737		range++;
5738	}
5739	return regs_len;
5740}
5741
5742/**
5743 * netdev_get_regs - get register dump
5744 * @dev:	Network device.
5745 * @regs:	Ethtool registers data structure.
5746 * @ptr:	Buffer to store the register values.
5747 *
5748 * This procedure dumps the register values in the provided buffer.
5749 */
5750static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
5751	void *ptr)
5752{
5753	struct dev_priv *priv = netdev_priv(dev);
5754	struct dev_info *hw_priv = priv->adapter;
5755	struct ksz_hw *hw = &hw_priv->hw;
5756	int *buf = (int *) ptr;
5757	struct hw_regs *range = hw_regs_range;
5758	int len;
5759
5760	mutex_lock(&hw_priv->lock);
5761	regs->version = 0;
5762	for (len = 0; len < 0x40; len += 4) {
5763		pci_read_config_dword(hw_priv->pdev, len, buf);
5764		buf++;
5765	}
5766	while (range->end > range->start) {
5767		for (len = range->start; len < range->end; len += 4) {
5768			*buf = readl(hw->io + len);
5769			buf++;
5770		}
5771		range++;
5772	}
5773	mutex_unlock(&hw_priv->lock);
5774}
5775
5776#define WOL_SUPPORT			\
5777	(WAKE_PHY | WAKE_MAGIC |	\
5778	WAKE_UCAST | WAKE_MCAST |	\
5779	WAKE_BCAST | WAKE_ARP)
5780
5781/**
5782 * netdev_get_wol - get Wake-on-LAN support
5783 * @dev:	Network device.
5784 * @wol:	Ethtool Wake-on-LAN data structure.
5785 *
5786 * This procedure returns Wake-on-LAN support.
5787 */
5788static void netdev_get_wol(struct net_device *dev,
5789	struct ethtool_wolinfo *wol)
5790{
5791	struct dev_priv *priv = netdev_priv(dev);
5792	struct dev_info *hw_priv = priv->adapter;
5793
5794	wol->supported = hw_priv->wol_support;
5795	wol->wolopts = hw_priv->wol_enable;
5796	memset(&wol->sopass, 0, sizeof(wol->sopass));
5797}
5798
5799/**
5800 * netdev_set_wol - set Wake-on-LAN support
5801 * @dev:	Network device.
5802 * @wol:	Ethtool Wake-on-LAN data structure.
5803 *
5804 * This function sets Wake-on-LAN support.
5805 *
5806 * Return 0 if successful; otherwise an error code.
5807 */
5808static int netdev_set_wol(struct net_device *dev,
5809	struct ethtool_wolinfo *wol)
5810{
5811	struct dev_priv *priv = netdev_priv(dev);
5812	struct dev_info *hw_priv = priv->adapter;
5813
5814	/* Need to find a way to retrieve the device IP address. */
5815	static const u8 net_addr[] = { 192, 168, 1, 1 };
5816
5817	if (wol->wolopts & ~hw_priv->wol_support)
5818		return -EINVAL;
5819
5820	hw_priv->wol_enable = wol->wolopts;
5821
5822	/* Link wakeup cannot really be disabled. */
5823	if (wol->wolopts)
5824		hw_priv->wol_enable |= WAKE_PHY;
5825	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
5826	return 0;
5827}
5828
5829/**
5830 * netdev_get_msglevel - get debug message level
5831 * @dev:	Network device.
5832 *
5833 * This function returns current debug message level.
5834 *
5835 * Return current debug message flags.
5836 */
5837static u32 netdev_get_msglevel(struct net_device *dev)
5838{
5839	struct dev_priv *priv = netdev_priv(dev);
5840
5841	return priv->msg_enable;
5842}
5843
5844/**
5845 * netdev_set_msglevel - set debug message level
5846 * @dev:	Network device.
5847 * @value:	Debug message flags.
5848 *
5849 * This procedure sets debug message level.
5850 */
5851static void netdev_set_msglevel(struct net_device *dev, u32 value)
5852{
5853	struct dev_priv *priv = netdev_priv(dev);
5854
5855	priv->msg_enable = value;
5856}
5857
5858/**
5859 * netdev_get_eeprom_len - get EEPROM length
5860 * @dev:	Network device.
5861 *
5862 * This function returns the length of the EEPROM.
5863 *
5864 * Return length of the EEPROM.
5865 */
5866static int netdev_get_eeprom_len(struct net_device *dev)
5867{
5868	return EEPROM_SIZE * 2;
5869}
5870
5871#define EEPROM_MAGIC			0x10A18842
5872
5873/**
5874 * netdev_get_eeprom - get EEPROM data
5875 * @dev:	Network device.
5876 * @eeprom:	Ethtool EEPROM data structure.
5877 * @data:	Buffer to store the EEPROM data.
5878 *
5879 * This function dumps the EEPROM data in the provided buffer.
