1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
17#include <linux/dma-fence.h>
18#include <linux/dma-fence-unwrap.h>
19#include <linux/anon_inodes.h>
20#include <linux/export.h>
21#include <linux/debugfs.h>
22#include <linux/module.h>
23#include <linux/seq_file.h>
24#include <linux/sync_file.h>
25#include <linux/poll.h>
26#include <linux/dma-resv.h>
27#include <linux/mm.h>
28#include <linux/mount.h>
29#include <linux/pseudo_fs.h>
30
31#include <uapi/linux/dma-buf.h>
32#include <uapi/linux/magic.h>
33
34#include "dma-buf-sysfs-stats.h"
35
36static inline int is_dma_buf_file(struct file *);
37
38#if IS_ENABLED(CONFIG_DEBUG_FS)
39static DEFINE_MUTEX(debugfs_list_mutex);
40static LIST_HEAD(debugfs_list);
41
42static void __dma_buf_debugfs_list_add(struct dma_buf *dmabuf)
43{
44	mutex_lock(&debugfs_list_mutex);
45	list_add(&dmabuf->list_node, &debugfs_list);
46	mutex_unlock(&debugfs_list_mutex);
47}
48
49static void __dma_buf_debugfs_list_del(struct dma_buf *dmabuf)
50{
51	if (!dmabuf)
52		return;
53
54	mutex_lock(&debugfs_list_mutex);
55	list_del(&dmabuf->list_node);
56	mutex_unlock(&debugfs_list_mutex);
57}
58#else
59static void __dma_buf_debugfs_list_add(struct dma_buf *dmabuf)
60{
61}
62
63static void __dma_buf_debugfs_list_del(struct file *file)
64{
65}
66#endif
67
68static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
69{
70	struct dma_buf *dmabuf;
71	char name[DMA_BUF_NAME_LEN];
72	ssize_t ret = 0;
73
74	dmabuf = dentry->d_fsdata;
75	spin_lock(&dmabuf->name_lock);
76	if (dmabuf->name)
77		ret = strscpy(name, dmabuf->name, sizeof(name));
78	spin_unlock(&dmabuf->name_lock);
79
80	return dynamic_dname(buffer, buflen, "/%s:%s",
81			     dentry->d_name.name, ret > 0 ? name : "");
82}
83
84static void dma_buf_release(struct dentry *dentry)
85{
86	struct dma_buf *dmabuf;
87
88	dmabuf = dentry->d_fsdata;
89	if (unlikely(!dmabuf))
90		return;
91
92	BUG_ON(dmabuf->vmapping_counter);
93
94	/*
95	 * If you hit this BUG() it could mean:
96	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
97	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
98	 */
99	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
100
101	dma_buf_stats_teardown(dmabuf);
102	dmabuf->ops->release(dmabuf);
103
104	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
105		dma_resv_fini(dmabuf->resv);
106
107	WARN_ON(!list_empty(&dmabuf->attachments));
108	module_put(dmabuf->owner);
109	kfree(dmabuf->name);
110	kfree(dmabuf);
111}
112
113static int dma_buf_file_release(struct inode *inode, struct file *file)
114{
115	if (!is_dma_buf_file(file))
116		return -EINVAL;
117
118	__dma_buf_debugfs_list_del(file->private_data);
119
120	return 0;
121}
122
123static const struct dentry_operations dma_buf_dentry_ops = {
124	.d_dname = dmabuffs_dname,
125	.d_release = dma_buf_release,
126};
127
128static struct vfsmount *dma_buf_mnt;
129
130static int dma_buf_fs_init_context(struct fs_context *fc)
131{
132	struct pseudo_fs_context *ctx;
133
134	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
135	if (!ctx)
136		return -ENOMEM;
137	ctx->dops = &dma_buf_dentry_ops;
138	return 0;
139}
140
141static struct file_system_type dma_buf_fs_type = {
142	.name = "dmabuf",
143	.init_fs_context = dma_buf_fs_init_context,
144	.kill_sb = kill_anon_super,
145};
146
147static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
148{
149	struct dma_buf *dmabuf;
150
151	if (!is_dma_buf_file(file))
152		return -EINVAL;
153
154	dmabuf = file->private_data;
155
156	/* check if buffer supports mmap */
157	if (!dmabuf->ops->mmap)
158		return -EINVAL;
159
160	/* check for overflowing the buffer's size */
161	if (vma->vm_pgoff + vma_pages(vma) >
162	    dmabuf->size >> PAGE_SHIFT)
163		return -EINVAL;
164
165	return dmabuf->ops->mmap(dmabuf, vma);
166}
167
168static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
169{
170	struct dma_buf *dmabuf;
171	loff_t base;
172
173	if (!is_dma_buf_file(file))
174		return -EBADF;
175
176	dmabuf = file->private_data;
177
178	/* only support discovering the end of the buffer,
179	   but also allow SEEK_SET to maintain the idiomatic
180	   SEEK_END(0), SEEK_CUR(0) pattern */
181	if (whence == SEEK_END)
182		base = dmabuf->size;
183	else if (whence == SEEK_SET)
184		base = 0;
185	else
186		return -EINVAL;
187
188	if (offset != 0)
189		return -EINVAL;
190
191	return base + offset;
192}
193
194/**
195 * DOC: implicit fence polling
196 *
197 * To support cross-device and cross-driver synchronization of buffer access
198 * implicit fences (represented internally in the kernel with &struct dma_fence)
199 * can be attached to a &dma_buf. The glue for that and a few related things are
200 * provided in the &dma_resv structure.
201 *
202 * Userspace can query the state of these implicitly tracked fences using poll()
203 * and related system calls:
204 *
205 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
206 *   most recent write or exclusive fence.
207 *
208 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
209 *   all attached fences, shared and exclusive ones.
210 *
211 * Note that this only signals the completion of the respective fences, i.e. the
212 * DMA transfers are complete. Cache flushing and any other necessary
213 * preparations before CPU access can begin still need to happen.
214 *
215 * As an alternative to poll(), the set of fences on DMA buffer can be
216 * exported as a &sync_file using &dma_buf_sync_file_export.
