1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VMware VMCI Driver
4 *
5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 */
7
8#include <linux/vmw_vmci_defs.h>
9#include <linux/vmw_vmci_api.h>
10#include <linux/highmem.h>
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/pagemap.h>
16#include <linux/pci.h>
17#include <linux/sched.h>
18#include <linux/slab.h>
19#include <linux/uio.h>
20#include <linux/wait.h>
21#include <linux/vmalloc.h>
22#include <linux/skbuff.h>
23
24#include "vmci_handle_array.h"
25#include "vmci_queue_pair.h"
26#include "vmci_datagram.h"
27#include "vmci_resource.h"
28#include "vmci_context.h"
29#include "vmci_driver.h"
30#include "vmci_event.h"
31#include "vmci_route.h"
32
33/*
34 * In the following, we will distinguish between two kinds of VMX processes -
35 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36 * VMCI page files in the VMX and supporting VM to VM communication and the
37 * newer ones that use the guest memory directly. We will in the following
38 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39 * new-style VMX'en.
40 *
41 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42 * removed for readability) - see below for more details on the transtions:
43 *
44 *            --------------  NEW  -------------
45 *            |                                |
46 *           \_/                              \_/
47 *     CREATED_NO_MEM <-----------------> CREATED_MEM
48 *            |    |                           |
49 *            |    o-----------------------o   |
50 *            |                            |   |
51 *           \_/                          \_/ \_/
52 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53 *            |                            |   |
54 *            |     o----------------------o   |
55 *            |     |                          |
56 *           \_/   \_/                        \_/
57 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58 *            |                                |
59 *            |                                |
60 *            -------------> gone <-------------
61 *
62 * In more detail. When a VMCI queue pair is first created, it will be in the
63 * VMCIQPB_NEW state. It will then move into one of the following states:
64 *
65 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66 *
67 *     - the created was performed by a host endpoint, in which case there is
68 *       no backing memory yet.
69 *
70 *     - the create was initiated by an old-style VMX, that uses
71 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72 *       a later point in time. This state can be distinguished from the one
73 *       above by the context ID of the creator. A host side is not allowed to
74 *       attach until the page store has been set.
75 *
76 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77 *     is created by a VMX using the queue pair device backend that
78 *     sets the UVAs of the queue pair immediately and stores the
79 *     information for later attachers. At this point, it is ready for
80 *     the host side to attach to it.
81 *
82 * Once the queue pair is in one of the created states (with the exception of
83 * the case mentioned for older VMX'en above), it is possible to attach to the
84 * queue pair. Again we have two new states possible:
85 *
86 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87 *   paths:
88 *
89 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90 *       pair, and attaches to a queue pair previously created by the host side.
91 *
92 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93 *       already created by a guest.
94 *
95 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96 *       vmci_qp_broker_set_page_store (see below).
97 *
98 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102 *     will be entered.
103 *
104 * From the attached queue pair, the queue pair can enter the shutdown states
105 * when either side of the queue pair detaches. If the guest side detaches
106 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107 * the content of the queue pair will no longer be available. If the host
108 * side detaches first, the queue pair will either enter the
109 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111 * (e.g., the host detaches while a guest is stunned).
112 *
113 * New-style VMX'en will also unmap guest memory, if the guest is
114 * quiesced, e.g., during a snapshot operation. In that case, the guest
115 * memory will no longer be available, and the queue pair will transition from
116 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117 * in which case the queue pair will transition from the *_NO_MEM state at that
118 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119 * since the peer may have either attached or detached in the meantime. The
120 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121 * *_MEM state, and vice versa.
122 */
123
124/* The Kernel specific component of the struct vmci_queue structure. */
125struct vmci_queue_kern_if {
126	struct mutex __mutex;	/* Protects the queue. */
127	struct mutex *mutex;	/* Shared by producer and consumer queues. */
128	size_t num_pages;	/* Number of pages incl. header. */
129	bool host;		/* Host or guest? */
130	union {
131		struct {
132			dma_addr_t *pas;
133			void **vas;
134		} g;		/* Used by the guest. */
135		struct {
136			struct page **page;
137			struct page **header_page;
138		} h;		/* Used by the host. */
139	} u;
140};
141
142/*
143 * This structure is opaque to the clients.
144 */
145struct vmci_qp {
146	struct vmci_handle handle;
147	struct vmci_queue *produce_q;
148	struct vmci_queue *consume_q;
149	u64 produce_q_size;
150	u64 consume_q_size;
151	u32 peer;
152	u32 flags;
153	u32 priv_flags;
154	bool guest_endpoint;
155	unsigned int blocked;
156	unsigned int generation;
157	wait_queue_head_t event;
158};
159
160enum qp_broker_state {
161	VMCIQPB_NEW,
162	VMCIQPB_CREATED_NO_MEM,
163	VMCIQPB_CREATED_MEM,
164	VMCIQPB_ATTACHED_NO_MEM,
165	VMCIQPB_ATTACHED_MEM,
166	VMCIQPB_SHUTDOWN_NO_MEM,
167	VMCIQPB_SHUTDOWN_MEM,
168	VMCIQPB_GONE
169};
170
171#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
173				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174
175/*
176 * In the queue pair broker, we always use the guest point of view for
177 * the produce and consume queue values and references, e.g., the
178 * produce queue size stored is the guests produce queue size. The
179 * host endpoint will need to swap these around. The only exception is
180 * the local queue pairs on the host, in which case the host endpoint
181 * that creates the queue pair will have the right orientation, and
182 * the attaching host endpoint will need to swap.
183 */
184struct qp_entry {
185	struct list_head list_item;
186	struct vmci_handle handle;
187	u32 peer;
188	u32 flags;
189	u64 produce_size;
190	u64 consume_size;
191	u32 ref_count;
192};
193
194struct qp_broker_entry {
195	struct vmci_resource resource;
196	struct qp_entry qp;
197	u32 create_id;
198	u32 attach_id;
199	enum qp_broker_state state;
200	bool require_trusted_attach;
201	bool created_by_trusted;
202	bool vmci_page_files;	/* Created by VMX using VMCI page files */
203	struct vmci_queue *produce_q;
204	struct vmci_queue *consume_q;
205	struct vmci_queue_header saved_produce_q;
206	struct vmci_queue_header saved_consume_q;
207	vmci_event_release_cb wakeup_cb;
208	void *client_data;
209	void *local_mem;	/* Kernel memory for local queue pair */
210};
211
212struct qp_guest_endpoint {
213	struct vmci_resource resource;
214	struct qp_entry qp;
215	u64 num_ppns;
216	void *produce_q;
217	void *consume_q;
218	struct ppn_set ppn_set;
219};
220
221struct qp_list {
222	struct list_head head;
223	struct mutex mutex;	/* Protect queue list. */
224};
225
226static struct qp_list qp_broker_list = {
227	.head = LIST_HEAD_INIT(qp_broker_list.head),
228	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229};
230
231static struct qp_list qp_guest_endpoints = {
232	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234};
235
236#define INVALID_VMCI_GUEST_MEM_ID  0
237#define QPE_NUM_PAGES(_QPE) ((u32) \
238			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240#define QP_SIZES_ARE_VALID(_prod_qsize, _cons_qsize) \
241	((_prod_qsize) + (_cons_qsize) >= max(_prod_qsize, _cons_qsize) && \
242	 (_prod_qsize) + (_cons_qsize) <= VMCI_MAX_GUEST_QP_MEMORY)
243
244/*
245 * Frees kernel VA space for a given queue and its queue header, and
246 * frees physical data pages.
247 */
248static void qp_free_queue(void *q, u64 size)
249{
250	struct vmci_queue *queue = q;
251
252	if (queue) {
253		u64 i;
254
255		/* Given size does not include header, so add in a page here. */
256		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
257			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
258					  queue->kernel_if->u.g.vas[i],
259					  queue->kernel_if->u.g.pas[i]);
260		}
261
262		vfree(queue);
263	}
264}
265
266/*
267 * Allocates kernel queue pages of specified size with IOMMU mappings,
268 * plus space for the queue structure/kernel interface and the queue
269 * header.
270 */
271static void *qp_alloc_queue(u64 size, u32 flags)
272{
273	u64 i;
274	struct vmci_queue *queue;
275	size_t pas_size;
276	size_t vas_size;
277	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
278	u64 num_pages;
279
280	if (size > SIZE_MAX - PAGE_SIZE)
281		return NULL;
282	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
283	if (num_pages >
284		 (SIZE_MAX - queue_size) /
285		 (sizeof(*queue->kernel_if->u.g.pas) +
286		  sizeof(*queue->kernel_if->u.g.vas)))
287		return NULL;
288
289	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
290	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
291	queue_size += pas_size + vas_size;
292
293	queue = vmalloc(queue_size);
294	if (!queue)
295		return NULL;
296
297	queue->q_header = NULL;
298	queue->saved_header = NULL;
299	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
300	queue->kernel_if->mutex = NULL;
301	queue->kernel_if->num_pages = num_pages;
302	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
303	queue->kernel_if->u.g.vas =
304		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
305	queue->kernel_if->host = false;
306
307	for (i = 0; i < num_pages; i++) {
308		queue->kernel_if->u.g.vas[i] =
309			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
310					   &queue->kernel_if->u.g.pas[i],
311					   GFP_KERNEL);
312		if (!queue->kernel_if->u.g.vas[i]) {
313			/* Size excl. the header. */
314			qp_free_queue(queue, i * PAGE_SIZE);
315			return NULL;
316		}
317	}
318
319	/* Queue header is the first page. */
320	queue->q_header = queue->kernel_if->u.g.vas[0];
321
322	return queue;
323}
324
325/*
326 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
327 * kmap_local_page() to dynamically map required portions of the queue
328 * by traversing the offset -> page translation structure for the queue.
329 * Assumes that offset + size does not wrap around in the queue.
330 */
331static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
332				  u64 queue_offset,
333				  struct iov_iter *from,
334				  size_t size)
335{
336	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
337	size_t bytes_copied = 0;
338
339	while (bytes_copied < size) {
340		const u64 page_index =
341			(queue_offset + bytes_copied) / PAGE_SIZE;
342		const size_t page_offset =
343		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
344		void *va;
345		size_t to_copy;
346
347		if (kernel_if->host)
348			va = kmap_local_page(kernel_if->u.h.page[page_index]);
349		else
350			va = kernel_if->u.g.vas[page_index + 1];
351			/* Skip header. */
352
353		if (size - bytes_copied > PAGE_SIZE - page_offset)
354			/* Enough payload to fill up from this page. */
355			to_copy = PAGE_SIZE - page_offset;
356		else
357			to_copy = size - bytes_copied;
358
359		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
360					 from)) {
361			if (kernel_if->host)
362				kunmap_local(va);
363			return VMCI_ERROR_INVALID_ARGS;
364		}
365		bytes_copied += to_copy;
366		if (kernel_if->host)
367			kunmap_local(va);
368	}
369
370	return VMCI_SUCCESS;
371}
372
373/*
374 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
375 * kmap_local_page() to dynamically map required portions of the queue
376 * by traversing the offset -> page translation structure for the queue.
377 * Assumes that offset + size does not wrap around in the queue.
378 */
379static int qp_memcpy_from_queue_iter(struct iov_iter *to,
380				    const struct vmci_queue *queue,
381				    u64 queue_offset, size_t size)
382{
383	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
384	size_t bytes_copied = 0;
385
386	while (bytes_copied < size) {
387		const u64 page_index =
388			(queue_offset + bytes_copied) / PAGE_SIZE;
389		const size_t page_offset =
390		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
391		void *va;
392		size_t to_copy;
393		int err;
394
395		if (kernel_if->host)
396			va = kmap_local_page(kernel_if->u.h.page[page_index]);
397		else
398			va = kernel_if->u.g.vas[page_index + 1];
399			/* Skip header. */
400
401		if (size - bytes_copied > PAGE_SIZE - page_offset)
402			/* Enough payload to fill up this page. */
403			to_copy = PAGE_SIZE - page_offset;
404		else
405			to_copy = size - bytes_copied;
406
407		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
408		if (err != to_copy) {
409			if (kernel_if->host)
410				kunmap_local(va);
411			return VMCI_ERROR_INVALID_ARGS;
412		}
413		bytes_copied += to_copy;
414		if (kernel_if->host)
415			kunmap_local(va);
416	}
417
418	return VMCI_SUCCESS;
419}
420
421/*
422 * Allocates two list of PPNs --- one for the pages in the produce queue,
423 * and the other for the pages in the consume queue. Intializes the list
424 * of PPNs with the page frame numbers of the KVA for the two queues (and
425 * the queue headers).
