1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * hfcpci.c     low level driver for CCD's hfc-pci based cards
5 *
6 * Author     Werner Cornelius (werner@isdn4linux.de)
7 *            based on existing driver for CCD hfc ISA cards
8 *            type approval valid for HFC-S PCI A based card
9 *
10 * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11 * Copyright 2008  by Karsten Keil <kkeil@novell.com>
12 *
13 * Module options:
14 *
15 * debug:
16 *	NOTE: only one poll value must be given for all cards
17 *	See hfc_pci.h for debug flags.
18 *
19 * poll:
20 *	NOTE: only one poll value must be given for all cards
21 *	Give the number of samples for each fifo process.
22 *	By default 128 is used. Decrease to reduce delay, increase to
23 *	reduce cpu load. If unsure, don't mess with it!
24 *	A value of 128 will use controller's interrupt. Other values will
25 *	use kernel timer, because the controller will not allow lower values
26 *	than 128.
27 *	Also note that the value depends on the kernel timer frequency.
28 *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
29 *	If the kernel uses 100 Hz, steps of 80 samples are possible.
30 *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
31 */
32
33#include <linux/interrupt.h>
34#include <linux/module.h>
35#include <linux/pci.h>
36#include <linux/delay.h>
37#include <linux/mISDNhw.h>
38#include <linux/slab.h>
39
40#include "hfc_pci.h"
41
42static const char *hfcpci_revision = "2.0";
43
44static int HFC_cnt;
45static uint debug;
46static uint poll, tics;
47static struct timer_list hfc_tl;
48static unsigned long hfc_jiffies;
49
50MODULE_AUTHOR("Karsten Keil");
51MODULE_LICENSE("GPL");
52module_param(debug, uint, S_IRUGO | S_IWUSR);
53module_param(poll, uint, S_IRUGO | S_IWUSR);
54
55enum {
56	HFC_CCD_2BD0,
57	HFC_CCD_B000,
58	HFC_CCD_B006,
59	HFC_CCD_B007,
60	HFC_CCD_B008,
61	HFC_CCD_B009,
62	HFC_CCD_B00A,
63	HFC_CCD_B00B,
64	HFC_CCD_B00C,
65	HFC_CCD_B100,
66	HFC_CCD_B700,
67	HFC_CCD_B701,
68	HFC_ASUS_0675,
69	HFC_BERKOM_A1T,
70	HFC_BERKOM_TCONCEPT,
71	HFC_ANIGMA_MC145575,
72	HFC_ZOLTRIX_2BD0,
73	HFC_DIGI_DF_M_IOM2_E,
74	HFC_DIGI_DF_M_E,
75	HFC_DIGI_DF_M_IOM2_A,
76	HFC_DIGI_DF_M_A,
77	HFC_ABOCOM_2BD1,
78	HFC_SITECOM_DC105V2,
79};
80
81struct hfcPCI_hw {
82	unsigned char		cirm;
83	unsigned char		ctmt;
84	unsigned char		clkdel;
85	unsigned char		states;
86	unsigned char		conn;
87	unsigned char		mst_m;
88	unsigned char		int_m1;
89	unsigned char		int_m2;
90	unsigned char		sctrl;
91	unsigned char		sctrl_r;
92	unsigned char		sctrl_e;
93	unsigned char		trm;
94	unsigned char		fifo_en;
95	unsigned char		bswapped;
96	unsigned char		protocol;
97	int			nt_timer;
98	unsigned char __iomem	*pci_io; /* start of PCI IO memory */
99	dma_addr_t		dmahandle;
100	void			*fifos; /* FIFO memory */
101	int			last_bfifo_cnt[2];
102	/* marker saving last b-fifo frame count */
103	struct timer_list	timer;
104};
105
106#define	HFC_CFG_MASTER		1
107#define HFC_CFG_SLAVE		2
108#define	HFC_CFG_PCM		3
109#define HFC_CFG_2HFC		4
110#define HFC_CFG_SLAVEHFC	5
111#define HFC_CFG_NEG_F0		6
112#define HFC_CFG_SW_DD_DU	7
113
114#define FLG_HFC_TIMER_T1	16
115#define FLG_HFC_TIMER_T3	17
116
117#define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
118#define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
119#define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
120#define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
121
122
123struct hfc_pci {
124	u_char			subtype;
125	u_char			chanlimit;
126	u_char			initdone;
127	u_long			cfg;
128	u_int			irq;
129	u_int			irqcnt;
130	struct pci_dev		*pdev;
131	struct hfcPCI_hw	hw;
132	spinlock_t		lock;	/* card lock */
133	struct dchannel		dch;
134	struct bchannel		bch[2];
135};
136
137/* Interface functions */
138static void
139enable_hwirq(struct hfc_pci *hc)
140{
141	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
142	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
143}
144
145static void
146disable_hwirq(struct hfc_pci *hc)
147{
148	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
149	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
150}
151
152/*
153 * free hardware resources used by driver
154 */
155static void
156release_io_hfcpci(struct hfc_pci *hc)
157{
158	/* disable memory mapped ports + busmaster */
159	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
160	del_timer(&hc->hw.timer);
161	dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
162			  hc->hw.dmahandle);
163	iounmap(hc->hw.pci_io);
164}
165
166/*
167 * set mode (NT or TE)
168 */
169static void
170hfcpci_setmode(struct hfc_pci *hc)
171{
172	if (hc->hw.protocol == ISDN_P_NT_S0) {
173		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
174		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
175		hc->hw.states = 1;		/* G1 */
176	} else {
177		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
178		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
179		hc->hw.states = 2;		/* F2 */
180	}
181	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
182	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
183	udelay(10);
184	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
185	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
186}
187
188/*
189 * function called to reset the HFC PCI chip. A complete software reset of chip
190 * and fifos is done.
191 */
192static void
193reset_hfcpci(struct hfc_pci *hc)
194{
195	u_char	val;
196	int	cnt = 0;
197
198	printk(KERN_DEBUG "reset_hfcpci: entered\n");
199	val = Read_hfc(hc, HFCPCI_CHIP_ID);
200	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
201	/* enable memory mapped ports, disable busmaster */
202	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
203	disable_hwirq(hc);
204	/* enable memory ports + busmaster */
205	pci_write_config_word(hc->pdev, PCI_COMMAND,
206			      PCI_ENA_MEMIO + PCI_ENA_MASTER);
207	val = Read_hfc(hc, HFCPCI_STATUS);
208	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
209	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
210	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
211	set_current_state(TASK_UNINTERRUPTIBLE);
212	mdelay(10);			/* Timeout 10ms */
213	hc->hw.cirm = 0;		/* Reset Off */
214	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
215	val = Read_hfc(hc, HFCPCI_STATUS);
216	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
217	while (cnt < 50000) { /* max 50000 us */
218		udelay(5);
219		cnt += 5;
220		val = Read_hfc(hc, HFCPCI_STATUS);
221		if (!(val & 2))
222			break;
223	}
224	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
225
226	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
227
228	hc->hw.bswapped = 0;	/* no exchange */
229	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
230	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
231	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
232	hc->hw.sctrl_r = 0;
233	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
234	hc->hw.mst_m = 0;
235	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
236		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
237	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
238		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
239	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
240	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
241	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
242	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
243
244	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
245		HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
246	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
247
248	/* Clear already pending ints */
249	val = Read_hfc(hc, HFCPCI_INT_S1);
250
251	/* set NT/TE mode */
252	hfcpci_setmode(hc);
253
254	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
255	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
256
257	/*
258	 * Init GCI/IOM2 in master mode
259	 * Slots 0 and 1 are set for B-chan 1 and 2
260	 * D- and monitor/CI channel are not enabled
261	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
262	 * STIO2 is used as data input, B1+B2 from IOM->ST
263	 * ST B-channel send disabled -> continuous 1s
264	 * The IOM slots are always enabled
265	 */
266	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
267		/* set data flow directions: connect B1,B2: HFC to/from PCM */
268		hc->hw.conn = 0x09;
269	} else {
270		hc->hw.conn = 0x36;	/* set data flow directions */
271		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
272			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
273			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
274			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
275			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
276		} else {
277			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
278			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
279			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
280			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
281		}
282	}
283	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
284	val = Read_hfc(hc, HFCPCI_INT_S2);
285}
286
287/*
288 * Timer function called when kernel timer expires
289 */
290static void
291hfcpci_Timer(struct timer_list *t)
292{
293	struct hfc_pci *hc = from_timer(hc, t, hw.timer);
294	hc->hw.timer.expires = jiffies + 75;
295	/* WD RESET */
296/*
297 *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
298 *	add_timer(&hc->hw.timer);