5880 *
5881 * Return 0 if successful; otherwise an error code.
5882 */
5883static int netdev_get_eeprom(struct net_device *dev,
5884	struct ethtool_eeprom *eeprom, u8 *data)
5885{
5886	struct dev_priv *priv = netdev_priv(dev);
5887	struct dev_info *hw_priv = priv->adapter;
5888	u8 *eeprom_byte = (u8 *) eeprom_data;
5889	int i;
5890	int len;
5891
5892	len = (eeprom->offset + eeprom->len + 1) / 2;
5893	for (i = eeprom->offset / 2; i < len; i++)
5894		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5895	eeprom->magic = EEPROM_MAGIC;
5896	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
5897
5898	return 0;
5899}
5900
5901/**
5902 * netdev_set_eeprom - write EEPROM data
5903 * @dev:	Network device.
5904 * @eeprom:	Ethtool EEPROM data structure.
5905 * @data:	Data buffer.
5906 *
5907 * This function modifies the EEPROM data one byte at a time.
5908 *
5909 * Return 0 if successful; otherwise an error code.
5910 */
5911static int netdev_set_eeprom(struct net_device *dev,
5912	struct ethtool_eeprom *eeprom, u8 *data)
5913{
5914	struct dev_priv *priv = netdev_priv(dev);
5915	struct dev_info *hw_priv = priv->adapter;
5916	u16 eeprom_word[EEPROM_SIZE];
5917	u8 *eeprom_byte = (u8 *) eeprom_word;
5918	int i;
5919	int len;
5920
5921	if (eeprom->magic != EEPROM_MAGIC)
5922		return -EINVAL;
5923
5924	len = (eeprom->offset + eeprom->len + 1) / 2;
5925	for (i = eeprom->offset / 2; i < len; i++)
5926		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5927	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
5928	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
5929	for (i = 0; i < EEPROM_SIZE; i++)
5930		if (eeprom_word[i] != eeprom_data[i]) {
5931			eeprom_data[i] = eeprom_word[i];
5932			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
5933	}
5934
5935	return 0;
5936}
5937
5938/**
5939 * netdev_get_pauseparam - get flow control parameters
5940 * @dev:	Network device.
5941 * @pause:	Ethtool PAUSE settings data structure.
5942 *
5943 * This procedure returns the PAUSE control flow settings.
5944 */
5945static void netdev_get_pauseparam(struct net_device *dev,
5946	struct ethtool_pauseparam *pause)
5947{
5948	struct dev_priv *priv = netdev_priv(dev);
5949	struct dev_info *hw_priv = priv->adapter;
5950	struct ksz_hw *hw = &hw_priv->hw;
5951
5952	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
5953	if (!hw->ksz_switch) {
5954		pause->rx_pause =
5955			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
5956		pause->tx_pause =
5957			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
5958	} else {
5959		pause->rx_pause =
5960			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5961				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
5962		pause->tx_pause =
5963			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5964				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
5965	}
5966}
5967
5968/**
5969 * netdev_set_pauseparam - set flow control parameters
5970 * @dev:	Network device.
5971 * @pause:	Ethtool PAUSE settings data structure.
5972 *
5973 * This function sets the PAUSE control flow settings.
5974 * Not implemented yet.
5975 *
5976 * Return 0 if successful; otherwise an error code.
5977 */
5978static int netdev_set_pauseparam(struct net_device *dev,
5979	struct ethtool_pauseparam *pause)
5980{
5981	struct dev_priv *priv = netdev_priv(dev);
5982	struct dev_info *hw_priv = priv->adapter;
5983	struct ksz_hw *hw = &hw_priv->hw;
5984	struct ksz_port *port = &priv->port;
5985
5986	mutex_lock(&hw_priv->lock);
5987	if (pause->autoneg) {
5988		if (!pause->rx_pause && !pause->tx_pause)
5989			port->flow_ctrl = PHY_NO_FLOW_CTRL;
5990		else
5991			port->flow_ctrl = PHY_FLOW_CTRL;
5992		hw->overrides &= ~PAUSE_FLOW_CTRL;
5993		port->force_link = 0;
5994		if (hw->ksz_switch) {
5995			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5996				SWITCH_RX_FLOW_CTRL, 1);
5997			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5998				SWITCH_TX_FLOW_CTRL, 1);
5999		}
6000		port_set_link_speed(port);
6001	} else {
6002		hw->overrides |= PAUSE_FLOW_CTRL;
6003		if (hw->ksz_switch) {
6004			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6005				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6006			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6007				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6008		} else
6009			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6010	}
6011	mutex_unlock(&hw_priv->lock);
6012
6013	return 0;
6014}
6015
6016/**
6017 * netdev_get_ringparam - get tx/rx ring parameters
6018 * @dev:	Network device.
6019 * @ring:	Ethtool RING settings data structure.
6020 * @kernel_ring:	Ethtool external RING settings data structure.