426 */
427static int qp_alloc_ppn_set(void *prod_q,
428			    u64 num_produce_pages,
429			    void *cons_q,
430			    u64 num_consume_pages, struct ppn_set *ppn_set)
431{
432	u64 *produce_ppns;
433	u64 *consume_ppns;
434	struct vmci_queue *produce_q = prod_q;
435	struct vmci_queue *consume_q = cons_q;
436	u64 i;
437
438	if (!produce_q || !num_produce_pages || !consume_q ||
439	    !num_consume_pages || !ppn_set)
440		return VMCI_ERROR_INVALID_ARGS;
441
442	if (ppn_set->initialized)
443		return VMCI_ERROR_ALREADY_EXISTS;
444
445	produce_ppns =
446	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
447			  GFP_KERNEL);
448	if (!produce_ppns)
449		return VMCI_ERROR_NO_MEM;
450
451	consume_ppns =
452	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
453			  GFP_KERNEL);
454	if (!consume_ppns) {
455		kfree(produce_ppns);
456		return VMCI_ERROR_NO_MEM;
457	}
458
459	for (i = 0; i < num_produce_pages; i++)
460		produce_ppns[i] =
461			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
462
463	for (i = 0; i < num_consume_pages; i++)
464		consume_ppns[i] =
465			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
466
467	ppn_set->num_produce_pages = num_produce_pages;
468	ppn_set->num_consume_pages = num_consume_pages;
469	ppn_set->produce_ppns = produce_ppns;
470	ppn_set->consume_ppns = consume_ppns;
471	ppn_set->initialized = true;
472	return VMCI_SUCCESS;
473}
474
475/*
476 * Frees the two list of PPNs for a queue pair.
477 */
478static void qp_free_ppn_set(struct ppn_set *ppn_set)
479{
480	if (ppn_set->initialized) {
481		/* Do not call these functions on NULL inputs. */
482		kfree(ppn_set->produce_ppns);
483		kfree(ppn_set->consume_ppns);
484	}
485	memset(ppn_set, 0, sizeof(*ppn_set));
486}
487
488/*
489 * Populates the list of PPNs in the hypercall structure with the PPNS
490 * of the produce queue and the consume queue.
491 */
492static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
493{
494	if (vmci_use_ppn64()) {
495		memcpy(call_buf, ppn_set->produce_ppns,
496		       ppn_set->num_produce_pages *
497		       sizeof(*ppn_set->produce_ppns));
498		memcpy(call_buf +
499		       ppn_set->num_produce_pages *
500		       sizeof(*ppn_set->produce_ppns),
501		       ppn_set->consume_ppns,
502		       ppn_set->num_consume_pages *
503		       sizeof(*ppn_set->consume_ppns));
504	} else {
505		int i;
506		u32 *ppns = (u32 *) call_buf;
507
508		for (i = 0; i < ppn_set->num_produce_pages; i++)
509			ppns[i] = (u32) ppn_set->produce_ppns[i];
510
511		ppns = &ppns[ppn_set->num_produce_pages];
512
513		for (i = 0; i < ppn_set->num_consume_pages; i++)
514			ppns[i] = (u32) ppn_set->consume_ppns[i];
515	}
516
517	return VMCI_SUCCESS;
518}
519
520/*
521 * Allocates kernel VA space of specified size plus space for the queue
522 * and kernel interface.  This is different from the guest queue allocator,
523 * because we do not allocate our own queue header/data pages here but
524 * share those of the guest.
525 */
526static struct vmci_queue *qp_host_alloc_queue(u64 size)
527{
528	struct vmci_queue *queue;
529	size_t queue_page_size;
530	u64 num_pages;
531	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
532
533	if (size > min_t(size_t, VMCI_MAX_GUEST_QP_MEMORY, SIZE_MAX - PAGE_SIZE))
534		return NULL;
535	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
536	if (num_pages > (SIZE_MAX - queue_size) /
537		 sizeof(*queue->kernel_if->u.h.page))
538		return NULL;
539
540	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
541
542	if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
543		return NULL;
544
545	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
546	if (queue) {
547		queue->q_header = NULL;
548		queue->saved_header = NULL;
549		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
550		queue->kernel_if->host = true;
551		queue->kernel_if->mutex = NULL;
552		queue->kernel_if->num_pages = num_pages;
553		queue->kernel_if->u.h.header_page =
554		    (struct page **)((u8 *)queue + queue_size);
555		queue->kernel_if->u.h.page =
556			&queue->kernel_if->u.h.header_page[1];
557	}
558
559	return queue;
560}
561
562/*
563 * Frees kernel memory for a given queue (header plus translation
564 * structure).
565 */
566static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
567{
568	kfree(queue);
569}
570
571/*
572 * Initialize the mutex for the pair of queues.  This mutex is used to
573 * protect the q_header and the buffer from changing out from under any
574 * users of either queue.  Of course, it's only any good if the mutexes
575 * are actually acquired.  Queue structure must lie on non-paged memory
576 * or we cannot guarantee access to the mutex.
577 */
578static void qp_init_queue_mutex(struct vmci_queue *produce_q,
579				struct vmci_queue *consume_q)
580{
581	/*
582	 * Only the host queue has shared state - the guest queues do not
583	 * need to synchronize access using a queue mutex.
584	 */
585
586	if (produce_q->kernel_if->host) {
587		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
588		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
589		mutex_init(produce_q->kernel_if->mutex);
590	}
591}
592
593/*
594 * Cleans up the mutex for the pair of queues.
595 */
596static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
597				   struct vmci_queue *consume_q)
598{
599	if (produce_q->kernel_if->host) {
600		produce_q->kernel_if->mutex = NULL;
601		consume_q->kernel_if->mutex = NULL;
602	}
603}
604
605/*
606 * Acquire the mutex for the queue.  Note that the produce_q and
607 * the consume_q share a mutex.  So, only one of the two need to
608 * be passed in to this routine.  Either will work just fine.
609 */
610static void qp_acquire_queue_mutex(struct vmci_queue *queue)
611{
612	if (queue->kernel_if->host)
613		mutex_lock(queue->kernel_if->mutex);
614}
615
616/*
617 * Release the mutex for the queue.  Note that the produce_q and
618 * the consume_q share a mutex.  So, only one of the two need to
619 * be passed in to this routine.  Either will work just fine.
620 */
621static void qp_release_queue_mutex(struct vmci_queue *queue)
622{
623	if (queue->kernel_if->host)
624		mutex_unlock(queue->kernel_if->mutex);
625}
626
627/*
628 * Helper function to release pages in the PageStoreAttachInfo
629 * previously obtained using get_user_pages.
630 */
631static void qp_release_pages(struct page **pages,
632			     u64 num_pages, bool dirty)
633{
634	int i;
635
636	for (i = 0; i < num_pages; i++) {
637		if (dirty)
638			set_page_dirty_lock(pages[i]);
639
640		put_page(pages[i]);
641		pages[i] = NULL;
642	}
643}
644
645/*
646 * Lock the user pages referenced by the {produce,consume}Buffer
647 * struct into memory and populate the {produce,consume}Pages
648 * arrays in the attach structure with them.
649 */
650static int qp_host_get_user_memory(u64 produce_uva,
651				   u64 consume_uva,
652				   struct vmci_queue *produce_q,
653				   struct vmci_queue *consume_q)
654{
655	int retval;
656	int err = VMCI_SUCCESS;
657
658	retval = get_user_pages_fast((uintptr_t) produce_uva,
659				     produce_q->kernel_if->num_pages,
660				     FOLL_WRITE,
661				     produce_q->kernel_if->u.h.header_page);
662	if (retval < (int)produce_q->kernel_if->num_pages) {
663		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
664			retval);
665		if (retval > 0)
666			qp_release_pages(produce_q->kernel_if->u.h.header_page,
667					retval, false);
668		err = VMCI_ERROR_NO_MEM;
669		goto out;
670	}
671
672	retval = get_user_pages_fast((uintptr_t) consume_uva,
673				     consume_q->kernel_if->num_pages,
674				     FOLL_WRITE,
675				     consume_q->kernel_if->u.h.header_page);
676	if (retval < (int)consume_q->kernel_if->num_pages) {
677		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
678			retval);
679		if (retval > 0)
680			qp_release_pages(consume_q->kernel_if->u.h.header_page,
681					retval, false);
682		qp_release_pages(produce_q->kernel_if->u.h.header_page,
683				 produce_q->kernel_if->num_pages, false);
684		err = VMCI_ERROR_NO_MEM;
685	}
686
687 out:
688	return err;
689}
690
691/*
692 * Registers the specification of the user pages used for backing a queue
693 * pair. Enough information to map in pages is stored in the OS specific
694 * part of the struct vmci_queue structure.
695 */
696static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
697					struct vmci_queue *produce_q,
698					struct vmci_queue *consume_q)
699{
700	u64 produce_uva;
701	u64 consume_uva;
702
703	/*
704	 * The new style and the old style mapping only differs in
705	 * that we either get a single or two UVAs, so we split the
706	 * single UVA range at the appropriate spot.
707	 */
708	produce_uva = page_store->pages;
709	consume_uva = page_store->pages +
710	    produce_q->kernel_if->num_pages * PAGE_SIZE;
711	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
712				       consume_q);
713}
714
715/*
716 * Releases and removes the references to user pages stored in the attach
717 * struct.  Pages are released from the page cache and may become
718 * swappable again.
719 */
720static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
721					   struct vmci_queue *consume_q)
722{
723	qp_release_pages(produce_q->kernel_if->u.h.header_page,
724			 produce_q->kernel_if->num_pages, true);
725	memset(produce_q->kernel_if->u.h.header_page, 0,
726	       sizeof(*produce_q->kernel_if->u.h.header_page) *
727	       produce_q->kernel_if->num_pages);
728	qp_release_pages(consume_q->kernel_if->u.h.header_page,
729			 consume_q->kernel_if->num_pages, true);
730	memset(consume_q->kernel_if->u.h.header_page, 0,
731	       sizeof(*consume_q->kernel_if->u.h.header_page) *
732	       consume_q->kernel_if->num_pages);
733}
734
735/*
736 * Once qp_host_register_user_memory has been performed on a
737 * queue, the queue pair headers can be mapped into the
738 * kernel. Once mapped, they must be unmapped with
739 * qp_host_unmap_queues prior to calling
740 * qp_host_unregister_user_memory.
741 * Pages are pinned.
742 */
743static int qp_host_map_queues(struct vmci_queue *produce_q,
744			      struct vmci_queue *consume_q)
745{
746	int result;
747
748	if (!produce_q->q_header || !consume_q->q_header) {
749		struct page *headers[2];
750
751		if (produce_q->q_header != consume_q->q_header)
752			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
753
754		if (produce_q->kernel_if->u.h.header_page == NULL ||
755		    *produce_q->kernel_if->u.h.header_page == NULL)
756			return VMCI_ERROR_UNAVAILABLE;
757
758		headers[0] = *produce_q->kernel_if->u.h.header_page;
759		headers[1] = *consume_q->kernel_if->u.h.header_page;
760
761		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
762		if (produce_q->q_header != NULL) {
763			consume_q->q_header =
764			    (struct vmci_queue_header *)((u8 *)
765							 produce_q->q_header +
766							 PAGE_SIZE);
767			result = VMCI_SUCCESS;
768		} else {
769			pr_warn("vmap failed\n");
770			result = VMCI_ERROR_NO_MEM;
771		}
772	} else {
773		result = VMCI_SUCCESS;
774	}
775
776	return result;
777}
778
779/*
780 * Unmaps previously mapped queue pair headers from the kernel.
781 * Pages are unpinned.
782 */
783static int qp_host_unmap_queues(u32 gid,
784				struct vmci_queue *produce_q,
785				struct vmci_queue *consume_q)
786{
787	if (produce_q->q_header) {
788		if (produce_q->q_header < consume_q->q_header)
789			vunmap(produce_q->q_header);
790		else
791			vunmap(consume_q->q_header);
792
793		produce_q->q_header = NULL;
794		consume_q->q_header = NULL;
795	}
796
797	return VMCI_SUCCESS;
798}
799
800/*
801 * Finds the entry in the list corresponding to a given handle. Assumes
802 * that the list is locked.
803 */
804static struct qp_entry *qp_list_find(struct qp_list *qp_list,
805				     struct vmci_handle handle)
806{
807	struct qp_entry *entry;
808
809	if (vmci_handle_is_invalid(handle))
810		return NULL;
811
812	list_for_each_entry(entry, &qp_list->head, list_item) {
813		if (vmci_handle_is_equal(entry->handle, handle))
814			return entry;
815	}
816
817	return NULL;
818}
819
820/*
821 * Finds the entry in the list corresponding to a given handle.
822 */
823static struct qp_guest_endpoint *
824qp_guest_handle_to_entry(struct vmci_handle handle)
825{
826	struct qp_guest_endpoint *entry;
827	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
828
829	entry = qp ? container_of(
830		qp, struct qp_guest_endpoint, qp) : NULL;
831	return entry;
832}
833
834/*
835 * Finds the entry in the list corresponding to a given handle.