217 */
218
219static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
220{
221	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
222	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
223	unsigned long flags;
224
225	spin_lock_irqsave(&dcb->poll->lock, flags);
226	wake_up_locked_poll(dcb->poll, dcb->active);
227	dcb->active = 0;
228	spin_unlock_irqrestore(&dcb->poll->lock, flags);
229	dma_fence_put(fence);
230	/* Paired with get_file in dma_buf_poll */
231	fput(dmabuf->file);
232}
233
234static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
235				struct dma_buf_poll_cb_t *dcb)
236{
237	struct dma_resv_iter cursor;
238	struct dma_fence *fence;
239	int r;
240
241	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
242				fence) {
243		dma_fence_get(fence);
244		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
245		if (!r)
246			return true;
247		dma_fence_put(fence);
248	}
249
250	return false;
251}
252
253static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
254{
255	struct dma_buf *dmabuf;
256	struct dma_resv *resv;
257	__poll_t events;
258
259	dmabuf = file->private_data;
260	if (!dmabuf || !dmabuf->resv)
261		return EPOLLERR;
262
263	resv = dmabuf->resv;
264
265	poll_wait(file, &dmabuf->poll, poll);
266
267	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
268	if (!events)
269		return 0;
270
271	dma_resv_lock(resv, NULL);
272
273	if (events & EPOLLOUT) {
274		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
275
276		/* Check that callback isn't busy */
277		spin_lock_irq(&dmabuf->poll.lock);
278		if (dcb->active)
279			events &= ~EPOLLOUT;
280		else
281			dcb->active = EPOLLOUT;
282		spin_unlock_irq(&dmabuf->poll.lock);
283
284		if (events & EPOLLOUT) {
285			/* Paired with fput in dma_buf_poll_cb */
286			get_file(dmabuf->file);
287
288			if (!dma_buf_poll_add_cb(resv, true, dcb))
289				/* No callback queued, wake up any other waiters */
290				dma_buf_poll_cb(NULL, &dcb->cb);
291			else
292				events &= ~EPOLLOUT;
293		}
294	}
295
296	if (events & EPOLLIN) {
297		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
298
299		/* Check that callback isn't busy */
300		spin_lock_irq(&dmabuf->poll.lock);
301		if (dcb->active)
302			events &= ~EPOLLIN;
303		else
304			dcb->active = EPOLLIN;
305		spin_unlock_irq(&dmabuf->poll.lock);
306
307		if (events & EPOLLIN) {
308			/* Paired with fput in dma_buf_poll_cb */
309			get_file(dmabuf->file);
310
311			if (!dma_buf_poll_add_cb(resv, false, dcb))
312				/* No callback queued, wake up any other waiters */
313				dma_buf_poll_cb(NULL, &dcb->cb);
314			else
315				events &= ~EPOLLIN;
316		}
317	}
318
319	dma_resv_unlock(resv);
320	return events;
321}
322
323/**
324 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
325 * It could support changing the name of the dma-buf if the same
326 * piece of memory is used for multiple purpose between different devices.
327 *
328 * @dmabuf: [in]     dmabuf buffer that will be renamed.
329 * @buf:    [in]     A piece of userspace memory that contains the name of
330 *                   the dma-buf.
331 *
332 * Returns 0 on success. If the dma-buf buffer is already attached to
333 * devices, return -EBUSY.
334 *
335 */
336static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
337{
338	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
339
340	if (IS_ERR(name))
341		return PTR_ERR(name);
342
343	spin_lock(&dmabuf->name_lock);
344	kfree(dmabuf->name);
345	dmabuf->name = name;
346	spin_unlock(&dmabuf->name_lock);
347
348	return 0;
349}
350
351#if IS_ENABLED(CONFIG_SYNC_FILE)
352static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
353				     void __user *user_data)
354{
355	struct dma_buf_export_sync_file arg;
356	enum dma_resv_usage usage;
357	struct dma_fence *fence = NULL;
358	struct sync_file *sync_file;
359	int fd, ret;
360
361	if (copy_from_user(&arg, user_data, sizeof(arg)))
362		return -EFAULT;
363
364	if (arg.flags & ~DMA_BUF_SYNC_RW)
365		return -EINVAL;
366
367	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
368		return -EINVAL;
369
370	fd = get_unused_fd_flags(O_CLOEXEC);
371	if (fd < 0)
372		return fd;
373
374	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
375	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
376	if (ret)
377		goto err_put_fd;
378
379	if (!fence)
380		fence = dma_fence_get_stub();
381
382	sync_file = sync_file_create(fence);
383
384	dma_fence_put(fence);
385
386	if (!sync_file) {
387		ret = -ENOMEM;
388		goto err_put_fd;
389	}
390
391	arg.fd = fd;
392	if (copy_to_user(user_data, &arg, sizeof(arg))) {
393		ret = -EFAULT;
394		goto err_put_file;
395	}
396
397	fd_install(fd, sync_file->file);
398
399	return 0;
400
401err_put_file:
402	fput(sync_file->file);
403err_put_fd:
404	put_unused_fd(fd);
405	return ret;
406}
407
408static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
409				     const void __user *user_data)
410{
411	struct dma_buf_import_sync_file arg;
412	struct dma_fence *fence, *f;
413	enum dma_resv_usage usage;
414	struct dma_fence_unwrap iter;
415	unsigned int num_fences;
416	int ret = 0;
417
418	if (copy_from_user(&arg, user_data, sizeof(arg)))
419		return -EFAULT;
420
421	if (arg.flags & ~DMA_BUF_SYNC_RW)
422		return -EINVAL;
423
424	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
425		return -EINVAL;
426
427	fence = sync_file_get_fence(arg.fd);
428	if (!fence)
429		return -EINVAL;
430
431	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
432						   DMA_RESV_USAGE_READ;
433
434	num_fences = 0;
435	dma_fence_unwrap_for_each(f, &iter, fence)
436		++num_fences;
437
438	if (num_fences > 0) {
439		dma_resv_lock(dmabuf->resv, NULL);
440
441		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
442		if (!ret) {
443			dma_fence_unwrap_for_each(f, &iter, fence)
444				dma_resv_add_fence(dmabuf->resv, f, usage);
445		}
446
447		dma_resv_unlock(dmabuf->resv);
448	}
449
450	dma_fence_put(fence);
451
452	return ret;
453}
454#endif
455
456static long dma_buf_ioctl(struct file *file,
457			  unsigned int cmd, unsigned long arg)
458{
459	struct dma_buf *dmabuf;
460	struct dma_buf_sync sync;
461	enum dma_data_direction direction;
462	int ret;
463
464	dmabuf = file->private_data;
465
466	switch (cmd) {
467	case DMA_BUF_IOCTL_SYNC:
468		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
469			return -EFAULT;
470
471		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
472			return -EINVAL;
473
474		switch (sync.flags & DMA_BUF_SYNC_RW) {
475		case DMA_BUF_SYNC_READ:
476			direction = DMA_FROM_DEVICE;
477			break;
478		case DMA_BUF_SYNC_WRITE:
479			direction = DMA_TO_DEVICE;
480			break;
481		case DMA_BUF_SYNC_RW:
482			direction = DMA_BIDIRECTIONAL;
483			break;
484		default:
485			return -EINVAL;
486		}
487
488		if (sync.flags & DMA_BUF_SYNC_END)
489			ret = dma_buf_end_cpu_access(dmabuf, direction);
490		else
491			ret = dma_buf_begin_cpu_access(dmabuf, direction);
492
493		return ret;
494
495	case DMA_BUF_SET_NAME_A:
