1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11#include "dm-uevent.h"
12#include "dm-ima.h"
13
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/mutex.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/signal.h>
19#include <linux/blkpg.h>
20#include <linux/bio.h>
21#include <linux/mempool.h>
22#include <linux/dax.h>
23#include <linux/slab.h>
24#include <linux/idr.h>
25#include <linux/uio.h>
26#include <linux/hdreg.h>
27#include <linux/delay.h>
28#include <linux/wait.h>
29#include <linux/pr.h>
30#include <linux/refcount.h>
31#include <linux/part_stat.h>
32#include <linux/blk-crypto.h>
33#include <linux/blk-crypto-profile.h>
34
35#define DM_MSG_PREFIX "core"
36
37/*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42#define DM_COOKIE_LENGTH 24
43
44/*
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
48 */
49#define REQ_DM_POLL_LIST	REQ_DRV
50
51static const char *_name = DM_NAME;
52
53static unsigned int major;
54static unsigned int _major;
55
56static DEFINE_IDR(_minor_idr);
57
58static DEFINE_SPINLOCK(_minor_lock);
59
60static void do_deferred_remove(struct work_struct *w);
61
62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63
64static struct workqueue_struct *deferred_remove_workqueue;
65
66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68
69void dm_issue_global_event(void)
70{
71	atomic_inc(&dm_global_event_nr);
72	wake_up(&dm_global_eventq);
73}
74
75DEFINE_STATIC_KEY_FALSE(stats_enabled);
76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78
79/*
80 * One of these is allocated (on-stack) per original bio.
81 */
82struct clone_info {
83	struct dm_table *map;
84	struct bio *bio;
85	struct dm_io *io;
86	sector_t sector;
87	unsigned int sector_count;
88	bool is_abnormal_io:1;
89	bool submit_as_polled:1;
90};
91
92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93{
94	return container_of(clone, struct dm_target_io, clone);
95}
96
97void *dm_per_bio_data(struct bio *bio, size_t data_size)
98{
99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102}
103EXPORT_SYMBOL_GPL(dm_per_bio_data);
104
105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106{
107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108
109	if (io->magic == DM_IO_MAGIC)
110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111	BUG_ON(io->magic != DM_TIO_MAGIC);
112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113}
114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115
116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117{
118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119}
120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121
122#define MINOR_ALLOCED ((void *)-1)
123
124#define DM_NUMA_NODE NUMA_NO_NODE
125static int dm_numa_node = DM_NUMA_NODE;
126
127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128static int swap_bios = DEFAULT_SWAP_BIOS;
129static int get_swap_bios(void)
130{
131	int latch = READ_ONCE(swap_bios);
132
133	if (unlikely(latch <= 0))
134		latch = DEFAULT_SWAP_BIOS;
135	return latch;
136}
137
138struct table_device {
139	struct list_head list;
140	refcount_t count;
141	struct dm_dev dm_dev;
142};
143
144/*
145 * Bio-based DM's mempools' reserved IOs set by the user.
146 */
147#define RESERVED_BIO_BASED_IOS		16
148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149
150static int __dm_get_module_param_int(int *module_param, int min, int max)
151{
152	int param = READ_ONCE(*module_param);
153	int modified_param = 0;
154	bool modified = true;
155
156	if (param < min)
157		modified_param = min;
158	else if (param > max)
159		modified_param = max;
160	else
161		modified = false;
162
163	if (modified) {
164		(void)cmpxchg(module_param, param, modified_param);
165		param = modified_param;
166	}
167
168	return param;
169}
170
171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172{
173	unsigned int param = READ_ONCE(*module_param);
174	unsigned int modified_param = 0;
175
176	if (!param)
177		modified_param = def;
178	else if (param > max)
179		modified_param = max;
180
181	if (modified_param) {
182		(void)cmpxchg(module_param, param, modified_param);
183		param = modified_param;
184	}
185
186	return param;
187}
188
189unsigned int dm_get_reserved_bio_based_ios(void)
190{
191	return __dm_get_module_param(&reserved_bio_based_ios,
192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193}
194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195
196static unsigned int dm_get_numa_node(void)
197{
198	return __dm_get_module_param_int(&dm_numa_node,
199					 DM_NUMA_NODE, num_online_nodes() - 1);
200}
201
202static int __init local_init(void)
203{
204	int r;
205
206	r = dm_uevent_init();
207	if (r)
208		return r;
209
210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211	if (!deferred_remove_workqueue) {
212		r = -ENOMEM;
213		goto out_uevent_exit;
214	}
215
216	_major = major;
217	r = register_blkdev(_major, _name);
218	if (r < 0)
219		goto out_free_workqueue;
220
221	if (!_major)
222		_major = r;
223
224	return 0;
225
226out_free_workqueue:
227	destroy_workqueue(deferred_remove_workqueue);
228out_uevent_exit:
229	dm_uevent_exit();
230
231	return r;
232}
233
234static void local_exit(void)
235{
236	destroy_workqueue(deferred_remove_workqueue);
237
238	unregister_blkdev(_major, _name);
239	dm_uevent_exit();
240
241	_major = 0;
242
243	DMINFO("cleaned up");
244}
245
246static int (*_inits[])(void) __initdata = {
247	local_init,
248	dm_target_init,
249	dm_linear_init,
250	dm_stripe_init,
251	dm_io_init,
252	dm_kcopyd_init,
253	dm_interface_init,
254	dm_statistics_init,
255};
256
257static void (*_exits[])(void) = {
258	local_exit,
259	dm_target_exit,
260	dm_linear_exit,
261	dm_stripe_exit,
262	dm_io_exit,
263	dm_kcopyd_exit,
264	dm_interface_exit,
265	dm_statistics_exit,
266};
267
268static int __init dm_init(void)
269{
270	const int count = ARRAY_SIZE(_inits);
271	int r, i;
272
273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276#endif
277
278	for (i = 0; i < count; i++) {
279		r = _inits[i]();
280		if (r)
281			goto bad;
282	}
283
284	return 0;
285bad:
286	while (i--)
287		_exits[i]();
288
289	return r;
290}
291
292static void __exit dm_exit(void)
293{
294	int i = ARRAY_SIZE(_exits);
295
296	while (i--)
297		_exits[i]();
298
299	/*
300	 * Should be empty by this point.
301	 */
302	idr_destroy(&_minor_idr);
303}
304
305/*
306 * Block device functions
307 */
308int dm_deleting_md(struct mapped_device *md)
309{
310	return test_bit(DMF_DELETING, &md->flags);
311}
312
313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314{
315	struct mapped_device *md;
316
317	spin_lock(&_minor_lock);
318
319	md = disk->private_data;
320	if (!md)
321		goto out;
322
323	if (test_bit(DMF_FREEING, &md->flags) ||
324	    dm_deleting_md(md)) {
325		md = NULL;
326		goto out;
327	}
328
329	dm_get(md);
330	atomic_inc(&md->open_count);
331out:
332	spin_unlock(&_minor_lock);
333
334	return md ? 0 : -ENXIO;
335}
336
337static void dm_blk_close(struct gendisk *disk)
338{
339	struct mapped_device *md;
340
341	spin_lock(&_minor_lock);
342
343	md = disk->private_data;
344	if (WARN_ON(!md))
345		goto out;
346
347	if (atomic_dec_and_test(&md->open_count) &&
348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350
351	dm_put(md);
352out:
353	spin_unlock(&_minor_lock);
354}
355
356int dm_open_count(struct mapped_device *md)
357{
358	return atomic_read(&md->open_count);
359}
360
361/*
362 * Guarantees nothing is using the device before it's deleted.
363 */
364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365{
366	int r = 0;
367
368	spin_lock(&_minor_lock);
369
370	if (dm_open_count(md)) {
371		r = -EBUSY;
372		if (mark_deferred)
373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375		r = -EEXIST;
376	else
377		set_bit(DMF_DELETING, &md->flags);
378
379	spin_unlock(&_minor_lock);
380
381	return r;
382}
383
384int dm_cancel_deferred_remove(struct mapped_device *md)
385{
386	int r = 0;
387
388	spin_lock(&_minor_lock);
389
390	if (test_bit(DMF_DELETING, &md->flags))
391		r = -EBUSY;
392	else
393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394
395	spin_unlock(&_minor_lock);
396
397	return r;
398}
399
400static void do_deferred_remove(struct work_struct *w)
401{
402	dm_deferred_remove();
403}
404
405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406{
407	struct mapped_device *md = bdev->bd_disk->private_data;
408
409	return dm_get_geometry(md, geo);
410}
411
412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413			    struct block_device **bdev)
414{
415	struct dm_target *ti;
416	struct dm_table *map;
417	int r;
418
419retry:
420	r = -ENOTTY;
421	map = dm_get_live_table(md, srcu_idx);
422	if (!map || !dm_table_get_size(map))
423		return r;
424
425	/* We only support devices that have a single target */
426	if (map->num_targets != 1)
427		return r;
428
429	ti = dm_table_get_target(map, 0);
430	if (!ti->type->prepare_ioctl)
431		return r;
432
433	if (dm_suspended_md(md))
434		return -EAGAIN;
435
436	r = ti->type->prepare_ioctl(ti, bdev);
437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438		dm_put_live_table(md, *srcu_idx);
439		fsleep(10000);
440		goto retry;
441	}
442
443	return r;
444}
445
446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447{
448	dm_put_live_table(md, srcu_idx);
449}
450
451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452			unsigned int cmd, unsigned long arg)
453{
454	struct mapped_device *md = bdev->bd_disk->private_data;
455	int r, srcu_idx;
456
457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458	if (r < 0)
459		goto out;
460
461	if (r > 0) {
462		/*
463		 * Target determined this ioctl is being issued against a
464		 * subset of the parent bdev; require extra privileges.
465		 */
466		if (!capable(CAP_SYS_RAWIO)) {
467			DMDEBUG_LIMIT(
468	"%s: sending ioctl %x to DM device without required privilege.",
469				current->comm, cmd);
470			r = -ENOIOCTLCMD;
471			goto out;
472		}
473	}
474
475	if (!bdev->bd_disk->fops->ioctl)
476		r = -ENOTTY;
477	else
478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479out:
480	dm_unprepare_ioctl(md, srcu_idx);
481	return r;
482}
483
484u64 dm_start_time_ns_from_clone(struct bio *bio)
485{
486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487}
488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489
490static inline bool bio_is_flush_with_data(struct bio *bio)
491{
492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493}
494
495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496{
497	/*
498	 * If REQ_PREFLUSH set, don't account payload, it will be
499	 * submitted (and accounted) after this flush completes.
500	 */
501	if (bio_is_flush_with_data(bio))
502		return 0;
503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504		return io->sectors;
505	return bio_sectors(bio);
506}
507
508static void dm_io_acct(struct dm_io *io, bool end)
509{
510	struct bio *bio = io->orig_bio;
511
512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513		if (!end)
514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515					   io->start_time);
516		else
517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518					 dm_io_sectors(io, bio),
519					 io->start_time);
520	}
521
522	if (static_branch_unlikely(&stats_enabled) &&
523	    unlikely(dm_stats_used(&io->md->stats))) {
524		sector_t sector;
525
526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527			sector = bio_end_sector(bio) - io->sector_offset;
528		else
529			sector = bio->bi_iter.bi_sector;
530
531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532				    sector, dm_io_sectors(io, bio),
533				    end, io->start_time, &io->stats_aux);
534	}
535}
536
537static void __dm_start_io_acct(struct dm_io *io)
538{
539	dm_io_acct(io, false);
540}
541
542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543{
544	/*
545	 * Ensure IO accounting is only ever started once.