6021 * @extack:	Netlink handle.
6022 *
6023 * This procedure returns the TX/RX ring settings.
6024 */
6025static void netdev_get_ringparam(struct net_device *dev,
6026				 struct ethtool_ringparam *ring,
6027				 struct kernel_ethtool_ringparam *kernel_ring,
6028				 struct netlink_ext_ack *extack)
6029{
6030	struct dev_priv *priv = netdev_priv(dev);
6031	struct dev_info *hw_priv = priv->adapter;
6032	struct ksz_hw *hw = &hw_priv->hw;
6033
6034	ring->tx_max_pending = (1 << 9);
6035	ring->tx_pending = hw->tx_desc_info.alloc;
6036	ring->rx_max_pending = (1 << 9);
6037	ring->rx_pending = hw->rx_desc_info.alloc;
6038}
6039
6040#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6041
6042static struct {
6043	char string[ETH_GSTRING_LEN];
6044} ethtool_stats_keys[STATS_LEN] = {
6045	{ "rx_lo_priority_octets" },
6046	{ "rx_hi_priority_octets" },
6047	{ "rx_undersize_packets" },
6048	{ "rx_fragments" },
6049	{ "rx_oversize_packets" },
6050	{ "rx_jabbers" },
6051	{ "rx_symbol_errors" },
6052	{ "rx_crc_errors" },
6053	{ "rx_align_errors" },
6054	{ "rx_mac_ctrl_packets" },
6055	{ "rx_pause_packets" },
6056	{ "rx_bcast_packets" },
6057	{ "rx_mcast_packets" },
6058	{ "rx_ucast_packets" },
6059	{ "rx_64_or_less_octet_packets" },
6060	{ "rx_65_to_127_octet_packets" },
6061	{ "rx_128_to_255_octet_packets" },
6062	{ "rx_256_to_511_octet_packets" },
6063	{ "rx_512_to_1023_octet_packets" },
6064	{ "rx_1024_to_1522_octet_packets" },
6065
6066	{ "tx_lo_priority_octets" },
6067	{ "tx_hi_priority_octets" },
6068	{ "tx_late_collisions" },
6069	{ "tx_pause_packets" },
6070	{ "tx_bcast_packets" },
6071	{ "tx_mcast_packets" },
6072	{ "tx_ucast_packets" },
6073	{ "tx_deferred" },
6074	{ "tx_total_collisions" },
6075	{ "tx_excessive_collisions" },
6076	{ "tx_single_collisions" },
6077	{ "tx_mult_collisions" },
6078
6079	{ "rx_discards" },
6080	{ "tx_discards" },
6081};
6082
6083/**
6084 * netdev_get_strings - get statistics identity strings
6085 * @dev:	Network device.
6086 * @stringset:	String set identifier.
6087 * @buf:	Buffer to store the strings.
6088 *
6089 * This procedure returns the strings used to identify the statistics.
6090 */
6091static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6092{
6093	struct dev_priv *priv = netdev_priv(dev);
6094	struct dev_info *hw_priv = priv->adapter;
6095	struct ksz_hw *hw = &hw_priv->hw;
6096
6097	if (ETH_SS_STATS == stringset)
6098		memcpy(buf, &ethtool_stats_keys,
6099			ETH_GSTRING_LEN * hw->mib_cnt);
6100}
6101
6102/**
6103 * netdev_get_sset_count - get statistics size
6104 * @dev:	Network device.
6105 * @sset:	The statistics set number.
6106 *
6107 * This function returns the size of the statistics to be reported.
6108 *
6109 * Return size of the statistics to be reported.
6110 */
6111static int netdev_get_sset_count(struct net_device *dev, int sset)
6112{
6113	struct dev_priv *priv = netdev_priv(dev);
6114	struct dev_info *hw_priv = priv->adapter;
6115	struct ksz_hw *hw = &hw_priv->hw;
6116
6117	switch (sset) {
6118	case ETH_SS_STATS:
6119		return hw->mib_cnt;
6120	default:
6121		return -EOPNOTSUPP;
6122	}
6123}
6124
6125/**
6126 * netdev_get_ethtool_stats - get network device statistics
6127 * @dev:	Network device.
6128 * @stats:	Ethtool statistics data structure.
6129 * @data:	Buffer to store the statistics.
6130 *
6131 * This procedure returns the statistics.