496	case DMA_BUF_SET_NAME_B:
497		return dma_buf_set_name(dmabuf, (const char __user *)arg);
498
499#if IS_ENABLED(CONFIG_SYNC_FILE)
500	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
501		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
502	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
503		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
504#endif
505
506	default:
507		return -ENOTTY;
508	}
509}
510
511static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
512{
513	struct dma_buf *dmabuf = file->private_data;
514
515	seq_printf(m, "size:\t%zu\n", dmabuf->size);
516	/* Don't count the temporary reference taken inside procfs seq_show */
517	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
518	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
519	spin_lock(&dmabuf->name_lock);
520	if (dmabuf->name)
521		seq_printf(m, "name:\t%s\n", dmabuf->name);
522	spin_unlock(&dmabuf->name_lock);
523}
524
525static const struct file_operations dma_buf_fops = {
526	.release	= dma_buf_file_release,
527	.mmap		= dma_buf_mmap_internal,
528	.llseek		= dma_buf_llseek,
529	.poll		= dma_buf_poll,
530	.unlocked_ioctl	= dma_buf_ioctl,
531	.compat_ioctl	= compat_ptr_ioctl,
532	.show_fdinfo	= dma_buf_show_fdinfo,
533};
534
535/*
536 * is_dma_buf_file - Check if struct file* is associated with dma_buf
537 */
538static inline int is_dma_buf_file(struct file *file)
539{
540	return file->f_op == &dma_buf_fops;
541}
542
543static struct file *dma_buf_getfile(size_t size, int flags)
544{
545	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
546	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
547	struct file *file;
548
549	if (IS_ERR(inode))
550		return ERR_CAST(inode);
551
552	inode->i_size = size;
553	inode_set_bytes(inode, size);
554
555	/*
556	 * The ->i_ino acquired from get_next_ino() is not unique thus
557	 * not suitable for using it as dentry name by dmabuf stats.
558	 * Override ->i_ino with the unique and dmabuffs specific
559	 * value.
560	 */
561	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
562	flags &= O_ACCMODE | O_NONBLOCK;
563	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
564				 flags, &dma_buf_fops);
565	if (IS_ERR(file))
566		goto err_alloc_file;
567
568	return file;
569
570err_alloc_file:
571	iput(inode);
572	return file;
573}
574
575/**
576 * DOC: dma buf device access
577 *
578 * For device DMA access to a shared DMA buffer the usual sequence of operations
579 * is fairly simple:
580 *
581 * 1. The exporter defines his exporter instance using
582 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
583 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
584 *    as a file descriptor by calling dma_buf_fd().
585 *
586 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
587 *    to share with: First the file descriptor is converted to a &dma_buf using
588 *    dma_buf_get(). Then the buffer is attached to the device using
589 *    dma_buf_attach().
590 *
591 *    Up to this stage the exporter is still free to migrate or reallocate the
592 *    backing storage.
593 *
594 * 3. Once the buffer is attached to all devices userspace can initiate DMA
595 *    access to the shared buffer. In the kernel this is done by calling
596 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
597 *
598 * 4. Once a driver is done with a shared buffer it needs to call
599 *    dma_buf_detach() (after cleaning up any mappings) and then release the
600 *    reference acquired with dma_buf_get() by calling dma_buf_put().
601 *
602 * For the detailed semantics exporters are expected to implement see
603 * &dma_buf_ops.
604 */
605
606/**
607 * dma_buf_export - Creates a new dma_buf, and associates an anon file
608 * with this buffer, so it can be exported.
609 * Also connect the allocator specific data and ops to the buffer.
610 * Additionally, provide a name string for exporter; useful in debugging.
611 *
612 * @exp_info:	[in]	holds all the export related information provided
613 *			by the exporter. see &struct dma_buf_export_info
614 *			for further details.
615 *
616 * Returns, on success, a newly created struct dma_buf object, which wraps the
617 * supplied private data and operations for struct dma_buf_ops. On either
618 * missing ops, or error in allocating struct dma_buf, will return negative
619 * error.
620 *
621 * For most cases the easiest way to create @exp_info is through the
622 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
623 */
624struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
625{
626	struct dma_buf *dmabuf;
627	struct dma_resv *resv = exp_info->resv;
628	struct file *file;
629	size_t alloc_size = sizeof(struct dma_buf);
630	int ret;
631
632	if (WARN_ON(!exp_info->priv || !exp_info->ops
633		    || !exp_info->ops->map_dma_buf
634		    || !exp_info->ops->unmap_dma_buf
635		    || !exp_info->ops->release))
636		return ERR_PTR(-EINVAL);
637
638	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
639		    (exp_info->ops->pin || exp_info->ops->unpin)))
640		return ERR_PTR(-EINVAL);
641
642	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
643		return ERR_PTR(-EINVAL);
644
645	if (!try_module_get(exp_info->owner))
646		return ERR_PTR(-ENOENT);
647
648	file = dma_buf_getfile(exp_info->size, exp_info->flags);
649	if (IS_ERR(file)) {
650		ret = PTR_ERR(file);
651		goto err_module;
652	}
653
654	if (!exp_info->resv)
655		alloc_size += sizeof(struct dma_resv);
656	else
657		/* prevent &dma_buf[1] == dma_buf->resv */
658		alloc_size += 1;
659	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
660	if (!dmabuf) {
661		ret = -ENOMEM;
662		goto err_file;
663	}
664
665	dmabuf->priv = exp_info->priv;
666	dmabuf->ops = exp_info->ops;
667	dmabuf->size = exp_info->size;
668	dmabuf->exp_name = exp_info->exp_name;
669	dmabuf->owner = exp_info->owner;
670	spin_lock_init(&dmabuf->name_lock);
671	init_waitqueue_head(&dmabuf->poll);
672	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
673	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
674	INIT_LIST_HEAD(&dmabuf->attachments);
675
676	if (!resv) {
677		dmabuf->resv = (struct dma_resv *)&dmabuf[1];
678		dma_resv_init(dmabuf->resv);
679	} else {
680		dmabuf->resv = resv;
681	}
682
683	ret = dma_buf_stats_setup(dmabuf, file);
684	if (ret)
685		goto err_dmabuf;
686
687	file->private_data = dmabuf;
688	file->f_path.dentry->d_fsdata = dmabuf;
689	dmabuf->file = file;
690
691	__dma_buf_debugfs_list_add(dmabuf);
692
693	return dmabuf;
694
695err_dmabuf:
696	if (!resv)
697		dma_resv_fini(dmabuf->resv);
698	kfree(dmabuf);
699err_file:
700	fput(file);
701err_module:
702	module_put(exp_info->owner);
703	return ERR_PTR(ret);
704}
705EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
706
707/**
708 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
709 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
710 * @flags:      [in]    flags to give to fd
711 *
712 * On success, returns an associated 'fd'. Else, returns error.