836 */
837static struct qp_broker_entry *
838qp_broker_handle_to_entry(struct vmci_handle handle)
839{
840	struct qp_broker_entry *entry;
841	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
842
843	entry = qp ? container_of(
844		qp, struct qp_broker_entry, qp) : NULL;
845	return entry;
846}
847
848/*
849 * Dispatches a queue pair event message directly into the local event
850 * queue.
851 */
852static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
853{
854	u32 context_id = vmci_get_context_id();
855	struct vmci_event_qp ev;
856
857	memset(&ev, 0, sizeof(ev));
858	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
859	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
860					  VMCI_CONTEXT_RESOURCE_ID);
861	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
862	ev.msg.event_data.event =
863	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
864	ev.payload.peer_id = context_id;
865	ev.payload.handle = handle;
866
867	return vmci_event_dispatch(&ev.msg.hdr);
868}
869
870/*
871 * Allocates and initializes a qp_guest_endpoint structure.
872 * Allocates a queue_pair rid (and handle) iff the given entry has
873 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
874 * are reserved handles.  Assumes that the QP list mutex is held
875 * by the caller.
876 */
877static struct qp_guest_endpoint *
878qp_guest_endpoint_create(struct vmci_handle handle,
879			 u32 peer,
880			 u32 flags,
881			 u64 produce_size,
882			 u64 consume_size,
883			 void *produce_q,
884			 void *consume_q)
885{
886	int result;
887	struct qp_guest_endpoint *entry;
888	/* One page each for the queue headers. */
889	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
890	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
891
892	if (vmci_handle_is_invalid(handle)) {
893		u32 context_id = vmci_get_context_id();
894
895		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
896	}
897
898	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
899	if (entry) {
900		entry->qp.peer = peer;
901		entry->qp.flags = flags;
902		entry->qp.produce_size = produce_size;
903		entry->qp.consume_size = consume_size;
904		entry->qp.ref_count = 0;
905		entry->num_ppns = num_ppns;
906		entry->produce_q = produce_q;
907		entry->consume_q = consume_q;
908		INIT_LIST_HEAD(&entry->qp.list_item);
909
910		/* Add resource obj */
911		result = vmci_resource_add(&entry->resource,
912					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
913					   handle);
914		entry->qp.handle = vmci_resource_handle(&entry->resource);
915		if ((result != VMCI_SUCCESS) ||
916		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
917			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
918				handle.context, handle.resource, result);
919			kfree(entry);
920			entry = NULL;
921		}
922	}
923	return entry;
924}
925
926/*
927 * Frees a qp_guest_endpoint structure.
928 */
929static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
930{
931	qp_free_ppn_set(&entry->ppn_set);
932	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
933	qp_free_queue(entry->produce_q, entry->qp.produce_size);
934	qp_free_queue(entry->consume_q, entry->qp.consume_size);
935	/* Unlink from resource hash table and free callback */
936	vmci_resource_remove(&entry->resource);
937
938	kfree(entry);
939}
940
941/*
942 * Helper to make a queue_pairAlloc hypercall when the driver is
943 * supporting a guest device.
944 */
945static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
946{
947	struct vmci_qp_alloc_msg *alloc_msg;
948	size_t msg_size;
949	size_t ppn_size;
950	int result;
951
952	if (!entry || entry->num_ppns <= 2)
953		return VMCI_ERROR_INVALID_ARGS;
954
955	ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
956	msg_size = sizeof(*alloc_msg) +
957	    (size_t) entry->num_ppns * ppn_size;
958	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
959	if (!alloc_msg)
960		return VMCI_ERROR_NO_MEM;
961
962	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
963					      VMCI_QUEUEPAIR_ALLOC);
964	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
965	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
966	alloc_msg->handle = entry->qp.handle;
967	alloc_msg->peer = entry->qp.peer;
968	alloc_msg->flags = entry->qp.flags;
969	alloc_msg->produce_size = entry->qp.produce_size;
970	alloc_msg->consume_size = entry->qp.consume_size;
971	alloc_msg->num_ppns = entry->num_ppns;
972
973	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
974				     &entry->ppn_set);
975	if (result == VMCI_SUCCESS)
976		result = vmci_send_datagram(&alloc_msg->hdr);
977
978	kfree(alloc_msg);
979
980	return result;
981}
982
983/*
984 * Helper to make a queue_pairDetach hypercall when the driver is
985 * supporting a guest device.
986 */
987static int qp_detatch_hypercall(struct vmci_handle handle)
988{
989	struct vmci_qp_detach_msg detach_msg;
990
991	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
992					      VMCI_QUEUEPAIR_DETACH);
993	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
994	detach_msg.hdr.payload_size = sizeof(handle);
995	detach_msg.handle = handle;
996
997	return vmci_send_datagram(&detach_msg.hdr);
998}
999
1000/*
1001 * Adds the given entry to the list. Assumes that the list is locked.
1002 */
1003static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1004{
1005	if (entry)
1006		list_add(&entry->list_item, &qp_list->head);
1007}
1008
1009/*
1010 * Removes the given entry from the list. Assumes that the list is locked.
1011 */
1012static void qp_list_remove_entry(struct qp_list *qp_list,
1013				 struct qp_entry *entry)
1014{
1015	if (entry)
1016		list_del(&entry->list_item);
1017}
1018
1019/*
1020 * Helper for VMCI queue_pair detach interface. Frees the physical
1021 * pages for the queue pair.
1022 */
1023static int qp_detatch_guest_work(struct vmci_handle handle)
1024{
1025	int result;
1026	struct qp_guest_endpoint *entry;
1027	u32 ref_count = ~0;	/* To avoid compiler warning below */
1028
1029	mutex_lock(&qp_guest_endpoints.mutex);
1030
1031	entry = qp_guest_handle_to_entry(handle);
1032	if (!entry) {
1033		mutex_unlock(&qp_guest_endpoints.mutex);
1034		return VMCI_ERROR_NOT_FOUND;
1035	}
1036
1037	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1038		result = VMCI_SUCCESS;
1039
1040		if (entry->qp.ref_count > 1) {
1041			result = qp_notify_peer_local(false, handle);
1042			/*
1043			 * We can fail to notify a local queuepair
1044			 * because we can't allocate.  We still want
1045			 * to release the entry if that happens, so
1046			 * don't bail out yet.
1047			 */
1048		}
1049	} else {
1050		result = qp_detatch_hypercall(handle);
1051		if (result < VMCI_SUCCESS) {
1052			/*
1053			 * We failed to notify a non-local queuepair.
1054			 * That other queuepair might still be
1055			 * accessing the shared memory, so don't
1056			 * release the entry yet.  It will get cleaned
1057			 * up by VMCIqueue_pair_Exit() if necessary
1058			 * (assuming we are going away, otherwise why
1059			 * did this fail?).
1060			 */
1061
1062			mutex_unlock(&qp_guest_endpoints.mutex);
1063			return result;
1064		}
1065	}
1066
1067	/*
1068	 * If we get here then we either failed to notify a local queuepair, or
1069	 * we succeeded in all cases.  Release the entry if required.
1070	 */
1071
1072	entry->qp.ref_count--;
1073	if (entry->qp.ref_count == 0)
1074		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1075
1076	/* If we didn't remove the entry, this could change once we unlock. */
1077	if (entry)
1078		ref_count = entry->qp.ref_count;
1079
1080	mutex_unlock(&qp_guest_endpoints.mutex);
1081
1082	if (ref_count == 0)
1083		qp_guest_endpoint_destroy(entry);
1084
1085	return result;
1086}
1087
1088/*
1089 * This functions handles the actual allocation of a VMCI queue
1090 * pair guest endpoint. Allocates physical pages for the queue
1091 * pair. It makes OS dependent calls through generic wrappers.
1092 */
1093static int qp_alloc_guest_work(struct vmci_handle *handle,
1094			       struct vmci_queue **produce_q,
1095			       u64 produce_size,
1096			       struct vmci_queue **consume_q,
1097			       u64 consume_size,
1098			       u32 peer,
1099			       u32 flags,
1100			       u32 priv_flags)
1101{
1102	const u64 num_produce_pages =
1103	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1104	const u64 num_consume_pages =
1105	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1106	void *my_produce_q = NULL;
1107	void *my_consume_q = NULL;
1108	int result;
1109	struct qp_guest_endpoint *queue_pair_entry = NULL;
1110
1111	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1112		return VMCI_ERROR_NO_ACCESS;
1113
1114	mutex_lock(&qp_guest_endpoints.mutex);
1115
1116	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1117	if (queue_pair_entry) {
1118		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1119			/* Local attach case. */
1120			if (queue_pair_entry->qp.ref_count > 1) {
1121				pr_devel("Error attempting to attach more than once\n");
1122				result = VMCI_ERROR_UNAVAILABLE;
1123				goto error_keep_entry;
1124			}
1125
1126			if (queue_pair_entry->qp.produce_size != consume_size ||
1127			    queue_pair_entry->qp.consume_size !=
1128			    produce_size ||
1129			    queue_pair_entry->qp.flags !=
1130			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1131				pr_devel("Error mismatched queue pair in local attach\n");
1132				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1133				goto error_keep_entry;
1134			}
1135
1136			/*
1137			 * Do a local attach.  We swap the consume and
1138			 * produce queues for the attacher and deliver
1139			 * an attach event.
1140			 */
1141			result = qp_notify_peer_local(true, *handle);
1142			if (result < VMCI_SUCCESS)
1143				goto error_keep_entry;
1144
1145			my_produce_q = queue_pair_entry->consume_q;
1146			my_consume_q = queue_pair_entry->produce_q;
1147			goto out;
1148		}
1149
1150		result = VMCI_ERROR_ALREADY_EXISTS;
1151		goto error_keep_entry;
1152	}
1153
1154	my_produce_q = qp_alloc_queue(produce_size, flags);
1155	if (!my_produce_q) {
1156		pr_warn("Error allocating pages for produce queue\n");
1157		result = VMCI_ERROR_NO_MEM;
1158		goto error;
1159	}
1160
1161	my_consume_q = qp_alloc_queue(consume_size, flags);
1162	if (!my_consume_q) {
1163		pr_warn("Error allocating pages for consume queue\n");
1164		result = VMCI_ERROR_NO_MEM;
1165		goto error;
1166	}
1167
1168	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1169						    produce_size, consume_size,
1170						    my_produce_q, my_consume_q);
1171	if (!queue_pair_entry) {
1172		pr_warn("Error allocating memory in %s\n", __func__);
1173		result = VMCI_ERROR_NO_MEM;
1174		goto error;
1175	}
1176
1177	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1178				  num_consume_pages,
1179				  &queue_pair_entry->ppn_set);
1180	if (result < VMCI_SUCCESS) {
1181		pr_warn("qp_alloc_ppn_set failed\n");
1182		goto error;
1183	}
1184
1185	/*
1186	 * It's only necessary to notify the host if this queue pair will be
1187	 * attached to from another context.
1188	 */
1189	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1190		/* Local create case. */
1191		u32 context_id = vmci_get_context_id();
1192
1193		/*
1194		 * Enforce similar checks on local queue pairs as we
1195		 * do for regular ones.  The handle's context must
1196		 * match the creator or attacher context id (here they
1197		 * are both the current context id) and the
1198		 * attach-only flag cannot exist during create.  We
1199		 * also ensure specified peer is this context or an
1200		 * invalid one.
1201		 */
1202		if (queue_pair_entry->qp.handle.context != context_id ||
1203		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1204		     queue_pair_entry->qp.peer != context_id)) {
1205			result = VMCI_ERROR_NO_ACCESS;
1206			goto error;
1207		}
1208
1209		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1210			result = VMCI_ERROR_NOT_FOUND;
1211			goto error;
1212		}
1213	} else {
1214		result = qp_alloc_hypercall(queue_pair_entry);
1215		if (result < VMCI_SUCCESS) {
1216			pr_devel("qp_alloc_hypercall result = %d\n", result);
1217			goto error;
1218		}
1219	}
1220
1221	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1222			    (struct vmci_queue *)my_consume_q);
1223
1224	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1225
1226 out:
1227	queue_pair_entry->qp.ref_count++;
1228	*handle = queue_pair_entry->qp.handle;
1229	*produce_q = (struct vmci_queue *)my_produce_q;
1230	*consume_q = (struct vmci_queue *)my_consume_q;
1231
1232	/*
1233	 * We should initialize the queue pair header pages on a local
1234	 * queue pair create.  For non-local queue pairs, the
1235	 * hypervisor initializes the header pages in the create step.