546	 */
547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548		return;
549
550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553	} else {
554		unsigned long flags;
555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556		spin_lock_irqsave(&io->lock, flags);
557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558			spin_unlock_irqrestore(&io->lock, flags);
559			return;
560		}
561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562		spin_unlock_irqrestore(&io->lock, flags);
563	}
564
565	__dm_start_io_acct(io);
566}
567
568static void dm_end_io_acct(struct dm_io *io)
569{
570	dm_io_acct(io, true);
571}
572
573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574{
575	struct dm_io *io;
576	struct dm_target_io *tio;
577	struct bio *clone;
578
579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580	if (unlikely(!clone))
581		return NULL;
582	tio = clone_to_tio(clone);
583	tio->flags = 0;
584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585	tio->io = NULL;
586
587	io = container_of(tio, struct dm_io, tio);
588	io->magic = DM_IO_MAGIC;
589	io->status = BLK_STS_OK;
590
591	/* one ref is for submission, the other is for completion */
592	atomic_set(&io->io_count, 2);
593	this_cpu_inc(*md->pending_io);
594	io->orig_bio = bio;
595	io->md = md;
596	spin_lock_init(&io->lock);
597	io->start_time = jiffies;
598	io->flags = 0;
599	if (blk_queue_io_stat(md->queue))
600		dm_io_set_flag(io, DM_IO_BLK_STAT);
601
602	if (static_branch_unlikely(&stats_enabled) &&
603	    unlikely(dm_stats_used(&md->stats)))
604		dm_stats_record_start(&md->stats, &io->stats_aux);
605
606	return io;
607}
608
609static void free_io(struct dm_io *io)
610{
611	bio_put(&io->tio.clone);
612}
613
614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616{
617	struct mapped_device *md = ci->io->md;
618	struct dm_target_io *tio;
619	struct bio *clone;
620
621	if (!ci->io->tio.io) {
622		/* the dm_target_io embedded in ci->io is available */
623		tio = &ci->io->tio;
624		/* alloc_io() already initialized embedded clone */
625		clone = &tio->clone;
626	} else {
627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628					&md->mempools->bs);
629		if (!clone)
630			return NULL;
631
632		/* REQ_DM_POLL_LIST shouldn't be inherited */
633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
634
635		tio = clone_to_tio(clone);
636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637	}
638
639	tio->magic = DM_TIO_MAGIC;
640	tio->io = ci->io;
641	tio->ti = ti;
642	tio->target_bio_nr = target_bio_nr;
643	tio->len_ptr = len;
644	tio->old_sector = 0;
645
646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
647	clone->bi_bdev = md->disk->part0;
648	if (unlikely(ti->needs_bio_set_dev))
649		bio_set_dev(clone, md->disk->part0);
650
651	if (len) {
652		clone->bi_iter.bi_size = to_bytes(*len);
653		if (bio_integrity(clone))
654			bio_integrity_trim(clone);
655	}
656
657	return clone;
658}
659
660static void free_tio(struct bio *clone)
661{
662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663		return;
664	bio_put(clone);
665}
666
667/*
668 * Add the bio to the list of deferred io.
669 */
670static void queue_io(struct mapped_device *md, struct bio *bio)
671{
672	unsigned long flags;
673
674	spin_lock_irqsave(&md->deferred_lock, flags);
675	bio_list_add(&md->deferred, bio);
676	spin_unlock_irqrestore(&md->deferred_lock, flags);
677	queue_work(md->wq, &md->work);
678}
679
680/*
681 * Everyone (including functions in this file), should use this
682 * function to access the md->map field, and make sure they call
683 * dm_put_live_table() when finished.
684 */
685struct dm_table *dm_get_live_table(struct mapped_device *md,
686				   int *srcu_idx) __acquires(md->io_barrier)
687{
688	*srcu_idx = srcu_read_lock(&md->io_barrier);
689
690	return srcu_dereference(md->map, &md->io_barrier);
691}
692
693void dm_put_live_table(struct mapped_device *md,
694		       int srcu_idx) __releases(md->io_barrier)
695{
696	srcu_read_unlock(&md->io_barrier, srcu_idx);
697}
698
699void dm_sync_table(struct mapped_device *md)
700{
701	synchronize_srcu(&md->io_barrier);
702	synchronize_rcu_expedited();
703}
704
705/*
706 * A fast alternative to dm_get_live_table/dm_put_live_table.
707 * The caller must not block between these two functions.
708 */
709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710{
711	rcu_read_lock();
712	return rcu_dereference(md->map);
713}
714
715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716{
717	rcu_read_unlock();
718}
719
720static char *_dm_claim_ptr = "I belong to device-mapper";
721
722/*
723 * Open a table device so we can use it as a map destination.
724 */
725static struct table_device *open_table_device(struct mapped_device *md,
726		dev_t dev, blk_mode_t mode)
727{
728	struct table_device *td;
729	struct file *bdev_file;
730	struct block_device *bdev;
731	u64 part_off;
732	int r;
733
734	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735	if (!td)
736		return ERR_PTR(-ENOMEM);
737	refcount_set(&td->count, 1);
738
739	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
740	if (IS_ERR(bdev_file)) {
741		r = PTR_ERR(bdev_file);
742		goto out_free_td;
743	}
744
745	bdev = file_bdev(bdev_file);
746
747	/*
748	 * We can be called before the dm disk is added.  In that case we can't
749	 * register the holder relation here.  It will be done once add_disk was
750	 * called.
751	 */
752	if (md->disk->slave_dir) {
753		r = bd_link_disk_holder(bdev, md->disk);
754		if (r)
755			goto out_blkdev_put;
756	}
757
758	td->dm_dev.mode = mode;
759	td->dm_dev.bdev = bdev;
760	td->dm_dev.bdev_file = bdev_file;
761	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
762						NULL, NULL);
763	format_dev_t(td->dm_dev.name, dev);
764	list_add(&td->list, &md->table_devices);
765	return td;
766
767out_blkdev_put:
768	__fput_sync(bdev_file);
769out_free_td:
770	kfree(td);
771	return ERR_PTR(r);
772}
773
774/*
775 * Close a table device that we've been using.
776 */
777static void close_table_device(struct table_device *td, struct mapped_device *md)
778{
779	if (md->disk->slave_dir)
780		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
781
782	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
783	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
784		fput(td->dm_dev.bdev_file);
785	else
786		__fput_sync(td->dm_dev.bdev_file);
787
788	put_dax(td->dm_dev.dax_dev);
789	list_del(&td->list);
790	kfree(td);
791}
792
793static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794					      blk_mode_t mode)
795{
796	struct table_device *td;
797
798	list_for_each_entry(td, l, list)
799		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800			return td;
801
802	return NULL;
803}
804
805int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
806			struct dm_dev **result)
807{
808	struct table_device *td;
809
810	mutex_lock(&md->table_devices_lock);
811	td = find_table_device(&md->table_devices, dev, mode);
812	if (!td) {
813		td = open_table_device(md, dev, mode);
814		if (IS_ERR(td)) {
815			mutex_unlock(&md->table_devices_lock);
816			return PTR_ERR(td);
817		}
818	} else {
819		refcount_inc(&td->count);
820	}
821	mutex_unlock(&md->table_devices_lock);
822
823	*result = &td->dm_dev;
824	return 0;
825}
826
827void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828{
829	struct table_device *td = container_of(d, struct table_device, dm_dev);
830
831	mutex_lock(&md->table_devices_lock);
832	if (refcount_dec_and_test(&td->count))
833		close_table_device(td, md);
834	mutex_unlock(&md->table_devices_lock);
835}
836
837/*
838 * Get the geometry associated with a dm device
839 */
840int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841{
842	*geo = md->geometry;
843
844	return 0;
845}
846
847/*
848 * Set the geometry of a device.
849 */
850int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851{
852	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853
854	if (geo->start > sz) {
855		DMERR("Start sector is beyond the geometry limits.");
856		return -EINVAL;
857	}
858
859	md->geometry = *geo;
860
861	return 0;
862}
863
864static int __noflush_suspending(struct mapped_device *md)
865{
866	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867}
868
869static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870{
871	struct mapped_device *md = io->md;
872
873	if (first_stage) {
874		struct dm_io *next = md->requeue_list;
875
876		md->requeue_list = io;
877		io->next = next;
878	} else {
879		bio_list_add_head(&md->deferred, io->orig_bio);
880	}
881}
882
883static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884{
885	if (first_stage)
886		queue_work(md->wq, &md->requeue_work);
887	else
888		queue_work(md->wq, &md->work);
889}
890
891/*
892 * Return true if the dm_io's original bio is requeued.
893 * io->status is updated with error if requeue disallowed.
894 */
895static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896{
897	struct bio *bio = io->orig_bio;
898	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900				     (bio->bi_opf & REQ_POLLED));
901	struct mapped_device *md = io->md;
902	bool requeued = false;
903
904	if (handle_requeue || handle_polled_eagain) {
905		unsigned long flags;
906
907		if (bio->bi_opf & REQ_POLLED) {
908			/*
909			 * Upper layer won't help us poll split bio
910			 * (io->orig_bio may only reflect a subset of the
911			 * pre-split original) so clear REQ_POLLED.
912			 */
913			bio_clear_polled(bio);
914		}
915
916		/*
917		 * Target requested pushing back the I/O or
918		 * polled IO hit BLK_STS_AGAIN.
919		 */
920		spin_lock_irqsave(&md->deferred_lock, flags);
921		if ((__noflush_suspending(md) &&
922		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923		    handle_polled_eagain || first_stage) {
924			dm_requeue_add_io(io, first_stage);
925			requeued = true;
926		} else {
927			/*
928			 * noflush suspend was interrupted or this is
929			 * a write to a zoned target.
930			 */
931			io->status = BLK_STS_IOERR;
932		}
933		spin_unlock_irqrestore(&md->deferred_lock, flags);
934	}
935
936	if (requeued)
937		dm_kick_requeue(md, first_stage);
938
939	return requeued;
940}
941
942static void __dm_io_complete(struct dm_io *io, bool first_stage)
943{
944	struct bio *bio = io->orig_bio;
945	struct mapped_device *md = io->md;
946	blk_status_t io_error;
947	bool requeued;
948
949	requeued = dm_handle_requeue(io, first_stage);
950	if (requeued && first_stage)
951		return;
952
953	io_error = io->status;
954	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955		dm_end_io_acct(io);
956	else if (!io_error) {
957		/*
958		 * Must handle target that DM_MAPIO_SUBMITTED only to
959		 * then bio_endio() rather than dm_submit_bio_remap()
960		 */
961		__dm_start_io_acct(io);
962		dm_end_io_acct(io);
963	}
964	free_io(io);
965	smp_wmb();
966	this_cpu_dec(*md->pending_io);
967
968	/* nudge anyone waiting on suspend queue */
969	if (unlikely(wq_has_sleeper(&md->wait)))
970		wake_up(&md->wait);
971
972	/* Return early if the original bio was requeued */
973	if (requeued)
974		return;
975
976	if (bio_is_flush_with_data(bio)) {
977		/*
978		 * Preflush done for flush with data, reissue
979		 * without REQ_PREFLUSH.
980		 */
981		bio->bi_opf &= ~REQ_PREFLUSH;
982		queue_io(md, bio);
983	} else {
984		/* done with normal IO or empty flush */
985		if (io_error)
986			bio->bi_status = io_error;
987		bio_endio(bio);
988	}
989}
990
991static void dm_wq_requeue_work(struct work_struct *work)
992{
993	struct mapped_device *md = container_of(work, struct mapped_device,
994						requeue_work);
995	unsigned long flags;
996	struct dm_io *io;
997
998	/* reuse deferred lock to simplify dm_handle_requeue */
999	spin_lock_irqsave(&md->deferred_lock, flags);
1000	io = md->requeue_list;
1001	md->requeue_list = NULL;
1002	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003
1004	while (io) {
1005		struct dm_io *next = io->next;
1006
1007		dm_io_rewind(io, &md->disk->bio_split);
1008
1009		io->next = NULL;
1010		__dm_io_complete(io, false);
1011		io = next;
1012		cond_resched();
1013	}
1014}
1015
1016/*
1017 * Two staged requeue:
1018 *
1019 * 1) io->orig_bio points to the real original bio, and the part mapped to
1020 *    this io must be requeued, instead of other parts of the original bio.