713 */
714int dma_buf_fd(struct dma_buf *dmabuf, int flags)
715{
716	int fd;
717
718	if (!dmabuf || !dmabuf->file)
719		return -EINVAL;
720
721	fd = get_unused_fd_flags(flags);
722	if (fd < 0)
723		return fd;
724
725	fd_install(fd, dmabuf->file);
726
727	return fd;
728}
729EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
730
731/**
732 * dma_buf_get - returns the struct dma_buf related to an fd
733 * @fd:	[in]	fd associated with the struct dma_buf to be returned
734 *
735 * On success, returns the struct dma_buf associated with an fd; uses
736 * file's refcounting done by fget to increase refcount. returns ERR_PTR
737 * otherwise.
738 */
739struct dma_buf *dma_buf_get(int fd)
740{
741	struct file *file;
742
743	file = fget(fd);
744
745	if (!file)
746		return ERR_PTR(-EBADF);
747
748	if (!is_dma_buf_file(file)) {
749		fput(file);
750		return ERR_PTR(-EINVAL);
751	}
752
753	return file->private_data;
754}
755EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
756
757/**
758 * dma_buf_put - decreases refcount of the buffer
759 * @dmabuf:	[in]	buffer to reduce refcount of
760 *
761 * Uses file's refcounting done implicitly by fput().
762 *
763 * If, as a result of this call, the refcount becomes 0, the 'release' file
764 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
765 * in turn, and frees the memory allocated for dmabuf when exported.
766 */
767void dma_buf_put(struct dma_buf *dmabuf)
768{
769	if (WARN_ON(!dmabuf || !dmabuf->file))
770		return;
771
772	fput(dmabuf->file);
773}
774EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
775
776static void mangle_sg_table(struct sg_table *sg_table)
777{
778#ifdef CONFIG_DMABUF_DEBUG
779	int i;
780	struct scatterlist *sg;
781
782	/* To catch abuse of the underlying struct page by importers mix
783	 * up the bits, but take care to preserve the low SG_ bits to
784	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
785	 * before passing the sgt back to the exporter. */
786	for_each_sgtable_sg(sg_table, sg, i)
787		sg->page_link ^= ~0xffUL;
788#endif
789
790}
791static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
792				       enum dma_data_direction direction)
793{
794	struct sg_table *sg_table;
795	signed long ret;
796
797	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
798	if (IS_ERR_OR_NULL(sg_table))
799		return sg_table;
800
801	if (!dma_buf_attachment_is_dynamic(attach)) {
802		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
803					    DMA_RESV_USAGE_KERNEL, true,
804					    MAX_SCHEDULE_TIMEOUT);
805		if (ret < 0) {
806			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
807							   direction);
808			return ERR_PTR(ret);
809		}
810	}
811
812	mangle_sg_table(sg_table);
813	return sg_table;
814}
815
816/**
817 * DOC: locking convention
818 *
819 * In order to avoid deadlock situations between dma-buf exports and importers,
820 * all dma-buf API users must follow the common dma-buf locking convention.
821 *
822 * Convention for importers
823 *
824 * 1. Importers must hold the dma-buf reservation lock when calling these
825 *    functions:
826 *
827 *     - dma_buf_pin()
828 *     - dma_buf_unpin()
829 *     - dma_buf_map_attachment()
830 *     - dma_buf_unmap_attachment()
831 *     - dma_buf_vmap()
832 *     - dma_buf_vunmap()
833 *
834 * 2. Importers must not hold the dma-buf reservation lock when calling these
835 *    functions:
836 *
837 *     - dma_buf_attach()
838 *     - dma_buf_dynamic_attach()
839 *     - dma_buf_detach()
840 *     - dma_buf_export()
841 *     - dma_buf_fd()
842 *     - dma_buf_get()
843 *     - dma_buf_put()
844 *     - dma_buf_mmap()
845 *     - dma_buf_begin_cpu_access()
846 *     - dma_buf_end_cpu_access()
847 *     - dma_buf_map_attachment_unlocked()
848 *     - dma_buf_unmap_attachment_unlocked()
849 *     - dma_buf_vmap_unlocked()
850 *     - dma_buf_vunmap_unlocked()
851 *
852 * Convention for exporters
853 *
854 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
855 *    reservation and exporter can take the lock:
856 *
857 *     - &dma_buf_ops.attach()
858 *     - &dma_buf_ops.detach()
859 *     - &dma_buf_ops.release()
860 *     - &dma_buf_ops.begin_cpu_access()
861 *     - &dma_buf_ops.end_cpu_access()
862 *     - &dma_buf_ops.mmap()
863 *
864 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
865 *    reservation and exporter can't take the lock:
866 *
867 *     - &dma_buf_ops.pin()
868 *     - &dma_buf_ops.unpin()
869 *     - &dma_buf_ops.map_dma_buf()
870 *     - &dma_buf_ops.unmap_dma_buf()
871 *     - &dma_buf_ops.vmap()
872 *     - &dma_buf_ops.vunmap()
873 *
874 * 3. Exporters must hold the dma-buf reservation lock when calling these
875 *    functions:
876 *
877 *     - dma_buf_move_notify()
878 */
879
880/**
881 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
882 * @dmabuf:		[in]	buffer to attach device to.
883 * @dev:		[in]	device to be attached.
884 * @importer_ops:	[in]	importer operations for the attachment
885 * @importer_priv:	[in]	importer private pointer for the attachment
886 *
887 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
888 * must be cleaned up by calling dma_buf_detach().
