1/*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26#include "dm_services.h"
27
28#include "resource.h"
29#include "include/irq_service_interface.h"
30#include "link_encoder.h"
31#include "stream_encoder.h"
32#include "opp.h"
33#include "timing_generator.h"
34#include "transform.h"
35#include "dccg.h"
36#include "dchubbub.h"
37#include "dpp.h"
38#include "core_types.h"
39#include "set_mode_types.h"
40#include "virtual/virtual_stream_encoder.h"
41#include "dpcd_defs.h"
42#include "link_enc_cfg.h"
43#include "link.h"
44#include "clk_mgr.h"
45#include "dc_state_priv.h"
46#include "virtual/virtual_link_hwss.h"
47#include "link/hwss/link_hwss_dio.h"
48#include "link/hwss/link_hwss_dpia.h"
49#include "link/hwss/link_hwss_hpo_dp.h"
50#include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
51#include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
52
53#if defined(CONFIG_DRM_AMD_DC_SI)
54#include "dce60/dce60_resource.h"
55#endif
56#include "dce80/dce80_resource.h"
57#include "dce100/dce100_resource.h"
58#include "dce110/dce110_resource.h"
59#include "dce112/dce112_resource.h"
60#include "dce120/dce120_resource.h"
61#include "dcn10/dcn10_resource.h"
62#include "dcn20/dcn20_resource.h"
63#include "dcn21/dcn21_resource.h"
64#include "dcn201/dcn201_resource.h"
65#include "dcn30/dcn30_resource.h"
66#include "dcn301/dcn301_resource.h"
67#include "dcn302/dcn302_resource.h"
68#include "dcn303/dcn303_resource.h"
69#include "dcn31/dcn31_resource.h"
70#include "dcn314/dcn314_resource.h"
71#include "dcn315/dcn315_resource.h"
72#include "dcn316/dcn316_resource.h"
73#include "dcn32/dcn32_resource.h"
74#include "dcn321/dcn321_resource.h"
75#include "dcn35/dcn35_resource.h"
76#include "dcn351/dcn351_resource.h"
77
78#define VISUAL_CONFIRM_BASE_DEFAULT 3
79#define VISUAL_CONFIRM_BASE_MIN 1
80#define VISUAL_CONFIRM_BASE_MAX 10
81/* we choose 240 because it is a common denominator of common v addressable
82 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
83 * the visual confirm dpp offset height. So visual confirm height can stay
84 * relatively the same independent from timing used.
85 */
86#define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
87
88#define DC_LOGGER \
89	dc->ctx->logger
90#define DC_LOGGER_INIT(logger)
91
92#include "dml2/dml2_wrapper.h"
93
94#define UNABLE_TO_SPLIT -1
95
96enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
97{
98	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
99
100	switch (asic_id.chip_family) {
101
102#if defined(CONFIG_DRM_AMD_DC_SI)
103	case FAMILY_SI:
104		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
105		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
106		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
107			dc_version = DCE_VERSION_6_0;
108		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
109			dc_version = DCE_VERSION_6_4;
110		else
111			dc_version = DCE_VERSION_6_1;
112		break;
113#endif
114	case FAMILY_CI:
115		dc_version = DCE_VERSION_8_0;
116		break;
117	case FAMILY_KV:
118		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
119		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
120		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
121			dc_version = DCE_VERSION_8_3;
122		else
123			dc_version = DCE_VERSION_8_1;
124		break;
125	case FAMILY_CZ:
126		dc_version = DCE_VERSION_11_0;
127		break;
128
129	case FAMILY_VI:
130		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
131				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
132			dc_version = DCE_VERSION_10_0;
133			break;
134		}
135		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
136				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
137				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
138			dc_version = DCE_VERSION_11_2;
139		}
140		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
141			dc_version = DCE_VERSION_11_22;
142		break;
143	case FAMILY_AI:
144		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
145			dc_version = DCE_VERSION_12_1;
146		else
147			dc_version = DCE_VERSION_12_0;
148		break;
149	case FAMILY_RV:
150		dc_version = DCN_VERSION_1_0;
151		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
152			dc_version = DCN_VERSION_1_01;
153		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
154			dc_version = DCN_VERSION_2_1;
155		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
156			dc_version = DCN_VERSION_2_1;
157		break;
158
159	case FAMILY_NV:
160		dc_version = DCN_VERSION_2_0;
161		if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
162			dc_version = DCN_VERSION_2_01;
163			break;
164		}
165		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
166			dc_version = DCN_VERSION_3_0;
167		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
168			dc_version = DCN_VERSION_3_02;
169		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
170			dc_version = DCN_VERSION_3_03;
171		break;
172
173	case FAMILY_VGH:
174		dc_version = DCN_VERSION_3_01;
175		break;
176
177	case FAMILY_YELLOW_CARP:
178		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
179			dc_version = DCN_VERSION_3_1;
180		break;
181	case AMDGPU_FAMILY_GC_10_3_6:
182		if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
183			dc_version = DCN_VERSION_3_15;
184		break;
185	case AMDGPU_FAMILY_GC_10_3_7:
186		if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
187			dc_version = DCN_VERSION_3_16;
188		break;
189	case AMDGPU_FAMILY_GC_11_0_0:
190		dc_version = DCN_VERSION_3_2;
191		if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
192			dc_version = DCN_VERSION_3_21;
193		break;
194	case AMDGPU_FAMILY_GC_11_0_1:
195		dc_version = DCN_VERSION_3_14;
196		break;
197	case AMDGPU_FAMILY_GC_11_5_0:
198		dc_version = DCN_VERSION_3_5;
199		if (ASICREV_IS_GC_11_0_4(asic_id.hw_internal_rev))
200			dc_version = DCN_VERSION_3_51;
201		break;
202	default:
203		dc_version = DCE_VERSION_UNKNOWN;
204		break;
205	}
206	return dc_version;
207}
208
209struct resource_pool *dc_create_resource_pool(struct dc  *dc,
210					      const struct dc_init_data *init_data,
211					      enum dce_version dc_version)
212{
213	struct resource_pool *res_pool = NULL;
214
215	switch (dc_version) {
216#if defined(CONFIG_DRM_AMD_DC_SI)
217	case DCE_VERSION_6_0:
218		res_pool = dce60_create_resource_pool(
219			init_data->num_virtual_links, dc);
220		break;
221	case DCE_VERSION_6_1:
222		res_pool = dce61_create_resource_pool(
223			init_data->num_virtual_links, dc);
224		break;
225	case DCE_VERSION_6_4:
226		res_pool = dce64_create_resource_pool(
227			init_data->num_virtual_links, dc);
228		break;
229#endif
230	case DCE_VERSION_8_0:
231		res_pool = dce80_create_resource_pool(
232				init_data->num_virtual_links, dc);
233		break;
234	case DCE_VERSION_8_1:
235		res_pool = dce81_create_resource_pool(
236				init_data->num_virtual_links, dc);
237		break;
238	case DCE_VERSION_8_3:
239		res_pool = dce83_create_resource_pool(
240				init_data->num_virtual_links, dc);
241		break;
242	case DCE_VERSION_10_0:
243		res_pool = dce100_create_resource_pool(
244				init_data->num_virtual_links, dc);
245		break;
246	case DCE_VERSION_11_0:
247		res_pool = dce110_create_resource_pool(
248				init_data->num_virtual_links, dc,
249				init_data->asic_id);
250		break;
251	case DCE_VERSION_11_2:
252	case DCE_VERSION_11_22:
253		res_pool = dce112_create_resource_pool(
254				init_data->num_virtual_links, dc);
255		break;
256	case DCE_VERSION_12_0:
257	case DCE_VERSION_12_1:
258		res_pool = dce120_create_resource_pool(
259				init_data->num_virtual_links, dc);
260		break;
261
262#if defined(CONFIG_DRM_AMD_DC_FP)
263	case DCN_VERSION_1_0:
264	case DCN_VERSION_1_01:
265		res_pool = dcn10_create_resource_pool(init_data, dc);
266		break;
267	case DCN_VERSION_2_0:
268		res_pool = dcn20_create_resource_pool(init_data, dc);
269		break;
270	case DCN_VERSION_2_1:
271		res_pool = dcn21_create_resource_pool(init_data, dc);
272		break;
273	case DCN_VERSION_2_01:
274		res_pool = dcn201_create_resource_pool(init_data, dc);
275		break;
276	case DCN_VERSION_3_0:
277		res_pool = dcn30_create_resource_pool(init_data, dc);
278		break;
279	case DCN_VERSION_3_01:
280		res_pool = dcn301_create_resource_pool(init_data, dc);
281		break;
282	case DCN_VERSION_3_02:
283		res_pool = dcn302_create_resource_pool(init_data, dc);
284		break;
285	case DCN_VERSION_3_03:
286		res_pool = dcn303_create_resource_pool(init_data, dc);
287		break;
288	case DCN_VERSION_3_1:
289		res_pool = dcn31_create_resource_pool(init_data, dc);
290		break;
291	case DCN_VERSION_3_14:
292		res_pool = dcn314_create_resource_pool(init_data, dc);
293		break;
294	case DCN_VERSION_3_15:
295		res_pool = dcn315_create_resource_pool(init_data, dc);
296		break;
297	case DCN_VERSION_3_16:
298		res_pool = dcn316_create_resource_pool(init_data, dc);
299		break;
300	case DCN_VERSION_3_2:
301		res_pool = dcn32_create_resource_pool(init_data, dc);
302		break;
303	case DCN_VERSION_3_21:
304		res_pool = dcn321_create_resource_pool(init_data, dc);
305		break;
306	case DCN_VERSION_3_5:
307		res_pool = dcn35_create_resource_pool(init_data, dc);
308		break;
309	case DCN_VERSION_3_51:
310		res_pool = dcn351_create_resource_pool(init_data, dc);
311		break;
312#endif /* CONFIG_DRM_AMD_DC_FP */
313	default:
314		break;
315	}
316
317	if (res_pool != NULL) {
318		if (dc->ctx->dc_bios->fw_info_valid) {
319			res_pool->ref_clocks.xtalin_clock_inKhz =
320				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
321			/* initialize with firmware data first, no all
322			 * ASIC have DCCG SW component. FPGA or
323			 * simulation need initialization of
324			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
325			 * with xtalin_clock_inKhz
326			 */
327			res_pool->ref_clocks.dccg_ref_clock_inKhz =
328				res_pool->ref_clocks.xtalin_clock_inKhz;
329			res_pool->ref_clocks.dchub_ref_clock_inKhz =
330				res_pool->ref_clocks.xtalin_clock_inKhz;
331			if (dc->debug.using_dml2)
332				if (res_pool->hubbub && res_pool->hubbub->funcs->get_dchub_ref_freq)
333					res_pool->hubbub->funcs->get_dchub_ref_freq(res_pool->hubbub,
334										    res_pool->ref_clocks.dccg_ref_clock_inKhz,
335										    &res_pool->ref_clocks.dchub_ref_clock_inKhz);
336		} else
337			ASSERT_CRITICAL(false);
338	}
339
340	return res_pool;
341}
342
343void dc_destroy_resource_pool(struct dc *dc)
344{
345	if (dc) {
346		if (dc->res_pool)
347			dc->res_pool->funcs->destroy(&dc->res_pool);
348
349		kfree(dc->hwseq);
350	}
351}
352
353static void update_num_audio(
354	const struct resource_straps *straps,
355	unsigned int *num_audio,
356	struct audio_support *aud_support)
357{
358	aud_support->dp_audio = true;
359	aud_support->hdmi_audio_native = false;
360	aud_support->hdmi_audio_on_dongle = false;
361
362	if (straps->hdmi_disable == 0) {
363		if (straps->dc_pinstraps_audio & 0x2) {
364			aud_support->hdmi_audio_on_dongle = true;
365			aud_support->hdmi_audio_native = true;
366		}
367	}
368
369	switch (straps->audio_stream_number) {
370	case 0: /* multi streams supported */
371		break;
372	case 1: /* multi streams not supported */
373		*num_audio = 1;
374		break;
375	default:
376		DC_ERR("DC: unexpected audio fuse!\n");
377	}
378}
379
380bool resource_construct(
381	unsigned int num_virtual_links,
382	struct dc  *dc,
383	struct resource_pool *pool,
384	const struct resource_create_funcs *create_funcs)
385{
386	struct dc_context *ctx = dc->ctx;
387	const struct resource_caps *caps = pool->res_cap;
388	int i;
389	unsigned int num_audio = caps->num_audio;
390	struct resource_straps straps = {0};
391
392	if (create_funcs->read_dce_straps)
393		create_funcs->read_dce_straps(dc->ctx, &straps);
394
395	pool->audio_count = 0;
396	if (create_funcs->create_audio) {
397		/* find the total number of streams available via the
398		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
399		 * registers (one for each pin) starting from pin 1
400		 * up to the max number of audio pins.
401		 * We stop on the first pin where
402		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
403		 */
404		update_num_audio(&straps, &num_audio, &pool->audio_support);
405		for (i = 0; i < caps->num_audio; i++) {
406			struct audio *aud = create_funcs->create_audio(ctx, i);
407
408			if (aud == NULL) {
409				DC_ERR("DC: failed to create audio!\n");
410				return false;
411			}
412			if (!aud->funcs->endpoint_valid(aud)) {
413				aud->funcs->destroy(&aud);
414				break;
415			}
416			pool->audios[i] = aud;
417			pool->audio_count++;
418		}
419	}
420
421	pool->stream_enc_count = 0;
422	if (create_funcs->create_stream_encoder) {
423		for (i = 0; i < caps->num_stream_encoder; i++) {
424			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
425			if (pool->stream_enc[i] == NULL)
426				DC_ERR("DC: failed to create stream_encoder!\n");
427			pool->stream_enc_count++;
428		}
429	}
430
431	pool->hpo_dp_stream_enc_count = 0;
432	if (create_funcs->create_hpo_dp_stream_encoder) {
433		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
434			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
435			if (pool->hpo_dp_stream_enc[i] == NULL)
436				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
437			pool->hpo_dp_stream_enc_count++;
438
439		}
440	}
441
442	pool->hpo_dp_link_enc_count = 0;
443	if (create_funcs->create_hpo_dp_link_encoder) {
444		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
445			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
446			if (pool->hpo_dp_link_enc[i] == NULL)
447				DC_ERR("DC: failed to create HPO DP link encoder!\n");
448			pool->hpo_dp_link_enc_count++;
449		}
450	}
451
452	for (i = 0; i < caps->num_mpc_3dlut; i++) {
453		pool->mpc_lut[i] = dc_create_3dlut_func();
454		if (pool->mpc_lut[i] == NULL)
455			DC_ERR("DC: failed to create MPC 3dlut!\n");
456		pool->mpc_shaper[i] = dc_create_transfer_func();
457		if (pool->mpc_shaper[i] == NULL)
458			DC_ERR("DC: failed to create MPC shaper!\n");
459	}
460
461	dc->caps.dynamic_audio = false;
462	if (pool->audio_count < pool->stream_enc_count) {
463		dc->caps.dynamic_audio = true;
464	}
465	for (i = 0; i < num_virtual_links; i++) {
466		pool->stream_enc[pool->stream_enc_count] =
467			virtual_stream_encoder_create(
468					ctx, ctx->dc_bios);
469		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
470			DC_ERR("DC: failed to create stream_encoder!\n");
471			return false;
472		}
473		pool->stream_enc_count++;
474	}
475
476	dc->hwseq = create_funcs->create_hwseq(ctx);
477
478	return true;
479}
480static int find_matching_clock_source(
481		const struct resource_pool *pool,
482		struct clock_source *clock_source)
483{
484
485	int i;
486
487	for (i = 0; i < pool->clk_src_count; i++) {
488		if (pool->clock_sources[i] == clock_source)
489			return i;
490	}
491	return -1;
492}
493
494void resource_unreference_clock_source(
495		struct resource_context *res_ctx,
496		const struct resource_pool *pool,
497		struct clock_source *clock_source)
498{
499	int i = find_matching_clock_source(pool, clock_source);
500
501	if (i > -1)
502		res_ctx->clock_source_ref_count[i]--;
503
504	if (pool->dp_clock_source == clock_source)
505		res_ctx->dp_clock_source_ref_count--;
506}
507
508void resource_reference_clock_source(
509		struct resource_context *res_ctx,
510		const struct resource_pool *pool,
511		struct clock_source *clock_source)
512{
513	int i = find_matching_clock_source(pool, clock_source);
514
515	if (i > -1)
516		res_ctx->clock_source_ref_count[i]++;
517
518	if (pool->dp_clock_source == clock_source)
519		res_ctx->dp_clock_source_ref_count++;
520}
521
522int resource_get_clock_source_reference(
523		struct resource_context *res_ctx,
524		const struct resource_pool *pool,
525		struct clock_source *clock_source)
526{
527	int i = find_matching_clock_source(pool, clock_source);
528
529	if (i > -1)
530		return res_ctx->clock_source_ref_count[i];
531
532	if (pool->dp_clock_source == clock_source)
533		return res_ctx->dp_clock_source_ref_count;
534
535	return -1;
536}
537
538bool resource_are_vblanks_synchronizable(
539	struct dc_stream_state *stream1,
540	struct dc_stream_state *stream2)
541{
542	uint32_t base60_refresh_rates[] = {10, 20, 5};
543	uint8_t i;
544	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
545	uint64_t frame_time_diff;
546
547	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
548		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
549		dc_is_dp_signal(stream1->signal) &&
550		dc_is_dp_signal(stream2->signal) &&
551		false == stream1->has_non_synchronizable_pclk &&
552		false == stream2->has_non_synchronizable_pclk &&
553		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
554		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
555		/* disable refresh rates higher than 60Hz for now */
556		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
557				stream1->timing.v_total > 60)
558			return false;
559		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
560				stream2->timing.v_total > 60)
561			return false;
562		frame_time_diff = (uint64_t)10000 *
563			stream1->timing.h_total *
564			stream1->timing.v_total *
565			stream2->timing.pix_clk_100hz;
566		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
567		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
568		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
569		for (i = 0; i < rr_count; i++) {
570			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
571
572			if (diff < 0)
573				diff = -diff;
574			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
575				return true;
576		}
577	}
578	return false;
579}
580
581bool resource_are_streams_timing_synchronizable(
582	struct dc_stream_state *stream1,
583	struct dc_stream_state *stream2)
584{
585	if (stream1->timing.h_total != stream2->timing.h_total)
586		return false;
587
588	if (stream1->timing.v_total != stream2->timing.v_total)
589		return false;
590
591	if (stream1->timing.h_addressable
592				!= stream2->timing.h_addressable)
593		return false;
594
595	if (stream1->timing.v_addressable
596				!= stream2->timing.v_addressable)
597		return false;
598
599	if (stream1->timing.v_front_porch
600				!= stream2->timing.v_front_porch)
601		return false;
602
603	if (stream1->timing.pix_clk_100hz
604				!= stream2->timing.pix_clk_100hz)
605		return false;
606
607	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
608		return false;
609
610	if (stream1->phy_pix_clk != stream2->phy_pix_clk
611			&& (!dc_is_dp_signal(stream1->signal)
612			|| !dc_is_dp_signal(stream2->signal)))
613		return false;
614
615	if (stream1->view_format != stream2->view_format)
616		return false;
617
618	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
619		return false;
620
621	return true;
622}
623static bool is_dp_and_hdmi_sharable(
624		struct dc_stream_state *stream1,
625		struct dc_stream_state *stream2)
626{
627	if (stream1->ctx->dc->caps.disable_dp_clk_share)
628		return false;
629
630	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
631		stream2->clamping.c_depth != COLOR_DEPTH_888)
632		return false;
633
634	return true;
635
636}
637
638static bool is_sharable_clk_src(
639	const struct pipe_ctx *pipe_with_clk_src,
640	const struct pipe_ctx *pipe)
641{
642	if (pipe_with_clk_src->clock_source == NULL)
643		return false;
644
645	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
646		return false;
647
648	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
649		(dc_is_dp_signal(pipe->stream->signal) &&
650		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
651				     pipe->stream)))
652		return false;
653
654	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
655			&& dc_is_dual_link_signal(pipe->stream->signal))
656		return false;
657
658	if (dc_is_hdmi_signal(pipe->stream->signal)
659			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
660		return false;
661
662	if (!resource_are_streams_timing_synchronizable(
663			pipe_with_clk_src->stream, pipe->stream))
664		return false;
665
666	return true;
667}
668
669struct clock_source *resource_find_used_clk_src_for_sharing(
670					struct resource_context *res_ctx,
671					struct pipe_ctx *pipe_ctx)
672{
673	int i;
674
675	for (i = 0; i < MAX_PIPES; i++) {
676		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
677			return res_ctx->pipe_ctx[i].clock_source;
678	}
679
680	return NULL;
681}
682
683static enum pixel_format convert_pixel_format_to_dalsurface(
684		enum surface_pixel_format surface_pixel_format)
685{
686	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
687
688	switch (surface_pixel_format) {
689	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
690		dal_pixel_format = PIXEL_FORMAT_INDEX8;
691		break;
692	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
693		dal_pixel_format = PIXEL_FORMAT_RGB565;
694		break;
695	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
696		dal_pixel_format = PIXEL_FORMAT_RGB565;
697		break;
698	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
699		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
700		break;
701	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
702		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
703		break;
704	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
705		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
706		break;
707	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
708		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
709		break;
710	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
711		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
712		break;
713	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
714	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
715		dal_pixel_format = PIXEL_FORMAT_FP16;
716		break;
717	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
718	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
719		dal_pixel_format = PIXEL_FORMAT_420BPP8;
720		break;
721	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
722	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
723		dal_pixel_format = PIXEL_FORMAT_420BPP10;
724		break;
725	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
726	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
727	default:
728		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
729		break;
730	}
731	return dal_pixel_format;
732}
733
734static inline void get_vp_scan_direction(
735	enum dc_rotation_angle rotation,
736	bool horizontal_mirror,
737	bool *orthogonal_rotation,
738	bool *flip_vert_scan_dir,
739	bool *flip_horz_scan_dir)
740{
741	*orthogonal_rotation = false;
742	*flip_vert_scan_dir = false;
743	*flip_horz_scan_dir = false;
744	if (rotation == ROTATION_ANGLE_180) {
745		*flip_vert_scan_dir = true;
746		*flip_horz_scan_dir = true;
747	} else if (rotation == ROTATION_ANGLE_90) {
748		*orthogonal_rotation = true;
749		*flip_horz_scan_dir = true;
750	} else if (rotation == ROTATION_ANGLE_270) {
751		*orthogonal_rotation = true;
752		*flip_vert_scan_dir = true;
753	}
754
755	if (horizontal_mirror)
756		*flip_horz_scan_dir = !*flip_horz_scan_dir;
757}
758
759/*
760 * This is a preliminary vp size calculation to allow us to check taps support.