6132 */
6133static void netdev_get_ethtool_stats(struct net_device *dev,
6134	struct ethtool_stats *stats, u64 *data)
6135{
6136	struct dev_priv *priv = netdev_priv(dev);
6137	struct dev_info *hw_priv = priv->adapter;
6138	struct ksz_hw *hw = &hw_priv->hw;
6139	struct ksz_port *port = &priv->port;
6140	int n_stats = stats->n_stats;
6141	int i;
6142	int n;
6143	int p;
6144	u64 counter[TOTAL_PORT_COUNTER_NUM];
6145
6146	mutex_lock(&hw_priv->lock);
6147	n = SWITCH_PORT_NUM;
6148	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6149		if (media_connected == hw->port_mib[p].state) {
6150			hw_priv->counter[p].read = 1;
6151
6152			/* Remember first port that requests read. */
6153			if (n == SWITCH_PORT_NUM)
6154				n = p;
6155		}
6156	}
6157	mutex_unlock(&hw_priv->lock);
6158
6159	if (n < SWITCH_PORT_NUM)
6160		schedule_work(&hw_priv->mib_read);
6161
6162	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6163		p = n;
6164		wait_event_interruptible_timeout(
6165			hw_priv->counter[p].counter,
6166			2 == hw_priv->counter[p].read,
6167			HZ * 1);
6168	} else
6169		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6170			if (0 == i) {
6171				wait_event_interruptible_timeout(
6172					hw_priv->counter[p].counter,
6173					2 == hw_priv->counter[p].read,
6174					HZ * 2);
6175			} else if (hw->port_mib[p].cnt_ptr) {
6176				wait_event_interruptible_timeout(
6177					hw_priv->counter[p].counter,
6178					2 == hw_priv->counter[p].read,
6179					HZ * 1);
6180			}
6181		}
6182
6183	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6184	n = hw->mib_cnt;
6185	if (n > n_stats)
6186		n = n_stats;
6187	n_stats -= n;
6188	for (i = 0; i < n; i++)
6189		*data++ = counter[i];
6190}
6191
6192/**
6193 * netdev_set_features - set receive checksum support
6194 * @dev:	Network device.
6195 * @features:	New device features (offloads).
6196 *
6197 * This function sets receive checksum support setting.
6198 *
6199 * Return 0 if successful; otherwise an error code.
6200 */
6201static int netdev_set_features(struct net_device *dev,
6202	netdev_features_t features)
6203{
6204	struct dev_priv *priv = netdev_priv(dev);
6205	struct dev_info *hw_priv = priv->adapter;
6206	struct ksz_hw *hw = &hw_priv->hw;
6207
6208	mutex_lock(&hw_priv->lock);
6209
6210	/* see note in hw_setup() */
6211	if (features & NETIF_F_RXCSUM)
6212		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6213	else
6214		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6215
6216	if (hw->enabled)
6217		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6218
6219	mutex_unlock(&hw_priv->lock);
6220
6221	return 0;
6222}
6223
6224static const struct ethtool_ops netdev_ethtool_ops = {
6225	.nway_reset		= netdev_nway_reset,
6226	.get_link		= netdev_get_link,
6227	.get_drvinfo		= netdev_get_drvinfo,
6228	.get_regs_len		= netdev_get_regs_len,
6229	.get_regs		= netdev_get_regs,
6230	.get_wol		= netdev_get_wol,
6231	.set_wol		= netdev_set_wol,
6232	.get_msglevel		= netdev_get_msglevel,
6233	.set_msglevel		= netdev_set_msglevel,
6234	.get_eeprom_len		= netdev_get_eeprom_len,
6235	.get_eeprom		= netdev_get_eeprom,
6236	.set_eeprom		= netdev_set_eeprom,
6237	.get_pauseparam		= netdev_get_pauseparam,
6238	.set_pauseparam		= netdev_set_pauseparam,
6239	.get_ringparam		= netdev_get_ringparam,
6240	.get_strings		= netdev_get_strings,
6241	.get_sset_count		= netdev_get_sset_count,
6242	.get_ethtool_stats	= netdev_get_ethtool_stats,
6243	.get_link_ksettings	= netdev_get_link_ksettings,
6244	.set_link_ksettings	= netdev_set_link_ksettings,
6245};
6246
6247/*
6248 * Hardware monitoring
6249 */
6250
6251static void update_link(struct net_device *dev, struct dev_priv *priv,
6252	struct ksz_port *port)
6253{
6254	if (priv->media_state != port->linked->state) {
6255		priv->media_state = port->linked->state;
6256		if (netif_running(dev))
6257			set_media_state(dev, media_connected);
6258	}
6259}
6260
6261static void mib_read_work(struct work_struct *work)
6262{
6263	struct dev_info *hw_priv =
6264		container_of(work, struct dev_info, mib_read);
6265	struct ksz_hw *hw = &hw_priv->hw;
6266	unsigned long next_jiffies;
6267	struct ksz_port_mib *mib;
6268	int i;
6269
6270	next_jiffies = jiffies;
6271	for (i = 0; i < hw->mib_port_cnt; i++) {
6272		mib = &hw->port_mib[i];
6273
6274		/* Reading MIB counters or requested to read. */
6275		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6276