299 */
300}
301
302
303/*
304 * select a b-channel entry matching and active
305 */
306static struct bchannel *
307Sel_BCS(struct hfc_pci *hc, int channel)
308{
309	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
310	    (hc->bch[0].nr & channel))
311		return &hc->bch[0];
312	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
313		 (hc->bch[1].nr & channel))
314		return &hc->bch[1];
315	else
316		return NULL;
317}
318
319/*
320 * clear the desired B-channel rx fifo
321 */
322static void
323hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
324{
325	u_char		fifo_state;
326	struct bzfifo	*bzr;
327
328	if (fifo) {
329		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
330		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
331	} else {
332		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
333		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
334	}
335	if (fifo_state)
336		hc->hw.fifo_en ^= fifo_state;
337	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
338	hc->hw.last_bfifo_cnt[fifo] = 0;
339	bzr->f1 = MAX_B_FRAMES;
340	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
341	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
342	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
343		le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
344	if (fifo_state)
345		hc->hw.fifo_en |= fifo_state;
346	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
347}
348
349/*
350 * clear the desired B-channel tx fifo
351 */
352static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
353{
354	u_char		fifo_state;
355	struct bzfifo	*bzt;
356
357	if (fifo) {
358		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
359		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
360	} else {
361		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
362		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
363	}
364	if (fifo_state)
365		hc->hw.fifo_en ^= fifo_state;
366	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
367	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
368		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
369		       "z1(%x) z2(%x) state(%x)\n",
370		       fifo, bzt->f1, bzt->f2,
371		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
372		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
373		       fifo_state);
374	bzt->f2 = MAX_B_FRAMES;
375	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
376	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
377	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
378	if (fifo_state)
379		hc->hw.fifo_en |= fifo_state;
380	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
381	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
382		printk(KERN_DEBUG
383		       "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
384		       fifo, bzt->f1, bzt->f2,
385		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
386		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
387}
388
389/*
390 * read a complete B-frame out of the buffer
391 */
392static void
393hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
394		   u_char *bdata, int count)
395{
396	u_char		*ptr, *ptr1, new_f2;
397	int		maxlen, new_z2;
398	struct zt	*zp;
399
400	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
401		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
402	zp = &bz->za[bz->f2];	/* point to Z-Regs */
403	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
404	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
405		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
406	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
407	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
408	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
409		if (bch->debug & DEBUG_HW)
410			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
411			       "invalid length %d or crc\n", count);
412#ifdef ERROR_STATISTIC
413		bch->err_inv++;
414#endif
415		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
416		bz->f2 = new_f2;	/* next buffer */
417	} else {
418		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
419		if (!bch->rx_skb) {
420			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
421			return;
422		}
423		count -= 3;
424		ptr = skb_put(bch->rx_skb, count);
425
426		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
427			maxlen = count;		/* complete transfer */
428		else
429			maxlen = B_FIFO_SIZE + B_SUB_VAL -
430				le16_to_cpu(zp->z2);	/* maximum */
431
432		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
433		/* start of data */
434		memcpy(ptr, ptr1, maxlen);	/* copy data */
435		count -= maxlen;
436
437		if (count) {	/* rest remaining */
438			ptr += maxlen;
439			ptr1 = bdata;	/* start of buffer */
440			memcpy(ptr, ptr1, count);	/* rest */
441		}
442		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
443		bz->f2 = new_f2;	/* next buffer */
444		recv_Bchannel(bch, MISDN_ID_ANY, false);
445	}
446}
447
448/*
449 * D-channel receive procedure
450 */
451static int
452receive_dmsg(struct hfc_pci *hc)
453{
454	struct dchannel	*dch = &hc->dch;
455	int		maxlen;
456	int		rcnt, total;
457	int		count = 5;
458	u_char		*ptr, *ptr1;
459	struct dfifo	*df;
460	struct zt	*zp;
461
462	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
463	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
464		zp = &df->za[df->f2 & D_FREG_MASK];
465		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
466		if (rcnt < 0)
467			rcnt += D_FIFO_SIZE;
468		rcnt++;
469		if (dch->debug & DEBUG_HW_DCHANNEL)
470			printk(KERN_DEBUG
471			       "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
472			       df->f1, df->f2,
473			       le16_to_cpu(zp->z1),
474			       le16_to_cpu(zp->z2),
475			       rcnt);
476
477		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
478		    (df->data[le16_to_cpu(zp->z1)])) {
479			if (dch->debug & DEBUG_HW)
480				printk(KERN_DEBUG
481				       "empty_fifo hfcpci packet inv. len "
482				       "%d or crc %d\n",
483				       rcnt,
484				       df->data[le16_to_cpu(zp->z1)]);
485#ifdef ERROR_STATISTIC
486			cs->err_rx++;
487#endif
488			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
489				(MAX_D_FRAMES + 1);	/* next buffer */
490			df->za[df->f2 & D_FREG_MASK].z2 =
491				cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
492					    (D_FIFO_SIZE - 1));
493		} else {
494			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
495			if (!dch->rx_skb) {
496				printk(KERN_WARNING
497				       "HFC-PCI: D receive out of memory\n");
498				break;
499			}
500			total = rcnt;
501			rcnt -= 3;
502			ptr = skb_put(dch->rx_skb, rcnt);
503
504			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
505				maxlen = rcnt;	/* complete transfer */
506			else
507				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
508			/* maximum */
509
510			ptr1 = df->data + le16_to_cpu(zp->z2);
511			/* start of data */
512			memcpy(ptr, ptr1, maxlen);	/* copy data */
513			rcnt -= maxlen;
514
515			if (rcnt) {	/* rest remaining */
516				ptr += maxlen;
517				ptr1 = df->data;	/* start of buffer */
518				memcpy(ptr, ptr1, rcnt);	/* rest */
519			}
520			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
521				(MAX_D_FRAMES + 1);	/* next buffer */
522			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
523									      le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
524			recv_Dchannel(dch);
525		}
526	}
527	return 1;
528}
529
530/*
531 * check for transparent receive data and read max one 'poll' size if avail
532 */
533static void
534hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
535			struct bzfifo *txbz, u_char *bdata)
536{
537	__le16	*z1r, *z2r, *z1t, *z2t;
538	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
539	u_char	*ptr, *ptr1;
540
541	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
542	z2r = z1r + 1;
543	z1t = &txbz->za[MAX_B_FRAMES].z1;
544	z2t = z1t + 1;
545
546	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
547	if (!fcnt_rx)
548		return;	/* no data avail */
549
550	if (fcnt_rx <= 0)
551		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
552	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
553	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
554		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
555
556	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
557	if (fcnt_tx <= 0)
558		fcnt_tx += B_FIFO_SIZE;
559	/* fcnt_tx contains available bytes in tx-fifo */
560	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
561	/* remaining bytes to send (bytes in tx-fifo) */
562
563	if (test_bit(FLG_RX_OFF, &bch->Flags)) {
564		bch->dropcnt += fcnt_rx;
565		*z2r = cpu_to_le16(new_z2);
566		return;
567	}
568	maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
569	if (maxlen < 0) {
570		pr_warn("B%d: No bufferspace for %d bytes\n", bch->nr, fcnt_rx);
571	} else {
572		ptr = skb_put(bch->rx_skb, fcnt_rx);
573		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
574			maxlen = fcnt_rx;	/* complete transfer */
575		else
576			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
577		/* maximum */
578
579		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
580		/* start of data */
581		memcpy(ptr, ptr1, maxlen);	/* copy data */
582		fcnt_rx -= maxlen;
583
584		if (fcnt_rx) {	/* rest remaining */
585			ptr += maxlen;
586			ptr1 = bdata;	/* start of buffer */
587			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