761 * The result is completely overridden afterwards.
762 */
763static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
764{
765	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
766
767	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
768	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
769	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
770	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
771	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
772			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
773		swap(data->viewport.width, data->viewport.height);
774		swap(data->viewport_c.width, data->viewport_c.height);
775	}
776}
777
778static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
779{
780	struct rect rec;
781	int r0_x_end = r0->x + r0->width;
782	int r1_x_end = r1->x + r1->width;
783	int r0_y_end = r0->y + r0->height;
784	int r1_y_end = r1->y + r1->height;
785
786	rec.x = r0->x > r1->x ? r0->x : r1->x;
787	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
788	rec.y = r0->y > r1->y ? r0->y : r1->y;
789	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
790
791	/* in case that there is no intersection */
792	if (rec.width < 0 || rec.height < 0)
793		memset(&rec, 0, sizeof(rec));
794
795	return rec;
796}
797
798static struct rect shift_rec(const struct rect *rec_in, int x, int y)
799{
800	struct rect rec_out = *rec_in;
801
802	rec_out.x += x;
803	rec_out.y += y;
804
805	return rec_out;
806}
807
808static struct rect calculate_odm_slice_in_timing_active(struct pipe_ctx *pipe_ctx)
809{
810	const struct dc_stream_state *stream = pipe_ctx->stream;
811	int odm_slice_count = resource_get_odm_slice_count(pipe_ctx);
812	int odm_slice_idx = resource_get_odm_slice_index(pipe_ctx);
813	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
814	int h_active = stream->timing.h_addressable +
815			stream->timing.h_border_left +
816			stream->timing.h_border_right;
817	int odm_slice_width = h_active / odm_slice_count;
818	struct rect odm_rec;
819
820	odm_rec.x = odm_slice_width * odm_slice_idx;
821	odm_rec.width = is_last_odm_slice ?
822			/* last slice width is the reminder of h_active */
823			h_active - odm_slice_width * (odm_slice_count - 1) :
824			/* odm slice width is the floor of h_active / count */
825			odm_slice_width;
826	odm_rec.y = 0;
827	odm_rec.height = stream->timing.v_addressable +
828			stream->timing.v_border_bottom +
829			stream->timing.v_border_top;
830
831	return odm_rec;
832}
833
834static struct rect calculate_plane_rec_in_timing_active(
835		struct pipe_ctx *pipe_ctx,
836		const struct rect *rec_in)
837{
838	/*
839	 * The following diagram shows an example where we map a 1920x1200
840	 * desktop to a 2560x1440 timing with a plane rect in the middle
841	 * of the screen. To map a plane rect from Stream Source to Timing
842	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
843	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
844	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
845	 * This will give us a plane rect's position in Timing Active. However
846	 * we have to remove the fractional. The rule is that we find left/right
847	 * and top/bottom positions and round the value to the adjacent integer.
848	 *
849	 * Stream Source Space
850	 * ------------
851	 *        __________________________________________________
852	 *       |Stream Source (1920 x 1200) ^                     |
853	 *       |                            y                     |
854	 *       |         <------- w --------|>                    |
855	 *       |          __________________V                     |
856	 *       |<-- x -->|Plane//////////////| ^                  |
857	 *       |         |(pre scale)////////| |                  |
858	 *       |         |///////////////////| |                  |
859	 *       |         |///////////////////| h                  |
860	 *       |         |///////////////////| |                  |
861	 *       |         |///////////////////| |                  |
862	 *       |         |///////////////////| V                  |
863	 *       |                                                  |
864	 *       |                                                  |
865	 *       |__________________________________________________|
866	 *
867	 *
868	 * Timing Active Space
869	 * ---------------------------------
870	 *
871	 *       Timing Active (2560 x 1440)
872	 *        __________________________________________________
873	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
874	 *       |*****|                                      |*****|
875	 *       |<128>|                                      |*****|
876	 *       |*****|     __________________               |*****|
877	 *       |*****|    |Plane/////////////|              |*****|
878	 *       |*****|    |(post scale)//////|              |*****|
879	 *       |*****|    |//////////////////|              |*****|
880	 *       |*****|    |//////////////////|              |*****|
881	 *       |*****|    |//////////////////|              |*****|
882	 *       |*****|    |//////////////////|              |*****|
883	 *       |*****|                                      |*****|
884	 *       |*****|                                      |*****|
885	 *       |*****|                                      |*****|
886	 *       |*****|______________________________________|*****|
887	 *
888	 * So the resulting formulas are shown below:
889	 *
890	 * recout_x = 128 + round(plane_x * 2304 / 1920)
891	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
892	 * recout_y = 0 + round(plane_y * 1440 / 1280)
893	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
894	 *
895	 * NOTE: fixed point division is not error free. To reduce errors
896	 * introduced by fixed point division, we divide only after
897	 * multiplication is complete.
898	 */
899	const struct dc_stream_state *stream = pipe_ctx->stream;
900	struct rect rec_out = {0};
901	struct fixed31_32 temp;
902
903	temp = dc_fixpt_from_fraction(rec_in->x * stream->dst.width,
904			stream->src.width);
905	rec_out.x = stream->dst.x + dc_fixpt_round(temp);
906
907	temp = dc_fixpt_from_fraction(
908			(rec_in->x + rec_in->width) * stream->dst.width,
909			stream->src.width);
910	rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
911
912	temp = dc_fixpt_from_fraction(rec_in->y * stream->dst.height,
913			stream->src.height);
914	rec_out.y = stream->dst.y + dc_fixpt_round(temp);
915
916	temp = dc_fixpt_from_fraction(
917			(rec_in->y + rec_in->height) * stream->dst.height,
918			stream->src.height);
919	rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
920
921	return rec_out;
922}
923
924static struct rect calculate_mpc_slice_in_timing_active(
925		struct pipe_ctx *pipe_ctx,
926		struct rect *plane_clip_rec)
927{
928	const struct dc_stream_state *stream = pipe_ctx->stream;
929	int mpc_slice_count = resource_get_mpc_slice_count(pipe_ctx);
930	int mpc_slice_idx = resource_get_mpc_slice_index(pipe_ctx);
931	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
932	struct rect mpc_rec;
933
934	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
935	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
936	mpc_rec.height = plane_clip_rec->height;
937	mpc_rec.y = plane_clip_rec->y;
938	ASSERT(mpc_slice_count == 1 ||
939			stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
940			mpc_rec.width % 2 == 0);
941
942	/* extra pixels in the division remainder need to go to pipes after
943	 * the extra pixel index minus one(epimo) defined here as:
944	 */
945	if (mpc_slice_idx > epimo) {
946		mpc_rec.x += mpc_slice_idx - epimo - 1;
947		mpc_rec.width += 1;
948	}
949
950	if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
951		ASSERT(mpc_rec.height % 2 == 0);
952		mpc_rec.height /= 2;
953	}
954	return mpc_rec;
955}
956
957static void adjust_recout_for_visual_confirm(struct rect *recout,
958		struct pipe_ctx *pipe_ctx)
959{
960	struct dc *dc = pipe_ctx->stream->ctx->dc;
961	int dpp_offset, base_offset;
962
963	if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
964		return;
965
966	dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
967	dpp_offset *= pipe_ctx->plane_res.dpp->inst;
968
969	if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
970			dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
971		base_offset = dc->debug.visual_confirm_rect_height;
972	else
973		base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
974
975	recout->height -= base_offset;
976	recout->height -= dpp_offset;
977}
978
979/*
980 * The function maps a plane clip from Stream Source Space to ODM Slice Space
981 * and calculates the rec of the overlapping area of MPC slice of the plane
982 * clip, ODM slice associated with the pipe context and stream destination rec.
983 */
984static void calculate_recout(struct pipe_ctx *pipe_ctx)
985{
986	/*
987	 * A plane clip represents the desired plane size and position in Stream
988	 * Source Space. Stream Source is the destination where all planes are
989	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
990	 * all planes associated with the current stream are drawn together.
991	 * After Stream Source is completed, we will further scale and
992	 * reposition the entire canvas of the stream source to Stream
993	 * Destination in Timing Active Space. This could be due to display
994	 * overscan adjustment where we will need to rescale and reposition all
995	 * the planes so they can fit into a TV with overscan or downscale
996	 * upscale features such as GPU scaling or VSR.
997	 *
998	 * This two step blending is a virtual procedure in software. In
999	 * hardware there is no such thing as Stream Source. all planes are
1000	 * blended once in Timing Active Space. Software virtualizes a Stream
1001	 * Source space to decouple the math complicity so scaling param
1002	 * calculation focuses on one step at a time.
1003	 *
1004	 * In the following two diagrams, user applied 10% overscan adjustment
1005	 * so the Stream Source needs to be scaled down a little before mapping
1006	 * to Timing Active Space. As a result the Plane Clip is also scaled
1007	 * down by the same ratio, Plane Clip position (i.e. x and y) with
1008	 * respect to Stream Source is also scaled down. To map it in Timing
1009	 * Active Space additional x and y offsets from Stream Destination are
1010	 * added to Plane Clip as well.
1011	 *
1012	 * Stream Source Space
1013	 * ------------
1014	 *        __________________________________________________
1015	 *       |Stream Source (3840 x 2160) ^                     |
1016	 *       |                            y                     |
1017	 *       |                            |                     |
1018	 *       |          __________________V                     |
1019	 *       |<-- x -->|Plane Clip/////////|                    |
1020	 *       |         |(pre scale)////////|                    |
1021	 *       |         |///////////////////|                    |
1022	 *       |         |///////////////////|                    |
1023	 *       |         |///////////////////|                    |
1024	 *       |         |///////////////////|                    |
1025	 *       |         |///////////////////|                    |
1026	 *       |                                                  |
1027	 *       |                                                  |
1028	 *       |__________________________________________________|
1029	 *
1030	 *
1031	 * Timing Active Space (3840 x 2160)
1032	 * ---------------------------------
1033	 *
1034	 *       Timing Active
1035	 *        __________________________________________________
1036	 *       | y_____________________________________________   |
1037	 *       |x |Stream Destination (3456 x 1944)            |  |
1038	 *       |  |                                            |  |
1039	 *       |  |        __________________                  |  |
1040	 *       |  |       |Plane Clip////////|                 |  |
1041	 *       |  |       |(post scale)//////|                 |  |
1042	 *       |  |       |//////////////////|                 |  |
1043	 *       |  |       |//////////////////|                 |  |
1044	 *       |  |       |//////////////////|                 |  |
1045	 *       |  |       |//////////////////|                 |  |
1046	 *       |  |                                            |  |
1047	 *       |  |                                            |  |
1048	 *       |  |____________________________________________|  |
1049	 *       |__________________________________________________|
1050	 *
1051	 *
1052	 * In Timing Active Space a plane clip could be further sliced into
1053	 * pieces called MPC slices. Each Pipe Context is responsible for
1054	 * processing only one MPC slice so the plane processing workload can be
1055	 * distributed to multiple DPP Pipes. MPC slices could be blended
1056	 * together to a single ODM slice. Each ODM slice is responsible for
1057	 * processing a portion of Timing Active divided horizontally so the
1058	 * output pixel processing workload can be distributed to multiple OPP
1059	 * pipes. All ODM slices are mapped together in ODM block so all MPC
1060	 * slices belong to different ODM slices could be pieced together to
1061	 * form a single image in Timing Active. MPC slices must belong to
1062	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1063	 * needs to be divided into two MPC slices one for each ODM slice.
1064	 *
1065	 * In the following diagram the output pixel processing workload is
1066	 * divided horizontally into two ODM slices one for each OPP blend tree.
1067	 * OPP0 blend tree is responsible for processing left half of Timing
1068	 * Active, while OPP2 blend tree is responsible for processing right
1069	 * half.
1070	 *
1071	 * The plane has two MPC slices. However since the right MPC slice goes
1072	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1073	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1074	 *
1075	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1076	 * working on processing the plane in the diagram. We want to know the
1077	 * width and height of the shaded rectangle and its relative position
1078	 * with respect to the ODM slice0. This is called the recout of the pipe
1079	 * context.
1080	 *
1081	 * Planes can be at arbitrary size and position and there could be an
1082	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1083	 * all scenarios into account.
1084	 *
1085	 * Timing Active Space (3840 x 2160)
1086	 * ---------------------------------
1087	 *
1088	 *       Timing Active
1089	 *        __________________________________________________
1090	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
1091	 *       |                y        |                        |
1092	 *       |                |  <- w ->                        |
1093	 *       |           _____V________|____                    |
1094	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
1095	 *       |<------ x |-----|->|/////|    |                   |
1096	 *       |          |     |  |/////|    |                   |
1097	 *       |          |     h  |/////|    |                   |
1098	 *       |          |     |  |/////|    |                   |
1099	 *       |          |_____V__|/////|____|                   |
1100	 *       |                         |                        |
1101	 *       |                         |                        |
1102	 *       |                         |                        |
1103	 *       |_________________________|________________________|
1104	 *
1105	 *
1106	 */
1107	struct rect plane_clip;
1108	struct rect mpc_slice_of_plane_clip;
1109	struct rect odm_slice;
1110	struct rect overlapping_area;
1111
1112	plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1113			&pipe_ctx->plane_state->clip_rect);
1114	/* guard plane clip from drawing beyond stream dst here */
1115	plane_clip = intersect_rec(&plane_clip,
1116				&pipe_ctx->stream->dst);
1117	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1118			pipe_ctx, &plane_clip);
1119	odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1120	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
1121	if (overlapping_area.height > 0 &&
1122			overlapping_area.width > 0) {
1123		/* shift the overlapping area so it is with respect to current
1124		 * ODM slice's position
1125		 */
1126		pipe_ctx->plane_res.scl_data.recout = shift_rec(
1127				&overlapping_area,
1128				-odm_slice.x, -odm_slice.y);
1129		adjust_recout_for_visual_confirm(
1130				&pipe_ctx->plane_res.scl_data.recout,
1131				pipe_ctx);
1132	} else {
1133		/* if there is no overlap, zero recout */
1134		memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1135				sizeof(struct rect));
1136	}
1137
1138}
1139
1140static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1141{
1142	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1143	const struct dc_stream_state *stream = pipe_ctx->stream;
1144	struct rect surf_src = plane_state->src_rect;
1145	const int in_w = stream->src.width;
1146	const int in_h = stream->src.height;
1147	const int out_w = stream->dst.width;
1148	const int out_h = stream->dst.height;
1149
1150	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
1151	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1152			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1153		swap(surf_src.height, surf_src.width);
1154
1155	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1156					surf_src.width,
1157					plane_state->dst_rect.width);
1158	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1159					surf_src.height,
1160					plane_state->dst_rect.height);
1161
1162	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1163		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1164	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1165		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1166
1167	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1168		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1169	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1170		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1171
1172	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1173	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1174
1175	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1176			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1177		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1178		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1179	}
1180	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1181			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1182	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1183			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1184	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1185			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1186	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1187			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1188}
1189
1190
1191/*
1192 * We completely calculate vp offset, size and inits here based entirely on scaling
1193 * ratios and recout for pixel perfect pipe combine.
1194 */
1195static void calculate_init_and_vp(
1196		bool flip_scan_dir,
1197		int recout_offset_within_recout_full,
1198		int recout_size,
1199		int src_size,
1200		int taps,
1201		struct fixed31_32 ratio,
1202		struct fixed31_32 *init,
1203		int *vp_offset,
1204		int *vp_size)
1205{
1206	struct fixed31_32 temp;
1207	int int_part;
1208
1209	/*
1210	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1211	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1212	 * All following calculations are based on this logic.
1213	 *
1214	 * Init calculated according to formula:
1215	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
1216	 * 	init_bot = init + scaling_ratio
1217	 * 	to get pixel perfect combine add the fraction from calculating vp offset
1218	 */
1219	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1220	*vp_offset = dc_fixpt_floor(temp);
1221	temp.value &= 0xffffffff;
1222	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1223			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1224	/*
1225	 * If viewport has non 0 offset and there are more taps than covered by init then
1226	 * we should decrease the offset and increase init so we are never sampling
1227	 * outside of viewport.
1228	 */
1229	int_part = dc_fixpt_floor(*init);
1230	if (int_part < taps) {
1231		int_part = taps - int_part;
1232		if (int_part > *vp_offset)
1233			int_part = *vp_offset;
1234		*vp_offset -= int_part;
1235		*init = dc_fixpt_add_int(*init, int_part);
1236	}
1237	/*
1238	 * If taps are sampling outside of viewport at end of recout and there are more pixels
1239	 * available in the surface we should increase the viewport size, regardless set vp to
1240	 * only what is used.
1241	 */
1242	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1243	*vp_size = dc_fixpt_floor(temp);
1244	if (*vp_size + *vp_offset > src_size)
1245		*vp_size = src_size - *vp_offset;
1246
1247	/* We did all the math assuming we are scanning same direction as display does,
1248	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1249	 * is flipped we simply need to calculate offset from the other side of plane.
1250	 * Note that outside of viewport all scaling hardware works in recout space.
1251	 */
1252	if (flip_scan_dir)
1253		*vp_offset = src_size - *vp_offset - *vp_size;
1254}
1255
1256static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1257{
1258	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1259	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1260	struct rect src = plane_state->src_rect;
1261	struct rect recout_dst_in_active_timing;
1262	struct rect recout_clip_in_active_timing;
1263	struct rect recout_clip_in_recout_dst;
1264	struct rect overlap_in_active_timing;
1265	struct rect odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1266	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1267				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1268	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1269
1270	recout_clip_in_active_timing = shift_rec(
1271			&data->recout, odm_slice.x, odm_slice.y);
1272	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1273			pipe_ctx, &plane_state->dst_rect);
1274	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1275			&recout_dst_in_active_timing);
1276	if (overlap_in_active_timing.width > 0 &&
1277			overlap_in_active_timing.height > 0)
1278		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1279				-recout_dst_in_active_timing.x,
1280				-recout_dst_in_active_timing.y);
1281	else
1282		memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1283
1284	/*
1285	 * Work in recout rotation since that requires less transformations
1286	 */
1287	get_vp_scan_direction(
1288			plane_state->rotation,
1289			plane_state->horizontal_mirror,
1290			&orthogonal_rotation,
1291			&flip_vert_scan_dir,
1292			&flip_horz_scan_dir);
1293
1294	if (orthogonal_rotation) {
1295		swap(src.width, src.height);
1296		swap(flip_vert_scan_dir, flip_horz_scan_dir);
1297	}
1298
1299	calculate_init_and_vp(
1300			flip_horz_scan_dir,
1301			recout_clip_in_recout_dst.x,
1302			data->recout.width,
1303			src.width,
1304			data->taps.h_taps,
1305			data->ratios.horz,
1306			&data->inits.h,
1307			&data->viewport.x,
1308			&data->viewport.width);
1309	calculate_init_and_vp(
1310			flip_horz_scan_dir,
1311			recout_clip_in_recout_dst.x,
1312			data->recout.width,
1313			src.width / vpc_div,
1314			data->taps.h_taps_c,
1315			data->ratios.horz_c,
1316			&data->inits.h_c,
1317			&data->viewport_c.x,
1318			&data->viewport_c.width);
1319	calculate_init_and_vp(
1320			flip_vert_scan_dir,
1321			recout_clip_in_recout_dst.y,
1322			data->recout.height,
1323			src.height,
1324			data->taps.v_taps,
1325			data->ratios.vert,
1326			&data->inits.v,
1327			&data->viewport.y,
1328			&data->viewport.height);
1329	calculate_init_and_vp(
1330			flip_vert_scan_dir,
1331			recout_clip_in_recout_dst.y,
1332			data->recout.height,
1333			src.height / vpc_div,
1334			data->taps.v_taps_c,
1335			data->ratios.vert_c,
1336			&data->inits.v_c,
1337			&data->viewport_c.y,
1338			&data->viewport_c.height);
1339	if (orthogonal_rotation) {
1340		swap(data->viewport.x, data->viewport.y);
1341		swap(data->viewport.width, data->viewport.height);
1342		swap(data->viewport_c.x, data->viewport_c.y);
1343		swap(data->viewport_c.width, data->viewport_c.height);
1344	}
1345	data->viewport.x += src.x;
1346	data->viewport.y += src.y;
1347	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1348	data->viewport_c.x += src.x / vpc_div;
1349	data->viewport_c.y += src.y / vpc_div;
1350}
1351
1352static bool is_subvp_high_refresh_candidate(struct dc_stream_state *stream)
1353{
1354	uint32_t refresh_rate;
1355	struct dc *dc = stream->ctx->dc;
1356
1357	refresh_rate = (stream->timing.pix_clk_100hz * (uint64_t)100 +
1358		stream->timing.v_total * stream->timing.h_total - (uint64_t)1);
1359	refresh_rate = div_u64(refresh_rate, stream->timing.v_total);
1360	refresh_rate = div_u64(refresh_rate, stream->timing.h_total);
1361
1362	/* If there's any stream that fits the SubVP high refresh criteria,
1363	 * we must return true. This is because cursor updates are asynchronous
1364	 * with full updates, so we could transition into a SubVP config and
1365	 * remain in HW cursor mode if there's no cursor update which will
1366	 * then cause corruption.