1021 *
1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023 */
1024static void dm_io_complete(struct dm_io *io)
1025{
1026	bool first_requeue;
1027
1028	/*
1029	 * Only dm_io that has been split needs two stage requeue, otherwise
1030	 * we may run into long bio clone chain during suspend and OOM could
1031	 * be triggered.
1032	 *
1033	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034	 * also aren't handled via the first stage requeue.
1035	 */
1036	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037		first_requeue = true;
1038	else
1039		first_requeue = false;
1040
1041	__dm_io_complete(io, first_requeue);
1042}
1043
1044/*
1045 * Decrements the number of outstanding ios that a bio has been
1046 * cloned into, completing the original io if necc.
1047 */
1048static inline void __dm_io_dec_pending(struct dm_io *io)
1049{
1050	if (atomic_dec_and_test(&io->io_count))
1051		dm_io_complete(io);
1052}
1053
1054static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055{
1056	unsigned long flags;
1057
1058	/* Push-back supersedes any I/O errors */
1059	spin_lock_irqsave(&io->lock, flags);
1060	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061	      __noflush_suspending(io->md))) {
1062		io->status = error;
1063	}
1064	spin_unlock_irqrestore(&io->lock, flags);
1065}
1066
1067static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068{
1069	if (unlikely(error))
1070		dm_io_set_error(io, error);
1071
1072	__dm_io_dec_pending(io);
1073}
1074
1075/*
1076 * The queue_limits are only valid as long as you have a reference
1077 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078 */
1079static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080{
1081	return &md->queue->limits;
1082}
1083
1084void disable_discard(struct mapped_device *md)
1085{
1086	struct queue_limits *limits = dm_get_queue_limits(md);
1087
1088	/* device doesn't really support DISCARD, disable it */
1089	limits->max_hw_discard_sectors = 0;
1090}
1091
1092void disable_write_zeroes(struct mapped_device *md)
1093{
1094	struct queue_limits *limits = dm_get_queue_limits(md);
1095
1096	/* device doesn't really support WRITE ZEROES, disable it */
1097	limits->max_write_zeroes_sectors = 0;
1098}
1099
1100static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101{
1102	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103}
1104
1105static void clone_endio(struct bio *bio)
1106{
1107	blk_status_t error = bio->bi_status;
1108	struct dm_target_io *tio = clone_to_tio(bio);
1109	struct dm_target *ti = tio->ti;
1110	dm_endio_fn endio = ti->type->end_io;
1111	struct dm_io *io = tio->io;
1112	struct mapped_device *md = io->md;
1113
1114	if (unlikely(error == BLK_STS_TARGET)) {
1115		if (bio_op(bio) == REQ_OP_DISCARD &&
1116		    !bdev_max_discard_sectors(bio->bi_bdev))
1117			disable_discard(md);
1118		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120			disable_write_zeroes(md);
1121	}
1122
1123	if (static_branch_unlikely(&zoned_enabled) &&
1124	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1125		dm_zone_endio(io, bio);
1126
1127	if (endio) {
1128		int r = endio(ti, bio, &error);
1129
1130		switch (r) {
1131		case DM_ENDIO_REQUEUE:
1132			if (static_branch_unlikely(&zoned_enabled)) {
1133				/*
1134				 * Requeuing writes to a sequential zone of a zoned
1135				 * target will break the sequential write pattern:
1136				 * fail such IO.
1137				 */
1138				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139					error = BLK_STS_IOERR;
1140				else
1141					error = BLK_STS_DM_REQUEUE;
1142			} else
1143				error = BLK_STS_DM_REQUEUE;
1144			fallthrough;
1145		case DM_ENDIO_DONE:
1146			break;
1147		case DM_ENDIO_INCOMPLETE:
1148			/* The target will handle the io */
1149			return;
1150		default:
1151			DMCRIT("unimplemented target endio return value: %d", r);
1152			BUG();
1153		}
1154	}
1155
1156	if (static_branch_unlikely(&swap_bios_enabled) &&
1157	    unlikely(swap_bios_limit(ti, bio)))
1158		up(&md->swap_bios_semaphore);
1159
1160	free_tio(bio);
1161	dm_io_dec_pending(io, error);
1162}
1163
1164/*
1165 * Return maximum size of I/O possible at the supplied sector up to the current
1166 * target boundary.
1167 */
1168static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169						  sector_t target_offset)
1170{
1171	return ti->len - target_offset;
1172}
1173
1174static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175			     unsigned int max_granularity,
1176			     unsigned int max_sectors)
1177{
1178	sector_t target_offset = dm_target_offset(ti, sector);
1179	sector_t len = max_io_len_target_boundary(ti, target_offset);
1180
1181	/*
1182	 * Does the target need to split IO even further?
1183	 * - varied (per target) IO splitting is a tenet of DM; this
1184	 *   explains why stacked chunk_sectors based splitting via
1185	 *   bio_split_to_limits() isn't possible here.
1186	 */
1187	if (!max_granularity)
1188		return len;
1189	return min_t(sector_t, len,
1190		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1191		    blk_chunk_sectors_left(target_offset, max_granularity)));
1192}
1193
1194static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1195{
1196	return __max_io_len(ti, sector, ti->max_io_len, 0);
1197}
1198
1199int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1200{
1201	if (len > UINT_MAX) {
1202		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1203		      (unsigned long long)len, UINT_MAX);
1204		ti->error = "Maximum size of target IO is too large";
1205		return -EINVAL;
1206	}
1207
1208	ti->max_io_len = (uint32_t) len;
1209
1210	return 0;
1211}
1212EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1213
1214static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1215						sector_t sector, int *srcu_idx)
1216	__acquires(md->io_barrier)
1217{
1218	struct dm_table *map;
1219	struct dm_target *ti;
1220
1221	map = dm_get_live_table(md, srcu_idx);
1222	if (!map)
1223		return NULL;
1224
1225	ti = dm_table_find_target(map, sector);
1226	if (!ti)
1227		return NULL;
1228
1229	return ti;
1230}
1231
1232static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1233		long nr_pages, enum dax_access_mode mode, void **kaddr,
1234		pfn_t *pfn)
1235{
1236	struct mapped_device *md = dax_get_private(dax_dev);
1237	sector_t sector = pgoff * PAGE_SECTORS;
1238	struct dm_target *ti;
1239	long len, ret = -EIO;
1240	int srcu_idx;
1241
1242	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1243
1244	if (!ti)
1245		goto out;
1246	if (!ti->type->direct_access)
1247		goto out;
1248	len = max_io_len(ti, sector) / PAGE_SECTORS;
1249	if (len < 1)
1250		goto out;
1251	nr_pages = min(len, nr_pages);
1252	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1253
1254 out:
1255	dm_put_live_table(md, srcu_idx);
1256
1257	return ret;
1258}
1259
1260static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1261				  size_t nr_pages)
1262{
1263	struct mapped_device *md = dax_get_private(dax_dev);
1264	sector_t sector = pgoff * PAGE_SECTORS;
1265	struct dm_target *ti;
1266	int ret = -EIO;
1267	int srcu_idx;
1268
1269	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1270
1271	if (!ti)
1272		goto out;
1273	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1274		/*
1275		 * ->zero_page_range() is mandatory dax operation. If we are
1276		 *  here, something is wrong.
1277		 */
1278		goto out;
1279	}
1280	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1281 out:
1282	dm_put_live_table(md, srcu_idx);
1283
1284	return ret;
1285}
1286
1287static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1288		void *addr, size_t bytes, struct iov_iter *i)
1289{
1290	struct mapped_device *md = dax_get_private(dax_dev);
1291	sector_t sector = pgoff * PAGE_SECTORS;
1292	struct dm_target *ti;
1293	int srcu_idx;
1294	long ret = 0;
1295
1296	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1297	if (!ti || !ti->type->dax_recovery_write)
1298		goto out;
1299
1300	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1301out:
1302	dm_put_live_table(md, srcu_idx);
1303	return ret;
1304}
1305
1306/*
1307 * A target may call dm_accept_partial_bio only from the map routine.  It is
1308 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1309 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1310 * __send_duplicate_bios().
1311 *
1312 * dm_accept_partial_bio informs the dm that the target only wants to process
1313 * additional n_sectors sectors of the bio and the rest of the data should be
1314 * sent in a next bio.
1315 *
1316 * A diagram that explains the arithmetics:
1317 * +--------------------+---------------+-------+
1318 * |         1          |       2       |   3   |
1319 * +--------------------+---------------+-------+
1320 *
1321 * <-------------- *tio->len_ptr --------------->
1322 *                      <----- bio_sectors ----->
1323 *                      <-- n_sectors -->
1324 *
1325 * Region 1 was already iterated over with bio_advance or similar function.
1326 *	(it may be empty if the target doesn't use bio_advance)
1327 * Region 2 is the remaining bio size that the target wants to process.
1328 *	(it may be empty if region 1 is non-empty, although there is no reason
1329 *	 to make it empty)
1330 * The target requires that region 3 is to be sent in the next bio.
1331 *
1332 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1333 * the partially processed part (the sum of regions 1+2) must be the same for all
1334 * copies of the bio.
1335 */
1336void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1337{
1338	struct dm_target_io *tio = clone_to_tio(bio);
1339	struct dm_io *io = tio->io;
1340	unsigned int bio_sectors = bio_sectors(bio);
1341
1342	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1343	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1344	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1345	BUG_ON(bio_sectors > *tio->len_ptr);
1346	BUG_ON(n_sectors > bio_sectors);
1347
1348	*tio->len_ptr -= bio_sectors - n_sectors;
1349	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350
1351	/*
1352	 * __split_and_process_bio() may have already saved mapped part
1353	 * for accounting but it is being reduced so update accordingly.
1354	 */
1355	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1356	io->sectors = n_sectors;
1357	io->sector_offset = bio_sectors(io->orig_bio);
1358}
1359EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1360
1361/*
1362 * @clone: clone bio that DM core passed to target's .map function
1363 * @tgt_clone: clone of @clone bio that target needs submitted
1364 *
1365 * Targets should use this interface to submit bios they take
1366 * ownership of when returning DM_MAPIO_SUBMITTED.
1367 *
1368 * Target should also enable ti->accounts_remapped_io
1369 */
1370void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1371{
1372	struct dm_target_io *tio = clone_to_tio(clone);
1373	struct dm_io *io = tio->io;
1374
1375	/* establish bio that will get submitted */
1376	if (!tgt_clone)
1377		tgt_clone = clone;
1378
1379	/*
1380	 * Account io->origin_bio to DM dev on behalf of target
1381	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1382	 */
1383	dm_start_io_acct(io, clone);
1384
1385	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1386			      tio->old_sector);
1387	submit_bio_noacct(tgt_clone);
1388}
1389EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1390
1391static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1392{
1393	mutex_lock(&md->swap_bios_lock);
1394	while (latch < md->swap_bios) {
1395		cond_resched();
1396		down(&md->swap_bios_semaphore);
1397		md->swap_bios--;
1398	}
1399	while (latch > md->swap_bios) {
1400		cond_resched();
1401		up(&md->swap_bios_semaphore);
1402		md->swap_bios++;
1403	}
1404	mutex_unlock(&md->swap_bios_lock);
1405}
1406
1407static void __map_bio(struct bio *clone)
1408{
1409	struct dm_target_io *tio = clone_to_tio(clone);
1410	struct dm_target *ti = tio->ti;
1411	struct dm_io *io = tio->io;
1412	struct mapped_device *md = io->md;
1413	int r;
1414
1415	clone->bi_end_io = clone_endio;
1416
1417	/*
1418	 * Map the clone.