1236	 */
1237	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1238	    queue_pair_entry->qp.ref_count == 1) {
1239		vmci_q_header_init((*produce_q)->q_header, *handle);
1240		vmci_q_header_init((*consume_q)->q_header, *handle);
1241	}
1242
1243	mutex_unlock(&qp_guest_endpoints.mutex);
1244
1245	return VMCI_SUCCESS;
1246
1247 error:
1248	mutex_unlock(&qp_guest_endpoints.mutex);
1249	if (queue_pair_entry) {
1250		/* The queues will be freed inside the destroy routine. */
1251		qp_guest_endpoint_destroy(queue_pair_entry);
1252	} else {
1253		qp_free_queue(my_produce_q, produce_size);
1254		qp_free_queue(my_consume_q, consume_size);
1255	}
1256	return result;
1257
1258 error_keep_entry:
1259	/* This path should only be used when an existing entry was found. */
1260	mutex_unlock(&qp_guest_endpoints.mutex);
1261	return result;
1262}
1263
1264/*
1265 * The first endpoint issuing a queue pair allocation will create the state
1266 * of the queue pair in the queue pair broker.
1267 *
1268 * If the creator is a guest, it will associate a VMX virtual address range
1269 * with the queue pair as specified by the page_store. For compatibility with
1270 * older VMX'en, that would use a separate step to set the VMX virtual
1271 * address range, the virtual address range can be registered later using
1272 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1273 * used.
1274 *
1275 * If the creator is the host, a page_store of NULL should be used as well,
1276 * since the host is not able to supply a page store for the queue pair.
1277 *
1278 * For older VMX and host callers, the queue pair will be created in the
1279 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1280 * created in VMCOQPB_CREATED_MEM state.
1281 */
1282static int qp_broker_create(struct vmci_handle handle,
1283			    u32 peer,
1284			    u32 flags,
1285			    u32 priv_flags,
1286			    u64 produce_size,
1287			    u64 consume_size,
1288			    struct vmci_qp_page_store *page_store,
1289			    struct vmci_ctx *context,
1290			    vmci_event_release_cb wakeup_cb,
1291			    void *client_data, struct qp_broker_entry **ent)
1292{
1293	struct qp_broker_entry *entry = NULL;
1294	const u32 context_id = vmci_ctx_get_id(context);
1295	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1296	int result;
1297	u64 guest_produce_size;
1298	u64 guest_consume_size;
1299
1300	/* Do not create if the caller asked not to. */
1301	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1302		return VMCI_ERROR_NOT_FOUND;
1303
1304	/*
1305	 * Creator's context ID should match handle's context ID or the creator
1306	 * must allow the context in handle's context ID as the "peer".
1307	 */
1308	if (handle.context != context_id && handle.context != peer)
1309		return VMCI_ERROR_NO_ACCESS;
1310
1311	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1312		return VMCI_ERROR_DST_UNREACHABLE;
1313
1314	/*
1315	 * Creator's context ID for local queue pairs should match the
1316	 * peer, if a peer is specified.
1317	 */
1318	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1319		return VMCI_ERROR_NO_ACCESS;
1320
1321	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1322	if (!entry)
1323		return VMCI_ERROR_NO_MEM;
1324
1325	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1326		/*
1327		 * The queue pair broker entry stores values from the guest
1328		 * point of view, so a creating host side endpoint should swap
1329		 * produce and consume values -- unless it is a local queue
1330		 * pair, in which case no swapping is necessary, since the local
1331		 * attacher will swap queues.
1332		 */
1333
1334		guest_produce_size = consume_size;
1335		guest_consume_size = produce_size;
1336	} else {
1337		guest_produce_size = produce_size;
1338		guest_consume_size = consume_size;
1339	}
1340
1341	entry->qp.handle = handle;
1342	entry->qp.peer = peer;
1343	entry->qp.flags = flags;
1344	entry->qp.produce_size = guest_produce_size;
1345	entry->qp.consume_size = guest_consume_size;
1346	entry->qp.ref_count = 1;
1347	entry->create_id = context_id;
1348	entry->attach_id = VMCI_INVALID_ID;
1349	entry->state = VMCIQPB_NEW;
1350	entry->require_trusted_attach =
1351	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1352	entry->created_by_trusted =
1353	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1354	entry->vmci_page_files = false;
1355	entry->wakeup_cb = wakeup_cb;
1356	entry->client_data = client_data;
1357	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1358	if (entry->produce_q == NULL) {
1359		result = VMCI_ERROR_NO_MEM;
1360		goto error;
1361	}
1362	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1363	if (entry->consume_q == NULL) {
1364		result = VMCI_ERROR_NO_MEM;
1365		goto error;
1366	}
1367
1368	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1369
1370	INIT_LIST_HEAD(&entry->qp.list_item);
1371
1372	if (is_local) {
1373		u8 *tmp;
1374
1375		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1376					   PAGE_SIZE, GFP_KERNEL);
1377		if (entry->local_mem == NULL) {
1378			result = VMCI_ERROR_NO_MEM;
1379			goto error;
1380		}
1381		entry->state = VMCIQPB_CREATED_MEM;
1382		entry->produce_q->q_header = entry->local_mem;
1383		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1384		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1385		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1386	} else if (page_store) {
1387		/*
1388		 * The VMX already initialized the queue pair headers, so no
1389		 * need for the kernel side to do that.
1390		 */
1391		result = qp_host_register_user_memory(page_store,
1392						      entry->produce_q,
1393						      entry->consume_q);
1394		if (result < VMCI_SUCCESS)
1395			goto error;
1396
1397		entry->state = VMCIQPB_CREATED_MEM;
1398	} else {
1399		/*
1400		 * A create without a page_store may be either a host
1401		 * side create (in which case we are waiting for the
1402		 * guest side to supply the memory) or an old style
1403		 * queue pair create (in which case we will expect a
1404		 * set page store call as the next step).
1405		 */
1406		entry->state = VMCIQPB_CREATED_NO_MEM;
1407	}
1408
1409	qp_list_add_entry(&qp_broker_list, &entry->qp);
1410	if (ent != NULL)
1411		*ent = entry;
1412
1413	/* Add to resource obj */
1414	result = vmci_resource_add(&entry->resource,
1415				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1416				   handle);
1417	if (result != VMCI_SUCCESS) {
1418		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1419			handle.context, handle.resource, result);
1420		goto error;
1421	}
1422
1423	entry->qp.handle = vmci_resource_handle(&entry->resource);
1424	if (is_local) {
1425		vmci_q_header_init(entry->produce_q->q_header,
1426				   entry->qp.handle);
1427		vmci_q_header_init(entry->consume_q->q_header,
1428				   entry->qp.handle);
1429	}
1430
1431	vmci_ctx_qp_create(context, entry->qp.handle);
1432
1433	return VMCI_SUCCESS;
1434
1435 error:
1436	if (entry != NULL) {
1437		qp_host_free_queue(entry->produce_q, guest_produce_size);
1438		qp_host_free_queue(entry->consume_q, guest_consume_size);
1439		kfree(entry);
1440	}
1441
1442	return result;
1443}
1444
1445/*
1446 * Enqueues an event datagram to notify the peer VM attached to
1447 * the given queue pair handle about attach/detach event by the
1448 * given VM.  Returns Payload size of datagram enqueued on
1449 * success, error code otherwise.
1450 */
1451static int qp_notify_peer(bool attach,
1452			  struct vmci_handle handle,
1453			  u32 my_id,
1454			  u32 peer_id)
1455{
1456	int rv;
1457	struct vmci_event_qp ev;
1458
1459	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1460	    peer_id == VMCI_INVALID_ID)
1461		return VMCI_ERROR_INVALID_ARGS;
1462
1463	/*
1464	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1465	 * number of pending events from the hypervisor to a given VM
1466	 * otherwise a rogue VM could do an arbitrary number of attach
1467	 * and detach operations causing memory pressure in the host
1468	 * kernel.
1469	 */
1470
1471	memset(&ev, 0, sizeof(ev));
1472	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1473	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1474					  VMCI_CONTEXT_RESOURCE_ID);
1475	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1476	ev.msg.event_data.event = attach ?
1477	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1478	ev.payload.handle = handle;
1479	ev.payload.peer_id = my_id;
1480
1481	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1482				    &ev.msg.hdr, false);
1483	if (rv < VMCI_SUCCESS)
1484		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485			attach ? "ATTACH" : "DETACH", peer_id);
1486
1487	return rv;
1488}
1489
1490/*
1491 * The second endpoint issuing a queue pair allocation will attach to
1492 * the queue pair registered with the queue pair broker.
1493 *
1494 * If the attacher is a guest, it will associate a VMX virtual address
1495 * range with the queue pair as specified by the page_store. At this
1496 * point, the already attach host endpoint may start using the queue
1497 * pair, and an attach event is sent to it. For compatibility with
1498 * older VMX'en, that used a separate step to set the VMX virtual
1499 * address range, the virtual address range can be registered later
1500 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501 * NULL should be used, and the attach event will be generated once
1502 * the actual page store has been set.
1503 *
1504 * If the attacher is the host, a page_store of NULL should be used as
1505 * well, since the page store information is already set by the guest.
1506 *
1507 * For new VMX and host callers, the queue pair will be moved to the
1508 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1510 */
1511static int qp_broker_attach(struct qp_broker_entry *entry,
1512			    u32 peer,
1513			    u32 flags,
1514			    u32 priv_flags,
1515			    u64 produce_size,
1516			    u64 consume_size,
1517			    struct vmci_qp_page_store *page_store,
1518			    struct vmci_ctx *context,
1519			    vmci_event_release_cb wakeup_cb,
1520			    void *client_data,
1521			    struct qp_broker_entry **ent)
1522{
1523	const u32 context_id = vmci_ctx_get_id(context);
1524	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1525	int result;
1526
1527	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1528	    entry->state != VMCIQPB_CREATED_MEM)
1529		return VMCI_ERROR_UNAVAILABLE;
1530
1531	if (is_local) {
1532		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1533		    context_id != entry->create_id) {
1534			return VMCI_ERROR_INVALID_ARGS;
1535		}
1536	} else if (context_id == entry->create_id ||
1537		   context_id == entry->attach_id) {
1538		return VMCI_ERROR_ALREADY_EXISTS;
1539	}
1540
1541	if (VMCI_CONTEXT_IS_VM(context_id) &&
1542	    VMCI_CONTEXT_IS_VM(entry->create_id))
1543		return VMCI_ERROR_DST_UNREACHABLE;
1544
1545	/*
1546	 * If we are attaching from a restricted context then the queuepair
1547	 * must have been created by a trusted endpoint.
1548	 */
1549	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1550	    !entry->created_by_trusted)
1551		return VMCI_ERROR_NO_ACCESS;
1552
1553	/*
1554	 * If we are attaching to a queuepair that was created by a restricted
1555	 * context then we must be trusted.
1556	 */
1557	if (entry->require_trusted_attach &&
1558	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1559		return VMCI_ERROR_NO_ACCESS;
1560
1561	/*
1562	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563	 * control check is not performed.
1564	 */
1565	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1566		return VMCI_ERROR_NO_ACCESS;
1567
1568	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1569		/*
1570		 * Do not attach if the caller doesn't support Host Queue Pairs
1571		 * and a host created this queue pair.
1572		 */
1573
1574		if (!vmci_ctx_supports_host_qp(context))
1575			return VMCI_ERROR_INVALID_RESOURCE;
1576
1577	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1578		struct vmci_ctx *create_context;
1579		bool supports_host_qp;
1580
1581		/*
1582		 * Do not attach a host to a user created queue pair if that
1583		 * user doesn't support host queue pair end points.
1584		 */
1585
1586		create_context = vmci_ctx_get(entry->create_id);
1587		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1588		vmci_ctx_put(create_context);
1589
1590		if (!supports_host_qp)
1591			return VMCI_ERROR_INVALID_RESOURCE;
1592	}
1593
1594	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1595		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1596
1597	if (context_id != VMCI_HOST_CONTEXT_ID) {
1598		/*
1599		 * The queue pair broker entry stores values from the guest
1600		 * point of view, so an attaching guest should match the values
1601		 * stored in the entry.
1602		 */
1603
1604		if (entry->qp.produce_size != produce_size ||
1605		    entry->qp.consume_size != consume_size) {
1606			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1607		}
1608	} else if (entry->qp.produce_size != consume_size ||
1609		   entry->qp.consume_size != produce_size) {
1610		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1611	}
1612
1613	if (context_id != VMCI_HOST_CONTEXT_ID) {
1614		/*
1615		 * If a guest attached to a queue pair, it will supply
1616		 * the backing memory.  If this is a pre NOVMVM vmx,
1617		 * the backing memory will be supplied by calling
1618		 * vmci_qp_broker_set_page_store() following the
1619		 * return of the vmci_qp_broker_alloc() call. If it is
1620		 * a vmx of version NOVMVM or later, the page store
1621		 * must be supplied as part of the
1622		 * vmci_qp_broker_alloc call.  Under all circumstances
1623		 * must the initially created queue pair not have any
1624		 * memory associated with it already.
1625		 */
1626
1627		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1628			return VMCI_ERROR_INVALID_ARGS;
1629
1630		if (page_store != NULL) {
1631			/*
1632			 * Patch up host state to point to guest
1633			 * supplied memory. The VMX already
1634			 * initialized the queue pair headers, so no
1635			 * need for the kernel side to do that.