1367	 */
1368	if ((refresh_rate >= 120 && refresh_rate <= 175 &&
1369			stream->timing.v_addressable >= 1080 &&
1370			stream->timing.v_addressable <= 2160) &&
1371			(dc->current_state->stream_count > 1 ||
1372			(dc->current_state->stream_count == 1 && !stream->allow_freesync)))
1373		return true;
1374
1375	return false;
1376}
1377
1378static enum controller_dp_test_pattern convert_dp_to_controller_test_pattern(
1379				enum dp_test_pattern test_pattern)
1380{
1381	enum controller_dp_test_pattern controller_test_pattern;
1382
1383	switch (test_pattern) {
1384	case DP_TEST_PATTERN_COLOR_SQUARES:
1385		controller_test_pattern =
1386				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1387	break;
1388	case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
1389		controller_test_pattern =
1390				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
1391	break;
1392	case DP_TEST_PATTERN_VERTICAL_BARS:
1393		controller_test_pattern =
1394				CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
1395	break;
1396	case DP_TEST_PATTERN_HORIZONTAL_BARS:
1397		controller_test_pattern =
1398				CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
1399	break;
1400	case DP_TEST_PATTERN_COLOR_RAMP:
1401		controller_test_pattern =
1402				CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
1403	break;
1404	default:
1405		controller_test_pattern =
1406				CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1407	break;
1408	}
1409
1410	return controller_test_pattern;
1411}
1412
1413static enum controller_dp_color_space convert_dp_to_controller_color_space(
1414		enum dp_test_pattern_color_space color_space)
1415{
1416	enum controller_dp_color_space controller_color_space;
1417
1418	switch (color_space) {
1419	case DP_TEST_PATTERN_COLOR_SPACE_RGB:
1420		controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1421		break;
1422	case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
1423		controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
1424		break;
1425	case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
1426		controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
1427		break;
1428	case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
1429	default:
1430		controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1431		break;
1432	}
1433
1434	return controller_color_space;
1435}
1436
1437void resource_build_test_pattern_params(struct resource_context *res_ctx,
1438				struct pipe_ctx *otg_master)
1439{
1440	int odm_slice_width, last_odm_slice_width, offset = 0;
1441	struct pipe_ctx *opp_heads[MAX_PIPES];
1442	struct test_pattern_params *params;
1443	int odm_cnt = 1;
1444	enum controller_dp_test_pattern controller_test_pattern;
1445	enum controller_dp_color_space controller_color_space;
1446	enum dc_color_depth color_depth = otg_master->stream->timing.display_color_depth;
1447	int h_active = otg_master->stream->timing.h_addressable +
1448		otg_master->stream->timing.h_border_left +
1449		otg_master->stream->timing.h_border_right;
1450	int v_active = otg_master->stream->timing.v_addressable +
1451		otg_master->stream->timing.v_border_bottom +
1452		otg_master->stream->timing.v_border_top;
1453	int i;
1454
1455	controller_test_pattern = convert_dp_to_controller_test_pattern(
1456			otg_master->stream->test_pattern.type);
1457	controller_color_space = convert_dp_to_controller_color_space(
1458			otg_master->stream->test_pattern.color_space);
1459
1460	if (controller_test_pattern == CONTROLLER_DP_TEST_PATTERN_VIDEOMODE)
1461		return;
1462
1463	odm_cnt = resource_get_opp_heads_for_otg_master(otg_master, res_ctx, opp_heads);
1464
1465	odm_slice_width = h_active / odm_cnt;
1466	last_odm_slice_width = h_active - odm_slice_width * (odm_cnt - 1);
1467
1468	for (i = 0; i < odm_cnt; i++) {
1469		params = &opp_heads[i]->stream_res.test_pattern_params;
1470		params->test_pattern = controller_test_pattern;
1471		params->color_space = controller_color_space;
1472		params->color_depth = color_depth;
1473		params->height = v_active;
1474		params->offset = offset;
1475
1476		if (i < odm_cnt - 1)
1477			params->width = odm_slice_width;
1478		else
1479			params->width = last_odm_slice_width;
1480
1481		offset += odm_slice_width;
1482	}
1483}
1484
1485bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1486{
1487	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1488	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1489	const struct rect odm_slice_rec = calculate_odm_slice_in_timing_active(pipe_ctx);
1490	bool res = false;
1491
1492	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1493
1494	/* Invalid input */
1495	if (!plane_state->dst_rect.width ||
1496			!plane_state->dst_rect.height ||
1497			!plane_state->src_rect.width ||
1498			!plane_state->src_rect.height) {
1499		ASSERT(0);
1500		return false;
1501	}
1502
1503	/* Timing borders are part of vactive that we are also supposed to skip in addition
1504	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1505	 * space we need to add the left and top borders to dst offsets temporarily.
1506	 * TODO: fix in DM, stream dst is supposed to be in vactive
1507	 */
1508	pipe_ctx->stream->dst.x += timing->h_border_left;
1509	pipe_ctx->stream->dst.y += timing->v_border_top;
1510
1511	/* Calculate H and V active size */
1512	pipe_ctx->plane_res.scl_data.h_active = odm_slice_rec.width;
1513	pipe_ctx->plane_res.scl_data.v_active = odm_slice_rec.height;
1514	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1515			pipe_ctx->plane_state->format);
1516
1517	/* depends on h_active */
1518	calculate_recout(pipe_ctx);
1519	/* depends on pixel format */
1520	calculate_scaling_ratios(pipe_ctx);
1521	/* depends on scaling ratios and recout, does not calculate offset yet */
1522	calculate_viewport_size(pipe_ctx);
1523
1524	/*
1525	 * LB calculations depend on vp size, h/v_active and scaling ratios
1526	 * Setting line buffer pixel depth to 24bpp yields banding
1527	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1528	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1529	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1530	 * precision on DCN display engines, but apparently not for DCE, as
1531	 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1532	 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1533	 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1534	 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1535	 */
1536	if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1537		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1538	else
1539		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1540
1541	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1542
1543	if (pipe_ctx->plane_res.xfm != NULL)
1544		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1545				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1546
1547	if (pipe_ctx->plane_res.dpp != NULL)
1548		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1549				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1550
1551
1552	if (!res) {
1553		/* Try 24 bpp linebuffer */
1554		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1555
1556		if (pipe_ctx->plane_res.xfm != NULL)
1557			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1558					pipe_ctx->plane_res.xfm,
1559					&pipe_ctx->plane_res.scl_data,
1560					&plane_state->scaling_quality);
1561
1562		if (pipe_ctx->plane_res.dpp != NULL)
1563			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1564					pipe_ctx->plane_res.dpp,
1565					&pipe_ctx->plane_res.scl_data,
1566					&plane_state->scaling_quality);
1567	}
1568
1569	/*
1570	 * Depends on recout, scaling ratios, h_active and taps
1571	 * May need to re-check lb size after this in some obscure scenario
1572	 */
1573	if (res)
1574		calculate_inits_and_viewports(pipe_ctx);
1575
1576	/*
1577	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1578	 * since 3d is special and needs to calculate vp as if there is no recout offset
1579	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1580	 */
1581	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1582		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1583			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1584				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1585		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1586			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1587		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1588			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1589	}
1590
1591	/* Clamp minimum viewport size */
1592	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1593		pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1594	if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1595		pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1596
1597
1598	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1599			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1600			__func__,
1601			pipe_ctx->pipe_idx,
1602			pipe_ctx->plane_res.scl_data.viewport.height,
1603			pipe_ctx->plane_res.scl_data.viewport.width,
1604			pipe_ctx->plane_res.scl_data.viewport.x,
1605			pipe_ctx->plane_res.scl_data.viewport.y,
1606			pipe_ctx->plane_res.scl_data.recout.height,
1607			pipe_ctx->plane_res.scl_data.recout.width,
1608			pipe_ctx->plane_res.scl_data.recout.x,
1609			pipe_ctx->plane_res.scl_data.recout.y,
1610			pipe_ctx->plane_res.scl_data.h_active,
1611			pipe_ctx->plane_res.scl_data.v_active,
1612			plane_state->src_rect.height,
1613			plane_state->src_rect.width,
1614			plane_state->src_rect.x,
1615			plane_state->src_rect.y,
1616			plane_state->dst_rect.height,
1617			plane_state->dst_rect.width,
1618			plane_state->dst_rect.x,
1619			plane_state->dst_rect.y,
1620			plane_state->clip_rect.height,
1621			plane_state->clip_rect.width,
1622			plane_state->clip_rect.x,
1623			plane_state->clip_rect.y);
1624
1625	pipe_ctx->stream->dst.x -= timing->h_border_left;
1626	pipe_ctx->stream->dst.y -= timing->v_border_top;
1627
1628	return res;
1629}
1630
1631
1632enum dc_status resource_build_scaling_params_for_context(
1633	const struct dc  *dc,
1634	struct dc_state *context)
1635{
1636	int i;
1637
1638	for (i = 0; i < MAX_PIPES; i++) {
1639		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1640				context->res_ctx.pipe_ctx[i].stream != NULL)
1641			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1642				return DC_FAIL_SCALING;
1643	}
1644
1645	return DC_OK;
1646}
1647
1648struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1649		struct resource_context *res_ctx,
1650		const struct resource_pool *pool,
1651		const struct pipe_ctx *primary_pipe)
1652{
1653	int i;
1654	struct pipe_ctx *secondary_pipe = NULL;
1655
1656	/*
1657	 * We add a preferred pipe mapping to avoid the chance that
1658	 * MPCCs already in use will need to be reassigned to other trees.
1659	 * For example, if we went with the strict, assign backwards logic:
1660	 *
1661	 * (State 1)
1662	 * Display A on, no surface, top pipe = 0
1663	 * Display B on, no surface, top pipe = 1
1664	 *
1665	 * (State 2)
1666	 * Display A on, no surface, top pipe = 0
1667	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1668	 *
1669	 * (State 3)
1670	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1671	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1672	 *
1673	 * The state 2->3 transition requires remapping MPCC 5 from display B
1674	 * to display A.
1675	 *
1676	 * However, with the preferred pipe logic, state 2 would look like:
1677	 *
1678	 * (State 2)
1679	 * Display A on, no surface, top pipe = 0
1680	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1681	 *
1682	 * This would then cause 2->3 to not require remapping any MPCCs.
1683	 */
1684	if (primary_pipe) {
1685		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1686		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1687			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1688			secondary_pipe->pipe_idx = preferred_pipe_idx;
1689		}
1690	}
1691
1692	/*
1693	 * search backwards for the second pipe to keep pipe
1694	 * assignment more consistent
1695	 */
1696	if (!secondary_pipe)
1697		for (i = pool->pipe_count - 1; i >= 0; i--) {
1698			if (res_ctx->pipe_ctx[i].stream == NULL) {
1699				secondary_pipe = &res_ctx->pipe_ctx[i];
1700				secondary_pipe->pipe_idx = i;
1701				break;
1702			}
1703		}
1704
1705	return secondary_pipe;
1706}
1707
1708int resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
1709		const struct resource_context *cur_res_ctx,
1710		struct resource_context *new_res_ctx,
1711		const struct pipe_ctx *cur_otg_master)
1712{
1713	const struct pipe_ctx *cur_sec_opp_head = cur_otg_master->next_odm_pipe;
1714	struct pipe_ctx *new_pipe;
1715	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1716
1717	while (cur_sec_opp_head) {
1718		new_pipe = &new_res_ctx->pipe_ctx[cur_sec_opp_head->pipe_idx];
1719		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1720			free_pipe_idx = cur_sec_opp_head->pipe_idx;
1721			break;
1722		}
1723		cur_sec_opp_head = cur_sec_opp_head->next_odm_pipe;
1724	}
1725
1726	return free_pipe_idx;
1727}
1728
1729int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1730		const struct resource_context *cur_res_ctx,
1731		struct resource_context *new_res_ctx,
1732		const struct pipe_ctx *cur_opp_head)
1733{
1734	const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1735	struct pipe_ctx *new_pipe;
1736	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1737
1738	while (cur_sec_dpp) {
1739		/* find a free pipe used in current opp blend tree,
1740		 * this is to avoid MPO pipe switching to different opp blending
1741		 * tree
1742		 */
1743		new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1744		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1745			free_pipe_idx = cur_sec_dpp->pipe_idx;
1746			break;
1747		}
1748		cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1749	}
1750
1751	return free_pipe_idx;
1752}
1753
1754int recource_find_free_pipe_not_used_in_cur_res_ctx(
1755		const struct resource_context *cur_res_ctx,
1756		struct resource_context *new_res_ctx,
1757		const struct resource_pool *pool)
1758{
1759	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1760	const struct pipe_ctx *new_pipe, *cur_pipe;
1761	int i;
1762
1763	for (i = 0; i < pool->pipe_count; i++) {
1764		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1765		new_pipe = &new_res_ctx->pipe_ctx[i];
1766
1767		if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1768				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1769			free_pipe_idx = i;
1770			break;
1771		}
1772	}
1773
1774	return free_pipe_idx;
1775}
1776
1777int recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
1778		const struct resource_context *cur_res_ctx,
1779		struct resource_context *new_res_ctx,
1780		const struct resource_pool *pool)
1781{
1782	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1783	const struct pipe_ctx *new_pipe, *cur_pipe;
1784	int i;
1785
1786	for (i = 0; i < pool->pipe_count; i++) {
1787		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1788		new_pipe = &new_res_ctx->pipe_ctx[i];
1789
1790		if (resource_is_pipe_type(cur_pipe, OTG_MASTER) &&
1791				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1792			free_pipe_idx = i;
1793			break;
1794		}
1795	}
1796
1797	return free_pipe_idx;
1798}
1799
1800int resource_find_free_pipe_used_as_cur_sec_dpp(
1801		const struct resource_context *cur_res_ctx,
1802		struct resource_context *new_res_ctx,
1803		const struct resource_pool *pool)
1804{
1805	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1806	const struct pipe_ctx *new_pipe, *cur_pipe;
1807	int i;
1808
1809	for (i = 0; i < pool->pipe_count; i++) {
1810		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1811		new_pipe = &new_res_ctx->pipe_ctx[i];
1812
1813		if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1814				!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1815				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1816			free_pipe_idx = i;
1817			break;
1818		}
1819	}
1820
1821	return free_pipe_idx;
1822}
1823
1824int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1825		const struct resource_context *cur_res_ctx,
1826		struct resource_context *new_res_ctx,
1827		const struct resource_pool *pool)
1828{
1829	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1830	const struct pipe_ctx *new_pipe, *cur_pipe;
1831	int i;
1832
1833	for (i = 0; i < pool->pipe_count; i++) {
1834		cur_pipe = &cur_res_ctx->pipe_ctx[i];
1835		new_pipe = &new_res_ctx->pipe_ctx[i];
1836
1837		if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1838				!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1839				resource_get_mpc_slice_index(cur_pipe) > 0 &&
1840				resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1841			free_pipe_idx = i;
1842			break;
1843		}
1844	}
1845
1846	return free_pipe_idx;
1847}
1848
1849int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1850		const struct resource_pool *pool)
1851{
1852	int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1853	const struct pipe_ctx *new_pipe;
1854	int i;
1855
1856	for (i = 0; i < pool->pipe_count; i++) {
1857		new_pipe = &new_res_ctx->pipe_ctx[i];
1858
1859		if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1860			free_pipe_idx = i;
1861			break;
1862		}
1863	}
1864
1865	return free_pipe_idx;
1866}
1867
1868bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1869{
1870	switch (type) {
1871	case OTG_MASTER:
1872		return !pipe_ctx->prev_odm_pipe &&
1873				!pipe_ctx->top_pipe &&
1874				pipe_ctx->stream;
1875	case OPP_HEAD:
1876		return !pipe_ctx->top_pipe && pipe_ctx->stream;
1877	case DPP_PIPE:
1878		return pipe_ctx->plane_state && pipe_ctx->stream;
1879	case FREE_PIPE:
1880		return !pipe_ctx->plane_state && !pipe_ctx->stream;
1881	default:
1882		return false;
1883	}
1884}
1885
1886struct pipe_ctx *resource_get_otg_master_for_stream(
1887		struct resource_context *res_ctx,
1888		const struct dc_stream_state *stream)
1889{
1890	int i;
1891
1892	for (i = 0; i < MAX_PIPES; i++) {
1893		if (res_ctx->pipe_ctx[i].stream == stream &&
1894				resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
1895			return &res_ctx->pipe_ctx[i];
1896	}
1897	return NULL;
1898}
1899
1900int resource_get_opp_heads_for_otg_master(const struct pipe_ctx *otg_master,
1901		struct resource_context *res_ctx,
1902		struct pipe_ctx *opp_heads[MAX_PIPES])
1903{
1904	struct pipe_ctx *opp_head = &res_ctx->pipe_ctx[otg_master->pipe_idx];
1905	int i = 0;
1906
1907	if (!resource_is_pipe_type(otg_master, OTG_MASTER)) {
1908		ASSERT(0);
1909		return 0;
1910	}
1911	while (opp_head) {
1912		ASSERT(i < MAX_PIPES);
1913		opp_heads[i++] = opp_head;
1914		opp_head = opp_head->next_odm_pipe;
1915	}
1916	return i;
1917}
1918
1919int resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx *opp_head,
1920		struct resource_context *res_ctx,
1921		struct pipe_ctx *dpp_pipes[MAX_PIPES])
1922{
1923	struct pipe_ctx *pipe = &res_ctx->pipe_ctx[opp_head->pipe_idx];
1924	int i = 0;
1925
1926	if (!resource_is_pipe_type(opp_head, OPP_HEAD)) {
1927		ASSERT(0);
1928		return 0;
1929	}
1930	while (pipe && resource_is_pipe_type(pipe, DPP_PIPE)) {
1931		ASSERT(i < MAX_PIPES);
1932		dpp_pipes[i++] = pipe;
1933		pipe = pipe->bottom_pipe;
1934	}
1935	return i;
1936}
1937
1938int resource_get_dpp_pipes_for_plane(const struct dc_plane_state *plane,
1939		struct resource_context *res_ctx,
1940		struct pipe_ctx *dpp_pipes[MAX_PIPES])
1941{
1942	int i = 0, j;
1943	struct pipe_ctx *pipe;
1944
1945	for (j = 0; j < MAX_PIPES; j++) {
1946		pipe = &res_ctx->pipe_ctx[j];
1947		if (pipe->plane_state == plane && pipe->prev_odm_pipe == NULL) {