588		}
589		recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
590	}
591	*z2r = cpu_to_le16(new_z2);		/* new position */
592}
593
594/*
595 * B-channel main receive routine
596 */
597static void
598main_rec_hfcpci(struct bchannel *bch)
599{
600	struct hfc_pci	*hc = bch->hw;
601	int		rcnt, real_fifo;
602	int		receive = 0, count = 5;
603	struct bzfifo	*txbz, *rxbz;
604	u_char		*bdata;
605	struct zt	*zp;
606
607	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
608		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
609		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
610		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
611		real_fifo = 1;
612	} else {
613		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
614		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
615		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
616		real_fifo = 0;
617	}
618Begin:
619	count--;
620	if (rxbz->f1 != rxbz->f2) {
621		if (bch->debug & DEBUG_HW_BCHANNEL)
622			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
623			       bch->nr, rxbz->f1, rxbz->f2);
624		zp = &rxbz->za[rxbz->f2];
625
626		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
627		if (rcnt < 0)
628			rcnt += B_FIFO_SIZE;
629		rcnt++;
630		if (bch->debug & DEBUG_HW_BCHANNEL)
631			printk(KERN_DEBUG
632			       "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
633			       bch->nr, le16_to_cpu(zp->z1),
634			       le16_to_cpu(zp->z2), rcnt);
635		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
636		rcnt = rxbz->f1 - rxbz->f2;
637		if (rcnt < 0)
638			rcnt += MAX_B_FRAMES + 1;
639		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
640			rcnt = 0;
641			hfcpci_clear_fifo_rx(hc, real_fifo);
642		}
643		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
644		if (rcnt > 1)
645			receive = 1;
646		else
647			receive = 0;
648	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
649		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
650		return;
651	} else
652		receive = 0;
653	if (count && receive)
654		goto Begin;
655
656}
657
658/*
659 * D-channel send routine
660 */
661static void
662hfcpci_fill_dfifo(struct hfc_pci *hc)
663{
664	struct dchannel	*dch = &hc->dch;
665	int		fcnt;
666	int		count, new_z1, maxlen;
667	struct dfifo	*df;
668	u_char		*src, *dst, new_f1;
669
670	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
671		printk(KERN_DEBUG "%s\n", __func__);
672
673	if (!dch->tx_skb)
674		return;
675	count = dch->tx_skb->len - dch->tx_idx;
676	if (count <= 0)
677		return;
678	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
679
680	if (dch->debug & DEBUG_HW_DFIFO)
681		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
682		       df->f1, df->f2,
683		       le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
684	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
685	if (fcnt < 0)
686		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
687	if (fcnt > (MAX_D_FRAMES - 1)) {
688		if (dch->debug & DEBUG_HW_DCHANNEL)
689			printk(KERN_DEBUG
690			       "hfcpci_fill_Dfifo more as 14 frames\n");
691#ifdef ERROR_STATISTIC
692		cs->err_tx++;
693#endif
694		return;
695	}
696	/* now determine free bytes in FIFO buffer */
697	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
698		le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
699	if (maxlen <= 0)
700		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
701
702	if (dch->debug & DEBUG_HW_DCHANNEL)
703		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
704		       count, maxlen);
705	if (count > maxlen) {
706		if (dch->debug & DEBUG_HW_DCHANNEL)
707			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
708		return;
709	}
710	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
711		(D_FIFO_SIZE - 1);
712	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
713	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
714	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
715	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
716	/* end fifo */
717	if (maxlen > count)
718		maxlen = count;	/* limit size */
719	memcpy(dst, src, maxlen);	/* first copy */
720
721	count -= maxlen;	/* remaining bytes */
722	if (count) {
723		dst = df->data;	/* start of buffer */
724		src += maxlen;	/* new position */
725		memcpy(dst, src, count);
726	}
727	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
728	/* for next buffer */
729	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
730	/* new pos actual buffer */
731	df->f1 = new_f1;	/* next frame */
732	dch->tx_idx = dch->tx_skb->len;
733}
734
735/*
736 * B-channel send routine
737 */
738static void
739hfcpci_fill_fifo(struct bchannel *bch)
740{
741	struct hfc_pci	*hc = bch->hw;
742	int		maxlen, fcnt;
743	int		count, new_z1;
744	struct bzfifo	*bz;
745	u_char		*bdata;
746	u_char		new_f1, *src, *dst;
747	__le16 *z1t, *z2t;
748
749	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
750		printk(KERN_DEBUG "%s\n", __func__);
751	if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
752		if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
753		    !test_bit(FLG_TRANSPARENT, &bch->Flags))
754			return;
755		count = HFCPCI_FILLEMPTY;
756	} else {
757		count = bch->tx_skb->len - bch->tx_idx;
758	}
759	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
760		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
761		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
762	} else {
763		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
764		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
765	}
766
767	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
768		z1t = &bz->za[MAX_B_FRAMES].z1;
769		z2t = z1t + 1;
770		if (bch->debug & DEBUG_HW_BCHANNEL)
771			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
772			       "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
773			       le16_to_cpu(*z1t), le16_to_cpu(*z2t));
774		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
775		if (fcnt <= 0)
776			fcnt += B_FIFO_SIZE;
777		if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
778			/* fcnt contains available bytes in fifo */
779			if (count > fcnt)
780				count = fcnt;
781			new_z1 = le16_to_cpu(*z1t) + count;
782			/* new buffer Position */
783			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
784				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
785			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
786			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
787			/* end of fifo */
788			if (bch->debug & DEBUG_HW_BFIFO)
789				printk(KERN_DEBUG "hfcpci_FFt fillempty "
790				       "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
791				       fcnt, maxlen, new_z1, dst);
792			if (maxlen > count)
793				maxlen = count;		/* limit size */
794			memset(dst, bch->fill[0], maxlen); /* first copy */
795			count -= maxlen;		/* remaining bytes */
796			if (count) {
797				dst = bdata;		/* start of buffer */
798				memset(dst, bch->fill[0], count);
799			}
800			*z1t = cpu_to_le16(new_z1);	/* now send data */
801			return;
802		}
803		/* fcnt contains available bytes in fifo */
804		fcnt = B_FIFO_SIZE - fcnt;
805		/* remaining bytes to send (bytes in fifo) */
806
807	next_t_frame:
808		count = bch->tx_skb->len - bch->tx_idx;
809		/* maximum fill shall be poll*2 */
810		if (count > (poll << 1) - fcnt)
811			count = (poll << 1) - fcnt;
812		if (count <= 0)
813			return;
814		/* data is suitable for fifo */
815		new_z1 = le16_to_cpu(*z1t) + count;
816		/* new buffer Position */
817		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
818			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
819		src = bch->tx_skb->data + bch->tx_idx;
820		/* source pointer */
821		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
822		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
823		/* end of fifo */
824		if (bch->debug & DEBUG_HW_BFIFO)
825			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
826			       "maxl(%d) nz1(%x) dst(%p)\n",
827			       fcnt, maxlen, new_z1, dst);
828		fcnt += count;
829		bch->tx_idx += count;
830		if (maxlen > count)
831			maxlen = count;		/* limit size */
832		memcpy(dst, src, maxlen);	/* first copy */
833		count -= maxlen;	/* remaining bytes */
834		if (count) {
835			dst = bdata;	/* start of buffer */
836			src += maxlen;	/* new position */
837			memcpy(dst, src, count);
838		}
839		*z1t = cpu_to_le16(new_z1);	/* now send data */
840		if (bch->tx_idx < bch->tx_skb->len)
841			return;
842		dev_kfree_skb_any(bch->tx_skb);
843		if (get_next_bframe(bch))
844			goto next_t_frame;
845		return;
846	}
847	if (bch->debug & DEBUG_HW_BCHANNEL)
848		printk(KERN_DEBUG
849		       "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
850		       __func__, bch->nr, bz->f1, bz->f2,
851		       bz->za[bz->f1].z1);
852	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
853	if (fcnt < 0)
854		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
855	if (fcnt > (MAX_B_FRAMES - 1)) {
856		if (bch->debug & DEBUG_HW_BCHANNEL)
857			printk(KERN_DEBUG
858			       "hfcpci_fill_Bfifo more as 14 frames\n");
859		return;
860	}
861	/* now determine free bytes in FIFO buffer */
862	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
863		le16_to_cpu(bz->za[bz->f1].z1) - 1;
864	if (maxlen <= 0)
865		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
866
867	if (bch->debug & DEBUG_HW_BCHANNEL)
868		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