1419	 */
1420	tio->old_sector = clone->bi_iter.bi_sector;
1421
1422	if (static_branch_unlikely(&swap_bios_enabled) &&
1423	    unlikely(swap_bios_limit(ti, clone))) {
1424		int latch = get_swap_bios();
1425
1426		if (unlikely(latch != md->swap_bios))
1427			__set_swap_bios_limit(md, latch);
1428		down(&md->swap_bios_semaphore);
1429	}
1430
1431	if (likely(ti->type->map == linear_map))
1432		r = linear_map(ti, clone);
1433	else if (ti->type->map == stripe_map)
1434		r = stripe_map(ti, clone);
1435	else
1436		r = ti->type->map(ti, clone);
1437
1438	switch (r) {
1439	case DM_MAPIO_SUBMITTED:
1440		/* target has assumed ownership of this io */
1441		if (!ti->accounts_remapped_io)
1442			dm_start_io_acct(io, clone);
1443		break;
1444	case DM_MAPIO_REMAPPED:
1445		dm_submit_bio_remap(clone, NULL);
1446		break;
1447	case DM_MAPIO_KILL:
1448	case DM_MAPIO_REQUEUE:
1449		if (static_branch_unlikely(&swap_bios_enabled) &&
1450		    unlikely(swap_bios_limit(ti, clone)))
1451			up(&md->swap_bios_semaphore);
1452		free_tio(clone);
1453		if (r == DM_MAPIO_KILL)
1454			dm_io_dec_pending(io, BLK_STS_IOERR);
1455		else
1456			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1457		break;
1458	default:
1459		DMCRIT("unimplemented target map return value: %d", r);
1460		BUG();
1461	}
1462}
1463
1464static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1465{
1466	struct dm_io *io = ci->io;
1467
1468	if (ci->sector_count > len) {
1469		/*
1470		 * Split needed, save the mapped part for accounting.
1471		 * NOTE: dm_accept_partial_bio() will update accordingly.
1472		 */
1473		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1474		io->sectors = len;
1475		io->sector_offset = bio_sectors(ci->bio);
1476	}
1477}
1478
1479static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1480				struct dm_target *ti, unsigned int num_bios,
1481				unsigned *len, gfp_t gfp_flag)
1482{
1483	struct bio *bio;
1484	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1485
1486	for (; try < 2; try++) {
1487		int bio_nr;
1488
1489		if (try && num_bios > 1)
1490			mutex_lock(&ci->io->md->table_devices_lock);
1491		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1492			bio = alloc_tio(ci, ti, bio_nr, len,
1493					try ? GFP_NOIO : GFP_NOWAIT);
1494			if (!bio)
1495				break;
1496
1497			bio_list_add(blist, bio);
1498		}
1499		if (try && num_bios > 1)
1500			mutex_unlock(&ci->io->md->table_devices_lock);
1501		if (bio_nr == num_bios)
1502			return;
1503
1504		while ((bio = bio_list_pop(blist)))
1505			free_tio(bio);
1506	}
1507}
1508
1509static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1510					  unsigned int num_bios, unsigned int *len,
1511					  gfp_t gfp_flag)
1512{
1513	struct bio_list blist = BIO_EMPTY_LIST;
1514	struct bio *clone;
1515	unsigned int ret = 0;
1516
1517	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1518		return 0;
1519
1520	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1521	if (len)
1522		setup_split_accounting(ci, *len);
1523
1524	/*
1525	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1526	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1527	 */
1528	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1529	while ((clone = bio_list_pop(&blist))) {
1530		if (num_bios > 1)
1531			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1532		__map_bio(clone);
1533		ret += 1;
1534	}
1535
1536	return ret;
1537}
1538
1539static void __send_empty_flush(struct clone_info *ci)
1540{
1541	struct dm_table *t = ci->map;
1542	struct bio flush_bio;
1543
1544	/*
1545	 * Use an on-stack bio for this, it's safe since we don't
1546	 * need to reference it after submit. It's just used as
1547	 * the basis for the clone(s).
1548	 */
1549	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1550		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1551
1552	ci->bio = &flush_bio;
1553	ci->sector_count = 0;
1554	ci->io->tio.clone.bi_iter.bi_size = 0;
1555
1556	for (unsigned int i = 0; i < t->num_targets; i++) {
1557		unsigned int bios;
1558		struct dm_target *ti = dm_table_get_target(t, i);
1559
1560		if (unlikely(ti->num_flush_bios == 0))
1561			continue;
1562
1563		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1564		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1565					     NULL, GFP_NOWAIT);
1566		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1567	}
1568
1569	/*
1570	 * alloc_io() takes one extra reference for submission, so the
1571	 * reference won't reach 0 without the following subtraction
1572	 */
1573	atomic_sub(1, &ci->io->io_count);
1574
1575	bio_uninit(ci->bio);
1576}
1577
1578static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1579			       unsigned int num_bios, unsigned int max_granularity,
1580			       unsigned int max_sectors)
1581{
1582	unsigned int len, bios;
1583
1584	len = min_t(sector_t, ci->sector_count,
1585		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1586
1587	atomic_add(num_bios, &ci->io->io_count);
1588	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1589	/*
1590	 * alloc_io() takes one extra reference for submission, so the
1591	 * reference won't reach 0 without the following (+1) subtraction
1592	 */
1593	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1594
1595	ci->sector += len;
1596	ci->sector_count -= len;
1597}
1598
1599static bool is_abnormal_io(struct bio *bio)
1600{
1601	enum req_op op = bio_op(bio);
1602
1603	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1604		switch (op) {
1605		case REQ_OP_DISCARD:
1606		case REQ_OP_SECURE_ERASE:
1607		case REQ_OP_WRITE_ZEROES:
1608			return true;
1609		default:
1610			break;
1611		}
1612	}
1613
1614	return false;
1615}
1616
1617static blk_status_t __process_abnormal_io(struct clone_info *ci,
1618					  struct dm_target *ti)
1619{
1620	unsigned int num_bios = 0;
1621	unsigned int max_granularity = 0;
1622	unsigned int max_sectors = 0;
1623	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1624
1625	switch (bio_op(ci->bio)) {
1626	case REQ_OP_DISCARD:
1627		num_bios = ti->num_discard_bios;
1628		max_sectors = limits->max_discard_sectors;
1629		if (ti->max_discard_granularity)
1630			max_granularity = max_sectors;
1631		break;
1632	case REQ_OP_SECURE_ERASE:
1633		num_bios = ti->num_secure_erase_bios;
1634		max_sectors = limits->max_secure_erase_sectors;
1635		if (ti->max_secure_erase_granularity)
1636			max_granularity = max_sectors;
1637		break;
1638	case REQ_OP_WRITE_ZEROES:
1639		num_bios = ti->num_write_zeroes_bios;
1640		max_sectors = limits->max_write_zeroes_sectors;
1641		if (ti->max_write_zeroes_granularity)
1642			max_granularity = max_sectors;
1643		break;
1644	default:
1645		break;
1646	}
1647
1648	/*
1649	 * Even though the device advertised support for this type of
1650	 * request, that does not mean every target supports it, and
1651	 * reconfiguration might also have changed that since the
1652	 * check was performed.
1653	 */
1654	if (unlikely(!num_bios))
1655		return BLK_STS_NOTSUPP;
1656
1657	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1658
1659	return BLK_STS_OK;
1660}
1661
1662/*
1663 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1664 * associated with this bio, and this bio's bi_private needs to be
1665 * stored in dm_io->data before the reuse.
1666 *
1667 * bio->bi_private is owned by fs or upper layer, so block layer won't
1668 * touch it after splitting. Meantime it won't be changed by anyone after
1669 * bio is submitted. So this reuse is safe.
1670 */
1671static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1672{
1673	return (struct dm_io **)&bio->bi_private;
1674}
1675
1676static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1677{
1678	struct dm_io **head = dm_poll_list_head(bio);
1679
1680	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1681		bio->bi_opf |= REQ_DM_POLL_LIST;
1682		/*
1683		 * Save .bi_private into dm_io, so that we can reuse
1684		 * .bi_private as dm_io list head for storing dm_io list
1685		 */
1686		io->data = bio->bi_private;
1687
1688		/* tell block layer to poll for completion */
1689		bio->bi_cookie = ~BLK_QC_T_NONE;
1690
1691		io->next = NULL;
1692	} else {
1693		/*
1694		 * bio recursed due to split, reuse original poll list,
1695		 * and save bio->bi_private too.
1696		 */
1697		io->data = (*head)->data;
1698		io->next = *head;
1699	}
1700
1701	*head = io;
1702}
1703
1704/*
1705 * Select the correct strategy for processing a non-flush bio.
1706 */
1707static blk_status_t __split_and_process_bio(struct clone_info *ci)
1708{
1709	struct bio *clone;
1710	struct dm_target *ti;
1711	unsigned int len;
1712
1713	ti = dm_table_find_target(ci->map, ci->sector);
1714	if (unlikely(!ti))
1715		return BLK_STS_IOERR;
1716
1717	if (unlikely(ci->is_abnormal_io))
1718		return __process_abnormal_io(ci, ti);
1719
1720	/*
1721	 * Only support bio polling for normal IO, and the target io is
1722	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1723	 */
1724	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1725
1726	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1727	setup_split_accounting(ci, len);
1728
1729	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1730		if (unlikely(!dm_target_supports_nowait(ti->type)))
1731			return BLK_STS_NOTSUPP;
1732
1733		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1734		if (unlikely(!clone))
1735			return BLK_STS_AGAIN;
1736	} else {
1737		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1738	}
1739	__map_bio(clone);
1740
1741	ci->sector += len;
1742	ci->sector_count -= len;
1743
1744	return BLK_STS_OK;
1745}
1746
1747static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1748			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1749{
1750	ci->map = map;
1751	ci->io = io;
1752	ci->bio = bio;
1753	ci->is_abnormal_io = is_abnormal;
1754	ci->submit_as_polled = false;
1755	ci->sector = bio->bi_iter.bi_sector;
1756	ci->sector_count = bio_sectors(bio);
1757
1758	/* Shouldn't happen but sector_count was being set to 0 so... */
1759	if (static_branch_unlikely(&zoned_enabled) &&
1760	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1761		ci->sector_count = 0;
1762}
1763
1764#ifdef CONFIG_BLK_DEV_ZONED
1765static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1766					   struct bio *bio)
1767{
1768	/*
1769	 * For mapped device that need zone append emulation, we must
1770	 * split any large BIO that straddles zone boundaries.
1771	 */
1772	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1773		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1774}
1775static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1776{
1777	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1778}
1779#else
1780static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1781					   struct bio *bio)
1782{
1783	return false;
1784}
1785static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1786{
1787	return false;
1788}
1789#endif
1790
1791/*
1792 * Entry point to split a bio into clones and submit them to the targets.
1793 */
1794static void dm_split_and_process_bio(struct mapped_device *md,
1795				     struct dm_table *map, struct bio *bio)
1796{
1797	struct clone_info ci;
1798	struct dm_io *io;
1799	blk_status_t error = BLK_STS_OK;
1800	bool is_abnormal, need_split;
1801
1802	need_split = is_abnormal = is_abnormal_io(bio);
1803	if (static_branch_unlikely(&zoned_enabled))
1804		need_split = is_abnormal || dm_zone_bio_needs_split(md, bio);
1805
1806	if (unlikely(need_split)) {
1807		/*
1808		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1809		 * otherwise associated queue_limits won't be imposed.
1810		 * Also split the BIO for mapped devices needing zone append
1811		 * emulation to ensure that the BIO does not cross zone
1812		 * boundaries.
1813		 */
1814		bio = bio_split_to_limits(bio);
1815		if (!bio)
1816			return;
1817	}
1818
1819	/*
1820	 * Use the block layer zone write plugging for mapped devices that
1821	 * need zone append emulation (e.g. dm-crypt).
1822	 */
1823	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1824		return;
1825
1826	/* Only support nowait for normal IO */
1827	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1828		io = alloc_io(md, bio, GFP_NOWAIT);
1829		if (unlikely(!io)) {
1830			/* Unable to do anything without dm_io. */
1831			bio_wouldblock_error(bio);
1832			return;
1833		}
1834	} else {
1835		io = alloc_io(md, bio, GFP_NOIO);
1836	}
1837	init_clone_info(&ci, io, map, bio, is_abnormal);
1838
1839	if (bio->bi_opf & REQ_PREFLUSH) {
1840		__send_empty_flush(&ci);
1841		/* dm_io_complete submits any data associated with flush */
1842		goto out;
1843	}
1844
1845	error = __split_and_process_bio(&ci);
1846	if (error || !ci.sector_count)
1847		goto out;
1848	/*
1849	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1850	 * *after* bios already submitted have been completely processed.