1948			if (resource_is_pipe_type(pipe, OPP_HEAD) ||
1949					pipe->top_pipe->plane_state != plane)
1950				break;
1951		}
1952	}
1953
1954	if (j < MAX_PIPES) {
1955		if (pipe->next_odm_pipe)
1956			while (pipe) {
1957				dpp_pipes[i++] = pipe;
1958				pipe = pipe->next_odm_pipe;
1959			}
1960		else
1961			while (pipe && pipe->plane_state == plane) {
1962				dpp_pipes[i++] = pipe;
1963				pipe = pipe->bottom_pipe;
1964			}
1965	}
1966	return i;
1967}
1968
1969struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1970{
1971	struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1972
1973	while (otg_master->prev_odm_pipe)
1974		otg_master = otg_master->prev_odm_pipe;
1975	return otg_master;
1976}
1977
1978struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1979{
1980	struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1981
1982	ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1983	while (opp_head->top_pipe)
1984		opp_head = opp_head->top_pipe;
1985	return opp_head;
1986}
1987
1988struct pipe_ctx *resource_get_primary_dpp_pipe(const struct pipe_ctx *dpp_pipe)
1989{
1990	struct pipe_ctx *pri_dpp_pipe = (struct pipe_ctx *) dpp_pipe;
1991
1992	ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
1993	while (pri_dpp_pipe->prev_odm_pipe)
1994		pri_dpp_pipe = pri_dpp_pipe->prev_odm_pipe;
1995	while (pri_dpp_pipe->top_pipe &&
1996			pri_dpp_pipe->top_pipe->plane_state == pri_dpp_pipe->plane_state)
1997		pri_dpp_pipe = pri_dpp_pipe->top_pipe;
1998	return pri_dpp_pipe;
1999}
2000
2001
2002int resource_get_mpc_slice_index(const struct pipe_ctx *pipe_ctx)
2003{
2004	struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
2005	int index = 0;
2006
2007	while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
2008		index++;
2009		split_pipe = split_pipe->top_pipe;
2010	}
2011
2012	return index;
2013}
2014
2015int resource_get_mpc_slice_count(const struct pipe_ctx *pipe)
2016{
2017	int mpc_split_count = 1;
2018	const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
2019
2020	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2021		mpc_split_count++;
2022		other_pipe = other_pipe->bottom_pipe;
2023	}
2024	other_pipe = pipe->top_pipe;
2025	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2026		mpc_split_count++;
2027		other_pipe = other_pipe->top_pipe;
2028	}
2029
2030	return mpc_split_count;
2031}
2032
2033int resource_get_odm_slice_count(const struct pipe_ctx *pipe)
2034{
2035	int odm_split_count = 1;
2036
2037	pipe = resource_get_otg_master(pipe);
2038
2039	while (pipe->next_odm_pipe) {
2040		odm_split_count++;
2041		pipe = pipe->next_odm_pipe;
2042	}
2043	return odm_split_count;
2044}
2045
2046int resource_get_odm_slice_index(const struct pipe_ctx *pipe_ctx)
2047{
2048	int index = 0;
2049
2050	pipe_ctx = resource_get_opp_head(pipe_ctx);
2051	if (!pipe_ctx)
2052		return 0;
2053
2054	while (pipe_ctx->prev_odm_pipe) {
2055		index++;
2056		pipe_ctx = pipe_ctx->prev_odm_pipe;
2057	}
2058
2059	return index;
2060}
2061
2062bool resource_is_pipe_topology_changed(const struct dc_state *state_a,
2063		const struct dc_state *state_b)
2064{
2065	int i;
2066	const struct pipe_ctx *pipe_a, *pipe_b;
2067
2068	if (state_a->stream_count != state_b->stream_count)
2069		return true;
2070
2071	for (i = 0; i < MAX_PIPES; i++) {
2072		pipe_a = &state_a->res_ctx.pipe_ctx[i];
2073		pipe_b = &state_b->res_ctx.pipe_ctx[i];
2074
2075		if (pipe_a->stream && !pipe_b->stream)
2076			return true;
2077		else if (!pipe_a->stream && pipe_b->stream)
2078			return true;
2079
2080		if (pipe_a->plane_state && !pipe_b->plane_state)
2081			return true;
2082		else if (!pipe_a->plane_state && pipe_b->plane_state)
2083			return true;
2084
2085		if (pipe_a->bottom_pipe && pipe_b->bottom_pipe) {
2086			if (pipe_a->bottom_pipe->pipe_idx != pipe_b->bottom_pipe->pipe_idx)
2087				return true;
2088			if ((pipe_a->bottom_pipe->plane_state == pipe_a->plane_state) &&
2089					(pipe_b->bottom_pipe->plane_state != pipe_b->plane_state))
2090				return true;
2091			else if ((pipe_a->bottom_pipe->plane_state != pipe_a->plane_state) &&
2092					(pipe_b->bottom_pipe->plane_state == pipe_b->plane_state))
2093				return true;
2094		} else if (pipe_a->bottom_pipe || pipe_b->bottom_pipe) {
2095			return true;
2096		}
2097
2098		if (pipe_a->next_odm_pipe && pipe_b->next_odm_pipe) {
2099			if (pipe_a->next_odm_pipe->pipe_idx != pipe_b->next_odm_pipe->pipe_idx)
2100				return true;
2101		} else if (pipe_a->next_odm_pipe || pipe_b->next_odm_pipe) {
2102			return true;
2103		}
2104	}
2105	return false;
2106}
2107
2108bool resource_is_odm_topology_changed(const struct pipe_ctx *otg_master_a,
2109		const struct pipe_ctx *otg_master_b)
2110{
2111	const struct pipe_ctx *opp_head_a = otg_master_a;
2112	const struct pipe_ctx *opp_head_b = otg_master_b;
2113
2114	if (!resource_is_pipe_type(otg_master_a, OTG_MASTER) ||
2115			!resource_is_pipe_type(otg_master_b, OTG_MASTER))
2116		return true;
2117
2118	while (opp_head_a && opp_head_b) {
2119		if (opp_head_a->stream_res.opp != opp_head_b->stream_res.opp)
2120			return true;
2121		if ((opp_head_a->next_odm_pipe && !opp_head_b->next_odm_pipe) ||
2122				(!opp_head_a->next_odm_pipe && opp_head_b->next_odm_pipe))
2123			return true;
2124		opp_head_a = opp_head_a->next_odm_pipe;
2125		opp_head_b = opp_head_b->next_odm_pipe;
2126	}
2127
2128	return false;
2129}
2130
2131/*
2132 * Sample log:
2133 *    pipe topology update
2134 *  ________________________
2135 * | plane0  slice0  stream0|
2136 * |DPP0----OPP0----OTG0----| <--- case 0 (OTG master pipe with plane)
2137 * | plane1 |       |       |
2138 * |DPP1----|       |       | <--- case 5 (DPP pipe not in last slice)
2139 * | plane0  slice1 |       |
2140 * |DPP2----OPP2----|       | <--- case 2 (OPP head pipe with plane)
2141 * | plane1 |               |
2142 * |DPP3----|               | <--- case 4 (DPP pipe in last slice)
2143 * |         slice0  stream1|
2144 * |DPG4----OPP4----OTG4----| <--- case 1 (OTG master pipe without plane)
2145 * |         slice1 |       |
2146 * |DPG5----OPP5----|       | <--- case 3 (OPP head pipe without plane)
2147 * |________________________|
2148 */
2149
2150static void resource_log_pipe(struct dc *dc, struct pipe_ctx *pipe,
2151		int stream_idx, int slice_idx, int plane_idx, int slice_count,
2152		bool is_primary)
2153{
2154	DC_LOGGER_INIT(dc->ctx->logger);
2155
2156	if (slice_idx == 0 && plane_idx == 0 && is_primary) {
2157		/* case 0 (OTG master pipe with plane) */
2158		DC_LOG_DC(" | plane%d  slice%d  stream%d|",
2159				plane_idx, slice_idx, stream_idx);
2160		DC_LOG_DC(" |DPP%d----OPP%d----OTG%d----|",
2161				pipe->plane_res.dpp->inst,
2162				pipe->stream_res.opp->inst,
2163				pipe->stream_res.tg->inst);
2164	} else if (slice_idx == 0 && plane_idx == -1) {
2165		/* case 1 (OTG master pipe without plane) */
2166		DC_LOG_DC(" |         slice%d  stream%d|",
2167				slice_idx, stream_idx);
2168		DC_LOG_DC(" |DPG%d----OPP%d----OTG%d----|",
2169				pipe->stream_res.opp->inst,
2170				pipe->stream_res.opp->inst,
2171				pipe->stream_res.tg->inst);
2172	} else if (slice_idx != 0 && plane_idx == 0 && is_primary) {
2173		/* case 2 (OPP head pipe with plane) */
2174		DC_LOG_DC(" | plane%d  slice%d |       |",
2175				plane_idx, slice_idx);
2176		DC_LOG_DC(" |DPP%d----OPP%d----|       |",
2177				pipe->plane_res.dpp->inst,
2178				pipe->stream_res.opp->inst);
2179	} else if (slice_idx != 0 && plane_idx == -1) {
2180		/* case 3 (OPP head pipe without plane) */
2181		DC_LOG_DC(" |         slice%d |       |", slice_idx);
2182		DC_LOG_DC(" |DPG%d----OPP%d----|       |",
2183				pipe->plane_res.dpp->inst,
2184				pipe->stream_res.opp->inst);
2185	} else if (slice_idx == slice_count - 1) {
2186		/* case 4 (DPP pipe in last slice) */
2187		DC_LOG_DC(" | plane%d |               |", plane_idx);
2188		DC_LOG_DC(" |DPP%d----|               |",
2189				pipe->plane_res.dpp->inst);
2190	} else {
2191		/* case 5 (DPP pipe not in last slice) */
2192		DC_LOG_DC(" | plane%d |       |       |", plane_idx);
2193		DC_LOG_DC(" |DPP%d----|       |       |",
2194				pipe->plane_res.dpp->inst);
2195	}
2196}
2197
2198static void resource_log_pipe_for_stream(struct dc *dc, struct dc_state *state,
2199		struct pipe_ctx *otg_master, int stream_idx)
2200{
2201	struct pipe_ctx *opp_heads[MAX_PIPES];
2202	struct pipe_ctx *dpp_pipes[MAX_PIPES];
2203
2204	int slice_idx, dpp_idx, plane_idx, slice_count, dpp_count;
2205	bool is_primary;
2206	DC_LOGGER_INIT(dc->ctx->logger);
2207
2208	slice_count = resource_get_opp_heads_for_otg_master(otg_master,
2209			&state->res_ctx, opp_heads);
2210	for (slice_idx = 0; slice_idx < slice_count; slice_idx++) {
2211		plane_idx = -1;
2212		if (opp_heads[slice_idx]->plane_state) {
2213			dpp_count = resource_get_dpp_pipes_for_opp_head(
2214					opp_heads[slice_idx],
2215					&state->res_ctx,
2216					dpp_pipes);
2217			for (dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
2218				is_primary = !dpp_pipes[dpp_idx]->top_pipe ||
2219						dpp_pipes[dpp_idx]->top_pipe->plane_state != dpp_pipes[dpp_idx]->plane_state;
2220				if (is_primary)
2221					plane_idx++;
2222				resource_log_pipe(dc, dpp_pipes[dpp_idx],
2223						stream_idx, slice_idx,
2224						plane_idx, slice_count,
2225						is_primary);
2226			}
2227		} else {
2228			resource_log_pipe(dc, opp_heads[slice_idx],
2229					stream_idx, slice_idx, plane_idx,
2230					slice_count, true);
2231		}
2232
2233	}
2234}
2235
2236static int resource_stream_to_stream_idx(struct dc_state *state,
2237		struct dc_stream_state *stream)
2238{
2239	int i, stream_idx = -1;
2240
2241	for (i = 0; i < state->stream_count; i++)
2242		if (state->streams[i] == stream) {
2243			stream_idx = i;
2244			break;
2245		}
2246
2247	/* never return negative array index */
2248	if (stream_idx == -1) {
2249		ASSERT(0);
2250		return 0;
2251	}
2252
2253	return stream_idx;
2254}
2255
2256void resource_log_pipe_topology_update(struct dc *dc, struct dc_state *state)
2257{
2258	struct pipe_ctx *otg_master;
2259	int stream_idx, phantom_stream_idx;
2260	DC_LOGGER_INIT(dc->ctx->logger);
2261
2262	DC_LOG_DC("    pipe topology update");
2263	DC_LOG_DC("  ________________________");
2264	for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2265		if (state->streams[stream_idx]->is_phantom)
2266			continue;
2267
2268		otg_master = resource_get_otg_master_for_stream(
2269				&state->res_ctx, state->streams[stream_idx]);
2270		resource_log_pipe_for_stream(dc, state, otg_master, stream_idx);
2271	}
2272	if (state->phantom_stream_count > 0) {
2273		DC_LOG_DC(" |    (phantom pipes)     |");
2274		for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2275			if (state->stream_status[stream_idx].mall_stream_config.type != SUBVP_MAIN)
2276				continue;
2277
2278			phantom_stream_idx = resource_stream_to_stream_idx(state,
2279					state->stream_status[stream_idx].mall_stream_config.paired_stream);
2280			otg_master = resource_get_otg_master_for_stream(
2281					&state->res_ctx, state->streams[phantom_stream_idx]);
2282			resource_log_pipe_for_stream(dc, state, otg_master, stream_idx);
2283		}
2284	}
2285	DC_LOG_DC(" |________________________|\n");
2286}
2287
2288static struct pipe_ctx *get_tail_pipe(
2289		struct pipe_ctx *head_pipe)
2290{
2291	struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
2292
2293	while (tail_pipe) {
2294		head_pipe = tail_pipe;
2295		tail_pipe = tail_pipe->bottom_pipe;
2296	}
2297
2298	return head_pipe;
2299}
2300
2301static struct pipe_ctx *get_last_opp_head(
2302		struct pipe_ctx *opp_head)
2303{
2304	ASSERT(resource_is_pipe_type(opp_head, OPP_HEAD));
2305	while (opp_head->next_odm_pipe)
2306		opp_head = opp_head->next_odm_pipe;
2307	return opp_head;
2308}
2309
2310static struct pipe_ctx *get_last_dpp_pipe_in_mpcc_combine(
2311		struct pipe_ctx *dpp_pipe)
2312{
2313	ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2314	while (dpp_pipe->bottom_pipe &&
2315			dpp_pipe->plane_state == dpp_pipe->bottom_pipe->plane_state)
2316		dpp_pipe = dpp_pipe->bottom_pipe;
2317	return dpp_pipe;
2318}
2319
2320static bool update_pipe_params_after_odm_slice_count_change(
2321		struct pipe_ctx *otg_master,
2322		struct dc_state *context,
2323		const struct resource_pool *pool)
2324{
2325	int i;
2326	struct pipe_ctx *pipe;
2327	bool result = true;
2328
2329	for (i = 0; i < pool->pipe_count && result; i++) {
2330		pipe = &context->res_ctx.pipe_ctx[i];
2331		if (pipe->stream == otg_master->stream && pipe->plane_state)
2332			result = resource_build_scaling_params(pipe);
2333	}
2334
2335	if (pool->funcs->build_pipe_pix_clk_params)
2336		pool->funcs->build_pipe_pix_clk_params(otg_master);
2337
2338	resource_build_test_pattern_params(&context->res_ctx, otg_master);
2339
2340	return result;
2341}
2342
2343static bool update_pipe_params_after_mpc_slice_count_change(
2344		const struct dc_plane_state *plane,
2345		struct dc_state *context,
2346		const struct resource_pool *pool)
2347{
2348	int i;
2349	struct pipe_ctx *pipe;
2350	bool result = true;
2351
2352	for (i = 0; i < pool->pipe_count && result; i++) {
2353		pipe = &context->res_ctx.pipe_ctx[i];
2354		if (pipe->plane_state == plane)
2355			result = resource_build_scaling_params(pipe);
2356	}
2357	return result;
2358}
2359
2360static int acquire_first_split_pipe(
2361		struct resource_context *res_ctx,
2362		const struct resource_pool *pool,
2363		struct dc_stream_state *stream)
2364{
2365	int i;
2366
2367	for (i = 0; i < pool->pipe_count; i++) {
2368		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
2369
2370		if (split_pipe->top_pipe &&
2371				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
2372			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
2373			if (split_pipe->bottom_pipe)
2374				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
2375
2376			if (split_pipe->top_pipe->plane_state)
2377				resource_build_scaling_params(split_pipe->top_pipe);
2378
2379			memset(split_pipe, 0, sizeof(*split_pipe));
2380			split_pipe->stream_res.tg = pool->timing_generators[i];
2381			split_pipe->plane_res.hubp = pool->hubps[i];
2382			split_pipe->plane_res.ipp = pool->ipps[i];
2383			split_pipe->plane_res.dpp = pool->dpps[i];
2384			split_pipe->stream_res.opp = pool->opps[i];
2385			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
2386			split_pipe->pipe_idx = i;
2387
2388			split_pipe->stream = stream;
2389			return i;
2390		}
2391	}
2392	return FREE_PIPE_INDEX_NOT_FOUND;
2393}
2394
2395static void update_stream_engine_usage(
2396		struct resource_context *res_ctx,
2397		const struct resource_pool *pool,
2398		struct stream_encoder *stream_enc,
2399		bool acquired)
2400{
2401	int i;
2402
2403	for (i = 0; i < pool->stream_enc_count; i++) {
2404		if (pool->stream_enc[i] == stream_enc)
2405			res_ctx->is_stream_enc_acquired[i] = acquired;
2406	}
2407}
2408
2409static void update_hpo_dp_stream_engine_usage(
2410		struct resource_context *res_ctx,
2411		const struct resource_pool *pool,
2412		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2413		bool acquired)
2414{
2415	int i;
2416
2417	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2418		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2419			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2420	}
2421}
2422
2423static inline int find_acquired_hpo_dp_link_enc_for_link(
2424		const struct resource_context *res_ctx,
2425		const struct dc_link *link)
2426{
2427	int i;
2428
2429	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2430		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2431				res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2432			return i;
2433
2434	return -1;
2435}
2436
2437static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2438		const struct resource_pool *pool)
2439{
2440	int i;
2441
2442	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2443		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2444			break;
2445
2446	return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2447			i < pool->hpo_dp_link_enc_count) ? i : -1;
2448}
2449
2450static inline void acquire_hpo_dp_link_enc(
2451		struct resource_context *res_ctx,
2452		unsigned int link_index,
2453		int enc_index)
2454{
2455	res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2456	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2457}
2458
2459static inline void retain_hpo_dp_link_enc(
2460		struct resource_context *res_ctx,
2461		int enc_index)
2462{
2463	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2464}
2465
2466static inline void release_hpo_dp_link_enc(
2467		struct resource_context *res_ctx,
2468		int enc_index)
2469{
2470	ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2471	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2472}
2473
2474static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2475		const struct resource_pool *pool,
2476		struct pipe_ctx *pipe_ctx,
2477		struct dc_stream_state *stream)
2478{
2479	int enc_index;
2480
2481	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2482
2483	if (enc_index >= 0) {
2484		retain_hpo_dp_link_enc(res_ctx, enc_index);
2485	} else {
2486		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2487		if (enc_index >= 0)
2488			acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2489	}
2490
2491	if (enc_index >= 0)
2492		pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2493
2494	return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2495}
2496
2497static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2498		struct pipe_ctx *pipe_ctx,
2499		struct dc_stream_state *stream)
2500{
2501	int enc_index;
2502
2503	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2504
2505	if (enc_index >= 0) {
2506		release_hpo_dp_link_enc(res_ctx, enc_index);
2507		pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2508	}
2509}
2510
2511enum dc_status resource_add_otg_master_for_stream_output(struct dc_state *new_ctx,
2512		const struct resource_pool *pool,
2513		struct dc_stream_state *stream)
2514{
2515	struct dc *dc = stream->ctx->dc;
2516
2517	return dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2518}
2519
2520void resource_remove_otg_master_for_stream_output(struct dc_state *context,
2521		const struct resource_pool *pool,
2522		struct dc_stream_state *stream)
2523{
2524	struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2525			&context->res_ctx, stream);
2526
2527	if (!otg_master)
2528		return;
2529
2530	ASSERT(resource_get_odm_slice_count(otg_master) == 1);
2531	ASSERT(otg_master->plane_state == NULL);
2532	ASSERT(otg_master->stream_res.stream_enc);
2533	update_stream_engine_usage(
2534			&context->res_ctx,
2535			pool,
2536			otg_master->stream_res.stream_enc,
2537			false);
2538
2539	if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(otg_master)) {
2540		update_hpo_dp_stream_engine_usage(
2541			&context->res_ctx, pool,
2542			otg_master->stream_res.hpo_dp_stream_enc,
2543			false);
2544		remove_hpo_dp_link_enc_from_ctx(
2545				&context->res_ctx, otg_master, stream);
2546	}
2547	if (otg_master->stream_res.audio)
2548		update_audio_usage(
2549			&context->res_ctx,
2550			pool,
2551			otg_master->stream_res.audio,
2552			false);
2553
2554	resource_unreference_clock_source(&context->res_ctx,
2555					  pool,
2556					  otg_master->clock_source);
2557
2558	if (pool->funcs->remove_stream_from_ctx)
2559		pool->funcs->remove_stream_from_ctx(
2560				stream->ctx->dc, context, stream);
2561	memset(otg_master, 0, sizeof(*otg_master));
2562}
2563
2564/* For each OPP head of an OTG master, add top plane at plane index 0.
2565 *
2566 * In the following example, the stream has 2 ODM slices without a top plane.
2567 * By adding a plane 0 to OPP heads, we are configuring our hardware to render
2568 * plane 0 by using each OPP head's DPP.