6277			/* Need to process receive interrupt. */
6278			if (port_r_cnt(hw, i))
6279				break;
6280			hw_priv->counter[i].read = 0;
6281
6282			/* Finish reading counters. */
6283			if (0 == mib->cnt_ptr) {
6284				hw_priv->counter[i].read = 2;
6285				wake_up_interruptible(
6286					&hw_priv->counter[i].counter);
6287			}
6288		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6289			/* Only read MIB counters when the port is connected. */
6290			if (media_connected == mib->state)
6291				hw_priv->counter[i].read = 1;
6292			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6293			hw_priv->counter[i].time = next_jiffies;
6294
6295		/* Port is just disconnected. */
6296		} else if (mib->link_down) {
6297			mib->link_down = 0;
6298
6299			/* Read counters one last time after link is lost. */
6300			hw_priv->counter[i].read = 1;
6301		}
6302	}
6303}
6304
6305static void mib_monitor(struct timer_list *t)
6306{
6307	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6308
6309	mib_read_work(&hw_priv->mib_read);
6310
6311	/* This is used to verify Wake-on-LAN is working. */
6312	if (hw_priv->pme_wait) {
6313		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6314			hw_clr_wol_pme_status(&hw_priv->hw);
6315			hw_priv->pme_wait = 0;
6316		}
6317	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6318
6319		/* PME is asserted.  Wait 2 seconds to clear it. */
6320		hw_priv->pme_wait = jiffies + HZ * 2;
6321	}
6322
6323	ksz_update_timer(&hw_priv->mib_timer_info);
6324}
6325
6326/**
6327 * dev_monitor - periodic monitoring
6328 * @t:	timer list containing a network device pointer.
6329 *
6330 * This routine is run in a kernel timer to monitor the network device.
6331 */
6332static void dev_monitor(struct timer_list *t)
6333{
6334	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6335	struct net_device *dev = priv->mii_if.dev;
6336	struct dev_info *hw_priv = priv->adapter;
6337	struct ksz_hw *hw = &hw_priv->hw;
6338	struct ksz_port *port = &priv->port;
6339
6340	if (!(hw->features & LINK_INT_WORKING))
6341		port_get_link_speed(port);
6342	update_link(dev, priv, port);
6343
6344	ksz_update_timer(&priv->monitor_timer_info);
6345}
6346
6347/*
6348 * Linux network device interface functions
6349 */
6350
6351/* Driver exported variables */
6352
6353static int msg_enable;
6354
6355static char *macaddr = ":";
6356static char *mac1addr = ":";
6357
6358/*
6359 * This enables multiple network device mode for KSZ8842, which contains a
6360 * switch with two physical ports.  Some users like to take control of the
6361 * ports for running Spanning Tree Protocol.  The driver will create an
6362 * additional eth? device for the other port.
6363 *
6364 * Some limitations are the network devices cannot have different MTU and
6365 * multicast hash tables.
6366 */
6367static int multi_dev;
6368
6369/*
6370 * As most users select multiple network device mode to use Spanning Tree
6371 * Protocol, this enables a feature in which most unicast and multicast packets
6372 * are forwarded inside the switch and not passed to the host.  Only packets
6373 * that need the host's attention are passed to it.  This prevents the host
6374 * wasting CPU time to examine each and every incoming packets and do the
6375 * forwarding itself.
6376 *
6377 * As the hack requires the private bridge header, the driver cannot compile
6378 * with just the kernel headers.
6379 *
6380 * Enabling STP support also turns on multiple network device mode.
6381 */
6382static int stp;
6383
6384/*
6385 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6386 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6387 * STP support is enabled.
6388 */
6389static int fast_aging;
6390
6391/**
6392 * netdev_init - initialize network device.
6393 * @dev:	Network device.
6394 *
6395 * This function initializes the network device.
6396 *
6397 * Return 0 if successful; otherwise an error code indicating failure.
6398 */
6399static int __init netdev_init(struct net_device *dev)
6400{
6401	struct dev_priv *priv = netdev_priv(dev);
6402
6403	/* 500 ms timeout */
6404	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6405		dev_monitor);
6406
6407	/* 500 ms timeout */
6408	dev->watchdog_timeo = HZ / 2;
6409
6410	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6411
6412	/*
6413	 * Hardware does not really support IPv6 checksum generation, but
6414	 * driver actually runs faster with this on.