869		       bch->nr, count, maxlen);
870
871	if (maxlen < count) {
872		if (bch->debug & DEBUG_HW_BCHANNEL)
873			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
874		return;
875	}
876	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
877	/* new buffer Position */
878	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
879		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
880
881	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
882	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
883	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
884	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
885	/* end fifo */
886	if (maxlen > count)
887		maxlen = count;	/* limit size */
888	memcpy(dst, src, maxlen);	/* first copy */
889
890	count -= maxlen;	/* remaining bytes */
891	if (count) {
892		dst = bdata;	/* start of buffer */
893		src += maxlen;	/* new position */
894		memcpy(dst, src, count);
895	}
896	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
897	bz->f1 = new_f1;	/* next frame */
898	dev_kfree_skb_any(bch->tx_skb);
899	get_next_bframe(bch);
900}
901
902
903
904/*
905 * handle L1 state changes TE
906 */
907
908static void
909ph_state_te(struct dchannel *dch)
910{
911	if (dch->debug)
912		printk(KERN_DEBUG "%s: TE newstate %x\n",
913		       __func__, dch->state);
914	switch (dch->state) {
915	case 0:
916		l1_event(dch->l1, HW_RESET_IND);
917		break;
918	case 3:
919		l1_event(dch->l1, HW_DEACT_IND);
920		break;
921	case 5:
922	case 8:
923		l1_event(dch->l1, ANYSIGNAL);
924		break;
925	case 6:
926		l1_event(dch->l1, INFO2);
927		break;
928	case 7:
929		l1_event(dch->l1, INFO4_P8);
930		break;
931	}
932}
933
934/*
935 * handle L1 state changes NT
936 */
937
938static void
939handle_nt_timer3(struct dchannel *dch) {
940	struct hfc_pci	*hc = dch->hw;
941
942	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
943	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
944	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
945	hc->hw.nt_timer = 0;
946	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
947	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
948		hc->hw.mst_m |= HFCPCI_MASTER;
949	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
950	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
951		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
952}
953
954static void
955ph_state_nt(struct dchannel *dch)
956{
957	struct hfc_pci	*hc = dch->hw;
958
959	if (dch->debug)
960		printk(KERN_DEBUG "%s: NT newstate %x\n",
961		       __func__, dch->state);
962	switch (dch->state) {
963	case 2:
964		if (hc->hw.nt_timer < 0) {
965			hc->hw.nt_timer = 0;
966			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
967			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
968			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
969			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
970			/* Clear already pending ints */
971			(void) Read_hfc(hc, HFCPCI_INT_S1);
972			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
973			udelay(10);
974			Write_hfc(hc, HFCPCI_STATES, 4);
975			dch->state = 4;
976		} else if (hc->hw.nt_timer == 0) {
977			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
978			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
979			hc->hw.nt_timer = NT_T1_COUNT;
980			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
981			hc->hw.ctmt |= HFCPCI_TIM3_125;
982			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
983				  HFCPCI_CLTIMER);
984			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
985			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
986			/* allow G2 -> G3 transition */
987			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
988		} else {
989			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
990		}
991		break;
992	case 1:
993		hc->hw.nt_timer = 0;
994		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
995		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
996		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
997		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
998		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
999		hc->hw.mst_m &= ~HFCPCI_MASTER;
1000		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1001		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1002		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1003			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1004		break;
1005	case 4:
1006		hc->hw.nt_timer = 0;
1007		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011		break;
1012	case 3:
1013		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1014			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1015						&dch->Flags)) {
1016				handle_nt_timer3(dch);
1017				break;
1018			}
1019			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1020			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1021			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1022			hc->hw.nt_timer = NT_T3_COUNT;
1023			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1024			hc->hw.ctmt |= HFCPCI_TIM3_125;
1025			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1026				  HFCPCI_CLTIMER);
1027		}
1028		break;
1029	}
1030}
1031
1032static void
1033ph_state(struct dchannel *dch)
1034{
1035	struct hfc_pci	*hc = dch->hw;
1036
1037	if (hc->hw.protocol == ISDN_P_NT_S0) {
1038		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1039		    hc->hw.nt_timer < 0)
1040			handle_nt_timer3(dch);
1041		else
1042			ph_state_nt(dch);
1043	} else
1044		ph_state_te(dch);
1045}
1046
1047/*
1048 * Layer 1 callback function
1049 */
1050static int
1051hfc_l1callback(struct dchannel *dch, u_int cmd)
1052{
1053	struct hfc_pci		*hc = dch->hw;
1054
1055	switch (cmd) {
1056	case INFO3_P8:
1057	case INFO3_P10:
1058		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1059			hc->hw.mst_m |= HFCPCI_MASTER;
1060		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1061		break;
1062	case HW_RESET_REQ:
1063		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1064		/* HFC ST 3 */
1065		udelay(6);
1066		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1067		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1068			hc->hw.mst_m |= HFCPCI_MASTER;
1069		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1070		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1071			  HFCPCI_DO_ACTION);
1072		l1_event(dch->l1, HW_POWERUP_IND);
1073		break;
1074	case HW_DEACT_REQ:
1075		hc->hw.mst_m &= ~HFCPCI_MASTER;
1076		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1077		skb_queue_purge(&dch->squeue);
1078		if (dch->tx_skb) {
1079			dev_kfree_skb(dch->tx_skb);
1080			dch->tx_skb = NULL;
1081		}
1082		dch->tx_idx = 0;
1083		if (dch->rx_skb) {
1084			dev_kfree_skb(dch->rx_skb);
1085			dch->rx_skb = NULL;
1086		}
1087		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1088		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1089			del_timer(&dch->timer);
1090		break;
1091	case HW_POWERUP_REQ:
1092		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1093		break;
1094	case PH_ACTIVATE_IND:
1095		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1096		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1097			    GFP_ATOMIC);
1098		break;
1099	case PH_DEACTIVATE_IND:
1100		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1101		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1102			    GFP_ATOMIC);
1103		break;
1104	default:
1105		if (dch->debug & DEBUG_HW)
1106			printk(KERN_DEBUG "%s: unknown command %x\n",
1107			       __func__, cmd);
1108		return -1;
1109	}
1110	return 0;
1111}
1112
1113/*
1114 * Interrupt handler
1115 */
1116static inline void
1117tx_birq(struct bchannel *bch)
1118{
1119	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1120		hfcpci_fill_fifo(bch);
1121	else {
1122		dev_kfree_skb_any(bch->tx_skb);
1123		if (get_next_bframe(bch))
1124			hfcpci_fill_fifo(bch);
1125	}
1126}
1127
1128static inline void
1129tx_dirq(struct dchannel *dch)
1130{
1131	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1132		hfcpci_fill_dfifo(dch->hw);
1133	else {
1134		dev_kfree_skb(dch->tx_skb);
1135		if (get_next_dframe(dch))
1136			hfcpci_fill_dfifo(dch->hw);
1137	}
1138}
1139
1140static irqreturn_t
1141hfcpci_int(int intno, void *dev_id)
1142{
1143	struct hfc_pci	*hc = dev_id;
1144	u_char		exval;
1145	struct bchannel	*bch;
1146	u_char		val, stat;
1147
1148	spin_lock(&hc->lock);
1149	if (!(hc->hw.int_m2 & 0x08)) {
1150		spin_unlock(&hc->lock);
1151		return IRQ_NONE; /* not initialised */
1152	}
1153	stat = Read_hfc(hc, HFCPCI_STATUS);
1154	if (HFCPCI_ANYINT & stat) {
1155		val = Read_hfc(hc, HFCPCI_INT_S1);
1156		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1157			printk(KERN_DEBUG
1158			       "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1159	} else {
1160		/* shared */
1161		spin_unlock(&hc->lock);
1162		return IRQ_NONE;
1163	}
1164	hc->irqcnt++;
1165
1166	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1167		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1168	val &= hc->hw.int_m1;
1169	if (val & 0x40) {	/* state machine irq */
1170		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1171		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1173			       hc->dch.state, exval);
1174		hc->dch.state = exval;
1175		schedule_event(&hc->dch, FLG_PHCHANGE);
1176		val &= ~0x40;
1177	}
1178	if (val & 0x80) {	/* timer irq */
1179		if (hc->hw.protocol == ISDN_P_NT_S0) {