2569 *
2570 *       Inter-pipe Relation (Before Adding Plane)
2571 *        __________________________________________________
2572 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2573 *       |        |               | slice 0   |             |
2574 *       |   0    |               |blank ----ODM----------- |
2575 *       |        |               | slice 1 | |             |
2576 *       |   1    |               |blank ---- |             |
2577 *       |________|_______________|___________|_____________|
2578 *
2579 *       Inter-pipe Relation (After Adding Plane)
2580 *        __________________________________________________
2581 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2582 *       |        |  plane 0      | slice 0   |             |
2583 *       |   0    | -------------------------ODM----------- |
2584 *       |        |  plane 0      | slice 1 | |             |
2585 *       |   1    | ------------------------- |             |
2586 *       |________|_______________|___________|_____________|
2587 */
2588static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
2589		struct dc_plane_state *plane_state,
2590		struct dc_state *context)
2591{
2592	struct pipe_ctx *opp_head_pipe = otg_master_pipe;
2593
2594	while (opp_head_pipe) {
2595		if (opp_head_pipe->plane_state) {
2596			ASSERT(0);
2597			return false;
2598		}
2599		opp_head_pipe->plane_state = plane_state;
2600		opp_head_pipe = opp_head_pipe->next_odm_pipe;
2601	}
2602
2603	return true;
2604}
2605
2606/* For each OPP head of an OTG master, acquire a secondary DPP pipe and add
2607 * the plane. So the plane is added to all ODM slices associated with the OTG
2608 * master pipe in the bottom layer.
2609 *
2610 * In the following example, the stream has 2 ODM slices and a top plane 0.
2611 * By acquiring secondary DPP pipes and adding a plane 1, we are configuring our
2612 * hardware to render the plane 1 by acquiring a new pipe for each ODM slice and
2613 * render plane 1 using new pipes' DPP in the Z axis below plane 0.
2614 *
2615 *       Inter-pipe Relation (Before Adding Plane)
2616 *        __________________________________________________
2617 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2618 *       |        |  plane 0      | slice 0   |             |
2619 *       |   0    | -------------------------ODM----------- |
2620 *       |        |  plane 0      | slice 1 | |             |
2621 *       |   1    | ------------------------- |             |
2622 *       |________|_______________|___________|_____________|
2623 *
2624 *       Inter-pipe Relation (After Acquiring and Adding Plane)
2625 *        __________________________________________________
2626 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2627 *       |        |  plane 0      | slice 0   |             |
2628 *       |   0    | -------------MPC---------ODM----------- |
2629 *       |        |  plane 1    | |         | |             |
2630 *       |   2    | ------------- |         | |             |
2631 *       |        |  plane 0      | slice 1 | |             |
2632 *       |   1    | -------------MPC--------- |             |
2633 *       |        |  plane 1    | |           |             |
2634 *       |   3    | ------------- |           |             |
2635 *       |________|_______________|___________|_____________|
2636 */
2637static bool acquire_secondary_dpp_pipes_and_add_plane(
2638		struct pipe_ctx *otg_master_pipe,
2639		struct dc_plane_state *plane_state,
2640		struct dc_state *new_ctx,
2641		struct dc_state *cur_ctx,
2642		struct resource_pool *pool)
2643{
2644	struct pipe_ctx *opp_head_pipe, *sec_pipe, *tail_pipe;
2645
2646	if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
2647		ASSERT(0);
2648		return false;
2649	}
2650
2651	opp_head_pipe = otg_master_pipe;
2652	while (opp_head_pipe) {
2653		sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2654				cur_ctx,
2655				new_ctx,
2656				pool,
2657				opp_head_pipe);
2658		if (!sec_pipe) {
2659			/* try tearing down MPCC combine */
2660			int pipe_idx = acquire_first_split_pipe(
2661					&new_ctx->res_ctx, pool,
2662					otg_master_pipe->stream);
2663
2664			if (pipe_idx >= 0)
2665				sec_pipe = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
2666		}
2667
2668		if (!sec_pipe)
2669			return false;
2670
2671		sec_pipe->plane_state = plane_state;
2672
2673		/* establish pipe relationship */
2674		tail_pipe = get_tail_pipe(opp_head_pipe);
2675		tail_pipe->bottom_pipe = sec_pipe;
2676		sec_pipe->top_pipe = tail_pipe;
2677		sec_pipe->bottom_pipe = NULL;
2678		if (tail_pipe->prev_odm_pipe) {
2679			ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
2680			sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
2681			tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
2682		} else {
2683			sec_pipe->prev_odm_pipe = NULL;
2684		}
2685
2686		opp_head_pipe = opp_head_pipe->next_odm_pipe;
2687	}
2688	return true;
2689}
2690
2691bool resource_append_dpp_pipes_for_plane_composition(
2692		struct dc_state *new_ctx,
2693		struct dc_state *cur_ctx,
2694		struct resource_pool *pool,
2695		struct pipe_ctx *otg_master_pipe,
2696		struct dc_plane_state *plane_state)
2697{
2698	bool success;
2699	if (otg_master_pipe->plane_state == NULL)
2700		success = add_plane_to_opp_head_pipes(otg_master_pipe,
2701				plane_state, new_ctx);
2702	else
2703		success = acquire_secondary_dpp_pipes_and_add_plane(
2704				otg_master_pipe, plane_state, new_ctx,
2705				cur_ctx, pool);
2706	if (success)
2707		/* when appending a plane mpc slice count changes from 0 to 1 */
2708		success = update_pipe_params_after_mpc_slice_count_change(
2709				plane_state, new_ctx, pool);
2710	return success;
2711}
2712
2713void resource_remove_dpp_pipes_for_plane_composition(
2714		struct dc_state *context,
2715		const struct resource_pool *pool,
2716		const struct dc_plane_state *plane_state)
2717{
2718	int i;
2719	for (i = pool->pipe_count - 1; i >= 0; i--) {
2720		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2721
2722		if (pipe_ctx->plane_state == plane_state) {
2723			if (pipe_ctx->top_pipe)
2724				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
2725
2726			/* Second condition is to avoid setting NULL to top pipe
2727			 * of tail pipe making it look like head pipe in subsequent
2728			 * deletes
2729			 */
2730			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
2731				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
2732
2733			/*
2734			 * For head pipe detach surfaces from pipe for tail
2735			 * pipe just zero it out
2736			 */
2737			if (!pipe_ctx->top_pipe)
2738				pipe_ctx->plane_state = NULL;
2739			else
2740				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
2741		}
2742	}
2743}
2744
2745/*
2746 * Increase ODM slice count by 1 by acquiring pipes and adding a new ODM slice
2747 * at the last index.
2748 * return - true if a new ODM slice is added and required pipes are acquired.
2749 * false if new_ctx is no longer a valid state after new ODM slice is added.
2750 *
2751 * This is achieved by duplicating MPC blending tree from previous ODM slice.
2752 * In the following example, we have a single MPC tree and 1 ODM slice 0. We
2753 * want to add a new odm slice by duplicating the MPC blending tree and add
2754 * ODM slice 1.
2755 *
2756 *       Inter-pipe Relation (Before Acquiring and Adding ODM Slice)
2757 *        __________________________________________________
2758 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2759 *       |        |  plane 0      | slice 0   |             |
2760 *       |   0    | -------------MPC---------ODM----------- |
2761 *       |        |  plane 1    | |           |             |
2762 *       |   1    | ------------- |           |             |
2763 *       |________|_______________|___________|_____________|
2764 *
2765 *       Inter-pipe Relation (After Acquiring and Adding ODM Slice)
2766 *        __________________________________________________
2767 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2768 *       |        |  plane 0      | slice 0   |             |
2769 *       |   0    | -------------MPC---------ODM----------- |
2770 *       |        |  plane 1    | |         | |             |
2771 *       |   1    | ------------- |         | |             |
2772 *       |        |  plane 0      | slice 1 | |             |
2773 *       |   2    | -------------MPC--------- |             |
2774 *       |        |  plane 1    | |           |             |
2775 *       |   3    | ------------- |           |             |
2776 *       |________|_______________|___________|_____________|
2777 */
2778static bool acquire_pipes_and_add_odm_slice(
2779		struct pipe_ctx *otg_master_pipe,
2780		struct dc_state *new_ctx,
2781		const struct dc_state *cur_ctx,
2782		const struct resource_pool *pool)
2783{
2784	struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
2785	struct pipe_ctx *new_opp_head;
2786	struct pipe_ctx *last_top_dpp_pipe, *last_bottom_dpp_pipe,
2787			*new_top_dpp_pipe, *new_bottom_dpp_pipe;
2788
2789	if (!pool->funcs->acquire_free_pipe_as_secondary_opp_head) {
2790		ASSERT(0);
2791		return false;
2792	}
2793	new_opp_head = pool->funcs->acquire_free_pipe_as_secondary_opp_head(
2794					cur_ctx, new_ctx, pool,
2795					otg_master_pipe);
2796	if (!new_opp_head)
2797		return false;
2798
2799	last_opp_head->next_odm_pipe = new_opp_head;
2800	new_opp_head->prev_odm_pipe = last_opp_head;
2801	new_opp_head->next_odm_pipe = NULL;
2802	new_opp_head->plane_state = last_opp_head->plane_state;
2803	last_top_dpp_pipe = last_opp_head;
2804	new_top_dpp_pipe = new_opp_head;
2805
2806	while (last_top_dpp_pipe->bottom_pipe) {
2807		last_bottom_dpp_pipe = last_top_dpp_pipe->bottom_pipe;
2808		new_bottom_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2809				cur_ctx, new_ctx, pool,
2810				new_opp_head);
2811		if (!new_bottom_dpp_pipe)
2812			return false;
2813
2814		new_bottom_dpp_pipe->plane_state = last_bottom_dpp_pipe->plane_state;
2815		new_top_dpp_pipe->bottom_pipe = new_bottom_dpp_pipe;
2816		new_bottom_dpp_pipe->top_pipe = new_top_dpp_pipe;
2817		last_bottom_dpp_pipe->next_odm_pipe = new_bottom_dpp_pipe;
2818		new_bottom_dpp_pipe->prev_odm_pipe = last_bottom_dpp_pipe;
2819		new_bottom_dpp_pipe->next_odm_pipe = NULL;
2820		last_top_dpp_pipe = last_bottom_dpp_pipe;
2821	}
2822
2823	return true;
2824}
2825
2826/*
2827 * Decrease ODM slice count by 1 by releasing pipes and removing the ODM slice
2828 * at the last index.
2829 * return - true if the last ODM slice is removed and related pipes are
2830 * released. false if there is no removable ODM slice.
2831 *
2832 * In the following example, we have 2 MPC trees and ODM slice 0 and slice 1.
2833 * We want to remove the last ODM i.e slice 1. We are releasing secondary DPP
2834 * pipe 3 and OPP head pipe 2.
2835 *
2836 *       Inter-pipe Relation (Before Releasing and Removing ODM Slice)
2837 *        __________________________________________________
2838 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2839 *       |        |  plane 0      | slice 0   |             |
2840 *       |   0    | -------------MPC---------ODM----------- |
2841 *       |        |  plane 1    | |         | |             |
2842 *       |   1    | ------------- |         | |             |
2843 *       |        |  plane 0      | slice 1 | |             |
2844 *       |   2    | -------------MPC--------- |             |
2845 *       |        |  plane 1    | |           |             |
2846 *       |   3    | ------------- |           |             |
2847 *       |________|_______________|___________|_____________|
2848 *
2849 *       Inter-pipe Relation (After Releasing and Removing ODM Slice)
2850 *        __________________________________________________
2851 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2852 *       |        |  plane 0      | slice 0   |             |
2853 *       |   0    | -------------MPC---------ODM----------- |
2854 *       |        |  plane 1    | |           |             |
2855 *       |   1    | ------------- |           |             |
2856 *       |________|_______________|___________|_____________|
2857 */
2858static bool release_pipes_and_remove_odm_slice(
2859		struct pipe_ctx *otg_master_pipe,
2860		struct dc_state *context,
2861		const struct resource_pool *pool)
2862{
2863	struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
2864	struct pipe_ctx *tail_pipe = get_tail_pipe(last_opp_head);
2865
2866	if (!pool->funcs->release_pipe) {
2867		ASSERT(0);
2868		return false;
2869	}
2870
2871	if (resource_is_pipe_type(last_opp_head, OTG_MASTER))
2872		return false;
2873
2874	while (tail_pipe->top_pipe) {
2875		tail_pipe->prev_odm_pipe->next_odm_pipe = NULL;
2876		tail_pipe = tail_pipe->top_pipe;
2877		pool->funcs->release_pipe(context, tail_pipe->bottom_pipe, pool);
2878		tail_pipe->bottom_pipe = NULL;
2879	}
2880	last_opp_head->prev_odm_pipe->next_odm_pipe = NULL;
2881	pool->funcs->release_pipe(context, last_opp_head, pool);
2882
2883	return true;
2884}
2885
2886/*
2887 * Increase MPC slice count by 1 by acquiring a new DPP pipe and add it as the
2888 * last MPC slice of the plane associated with dpp_pipe.
2889 *
2890 * return - true if a new MPC slice is added and required pipes are acquired.
2891 * false if new_ctx is no longer a valid state after new MPC slice is added.
2892 *
2893 * In the following example, we add a new MPC slice for plane 0 into the
2894 * new_ctx. To do so we pass pipe 0 as dpp_pipe. The function acquires a new DPP
2895 * pipe 2 for plane 0 as the bottom most pipe for plane 0.
2896 *
2897 *       Inter-pipe Relation (Before Acquiring and Adding MPC Slice)
2898 *        __________________________________________________
2899 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2900 *       |        |  plane 0      |           |             |
2901 *       |   0    | -------------MPC----------------------- |
2902 *       |        |  plane 1    | |           |             |
2903 *       |   1    | ------------- |           |             |
2904 *       |________|_______________|___________|_____________|
2905 *
2906 *       Inter-pipe Relation (After Acquiring and Adding MPC Slice)
2907 *        __________________________________________________
2908 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2909 *       |        |  plane 0      |           |             |
2910 *       |   0    | -------------MPC----------------------- |
2911 *       |        |  plane 0    | |           |             |
2912 *       |   2    | ------------- |           |             |
2913 *       |        |  plane 1    | |           |             |
2914 *       |   1    | ------------- |           |             |
2915 *       |________|_______________|___________|_____________|
2916 */
2917static bool acquire_dpp_pipe_and_add_mpc_slice(
2918		struct pipe_ctx *dpp_pipe,
2919		struct dc_state *new_ctx,
2920		const struct dc_state *cur_ctx,
2921		const struct resource_pool *pool)
2922{
2923	struct pipe_ctx *last_dpp_pipe =
2924			get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
2925	struct pipe_ctx *opp_head = resource_get_opp_head(dpp_pipe);
2926	struct pipe_ctx *new_dpp_pipe;
2927
2928	if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
2929		ASSERT(0);
2930		return false;
2931	}
2932	new_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2933			cur_ctx, new_ctx, pool, opp_head);
2934	if (!new_dpp_pipe || resource_get_odm_slice_count(dpp_pipe) > 1)
2935		return false;
2936
2937	new_dpp_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
2938	if (new_dpp_pipe->bottom_pipe)
2939		new_dpp_pipe->bottom_pipe->top_pipe = new_dpp_pipe;
2940	new_dpp_pipe->top_pipe = last_dpp_pipe;
2941	last_dpp_pipe->bottom_pipe = new_dpp_pipe;
2942	new_dpp_pipe->plane_state = last_dpp_pipe->plane_state;
2943
2944	return true;
2945}
2946
2947/*
2948 * Reduce MPC slice count by 1 by releasing the bottom DPP pipe in MPCC combine
2949 * with dpp_pipe and removing last MPC slice of the plane associated with
2950 * dpp_pipe.
2951 *
2952 * return - true if the last MPC slice of the plane associated with dpp_pipe is
2953 * removed and last DPP pipe in MPCC combine with dpp_pipe is released.
2954 * false if there is no removable MPC slice.
2955 *
2956 * In the following example, we remove an MPC slice for plane 0 from the
2957 * context. To do so we pass pipe 0 as dpp_pipe. The function releases pipe 1 as
2958 * it is the last pipe for plane 0.
2959 *
2960 *       Inter-pipe Relation (Before Releasing and Removing MPC Slice)
2961 *        __________________________________________________
2962 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2963 *       |        |  plane 0      |           |             |
2964 *       |   0    | -------------MPC----------------------- |
2965 *       |        |  plane 0    | |           |             |
2966 *       |   1    | ------------- |           |             |
2967 *       |        |  plane 1    | |           |             |
2968 *       |   2    | ------------- |           |             |
2969 *       |________|_______________|___________|_____________|
2970 *
2971 *       Inter-pipe Relation (After Releasing and Removing MPC Slice)
2972 *        __________________________________________________
2973 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
2974 *       |        |  plane 0      |           |             |
2975 *       |   0    | -------------MPC----------------------- |
2976 *       |        |  plane 1    | |           |             |
2977 *       |   2    | ------------- |           |             |
2978 *       |________|_______________|___________|_____________|
2979 */
2980static bool release_dpp_pipe_and_remove_mpc_slice(
2981		struct pipe_ctx *dpp_pipe,
2982		struct dc_state *context,
2983		const struct resource_pool *pool)
2984{
2985	struct pipe_ctx *last_dpp_pipe =
2986			get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
2987
2988	if (!pool->funcs->release_pipe) {
2989		ASSERT(0);
2990		return false;
2991	}
2992
2993	if (resource_is_pipe_type(last_dpp_pipe, OPP_HEAD) ||
2994			resource_get_odm_slice_count(dpp_pipe) > 1)
2995		return false;
2996
2997	last_dpp_pipe->top_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
2998	if (last_dpp_pipe->bottom_pipe)
2999		last_dpp_pipe->bottom_pipe->top_pipe = last_dpp_pipe->top_pipe;
3000	pool->funcs->release_pipe(context, last_dpp_pipe, pool);
3001
3002	return true;
3003}
3004
3005bool resource_update_pipes_for_stream_with_slice_count(
3006		struct dc_state *new_ctx,
3007		const struct dc_state *cur_ctx,
3008		const struct resource_pool *pool,
3009		const struct dc_stream_state *stream,
3010		int new_slice_count)
3011{
3012	int i;
3013	struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
3014			&new_ctx->res_ctx, stream);
3015	int cur_slice_count = resource_get_odm_slice_count(otg_master);
3016	bool result = true;
3017
3018	if (new_slice_count == cur_slice_count)
3019		return result;
3020
3021	if (new_slice_count > cur_slice_count)
3022		for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3023			result = acquire_pipes_and_add_odm_slice(
3024					otg_master, new_ctx, cur_ctx, pool);
3025	else
3026		for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3027			result = release_pipes_and_remove_odm_slice(
3028					otg_master, new_ctx, pool);
3029	if (result)
3030		result = update_pipe_params_after_odm_slice_count_change(
3031				otg_master, new_ctx, pool);
3032	return result;
3033}
3034
3035bool resource_update_pipes_for_plane_with_slice_count(
3036		struct dc_state *new_ctx,
3037		const struct dc_state *cur_ctx,
3038		const struct resource_pool *pool,
3039		const struct dc_plane_state *plane,
3040		int new_slice_count)
3041{
3042	int i;
3043	int dpp_pipe_count;
3044	int cur_slice_count;
3045	struct pipe_ctx *dpp_pipes[MAX_PIPES] = {0};
3046	bool result = true;
3047
3048	dpp_pipe_count = resource_get_dpp_pipes_for_plane(plane,
3049			&new_ctx->res_ctx, dpp_pipes);
3050	ASSERT(dpp_pipe_count > 0);
3051	cur_slice_count = resource_get_mpc_slice_count(dpp_pipes[0]);
3052
3053	if (new_slice_count == cur_slice_count)
3054		return result;
3055
3056	if (new_slice_count > cur_slice_count)
3057		for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3058			result = acquire_dpp_pipe_and_add_mpc_slice(
3059					dpp_pipes[0], new_ctx, cur_ctx, pool);
3060	else
3061		for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3062			result = release_dpp_pipe_and_remove_mpc_slice(
3063					dpp_pipes[0], new_ctx, pool);
3064	if (result)
3065		result = update_pipe_params_after_mpc_slice_count_change(
3066				dpp_pipes[0]->plane_state, new_ctx, pool);
3067	return result;
3068}
3069
3070bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
3071		       struct dc_stream_state *new_stream)
3072{
3073	if (cur_stream == NULL)
3074		return true;
3075
3076	/* If output color space is changed, need to reprogram info frames */
3077	if (cur_stream->output_color_space != new_stream->output_color_space)
3078		return true;
3079
3080	return memcmp(
3081		&cur_stream->timing,
3082		&new_stream->timing,
3083		sizeof(struct dc_crtc_timing)) != 0;
3084}
3085
3086static bool are_stream_backends_same(
3087	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
3088{
3089	if (stream_a == stream_b)
3090		return true;
3091
3092	if (stream_a == NULL || stream_b == NULL)
3093		return false;
3094
3095	if (dc_is_timing_changed(stream_a, stream_b))
3096		return false;
3097
3098	if (stream_a->signal != stream_b->signal)
3099		return false;
3100
3101	if (stream_a->dpms_off != stream_b->dpms_off)
3102		return false;
3103
3104	return true;
3105}
3106
3107/*
3108 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
3109 *
3110 * Checks if there a difference between the two states
3111 * that would require a mode change.