6415	 */
6416	dev->hw_features |= NETIF_F_IPV6_CSUM;
6417
6418	dev->features |= dev->hw_features;
6419
6420	sema_init(&priv->proc_sem, 1);
6421
6422	priv->mii_if.phy_id_mask = 0x1;
6423	priv->mii_if.reg_num_mask = 0x7;
6424	priv->mii_if.dev = dev;
6425	priv->mii_if.mdio_read = mdio_read;
6426	priv->mii_if.mdio_write = mdio_write;
6427	priv->mii_if.phy_id = priv->port.first_port + 1;
6428
6429	priv->msg_enable = netif_msg_init(msg_enable,
6430		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6431
6432	return 0;
6433}
6434
6435static const struct net_device_ops netdev_ops = {
6436	.ndo_init		= netdev_init,
6437	.ndo_open		= netdev_open,
6438	.ndo_stop		= netdev_close,
6439	.ndo_get_stats		= netdev_query_statistics,
6440	.ndo_start_xmit		= netdev_tx,
6441	.ndo_tx_timeout		= netdev_tx_timeout,
6442	.ndo_change_mtu		= netdev_change_mtu,
6443	.ndo_set_features	= netdev_set_features,
6444	.ndo_set_mac_address	= netdev_set_mac_address,
6445	.ndo_validate_addr	= eth_validate_addr,
6446	.ndo_eth_ioctl		= netdev_ioctl,
6447	.ndo_set_rx_mode	= netdev_set_rx_mode,
6448#ifdef CONFIG_NET_POLL_CONTROLLER
6449	.ndo_poll_controller	= netdev_netpoll,
6450#endif
6451};
6452
6453static void netdev_free(struct net_device *dev)
6454{
6455	if (dev->watchdog_timeo)
6456		unregister_netdev(dev);
6457
6458	free_netdev(dev);
6459}
6460
6461struct platform_info {
6462	struct dev_info dev_info;
6463	struct net_device *netdev[SWITCH_PORT_NUM];
6464};
6465
6466static int net_device_present;
6467
6468static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6469{
6470	int i;
6471	int j;
6472	int got_num;
6473	int num;
6474
6475	i = j = num = got_num = 0;
6476	while (j < ETH_ALEN) {
6477		if (macaddr[i]) {
6478			int digit;
6479
6480			got_num = 1;
6481			digit = hex_to_bin(macaddr[i]);
6482			if (digit >= 0)
6483				num = num * 16 + digit;
6484			else if (':' == macaddr[i])
6485				got_num = 2;
6486			else
6487				break;
6488		} else if (got_num)
6489			got_num = 2;
6490		else
6491			break;
6492		if (2 == got_num) {
6493			if (MAIN_PORT == port) {
6494				hw_priv->hw.override_addr[j++] = (u8) num;
6495				hw_priv->hw.override_addr[5] +=
6496					hw_priv->hw.id;
6497			} else {
6498				hw_priv->hw.ksz_switch->other_addr[j++] =
6499					(u8) num;
6500				hw_priv->hw.ksz_switch->other_addr[5] +=
6501					hw_priv->hw.id;
6502			}
6503			num = got_num = 0;
6504		}
6505		i++;
6506	}
6507	if (ETH_ALEN == j) {
6508		if (MAIN_PORT == port)
6509			hw_priv->hw.mac_override = 1;
6510	}
6511}
6512
6513#define KS884X_DMA_MASK			(~0x0UL)
6514
6515static void read_other_addr(struct ksz_hw *hw)
6516{
6517	int i;
6518	u16 data[3];
6519	struct ksz_switch *sw = hw->ksz_switch;
6520
6521	for (i = 0; i < 3; i++)
6522		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6523	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6524		sw->other_addr[5] = (u8) data[0];
6525		sw->other_addr[4] = (u8)(data[0] >> 8);
6526		sw->other_addr[3] = (u8) data[1];
6527		sw->other_addr[2] = (u8)(data[1] >> 8);
6528		sw->other_addr[1] = (u8) data[2];
6529		sw->other_addr[0] = (u8)(data[2] >> 8);
6530	}
6531}
6532
6533#ifndef PCI_VENDOR_ID_MICREL_KS
6534#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6535#endif
6536
6537static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6538{
6539	struct net_device *dev;
6540	struct dev_priv *priv;
6541	struct dev_info *hw_priv;
6542	struct ksz_hw *hw;
6543	struct platform_info *info;
6544	struct ksz_port *port;
6545	unsigned long reg_base;
6546	unsigned long reg_len;
6547	int cnt;
6548	int i;
6549	int mib_port_count;
6550	int pi;
6551	int port_count;
6552	int result;
6553	char banner[sizeof(version)];
6554	struct ksz_switch *sw = NULL;
6555
6556	result = pcim_enable_device(pdev);
6557	if (result)
6558		return result;
6559
6560	result = -ENODEV;
6561
6562	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6563	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6564		return result;
6565
6566	reg_base = pci_resource_start(pdev, 0);
6567	reg_len = pci_resource_len(pdev, 0);
6568	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6569		return result;
6570
6571	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6572		return result;
6573	pci_set_master(pdev);
6574
6575	result = -ENOMEM;
6576