1636			 */
1637
1638			result = qp_host_register_user_memory(page_store,
1639							      entry->produce_q,
1640							      entry->consume_q);
1641			if (result < VMCI_SUCCESS)
1642				return result;
1643
1644			entry->state = VMCIQPB_ATTACHED_MEM;
1645		} else {
1646			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1647		}
1648	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1649		/*
1650		 * The host side is attempting to attach to a queue
1651		 * pair that doesn't have any memory associated with
1652		 * it. This must be a pre NOVMVM vmx that hasn't set
1653		 * the page store information yet, or a quiesced VM.
1654		 */
1655
1656		return VMCI_ERROR_UNAVAILABLE;
1657	} else {
1658		/* The host side has successfully attached to a queue pair. */
1659		entry->state = VMCIQPB_ATTACHED_MEM;
1660	}
1661
1662	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1663		result =
1664		    qp_notify_peer(true, entry->qp.handle, context_id,
1665				   entry->create_id);
1666		if (result < VMCI_SUCCESS)
1667			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668				entry->create_id, entry->qp.handle.context,
1669				entry->qp.handle.resource);
1670	}
1671
1672	entry->attach_id = context_id;
1673	entry->qp.ref_count++;
1674	if (wakeup_cb) {
1675		entry->wakeup_cb = wakeup_cb;
1676		entry->client_data = client_data;
1677	}
1678
1679	/*
1680	 * When attaching to local queue pairs, the context already has
1681	 * an entry tracking the queue pair, so don't add another one.
1682	 */
1683	if (!is_local)
1684		vmci_ctx_qp_create(context, entry->qp.handle);
1685
1686	if (ent != NULL)
1687		*ent = entry;
1688
1689	return VMCI_SUCCESS;
1690}
1691
1692/*
1693 * queue_pair_Alloc for use when setting up queue pair endpoints
1694 * on the host.
1695 */
1696static int qp_broker_alloc(struct vmci_handle handle,
1697			   u32 peer,
1698			   u32 flags,
1699			   u32 priv_flags,
1700			   u64 produce_size,
1701			   u64 consume_size,
1702			   struct vmci_qp_page_store *page_store,
1703			   struct vmci_ctx *context,
1704			   vmci_event_release_cb wakeup_cb,
1705			   void *client_data,
1706			   struct qp_broker_entry **ent,
1707			   bool *swap)
1708{
1709	const u32 context_id = vmci_ctx_get_id(context);
1710	bool create;
1711	struct qp_broker_entry *entry = NULL;
1712	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1713	int result;
1714
1715	if (vmci_handle_is_invalid(handle) ||
1716	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1717	    !(produce_size || consume_size) ||
1718	    !context || context_id == VMCI_INVALID_ID ||
1719	    handle.context == VMCI_INVALID_ID) {
1720		return VMCI_ERROR_INVALID_ARGS;
1721	}
1722
1723	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1724		return VMCI_ERROR_INVALID_ARGS;
1725
1726	/*
1727	 * In the initial argument check, we ensure that non-vmkernel hosts
1728	 * are not allowed to create local queue pairs.
1729	 */
1730
1731	mutex_lock(&qp_broker_list.mutex);
1732
1733	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1734		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735			 context_id, handle.context, handle.resource);
1736		mutex_unlock(&qp_broker_list.mutex);
1737		return VMCI_ERROR_ALREADY_EXISTS;
1738	}
1739
1740	if (handle.resource != VMCI_INVALID_ID)
1741		entry = qp_broker_handle_to_entry(handle);
1742
1743	if (!entry) {
1744		create = true;
1745		result =
1746		    qp_broker_create(handle, peer, flags, priv_flags,
1747				     produce_size, consume_size, page_store,
1748				     context, wakeup_cb, client_data, ent);
1749	} else {
1750		create = false;
1751		result =
1752		    qp_broker_attach(entry, peer, flags, priv_flags,
1753				     produce_size, consume_size, page_store,
1754				     context, wakeup_cb, client_data, ent);
1755	}
1756
1757	mutex_unlock(&qp_broker_list.mutex);
1758
1759	if (swap)
1760		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1761		    !(create && is_local);
1762
1763	return result;
1764}
1765
1766/*
1767 * This function implements the kernel API for allocating a queue
1768 * pair.
1769 */
1770static int qp_alloc_host_work(struct vmci_handle *handle,
1771			      struct vmci_queue **produce_q,
1772			      u64 produce_size,
1773			      struct vmci_queue **consume_q,
1774			      u64 consume_size,
1775			      u32 peer,
1776			      u32 flags,
1777			      u32 priv_flags,
1778			      vmci_event_release_cb wakeup_cb,
1779			      void *client_data)
1780{
1781	struct vmci_handle new_handle;
1782	struct vmci_ctx *context;
1783	struct qp_broker_entry *entry;
1784	int result;
1785	bool swap;
1786
1787	if (vmci_handle_is_invalid(*handle)) {
1788		new_handle = vmci_make_handle(
1789			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1790	} else
1791		new_handle = *handle;
1792
1793	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1794	entry = NULL;
1795	result =
1796	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1797			    produce_size, consume_size, NULL, context,
1798			    wakeup_cb, client_data, &entry, &swap);
1799	if (result == VMCI_SUCCESS) {
1800		if (swap) {
1801			/*
1802			 * If this is a local queue pair, the attacher
1803			 * will swap around produce and consume
1804			 * queues.
1805			 */
1806
1807			*produce_q = entry->consume_q;
1808			*consume_q = entry->produce_q;
1809		} else {
1810			*produce_q = entry->produce_q;
1811			*consume_q = entry->consume_q;
1812		}
1813
1814		*handle = vmci_resource_handle(&entry->resource);
1815	} else {
1816		*handle = VMCI_INVALID_HANDLE;
1817		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1818			 result);
1819	}
1820	vmci_ctx_put(context);
1821	return result;
1822}
1823
1824/*
1825 * Allocates a VMCI queue_pair. Only checks validity of input
1826 * arguments. The real work is done in the host or guest
1827 * specific function.
1828 */
1829int vmci_qp_alloc(struct vmci_handle *handle,
1830		  struct vmci_queue **produce_q,
1831		  u64 produce_size,
1832		  struct vmci_queue **consume_q,
1833		  u64 consume_size,
1834		  u32 peer,
1835		  u32 flags,
1836		  u32 priv_flags,
1837		  bool guest_endpoint,
1838		  vmci_event_release_cb wakeup_cb,
1839		  void *client_data)
1840{
1841	if (!handle || !produce_q || !consume_q ||
1842	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1843		return VMCI_ERROR_INVALID_ARGS;
1844
1845	if (guest_endpoint) {
1846		return qp_alloc_guest_work(handle, produce_q,
1847					   produce_size, consume_q,
1848					   consume_size, peer,
1849					   flags, priv_flags);
1850	} else {
1851		return qp_alloc_host_work(handle, produce_q,
1852					  produce_size, consume_q,
1853					  consume_size, peer, flags,
1854					  priv_flags, wakeup_cb, client_data);
1855	}
1856}
1857
1858/*
1859 * This function implements the host kernel API for detaching from
1860 * a queue pair.
1861 */
1862static int qp_detatch_host_work(struct vmci_handle handle)
1863{
1864	int result;
1865	struct vmci_ctx *context;
1866
1867	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1868
1869	result = vmci_qp_broker_detach(handle, context);
1870
1871	vmci_ctx_put(context);
1872	return result;
1873}
1874
1875/*
1876 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877 * Real work is done in the host or guest specific function.
1878 */
1879static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1880{
1881	if (vmci_handle_is_invalid(handle))
1882		return VMCI_ERROR_INVALID_ARGS;
1883
1884	if (guest_endpoint)
1885		return qp_detatch_guest_work(handle);
1886	else
1887		return qp_detatch_host_work(handle);
1888}
1889
1890/*
1891 * Returns the entry from the head of the list. Assumes that the list is
1892 * locked.
1893 */
1894static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1895{
1896	if (!list_empty(&qp_list->head)) {
1897		struct qp_entry *entry =
1898		    list_first_entry(&qp_list->head, struct qp_entry,
1899				     list_item);
1900		return entry;
1901	}
1902
1903	return NULL;
1904}
1905
1906void vmci_qp_broker_exit(void)
1907{
1908	struct qp_entry *entry;
1909	struct qp_broker_entry *be;
1910
1911	mutex_lock(&qp_broker_list.mutex);
1912
1913	while ((entry = qp_list_get_head(&qp_broker_list))) {
1914		be = (struct qp_broker_entry *)entry;
1915
1916		qp_list_remove_entry(&qp_broker_list, entry);
1917		kfree(be);
1918	}
1919
1920	mutex_unlock(&qp_broker_list.mutex);
1921}
1922
1923/*
1924 * Requests that a queue pair be allocated with the VMCI queue
1925 * pair broker. Allocates a queue pair entry if one does not
1926 * exist. Attaches to one if it exists, and retrieves the page
1927 * files backing that queue_pair.  Assumes that the queue pair
1928 * broker lock is held.
1929 */
1930int vmci_qp_broker_alloc(struct vmci_handle handle,
1931			 u32 peer,
1932			 u32 flags,
1933			 u32 priv_flags,
1934			 u64 produce_size,
1935			 u64 consume_size,
1936			 struct vmci_qp_page_store *page_store,
1937			 struct vmci_ctx *context)
1938{
1939	if (!QP_SIZES_ARE_VALID(produce_size, consume_size))
1940		return VMCI_ERROR_NO_RESOURCES;
1941
1942	return qp_broker_alloc(handle, peer, flags, priv_flags,
1943			       produce_size, consume_size,
1944			       page_store, context, NULL, NULL, NULL, NULL);
1945}
1946
1947/*
1948 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1949 * step to add the UVAs of the VMX mapping of the queue pair. This function
1950 * provides backwards compatibility with such VMX'en, and takes care of
1951 * registering the page store for a queue pair previously allocated by the
1952 * VMX during create or attach. This function will move the queue pair state
1953 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1954 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1955 * attached state with memory, the queue pair is ready to be used by the
1956 * host peer, and an attached event will be generated.
1957 *
1958 * Assumes that the queue pair broker lock is held.
1959 *
1960 * This function is only used by the hosted platform, since there is no
1961 * issue with backwards compatibility for vmkernel.
1962 */
1963int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1964				  u64 produce_uva,
1965				  u64 consume_uva,
1966				  struct vmci_ctx *context)
1967{
1968	struct qp_broker_entry *entry;
1969	int result;
1970	const u32 context_id = vmci_ctx_get_id(context);
1971
1972	if (vmci_handle_is_invalid(handle) || !context ||
1973	    context_id == VMCI_INVALID_ID)
1974		return VMCI_ERROR_INVALID_ARGS;
1975
1976	/*
1977	 * We only support guest to host queue pairs, so the VMX must
1978	 * supply UVAs for the mapped page files.
1979	 */
1980
1981	if (produce_uva == 0 || consume_uva == 0)
1982		return VMCI_ERROR_INVALID_ARGS;
1983
1984	mutex_lock(&qp_broker_list.mutex);
1985
1986	if (!vmci_ctx_qp_exists(context, handle)) {
1987		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1988			context_id, handle.context, handle.resource);
1989		result = VMCI_ERROR_NOT_FOUND;
1990		goto out;
1991	}
1992
1993	entry = qp_broker_handle_to_entry(handle);
1994	if (!entry) {
1995		result = VMCI_ERROR_NOT_FOUND;
1996		goto out;
1997	}
1998
1999	/*
2000	 * If I'm the owner then I can set the page store.
2001	 *
2002	 * Or, if a host created the queue_pair and I'm the attached peer
2003	 * then I can set the page store.
2004	 */
2005	if (entry->create_id != context_id &&
2006	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2007	     entry->attach_id != context_id)) {
2008		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2009		goto out;
2010	}
2011
2012	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2013	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2014		result = VMCI_ERROR_UNAVAILABLE;
2015		goto out;
2016	}
2017
2018	result = qp_host_get_user_memory(produce_uva, consume_uva,
2019					 entry->produce_q, entry->consume_q);
2020	if (result < VMCI_SUCCESS)
2021		goto out;
2022
2023	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2024	if (result < VMCI_SUCCESS) {
2025		qp_host_unregister_user_memory(entry->produce_q,
2026					       entry->consume_q);
2027		goto out;
2028	}
2029
2030	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2031		entry->state = VMCIQPB_CREATED_MEM;
2032	else
2033		entry->state = VMCIQPB_ATTACHED_MEM;
2034
2035	entry->vmci_page_files = true;
2036
2037	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2038		result =
2039		    qp_notify_peer(true, handle, context_id, entry->create_id);
2040		if (result < VMCI_SUCCESS) {
2041			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2042				entry->create_id, entry->qp.handle.context,
2043				entry->qp.handle.resource);
2044		}
2045	}
2046
2047	result = VMCI_SUCCESS;
2048 out:
2049	mutex_unlock(&qp_broker_list.mutex);
2050	return result;
2051}
2052
2053/*
2054 * Resets saved queue headers for the given QP broker
2055 * entry. Should be used when guest memory becomes available
2056 * again, or the guest detaches.