3112 *
3113 * Does not compare cursor position or attributes.
3114 */
3115bool dc_is_stream_unchanged(
3116	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
3117{
3118
3119	if (!are_stream_backends_same(old_stream, stream))
3120		return false;
3121
3122	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
3123		return false;
3124
3125	/*compare audio info*/
3126	if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
3127		return false;
3128
3129	return true;
3130}
3131
3132/*
3133 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
3134 */
3135bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
3136				    struct dc_stream_state *stream)
3137{
3138	if (old_stream == stream)
3139		return true;
3140
3141	if (old_stream == NULL || stream == NULL)
3142		return false;
3143
3144	if (memcmp(&old_stream->src,
3145			&stream->src,
3146			sizeof(struct rect)) != 0)
3147		return false;
3148
3149	if (memcmp(&old_stream->dst,
3150			&stream->dst,
3151			sizeof(struct rect)) != 0)
3152		return false;
3153
3154	return true;
3155}
3156
3157/* TODO: release audio object */
3158void update_audio_usage(
3159		struct resource_context *res_ctx,
3160		const struct resource_pool *pool,
3161		struct audio *audio,
3162		bool acquired)
3163{
3164	int i;
3165	for (i = 0; i < pool->audio_count; i++) {
3166		if (pool->audios[i] == audio)
3167			res_ctx->is_audio_acquired[i] = acquired;
3168	}
3169}
3170
3171static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
3172		struct resource_context *res_ctx,
3173		const struct resource_pool *pool,
3174		struct dc_stream_state *stream)
3175{
3176	int i;
3177
3178	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
3179		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
3180				pool->hpo_dp_stream_enc[i]) {
3181
3182			return pool->hpo_dp_stream_enc[i];
3183		}
3184	}
3185
3186	return NULL;
3187}
3188
3189static struct audio *find_first_free_audio(
3190		struct resource_context *res_ctx,
3191		const struct resource_pool *pool,
3192		enum engine_id id,
3193		enum dce_version dc_version)
3194{
3195	int i, available_audio_count;
3196
3197	if (id == ENGINE_ID_UNKNOWN)
3198		return NULL;
3199
3200	available_audio_count = pool->audio_count;
3201
3202	for (i = 0; i < available_audio_count; i++) {
3203		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
3204			/*we have enough audio endpoint, find the matching inst*/
3205			if (id != i)
3206				continue;
3207			return pool->audios[i];
3208		}
3209	}
3210
3211	/* use engine id to find free audio */
3212	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
3213		return pool->audios[id];
3214	}
3215	/*not found the matching one, first come first serve*/
3216	for (i = 0; i < available_audio_count; i++) {
3217		if (res_ctx->is_audio_acquired[i] == false) {
3218			return pool->audios[i];
3219		}
3220	}
3221	return NULL;
3222}
3223
3224static struct dc_stream_state *find_pll_sharable_stream(
3225		struct dc_stream_state *stream_needs_pll,
3226		struct dc_state *context)
3227{
3228	int i;
3229
3230	for (i = 0; i < context->stream_count; i++) {
3231		struct dc_stream_state *stream_has_pll = context->streams[i];
3232
3233		/* We are looking for non dp, non virtual stream */
3234		if (resource_are_streams_timing_synchronizable(
3235			stream_needs_pll, stream_has_pll)
3236			&& !dc_is_dp_signal(stream_has_pll->signal)
3237			&& stream_has_pll->link->connector_signal
3238			!= SIGNAL_TYPE_VIRTUAL)
3239			return stream_has_pll;
3240
3241	}
3242
3243	return NULL;
3244}
3245
3246static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
3247{
3248	uint32_t pix_clk = timing->pix_clk_100hz;
3249	uint32_t normalized_pix_clk = pix_clk;
3250
3251	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
3252		pix_clk /= 2;
3253	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
3254		switch (timing->display_color_depth) {
3255		case COLOR_DEPTH_666:
3256		case COLOR_DEPTH_888:
3257			normalized_pix_clk = pix_clk;
3258			break;
3259		case COLOR_DEPTH_101010:
3260			normalized_pix_clk = (pix_clk * 30) / 24;
3261			break;
3262		case COLOR_DEPTH_121212:
3263			normalized_pix_clk = (pix_clk * 36) / 24;
3264		break;
3265		case COLOR_DEPTH_161616:
3266			normalized_pix_clk = (pix_clk * 48) / 24;
3267		break;
3268		default:
3269			ASSERT(0);
3270		break;
3271		}
3272	}
3273	return normalized_pix_clk;
3274}
3275
3276static void calculate_phy_pix_clks(struct dc_stream_state *stream)
3277{
3278	/* update actual pixel clock on all streams */
3279	if (dc_is_hdmi_signal(stream->signal))
3280		stream->phy_pix_clk = get_norm_pix_clk(
3281			&stream->timing) / 10;
3282	else
3283		stream->phy_pix_clk =
3284			stream->timing.pix_clk_100hz / 10;
3285
3286	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3287		stream->phy_pix_clk *= 2;
3288}
3289
3290static int acquire_resource_from_hw_enabled_state(
3291		struct resource_context *res_ctx,
3292		const struct resource_pool *pool,
3293		struct dc_stream_state *stream)
3294{
3295	struct dc_link *link = stream->link;
3296	unsigned int i, inst, tg_inst = 0;
3297	uint32_t numPipes = 1;
3298	uint32_t id_src[4] = {0};
3299
3300	/* Check for enabled DIG to identify enabled display */
3301	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
3302		return -1;
3303
3304	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
3305
3306	if (inst == ENGINE_ID_UNKNOWN)
3307		return -1;
3308
3309	for (i = 0; i < pool->stream_enc_count; i++) {
3310		if (pool->stream_enc[i]->id == inst) {
3311			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
3312				pool->stream_enc[i]);
3313			break;
3314		}
3315	}
3316
3317	// tg_inst not found
3318	if (i == pool->stream_enc_count)
3319		return -1;
3320
3321	if (tg_inst >= pool->timing_generator_count)
3322		return -1;
3323
3324	if (!res_ctx->pipe_ctx[tg_inst].stream) {
3325		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
3326
3327		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3328		id_src[0] = tg_inst;
3329
3330		if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
3331			pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
3332						&numPipes, &id_src[0], &id_src[1]);
3333
3334		if (id_src[0] == 0xf && id_src[1] == 0xf) {
3335			id_src[0] = tg_inst;
3336			numPipes = 1;
3337		}
3338
3339		for (i = 0; i < numPipes; i++) {
3340			//Check if src id invalid
3341			if (id_src[i] == 0xf)
3342				return -1;
3343
3344			pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
3345
3346			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3347			pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
3348			pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
3349			pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
3350			pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
3351			pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
3352			pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3353
3354			if (pool->dpps[id_src[i]]) {
3355				pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
3356
3357				if (pool->mpc->funcs->read_mpcc_state) {
3358					struct mpcc_state s = {0};
3359
3360					pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
3361
3362					if (s.dpp_id < MAX_MPCC)
3363						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
3364								s.dpp_id;
3365
3366					if (s.bot_mpcc_id < MAX_MPCC)
3367						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
3368								&pool->mpc->mpcc_array[s.bot_mpcc_id];
3369
3370					if (s.opp_id < MAX_OPP)
3371						pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
3372				}
3373			}
3374			pipe_ctx->pipe_idx = id_src[i];
3375
3376			if (id_src[i] >= pool->timing_generator_count) {
3377				id_src[i] = pool->timing_generator_count - 1;
3378
3379				pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
3380				pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3381			}
3382
3383			pipe_ctx->stream = stream;
3384		}
3385
3386		if (numPipes == 2) {
3387			stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
3388			res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
3389			res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
3390			res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
3391			res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
3392		} else
3393			stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
3394
3395		return id_src[0];
3396	}
3397
3398	return -1;
3399}
3400
3401static void mark_seamless_boot_stream(
3402		const struct dc  *dc,
3403		struct dc_stream_state *stream)
3404{
3405	struct dc_bios *dcb = dc->ctx->dc_bios;
3406
3407	if (dc->config.allow_seamless_boot_optimization &&
3408			!dcb->funcs->is_accelerated_mode(dcb)) {
3409		if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
3410			stream->apply_seamless_boot_optimization = true;
3411	}
3412}
3413
3414/*
3415 * Acquire a pipe as OTG master and assign to the stream in new dc context.
3416 * return - true if OTG master pipe is acquired and new dc context is updated.
3417 * false if it fails to acquire an OTG master pipe for this stream.
3418 *
3419 * In the example below, we acquired pipe 0 as OTG master pipe for the stream.
3420 * After the function its Inter-pipe Relation is represented by the diagram
3421 * below.
3422 *
3423 *       Inter-pipe Relation
3424 *        __________________________________________________
3425 *       |PIPE IDX|   DPP PIPES   | OPP HEADS | OTG MASTER  |
3426 *       |        |               |           |             |
3427 *       |   0    |               |blank ------------------ |
3428 *       |________|_______________|___________|_____________|
3429 */
3430static bool acquire_otg_master_pipe_for_stream(
3431		const struct dc_state *cur_ctx,
3432		struct dc_state *new_ctx,
3433		const struct resource_pool *pool,
3434		struct dc_stream_state *stream)
3435{
3436	/* TODO: Move this function to DCN specific resource file and acquire
3437	 * DSC resource here. The reason is that the function should have the
3438	 * same level of responsibility as when we acquire secondary OPP head.
3439	 * We acquire DSC when we acquire secondary OPP head, so we should
3440	 * acquire DSC when we acquire OTG master.
3441	 */
3442	int pipe_idx;
3443	struct pipe_ctx *pipe_ctx = NULL;
3444
3445	/*
3446	 * Upper level code is responsible to optimize unnecessary addition and
3447	 * removal for unchanged streams. So unchanged stream will keep the same
3448	 * OTG master instance allocated. When current stream is removed and a
3449	 * new stream is added, we want to reuse the OTG instance made available
3450	 * by the removed stream first. If not found, we try to avoid of using
3451	 * any free pipes already used in current context as this could tear
3452	 * down exiting ODM/MPC/MPO configuration unnecessarily.
3453	 */
3454
3455	/*
3456	 * Try to acquire the same OTG master already in use. This is not
3457	 * optimal because resetting an enabled OTG master pipe for a new stream
3458	 * requires an extra frame of wait. However there are test automation
3459	 * and eDP assumptions that rely on reusing the same OTG master pipe
3460	 * during mode change. We have to keep this logic as is for now.
3461	 */
3462	pipe_idx = recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
3463			&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3464	/*
3465	 * Try to acquire a pipe not used in current resource context to avoid
3466	 * pipe swapping.
3467	 */
3468	if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3469		pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
3470				&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3471	/*
3472	 * If pipe swapping is unavoidable, try to acquire pipe used as
3473	 * secondary DPP pipe in current state as we prioritize to support more
3474	 * streams over supporting MPO planes.
3475	 */
3476	if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3477		pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp(
3478				&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3479	if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3480		pipe_idx = resource_find_any_free_pipe(&new_ctx->res_ctx, pool);
3481	if (pipe_idx != FREE_PIPE_INDEX_NOT_FOUND) {
3482		pipe_ctx = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
3483		memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3484		pipe_ctx->pipe_idx = pipe_idx;
3485		pipe_ctx->stream_res.tg = pool->timing_generators[pipe_idx];
3486		pipe_ctx->plane_res.mi = pool->mis[pipe_idx];
3487		pipe_ctx->plane_res.hubp = pool->hubps[pipe_idx];
3488		pipe_ctx->plane_res.ipp = pool->ipps[pipe_idx];
3489		pipe_ctx->plane_res.xfm = pool->transforms[pipe_idx];
3490		pipe_ctx->plane_res.dpp = pool->dpps[pipe_idx];
3491		pipe_ctx->stream_res.opp = pool->opps[pipe_idx];
3492		if (pool->dpps[pipe_idx])
3493			pipe_ctx->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3494
3495		if (pipe_idx >= pool->timing_generator_count) {
3496			int tg_inst = pool->timing_generator_count - 1;
3497
3498			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3499			pipe_ctx->stream_res.opp = pool->opps[tg_inst];
3500		}
3501
3502		pipe_ctx->stream = stream;
3503	} else {
3504		pipe_idx = acquire_first_split_pipe(&new_ctx->res_ctx, pool, stream);
3505	}
3506
3507	return pipe_idx != FREE_PIPE_INDEX_NOT_FOUND;
3508}
3509
3510enum dc_status resource_map_pool_resources(
3511		const struct dc  *dc,
3512		struct dc_state *context,
3513		struct dc_stream_state *stream)
3514{
3515	const struct resource_pool *pool = dc->res_pool;
3516	int i;
3517	struct dc_context *dc_ctx = dc->ctx;
3518	struct pipe_ctx *pipe_ctx = NULL;
3519	int pipe_idx = -1;
3520	bool acquired = false;
3521
3522	calculate_phy_pix_clks(stream);
3523
3524	mark_seamless_boot_stream(dc, stream);
3525
3526	if (stream->apply_seamless_boot_optimization) {
3527		pipe_idx = acquire_resource_from_hw_enabled_state(
3528				&context->res_ctx,
3529				pool,
3530				stream);
3531		if (pipe_idx < 0)
3532			/* hw resource was assigned to other stream */
3533			stream->apply_seamless_boot_optimization = false;
3534		else
3535			acquired = true;
3536	}
3537
3538	if (!acquired)
3539		/* acquire new resources */
3540		acquired = acquire_otg_master_pipe_for_stream(dc->current_state,
3541				context, pool, stream);
3542
3543	pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
3544
3545	if (!pipe_ctx || pipe_ctx->stream_res.tg == NULL)
3546		return DC_NO_CONTROLLER_RESOURCE;
3547
3548	pipe_ctx->stream_res.stream_enc =
3549		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
3550			&context->res_ctx, pool, stream);
3551
3552	if (!pipe_ctx->stream_res.stream_enc)
3553		return DC_NO_STREAM_ENC_RESOURCE;
3554
3555	update_stream_engine_usage(
3556		&context->res_ctx, pool,
3557		pipe_ctx->stream_res.stream_enc,
3558		true);
3559
3560	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
3561	 * and link settings
3562	 */
3563	if (dc_is_dp_signal(stream->signal)) {
3564		if (!dc->link_srv->dp_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
3565			return DC_FAIL_DP_LINK_BANDWIDTH;
3566		if (dc->link_srv->dp_get_encoding_format(
3567				&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
3568			pipe_ctx->stream_res.hpo_dp_stream_enc =
3569					find_first_free_match_hpo_dp_stream_enc_for_link(
3570							&context->res_ctx, pool, stream);
3571
3572			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
3573				return DC_NO_STREAM_ENC_RESOURCE;
3574
3575			update_hpo_dp_stream_engine_usage(
3576					&context->res_ctx, pool,
3577					pipe_ctx->stream_res.hpo_dp_stream_enc,
3578					true);
3579			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
3580				return DC_NO_LINK_ENC_RESOURCE;
3581		}
3582	}
3583
3584	/* TODO: Add check if ASIC support and EDID audio */
3585	if (!stream->converter_disable_audio &&
3586	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
3587	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
3588		pipe_ctx->stream_res.audio = find_first_free_audio(
3589		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
3590
3591		/*
3592		 * Audio assigned in order first come first get.
3593		 * There are asics which has number of audio
3594		 * resources less then number of pipes
3595		 */
3596		if (pipe_ctx->stream_res.audio)
3597			update_audio_usage(&context->res_ctx, pool,
3598					   pipe_ctx->stream_res.audio, true);
3599	}
3600
3601	/* Add ABM to the resource if on EDP */
3602	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
3603		if (pool->abm)
3604			pipe_ctx->stream_res.abm = pool->abm;
3605		else
3606			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
3607	}
3608
3609	for (i = 0; i < context->stream_count; i++)
3610		if (context->streams[i] == stream) {
3611			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
3612			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
3613			context->stream_status[i].audio_inst =
3614				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
3615
3616			return DC_OK;
3617		}
3618
3619	DC_ERROR("Stream %p not found in new ctx!\n", stream);
3620	return DC_ERROR_UNEXPECTED;
3621}
3622
3623bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
3624{
3625	if (dc->res_pool == NULL)
3626		return false;
3627
3628	return dc->res_pool->res_cap->num_dsc > 0;
3629}
3630
3631static bool planes_changed_for_existing_stream(struct dc_state *context,
3632					       struct dc_stream_state *stream,
3633					       const struct dc_validation_set set[],
3634					       int set_count)
3635{
3636	int i, j;
3637	struct dc_stream_status *stream_status = NULL;
3638
3639	for (i = 0; i < context->stream_count; i++) {
3640		if (context->streams[i] == stream) {
3641			stream_status = &context->stream_status[i];
3642			break;
3643		}
3644	}
3645
3646	if (!stream_status)
3647		ASSERT(0);
3648
3649	for (i = 0; i < set_count; i++)
3650		if (set[i].stream == stream)
3651			break;
3652
3653	if (i == set_count)
3654		ASSERT(0);
3655
3656	if (set[i].plane_count != stream_status->plane_count)
3657		return true;
3658
3659	for (j = 0; j < set[i].plane_count; j++)
3660		if (set[i].plane_states[j] != stream_status->plane_states[j])
3661			return true;
3662
3663	return false;
3664}
3665
3666static bool add_all_planes_for_stream(
3667		const struct dc *dc,
3668		struct dc_stream_state *stream,
3669		const struct dc_validation_set set[],
3670		int set_count,
3671		struct dc_state *state)
3672{
3673	int i, j;
3674
3675	for (i = 0; i < set_count; i++)
3676		if (set[i].stream == stream)
3677			break;
3678
3679	if (i == set_count) {
3680		dm_error("Stream %p not found in set!\n", stream);
3681		return false;
3682	}
3683
3684	for (j = 0; j < set[i].plane_count; j++)
3685		if (!dc_state_add_plane(dc, stream, set[i].plane_states[j], state))
3686			return false;
3687
3688	return true;
3689}
3690
3691/**
3692 * dc_validate_with_context - Validate and update the potential new stream in the context object
3693 *
3694 * @dc: Used to get the current state status
3695 * @set: An array of dc_validation_set with all the current streams reference
3696 * @set_count: Total of streams
3697 * @context: New context
3698 * @fast_validate: Enable or disable fast validation
3699 *
3700 * This function updates the potential new stream in the context object. It
3701 * creates multiple lists for the add, remove, and unchanged streams. In
3702 * particular, if the unchanged streams have a plane that changed, it is
3703 * necessary to remove all planes from the unchanged streams. In summary, this
3704 * function is responsible for validating the new context.
3705 *
3706 * Return:
3707 * In case of success, return DC_OK (1), otherwise, return a DC error.
3708 */
3709enum dc_status dc_validate_with_context(struct dc *dc,
3710					const struct dc_validation_set set[],
3711					int set_count,
3712					struct dc_state *context,
3713					bool fast_validate)
3714{
3715	struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
3716	struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
3717	struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
3718	int old_stream_count = context->stream_count;
3719	enum dc_status res = DC_ERROR_UNEXPECTED;
3720	int unchanged_streams_count = 0;
3721	int del_streams_count = 0;
3722	int add_streams_count = 0;
3723	bool found = false;
3724	int i, j, k;
3725
3726	DC_LOGGER_INIT(dc->ctx->logger);
3727
3728	/* First build a list of streams to be remove from current context */
3729	for (i = 0; i < old_stream_count; i++) {
3730		struct dc_stream_state *stream = context->streams[i];
3731
3732		for (j = 0; j < set_count; j++) {
3733			if (stream == set[j].stream) {
3734				found = true;
3735				break;
3736			}
3737		}
3738
3739		if (!found)
3740			del_streams[del_streams_count++] = stream;
3741
3742		found = false;
3743	}
3744
3745	/* Second, build a list of new streams */
3746	for (i = 0; i < set_count; i++) {
3747		struct dc_stream_state *stream = set[i].stream;
3748
3749		for (j = 0; j < old_stream_count; j++) {
3750			if (stream == context->streams[j]) {
3751				found = true;
3752				break;
3753			}
3754		}
3755
3756		if (!found)
3757			add_streams[add_streams_count++] = stream;
3758
3759		found = false;
3760	}
3761
3762	/* Build a list of unchanged streams which is necessary for handling
3763	 * planes change such as added, removed, and updated.