889 *
890 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
891 * functionality.
892 *
893 * Returns:
894 *
895 * A pointer to newly created &dma_buf_attachment on success, or a negative
896 * error code wrapped into a pointer on failure.
897 *
898 * Note that this can fail if the backing storage of @dmabuf is in a place not
899 * accessible to @dev, and cannot be moved to a more suitable place. This is
900 * indicated with the error code -EBUSY.
901 */
902struct dma_buf_attachment *
903dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
904		       const struct dma_buf_attach_ops *importer_ops,
905		       void *importer_priv)
906{
907	struct dma_buf_attachment *attach;
908	int ret;
909
910	if (WARN_ON(!dmabuf || !dev))
911		return ERR_PTR(-EINVAL);
912
913	if (WARN_ON(importer_ops && !importer_ops->move_notify))
914		return ERR_PTR(-EINVAL);
915
916	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
917	if (!attach)
918		return ERR_PTR(-ENOMEM);
919
920	attach->dev = dev;
921	attach->dmabuf = dmabuf;
922	if (importer_ops)
923		attach->peer2peer = importer_ops->allow_peer2peer;
924	attach->importer_ops = importer_ops;
925	attach->importer_priv = importer_priv;
926
927	if (dmabuf->ops->attach) {
928		ret = dmabuf->ops->attach(dmabuf, attach);
929		if (ret)
930			goto err_attach;
931	}
932	dma_resv_lock(dmabuf->resv, NULL);
933	list_add(&attach->node, &dmabuf->attachments);
934	dma_resv_unlock(dmabuf->resv);
935
936	/* When either the importer or the exporter can't handle dynamic
937	 * mappings we cache the mapping here to avoid issues with the
938	 * reservation object lock.
939	 */
940	if (dma_buf_attachment_is_dynamic(attach) !=
941	    dma_buf_is_dynamic(dmabuf)) {
942		struct sg_table *sgt;
943
944		dma_resv_lock(attach->dmabuf->resv, NULL);
945		if (dma_buf_is_dynamic(attach->dmabuf)) {
946			ret = dmabuf->ops->pin(attach);
947			if (ret)
948				goto err_unlock;
949		}
950
951		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
952		if (!sgt)
953			sgt = ERR_PTR(-ENOMEM);
954		if (IS_ERR(sgt)) {
955			ret = PTR_ERR(sgt);
956			goto err_unpin;
957		}
958		dma_resv_unlock(attach->dmabuf->resv);
959		attach->sgt = sgt;
960		attach->dir = DMA_BIDIRECTIONAL;
961	}
962
963	return attach;
964
965err_attach:
966	kfree(attach);
967	return ERR_PTR(ret);
968
969err_unpin:
970	if (dma_buf_is_dynamic(attach->dmabuf))
971		dmabuf->ops->unpin(attach);
972
973err_unlock:
974	dma_resv_unlock(attach->dmabuf->resv);
975
976	dma_buf_detach(dmabuf, attach);
977	return ERR_PTR(ret);
978}
979EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
980
981/**
982 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
983 * @dmabuf:	[in]	buffer to attach device to.
984 * @dev:	[in]	device to be attached.
985 *
986 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
987 * mapping.
988 */
989struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
990					  struct device *dev)
991{
992	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
993}
994EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
995
996static void __unmap_dma_buf(struct dma_buf_attachment *attach,
997			    struct sg_table *sg_table,
998			    enum dma_data_direction direction)
999{
1000	/* uses XOR, hence this unmangles */
1001	mangle_sg_table(sg_table);
1002
1003	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1004}
1005
1006/**
1007 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
1008 * @dmabuf:	[in]	buffer to detach from.
1009 * @attach:	[in]	attachment to be detached; is free'd after this call.
1010 *
1011 * Clean up a device attachment obtained by calling dma_buf_attach().
1012 *
1013 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1014 */
1015void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1016{
1017	if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1018		return;
1019
1020	dma_resv_lock(dmabuf->resv, NULL);
1021
1022	if (attach->sgt) {
1023
1024		__unmap_dma_buf(attach, attach->sgt, attach->dir);
1025
1026		if (dma_buf_is_dynamic(attach->dmabuf))
1027			dmabuf->ops->unpin(attach);
1028	}
1029	list_del(&attach->node);
1030
1031	dma_resv_unlock(dmabuf->resv);
1032
1033	if (dmabuf->ops->detach)
1034		dmabuf->ops->detach(dmabuf, attach);
1035
1036	kfree(attach);
1037}
1038EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1039
1040/**
1041 * dma_buf_pin - Lock down the DMA-buf
1042 * @attach:	[in]	attachment which should be pinned
1043 *
1044 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1045 * call this, and only for limited use cases like scanout and not for temporary
1046 * pin operations. It is not permitted to allow userspace to pin arbitrary
1047 * amounts of buffers through this interface.
1048 *
1049 * Buffers must be unpinned by calling dma_buf_unpin().
1050 *
1051 * Returns:
1052 * 0 on success, negative error code on failure.
1053 */
1054int dma_buf_pin(struct dma_buf_attachment *attach)
1055{
1056	struct dma_buf *dmabuf = attach->dmabuf;
1057	int ret = 0;
1058
1059	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1060
1061	dma_resv_assert_held(dmabuf->resv);
1062
1063	if (dmabuf->ops->pin)
1064		ret = dmabuf->ops->pin(attach);
1065
1066	return ret;
1067}
1068EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1069
1070/**
1071 * dma_buf_unpin - Unpin a DMA-buf
1072 * @attach:	[in]	attachment which should be unpinned
1073 *
1074 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1075 * any mapping of @attach again and inform the importer through
1076 * &dma_buf_attach_ops.move_notify.
1077 */
1078void dma_buf_unpin(struct dma_buf_attachment *attach)
1079{
1080	struct dma_buf *dmabuf = attach->dmabuf;
1081
1082	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1083
1084	dma_resv_assert_held(dmabuf->resv);
1085
1086	if (dmabuf->ops->unpin)
1087		dmabuf->ops->unpin(attach);
1088}
1089EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1090
1091/**
1092 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1093 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1094 * dma_buf_ops.
1095 * @attach:	[in]	attachment whose scatterlist is to be returned
1096 * @direction:	[in]	direction of DMA transfer
1097 *
1098 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1099 * on error. May return -EINTR if it is interrupted by a signal.
1100 *
1101 * On success, the DMA addresses and lengths in the returned scatterlist are
1102 * PAGE_SIZE aligned.