6577	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6578	if (!info)
6579		goto pcidev_init_dev_err;
6580
6581	hw_priv = &info->dev_info;
6582	hw_priv->pdev = pdev;
6583
6584	hw = &hw_priv->hw;
6585
6586	hw->io = ioremap(reg_base, reg_len);
6587	if (!hw->io)
6588		goto pcidev_init_io_err;
6589
6590	cnt = hw_init(hw);
6591	if (!cnt) {
6592		if (msg_enable & NETIF_MSG_PROBE)
6593			pr_alert("chip not detected\n");
6594		result = -ENODEV;
6595		goto pcidev_init_alloc_err;
6596	}
6597
6598	snprintf(banner, sizeof(banner), "%s", version);
6599	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6600	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6601	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6602
6603	/* Assume device is KSZ8841. */
6604	hw->dev_count = 1;
6605	port_count = 1;
6606	mib_port_count = 1;
6607	hw->addr_list_size = 0;
6608	hw->mib_cnt = PORT_COUNTER_NUM;
6609	hw->mib_port_cnt = 1;
6610
6611	/* KSZ8842 has a switch with multiple ports. */
6612	if (2 == cnt) {
6613		if (fast_aging)
6614			hw->overrides |= FAST_AGING;
6615
6616		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6617
6618		/* Multiple network device interfaces are required. */
6619		if (multi_dev) {
6620			hw->dev_count = SWITCH_PORT_NUM;
6621			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6622		}
6623
6624		/* Single network device has multiple ports. */
6625		if (1 == hw->dev_count) {
6626			port_count = SWITCH_PORT_NUM;
6627			mib_port_count = SWITCH_PORT_NUM;
6628		}
6629		hw->mib_port_cnt = TOTAL_PORT_NUM;
6630		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6631		if (!hw->ksz_switch)
6632			goto pcidev_init_alloc_err;
6633
6634		sw = hw->ksz_switch;
6635	}
6636	for (i = 0; i < hw->mib_port_cnt; i++)
6637		hw->port_mib[i].mib_start = 0;
6638
6639	hw->parent = hw_priv;
6640
6641	/* Default MTU is 1500. */
6642	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6643
6644	if (ksz_alloc_mem(hw_priv))
6645		goto pcidev_init_mem_err;
6646
6647	hw_priv->hw.id = net_device_present;
6648
6649	spin_lock_init(&hw_priv->hwlock);
6650	mutex_init(&hw_priv->lock);
6651
6652	for (i = 0; i < TOTAL_PORT_NUM; i++)
6653		init_waitqueue_head(&hw_priv->counter[i].counter);
6654
6655	if (macaddr[0] != ':')
6656		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6657
6658	/* Read MAC address and initialize override address if not overridden. */
6659	hw_read_addr(hw);
6660
6661	/* Multiple device interfaces mode requires a second MAC address. */
6662	if (hw->dev_count > 1) {
6663		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6664		read_other_addr(hw);
6665		if (mac1addr[0] != ':')
6666			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6667	}
6668
6669	hw_setup(hw);
6670	if (hw->ksz_switch)
6671		sw_setup(hw);
6672	else {
6673		hw_priv->wol_support = WOL_SUPPORT;
6674		hw_priv->wol_enable = 0;
6675	}
6676
6677	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6678
6679	/* 500 ms timeout */
6680	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6681		mib_monitor);
6682
6683	for (i = 0; i < hw->dev_count; i++) {
6684		dev = alloc_etherdev(sizeof(struct dev_priv));
6685		if (!dev)
6686			goto pcidev_init_reg_err;
6687		SET_NETDEV_DEV(dev, &pdev->dev);
6688		info->netdev[i] = dev;
6689
6690		priv = netdev_priv(dev);
6691		priv->adapter = hw_priv;
6692		priv->id = net_device_present++;
6693
6694		port = &priv->port;
6695		port->port_cnt = port_count;
6696		port->mib_port_cnt = mib_port_count;
6697		port->first_port = i;
6698		port->flow_ctrl = PHY_FLOW_CTRL;
6699
6700		port->hw = hw;
6701		port->linked = &hw->port_info[port->first_port];
6702
6703		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6704			hw->port_info[pi].port_id = pi;
6705			hw->port_info[pi].pdev = dev;
6706			hw->port_info[pi].state = media_disconnected;
6707		}
6708
6709		dev->mem_start = (unsigned long) hw->io;
6710		dev->mem_end = dev->mem_start + reg_len - 1;
6711		dev->irq = pdev->irq;
6712		if (MAIN_PORT == i)
6713			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
6714		else {
6715			u8 addr[ETH_ALEN];
6716
6717			ether_addr_copy(addr, sw->other_addr);
6718			if (ether_addr_equal(sw->other_addr, hw->override_addr))
6719				addr[5] += port->first_port;
6720			eth_hw_addr_set(dev, addr);
6721		}
6722
6723		dev->netdev_ops = &netdev_ops;