1851	 */
1852	bio_trim(bio, io->sectors, ci.sector_count);
1853	trace_block_split(bio, bio->bi_iter.bi_sector);
1854	bio_inc_remaining(bio);
1855	submit_bio_noacct(bio);
1856out:
1857	/*
1858	 * Drop the extra reference count for non-POLLED bio, and hold one
1859	 * reference for POLLED bio, which will be released in dm_poll_bio
1860	 *
1861	 * Add every dm_io instance into the dm_io list head which is stored
1862	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1863	 */
1864	if (error || !ci.submit_as_polled) {
1865		/*
1866		 * In case of submission failure, the extra reference for
1867		 * submitting io isn't consumed yet
1868		 */
1869		if (error)
1870			atomic_dec(&io->io_count);
1871		dm_io_dec_pending(io, error);
1872	} else
1873		dm_queue_poll_io(bio, io);
1874}
1875
1876static void dm_submit_bio(struct bio *bio)
1877{
1878	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1879	int srcu_idx;
1880	struct dm_table *map;
1881
1882	map = dm_get_live_table(md, &srcu_idx);
1883
1884	/* If suspended, or map not yet available, queue this IO for later */
1885	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1886	    unlikely(!map)) {
1887		if (bio->bi_opf & REQ_NOWAIT)
1888			bio_wouldblock_error(bio);
1889		else if (bio->bi_opf & REQ_RAHEAD)
1890			bio_io_error(bio);
1891		else
1892			queue_io(md, bio);
1893		goto out;
1894	}
1895
1896	dm_split_and_process_bio(md, map, bio);
1897out:
1898	dm_put_live_table(md, srcu_idx);
1899}
1900
1901static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1902			  unsigned int flags)
1903{
1904	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1905
1906	/* don't poll if the mapped io is done */
1907	if (atomic_read(&io->io_count) > 1)
1908		bio_poll(&io->tio.clone, iob, flags);
1909
1910	/* bio_poll holds the last reference */
1911	return atomic_read(&io->io_count) == 1;
1912}
1913
1914static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1915		       unsigned int flags)
1916{
1917	struct dm_io **head = dm_poll_list_head(bio);
1918	struct dm_io *list = *head;
1919	struct dm_io *tmp = NULL;
1920	struct dm_io *curr, *next;
1921
1922	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1923	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1924		return 0;
1925
1926	WARN_ON_ONCE(!list);
1927
1928	/*
1929	 * Restore .bi_private before possibly completing dm_io.
1930	 *
1931	 * bio_poll() is only possible once @bio has been completely
1932	 * submitted via submit_bio_noacct()'s depth-first submission.
1933	 * So there is no dm_queue_poll_io() race associated with
1934	 * clearing REQ_DM_POLL_LIST here.
1935	 */
1936	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1937	bio->bi_private = list->data;
1938
1939	for (curr = list, next = curr->next; curr; curr = next, next =
1940			curr ? curr->next : NULL) {
1941		if (dm_poll_dm_io(curr, iob, flags)) {
1942			/*
1943			 * clone_endio() has already occurred, so no
1944			 * error handling is needed here.
1945			 */
1946			__dm_io_dec_pending(curr);
1947		} else {
1948			curr->next = tmp;
1949			tmp = curr;
1950		}
1951	}
1952
1953	/* Not done? */
1954	if (tmp) {
1955		bio->bi_opf |= REQ_DM_POLL_LIST;
1956		/* Reset bio->bi_private to dm_io list head */
1957		*head = tmp;
1958		return 0;
1959	}
1960	return 1;
1961}
1962
1963/*
1964 *---------------------------------------------------------------
1965 * An IDR is used to keep track of allocated minor numbers.
1966 *---------------------------------------------------------------
1967 */
1968static void free_minor(int minor)
1969{
1970	spin_lock(&_minor_lock);
1971	idr_remove(&_minor_idr, minor);
1972	spin_unlock(&_minor_lock);
1973}
1974
1975/*
1976 * See if the device with a specific minor # is free.
1977 */
1978static int specific_minor(int minor)
1979{
1980	int r;
1981
1982	if (minor >= (1 << MINORBITS))
1983		return -EINVAL;
1984
1985	idr_preload(GFP_KERNEL);
1986	spin_lock(&_minor_lock);
1987
1988	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1989
1990	spin_unlock(&_minor_lock);
1991	idr_preload_end();
1992	if (r < 0)
1993		return r == -ENOSPC ? -EBUSY : r;
1994	return 0;
1995}
1996
1997static int next_free_minor(int *minor)
1998{
1999	int r;
2000
2001	idr_preload(GFP_KERNEL);
2002	spin_lock(&_minor_lock);
2003
2004	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2005
2006	spin_unlock(&_minor_lock);
2007	idr_preload_end();
2008	if (r < 0)
2009		return r;
2010	*minor = r;
2011	return 0;
2012}
2013
2014static const struct block_device_operations dm_blk_dops;
2015static const struct block_device_operations dm_rq_blk_dops;
2016static const struct dax_operations dm_dax_ops;
2017
2018static void dm_wq_work(struct work_struct *work);
2019
2020#ifdef CONFIG_BLK_INLINE_ENCRYPTION
2021static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2022{
2023	dm_destroy_crypto_profile(q->crypto_profile);
2024}
2025
2026#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2027
2028static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2029{
2030}
2031#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2032
2033static void cleanup_mapped_device(struct mapped_device *md)
2034{
2035	if (md->wq)
2036		destroy_workqueue(md->wq);
2037	dm_free_md_mempools(md->mempools);
2038
2039	if (md->dax_dev) {
2040		dax_remove_host(md->disk);
2041		kill_dax(md->dax_dev);
2042		put_dax(md->dax_dev);
2043		md->dax_dev = NULL;
2044	}
2045
2046	if (md->disk) {
2047		spin_lock(&_minor_lock);
2048		md->disk->private_data = NULL;
2049		spin_unlock(&_minor_lock);
2050		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2051			struct table_device *td;
2052
2053			dm_sysfs_exit(md);
2054			list_for_each_entry(td, &md->table_devices, list) {
2055				bd_unlink_disk_holder(td->dm_dev.bdev,
2056						      md->disk);
2057			}
2058
2059			/*
2060			 * Hold lock to make sure del_gendisk() won't concurrent
2061			 * with open/close_table_device().
2062			 */
2063			mutex_lock(&md->table_devices_lock);
2064			del_gendisk(md->disk);
2065			mutex_unlock(&md->table_devices_lock);
2066		}
2067		dm_queue_destroy_crypto_profile(md->queue);
2068		put_disk(md->disk);
2069	}
2070
2071	if (md->pending_io) {
2072		free_percpu(md->pending_io);
2073		md->pending_io = NULL;
2074	}
2075
2076	cleanup_srcu_struct(&md->io_barrier);
2077
2078	mutex_destroy(&md->suspend_lock);
2079	mutex_destroy(&md->type_lock);
2080	mutex_destroy(&md->table_devices_lock);
2081	mutex_destroy(&md->swap_bios_lock);
2082
2083	dm_mq_cleanup_mapped_device(md);
2084}
2085
2086/*
2087 * Allocate and initialise a blank device with a given minor.
2088 */
2089static struct mapped_device *alloc_dev(int minor)
2090{
2091	int r, numa_node_id = dm_get_numa_node();
2092	struct dax_device *dax_dev;
2093	struct mapped_device *md;
2094	void *old_md;
2095
2096	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2097	if (!md) {
2098		DMERR("unable to allocate device, out of memory.");
2099		return NULL;
2100	}
2101
2102	if (!try_module_get(THIS_MODULE))
2103		goto bad_module_get;
2104
2105	/* get a minor number for the dev */
2106	if (minor == DM_ANY_MINOR)
2107		r = next_free_minor(&minor);
2108	else
2109		r = specific_minor(minor);
2110	if (r < 0)
2111		goto bad_minor;
2112
2113	r = init_srcu_struct(&md->io_barrier);
2114	if (r < 0)
2115		goto bad_io_barrier;
2116
2117	md->numa_node_id = numa_node_id;
2118	md->init_tio_pdu = false;
2119	md->type = DM_TYPE_NONE;
2120	mutex_init(&md->suspend_lock);
2121	mutex_init(&md->type_lock);
2122	mutex_init(&md->table_devices_lock);
2123	spin_lock_init(&md->deferred_lock);
2124	atomic_set(&md->holders, 1);
2125	atomic_set(&md->open_count, 0);
2126	atomic_set(&md->event_nr, 0);
2127	atomic_set(&md->uevent_seq, 0);
2128	INIT_LIST_HEAD(&md->uevent_list);
2129	INIT_LIST_HEAD(&md->table_devices);
2130	spin_lock_init(&md->uevent_lock);
2131
2132	/*
2133	 * default to bio-based until DM table is loaded and md->type
2134	 * established. If request-based table is loaded: blk-mq will
2135	 * override accordingly.
2136	 */
2137	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2138	if (IS_ERR(md->disk))
2139		goto bad;
2140	md->queue = md->disk->queue;
2141
2142	init_waitqueue_head(&md->wait);
2143	INIT_WORK(&md->work, dm_wq_work);
2144	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2145	init_waitqueue_head(&md->eventq);
2146	init_completion(&md->kobj_holder.completion);
2147
2148	md->requeue_list = NULL;
2149	md->swap_bios = get_swap_bios();
2150	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2151	mutex_init(&md->swap_bios_lock);
2152
2153	md->disk->major = _major;
2154	md->disk->first_minor = minor;
2155	md->disk->minors = 1;
2156	md->disk->flags |= GENHD_FL_NO_PART;
2157	md->disk->fops = &dm_blk_dops;
2158	md->disk->private_data = md;
2159	sprintf(md->disk->disk_name, "dm-%d", minor);
2160
2161	dax_dev = alloc_dax(md, &dm_dax_ops);
2162	if (IS_ERR(dax_dev)) {
2163		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2164			goto bad;
2165	} else {
2166		set_dax_nocache(dax_dev);
2167		set_dax_nomc(dax_dev);
2168		md->dax_dev = dax_dev;
2169		if (dax_add_host(dax_dev, md->disk))
2170			goto bad;
2171	}
2172
2173	format_dev_t(md->name, MKDEV(_major, minor));
2174
2175	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2176	if (!md->wq)
2177		goto bad;
2178
2179	md->pending_io = alloc_percpu(unsigned long);
2180	if (!md->pending_io)
2181		goto bad;
2182
2183	r = dm_stats_init(&md->stats);
2184	if (r < 0)
2185		goto bad;
2186
2187	/* Populate the mapping, nobody knows we exist yet */
2188	spin_lock(&_minor_lock);
2189	old_md = idr_replace(&_minor_idr, md, minor);
2190	spin_unlock(&_minor_lock);
2191
2192	BUG_ON(old_md != MINOR_ALLOCED);
2193
2194	return md;
2195
2196bad:
2197	cleanup_mapped_device(md);
2198bad_io_barrier:
2199	free_minor(minor);
2200bad_minor:
2201	module_put(THIS_MODULE);
2202bad_module_get:
2203	kvfree(md);
2204	return NULL;
2205}
2206
2207static void unlock_fs(struct mapped_device *md);
2208
2209static void free_dev(struct mapped_device *md)
2210{
2211	int minor = MINOR(disk_devt(md->disk));
2212
2213	unlock_fs(md);
2214
2215	cleanup_mapped_device(md);
2216
2217	WARN_ON_ONCE(!list_empty(&md->table_devices));
2218	dm_stats_cleanup(&md->stats);
2219	free_minor(minor);
2220
2221	module_put(THIS_MODULE);
2222	kvfree(md);
2223}
2224
2225/*
2226 * Bind a table to the device.