1180			if ((--hc->hw.nt_timer) < 0)
1181				schedule_event(&hc->dch, FLG_PHCHANGE);
1182		}
1183		val &= ~0x80;
1184		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1185	}
1186	if (val & 0x08) {	/* B1 rx */
1187		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1188		if (bch)
1189			main_rec_hfcpci(bch);
1190		else if (hc->dch.debug)
1191			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1192	}
1193	if (val & 0x10) {	/* B2 rx */
1194		bch = Sel_BCS(hc, 2);
1195		if (bch)
1196			main_rec_hfcpci(bch);
1197		else if (hc->dch.debug)
1198			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1199	}
1200	if (val & 0x01) {	/* B1 tx */
1201		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1202		if (bch)
1203			tx_birq(bch);
1204		else if (hc->dch.debug)
1205			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1206	}
1207	if (val & 0x02) {	/* B2 tx */
1208		bch = Sel_BCS(hc, 2);
1209		if (bch)
1210			tx_birq(bch);
1211		else if (hc->dch.debug)
1212			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1213	}
1214	if (val & 0x20)		/* D rx */
1215		receive_dmsg(hc);
1216	if (val & 0x04) {	/* D tx */
1217		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1218			del_timer(&hc->dch.timer);
1219		tx_dirq(&hc->dch);
1220	}
1221	spin_unlock(&hc->lock);
1222	return IRQ_HANDLED;
1223}
1224
1225/*
1226 * timer callback for D-chan busy resolution. Currently no function
1227 */
1228static void
1229hfcpci_dbusy_timer(struct timer_list *t)
1230{
1231}
1232
1233/*
1234 * activate/deactivate hardware for selected channels and mode
1235 */
1236static int
1237mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1238{
1239	struct hfc_pci	*hc = bch->hw;
1240	int		fifo2;
1241	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1242
1243	if (bch->debug & DEBUG_HW_BCHANNEL)
1244		printk(KERN_DEBUG
1245		       "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1246		       bch->state, protocol, bch->nr, bc);
1247
1248	fifo2 = bc;
1249	pcm_mode = (bc >> 24) & 0xff;
1250	if (pcm_mode) { /* PCM SLOT USE */
1251		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1252			printk(KERN_WARNING
1253			       "%s: pcm channel id without HFC_CFG_PCM\n",
1254			       __func__);
1255		rx_slot = (bc >> 8) & 0xff;
1256		tx_slot = (bc >> 16) & 0xff;
1257		bc = bc & 0xff;
1258	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1259		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1260		       __func__);
1261	if (hc->chanlimit > 1) {
1262		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1263		hc->hw.sctrl_e &= ~0x80;
1264	} else {
1265		if (bc & 2) {
1266			if (protocol != ISDN_P_NONE) {
1267				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1268				hc->hw.sctrl_e |= 0x80;
1269			} else {
1270				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1271				hc->hw.sctrl_e &= ~0x80;
1272			}
1273			fifo2 = 1;
1274		} else {
1275			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1276			hc->hw.sctrl_e &= ~0x80;
1277		}
1278	}
1279	switch (protocol) {
1280	case (-1): /* used for init */
1281		bch->state = -1;
1282		bch->nr = bc;
1283		fallthrough;
1284	case (ISDN_P_NONE):
1285		if (bch->state == ISDN_P_NONE)
1286			return 0;
1287		if (bc & 2) {
1288			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1289			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1290		} else {
1291			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1292			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1293		}
1294		if (fifo2 & 2) {
1295			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1296			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
1297					   HFCPCI_INTS_B2REC);
1298		} else {
1299			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1300			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
1301					   HFCPCI_INTS_B1REC);
1302		}
1303#ifdef REVERSE_BITORDER
1304		if (bch->nr & 2)
1305			hc->hw.cirm &= 0x7f;
1306		else
1307			hc->hw.cirm &= 0xbf;
1308#endif
1309		bch->state = ISDN_P_NONE;
1310		bch->nr = bc;
1311		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1312		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1313		break;
1314	case (ISDN_P_B_RAW):
1315		bch->state = protocol;
1316		bch->nr = bc;
1317		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1318		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1319		if (bc & 2) {
1320			hc->hw.sctrl |= SCTRL_B2_ENA;
1321			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1322#ifdef REVERSE_BITORDER
1323			hc->hw.cirm |= 0x80;
1324#endif
1325		} else {
1326			hc->hw.sctrl |= SCTRL_B1_ENA;
1327			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1328#ifdef REVERSE_BITORDER
1329			hc->hw.cirm |= 0x40;
1330#endif
1331		}
1332		if (fifo2 & 2) {
1333			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1334			if (!tics)
1335				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1336						  HFCPCI_INTS_B2REC);
1337			hc->hw.ctmt |= 2;
1338			hc->hw.conn &= ~0x18;
1339		} else {
1340			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1341			if (!tics)
1342				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1343						  HFCPCI_INTS_B1REC);
1344			hc->hw.ctmt |= 1;
1345			hc->hw.conn &= ~0x03;
1346		}
1347		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1348		break;
1349	case (ISDN_P_B_HDLC):
1350		bch->state = protocol;
1351		bch->nr = bc;
1352		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1353		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1354		if (bc & 2) {
1355			hc->hw.sctrl |= SCTRL_B2_ENA;
1356			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1357		} else {
1358			hc->hw.sctrl |= SCTRL_B1_ENA;
1359			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1360		}
1361		if (fifo2 & 2) {
1362			hc->hw.last_bfifo_cnt[1] = 0;
1363			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1364			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1365					  HFCPCI_INTS_B2REC);
1366			hc->hw.ctmt &= ~2;
1367			hc->hw.conn &= ~0x18;
1368		} else {
1369			hc->hw.last_bfifo_cnt[0] = 0;
1370			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1371			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1372					  HFCPCI_INTS_B1REC);
1373			hc->hw.ctmt &= ~1;
1374			hc->hw.conn &= ~0x03;
1375		}
1376		test_and_set_bit(FLG_HDLC, &bch->Flags);
1377		break;
1378	default:
1379		printk(KERN_DEBUG "prot not known %x\n", protocol);
1380		return -ENOPROTOOPT;
1381	}
1382	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1383		if ((protocol == ISDN_P_NONE) ||
1384		    (protocol == -1)) {	/* init case */
1385			rx_slot = 0;
1386			tx_slot = 0;
1387		} else {
1388			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1389				rx_slot |= 0xC0;
1390				tx_slot |= 0xC0;
1391			} else {
1392				rx_slot |= 0x80;
1393				tx_slot |= 0x80;
1394			}
1395		}
1396		if (bc & 2) {
1397			hc->hw.conn &= 0xc7;
1398			hc->hw.conn |= 0x08;
1399			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1400			       __func__, tx_slot);
1401			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1402			       __func__, rx_slot);
1403			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1404			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1405		} else {
1406			hc->hw.conn &= 0xf8;
1407			hc->hw.conn |= 0x01;
1408			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1409			       __func__, tx_slot);
1410			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1411			       __func__, rx_slot);
1412			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1413			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1414		}
1415	}
1416	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1417	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1418	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1419	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1420	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1421	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1422	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1423#ifdef REVERSE_BITORDER
1424	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1425#endif
1426	return 0;
1427}
1428
1429static int
1430set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1431{
1432	struct hfc_pci	*hc = bch->hw;
1433
1434	if (bch->debug & DEBUG_HW_BCHANNEL)
1435		printk(KERN_DEBUG
1436		       "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1437		       bch->state, protocol, bch->nr, chan);
1438	if (bch->nr != chan) {
1439		printk(KERN_DEBUG
1440		       "HFCPCI rxtest wrong channel parameter %x/%x\n",
1441		       bch->nr, chan);
1442		return -EINVAL;
1443	}
1444	switch (protocol) {
1445	case (ISDN_P_B_RAW):
1446		bch->state = protocol;
1447		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1448		if (chan & 2) {
1449			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1450			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1451			if (!tics)
1452				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1453			hc->hw.ctmt |= 2;
1454			hc->hw.conn &= ~0x18;
1455#ifdef REVERSE_BITORDER
1456			hc->hw.cirm |= 0x80;
1457#endif
1458		} else {
1459			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1460			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1461			if (!tics)
1462				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1463			hc->hw.ctmt |= 1;
1464			hc->hw.conn &= ~0x03;
1465#ifdef REVERSE_BITORDER
1466			hc->hw.cirm |= 0x40;
1467#endif
1468		}
1469		break;