3764	 */
3765	for (i = 0; i < set_count; i++) {
3766		/* Check if stream is part of the delete list */
3767		for (j = 0; j < del_streams_count; j++) {
3768			if (set[i].stream == del_streams[j]) {
3769				found = true;
3770				break;
3771			}
3772		}
3773
3774		if (!found) {
3775			/* Check if stream is part of the add list */
3776			for (j = 0; j < add_streams_count; j++) {
3777				if (set[i].stream == add_streams[j]) {
3778					found = true;
3779					break;
3780				}
3781			}
3782		}
3783
3784		if (!found)
3785			unchanged_streams[unchanged_streams_count++] = set[i].stream;
3786
3787		found = false;
3788	}
3789
3790	/* Remove all planes for unchanged streams if planes changed */
3791	for (i = 0; i < unchanged_streams_count; i++) {
3792		if (planes_changed_for_existing_stream(context,
3793						       unchanged_streams[i],
3794						       set,
3795						       set_count)) {
3796
3797			if (!dc_state_rem_all_planes_for_stream(dc,
3798							  unchanged_streams[i],
3799							  context)) {
3800				res = DC_FAIL_DETACH_SURFACES;
3801				goto fail;
3802			}
3803		}
3804	}
3805
3806	/* Remove all planes for removed streams and then remove the streams */
3807	for (i = 0; i < del_streams_count; i++) {
3808		/* Need to cpy the dwb data from the old stream in order to efc to work */
3809		if (del_streams[i]->num_wb_info > 0) {
3810			for (j = 0; j < add_streams_count; j++) {
3811				if (del_streams[i]->sink == add_streams[j]->sink) {
3812					add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3813					for (k = 0; k < del_streams[i]->num_wb_info; k++)
3814						add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3815				}
3816			}
3817		}
3818
3819		if (dc_state_get_stream_subvp_type(context, del_streams[i]) == SUBVP_PHANTOM) {
3820			/* remove phantoms specifically */
3821			if (!dc_state_rem_all_phantom_planes_for_stream(dc, del_streams[i], context, true)) {
3822				res = DC_FAIL_DETACH_SURFACES;
3823				goto fail;
3824			}
3825
3826			res = dc_state_remove_phantom_stream(dc, context, del_streams[i]);
3827			dc_state_release_phantom_stream(dc, context, del_streams[i]);
3828		} else {
3829			if (!dc_state_rem_all_planes_for_stream(dc, del_streams[i], context)) {
3830				res = DC_FAIL_DETACH_SURFACES;
3831				goto fail;
3832			}
3833
3834			res = dc_state_remove_stream(dc, context, del_streams[i]);
3835		}
3836
3837		if (res != DC_OK)
3838			goto fail;
3839	}
3840
3841	/* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3842	 * matches. This may change in the future if seamless_boot_stream can be
3843	 * multiple.
3844	 */
3845	for (i = 0; i < add_streams_count; i++) {
3846		mark_seamless_boot_stream(dc, add_streams[i]);
3847		if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3848			struct dc_stream_state *temp = add_streams[0];
3849
3850			add_streams[0] = add_streams[i];
3851			add_streams[i] = temp;
3852			break;
3853		}
3854	}
3855
3856	/* Add new streams and then add all planes for the new stream */
3857	for (i = 0; i < add_streams_count; i++) {
3858		calculate_phy_pix_clks(add_streams[i]);
3859		res = dc_state_add_stream(dc, context, add_streams[i]);
3860		if (res != DC_OK)
3861			goto fail;
3862
3863		if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
3864			res = DC_FAIL_ATTACH_SURFACES;
3865			goto fail;
3866		}
3867	}
3868
3869	/* Add all planes for unchanged streams if planes changed */
3870	for (i = 0; i < unchanged_streams_count; i++) {
3871		if (planes_changed_for_existing_stream(context,
3872						       unchanged_streams[i],
3873						       set,
3874						       set_count)) {
3875			if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
3876				res = DC_FAIL_ATTACH_SURFACES;
3877				goto fail;
3878			}
3879		}
3880	}
3881
3882	res = dc_validate_global_state(dc, context, fast_validate);
3883
3884fail:
3885	if (res != DC_OK)
3886		DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
3887			       __func__,
3888			       res);
3889
3890	return res;
3891}
3892
3893/**
3894 * dc_validate_global_state() - Determine if hardware can support a given state
3895 *
3896 * @dc: dc struct for this driver
3897 * @new_ctx: state to be validated
3898 * @fast_validate: set to true if only yes/no to support matters
3899 *
3900 * Checks hardware resource availability and bandwidth requirement.
3901 *
3902 * Return:
3903 * DC_OK if the result can be programmed. Otherwise, an error code.
3904 */
3905enum dc_status dc_validate_global_state(
3906		struct dc *dc,
3907		struct dc_state *new_ctx,
3908		bool fast_validate)
3909{
3910	enum dc_status result = DC_ERROR_UNEXPECTED;
3911	int i, j;
3912
3913	if (!new_ctx)
3914		return DC_ERROR_UNEXPECTED;
3915
3916	if (dc->res_pool->funcs->validate_global) {
3917		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
3918		if (result != DC_OK)
3919			return result;
3920	}
3921
3922	for (i = 0; i < new_ctx->stream_count; i++) {
3923		struct dc_stream_state *stream = new_ctx->streams[i];
3924
3925		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3926			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
3927
3928			if (pipe_ctx->stream != stream)
3929				continue;
3930
3931			if (dc->res_pool->funcs->patch_unknown_plane_state &&
3932					pipe_ctx->plane_state &&
3933					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
3934				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
3935				if (result != DC_OK)
3936					return result;
3937			}
3938
3939			/* Switch to dp clock source only if there is
3940			 * no non dp stream that shares the same timing
3941			 * with the dp stream.
3942			 */
3943			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
3944				!find_pll_sharable_stream(stream, new_ctx)) {
3945
3946				resource_unreference_clock_source(
3947						&new_ctx->res_ctx,
3948						dc->res_pool,
3949						pipe_ctx->clock_source);
3950
3951				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
3952				resource_reference_clock_source(
3953						&new_ctx->res_ctx,
3954						dc->res_pool,
3955						 pipe_ctx->clock_source);
3956			}
3957		}
3958	}
3959
3960	result = resource_build_scaling_params_for_context(dc, new_ctx);
3961
3962	if (result == DC_OK)
3963		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
3964			result = DC_FAIL_BANDWIDTH_VALIDATE;
3965
3966	/*
3967	 * Only update link encoder to stream assignment after bandwidth validation passed.
3968	 * TODO: Split out assignment and validation.
3969	 */
3970	if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
3971		dc->res_pool->funcs->link_encs_assign(
3972			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
3973
3974	return result;
3975}
3976
3977static void patch_gamut_packet_checksum(
3978		struct dc_info_packet *gamut_packet)
3979{
3980	/* For gamut we recalc checksum */
3981	if (gamut_packet->valid) {
3982		uint8_t chk_sum = 0;
3983		uint8_t *ptr;
3984		uint8_t i;
3985
3986		/*start of the Gamut data. */
3987		ptr = &gamut_packet->sb[3];
3988
3989		for (i = 0; i <= gamut_packet->sb[1]; i++)
3990			chk_sum += ptr[i];
3991
3992		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
3993	}
3994}
3995
3996static void set_avi_info_frame(
3997		struct dc_info_packet *info_packet,
3998		struct pipe_ctx *pipe_ctx)
3999{
4000	struct dc_stream_state *stream = pipe_ctx->stream;
4001	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
4002	uint32_t pixel_encoding = 0;
4003	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
4004	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
4005	uint8_t *check_sum = NULL;
4006	uint8_t byte_index = 0;
4007	union hdmi_info_packet hdmi_info;
4008	unsigned int vic = pipe_ctx->stream->timing.vic;
4009	unsigned int rid = pipe_ctx->stream->timing.rid;
4010	unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
4011	enum dc_timing_3d_format format;
4012
4013	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
4014
4015	color_space = pipe_ctx->stream->output_color_space;
4016	if (color_space == COLOR_SPACE_UNKNOWN)
4017		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
4018			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
4019
4020	/* Initialize header */
4021	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
4022	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
4023	* not be used in HDMI 2.0 (Section 10.1) */
4024	hdmi_info.bits.header.version = 2;
4025	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
4026
4027	/*
4028	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
4029	 * according to HDMI 2.0 spec (Section 10.1)
4030	 */
4031
4032	switch (stream->timing.pixel_encoding) {
4033	case PIXEL_ENCODING_YCBCR422:
4034		pixel_encoding = 1;
4035		break;
4036
4037	case PIXEL_ENCODING_YCBCR444:
4038		pixel_encoding = 2;
4039		break;
4040	case PIXEL_ENCODING_YCBCR420:
4041		pixel_encoding = 3;
4042		break;
4043
4044	case PIXEL_ENCODING_RGB:
4045	default:
4046		pixel_encoding = 0;
4047	}
4048
4049	/* Y0_Y1_Y2 : The pixel encoding */
4050	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
4051	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
4052
4053	/* A0 = 1 Active Format Information valid */
4054	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
4055
4056	/* B0, B1 = 3; Bar info data is valid */
4057	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
4058
4059	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
4060
4061	/* S0, S1 : Underscan / Overscan */
4062	/* TODO: un-hardcode scan type */
4063	scan_type = SCANNING_TYPE_UNDERSCAN;
4064	hdmi_info.bits.S0_S1 = scan_type;
4065
4066	/* C0, C1 : Colorimetry */
4067	switch (color_space) {
4068	case COLOR_SPACE_YCBCR709:
4069	case COLOR_SPACE_YCBCR709_LIMITED:
4070		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4071		break;
4072	case COLOR_SPACE_YCBCR601:
4073	case COLOR_SPACE_YCBCR601_LIMITED:
4074		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
4075		break;
4076	case COLOR_SPACE_2020_RGB_FULLRANGE:
4077	case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
4078	case COLOR_SPACE_2020_YCBCR:
4079		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
4080		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
4081		break;
4082	case COLOR_SPACE_ADOBERGB:
4083		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
4084		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
4085		break;
4086	case COLOR_SPACE_SRGB:
4087	default:
4088		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
4089		break;
4090	}
4091
4092	if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
4093			stream->out_transfer_func.tf == TRANSFER_FUNCTION_GAMMA22) {
4094		hdmi_info.bits.EC0_EC2 = 0;
4095		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4096	}
4097
4098	/* TODO: un-hardcode aspect ratio */
4099	aspect = stream->timing.aspect_ratio;
4100
4101	switch (aspect) {
4102	case ASPECT_RATIO_4_3:
4103	case ASPECT_RATIO_16_9:
4104		hdmi_info.bits.M0_M1 = aspect;
4105		break;
4106
4107	case ASPECT_RATIO_NO_DATA:
4108	case ASPECT_RATIO_64_27:
4109	case ASPECT_RATIO_256_135:
4110	default:
4111		hdmi_info.bits.M0_M1 = 0;
4112	}
4113
4114	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
4115	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
4116
4117	switch (stream->content_type) {
4118	case DISPLAY_CONTENT_TYPE_NO_DATA:
4119		hdmi_info.bits.CN0_CN1 = 0;
4120		hdmi_info.bits.ITC = 1;
4121		break;
4122	case DISPLAY_CONTENT_TYPE_GRAPHICS:
4123		hdmi_info.bits.CN0_CN1 = 0;
4124		hdmi_info.bits.ITC = 1;
4125		break;
4126	case DISPLAY_CONTENT_TYPE_PHOTO:
4127		hdmi_info.bits.CN0_CN1 = 1;
4128		hdmi_info.bits.ITC = 1;
4129		break;
4130	case DISPLAY_CONTENT_TYPE_CINEMA:
4131		hdmi_info.bits.CN0_CN1 = 2;
4132		hdmi_info.bits.ITC = 1;
4133		break;
4134	case DISPLAY_CONTENT_TYPE_GAME:
4135		hdmi_info.bits.CN0_CN1 = 3;
4136		hdmi_info.bits.ITC = 1;
4137		break;
4138	}
4139
4140	if (stream->qs_bit == 1) {
4141		if (color_space == COLOR_SPACE_SRGB ||
4142			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
4143			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
4144		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
4145					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
4146			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
4147		else
4148			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
4149	} else
4150		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
4151
4152	/* TODO : We should handle YCC quantization */
4153	/* but we do not have matrix calculation */
4154	hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
4155
4156	///VIC
4157	if (pipe_ctx->stream->timing.hdmi_vic != 0)
4158		vic = 0;
4159	format = stream->timing.timing_3d_format;
4160	/*todo, add 3DStereo support*/
4161	if (format != TIMING_3D_FORMAT_NONE) {
4162		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
4163		switch (pipe_ctx->stream->timing.hdmi_vic) {
4164		case 1:
4165			vic = 95;
4166			break;
4167		case 2:
4168			vic = 94;
4169			break;
4170		case 3:
4171			vic = 93;
4172			break;
4173		case 4:
4174			vic = 98;
4175			break;
4176		default:
4177			break;
4178		}
4179	}
4180	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
4181	hdmi_info.bits.VIC0_VIC7 = vic;
4182	if (vic >= 128)
4183		hdmi_info.bits.header.version = 3;
4184	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
4185	 * the Source shall use 20 AVI InfoFrame Version 4
4186	 */
4187	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
4188			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
4189		hdmi_info.bits.header.version = 4;
4190		hdmi_info.bits.header.length = 14;
4191	}
4192
4193	if (rid != 0 && fr_ind != 0) {
4194		hdmi_info.bits.header.version = 5;
4195		hdmi_info.bits.header.length = 15;
4196
4197		hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
4198		hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
4199		hdmi_info.bits.RID0_RID5 = rid;
4200	}
4201
4202	/* pixel repetition
4203	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
4204	 * repetition start from 1 */
4205	hdmi_info.bits.PR0_PR3 = 0;
4206
4207	/* Bar Info
4208	 * barTop:    Line Number of End of Top Bar.
4209	 * barBottom: Line Number of Start of Bottom Bar.
4210	 * barLeft:   Pixel Number of End of Left Bar.
4211	 * barRight:  Pixel Number of Start of Right Bar. */
4212	hdmi_info.bits.bar_top = stream->timing.v_border_top;
4213	hdmi_info.bits.bar_bottom = (stream->timing.v_total
4214			- stream->timing.v_border_bottom + 1);
4215	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
4216	hdmi_info.bits.bar_right = (stream->timing.h_total
4217			- stream->timing.h_border_right + 1);
4218
4219    /* Additional Colorimetry Extension
4220     * Used in conduction with C0-C1 and EC0-EC2
4221     * 0 = DCI-P3 RGB (D65)
4222     * 1 = DCI-P3 RGB (theater)
4223     */
4224	hdmi_info.bits.ACE0_ACE3 = 0;
4225
4226	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
4227	check_sum = &hdmi_info.packet_raw_data.sb[0];
4228
4229	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
4230
4231	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
4232		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
4233
4234	/* one byte complement */
4235	*check_sum = (uint8_t) (0x100 - *check_sum);
4236
4237	/* Store in hw_path_mode */
4238	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
4239	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
4240	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
4241
4242	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
4243		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
4244
4245	info_packet->valid = true;
4246}
4247
4248static void set_vendor_info_packet(
4249		struct dc_info_packet *info_packet,
4250		struct dc_stream_state *stream)
4251{
4252	/* SPD info packet for FreeSync */
4253
4254	/* Check if Freesync is supported. Return if false. If true,
4255	 * set the corresponding bit in the info packet
4256	 */
4257	if (!stream->vsp_infopacket.valid)
4258		return;
4259
4260	*info_packet = stream->vsp_infopacket;
4261}
4262
4263static void set_spd_info_packet(
4264		struct dc_info_packet *info_packet,
4265		struct dc_stream_state *stream)
4266{
4267	/* SPD info packet for FreeSync */
4268
4269	/* Check if Freesync is supported. Return if false. If true,
4270	 * set the corresponding bit in the info packet
4271	 */
4272	if (!stream->vrr_infopacket.valid)
4273		return;
4274
4275	*info_packet = stream->vrr_infopacket;
4276}
4277
4278static void set_hdr_static_info_packet(
4279		struct dc_info_packet *info_packet,
4280		struct dc_stream_state *stream)
4281{
4282	/* HDR Static Metadata info packet for HDR10 */
4283
4284	if (!stream->hdr_static_metadata.valid ||
4285			stream->use_dynamic_meta)
4286		return;
4287
4288	*info_packet = stream->hdr_static_metadata;
4289}
4290
4291static void set_vsc_info_packet(
4292		struct dc_info_packet *info_packet,
4293		struct dc_stream_state *stream)
4294{
4295	if (!stream->vsc_infopacket.valid)
4296		return;
4297
4298	*info_packet = stream->vsc_infopacket;
4299}
4300static void set_hfvs_info_packet(
4301		struct dc_info_packet *info_packet,
4302		struct dc_stream_state *stream)
4303{
4304	if (!stream->hfvsif_infopacket.valid)
4305		return;
4306
4307	*info_packet = stream->hfvsif_infopacket;
4308}
4309
4310static void adaptive_sync_override_dp_info_packets_sdp_line_num(
4311		const struct dc_crtc_timing *timing,
4312		struct enc_sdp_line_num *sdp_line_num,
4313		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4314{
4315	uint32_t asic_blank_start = 0;
4316	uint32_t asic_blank_end   = 0;
4317	uint32_t v_update = 0;
4318
4319	const struct dc_crtc_timing *tg = timing;
4320
4321	/* blank_start = frame end - front porch */
4322	asic_blank_start = tg->v_total - tg->v_front_porch;
4323
4324	/* blank_end = blank_start - active */
4325	asic_blank_end = (asic_blank_start - tg->v_border_bottom -
4326						tg->v_addressable - tg->v_border_top);
4327
4328	if (pipe_dlg_param->vstartup_start > asic_blank_end) {
4329		v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
4330		sdp_line_num->adaptive_sync_line_num_valid = true;
4331		sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
4332	} else {
4333		sdp_line_num->adaptive_sync_line_num_valid = false;
4334		sdp_line_num->adaptive_sync_line_num = 0;
4335	}
4336}
4337
4338static void set_adaptive_sync_info_packet(
4339		struct dc_info_packet *info_packet,
4340		const struct dc_stream_state *stream,
4341		struct encoder_info_frame *info_frame,
4342		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4343{
4344	if (!stream->adaptive_sync_infopacket.valid)
4345		return;
4346
4347	adaptive_sync_override_dp_info_packets_sdp_line_num(
4348			&stream->timing,
4349			&info_frame->sdp_line_num,
4350			pipe_dlg_param);
4351
4352	*info_packet = stream->adaptive_sync_infopacket;
4353}
4354
4355static void set_vtem_info_packet(
4356		struct dc_info_packet *info_packet,
4357		struct dc_stream_state *stream)
4358{
4359	if (!stream->vtem_infopacket.valid)
4360		return;
4361
4362	*info_packet = stream->vtem_infopacket;
4363}
4364
4365struct clock_source *dc_resource_find_first_free_pll(
4366		struct resource_context *res_ctx,
4367		const struct resource_pool *pool)
4368{
4369	int i;
4370
4371	for (i = 0; i < pool->clk_src_count; ++i) {
4372		if (res_ctx->clock_source_ref_count[i] == 0)
4373			return pool->clock_sources[i];
4374	}
4375
4376	return NULL;
4377}
4378
4379void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
4380{
4381	enum signal_type signal = SIGNAL_TYPE_NONE;
4382	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
4383
4384	/* default all packets to invalid */
4385	info->avi.valid = false;
4386	info->gamut.valid = false;
4387	info->vendor.valid = false;
4388	info->spd.valid = false;
4389	info->hdrsmd.valid = false;
4390	info->vsc.valid = false;
4391	info->hfvsif.valid = false;
4392	info->vtem.valid = false;
4393	info->adaptive_sync.valid = false;
4394	signal = pipe_ctx->stream->signal;
4395
4396	/* HDMi and DP have different info packets*/
4397	if (dc_is_hdmi_signal(signal)) {
4398		set_avi_info_frame(&info->avi, pipe_ctx);
4399
4400		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
4401		set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
4402		set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
4403
4404		set_spd_info_packet(&info->spd, pipe_ctx->stream);
4405
4406		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4407
4408	} else if (dc_is_dp_signal(signal)) {
4409		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
4410
4411		set_spd_info_packet(&info->spd, pipe_ctx->stream);
4412
4413		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4414		set_adaptive_sync_info_packet(&info->adaptive_sync,
4415										pipe_ctx->stream,
4416										info,
4417										&pipe_ctx->pipe_dlg_param);
4418	}
4419
4420	patch_gamut_packet_checksum(&info->gamut);
4421}
4422
4423enum dc_status resource_map_clock_resources(
4424		const struct dc  *dc,
4425		struct dc_state *context,
4426		struct dc_stream_state *stream)
4427{
4428	/* acquire new resources */
4429	const struct resource_pool *pool = dc->res_pool;
4430	struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
4431				&context->res_ctx, stream);
4432
4433	if (!pipe_ctx)
4434		return DC_ERROR_UNEXPECTED;
4435
4436	if (dc_is_dp_signal(pipe_ctx->stream->signal)
4437		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
4438		pipe_ctx->clock_source = pool->dp_clock_source;
4439	else {
4440		pipe_ctx->clock_source = NULL;
4441
4442		if (!dc->config.disable_disp_pll_sharing)
4443			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
4444				&context->res_ctx,
4445				pipe_ctx);
4446
4447		if (pipe_ctx->clock_source == NULL)
4448			pipe_ctx->clock_source =
4449				dc_resource_find_first_free_pll(
4450					&context->res_ctx,
4451					pool);
4452	}
4453
4454	if (pipe_ctx->clock_source == NULL)
4455		return DC_NO_CLOCK_SOURCE_RESOURCE;
4456
4457	resource_reference_clock_source(
4458		&context->res_ctx, pool,
4459		pipe_ctx->clock_source);
4460
4461	return DC_OK;
4462}
4463
4464/*
4465 * Note: We need to disable output if clock sources change,
4466 * since bios does optimization and doesn't apply if changing
4467 * PHY when not already disabled.