1103 *
1104 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1105 * the underlying backing storage is pinned for as long as a mapping exists,
1106 * therefore users/importers should not hold onto a mapping for undue amounts of
1107 * time.
1108 *
1109 * Important: Dynamic importers must wait for the exclusive fence of the struct
1110 * dma_resv attached to the DMA-BUF first.
1111 */
1112struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1113					enum dma_data_direction direction)
1114{
1115	struct sg_table *sg_table;
1116	int r;
1117
1118	might_sleep();
1119
1120	if (WARN_ON(!attach || !attach->dmabuf))
1121		return ERR_PTR(-EINVAL);
1122
1123	dma_resv_assert_held(attach->dmabuf->resv);
1124
1125	if (attach->sgt) {
1126		/*
1127		 * Two mappings with different directions for the same
1128		 * attachment are not allowed.
1129		 */
1130		if (attach->dir != direction &&
1131		    attach->dir != DMA_BIDIRECTIONAL)
1132			return ERR_PTR(-EBUSY);
1133
1134		return attach->sgt;
1135	}
1136
1137	if (dma_buf_is_dynamic(attach->dmabuf)) {
1138		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1139			r = attach->dmabuf->ops->pin(attach);
1140			if (r)
1141				return ERR_PTR(r);
1142		}
1143	}
1144
1145	sg_table = __map_dma_buf(attach, direction);
1146	if (!sg_table)
1147		sg_table = ERR_PTR(-ENOMEM);
1148
1149	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1150	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1151		attach->dmabuf->ops->unpin(attach);
1152
1153	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1154		attach->sgt = sg_table;
1155		attach->dir = direction;
1156	}
1157
1158#ifdef CONFIG_DMA_API_DEBUG
1159	if (!IS_ERR(sg_table)) {
1160		struct scatterlist *sg;
1161		u64 addr;
1162		int len;
1163		int i;
1164
1165		for_each_sgtable_dma_sg(sg_table, sg, i) {
1166			addr = sg_dma_address(sg);
1167			len = sg_dma_len(sg);
1168			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1169				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1170					 __func__, addr, len);
1171			}
1172		}
1173	}
1174#endif /* CONFIG_DMA_API_DEBUG */
1175	return sg_table;
1176}
1177EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1178
1179/**
1180 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1181 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1182 * dma_buf_ops.
1183 * @attach:	[in]	attachment whose scatterlist is to be returned
1184 * @direction:	[in]	direction of DMA transfer
1185 *
1186 * Unlocked variant of dma_buf_map_attachment().
1187 */
1188struct sg_table *
1189dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1190				enum dma_data_direction direction)
1191{
1192	struct sg_table *sg_table;
1193
1194	might_sleep();
1195
1196	if (WARN_ON(!attach || !attach->dmabuf))
1197		return ERR_PTR(-EINVAL);
1198
1199	dma_resv_lock(attach->dmabuf->resv, NULL);
1200	sg_table = dma_buf_map_attachment(attach, direction);
1201	dma_resv_unlock(attach->dmabuf->resv);
1202
1203	return sg_table;
1204}
1205EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1206
1207/**
1208 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1209 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1210 * dma_buf_ops.
1211 * @attach:	[in]	attachment to unmap buffer from
1212 * @sg_table:	[in]	scatterlist info of the buffer to unmap
1213 * @direction:  [in]    direction of DMA transfer
1214 *
1215 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1216 */
1217void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1218				struct sg_table *sg_table,
1219				enum dma_data_direction direction)
1220{
1221	might_sleep();
1222
1223	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1224		return;
1225
1226	dma_resv_assert_held(attach->dmabuf->resv);
1227
1228	if (attach->sgt == sg_table)
1229		return;
1230
1231	__unmap_dma_buf(attach, sg_table, direction);
1232
1233	if (dma_buf_is_dynamic(attach->dmabuf) &&
1234	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1235		dma_buf_unpin(attach);
1236}
1237EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1238
1239/**
1240 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1241 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1242 * dma_buf_ops.
1243 * @attach:	[in]	attachment to unmap buffer from
1244 * @sg_table:	[in]	scatterlist info of the buffer to unmap
1245 * @direction:	[in]	direction of DMA transfer
1246 *
1247 * Unlocked variant of dma_buf_unmap_attachment().
1248 */
1249void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1250				       struct sg_table *sg_table,
1251				       enum dma_data_direction direction)
1252{
1253	might_sleep();
1254
1255	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1256		return;
1257
1258	dma_resv_lock(attach->dmabuf->resv, NULL);
1259	dma_buf_unmap_attachment(attach, sg_table, direction);
1260	dma_resv_unlock(attach->dmabuf->resv);
1261}
1262EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1263
1264/**
1265 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1266 *
1267 * @dmabuf:	[in]	buffer which is moving
1268 *
1269 * Informs all attachments that they need to destroy and recreate all their
1270 * mappings.
1271 */
1272void dma_buf_move_notify(struct dma_buf *dmabuf)
1273{
1274	struct dma_buf_attachment *attach;
1275
1276	dma_resv_assert_held(dmabuf->resv);
1277
1278	list_for_each_entry(attach, &dmabuf->attachments, node)
1279		if (attach->importer_ops)
1280			attach->importer_ops->move_notify(attach);
1281}
1282EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1283
1284/**
1285 * DOC: cpu access
1286 *
1287 * There are multiple reasons for supporting CPU access to a dma buffer object:
1288 *
1289 * - Fallback operations in the kernel, for example when a device is connected
1290 *   over USB and the kernel needs to shuffle the data around first before
1291 *   sending it away. Cache coherency is handled by bracketing any transactions
1292 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1293 *   access.
1294 *
1295 *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1296 *   vmap interface is introduced. Note that on very old 32-bit architectures
1297 *   vmalloc space might be limited and result in vmap calls failing.
1298 *
1299 *   Interfaces::
1300 *
1301 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1302 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1303 *
1304 *   The vmap call can fail if there is no vmap support in the exporter, or if
1305 *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1306 *   count for all vmap access and calls down into the exporter's vmap function
1307 *   only when no vmapping exists, and only unmaps it once. Protection against
1308 *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1309 *
1310 * - For full compatibility on the importer side with existing userspace
1311 *   interfaces, which might already support mmap'ing buffers. This is needed in
1312 *   many processing pipelines (e.g. feeding a software rendered image into a
1313 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1314 *   framework already supported this and for DMA buffer file descriptors to
1315 *   replace ION buffers mmap support was needed.