1470	case (ISDN_P_B_HDLC):
1471		bch->state = protocol;
1472		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1473		if (chan & 2) {
1474			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1475			hc->hw.last_bfifo_cnt[1] = 0;
1476			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1477			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1478			hc->hw.ctmt &= ~2;
1479			hc->hw.conn &= ~0x18;
1480		} else {
1481			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1482			hc->hw.last_bfifo_cnt[0] = 0;
1483			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1484			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1485			hc->hw.ctmt &= ~1;
1486			hc->hw.conn &= ~0x03;
1487		}
1488		break;
1489	default:
1490		printk(KERN_DEBUG "prot not known %x\n", protocol);
1491		return -ENOPROTOOPT;
1492	}
1493	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1494	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1495	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1496	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1497	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1498#ifdef REVERSE_BITORDER
1499	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1500#endif
1501	return 0;
1502}
1503
1504static void
1505deactivate_bchannel(struct bchannel *bch)
1506{
1507	struct hfc_pci	*hc = bch->hw;
1508	u_long		flags;
1509
1510	spin_lock_irqsave(&hc->lock, flags);
1511	mISDN_clear_bchannel(bch);
1512	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1513	spin_unlock_irqrestore(&hc->lock, flags);
1514}
1515
1516/*
1517 * Layer 1 B-channel hardware access
1518 */
1519static int
1520channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1521{
1522	return mISDN_ctrl_bchannel(bch, cq);
1523}
1524static int
1525hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1526{
1527	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1528	struct hfc_pci	*hc = bch->hw;
1529	int		ret = -EINVAL;
1530	u_long		flags;
1531
1532	if (bch->debug & DEBUG_HW)
1533		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1534	switch (cmd) {
1535	case HW_TESTRX_RAW:
1536		spin_lock_irqsave(&hc->lock, flags);
1537		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1538		spin_unlock_irqrestore(&hc->lock, flags);
1539		break;
1540	case HW_TESTRX_HDLC:
1541		spin_lock_irqsave(&hc->lock, flags);
1542		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1543		spin_unlock_irqrestore(&hc->lock, flags);
1544		break;
1545	case HW_TESTRX_OFF:
1546		spin_lock_irqsave(&hc->lock, flags);
1547		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1548		spin_unlock_irqrestore(&hc->lock, flags);
1549		ret = 0;
1550		break;
1551	case CLOSE_CHANNEL:
1552		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1553		deactivate_bchannel(bch);
1554		ch->protocol = ISDN_P_NONE;
1555		ch->peer = NULL;
1556		module_put(THIS_MODULE);
1557		ret = 0;
1558		break;
1559	case CONTROL_CHANNEL:
1560		ret = channel_bctrl(bch, arg);
1561		break;
1562	default:
1563		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1564		       __func__, cmd);
1565	}
1566	return ret;
1567}
1568
1569/*
1570 * Layer2 -> Layer 1 Dchannel data
1571 */
1572static int
1573hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1574{
1575	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1576	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1577	struct hfc_pci		*hc = dch->hw;
1578	int			ret = -EINVAL;
1579	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1580	unsigned int		id;
1581	u_long			flags;
1582
1583	switch (hh->prim) {
1584	case PH_DATA_REQ:
1585		spin_lock_irqsave(&hc->lock, flags);
1586		ret = dchannel_senddata(dch, skb);
1587		if (ret > 0) { /* direct TX */
1588			id = hh->id; /* skb can be freed */
1589			hfcpci_fill_dfifo(dch->hw);
1590			ret = 0;
1591			spin_unlock_irqrestore(&hc->lock, flags);
1592			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1593		} else
1594			spin_unlock_irqrestore(&hc->lock, flags);
1595		return ret;
1596	case PH_ACTIVATE_REQ:
1597		spin_lock_irqsave(&hc->lock, flags);
1598		if (hc->hw.protocol == ISDN_P_NT_S0) {
1599			ret = 0;
1600			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1601				hc->hw.mst_m |= HFCPCI_MASTER;
1602			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1603			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1604				spin_unlock_irqrestore(&hc->lock, flags);
1605				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1606					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1607				break;
1608			}
1609			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1610			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1611				  HFCPCI_DO_ACTION | 1);
1612		} else
1613			ret = l1_event(dch->l1, hh->prim);
1614		spin_unlock_irqrestore(&hc->lock, flags);
1615		break;
1616	case PH_DEACTIVATE_REQ:
1617		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1618		spin_lock_irqsave(&hc->lock, flags);
1619		if (hc->hw.protocol == ISDN_P_NT_S0) {
1620			struct sk_buff_head free_queue;
1621
1622			__skb_queue_head_init(&free_queue);
1623			/* prepare deactivation */
1624			Write_hfc(hc, HFCPCI_STATES, 0x40);
1625			skb_queue_splice_init(&dch->squeue, &free_queue);
1626			if (dch->tx_skb) {
1627				__skb_queue_tail(&free_queue, dch->tx_skb);
1628				dch->tx_skb = NULL;
1629			}
1630			dch->tx_idx = 0;
1631			if (dch->rx_skb) {
1632				__skb_queue_tail(&free_queue, dch->rx_skb);
1633				dch->rx_skb = NULL;
1634			}
1635			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1636			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1637				del_timer(&dch->timer);
1638#ifdef FIXME
1639			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1640				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1641#endif
1642			hc->hw.mst_m &= ~HFCPCI_MASTER;
1643			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1644			ret = 0;
1645			spin_unlock_irqrestore(&hc->lock, flags);
1646			__skb_queue_purge(&free_queue);
1647		} else {
1648			ret = l1_event(dch->l1, hh->prim);
1649			spin_unlock_irqrestore(&hc->lock, flags);
1650		}
1651		break;
1652	}
1653	if (!ret)
1654		dev_kfree_skb(skb);
1655	return ret;
1656}
1657
1658/*
1659 * Layer2 -> Layer 1 Bchannel data
1660 */
1661static int
1662hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1663{
1664	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1665	struct hfc_pci		*hc = bch->hw;
1666	int			ret = -EINVAL;
1667	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1668	unsigned long		flags;
1669
1670	switch (hh->prim) {
1671	case PH_DATA_REQ:
1672		spin_lock_irqsave(&hc->lock, flags);
1673		ret = bchannel_senddata(bch, skb);
1674		if (ret > 0) { /* direct TX */
1675			hfcpci_fill_fifo(bch);
1676			ret = 0;
1677		}
1678		spin_unlock_irqrestore(&hc->lock, flags);
1679		return ret;
1680	case PH_ACTIVATE_REQ:
1681		spin_lock_irqsave(&hc->lock, flags);
1682		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1683			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1684		else
1685			ret = 0;
1686		spin_unlock_irqrestore(&hc->lock, flags);
1687		if (!ret)
1688			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1689				    NULL, GFP_KERNEL);
1690		break;
1691	case PH_DEACTIVATE_REQ:
1692		deactivate_bchannel(bch);
1693		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1694			    NULL, GFP_KERNEL);
1695		ret = 0;
1696		break;
1697	}
1698	if (!ret)
1699		dev_kfree_skb(skb);
1700	return ret;
1701}
1702
1703/*
1704 * called for card init message
1705 */
1706
1707static void
1708inithfcpci(struct hfc_pci *hc)
1709{
1710	printk(KERN_DEBUG "inithfcpci: entered\n");
1711	timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0);
1712	hc->chanlimit = 2;
1713	mode_hfcpci(&hc->bch[0], 1, -1);
1714	mode_hfcpci(&hc->bch[1], 2, -1);
1715}
1716
1717
1718static int
1719init_card(struct hfc_pci *hc)
1720{
1721	int	cnt = 3;
1722	u_long	flags;
1723
1724	printk(KERN_DEBUG "init_card: entered\n");
1725
1726
1727	spin_lock_irqsave(&hc->lock, flags);
1728	disable_hwirq(hc);
1729	spin_unlock_irqrestore(&hc->lock, flags);
1730	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1731		printk(KERN_WARNING
1732		       "mISDN: couldn't get interrupt %d\n", hc->irq);
1733		return -EIO;
1734	}
1735	spin_lock_irqsave(&hc->lock, flags);
1736	reset_hfcpci(hc);
1737	while (cnt) {
1738		inithfcpci(hc);
1739		/*
1740		 * Finally enable IRQ output
1741		 * this is only allowed, if an IRQ routine is already
1742		 * established for this HFC, so don't do that earlier
1743		 */
1744		enable_hwirq(hc);
1745		spin_unlock_irqrestore(&hc->lock, flags);
1746		/* Timeout 80ms */
1747		set_current_state(TASK_UNINTERRUPTIBLE);
1748		schedule_timeout((80 * HZ) / 1000);
1749		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1750		       hc->irq, hc->irqcnt);
1751		/* now switch timer interrupt off */
1752		spin_lock_irqsave(&hc->lock, flags);
1753		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1754		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1755		/* reinit mode reg */
1756		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1757		if (!hc->irqcnt) {
1758			printk(KERN_WARNING
1759			       "HFC PCI: IRQ(%d) getting no interrupts "
1760			       "during init %d\n", hc->irq, 4 - cnt);
1761			if (cnt == 1)
1762				break;
1763			else {
1764				reset_hfcpci(hc);
1765				cnt--;
1766			}
1767		} else {
1768			spin_unlock_irqrestore(&hc->lock, flags);
1769			hc->initdone = 1;
1770			return 0;