2057 */
2058static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2059{
2060	entry->produce_q->saved_header = NULL;
2061	entry->consume_q->saved_header = NULL;
2062}
2063
2064/*
2065 * The main entry point for detaching from a queue pair registered with the
2066 * queue pair broker. If more than one endpoint is attached to the queue
2067 * pair, the first endpoint will mainly decrement a reference count and
2068 * generate a notification to its peer. The last endpoint will clean up
2069 * the queue pair state registered with the broker.
2070 *
2071 * When a guest endpoint detaches, it will unmap and unregister the guest
2072 * memory backing the queue pair. If the host is still attached, it will
2073 * no longer be able to access the queue pair content.
2074 *
2075 * If the queue pair is already in a state where there is no memory
2076 * registered for the queue pair (any *_NO_MEM state), it will transition to
2077 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2078 * endpoint is the first of two endpoints to detach. If the host endpoint is
2079 * the first out of two to detach, the queue pair will move to the
2080 * VMCIQPB_SHUTDOWN_MEM state.
2081 */
2082int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2083{
2084	struct qp_broker_entry *entry;
2085	const u32 context_id = vmci_ctx_get_id(context);
2086	u32 peer_id;
2087	bool is_local = false;
2088	int result;
2089
2090	if (vmci_handle_is_invalid(handle) || !context ||
2091	    context_id == VMCI_INVALID_ID) {
2092		return VMCI_ERROR_INVALID_ARGS;
2093	}
2094
2095	mutex_lock(&qp_broker_list.mutex);
2096
2097	if (!vmci_ctx_qp_exists(context, handle)) {
2098		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2099			 context_id, handle.context, handle.resource);
2100		result = VMCI_ERROR_NOT_FOUND;
2101		goto out;
2102	}
2103
2104	entry = qp_broker_handle_to_entry(handle);
2105	if (!entry) {
2106		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2107			 context_id, handle.context, handle.resource);
2108		result = VMCI_ERROR_NOT_FOUND;
2109		goto out;
2110	}
2111
2112	if (context_id != entry->create_id && context_id != entry->attach_id) {
2113		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2114		goto out;
2115	}
2116
2117	if (context_id == entry->create_id) {
2118		peer_id = entry->attach_id;
2119		entry->create_id = VMCI_INVALID_ID;
2120	} else {
2121		peer_id = entry->create_id;
2122		entry->attach_id = VMCI_INVALID_ID;
2123	}
2124	entry->qp.ref_count--;
2125
2126	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2127
2128	if (context_id != VMCI_HOST_CONTEXT_ID) {
2129		bool headers_mapped;
2130
2131		/*
2132		 * Pre NOVMVM vmx'en may detach from a queue pair
2133		 * before setting the page store, and in that case
2134		 * there is no user memory to detach from. Also, more
2135		 * recent VMX'en may detach from a queue pair in the
2136		 * quiesced state.
2137		 */
2138
2139		qp_acquire_queue_mutex(entry->produce_q);
2140		headers_mapped = entry->produce_q->q_header ||
2141		    entry->consume_q->q_header;
2142		if (QPBROKERSTATE_HAS_MEM(entry)) {
2143			result =
2144			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2145						 entry->produce_q,
2146						 entry->consume_q);
2147			if (result < VMCI_SUCCESS)
2148				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2149					handle.context, handle.resource,
2150					result);
2151
2152			qp_host_unregister_user_memory(entry->produce_q,
2153						       entry->consume_q);
2154
2155		}
2156
2157		if (!headers_mapped)
2158			qp_reset_saved_headers(entry);
2159
2160		qp_release_queue_mutex(entry->produce_q);
2161
2162		if (!headers_mapped && entry->wakeup_cb)
2163			entry->wakeup_cb(entry->client_data);
2164
2165	} else {
2166		if (entry->wakeup_cb) {
2167			entry->wakeup_cb = NULL;
2168			entry->client_data = NULL;
2169		}
2170	}
2171
2172	if (entry->qp.ref_count == 0) {
2173		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2174
2175		if (is_local)
2176			kfree(entry->local_mem);
2177
2178		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2179		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2180		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2181		/* Unlink from resource hash table and free callback */
2182		vmci_resource_remove(&entry->resource);
2183
2184		kfree(entry);
2185
2186		vmci_ctx_qp_destroy(context, handle);
2187	} else {
2188		qp_notify_peer(false, handle, context_id, peer_id);
2189		if (context_id == VMCI_HOST_CONTEXT_ID &&
2190		    QPBROKERSTATE_HAS_MEM(entry)) {
2191			entry->state = VMCIQPB_SHUTDOWN_MEM;
2192		} else {
2193			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2194		}
2195
2196		if (!is_local)
2197			vmci_ctx_qp_destroy(context, handle);
2198
2199	}
2200	result = VMCI_SUCCESS;
2201 out:
2202	mutex_unlock(&qp_broker_list.mutex);
2203	return result;
2204}
2205
2206/*
2207 * Establishes the necessary mappings for a queue pair given a
2208 * reference to the queue pair guest memory. This is usually
2209 * called when a guest is unquiesced and the VMX is allowed to
2210 * map guest memory once again.
2211 */
2212int vmci_qp_broker_map(struct vmci_handle handle,
2213		       struct vmci_ctx *context,
2214		       u64 guest_mem)
2215{
2216	struct qp_broker_entry *entry;
2217	const u32 context_id = vmci_ctx_get_id(context);
2218	int result;
2219
2220	if (vmci_handle_is_invalid(handle) || !context ||
2221	    context_id == VMCI_INVALID_ID)
2222		return VMCI_ERROR_INVALID_ARGS;
2223
2224	mutex_lock(&qp_broker_list.mutex);
2225
2226	if (!vmci_ctx_qp_exists(context, handle)) {
2227		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2228			 context_id, handle.context, handle.resource);
2229		result = VMCI_ERROR_NOT_FOUND;
2230		goto out;
2231	}
2232
2233	entry = qp_broker_handle_to_entry(handle);
2234	if (!entry) {
2235		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2236			 context_id, handle.context, handle.resource);
2237		result = VMCI_ERROR_NOT_FOUND;
2238		goto out;
2239	}
2240
2241	if (context_id != entry->create_id && context_id != entry->attach_id) {
2242		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2243		goto out;
2244	}
2245
2246	result = VMCI_SUCCESS;
2247
2248	if (context_id != VMCI_HOST_CONTEXT_ID &&
2249	    !QPBROKERSTATE_HAS_MEM(entry)) {
2250		struct vmci_qp_page_store page_store;
2251
2252		page_store.pages = guest_mem;
2253		page_store.len = QPE_NUM_PAGES(entry->qp);
2254
2255		qp_acquire_queue_mutex(entry->produce_q);
2256		qp_reset_saved_headers(entry);
2257		result =
2258		    qp_host_register_user_memory(&page_store,
2259						 entry->produce_q,
2260						 entry->consume_q);
2261		qp_release_queue_mutex(entry->produce_q);
2262		if (result == VMCI_SUCCESS) {
2263			/* Move state from *_NO_MEM to *_MEM */
2264
2265			entry->state++;
2266
2267			if (entry->wakeup_cb)
2268				entry->wakeup_cb(entry->client_data);
2269		}
2270	}
2271
2272 out:
2273	mutex_unlock(&qp_broker_list.mutex);
2274	return result;
2275}
2276
2277/*
2278 * Saves a snapshot of the queue headers for the given QP broker
2279 * entry. Should be used when guest memory is unmapped.
2280 * Results:
2281 * VMCI_SUCCESS on success, appropriate error code if guest memory
2282 * can't be accessed..
2283 */
2284static int qp_save_headers(struct qp_broker_entry *entry)
2285{
2286	int result;
2287
2288	if (entry->produce_q->saved_header != NULL &&
2289	    entry->consume_q->saved_header != NULL) {
2290		/*
2291		 *  If the headers have already been saved, we don't need to do
2292		 *  it again, and we don't want to map in the headers
2293		 *  unnecessarily.
2294		 */
2295
2296		return VMCI_SUCCESS;
2297	}
2298
2299	if (NULL == entry->produce_q->q_header ||
2300	    NULL == entry->consume_q->q_header) {
2301		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2302		if (result < VMCI_SUCCESS)
2303			return result;
2304	}
2305
2306	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2307	       sizeof(entry->saved_produce_q));
2308	entry->produce_q->saved_header = &entry->saved_produce_q;
2309	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2310	       sizeof(entry->saved_consume_q));
2311	entry->consume_q->saved_header = &entry->saved_consume_q;
2312
2313	return VMCI_SUCCESS;
2314}
2315
2316/*
2317 * Removes all references to the guest memory of a given queue pair, and
2318 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2319 * called when a VM is being quiesced where access to guest memory should
2320 * avoided.
2321 */
2322int vmci_qp_broker_unmap(struct vmci_handle handle,
2323			 struct vmci_ctx *context,
2324			 u32 gid)
2325{
2326	struct qp_broker_entry *entry;
2327	const u32 context_id = vmci_ctx_get_id(context);
2328	int result;
2329
2330	if (vmci_handle_is_invalid(handle) || !context ||
2331	    context_id == VMCI_INVALID_ID)
2332		return VMCI_ERROR_INVALID_ARGS;
2333
2334	mutex_lock(&qp_broker_list.mutex);
2335
2336	if (!vmci_ctx_qp_exists(context, handle)) {
2337		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2338			 context_id, handle.context, handle.resource);
2339		result = VMCI_ERROR_NOT_FOUND;
2340		goto out;
2341	}
2342
2343	entry = qp_broker_handle_to_entry(handle);
2344	if (!entry) {
2345		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2346			 context_id, handle.context, handle.resource);
2347		result = VMCI_ERROR_NOT_FOUND;
2348		goto out;
2349	}
2350
2351	if (context_id != entry->create_id && context_id != entry->attach_id) {
2352		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2353		goto out;
2354	}
2355
2356	if (context_id != VMCI_HOST_CONTEXT_ID &&
2357	    QPBROKERSTATE_HAS_MEM(entry)) {
2358		qp_acquire_queue_mutex(entry->produce_q);
2359		result = qp_save_headers(entry);
2360		if (result < VMCI_SUCCESS)
2361			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362				handle.context, handle.resource, result);
2363
2364		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2365
2366		/*
2367		 * On hosted, when we unmap queue pairs, the VMX will also
2368		 * unmap the guest memory, so we invalidate the previously
2369		 * registered memory. If the queue pair is mapped again at a
2370		 * later point in time, we will need to reregister the user
2371		 * memory with a possibly new user VA.
2372		 */
2373		qp_host_unregister_user_memory(entry->produce_q,
2374					       entry->consume_q);
2375
2376		/*
2377		 * Move state from *_MEM to *_NO_MEM.
2378		 */
2379		entry->state--;
2380
2381		qp_release_queue_mutex(entry->produce_q);
2382	}
2383
2384	result = VMCI_SUCCESS;
2385
2386 out:
2387	mutex_unlock(&qp_broker_list.mutex);
2388	return result;
2389}
2390
2391/*
2392 * Destroys all guest queue pair endpoints. If active guest queue
2393 * pairs still exist, hypercalls to attempt detach from these
2394 * queue pairs will be made. Any failure to detach is silently
2395 * ignored.
2396 */
2397void vmci_qp_guest_endpoints_exit(void)
2398{
2399	struct qp_entry *entry;
2400	struct qp_guest_endpoint *ep;
2401
2402	mutex_lock(&qp_guest_endpoints.mutex);
2403
2404	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2405		ep = (struct qp_guest_endpoint *)entry;
2406
2407		/* Don't make a hypercall for local queue_pairs. */
2408		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2409			qp_detatch_hypercall(entry->handle);
2410
2411		/* We cannot fail the exit, so let's reset ref_count. */
2412		entry->ref_count = 0;
2413		qp_list_remove_entry(&qp_guest_endpoints, entry);
2414
2415		qp_guest_endpoint_destroy(ep);
2416	}
2417
2418	mutex_unlock(&qp_guest_endpoints.mutex);
2419}
2420
2421/*
2422 * Helper routine that will lock the queue pair before subsequent
2423 * operations.
2424 * Note: Non-blocking on the host side is currently only implemented in ESX.
2425 * Since non-blocking isn't yet implemented on the host personality we
2426 * have no reason to acquire a spin lock.  So to avoid the use of an
2427 * unnecessary lock only acquire the mutex if we can block.
2428 */
2429static void qp_lock(const struct vmci_qp *qpair)
2430{
2431	qp_acquire_queue_mutex(qpair->produce_q);
2432}
2433
2434/*
2435 * Helper routine that unlocks the queue pair after calling
2436 * qp_lock.