6724		dev->ethtool_ops = &netdev_ethtool_ops;
6725
6726		/* MTU range: 60 - 1894 */
6727		dev->min_mtu = ETH_ZLEN;
6728		dev->max_mtu = MAX_RX_BUF_SIZE -
6729			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
6730
6731		if (register_netdev(dev))
6732			goto pcidev_init_reg_err;
6733		port_set_power_saving(port, true);
6734	}
6735
6736	pci_dev_get(hw_priv->pdev);
6737	pci_set_drvdata(pdev, info);
6738	return 0;
6739
6740pcidev_init_reg_err:
6741	for (i = 0; i < hw->dev_count; i++) {
6742		if (info->netdev[i]) {
6743			netdev_free(info->netdev[i]);
6744			info->netdev[i] = NULL;
6745		}
6746	}
6747
6748pcidev_init_mem_err:
6749	ksz_free_mem(hw_priv);
6750	kfree(hw->ksz_switch);
6751
6752pcidev_init_alloc_err:
6753	iounmap(hw->io);
6754
6755pcidev_init_io_err:
6756	kfree(info);
6757
6758pcidev_init_dev_err:
6759	release_mem_region(reg_base, reg_len);
6760
6761	return result;
6762}
6763
6764static void pcidev_exit(struct pci_dev *pdev)
6765{
6766	int i;
6767	struct platform_info *info = pci_get_drvdata(pdev);
6768	struct dev_info *hw_priv = &info->dev_info;
6769
6770	release_mem_region(pci_resource_start(pdev, 0),
6771		pci_resource_len(pdev, 0));
6772	for (i = 0; i < hw_priv->hw.dev_count; i++) {
6773		if (info->netdev[i])
6774			netdev_free(info->netdev[i]);
6775	}
6776	if (hw_priv->hw.io)
6777		iounmap(hw_priv->hw.io);
6778	ksz_free_mem(hw_priv);
6779	kfree(hw_priv->hw.ksz_switch);
6780	pci_dev_put(hw_priv->pdev);
6781	kfree(info);
6782}
6783
6784static int __maybe_unused pcidev_resume(struct device *dev_d)
6785{
6786	int i;
6787	struct platform_info *info = dev_get_drvdata(dev_d);
6788	struct dev_info *hw_priv = &info->dev_info;
6789	struct ksz_hw *hw = &hw_priv->hw;
6790
6791	device_wakeup_disable(dev_d);
6792
6793	if (hw_priv->wol_enable)
6794		hw_cfg_wol_pme(hw, 0);
6795	for (i = 0; i < hw->dev_count; i++) {
6796		if (info->netdev[i]) {
6797			struct net_device *dev = info->netdev[i];
6798
6799			if (netif_running(dev)) {
6800				netdev_open(dev);
6801				netif_device_attach(dev);
6802			}
6803		}
6804	}
6805	return 0;
6806}
6807
6808static int __maybe_unused pcidev_suspend(struct device *dev_d)
6809{
6810	int i;
6811	struct platform_info *info = dev_get_drvdata(dev_d);
6812	struct dev_info *hw_priv = &info->dev_info;
6813	struct ksz_hw *hw = &hw_priv->hw;
6814
6815	/* Need to find a way to retrieve the device IP address. */
6816	static const u8 net_addr[] = { 192, 168, 1, 1 };
6817
6818	for (i = 0; i < hw->dev_count; i++) {
6819		if (info->netdev[i]) {
6820			struct net_device *dev = info->netdev[i];
6821
6822			if (netif_running(dev)) {
6823				netif_device_detach(dev);
6824				netdev_close(dev);
6825			}
6826		}
6827	}
6828	if (hw_priv->wol_enable) {
6829		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
6830		hw_cfg_wol_pme(hw, 1);
6831	}
6832
6833	device_wakeup_enable(dev_d);
6834	return 0;
6835}
6836
6837static char pcidev_name[] = "ksz884xp";
6838
6839static const struct pci_device_id pcidev_table[] = {
6840	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
6841		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6842	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
6843		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6844	{ 0 }
6845};
6846
6847MODULE_DEVICE_TABLE(pci, pcidev_table);
6848
6849static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
6850
6851static struct pci_driver pci_device_driver = {
6852	.driver.pm	= &pcidev_pm_ops,
6853	.name		= pcidev_name,
6854	.id_table	= pcidev_table,
6855	.probe		= pcidev_init,
6856	.remove		= pcidev_exit
6857};
6858
6859module_pci_driver(pci_device_driver);
6860
6861MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
6862MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
6863MODULE_LICENSE("GPL");
6864
6865module_param_named(message, msg_enable, int, 0);
6866MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
6867
6868module_param(macaddr, charp, 0);
6869module_param(mac1addr, charp, 0);
6870module_param(fast_aging, int, 0);
6871module_param(multi_dev, int, 0);
6872module_param(stp, int, 0);
6873MODULE_PARM_DESC(macaddr, "MAC address");
6874MODULE_PARM_DESC(mac1addr, "Second MAC address");
6875MODULE_PARM_DESC(fast_aging, "Fast aging");
6876MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
6877MODULE_PARM_DESC(stp, "STP support");
6878