2227 */
2228static void event_callback(void *context)
2229{
2230	unsigned long flags;
2231	LIST_HEAD(uevents);
2232	struct mapped_device *md = context;
2233
2234	spin_lock_irqsave(&md->uevent_lock, flags);
2235	list_splice_init(&md->uevent_list, &uevents);
2236	spin_unlock_irqrestore(&md->uevent_lock, flags);
2237
2238	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2239
2240	atomic_inc(&md->event_nr);
2241	wake_up(&md->eventq);
2242	dm_issue_global_event();
2243}
2244
2245/*
2246 * Returns old map, which caller must destroy.
2247 */
2248static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2249			       struct queue_limits *limits)
2250{
2251	struct dm_table *old_map;
2252	sector_t size;
2253	int ret;
2254
2255	lockdep_assert_held(&md->suspend_lock);
2256
2257	size = dm_table_get_size(t);
2258
2259	/*
2260	 * Wipe any geometry if the size of the table changed.
2261	 */
2262	if (size != dm_get_size(md))
2263		memset(&md->geometry, 0, sizeof(md->geometry));
2264
2265	set_capacity(md->disk, size);
2266
2267	dm_table_event_callback(t, event_callback, md);
2268
2269	if (dm_table_request_based(t)) {
2270		/*
2271		 * Leverage the fact that request-based DM targets are
2272		 * immutable singletons - used to optimize dm_mq_queue_rq.
2273		 */
2274		md->immutable_target = dm_table_get_immutable_target(t);
2275
2276		/*
2277		 * There is no need to reload with request-based dm because the
2278		 * size of front_pad doesn't change.
2279		 *
2280		 * Note for future: If you are to reload bioset, prep-ed
2281		 * requests in the queue may refer to bio from the old bioset,
2282		 * so you must walk through the queue to unprep.
2283		 */
2284		if (!md->mempools) {
2285			md->mempools = t->mempools;
2286			t->mempools = NULL;
2287		}
2288	} else {
2289		/*
2290		 * The md may already have mempools that need changing.
2291		 * If so, reload bioset because front_pad may have changed
2292		 * because a different table was loaded.
2293		 */
2294		dm_free_md_mempools(md->mempools);
2295		md->mempools = t->mempools;
2296		t->mempools = NULL;
2297	}
2298
2299	ret = dm_table_set_restrictions(t, md->queue, limits);
2300	if (ret) {
2301		old_map = ERR_PTR(ret);
2302		goto out;
2303	}
2304
2305	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2306	rcu_assign_pointer(md->map, (void *)t);
2307	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2308
2309	if (old_map)
2310		dm_sync_table(md);
2311out:
2312	return old_map;
2313}
2314
2315/*
2316 * Returns unbound table for the caller to free.
2317 */
2318static struct dm_table *__unbind(struct mapped_device *md)
2319{
2320	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2321
2322	if (!map)
2323		return NULL;
2324
2325	dm_table_event_callback(map, NULL, NULL);
2326	RCU_INIT_POINTER(md->map, NULL);
2327	dm_sync_table(md);
2328
2329	return map;
2330}
2331
2332/*
2333 * Constructor for a new device.
2334 */
2335int dm_create(int minor, struct mapped_device **result)
2336{
2337	struct mapped_device *md;
2338
2339	md = alloc_dev(minor);
2340	if (!md)
2341		return -ENXIO;
2342
2343	dm_ima_reset_data(md);
2344
2345	*result = md;
2346	return 0;
2347}
2348
2349/*
2350 * Functions to manage md->type.
2351 * All are required to hold md->type_lock.
2352 */
2353void dm_lock_md_type(struct mapped_device *md)
2354{
2355	mutex_lock(&md->type_lock);
2356}
2357
2358void dm_unlock_md_type(struct mapped_device *md)
2359{
2360	mutex_unlock(&md->type_lock);
2361}
2362
2363void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2364{
2365	BUG_ON(!mutex_is_locked(&md->type_lock));
2366	md->type = type;
2367}
2368
2369enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2370{
2371	return md->type;
2372}
2373
2374struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2375{
2376	return md->immutable_target_type;
2377}
2378
2379/*
2380 * Setup the DM device's queue based on md's type
2381 */
2382int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2383{
2384	enum dm_queue_mode type = dm_table_get_type(t);
2385	struct queue_limits limits;
2386	struct table_device *td;
2387	int r;
2388
2389	switch (type) {
2390	case DM_TYPE_REQUEST_BASED:
2391		md->disk->fops = &dm_rq_blk_dops;
2392		r = dm_mq_init_request_queue(md, t);
2393		if (r) {
2394			DMERR("Cannot initialize queue for request-based dm mapped device");
2395			return r;
2396		}
2397		break;
2398	case DM_TYPE_BIO_BASED:
2399	case DM_TYPE_DAX_BIO_BASED:
2400		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2401		break;
2402	case DM_TYPE_NONE:
2403		WARN_ON_ONCE(true);
2404		break;
2405	}
2406
2407	r = dm_calculate_queue_limits(t, &limits);
2408	if (r) {
2409		DMERR("Cannot calculate initial queue limits");
2410		return r;
2411	}
2412	r = dm_table_set_restrictions(t, md->queue, &limits);
2413	if (r)
2414		return r;
2415
2416	/*
2417	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2418	 * with open_table_device() and close_table_device().
2419	 */
2420	mutex_lock(&md->table_devices_lock);
2421	r = add_disk(md->disk);
2422	mutex_unlock(&md->table_devices_lock);
2423	if (r)
2424		return r;
2425
2426	/*
2427	 * Register the holder relationship for devices added before the disk
2428	 * was live.
2429	 */
2430	list_for_each_entry(td, &md->table_devices, list) {
2431		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2432		if (r)
2433			goto out_undo_holders;
2434	}
2435
2436	r = dm_sysfs_init(md);
2437	if (r)
2438		goto out_undo_holders;
2439
2440	md->type = type;
2441	return 0;
2442
2443out_undo_holders:
2444	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2445		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2446	mutex_lock(&md->table_devices_lock);
2447	del_gendisk(md->disk);
2448	mutex_unlock(&md->table_devices_lock);
2449	return r;
2450}
2451
2452struct mapped_device *dm_get_md(dev_t dev)
2453{
2454	struct mapped_device *md;
2455	unsigned int minor = MINOR(dev);
2456
2457	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2458		return NULL;
2459
2460	spin_lock(&_minor_lock);
2461
2462	md = idr_find(&_minor_idr, minor);
2463	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2464	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2465		md = NULL;
2466		goto out;
2467	}
2468	dm_get(md);
2469out:
2470	spin_unlock(&_minor_lock);
2471
2472	return md;
2473}
2474EXPORT_SYMBOL_GPL(dm_get_md);
2475
2476void *dm_get_mdptr(struct mapped_device *md)
2477{
2478	return md->interface_ptr;
2479}
2480
2481void dm_set_mdptr(struct mapped_device *md, void *ptr)
2482{
2483	md->interface_ptr = ptr;
2484}
2485
2486void dm_get(struct mapped_device *md)
2487{
2488	atomic_inc(&md->holders);
2489	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2490}
2491
2492int dm_hold(struct mapped_device *md)
2493{
2494	spin_lock(&_minor_lock);
2495	if (test_bit(DMF_FREEING, &md->flags)) {
2496		spin_unlock(&_minor_lock);
2497		return -EBUSY;
2498	}
2499	dm_get(md);
2500	spin_unlock(&_minor_lock);
2501	return 0;
2502}
2503EXPORT_SYMBOL_GPL(dm_hold);
2504
2505const char *dm_device_name(struct mapped_device *md)
2506{
2507	return md->name;
2508}
2509EXPORT_SYMBOL_GPL(dm_device_name);
2510
2511static void __dm_destroy(struct mapped_device *md, bool wait)
2512{
2513	struct dm_table *map;
2514	int srcu_idx;
2515
2516	might_sleep();
2517
2518	spin_lock(&_minor_lock);
2519	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2520	set_bit(DMF_FREEING, &md->flags);
2521	spin_unlock(&_minor_lock);
2522
2523	blk_mark_disk_dead(md->disk);
2524
2525	/*
2526	 * Take suspend_lock so that presuspend and postsuspend methods
2527	 * do not race with internal suspend.
2528	 */
2529	mutex_lock(&md->suspend_lock);
2530	map = dm_get_live_table(md, &srcu_idx);
2531	if (!dm_suspended_md(md)) {
2532		dm_table_presuspend_targets(map);
2533		set_bit(DMF_SUSPENDED, &md->flags);
2534		set_bit(DMF_POST_SUSPENDING, &md->flags);
2535		dm_table_postsuspend_targets(map);
2536	}
2537	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2538	dm_put_live_table(md, srcu_idx);
2539	mutex_unlock(&md->suspend_lock);
2540
2541	/*
2542	 * Rare, but there may be I/O requests still going to complete,
2543	 * for example.  Wait for all references to disappear.
2544	 * No one should increment the reference count of the mapped_device,
2545	 * after the mapped_device state becomes DMF_FREEING.
2546	 */
2547	if (wait)
2548		while (atomic_read(&md->holders))
2549			fsleep(1000);
2550	else if (atomic_read(&md->holders))
2551		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2552		       dm_device_name(md), atomic_read(&md->holders));
2553
2554	dm_table_destroy(__unbind(md));
2555	free_dev(md);
2556}
2557
2558void dm_destroy(struct mapped_device *md)
2559{
2560	__dm_destroy(md, true);
2561}
2562
2563void dm_destroy_immediate(struct mapped_device *md)
2564{
2565	__dm_destroy(md, false);
2566}
2567
2568void dm_put(struct mapped_device *md)
2569{
2570	atomic_dec(&md->holders);
2571}
2572EXPORT_SYMBOL_GPL(dm_put);
2573
2574static bool dm_in_flight_bios(struct mapped_device *md)
2575{
2576	int cpu;
2577	unsigned long sum = 0;
2578
2579	for_each_possible_cpu(cpu)
2580		sum += *per_cpu_ptr(md->pending_io, cpu);
2581
2582	return sum != 0;
2583}
2584
2585static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2586{
2587	int r = 0;
2588	DEFINE_WAIT(wait);
2589
2590	while (true) {
2591		prepare_to_wait(&md->wait, &wait, task_state);
2592
2593		if (!dm_in_flight_bios(md))
2594			break;
2595
2596		if (signal_pending_state(task_state, current)) {
2597			r = -EINTR;
2598			break;
2599		}
2600
2601		io_schedule();
2602	}
2603	finish_wait(&md->wait, &wait);
2604
2605	smp_rmb();
2606
2607	return r;
2608}
2609
2610static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2611{
2612	int r = 0;
2613
2614	if (!queue_is_mq(md->queue))
2615		return dm_wait_for_bios_completion(md, task_state);
2616
2617	while (true) {
2618		if (!blk_mq_queue_inflight(md->queue))
2619			break;
2620
2621		if (signal_pending_state(task_state, current)) {
2622			r = -EINTR;
2623			break;
2624		}
2625
2626		fsleep(5000);
2627	}
2628
2629	return r;
2630}
2631
2632/*
2633 * Process the deferred bios
2634 */
2635static void dm_wq_work(struct work_struct *work)
2636{
2637	struct mapped_device *md = container_of(work, struct mapped_device, work);
2638	struct bio *bio;
2639
2640	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2641		spin_lock_irq(&md->deferred_lock);
2642		bio = bio_list_pop(&md->deferred);
2643		spin_unlock_irq(&md->deferred_lock);
2644
2645		if (!bio)
2646			break;
2647
2648		submit_bio_noacct(bio);
2649		cond_resched();
2650	}
2651}
2652
2653static void dm_queue_flush(struct mapped_device *md)
2654{
2655	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2656	smp_mb__after_atomic();
2657	queue_work(md->wq, &md->work);
2658}
2659
2660/*
2661 * Swap in a new table, returning the old one for the caller to destroy.