1771		}
1772	}
1773	disable_hwirq(hc);
1774	spin_unlock_irqrestore(&hc->lock, flags);
1775	free_irq(hc->irq, hc);
1776	return -EIO;
1777}
1778
1779static int
1780channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1781{
1782	int	ret = 0;
1783	u_char	slot;
1784
1785	switch (cq->op) {
1786	case MISDN_CTRL_GETOP:
1787		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1788			 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1789		break;
1790	case MISDN_CTRL_LOOP:
1791		/* channel 0 disabled loop */
1792		if (cq->channel < 0 || cq->channel > 2) {
1793			ret = -EINVAL;
1794			break;
1795		}
1796		if (cq->channel & 1) {
1797			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1798				slot = 0xC0;
1799			else
1800				slot = 0x80;
1801			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1802			       __func__, slot);
1803			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1804			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1805			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1806			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1807		}
1808		if (cq->channel & 2) {
1809			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1810				slot = 0xC1;
1811			else
1812				slot = 0x81;
1813			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1814			       __func__, slot);
1815			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1816			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1817			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1818			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1819		}
1820		if (cq->channel & 3)
1821			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1822		else {
1823			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1824			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1825			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1826		}
1827		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1828		break;
1829	case MISDN_CTRL_CONNECT:
1830		if (cq->channel == cq->p1) {
1831			ret = -EINVAL;
1832			break;
1833		}
1834		if (cq->channel < 1 || cq->channel > 2 ||
1835		    cq->p1 < 1 || cq->p1 > 2) {
1836			ret = -EINVAL;
1837			break;
1838		}
1839		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1840			slot = 0xC0;
1841		else
1842			slot = 0x80;
1843		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1844		       __func__, slot);
1845		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1846		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1847		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1848			slot = 0xC1;
1849		else
1850			slot = 0x81;
1851		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1852		       __func__, slot);
1853		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1854		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1855		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1856		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1857		hc->hw.trm |= 0x80;
1858		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1859		break;
1860	case MISDN_CTRL_DISCONNECT:
1861		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1862		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1863		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1864		break;
1865	case MISDN_CTRL_L1_TIMER3:
1866		ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1867		break;
1868	default:
1869		printk(KERN_WARNING "%s: unknown Op %x\n",
1870		       __func__, cq->op);
1871		ret = -EINVAL;
1872		break;
1873	}
1874	return ret;
1875}
1876
1877static int
1878open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1879	      struct channel_req *rq)
1880{
1881	int err = 0;
1882
1883	if (debug & DEBUG_HW_OPEN)
1884		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1885		       hc->dch.dev.id, __builtin_return_address(0));
1886	if (rq->protocol == ISDN_P_NONE)
1887		return -EINVAL;
1888	if (rq->adr.channel == 1) {
1889		/* TODO: E-Channel */
1890		return -EINVAL;
1891	}
1892	if (!hc->initdone) {
1893		if (rq->protocol == ISDN_P_TE_S0) {
1894			err = create_l1(&hc->dch, hfc_l1callback);
1895			if (err)
1896				return err;
1897		}
1898		hc->hw.protocol = rq->protocol;
1899		ch->protocol = rq->protocol;
1900		err = init_card(hc);
1901		if (err)
1902			return err;
1903	} else {
1904		if (rq->protocol != ch->protocol) {
1905			if (hc->hw.protocol == ISDN_P_TE_S0)
1906				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1907			if (rq->protocol == ISDN_P_TE_S0) {
1908				err = create_l1(&hc->dch, hfc_l1callback);
1909				if (err)
1910					return err;
1911			}
1912			hc->hw.protocol = rq->protocol;
1913			ch->protocol = rq->protocol;
1914			hfcpci_setmode(hc);
1915		}
1916	}
1917
1918	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1919	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1920		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1921			    0, NULL, GFP_KERNEL);
1922	}
1923	rq->ch = ch;
1924	if (!try_module_get(THIS_MODULE))
1925		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1926	return 0;
1927}
1928
1929static int
1930open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1931{
1932	struct bchannel		*bch;
1933
1934	if (rq->adr.channel == 0 || rq->adr.channel > 2)
1935		return -EINVAL;
1936	if (rq->protocol == ISDN_P_NONE)
1937		return -EINVAL;
1938	bch = &hc->bch[rq->adr.channel - 1];
1939	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1940		return -EBUSY; /* b-channel can be only open once */
1941	bch->ch.protocol = rq->protocol;
1942	rq->ch = &bch->ch; /* TODO: E-channel */
1943	if (!try_module_get(THIS_MODULE))
1944		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1945	return 0;
1946}
1947
1948/*
1949 * device control function
1950 */
1951static int
1952hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1953{
1954	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1955	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1956	struct hfc_pci		*hc = dch->hw;
1957	struct channel_req	*rq;
1958	int			err = 0;
1959
1960	if (dch->debug & DEBUG_HW)
1961		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1962		       __func__, cmd, arg);
1963	switch (cmd) {
1964	case OPEN_CHANNEL:
1965		rq = arg;
1966		if ((rq->protocol == ISDN_P_TE_S0) ||
1967		    (rq->protocol == ISDN_P_NT_S0))
1968			err = open_dchannel(hc, ch, rq);
1969		else
1970			err = open_bchannel(hc, rq);
1971		break;
1972	case CLOSE_CHANNEL:
1973		if (debug & DEBUG_HW_OPEN)
1974			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1975			       __func__, hc->dch.dev.id,
1976			       __builtin_return_address(0));
1977		module_put(THIS_MODULE);
1978		break;
1979	case CONTROL_CHANNEL:
1980		err = channel_ctrl(hc, arg);
1981		break;
1982	default:
1983		if (dch->debug & DEBUG_HW)
1984			printk(KERN_DEBUG "%s: unknown command %x\n",
1985			       __func__, cmd);
1986		return -EINVAL;
1987	}
1988	return err;
1989}
1990
1991static int
1992setup_hw(struct hfc_pci *hc)
1993{
1994	void	*buffer;
1995
1996	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
1997	hc->hw.cirm = 0;
1998	hc->dch.state = 0;
1999	pci_set_master(hc->pdev);
2000	if (!hc->irq) {
2001		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2002		return -EINVAL;
2003	}
2004	hc->hw.pci_io =
2005		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2006
2007	if (!hc->hw.pci_io) {
2008		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2009		return -ENOMEM;
2010	}
2011	/* Allocate memory for FIFOS */
2012	/* the memory needs to be on a 32k boundary within the first 4G */
2013	if (dma_set_mask(&hc->pdev->dev, 0xFFFF8000)) {
2014		printk(KERN_WARNING
2015		       "HFC-PCI: No usable DMA configuration!\n");
2016		return -EIO;
2017	}
2018	buffer = dma_alloc_coherent(&hc->pdev->dev, 0x8000, &hc->hw.dmahandle,
2019				    GFP_KERNEL);
2020	/* We silently assume the address is okay if nonzero */
2021	if (!buffer) {
2022		printk(KERN_WARNING
2023		       "HFC-PCI: Error allocating memory for FIFO!\n");
2024		return -ENOMEM;
2025	}
2026	hc->hw.fifos = buffer;
2027	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2028	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2029	if (unlikely(!hc->hw.pci_io)) {
2030		printk(KERN_WARNING
2031		       "HFC-PCI: Error in ioremap for PCI!\n");
2032		dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
2033				  hc->hw.dmahandle);
2034		return -ENOMEM;
2035	}
2036
2037	printk(KERN_INFO
2038	       "HFC-PCI: defined at mem %#lx fifo %p(%pad) IRQ %d HZ %d\n",
2039	       (u_long) hc->hw.pci_io, hc->hw.fifos,
2040	       &hc->hw.dmahandle, hc->irq, HZ);
2041
2042	/* enable memory mapped ports, disable busmaster */
2043	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2044	hc->hw.int_m2 = 0;
2045	disable_hwirq(hc);
2046	hc->hw.int_m1 = 0;
2047	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2048	/* At this point the needed PCI config is done */
2049	/* fifos are still not enabled */
2050	timer_setup(&hc->hw.timer, hfcpci_Timer, 0);
2051	/* default PCM master */
2052	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2053	return 0;
2054}
2055
2056static void
2057release_card(struct hfc_pci *hc) {
2058	u_long	flags;
2059
2060	spin_lock_irqsave(&hc->lock, flags);
2061	hc->hw.int_m2 = 0; /* interrupt output off ! */
2062	disable_hwirq(hc);
2063	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2064	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2065	if (hc->dch.timer.function != NULL) {
2066		del_timer(&hc->dch.timer);