1316 *
1317 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1318 *   fd. But like for CPU access there's a need to bracket the actual access,
1319 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1320 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1321 *   be restarted.
1322 *
1323 *   Some systems might need some sort of cache coherency management e.g. when
1324 *   CPU and GPU domains are being accessed through dma-buf at the same time.
1325 *   To circumvent this problem there are begin/end coherency markers, that
1326 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1327 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1328 *   sequence would be used like following:
1329 *
1330 *     - mmap dma-buf fd
1331 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1332 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1333 *       want (with the new data being consumed by say the GPU or the scanout
1334 *       device)
1335 *     - munmap once you don't need the buffer any more
1336 *
1337 *    For correctness and optimal performance, it is always required to use
1338 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1339 *    mapped address. Userspace cannot rely on coherent access, even when there
1340 *    are systems where it just works without calling these ioctls.
1341 *
1342 * - And as a CPU fallback in userspace processing pipelines.
1343 *
1344 *   Similar to the motivation for kernel cpu access it is again important that
1345 *   the userspace code of a given importing subsystem can use the same
1346 *   interfaces with a imported dma-buf buffer object as with a native buffer
1347 *   object. This is especially important for drm where the userspace part of
1348 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1349 *   use a different way to mmap a buffer rather invasive.
1350 *
1351 *   The assumption in the current dma-buf interfaces is that redirecting the
1352 *   initial mmap is all that's needed. A survey of some of the existing
1353 *   subsystems shows that no driver seems to do any nefarious thing like
1354 *   syncing up with outstanding asynchronous processing on the device or
1355 *   allocating special resources at fault time. So hopefully this is good
1356 *   enough, since adding interfaces to intercept pagefaults and allow pte
1357 *   shootdowns would increase the complexity quite a bit.
1358 *
1359 *   Interface::
1360 *
1361 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1362 *		       unsigned long);
1363 *
1364 *   If the importing subsystem simply provides a special-purpose mmap call to
1365 *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1366 *   equally achieve that for a dma-buf object.
1367 */
1368
1369static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1370				      enum dma_data_direction direction)
1371{
1372	bool write = (direction == DMA_BIDIRECTIONAL ||
1373		      direction == DMA_TO_DEVICE);
1374	struct dma_resv *resv = dmabuf->resv;
1375	long ret;
1376
1377	/* Wait on any implicit rendering fences */
1378	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1379				    true, MAX_SCHEDULE_TIMEOUT);
1380	if (ret < 0)
1381		return ret;
1382
1383	return 0;
1384}
1385
1386/**
1387 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1388 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1389 * preparations. Coherency is only guaranteed in the specified range for the
1390 * specified access direction.
1391 * @dmabuf:	[in]	buffer to prepare cpu access for.
1392 * @direction:	[in]	direction of access.
1393 *
1394 * After the cpu access is complete the caller should call
1395 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1396 * it guaranteed to be coherent with other DMA access.
1397 *
1398 * This function will also wait for any DMA transactions tracked through
1399 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1400 * synchronization this function will only ensure cache coherency, callers must
1401 * ensure synchronization with such DMA transactions on their own.
1402 *
1403 * Can return negative error values, returns 0 on success.
1404 */
1405int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1406			     enum dma_data_direction direction)
1407{
1408	int ret = 0;
1409
1410	if (WARN_ON(!dmabuf))
1411		return -EINVAL;
1412
1413	might_lock(&dmabuf->resv->lock.base);
1414
1415	if (dmabuf->ops->begin_cpu_access)
1416		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1417
1418	/* Ensure that all fences are waited upon - but we first allow
1419	 * the native handler the chance to do so more efficiently if it
1420	 * chooses. A double invocation here will be reasonably cheap no-op.
1421	 */
1422	if (ret == 0)
1423		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1424
1425	return ret;
1426}
1427EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1428
1429/**
1430 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1431 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1432 * actions. Coherency is only guaranteed in the specified range for the
1433 * specified access direction.
1434 * @dmabuf:	[in]	buffer to complete cpu access for.
1435 * @direction:	[in]	direction of access.
1436 *
1437 * This terminates CPU access started with dma_buf_begin_cpu_access().
1438 *
1439 * Can return negative error values, returns 0 on success.
1440 */
1441int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1442			   enum dma_data_direction direction)
1443{
1444	int ret = 0;
1445
1446	WARN_ON(!dmabuf);
1447
1448	might_lock(&dmabuf->resv->lock.base);
1449
1450	if (dmabuf->ops->end_cpu_access)
1451		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1452
1453	return ret;
1454}
1455EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1456
1457
1458/**
1459 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1460 * @dmabuf:	[in]	buffer that should back the vma
1461 * @vma:	[in]	vma for the mmap
1462 * @pgoff:	[in]	offset in pages where this mmap should start within the
1463 *			dma-buf buffer.
1464 *
1465 * This function adjusts the passed in vma so that it points at the file of the
1466 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1467 * checking on the size of the vma. Then it calls the exporters mmap function to
1468 * set up the mapping.
1469 *
1470 * Can return negative error values, returns 0 on success.
1471 */
1472int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1473		 unsigned long pgoff)
1474{
1475	if (WARN_ON(!dmabuf || !vma))
1476		return -EINVAL;
1477
1478	/* check if buffer supports mmap */
1479	if (!dmabuf->ops->mmap)
1480		return -EINVAL;
1481
1482	/* check for offset overflow */
1483	if (pgoff + vma_pages(vma) < pgoff)
1484		return -EOVERFLOW;
1485
1486	/* check for overflowing the buffer's size */
1487	if (pgoff + vma_pages(vma) >
1488	    dmabuf->size >> PAGE_SHIFT)
1489		return -EINVAL;
1490
1491	/* readjust the vma */
1492	vma_set_file(vma, dmabuf->file);
1493	vma->vm_pgoff = pgoff;
1494
1495	return dmabuf->ops->mmap(dmabuf, vma);
1496}
1497EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1498
1499/**
1500 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1501 * address space. Same restrictions as for vmap and friends apply.
1502 * @dmabuf:	[in]	buffer to vmap
1503 * @map:	[out]	returns the vmap pointer
1504 *
1505 * This call may fail due to lack of virtual mapping address space.
1506 * These calls are optional in drivers. The intended use for them
1507 * is for mapping objects linear in kernel space for high use objects.
1508 *
1509 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1510 * dma_buf_end_cpu_access() around any cpu access performed through this
1511 * mapping.
1512 *
1513 * Returns 0 on success, or a negative errno code otherwise.