2662 */
2663struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2664{
2665	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2666	struct queue_limits limits;
2667	int r;
2668
2669	mutex_lock(&md->suspend_lock);
2670
2671	/* device must be suspended */
2672	if (!dm_suspended_md(md))
2673		goto out;
2674
2675	/*
2676	 * If the new table has no data devices, retain the existing limits.
2677	 * This helps multipath with queue_if_no_path if all paths disappear,
2678	 * then new I/O is queued based on these limits, and then some paths
2679	 * reappear.
2680	 */
2681	if (dm_table_has_no_data_devices(table)) {
2682		live_map = dm_get_live_table_fast(md);
2683		if (live_map)
2684			limits = md->queue->limits;
2685		dm_put_live_table_fast(md);
2686	}
2687
2688	if (!live_map) {
2689		r = dm_calculate_queue_limits(table, &limits);
2690		if (r) {
2691			map = ERR_PTR(r);
2692			goto out;
2693		}
2694	}
2695
2696	map = __bind(md, table, &limits);
2697	dm_issue_global_event();
2698
2699out:
2700	mutex_unlock(&md->suspend_lock);
2701	return map;
2702}
2703
2704/*
2705 * Functions to lock and unlock any filesystem running on the
2706 * device.
2707 */
2708static int lock_fs(struct mapped_device *md)
2709{
2710	int r;
2711
2712	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2713
2714	r = bdev_freeze(md->disk->part0);
2715	if (!r)
2716		set_bit(DMF_FROZEN, &md->flags);
2717	return r;
2718}
2719
2720static void unlock_fs(struct mapped_device *md)
2721{
2722	if (!test_bit(DMF_FROZEN, &md->flags))
2723		return;
2724	bdev_thaw(md->disk->part0);
2725	clear_bit(DMF_FROZEN, &md->flags);
2726}
2727
2728/*
2729 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2730 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2731 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2732 *
2733 * If __dm_suspend returns 0, the device is completely quiescent
2734 * now. There is no request-processing activity. All new requests
2735 * are being added to md->deferred list.
2736 */
2737static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2738			unsigned int suspend_flags, unsigned int task_state,
2739			int dmf_suspended_flag)
2740{
2741	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2742	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2743	int r;
2744
2745	lockdep_assert_held(&md->suspend_lock);
2746
2747	/*
2748	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2749	 * This flag is cleared before dm_suspend returns.
2750	 */
2751	if (noflush)
2752		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2753	else
2754		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2755
2756	/*
2757	 * This gets reverted if there's an error later and the targets
2758	 * provide the .presuspend_undo hook.
2759	 */
2760	dm_table_presuspend_targets(map);
2761
2762	/*
2763	 * Flush I/O to the device.
2764	 * Any I/O submitted after lock_fs() may not be flushed.
2765	 * noflush takes precedence over do_lockfs.
2766	 * (lock_fs() flushes I/Os and waits for them to complete.)
2767	 */
2768	if (!noflush && do_lockfs) {
2769		r = lock_fs(md);
2770		if (r) {
2771			dm_table_presuspend_undo_targets(map);
2772			return r;
2773		}
2774	}
2775
2776	/*
2777	 * Here we must make sure that no processes are submitting requests
2778	 * to target drivers i.e. no one may be executing
2779	 * dm_split_and_process_bio from dm_submit_bio.
2780	 *
2781	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2782	 * we take the write lock. To prevent any process from reentering
2783	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2784	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2785	 * flush_workqueue(md->wq).
2786	 */
2787	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2788	if (map)
2789		synchronize_srcu(&md->io_barrier);
2790
2791	/*
2792	 * Stop md->queue before flushing md->wq in case request-based
2793	 * dm defers requests to md->wq from md->queue.
2794	 */
2795	if (dm_request_based(md))
2796		dm_stop_queue(md->queue);
2797
2798	flush_workqueue(md->wq);
2799
2800	/*
2801	 * At this point no more requests are entering target request routines.
2802	 * We call dm_wait_for_completion to wait for all existing requests
2803	 * to finish.
2804	 */
2805	r = dm_wait_for_completion(md, task_state);
2806	if (!r)
2807		set_bit(dmf_suspended_flag, &md->flags);
2808
2809	if (noflush)
2810		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2811	if (map)
2812		synchronize_srcu(&md->io_barrier);
2813
2814	/* were we interrupted ? */
2815	if (r < 0) {
2816		dm_queue_flush(md);
2817
2818		if (dm_request_based(md))
2819			dm_start_queue(md->queue);
2820
2821		unlock_fs(md);
2822		dm_table_presuspend_undo_targets(map);
2823		/* pushback list is already flushed, so skip flush */
2824	}
2825
2826	return r;
2827}
2828
2829/*
2830 * We need to be able to change a mapping table under a mounted
2831 * filesystem.  For example we might want to move some data in
2832 * the background.  Before the table can be swapped with
2833 * dm_bind_table, dm_suspend must be called to flush any in
2834 * flight bios and ensure that any further io gets deferred.
2835 */
2836/*
2837 * Suspend mechanism in request-based dm.
2838 *
2839 * 1. Flush all I/Os by lock_fs() if needed.
2840 * 2. Stop dispatching any I/O by stopping the request_queue.
2841 * 3. Wait for all in-flight I/Os to be completed or requeued.
2842 *
2843 * To abort suspend, start the request_queue.
2844 */
2845int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2846{
2847	struct dm_table *map = NULL;
2848	int r = 0;
2849
2850retry:
2851	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2852
2853	if (dm_suspended_md(md)) {
2854		r = -EINVAL;
2855		goto out_unlock;
2856	}
2857
2858	if (dm_suspended_internally_md(md)) {
2859		/* already internally suspended, wait for internal resume */
2860		mutex_unlock(&md->suspend_lock);
2861		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2862		if (r)
2863			return r;
2864		goto retry;
2865	}
2866
2867	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2868	if (!map) {
2869		/* avoid deadlock with fs/namespace.c:do_mount() */
2870		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2871	}
2872
2873	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2874	if (r)
2875		goto out_unlock;
2876
2877	set_bit(DMF_POST_SUSPENDING, &md->flags);
2878	dm_table_postsuspend_targets(map);
2879	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2880
2881out_unlock:
2882	mutex_unlock(&md->suspend_lock);
2883	return r;
2884}
2885
2886static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2887{
2888	if (map) {
2889		int r = dm_table_resume_targets(map);
2890
2891		if (r)
2892			return r;
2893	}
2894
2895	dm_queue_flush(md);
2896
2897	/*
2898	 * Flushing deferred I/Os must be done after targets are resumed
2899	 * so that mapping of targets can work correctly.
2900	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2901	 */
2902	if (dm_request_based(md))
2903		dm_start_queue(md->queue);
2904
2905	unlock_fs(md);
2906
2907	return 0;
2908}
2909
2910int dm_resume(struct mapped_device *md)
2911{
2912	int r;
2913	struct dm_table *map = NULL;
2914
2915retry:
2916	r = -EINVAL;
2917	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2918
2919	if (!dm_suspended_md(md))
2920		goto out;
2921
2922	if (dm_suspended_internally_md(md)) {
2923		/* already internally suspended, wait for internal resume */
2924		mutex_unlock(&md->suspend_lock);
2925		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2926		if (r)
2927			return r;
2928		goto retry;
2929	}
2930
2931	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2932	if (!map || !dm_table_get_size(map))
2933		goto out;
2934
2935	r = __dm_resume(md, map);
2936	if (r)
2937		goto out;
2938
2939	clear_bit(DMF_SUSPENDED, &md->flags);
2940out:
2941	mutex_unlock(&md->suspend_lock);
2942
2943	return r;
2944}
2945
2946/*
2947 * Internal suspend/resume works like userspace-driven suspend. It waits
2948 * until all bios finish and prevents issuing new bios to the target drivers.
2949 * It may be used only from the kernel.
2950 */
2951
2952static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2953{
2954	struct dm_table *map = NULL;
2955
2956	lockdep_assert_held(&md->suspend_lock);
2957
2958	if (md->internal_suspend_count++)
2959		return; /* nested internal suspend */
2960
2961	if (dm_suspended_md(md)) {
2962		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2963		return; /* nest suspend */
2964	}
2965
2966	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2967
2968	/*
2969	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2970	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2971	 * would require changing .presuspend to return an error -- avoid this
2972	 * until there is a need for more elaborate variants of internal suspend.
2973	 */
2974	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2975			    DMF_SUSPENDED_INTERNALLY);
2976
2977	set_bit(DMF_POST_SUSPENDING, &md->flags);
2978	dm_table_postsuspend_targets(map);
2979	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2980}
2981
2982static void __dm_internal_resume(struct mapped_device *md)
2983{
2984	int r;
2985	struct dm_table *map;
2986
2987	BUG_ON(!md->internal_suspend_count);
2988
2989	if (--md->internal_suspend_count)
2990		return; /* resume from nested internal suspend */
2991
2992	if (dm_suspended_md(md))
2993		goto done; /* resume from nested suspend */
2994
2995	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2996	r = __dm_resume(md, map);
2997	if (r) {
2998		/*
2999		 * If a preresume method of some target failed, we are in a
3000		 * tricky situation. We can't return an error to the caller. We
3001		 * can't fake success because then the "resume" and
3002		 * "postsuspend" methods would not be paired correctly, and it
3003		 * would break various targets, for example it would cause list
3004		 * corruption in the "origin" target.
3005		 *
3006		 * So, we fake normal suspend here, to make sure that the
3007		 * "resume" and "postsuspend" methods will be paired correctly.
3008		 */
3009		DMERR("Preresume method failed: %d", r);
3010		set_bit(DMF_SUSPENDED, &md->flags);
3011	}
3012done:
3013	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3014	smp_mb__after_atomic();
3015	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3016}
3017
3018void dm_internal_suspend_noflush(struct mapped_device *md)
3019{
3020	mutex_lock(&md->suspend_lock);
3021	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3022	mutex_unlock(&md->suspend_lock);
3023}
3024EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3025
3026void dm_internal_resume(struct mapped_device *md)
3027{
3028	mutex_lock(&md->suspend_lock);
3029	__dm_internal_resume(md);
3030	mutex_unlock(&md->suspend_lock);
3031}
3032EXPORT_SYMBOL_GPL(dm_internal_resume);
3033
3034/*
3035 * Fast variants of internal suspend/resume hold md->suspend_lock,
3036 * which prevents interaction with userspace-driven suspend.
3037 */
3038
3039void dm_internal_suspend_fast(struct mapped_device *md)
3040{
3041	mutex_lock(&md->suspend_lock);
3042	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3043		return;
3044
3045	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046	synchronize_srcu(&md->io_barrier);
3047	flush_workqueue(md->wq);
3048	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3049}
3050EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3051
3052void dm_internal_resume_fast(struct mapped_device *md)
3053{
3054	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3055		goto done;
3056
3057	dm_queue_flush(md);
3058
3059done:
3060	mutex_unlock(&md->suspend_lock);
3061}
3062EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3063
3064/*
3065 *---------------------------------------------------------------
3066 * Event notification.
3067 *---------------------------------------------------------------
3068 */
3069int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3070		      unsigned int cookie, bool need_resize_uevent)
3071{
3072	int r;
3073	unsigned int noio_flag;
3074	char udev_cookie[DM_COOKIE_LENGTH];
3075	char *envp[3] = { NULL, NULL, NULL };
3076	char **envpp = envp;
3077	if (cookie) {
3078		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3079			 DM_COOKIE_ENV_VAR_NAME, cookie);
3080		*envpp++ = udev_cookie;
3081	}
3082	if (need_resize_uevent) {
3083		*envpp++ = "RESIZE=1";
3084	}
3085
3086	noio_flag = memalloc_noio_save();
3087
3088	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3089
3090	memalloc_noio_restore(noio_flag);
3091
3092	return r;
3093}
3094
3095uint32_t dm_next_uevent_seq(struct mapped_device *md)
3096{
3097	return atomic_add_return(1, &md->uevent_seq);
3098}
3099
3100uint32_t dm_get_event_nr(struct mapped_device *md)
3101{
3102	return atomic_read(&md->event_nr);
3103}
3104
3105int dm_wait_event(struct mapped_device *md, int event_nr)
3106{
3107	return wait_event_interruptible(md->eventq,
3108			(event_nr != atomic_read(&md->event_nr)));
3109}
3110
3111void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3112{
3113	unsigned long flags;
3114
3115	spin_lock_irqsave(&md->uevent_lock, flags);
3116	list_add(elist, &md->uevent_list);
3117	spin_unlock_irqrestore(&md->uevent_lock, flags);
3118}
3119
3120/*
3121 * The gendisk is only valid as long as you have a reference
3122 * count on 'md'.