2437 */
2438static void qp_unlock(const struct vmci_qp *qpair)
2439{
2440	qp_release_queue_mutex(qpair->produce_q);
2441}
2442
2443/*
2444 * The queue headers may not be mapped at all times. If a queue is
2445 * currently not mapped, it will be attempted to do so.
2446 */
2447static int qp_map_queue_headers(struct vmci_queue *produce_q,
2448				struct vmci_queue *consume_q)
2449{
2450	int result;
2451
2452	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2453		result = qp_host_map_queues(produce_q, consume_q);
2454		if (result < VMCI_SUCCESS)
2455			return (produce_q->saved_header &&
2456				consume_q->saved_header) ?
2457			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2458			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2459	}
2460
2461	return VMCI_SUCCESS;
2462}
2463
2464/*
2465 * Helper routine that will retrieve the produce and consume
2466 * headers of a given queue pair. If the guest memory of the
2467 * queue pair is currently not available, the saved queue headers
2468 * will be returned, if these are available.
2469 */
2470static int qp_get_queue_headers(const struct vmci_qp *qpair,
2471				struct vmci_queue_header **produce_q_header,
2472				struct vmci_queue_header **consume_q_header)
2473{
2474	int result;
2475
2476	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2477	if (result == VMCI_SUCCESS) {
2478		*produce_q_header = qpair->produce_q->q_header;
2479		*consume_q_header = qpair->consume_q->q_header;
2480	} else if (qpair->produce_q->saved_header &&
2481		   qpair->consume_q->saved_header) {
2482		*produce_q_header = qpair->produce_q->saved_header;
2483		*consume_q_header = qpair->consume_q->saved_header;
2484		result = VMCI_SUCCESS;
2485	}
2486
2487	return result;
2488}
2489
2490/*
2491 * Callback from VMCI queue pair broker indicating that a queue
2492 * pair that was previously not ready, now either is ready or
2493 * gone forever.
2494 */
2495static int qp_wakeup_cb(void *client_data)
2496{
2497	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2498
2499	qp_lock(qpair);
2500	while (qpair->blocked > 0) {
2501		qpair->blocked--;
2502		qpair->generation++;
2503		wake_up(&qpair->event);
2504	}
2505	qp_unlock(qpair);
2506
2507	return VMCI_SUCCESS;
2508}
2509
2510/*
2511 * Makes the calling thread wait for the queue pair to become
2512 * ready for host side access.  Returns true when thread is
2513 * woken up after queue pair state change, false otherwise.
2514 */
2515static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2516{
2517	unsigned int generation;
2518
2519	qpair->blocked++;
2520	generation = qpair->generation;
2521	qp_unlock(qpair);
2522	wait_event(qpair->event, generation != qpair->generation);
2523	qp_lock(qpair);
2524
2525	return true;
2526}
2527
2528/*
2529 * Enqueues a given buffer to the produce queue using the provided
2530 * function. As many bytes as possible (space available in the queue)
2531 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2532 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535 * an error occured when accessing the buffer,
2536 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537 * available.  Otherwise, the number of bytes written to the queue is
2538 * returned.  Updates the tail pointer of the produce queue.
2539 */
2540static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2541				 struct vmci_queue *consume_q,
2542				 const u64 produce_q_size,
2543				 struct iov_iter *from)
2544{
2545	s64 free_space;
2546	u64 tail;
2547	size_t buf_size = iov_iter_count(from);
2548	size_t written;
2549	ssize_t result;
2550
2551	result = qp_map_queue_headers(produce_q, consume_q);
2552	if (unlikely(result != VMCI_SUCCESS))
2553		return result;
2554
2555	free_space = vmci_q_header_free_space(produce_q->q_header,
2556					      consume_q->q_header,
2557					      produce_q_size);
2558	if (free_space == 0)
2559		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2560
2561	if (free_space < VMCI_SUCCESS)
2562		return (ssize_t) free_space;
2563
2564	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2565	tail = vmci_q_header_producer_tail(produce_q->q_header);
2566	if (likely(tail + written < produce_q_size)) {
2567		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2568	} else {
2569		/* Tail pointer wraps around. */
2570
2571		const size_t tmp = (size_t) (produce_q_size - tail);
2572
2573		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2574		if (result >= VMCI_SUCCESS)
2575			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2576						 written - tmp);
2577	}
2578
2579	if (result < VMCI_SUCCESS)
2580		return result;
2581
2582	/*
2583	 * This virt_wmb() ensures that data written to the queue
2584	 * is observable before the new producer_tail is.
2585	 */
2586	virt_wmb();
2587
2588	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2589					produce_q_size);
2590	return written;
2591}
2592
2593/*
2594 * Dequeues data (if available) from the given consume queue. Writes data
2595 * to the user provided buffer using the provided function.
2596 * Assumes the queue->mutex has been acquired.
2597 * Results:
2598 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2599 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2600 * (as defined by the queue size).
2601 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2602 * Otherwise the number of bytes dequeued is returned.
2603 * Side effects:
2604 * Updates the head pointer of the consume queue.
2605 */
2606static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2607				 struct vmci_queue *consume_q,
2608				 const u64 consume_q_size,
2609				 struct iov_iter *to,
2610				 bool update_consumer)
2611{
2612	size_t buf_size = iov_iter_count(to);
2613	s64 buf_ready;
2614	u64 head;
2615	size_t read;
2616	ssize_t result;
2617
2618	result = qp_map_queue_headers(produce_q, consume_q);
2619	if (unlikely(result != VMCI_SUCCESS))
2620		return result;
2621
2622	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2623					    produce_q->q_header,
2624					    consume_q_size);
2625	if (buf_ready == 0)
2626		return VMCI_ERROR_QUEUEPAIR_NODATA;
2627
2628	if (buf_ready < VMCI_SUCCESS)
2629		return (ssize_t) buf_ready;
2630
2631	/*
2632	 * This virt_rmb() ensures that data from the queue will be read
2633	 * after we have determined how much is ready to be consumed.
2634	 */
2635	virt_rmb();
2636
2637	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2638	head = vmci_q_header_consumer_head(produce_q->q_header);
2639	if (likely(head + read < consume_q_size)) {
2640		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2641	} else {
2642		/* Head pointer wraps around. */
2643
2644		const size_t tmp = (size_t) (consume_q_size - head);
2645
2646		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2647		if (result >= VMCI_SUCCESS)
2648			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2649						   read - tmp);
2650
2651	}
2652
2653	if (result < VMCI_SUCCESS)
2654		return result;
2655
2656	if (update_consumer)
2657		vmci_q_header_add_consumer_head(produce_q->q_header,
2658						read, consume_q_size);
2659
2660	return read;
2661}
2662
2663/*
2664 * vmci_qpair_alloc() - Allocates a queue pair.
2665 * @qpair:      Pointer for the new vmci_qp struct.
2666 * @handle:     Handle to track the resource.
2667 * @produce_qsize:      Desired size of the producer queue.
2668 * @consume_qsize:      Desired size of the consumer queue.
2669 * @peer:       ContextID of the peer.
2670 * @flags:      VMCI flags.
2671 * @priv_flags: VMCI priviledge flags.
2672 *
2673 * This is the client interface for allocating the memory for a
2674 * vmci_qp structure and then attaching to the underlying
2675 * queue.  If an error occurs allocating the memory for the
2676 * vmci_qp structure no attempt is made to attach.  If an
2677 * error occurs attaching, then the structure is freed.
2678 */
2679int vmci_qpair_alloc(struct vmci_qp **qpair,
2680		     struct vmci_handle *handle,
2681		     u64 produce_qsize,
2682		     u64 consume_qsize,
2683		     u32 peer,
2684		     u32 flags,
2685		     u32 priv_flags)
2686{
2687	struct vmci_qp *my_qpair;
2688	int retval;
2689	struct vmci_handle src = VMCI_INVALID_HANDLE;
2690	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2691	enum vmci_route route;
2692	vmci_event_release_cb wakeup_cb;
2693	void *client_data;
2694
2695	/*
2696	 * Restrict the size of a queuepair.  The device already
2697	 * enforces a limit on the total amount of memory that can be
2698	 * allocated to queuepairs for a guest.  However, we try to
2699	 * allocate this memory before we make the queuepair
2700	 * allocation hypercall.  On Linux, we allocate each page
2701	 * separately, which means rather than fail, the guest will
2702	 * thrash while it tries to allocate, and will become
2703	 * increasingly unresponsive to the point where it appears to
2704	 * be hung.  So we place a limit on the size of an individual
2705	 * queuepair here, and leave the device to enforce the
2706	 * restriction on total queuepair memory.  (Note that this
2707	 * doesn't prevent all cases; a user with only this much
2708	 * physical memory could still get into trouble.)  The error
2709	 * used by the device is NO_RESOURCES, so use that here too.
2710	 */
2711
2712	if (!QP_SIZES_ARE_VALID(produce_qsize, consume_qsize))
2713		return VMCI_ERROR_NO_RESOURCES;
2714
2715	retval = vmci_route(&src, &dst, false, &route);
2716	if (retval < VMCI_SUCCESS)
2717		route = vmci_guest_code_active() ?
2718		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2719
2720	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2721		pr_devel("NONBLOCK OR PINNED set");
2722		return VMCI_ERROR_INVALID_ARGS;
2723	}
2724
2725	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2726	if (!my_qpair)
2727		return VMCI_ERROR_NO_MEM;
2728
2729	my_qpair->produce_q_size = produce_qsize;
2730	my_qpair->consume_q_size = consume_qsize;
2731	my_qpair->peer = peer;
2732	my_qpair->flags = flags;
2733	my_qpair->priv_flags = priv_flags;
2734
2735	wakeup_cb = NULL;
2736	client_data = NULL;
2737
2738	if (VMCI_ROUTE_AS_HOST == route) {
2739		my_qpair->guest_endpoint = false;
2740		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2741			my_qpair->blocked = 0;
2742			my_qpair->generation = 0;
2743			init_waitqueue_head(&my_qpair->event);
2744			wakeup_cb = qp_wakeup_cb;
2745			client_data = (void *)my_qpair;
2746		}
2747	} else {
2748		my_qpair->guest_endpoint = true;
2749	}
2750
2751	retval = vmci_qp_alloc(handle,
2752			       &my_qpair->produce_q,
2753			       my_qpair->produce_q_size,
2754			       &my_qpair->consume_q,
2755			       my_qpair->consume_q_size,
2756			       my_qpair->peer,
2757			       my_qpair->flags,
2758			       my_qpair->priv_flags,
2759			       my_qpair->guest_endpoint,
2760			       wakeup_cb, client_data);
2761
2762	if (retval < VMCI_SUCCESS) {
2763		kfree(my_qpair);
2764		return retval;
2765	}
2766
2767	*qpair = my_qpair;
2768	my_qpair->handle = *handle;
2769
2770	return retval;
2771}
2772EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2773
2774/*
2775 * vmci_qpair_detach() - Detatches the client from a queue pair.
2776 * @qpair:      Reference of a pointer to the qpair struct.
2777 *
2778 * This is the client interface for detaching from a VMCIQPair.
2779 * Note that this routine will free the memory allocated for the
2780 * vmci_qp structure too.
2781 */
2782int vmci_qpair_detach(struct vmci_qp **qpair)
2783{
2784	int result;
2785	struct vmci_qp *old_qpair;
2786
2787	if (!qpair || !(*qpair))
2788		return VMCI_ERROR_INVALID_ARGS;
2789
2790	old_qpair = *qpair;
2791	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2792
2793	/*
2794	 * The guest can fail to detach for a number of reasons, and
2795	 * if it does so, it will cleanup the entry (if there is one).
2796	 * The host can fail too, but it won't cleanup the entry
2797	 * immediately, it will do that later when the context is
2798	 * freed.  Either way, we need to release the qpair struct
2799	 * here; there isn't much the caller can do, and we don't want
2800	 * to leak.
2801	 */
2802
2803	memset(old_qpair, 0, sizeof(*old_qpair));
2804	old_qpair->handle = VMCI_INVALID_HANDLE;
2805	old_qpair->peer = VMCI_INVALID_ID;
2806	kfree(old_qpair);
2807	*qpair = NULL;
2808
2809	return result;
2810}
2811EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2812
2813/*
2814 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2815 * @qpair:      Pointer to the queue pair struct.
2816 * @producer_tail:      Reference used for storing producer tail index.
2817 * @consumer_head:      Reference used for storing the consumer head index.
2818 *
2819 * This is the client interface for getting the current indexes of the
2820 * QPair from the point of the view of the caller as the producer.