1514 */
1515int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1516{
1517	struct iosys_map ptr;
1518	int ret;
1519
1520	iosys_map_clear(map);
1521
1522	if (WARN_ON(!dmabuf))
1523		return -EINVAL;
1524
1525	dma_resv_assert_held(dmabuf->resv);
1526
1527	if (!dmabuf->ops->vmap)
1528		return -EINVAL;
1529
1530	if (dmabuf->vmapping_counter) {
1531		dmabuf->vmapping_counter++;
1532		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1533		*map = dmabuf->vmap_ptr;
1534		return 0;
1535	}
1536
1537	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1538
1539	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1540	if (WARN_ON_ONCE(ret))
1541		return ret;
1542
1543	dmabuf->vmap_ptr = ptr;
1544	dmabuf->vmapping_counter = 1;
1545
1546	*map = dmabuf->vmap_ptr;
1547
1548	return 0;
1549}
1550EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1551
1552/**
1553 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1554 * address space. Same restrictions as for vmap and friends apply.
1555 * @dmabuf:	[in]	buffer to vmap
1556 * @map:	[out]	returns the vmap pointer
1557 *
1558 * Unlocked version of dma_buf_vmap()
1559 *
1560 * Returns 0 on success, or a negative errno code otherwise.
1561 */
1562int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1563{
1564	int ret;
1565
1566	iosys_map_clear(map);
1567
1568	if (WARN_ON(!dmabuf))
1569		return -EINVAL;
1570
1571	dma_resv_lock(dmabuf->resv, NULL);
1572	ret = dma_buf_vmap(dmabuf, map);
1573	dma_resv_unlock(dmabuf->resv);
1574
1575	return ret;
1576}
1577EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1578
1579/**
1580 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1581 * @dmabuf:	[in]	buffer to vunmap
1582 * @map:	[in]	vmap pointer to vunmap
1583 */
1584void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1585{
1586	if (WARN_ON(!dmabuf))
1587		return;
1588
1589	dma_resv_assert_held(dmabuf->resv);
1590
1591	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1592	BUG_ON(dmabuf->vmapping_counter == 0);
1593	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1594
1595	if (--dmabuf->vmapping_counter == 0) {
1596		if (dmabuf->ops->vunmap)
1597			dmabuf->ops->vunmap(dmabuf, map);
1598		iosys_map_clear(&dmabuf->vmap_ptr);
1599	}
1600}
1601EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1602
1603/**
1604 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1605 * @dmabuf:	[in]	buffer to vunmap
1606 * @map:	[in]	vmap pointer to vunmap
1607 */
1608void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1609{
1610	if (WARN_ON(!dmabuf))
1611		return;
1612
1613	dma_resv_lock(dmabuf->resv, NULL);
1614	dma_buf_vunmap(dmabuf, map);
1615	dma_resv_unlock(dmabuf->resv);
1616}
1617EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1618
1619#ifdef CONFIG_DEBUG_FS
1620static int dma_buf_debug_show(struct seq_file *s, void *unused)
1621{
1622	struct dma_buf *buf_obj;
1623	struct dma_buf_attachment *attach_obj;
1624	int count = 0, attach_count;
1625	size_t size = 0;
1626	int ret;
1627
1628	ret = mutex_lock_interruptible(&debugfs_list_mutex);
1629
1630	if (ret)
1631		return ret;
1632
1633	seq_puts(s, "\nDma-buf Objects:\n");
1634	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1635		   "size", "flags", "mode", "count", "ino");
1636
1637	list_for_each_entry(buf_obj, &debugfs_list, list_node) {
1638
1639		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1640		if (ret)
1641			goto error_unlock;
1642
1643
1644		spin_lock(&buf_obj->name_lock);
1645		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1646				buf_obj->size,
1647				buf_obj->file->f_flags, buf_obj->file->f_mode,
1648				file_count(buf_obj->file),
1649				buf_obj->exp_name,
1650				file_inode(buf_obj->file)->i_ino,
1651				buf_obj->name ?: "<none>");
1652		spin_unlock(&buf_obj->name_lock);
1653
1654		dma_resv_describe(buf_obj->resv, s);
1655
1656		seq_puts(s, "\tAttached Devices:\n");
1657		attach_count = 0;
1658
1659		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1660			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1661			attach_count++;
1662		}
1663		dma_resv_unlock(buf_obj->resv);
1664
1665		seq_printf(s, "Total %d devices attached\n\n",
1666				attach_count);
1667
1668		count++;
1669		size += buf_obj->size;
1670	}
1671
1672	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1673
1674	mutex_unlock(&debugfs_list_mutex);
1675	return 0;
1676
1677error_unlock:
1678	mutex_unlock(&debugfs_list_mutex);
1679	return ret;
1680}
1681
1682DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1683
1684static struct dentry *dma_buf_debugfs_dir;
1685
1686static int dma_buf_init_debugfs(void)
1687{
1688	struct dentry *d;
1689	int err = 0;
1690
1691	d = debugfs_create_dir("dma_buf", NULL);
1692	if (IS_ERR(d))
1693		return PTR_ERR(d);
1694
1695	dma_buf_debugfs_dir = d;
1696
1697	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1698				NULL, &dma_buf_debug_fops);
1699	if (IS_ERR(d)) {
1700		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1701		debugfs_remove_recursive(dma_buf_debugfs_dir);
1702		dma_buf_debugfs_dir = NULL;
1703		err = PTR_ERR(d);
1704	}
1705
1706	return err;
1707}
1708
1709static void dma_buf_uninit_debugfs(void)
1710{
1711	debugfs_remove_recursive(dma_buf_debugfs_dir);
1712}
1713#else
1714static inline int dma_buf_init_debugfs(void)
1715{
1716	return 0;
1717}
1718static inline void dma_buf_uninit_debugfs(void)
1719{
1720}
1721#endif
1722
1723static int __init dma_buf_init(void)
1724{
1725	int ret;
1726
1727	ret = dma_buf_init_sysfs_statistics();
1728	if (ret)
1729		return ret;
1730
1731	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1732	if (IS_ERR(dma_buf_mnt))
1733		return PTR_ERR(dma_buf_mnt);
1734
1735	dma_buf_init_debugfs();
1736	return 0;
1737}
1738subsys_initcall(dma_buf_init);
1739
1740static void __exit dma_buf_deinit(void)
1741{
1742	dma_buf_uninit_debugfs();
1743	kern_unmount(dma_buf_mnt);
1744	dma_buf_uninit_sysfs_statistics();
1745}
1746__exitcall(dma_buf_deinit);
1747