2067		hc->dch.timer.function = NULL;
2068	}
2069	spin_unlock_irqrestore(&hc->lock, flags);
2070	if (hc->hw.protocol == ISDN_P_TE_S0)
2071		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2072	if (hc->initdone)
2073		free_irq(hc->irq, hc);
2074	release_io_hfcpci(hc); /* must release after free_irq! */
2075	mISDN_unregister_device(&hc->dch.dev);
2076	mISDN_freebchannel(&hc->bch[1]);
2077	mISDN_freebchannel(&hc->bch[0]);
2078	mISDN_freedchannel(&hc->dch);
2079	pci_set_drvdata(hc->pdev, NULL);
2080	kfree(hc);
2081}
2082
2083static int
2084setup_card(struct hfc_pci *card)
2085{
2086	int		err = -EINVAL;
2087	u_int		i;
2088	char		name[MISDN_MAX_IDLEN];
2089
2090	card->dch.debug = debug;
2091	spin_lock_init(&card->lock);
2092	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2093	card->dch.hw = card;
2094	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2095	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2096		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2097	card->dch.dev.D.send = hfcpci_l2l1D;
2098	card->dch.dev.D.ctrl = hfc_dctrl;
2099	card->dch.dev.nrbchan = 2;
2100	for (i = 0; i < 2; i++) {
2101		card->bch[i].nr = i + 1;
2102		set_channelmap(i + 1, card->dch.dev.channelmap);
2103		card->bch[i].debug = debug;
2104		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2105		card->bch[i].hw = card;
2106		card->bch[i].ch.send = hfcpci_l2l1B;
2107		card->bch[i].ch.ctrl = hfc_bctrl;
2108		card->bch[i].ch.nr = i + 1;
2109		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2110	}
2111	err = setup_hw(card);
2112	if (err)
2113		goto error;
2114	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2115	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2116	if (err)
2117		goto error;
2118	HFC_cnt++;
2119	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2120	return 0;
2121error:
2122	mISDN_freebchannel(&card->bch[1]);
2123	mISDN_freebchannel(&card->bch[0]);
2124	mISDN_freedchannel(&card->dch);
2125	kfree(card);
2126	return err;
2127}
2128
2129/* private data in the PCI devices list */
2130struct _hfc_map {
2131	u_int	subtype;
2132	u_int	flag;
2133	char	*name;
2134};
2135
2136static const struct _hfc_map hfc_map[] =
2137{
2138	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2139	{HFC_CCD_B000, 0, "Billion B000"},
2140	{HFC_CCD_B006, 0, "Billion B006"},
2141	{HFC_CCD_B007, 0, "Billion B007"},
2142	{HFC_CCD_B008, 0, "Billion B008"},
2143	{HFC_CCD_B009, 0, "Billion B009"},
2144	{HFC_CCD_B00A, 0, "Billion B00A"},
2145	{HFC_CCD_B00B, 0, "Billion B00B"},
2146	{HFC_CCD_B00C, 0, "Billion B00C"},
2147	{HFC_CCD_B100, 0, "Seyeon B100"},
2148	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2149	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2150	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2151	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2152	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2153	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2154	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2155	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2156	{HFC_DIGI_DF_M_IOM2_E, 0,
2157	 "Digi International DataFire Micro V IOM2 (Europe)"},
2158	{HFC_DIGI_DF_M_E, 0,
2159	 "Digi International DataFire Micro V (Europe)"},
2160	{HFC_DIGI_DF_M_IOM2_A, 0,
2161	 "Digi International DataFire Micro V IOM2 (North America)"},
2162	{HFC_DIGI_DF_M_A, 0,
2163	 "Digi International DataFire Micro V (North America)"},
2164	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2165	{},
2166};
2167
2168static const struct pci_device_id hfc_ids[] =
2169{
2170	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2171	  (unsigned long) &hfc_map[0] },
2172	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2173	  (unsigned long) &hfc_map[1] },
2174	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2175	  (unsigned long) &hfc_map[2] },
2176	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2177	  (unsigned long) &hfc_map[3] },
2178	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2179	  (unsigned long) &hfc_map[4] },
2180	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2181	  (unsigned long) &hfc_map[5] },
2182	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2183	  (unsigned long) &hfc_map[6] },
2184	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2185	  (unsigned long) &hfc_map[7] },
2186	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2187	  (unsigned long) &hfc_map[8] },
2188	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2189	  (unsigned long) &hfc_map[9] },
2190	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2191	  (unsigned long) &hfc_map[10] },
2192	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2193	  (unsigned long) &hfc_map[11] },
2194	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2195	  (unsigned long) &hfc_map[12] },
2196	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2197	  (unsigned long) &hfc_map[13] },
2198	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2199	  (unsigned long) &hfc_map[14] },
2200	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2201	  (unsigned long) &hfc_map[15] },
2202	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2203	  (unsigned long) &hfc_map[16] },
2204	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2205	  (unsigned long) &hfc_map[17] },
2206	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2207	  (unsigned long) &hfc_map[18] },
2208	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2209	  (unsigned long) &hfc_map[19] },
2210	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2211	  (unsigned long) &hfc_map[20] },
2212	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2213	  (unsigned long) &hfc_map[21] },
2214	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2215	  (unsigned long) &hfc_map[22] },
2216	{},
2217};
2218
2219static int
2220hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2221{
2222	int		err = -ENOMEM;
2223	struct hfc_pci	*card;
2224	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2225
2226	card = kzalloc(sizeof(struct hfc_pci), GFP_KERNEL);
2227	if (!card) {
2228		printk(KERN_ERR "No kmem for HFC card\n");
2229		return err;
2230	}
2231	card->pdev = pdev;
2232	card->subtype = m->subtype;
2233	err = pci_enable_device(pdev);
2234	if (err) {
2235		kfree(card);
2236		return err;
2237	}
2238
2239	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2240	       m->name, pci_name(pdev));
2241
2242	card->irq = pdev->irq;
2243	pci_set_drvdata(pdev, card);
2244	err = setup_card(card);
2245	if (err)
2246		pci_set_drvdata(pdev, NULL);
2247	return err;
2248}
2249
2250static void
2251hfc_remove_pci(struct pci_dev *pdev)
2252{
2253	struct hfc_pci	*card = pci_get_drvdata(pdev);
2254
2255	if (card)
2256		release_card(card);
2257	else
2258		if (debug)
2259			printk(KERN_DEBUG "%s: drvdata already removed\n",
2260			       __func__);
2261}
2262
2263
2264static struct pci_driver hfc_driver = {
2265	.name = "hfcpci",
2266	.probe = hfc_probe,
2267	.remove = hfc_remove_pci,
2268	.id_table = hfc_ids,
2269};
2270
2271static int
2272_hfcpci_softirq(struct device *dev, void *unused)
2273{
2274	struct hfc_pci  *hc = dev_get_drvdata(dev);
2275	struct bchannel *bch;
2276	if (hc == NULL)
2277		return 0;
2278
2279	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2280		spin_lock_irq(&hc->lock);
2281		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2282		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2283			main_rec_hfcpci(bch);
2284			tx_birq(bch);
2285		}
2286		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2287		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2288			main_rec_hfcpci(bch);
2289			tx_birq(bch);
2290		}
2291		spin_unlock_irq(&hc->lock);
2292	}
2293	return 0;
2294}
2295
2296static void
2297hfcpci_softirq(struct timer_list *unused)
2298{
2299	WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL,
2300				      _hfcpci_softirq) != 0);
2301
2302	/* if next event would be in the past ... */
2303	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2304		hfc_jiffies = jiffies + 1;
2305	else
2306		hfc_jiffies += tics;
2307	hfc_tl.expires = hfc_jiffies;
2308	add_timer(&hfc_tl);
2309}
2310
2311static int __init
2312HFC_init(void)
2313{
2314	int		err;
2315
2316	if (!poll)
2317		poll = HFCPCI_BTRANS_THRESHOLD;
2318
2319	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2320		tics = (poll * HZ) / 8000;
2321		if (tics < 1)
2322			tics = 1;
2323		poll = (tics * 8000) / HZ;
2324		if (poll > 256 || poll < 8) {
2325			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2326			       "of 8..256.\n", __func__, poll);
2327			err = -EINVAL;
2328			return err;
2329		}
2330	}
2331	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2332		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2333		       __func__, poll);
2334		timer_setup(&hfc_tl, hfcpci_softirq, 0);
2335		hfc_tl.expires = jiffies + tics;
2336		hfc_jiffies = hfc_tl.expires;
2337		add_timer(&hfc_tl);
2338	} else
2339		tics = 0; /* indicate the use of controller's timer */
2340
2341	err = pci_register_driver(&hfc_driver);
2342	if (err) {
2343		if (timer_pending(&hfc_tl))
2344			del_timer(&hfc_tl);
2345	}
2346
2347	return err;
2348}
2349
2350static void __exit
2351HFC_cleanup(void)
2352{
2353	del_timer_sync(&hfc_tl);
2354
2355	pci_unregister_driver(&hfc_driver);
2356}
2357
2358module_init(HFC_init);
2359module_exit(HFC_cleanup);
2360
2361MODULE_DEVICE_TABLE(pci, hfc_ids);
2362