2821 */
2822int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2823				   u64 *producer_tail,
2824				   u64 *consumer_head)
2825{
2826	struct vmci_queue_header *produce_q_header;
2827	struct vmci_queue_header *consume_q_header;
2828	int result;
2829
2830	if (!qpair)
2831		return VMCI_ERROR_INVALID_ARGS;
2832
2833	qp_lock(qpair);
2834	result =
2835	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2836	if (result == VMCI_SUCCESS)
2837		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2838					   producer_tail, consumer_head);
2839	qp_unlock(qpair);
2840
2841	if (result == VMCI_SUCCESS &&
2842	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2843	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2844		return VMCI_ERROR_INVALID_SIZE;
2845
2846	return result;
2847}
2848EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2849
2850/*
2851 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2852 * @qpair:      Pointer to the queue pair struct.
2853 * @consumer_tail:      Reference used for storing consumer tail index.
2854 * @producer_head:      Reference used for storing the producer head index.
2855 *
2856 * This is the client interface for getting the current indexes of the
2857 * QPair from the point of the view of the caller as the consumer.
2858 */
2859int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2860				   u64 *consumer_tail,
2861				   u64 *producer_head)
2862{
2863	struct vmci_queue_header *produce_q_header;
2864	struct vmci_queue_header *consume_q_header;
2865	int result;
2866
2867	if (!qpair)
2868		return VMCI_ERROR_INVALID_ARGS;
2869
2870	qp_lock(qpair);
2871	result =
2872	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2873	if (result == VMCI_SUCCESS)
2874		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2875					   consumer_tail, producer_head);
2876	qp_unlock(qpair);
2877
2878	if (result == VMCI_SUCCESS &&
2879	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2880	     (producer_head && *producer_head >= qpair->consume_q_size)))
2881		return VMCI_ERROR_INVALID_SIZE;
2882
2883	return result;
2884}
2885EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2886
2887/*
2888 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2889 * @qpair:      Pointer to the queue pair struct.
2890 *
2891 * This is the client interface for getting the amount of free
2892 * space in the QPair from the point of the view of the caller as
2893 * the producer which is the common case.  Returns < 0 if err, else
2894 * available bytes into which data can be enqueued if > 0.
2895 */
2896s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2897{
2898	struct vmci_queue_header *produce_q_header;
2899	struct vmci_queue_header *consume_q_header;
2900	s64 result;
2901
2902	if (!qpair)
2903		return VMCI_ERROR_INVALID_ARGS;
2904
2905	qp_lock(qpair);
2906	result =
2907	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2908	if (result == VMCI_SUCCESS)
2909		result = vmci_q_header_free_space(produce_q_header,
2910						  consume_q_header,
2911						  qpair->produce_q_size);
2912	else
2913		result = 0;
2914
2915	qp_unlock(qpair);
2916
2917	return result;
2918}
2919EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2920
2921/*
2922 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2923 * @qpair:      Pointer to the queue pair struct.
2924 *
2925 * This is the client interface for getting the amount of free
2926 * space in the QPair from the point of the view of the caller as
2927 * the consumer which is not the common case.  Returns < 0 if err, else
2928 * available bytes into which data can be enqueued if > 0.
2929 */
2930s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2931{
2932	struct vmci_queue_header *produce_q_header;
2933	struct vmci_queue_header *consume_q_header;
2934	s64 result;
2935
2936	if (!qpair)
2937		return VMCI_ERROR_INVALID_ARGS;
2938
2939	qp_lock(qpair);
2940	result =
2941	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2942	if (result == VMCI_SUCCESS)
2943		result = vmci_q_header_free_space(consume_q_header,
2944						  produce_q_header,
2945						  qpair->consume_q_size);
2946	else
2947		result = 0;
2948
2949	qp_unlock(qpair);
2950
2951	return result;
2952}
2953EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2954
2955/*
2956 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2957 * producer queue.
2958 * @qpair:      Pointer to the queue pair struct.
2959 *
2960 * This is the client interface for getting the amount of
2961 * enqueued data in the QPair from the point of the view of the
2962 * caller as the producer which is not the common case.  Returns < 0 if err,
2963 * else available bytes that may be read.
2964 */
2965s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2966{
2967	struct vmci_queue_header *produce_q_header;
2968	struct vmci_queue_header *consume_q_header;
2969	s64 result;
2970
2971	if (!qpair)
2972		return VMCI_ERROR_INVALID_ARGS;
2973
2974	qp_lock(qpair);
2975	result =
2976	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2977	if (result == VMCI_SUCCESS)
2978		result = vmci_q_header_buf_ready(produce_q_header,
2979						 consume_q_header,
2980						 qpair->produce_q_size);
2981	else
2982		result = 0;
2983
2984	qp_unlock(qpair);
2985
2986	return result;
2987}
2988EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2989
2990/*
2991 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2992 * consumer queue.
2993 * @qpair:      Pointer to the queue pair struct.
2994 *
2995 * This is the client interface for getting the amount of
2996 * enqueued data in the QPair from the point of the view of the
2997 * caller as the consumer which is the normal case.  Returns < 0 if err,
2998 * else available bytes that may be read.
2999 */
3000s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3001{
3002	struct vmci_queue_header *produce_q_header;
3003	struct vmci_queue_header *consume_q_header;
3004	s64 result;
3005
3006	if (!qpair)
3007		return VMCI_ERROR_INVALID_ARGS;
3008
3009	qp_lock(qpair);
3010	result =
3011	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3012	if (result == VMCI_SUCCESS)
3013		result = vmci_q_header_buf_ready(consume_q_header,
3014						 produce_q_header,
3015						 qpair->consume_q_size);
3016	else
3017		result = 0;
3018
3019	qp_unlock(qpair);
3020
3021	return result;
3022}
3023EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3024
3025/*
3026 * vmci_qpair_enqueue() - Throw data on the queue.
3027 * @qpair:      Pointer to the queue pair struct.
3028 * @buf:        Pointer to buffer containing data
3029 * @buf_size:   Length of buffer.
3030 * @buf_type:   Buffer type (Unused).
3031 *
3032 * This is the client interface for enqueueing data into the queue.
3033 * Returns number of bytes enqueued or < 0 on error.
3034 */
3035ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3036			   const void *buf,
3037			   size_t buf_size,
3038			   int buf_type)
3039{
3040	ssize_t result;
3041	struct iov_iter from;
3042	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3043
3044	if (!qpair || !buf)
3045		return VMCI_ERROR_INVALID_ARGS;
3046
3047	iov_iter_kvec(&from, ITER_SOURCE, &v, 1, buf_size);
3048
3049	qp_lock(qpair);
3050
3051	do {
3052		result = qp_enqueue_locked(qpair->produce_q,
3053					   qpair->consume_q,
3054					   qpair->produce_q_size,
3055					   &from);
3056
3057		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3058		    !qp_wait_for_ready_queue(qpair))
3059			result = VMCI_ERROR_WOULD_BLOCK;
3060
3061	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3062
3063	qp_unlock(qpair);
3064
3065	return result;
3066}
3067EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3068
3069/*
3070 * vmci_qpair_dequeue() - Get data from the queue.
3071 * @qpair:      Pointer to the queue pair struct.
3072 * @buf:        Pointer to buffer for the data
3073 * @buf_size:   Length of buffer.
3074 * @buf_type:   Buffer type (Unused).
3075 *
3076 * This is the client interface for dequeueing data from the queue.
3077 * Returns number of bytes dequeued or < 0 on error.
3078 */
3079ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3080			   void *buf,
3081			   size_t buf_size,
3082			   int buf_type)
3083{
3084	ssize_t result;
3085	struct iov_iter to;
3086	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3087
3088	if (!qpair || !buf)
3089		return VMCI_ERROR_INVALID_ARGS;
3090
3091	iov_iter_kvec(&to, ITER_DEST, &v, 1, buf_size);
3092
3093	qp_lock(qpair);
3094
3095	do {
3096		result = qp_dequeue_locked(qpair->produce_q,
3097					   qpair->consume_q,
3098					   qpair->consume_q_size,
3099					   &to, true);
3100
3101		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3102		    !qp_wait_for_ready_queue(qpair))
3103			result = VMCI_ERROR_WOULD_BLOCK;
3104
3105	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3106
3107	qp_unlock(qpair);
3108
3109	return result;
3110}
3111EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3112
3113/*
3114 * vmci_qpair_peek() - Peek at the data in the queue.
3115 * @qpair:      Pointer to the queue pair struct.
3116 * @buf:        Pointer to buffer for the data
3117 * @buf_size:   Length of buffer.
3118 * @buf_type:   Buffer type (Unused on Linux).
3119 *
3120 * This is the client interface for peeking into a queue.  (I.e.,
3121 * copy data from the queue without updating the head pointer.)
3122 * Returns number of bytes dequeued or < 0 on error.
3123 */
3124ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3125			void *buf,
3126			size_t buf_size,
3127			int buf_type)
3128{
3129	struct iov_iter to;
3130	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3131	ssize_t result;
3132
3133	if (!qpair || !buf)
3134		return VMCI_ERROR_INVALID_ARGS;
3135
3136	iov_iter_kvec(&to, ITER_DEST, &v, 1, buf_size);
3137
3138	qp_lock(qpair);
3139
3140	do {
3141		result = qp_dequeue_locked(qpair->produce_q,
3142					   qpair->consume_q,
3143					   qpair->consume_q_size,
3144					   &to, false);
3145
3146		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3147		    !qp_wait_for_ready_queue(qpair))
3148			result = VMCI_ERROR_WOULD_BLOCK;
3149
3150	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3151
3152	qp_unlock(qpair);
3153
3154	return result;
3155}
3156EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3157
3158/*
3159 * vmci_qpair_enquev() - Throw data on the queue using iov.
3160 * @qpair:      Pointer to the queue pair struct.
3161 * @iov:        Pointer to buffer containing data
3162 * @iov_size:   Length of buffer.
3163 * @buf_type:   Buffer type (Unused).
3164 *
3165 * This is the client interface for enqueueing data into the queue.
3166 * This function uses IO vectors to handle the work. Returns number
3167 * of bytes enqueued or < 0 on error.
3168 */
3169ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3170			  struct msghdr *msg,
3171			  size_t iov_size,
3172			  int buf_type)
3173{
3174	ssize_t result;
3175
3176	if (!qpair)
3177		return VMCI_ERROR_INVALID_ARGS;
3178
3179	qp_lock(qpair);
3180
3181	do {
3182		result = qp_enqueue_locked(qpair->produce_q,
3183					   qpair->consume_q,
3184					   qpair->produce_q_size,
3185					   &msg->msg_iter);
3186
3187		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3188		    !qp_wait_for_ready_queue(qpair))
3189			result = VMCI_ERROR_WOULD_BLOCK;
3190
3191	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3192
3193	qp_unlock(qpair);
3194
3195	return result;
3196}
3197EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3198
3199/*
3200 * vmci_qpair_dequev() - Get data from the queue using iov.
3201 * @qpair:      Pointer to the queue pair struct.
3202 * @iov:        Pointer to buffer for the data
3203 * @iov_size:   Length of buffer.
3204 * @buf_type:   Buffer type (Unused).
3205 *
3206 * This is the client interface for dequeueing data from the queue.
3207 * This function uses IO vectors to handle the work. Returns number
3208 * of bytes dequeued or < 0 on error.
3209 */
3210ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3211			  struct msghdr *msg,
3212			  size_t iov_size,
3213			  int buf_type)
3214{
3215	ssize_t result;
3216
3217	if (!qpair)
3218		return VMCI_ERROR_INVALID_ARGS;
3219
3220	qp_lock(qpair);
3221
3222	do {
3223		result = qp_dequeue_locked(qpair->produce_q,
3224					   qpair->consume_q,
3225					   qpair->consume_q_size,
3226					   &msg->msg_iter, true);
3227
3228		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3229		    !qp_wait_for_ready_queue(qpair))
3230			result = VMCI_ERROR_WOULD_BLOCK;
3231
3232	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3233
3234	qp_unlock(qpair);
3235
3236	return result;
3237}
3238EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3239
3240/*
3241 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3242 * @qpair:      Pointer to the queue pair struct.
3243 * @iov:        Pointer to buffer for the data
3244 * @iov_size:   Length of buffer.
3245 * @buf_type:   Buffer type (Unused on Linux).
3246 *
3247 * This is the client interface for peeking into a queue.  (I.e.,
3248 * copy data from the queue without updating the head pointer.)
3249 * This function uses IO vectors to handle the work. Returns number
3250 * of bytes peeked or < 0 on error.
3251 */
3252ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3253			 struct msghdr *msg,
3254			 size_t iov_size,
3255			 int buf_type)
3256{
3257	ssize_t result;
3258
3259	if (!qpair)
3260		return VMCI_ERROR_INVALID_ARGS;
3261
3262	qp_lock(qpair);
3263
3264	do {
3265		result = qp_dequeue_locked(qpair->produce_q,
3266					   qpair->consume_q,
3267					   qpair->consume_q_size,
3268					   &msg->msg_iter, false);
3269
3270		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3271		    !qp_wait_for_ready_queue(qpair))
3272			result = VMCI_ERROR_WOULD_BLOCK;
3273
3274	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3275
3276	qp_unlock(qpair);
3277	return result;
3278}
3279EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3280