3123 */
3124struct gendisk *dm_disk(struct mapped_device *md)
3125{
3126	return md->disk;
3127}
3128EXPORT_SYMBOL_GPL(dm_disk);
3129
3130struct kobject *dm_kobject(struct mapped_device *md)
3131{
3132	return &md->kobj_holder.kobj;
3133}
3134
3135struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3136{
3137	struct mapped_device *md;
3138
3139	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3140
3141	spin_lock(&_minor_lock);
3142	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3143		md = NULL;
3144		goto out;
3145	}
3146	dm_get(md);
3147out:
3148	spin_unlock(&_minor_lock);
3149
3150	return md;
3151}
3152
3153int dm_suspended_md(struct mapped_device *md)
3154{
3155	return test_bit(DMF_SUSPENDED, &md->flags);
3156}
3157
3158static int dm_post_suspending_md(struct mapped_device *md)
3159{
3160	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3161}
3162
3163int dm_suspended_internally_md(struct mapped_device *md)
3164{
3165	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3166}
3167
3168int dm_test_deferred_remove_flag(struct mapped_device *md)
3169{
3170	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3171}
3172
3173int dm_suspended(struct dm_target *ti)
3174{
3175	return dm_suspended_md(ti->table->md);
3176}
3177EXPORT_SYMBOL_GPL(dm_suspended);
3178
3179int dm_post_suspending(struct dm_target *ti)
3180{
3181	return dm_post_suspending_md(ti->table->md);
3182}
3183EXPORT_SYMBOL_GPL(dm_post_suspending);
3184
3185int dm_noflush_suspending(struct dm_target *ti)
3186{
3187	return __noflush_suspending(ti->table->md);
3188}
3189EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3190
3191void dm_free_md_mempools(struct dm_md_mempools *pools)
3192{
3193	if (!pools)
3194		return;
3195
3196	bioset_exit(&pools->bs);
3197	bioset_exit(&pools->io_bs);
3198
3199	kfree(pools);
3200}
3201
3202struct dm_pr {
3203	u64	old_key;
3204	u64	new_key;
3205	u32	flags;
3206	bool	abort;
3207	bool	fail_early;
3208	int	ret;
3209	enum pr_type type;
3210	struct pr_keys *read_keys;
3211	struct pr_held_reservation *rsv;
3212};
3213
3214static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3215		      struct dm_pr *pr)
3216{
3217	struct mapped_device *md = bdev->bd_disk->private_data;
3218	struct dm_table *table;
3219	struct dm_target *ti;
3220	int ret = -ENOTTY, srcu_idx;
3221
3222	table = dm_get_live_table(md, &srcu_idx);
3223	if (!table || !dm_table_get_size(table))
3224		goto out;
3225
3226	/* We only support devices that have a single target */
3227	if (table->num_targets != 1)
3228		goto out;
3229	ti = dm_table_get_target(table, 0);
3230
3231	if (dm_suspended_md(md)) {
3232		ret = -EAGAIN;
3233		goto out;
3234	}
3235
3236	ret = -EINVAL;
3237	if (!ti->type->iterate_devices)
3238		goto out;
3239
3240	ti->type->iterate_devices(ti, fn, pr);
3241	ret = 0;
3242out:
3243	dm_put_live_table(md, srcu_idx);
3244	return ret;
3245}
3246
3247/*
3248 * For register / unregister we need to manually call out to every path.
3249 */
3250static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3251			    sector_t start, sector_t len, void *data)
3252{
3253	struct dm_pr *pr = data;
3254	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3255	int ret;
3256
3257	if (!ops || !ops->pr_register) {
3258		pr->ret = -EOPNOTSUPP;
3259		return -1;
3260	}
3261
3262	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3263	if (!ret)
3264		return 0;
3265
3266	if (!pr->ret)
3267		pr->ret = ret;
3268
3269	if (pr->fail_early)
3270		return -1;
3271
3272	return 0;
3273}
3274
3275static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3276			  u32 flags)
3277{
3278	struct dm_pr pr = {
3279		.old_key	= old_key,
3280		.new_key	= new_key,
3281		.flags		= flags,
3282		.fail_early	= true,
3283		.ret		= 0,
3284	};
3285	int ret;
3286
3287	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3288	if (ret) {
3289		/* Didn't even get to register a path */
3290		return ret;
3291	}
3292
3293	if (!pr.ret)
3294		return 0;
3295	ret = pr.ret;
3296
3297	if (!new_key)
3298		return ret;
3299
3300	/* unregister all paths if we failed to register any path */
3301	pr.old_key = new_key;
3302	pr.new_key = 0;
3303	pr.flags = 0;
3304	pr.fail_early = false;
3305	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3306	return ret;
3307}
3308
3309
3310static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3311			   sector_t start, sector_t len, void *data)
3312{
3313	struct dm_pr *pr = data;
3314	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3315
3316	if (!ops || !ops->pr_reserve) {
3317		pr->ret = -EOPNOTSUPP;
3318		return -1;
3319	}
3320
3321	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3322	if (!pr->ret)
3323		return -1;
3324
3325	return 0;
3326}
3327
3328static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3329			 u32 flags)
3330{
3331	struct dm_pr pr = {
3332		.old_key	= key,
3333		.flags		= flags,
3334		.type		= type,
3335		.fail_early	= false,
3336		.ret		= 0,
3337	};
3338	int ret;
3339
3340	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3341	if (ret)
3342		return ret;
3343
3344	return pr.ret;
3345}
3346
3347/*
3348 * If there is a non-All Registrants type of reservation, the release must be
3349 * sent down the holding path. For the cases where there is no reservation or
3350 * the path is not the holder the device will also return success, so we must
3351 * try each path to make sure we got the correct path.
3352 */
3353static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3354			   sector_t start, sector_t len, void *data)
3355{
3356	struct dm_pr *pr = data;
3357	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3358
3359	if (!ops || !ops->pr_release) {
3360		pr->ret = -EOPNOTSUPP;
3361		return -1;
3362	}
3363
3364	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3365	if (pr->ret)
3366		return -1;
3367
3368	return 0;
3369}
3370
3371static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3372{
3373	struct dm_pr pr = {
3374		.old_key	= key,
3375		.type		= type,
3376		.fail_early	= false,
3377	};
3378	int ret;
3379
3380	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3381	if (ret)
3382		return ret;
3383
3384	return pr.ret;
3385}
3386
3387static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3388			   sector_t start, sector_t len, void *data)
3389{
3390	struct dm_pr *pr = data;
3391	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3392
3393	if (!ops || !ops->pr_preempt) {
3394		pr->ret = -EOPNOTSUPP;
3395		return -1;
3396	}
3397
3398	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3399				  pr->abort);
3400	if (!pr->ret)
3401		return -1;
3402
3403	return 0;
3404}
3405
3406static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3407			 enum pr_type type, bool abort)
3408{
3409	struct dm_pr pr = {
3410		.new_key	= new_key,
3411		.old_key	= old_key,
3412		.type		= type,
3413		.fail_early	= false,
3414	};
3415	int ret;
3416
3417	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3418	if (ret)
3419		return ret;
3420
3421	return pr.ret;
3422}
3423
3424static int dm_pr_clear(struct block_device *bdev, u64 key)
3425{
3426	struct mapped_device *md = bdev->bd_disk->private_data;
3427	const struct pr_ops *ops;
3428	int r, srcu_idx;
3429
3430	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3431	if (r < 0)
3432		goto out;
3433
3434	ops = bdev->bd_disk->fops->pr_ops;
3435	if (ops && ops->pr_clear)
3436		r = ops->pr_clear(bdev, key);
3437	else
3438		r = -EOPNOTSUPP;
3439out:
3440	dm_unprepare_ioctl(md, srcu_idx);
3441	return r;
3442}
3443
3444static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3445			     sector_t start, sector_t len, void *data)
3446{
3447	struct dm_pr *pr = data;
3448	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3449
3450	if (!ops || !ops->pr_read_keys) {
3451		pr->ret = -EOPNOTSUPP;
3452		return -1;
3453	}
3454
3455	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3456	if (!pr->ret)
3457		return -1;
3458
3459	return 0;
3460}
3461
3462static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3463{
3464	struct dm_pr pr = {
3465		.read_keys = keys,
3466	};
3467	int ret;
3468
3469	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3470	if (ret)
3471		return ret;
3472
3473	return pr.ret;
3474}
3475
3476static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3477				    sector_t start, sector_t len, void *data)
3478{
3479	struct dm_pr *pr = data;
3480	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3481
3482	if (!ops || !ops->pr_read_reservation) {
3483		pr->ret = -EOPNOTSUPP;
3484		return -1;
3485	}
3486
3487	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3488	if (!pr->ret)
3489		return -1;
3490
3491	return 0;
3492}
3493
3494static int dm_pr_read_reservation(struct block_device *bdev,
3495				  struct pr_held_reservation *rsv)
3496{
3497	struct dm_pr pr = {
3498		.rsv = rsv,
3499	};
3500	int ret;
3501
3502	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3503	if (ret)
3504		return ret;
3505
3506	return pr.ret;
3507}
3508
3509static const struct pr_ops dm_pr_ops = {
3510	.pr_register	= dm_pr_register,
3511	.pr_reserve	= dm_pr_reserve,
3512	.pr_release	= dm_pr_release,
3513	.pr_preempt	= dm_pr_preempt,
3514	.pr_clear	= dm_pr_clear,
3515	.pr_read_keys	= dm_pr_read_keys,
3516	.pr_read_reservation = dm_pr_read_reservation,
3517};
3518
3519static const struct block_device_operations dm_blk_dops = {
3520	.submit_bio = dm_submit_bio,
3521	.poll_bio = dm_poll_bio,
3522	.open = dm_blk_open,
3523	.release = dm_blk_close,
3524	.ioctl = dm_blk_ioctl,
3525	.getgeo = dm_blk_getgeo,
3526	.report_zones = dm_blk_report_zones,
3527	.pr_ops = &dm_pr_ops,
3528	.owner = THIS_MODULE
3529};
3530
3531static const struct block_device_operations dm_rq_blk_dops = {
3532	.open = dm_blk_open,
3533	.release = dm_blk_close,
3534	.ioctl = dm_blk_ioctl,
3535	.getgeo = dm_blk_getgeo,
3536	.pr_ops = &dm_pr_ops,
3537	.owner = THIS_MODULE
3538};
3539
3540static const struct dax_operations dm_dax_ops = {
3541	.direct_access = dm_dax_direct_access,
3542	.zero_page_range = dm_dax_zero_page_range,
3543	.recovery_write = dm_dax_recovery_write,
3544};
3545
3546/*
3547 * module hooks
3548 */
3549module_init(dm_init);
3550module_exit(dm_exit);
3551
3552module_param(major, uint, 0);
3553MODULE_PARM_DESC(major, "The major number of the device mapper");
3554
3555module_param(reserved_bio_based_ios, uint, 0644);
3556MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3557
3558module_param(dm_numa_node, int, 0644);
3559MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3560
3561module_param(swap_bios, int, 0644);
3562MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3563
3564MODULE_DESCRIPTION(DM_NAME " driver");
3565MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3566MODULE_LICENSE("GPL");
3567