4468 */
4469bool pipe_need_reprogram(
4470		struct pipe_ctx *pipe_ctx_old,
4471		struct pipe_ctx *pipe_ctx)
4472{
4473	if (!pipe_ctx_old->stream)
4474		return false;
4475
4476	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
4477		return true;
4478
4479	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
4480		return true;
4481
4482	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
4483		return true;
4484
4485	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
4486			&& pipe_ctx_old->stream != pipe_ctx->stream)
4487		return true;
4488
4489	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
4490		return true;
4491
4492	if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
4493		return true;
4494
4495	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
4496		return true;
4497
4498	if (false == pipe_ctx_old->stream->link->link_state_valid &&
4499		false == pipe_ctx_old->stream->dpms_off)
4500		return true;
4501
4502	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
4503		return true;
4504
4505	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
4506		return true;
4507	if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
4508		return true;
4509
4510	/* DIG link encoder resource assignment for stream changed. */
4511	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
4512		bool need_reprogram = false;
4513		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
4514		struct link_encoder *link_enc_prev =
4515			link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
4516
4517		if (link_enc_prev != pipe_ctx->stream->link_enc)
4518			need_reprogram = true;
4519
4520		return need_reprogram;
4521	}
4522
4523	return false;
4524}
4525
4526void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
4527		struct bit_depth_reduction_params *fmt_bit_depth)
4528{
4529	enum dc_dither_option option = stream->dither_option;
4530	enum dc_pixel_encoding pixel_encoding =
4531			stream->timing.pixel_encoding;
4532
4533	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
4534
4535	if (option == DITHER_OPTION_DEFAULT) {
4536		switch (stream->timing.display_color_depth) {
4537		case COLOR_DEPTH_666:
4538			option = DITHER_OPTION_SPATIAL6;
4539			break;
4540		case COLOR_DEPTH_888:
4541			option = DITHER_OPTION_SPATIAL8;
4542			break;
4543		case COLOR_DEPTH_101010:
4544			option = DITHER_OPTION_TRUN10;
4545			break;
4546		default:
4547			option = DITHER_OPTION_DISABLE;
4548		}
4549	}
4550
4551	if (option == DITHER_OPTION_DISABLE)
4552		return;
4553
4554	if (option == DITHER_OPTION_TRUN6) {
4555		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4556		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
4557	} else if (option == DITHER_OPTION_TRUN8 ||
4558			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
4559			option == DITHER_OPTION_TRUN8_FM6) {
4560		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4561		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
4562	} else if (option == DITHER_OPTION_TRUN10        ||
4563			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
4564			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
4565			option == DITHER_OPTION_TRUN10_FM8     ||
4566			option == DITHER_OPTION_TRUN10_FM6     ||
4567			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4568		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4569		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4570		if (option == DITHER_OPTION_TRUN10)
4571			fmt_bit_depth->flags.TRUNCATE_MODE = 1;
4572	}
4573
4574	/* special case - Formatter can only reduce by 4 bits at most.
4575	 * When reducing from 12 to 6 bits,
4576	 * HW recommends we use trunc with round mode
4577	 * (if we did nothing, trunc to 10 bits would be used)
4578	 * note that any 12->10 bit reduction is ignored prior to DCE8,
4579	 * as the input was 10 bits.
4580	 */
4581	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
4582			option == DITHER_OPTION_SPATIAL6 ||
4583			option == DITHER_OPTION_FM6) {
4584		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4585		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4586		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
4587	}
4588
4589	/* spatial dither
4590	 * note that spatial modes 1-3 are never used
4591	 */
4592	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
4593			option == DITHER_OPTION_SPATIAL6 ||
4594			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
4595			option == DITHER_OPTION_TRUN8_SPATIAL6) {
4596		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4597		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
4598		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4599		fmt_bit_depth->flags.RGB_RANDOM =
4600				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4601	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
4602			option == DITHER_OPTION_SPATIAL8 ||
4603			option == DITHER_OPTION_SPATIAL8_FM6        ||
4604			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
4605			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4606		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4607		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
4608		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4609		fmt_bit_depth->flags.RGB_RANDOM =
4610				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4611	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
4612			option == DITHER_OPTION_SPATIAL10 ||
4613			option == DITHER_OPTION_SPATIAL10_FM8 ||
4614			option == DITHER_OPTION_SPATIAL10_FM6) {
4615		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4616		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
4617		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4618		fmt_bit_depth->flags.RGB_RANDOM =
4619				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4620	}
4621
4622	if (option == DITHER_OPTION_SPATIAL6 ||
4623			option == DITHER_OPTION_SPATIAL8 ||
4624			option == DITHER_OPTION_SPATIAL10) {
4625		fmt_bit_depth->flags.FRAME_RANDOM = 0;
4626	} else {
4627		fmt_bit_depth->flags.FRAME_RANDOM = 1;
4628	}
4629
4630	//////////////////////
4631	//// temporal dither
4632	//////////////////////
4633	if (option == DITHER_OPTION_FM6           ||
4634			option == DITHER_OPTION_SPATIAL8_FM6     ||
4635			option == DITHER_OPTION_SPATIAL10_FM6     ||
4636			option == DITHER_OPTION_TRUN10_FM6     ||
4637			option == DITHER_OPTION_TRUN8_FM6      ||
4638			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4639		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4640		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
4641	} else if (option == DITHER_OPTION_FM8        ||
4642			option == DITHER_OPTION_SPATIAL10_FM8  ||
4643			option == DITHER_OPTION_TRUN10_FM8) {
4644		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4645		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
4646	} else if (option == DITHER_OPTION_FM10) {
4647		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4648		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
4649	}
4650
4651	fmt_bit_depth->pixel_encoding = pixel_encoding;
4652}
4653
4654enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
4655{
4656	struct dc_link *link = stream->link;
4657	struct timing_generator *tg = dc->res_pool->timing_generators[0];
4658	enum dc_status res = DC_OK;
4659
4660	calculate_phy_pix_clks(stream);
4661
4662	if (!tg->funcs->validate_timing(tg, &stream->timing))
4663		res = DC_FAIL_CONTROLLER_VALIDATE;
4664
4665	if (res == DC_OK) {
4666		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
4667				!link->link_enc->funcs->validate_output_with_stream(
4668						link->link_enc, stream))
4669			res = DC_FAIL_ENC_VALIDATE;
4670	}
4671
4672	/* TODO: validate audio ASIC caps, encoder */
4673
4674	if (res == DC_OK)
4675		res = dc->link_srv->validate_mode_timing(stream,
4676		      link,
4677		      &stream->timing);
4678
4679	return res;
4680}
4681
4682enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
4683{
4684	enum dc_status res = DC_OK;
4685
4686	/* check if surface has invalid dimensions */
4687	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
4688		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
4689		return DC_FAIL_SURFACE_VALIDATE;
4690
4691	/* TODO For now validates pixel format only */
4692	if (dc->res_pool->funcs->validate_plane)
4693		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
4694
4695	return res;
4696}
4697
4698unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
4699{
4700	switch (format) {
4701	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
4702		return 8;
4703	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
4704	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
4705		return 12;
4706	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
4707	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
4708	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
4709	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
4710		return 16;
4711	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
4712	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
4713	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
4714	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
4715	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
4716	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
4717	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
4718		return 32;
4719	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
4720	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
4721	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
4722	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
4723		return 64;
4724	default:
4725		ASSERT_CRITICAL(false);
4726		return -1;
4727	}
4728}
4729static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4730{
4731	if (modes) {
4732		if (modes->sample_rates.rate.RATE_192)
4733			return 192000;
4734		if (modes->sample_rates.rate.RATE_176_4)
4735			return 176400;
4736		if (modes->sample_rates.rate.RATE_96)
4737			return 96000;
4738		if (modes->sample_rates.rate.RATE_88_2)
4739			return 88200;
4740		if (modes->sample_rates.rate.RATE_48)
4741			return 48000;
4742		if (modes->sample_rates.rate.RATE_44_1)
4743			return 44100;
4744		if (modes->sample_rates.rate.RATE_32)
4745			return 32000;
4746	}
4747	/*original logic when no audio info*/
4748	return 441000;
4749}
4750
4751void get_audio_check(struct audio_info *aud_modes,
4752	struct audio_check *audio_chk)
4753{
4754	unsigned int i;
4755	unsigned int max_sample_rate = 0;
4756
4757	if (aud_modes) {
4758		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4759
4760		audio_chk->max_audiosample_rate = 0;
4761		for (i = 0; i < aud_modes->mode_count; i++) {
4762			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
4763			if (audio_chk->max_audiosample_rate < max_sample_rate)
4764				audio_chk->max_audiosample_rate = max_sample_rate;
4765			/*dts takes the same as type 2: AP = 0.25*/
4766		}
4767		/*check which one take more bandwidth*/
4768		if (audio_chk->max_audiosample_rate > 192000)
4769			audio_chk->audio_packet_type = 0x9;/*AP =1*/
4770		audio_chk->acat = 0;/*not support*/
4771	}
4772}
4773
4774static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4775		const struct resource_context *res_ctx,
4776		const struct resource_pool *const pool,
4777		const struct dc_link *link)
4778{
4779	struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4780	int enc_index;
4781
4782	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4783
4784	if (enc_index < 0)
4785		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4786
4787	if (enc_index >= 0)
4788		hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4789
4790	return hpo_dp_link_enc;
4791}
4792
4793bool get_temp_dp_link_res(struct dc_link *link,
4794		struct link_resource *link_res,
4795		struct dc_link_settings *link_settings)
4796{
4797	const struct dc *dc  = link->dc;
4798	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4799
4800	memset(link_res, 0, sizeof(*link_res));
4801
4802	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4803		link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4804				dc->res_pool, link);
4805		if (!link_res->hpo_dp_link_enc)
4806			return false;
4807	}
4808	return true;
4809}
4810
4811void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
4812		struct dc_state *context)
4813{
4814	int i, j;
4815	struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
4816
4817	/* If pipe backend is reset, need to reset pipe syncd status */
4818	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4819		pipe_ctx_old =	&dc->current_state->res_ctx.pipe_ctx[i];
4820		pipe_ctx = &context->res_ctx.pipe_ctx[i];
4821
4822		if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
4823			continue;
4824
4825		if (!pipe_ctx->stream ||
4826				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
4827
4828			/* Reset all the syncd pipes from the disabled pipe */
4829			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4830				pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
4831				if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
4832					!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
4833					SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
4834			}
4835		}
4836	}
4837}
4838
4839void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
4840	struct dc_state *context,
4841	uint8_t disabled_master_pipe_idx)
4842{
4843	int i;
4844	struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
4845
4846	pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
4847	if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
4848		!IS_PIPE_SYNCD_VALID(pipe_ctx))
4849		SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
4850
4851	/* for the pipe disabled, check if any slave pipe exists and assert */
4852	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4853		pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
4854
4855		if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
4856		    IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
4857			struct pipe_ctx *first_pipe = pipe_ctx_check;
4858
4859			while (first_pipe->prev_odm_pipe)
4860				first_pipe = first_pipe->prev_odm_pipe;
4861			/* When ODM combine is enabled, this case is expected. If the disabled pipe
4862			 * is part of the ODM tree, then we should not print an error.
4863			 * */
4864			if (first_pipe->pipe_idx == disabled_master_pipe_idx)
4865				continue;
4866
4867			DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
4868				   i, disabled_master_pipe_idx);
4869		}
4870	}
4871}
4872
4873void reset_sync_context_for_pipe(const struct dc *dc,
4874	struct dc_state *context,
4875	uint8_t pipe_idx)
4876{
4877	int i;
4878	struct pipe_ctx *pipe_ctx_reset;
4879
4880	/* reset the otg sync context for the pipe and its slave pipes if any */
4881	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4882		pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
4883
4884		if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
4885			IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
4886			SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
4887	}
4888}
4889
4890uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
4891{
4892	/* TODO - get transmitter to phy idx mapping from DMUB */
4893	uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
4894
4895	if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
4896			dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
4897		switch (transmitter) {
4898		case TRANSMITTER_UNIPHY_A:
4899			phy_idx = 0;
4900			break;
4901		case TRANSMITTER_UNIPHY_B:
4902			phy_idx = 1;
4903			break;
4904		case TRANSMITTER_UNIPHY_C:
4905			phy_idx = 5;
4906			break;
4907		case TRANSMITTER_UNIPHY_D:
4908			phy_idx = 6;
4909			break;
4910		case TRANSMITTER_UNIPHY_E:
4911			phy_idx = 4;
4912			break;
4913		default:
4914			phy_idx = 0;
4915			break;
4916		}
4917	}
4918
4919	return phy_idx;
4920}
4921
4922const struct link_hwss *get_link_hwss(const struct dc_link *link,
4923		const struct link_resource *link_res)
4924{
4925	/* Link_hwss is only accessible by getter function instead of accessing
4926	 * by pointers in dc with the intent to protect against breaking polymorphism.
4927	 */
4928	if (can_use_hpo_dp_link_hwss(link, link_res))
4929		/* TODO: some assumes that if decided link settings is 128b/132b
4930		 * channel coding format hpo_dp_link_enc should be used.
4931		 * Others believe that if hpo_dp_link_enc is available in link
4932		 * resource then hpo_dp_link_enc must be used. This bound between
4933		 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
4934		 * with a premise that both hpo_dp_link_enc pointer and decided link
4935		 * settings are determined based on single policy function like
4936		 * "decide_link_settings" from upper layer. This "convention"
4937		 * cannot be maintained and enforced at current level.
4938		 * Therefore a refactor is due so we can enforce a strong bound
4939		 * between those two parameters at this level.
4940		 *
4941		 * To put it simple, we want to make enforcement at low level so that
4942		 * we will not return link hwss if caller plans to do 8b/10b
4943		 * with an hpo encoder. Or we can return a very dummy one that doesn't
4944		 * do work for all functions
4945		 */
4946		return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
4947				get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
4948	else if (can_use_dpia_link_hwss(link, link_res))
4949		return get_dpia_link_hwss();
4950	else if (can_use_dio_link_hwss(link, link_res))
4951		return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
4952				get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
4953	else
4954		return get_virtual_link_hwss();
4955}
4956
4957bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
4958{
4959	bool divisible = false;
4960	uint16_t h_blank_start = 0;
4961	uint16_t h_blank_end = 0;
4962
4963	if (stream) {
4964		h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
4965		h_blank_end = h_blank_start - stream->timing.h_addressable;
4966
4967		/* HTOTAL, Hblank start/end, and Hsync start/end all must be
4968		 * divisible by 2 in order for the horizontal timing params
4969		 * to be considered divisible by 2. Hsync start is always 0.
4970		 */
4971		divisible = (stream->timing.h_total % 2 == 0) &&
4972				(h_blank_start % 2 == 0) &&
4973				(h_blank_end % 2 == 0) &&
4974				(stream->timing.h_sync_width % 2 == 0);
4975	}
4976	return divisible;
4977}
4978
4979/* This interface is deprecated for new DCNs. It is replaced by the following
4980 * new interfaces. These two interfaces encapsulate pipe selection priority
4981 * with DCN specific minimum hardware transition optimization algorithm. With
4982 * the new interfaces caller no longer needs to know the implementation detail
4983 * of a pipe topology.
4984 *
4985 * resource_update_pipes_with_odm_slice_count
4986 * resource_update_pipes_with_mpc_slice_count
4987 *
4988 */
4989bool dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(
4990		const struct dc *dc,
4991		struct dc_state *state,
4992		struct pipe_ctx *pri_pipe,
4993		struct pipe_ctx *sec_pipe,
4994		bool odm)
4995{
4996	int pipe_idx = sec_pipe->pipe_idx;
4997	struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
4998	const struct resource_pool *pool = dc->res_pool;
4999
5000	sec_top = sec_pipe->top_pipe;
5001	sec_bottom = sec_pipe->bottom_pipe;
5002	sec_next = sec_pipe->next_odm_pipe;
5003	sec_prev = sec_pipe->prev_odm_pipe;
5004
5005	if (pri_pipe == NULL)
5006		return false;
5007
5008	*sec_pipe = *pri_pipe;
5009
5010	sec_pipe->top_pipe = sec_top;
5011	sec_pipe->bottom_pipe = sec_bottom;
5012	sec_pipe->next_odm_pipe = sec_next;
5013	sec_pipe->prev_odm_pipe = sec_prev;
5014
5015	sec_pipe->pipe_idx = pipe_idx;
5016	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
5017	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
5018	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
5019	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
5020	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
5021	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
5022	sec_pipe->stream_res.dsc = NULL;
5023	if (odm) {
5024		if (!sec_pipe->top_pipe)
5025			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
5026		else
5027			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
5028		if (sec_pipe->stream->timing.flags.DSC == 1) {
5029#if defined(CONFIG_DRM_AMD_DC_FP)
5030			dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
5031#endif
5032			ASSERT(sec_pipe->stream_res.dsc);
5033			if (sec_pipe->stream_res.dsc == NULL)
5034				return false;
5035		}
5036#if defined(CONFIG_DRM_AMD_DC_FP)
5037		dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
5038#endif
5039	}
5040
5041	return true;
5042}
5043
5044enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
5045		struct dc_state *context,
5046		struct pipe_ctx *pipe_ctx)
5047{
5048	if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
5049		if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
5050			pipe_ctx->stream_res.hpo_dp_stream_enc =
5051					find_first_free_match_hpo_dp_stream_enc_for_link(
5052							&context->res_ctx, dc->res_pool, pipe_ctx->stream);
5053
5054			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
5055				return DC_NO_STREAM_ENC_RESOURCE;
5056
5057			update_hpo_dp_stream_engine_usage(
5058					&context->res_ctx, dc->res_pool,
5059					pipe_ctx->stream_res.hpo_dp_stream_enc,
5060					true);
5061		}
5062
5063		if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
5064			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
5065				return DC_NO_LINK_ENC_RESOURCE;
5066		}
5067	} else {
5068		if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
5069			update_hpo_dp_stream_engine_usage(
5070					&context->res_ctx, dc->res_pool,
5071					pipe_ctx->stream_res.hpo_dp_stream_enc,
5072					false);
5073			pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
5074		}
5075		if (pipe_ctx->link_res.hpo_dp_link_enc)
5076			remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
5077	}
5078
5079	return DC_OK;
5080}
5081
5082bool check_subvp_sw_cursor_fallback_req(const struct dc *dc, struct dc_stream_state *stream)
5083{
5084	if (!dc->debug.disable_subvp_high_refresh && is_subvp_high_refresh_candidate(stream))
5085		return true;
5086	if (dc->current_state->stream_count == 1 && stream->timing.v_addressable >= 2880 &&
5087			((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
5088		return true;
5089	else if (dc->current_state->stream_count > 1 && stream->timing.v_addressable >= 1080 &&
5090			((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
5091		return true;
5092
5093	return false;
5094}
5095
5096void resource_init_common_dml2_callbacks(struct dc *dc, struct dml2_configuration_options *dml2_options)
5097{
5098	dml2_options->callbacks.dc = dc;
5099	dml2_options->callbacks.build_scaling_params = &resource_build_scaling_params;
5100	dml2_options->callbacks.build_test_pattern_params = &resource_build_test_pattern_params;
5101	dml2_options->callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
5102	dml2_options->callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
5103	dml2_options->callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
5104	dml2_options->callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
5105	dml2_options->callbacks.get_mpc_slice_count = &resource_get_mpc_slice_count;
5106	dml2_options->callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
5107	dml2_options->callbacks.get_odm_slice_count = &resource_get_odm_slice_count;
5108	dml2_options->callbacks.get_opp_head = &resource_get_opp_head;
5109	dml2_options->callbacks.get_otg_master_for_stream = &resource_get_otg_master_for_stream;
5110	dml2_options->callbacks.get_opp_heads_for_otg_master = &resource_get_opp_heads_for_otg_master;
5111	dml2_options->callbacks.get_dpp_pipes_for_plane = &resource_get_dpp_pipes_for_plane;
5112	dml2_options->callbacks.get_stream_status = &dc_state_get_stream_status;
5113	dml2_options->callbacks.get_stream_from_id = &dc_state_get_stream_from_id;
5114
5115	dml2_options->svp_pstate.callbacks.dc = dc;
5116	dml2_options->svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
5117	dml2_options->svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
5118	dml2_options->svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
5119	dml2_options->svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
5120	dml2_options->svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
5121	dml2_options->svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
5122	dml2_options->svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
5123	dml2_options->svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
5124	dml2_options->svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
5125	dml2_options->svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
5126	dml2_options->svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
5127	dml2_options->svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
5128	dml2_options->svp_pstate.callbacks.remove_phantom_streams_and_planes = &dc_state_remove_phantom_streams_and_planes;
5129	dml2_options->svp_pstate.callbacks.release_phantom_streams_and_planes = &dc_state_release_phantom_streams_and_planes;
5130}
5131