1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sata_mv.c - Marvell SATA support
4 *
5 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6 * Copyright 2005: EMC Corporation, all rights reserved.
7 * Copyright 2005 Red Hat, Inc.  All rights reserved.
8 *
9 * Originally written by Brett Russ.
10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 *
12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 */
14
15/*
16 * sata_mv TODO list:
17 *
18 * --> Develop a low-power-consumption strategy, and implement it.
19 *
20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21 *
22 * --> [Experiment, Marvell value added] Is it possible to use target
23 *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
24 *       creating LibATA target mode support would be very interesting.
25 *
26 *       Target mode, for those without docs, is the ability to directly
27 *       connect two SATA ports.
28 */
29
30/*
31 * 80x1-B2 errata PCI#11:
32 *
33 * Users of the 6041/6081 Rev.B2 chips (current is C0)
34 * should be careful to insert those cards only onto PCI-X bus #0,
35 * and only in device slots 0..7, not higher.  The chips may not
36 * work correctly otherwise  (note: this is a pretty rare condition).
37 */
38
39#include <linux/kernel.h>
40#include <linux/module.h>
41#include <linux/pci.h>
42#include <linux/init.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/dmapool.h>
47#include <linux/dma-mapping.h>
48#include <linux/device.h>
49#include <linux/clk.h>
50#include <linux/phy/phy.h>
51#include <linux/platform_device.h>
52#include <linux/ata_platform.h>
53#include <linux/mbus.h>
54#include <linux/bitops.h>
55#include <linux/gfp.h>
56#include <linux/of.h>
57#include <linux/of_irq.h>
58#include <scsi/scsi_host.h>
59#include <scsi/scsi_cmnd.h>
60#include <scsi/scsi_device.h>
61#include <linux/libata.h>
62
63#define DRV_NAME	"sata_mv"
64#define DRV_VERSION	"1.28"
65
66/*
67 * module options
68 */
69
70#ifdef CONFIG_PCI
71static int msi;
72module_param(msi, int, S_IRUGO);
73MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74#endif
75
76static int irq_coalescing_io_count;
77module_param(irq_coalescing_io_count, int, S_IRUGO);
78MODULE_PARM_DESC(irq_coalescing_io_count,
79		 "IRQ coalescing I/O count threshold (0..255)");
80
81static int irq_coalescing_usecs;
82module_param(irq_coalescing_usecs, int, S_IRUGO);
83MODULE_PARM_DESC(irq_coalescing_usecs,
84		 "IRQ coalescing time threshold in usecs");
85
86enum {
87	/* BAR's are enumerated in terms of pci_resource_start() terms */
88	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
89	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
90	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
91
92	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
93	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
94
95	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
97	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
98	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
99
100	MV_PCI_REG_BASE		= 0,
101
102	/*
103	 * Per-chip ("all ports") interrupt coalescing feature.
104	 * This is only for GEN_II / GEN_IIE hardware.
105	 *
106	 * Coalescing defers the interrupt until either the IO_THRESHOLD
107	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108	 */
109	COAL_REG_BASE		= 0x18000,
110	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
111	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
112
113	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
114	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115
116	/*
117	 * Registers for the (unused here) transaction coalescing feature:
118	 */
119	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
120	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
121
122	SATAHC0_REG_BASE	= 0x20000,
123	FLASH_CTL		= 0x1046c,
124	GPIO_PORT_CTL		= 0x104f0,
125	RESET_CFG		= 0x180d8,
126
127	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
128	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
129	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
130	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
131
132	MV_MAX_Q_DEPTH		= 32,
133	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
134
135	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
136	 * CRPB needs alignment on a 256B boundary. Size == 256B
137	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138	 */
139	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
140	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
141	MV_MAX_SG_CT		= 256,
142	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
143
144	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145	MV_PORT_HC_SHIFT	= 2,
146	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
147	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
149
150	/* Host Flags */
151	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
152
153	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154
155	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156
157	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159
160	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
161
162	CRQB_FLAG_READ		= (1 << 0),
163	CRQB_TAG_SHIFT		= 1,
164	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
165	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
166	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
167	CRQB_CMD_ADDR_SHIFT	= 8,
168	CRQB_CMD_CS		= (0x2 << 11),
169	CRQB_CMD_LAST		= (1 << 15),
170
171	CRPB_FLAG_STATUS_SHIFT	= 8,
172	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
173	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
174
175	EPRD_FLAG_END_OF_TBL	= (1 << 31),
176
177	/* PCI interface registers */
178
179	MV_PCI_COMMAND		= 0xc00,
180	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
181	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
182
183	PCI_MAIN_CMD_STS	= 0xd30,
184	STOP_PCI_MASTER		= (1 << 2),
185	PCI_MASTER_EMPTY	= (1 << 3),
186	GLOB_SFT_RST		= (1 << 4),
187
188	MV_PCI_MODE		= 0xd00,
189	MV_PCI_MODE_MASK	= 0x30,
190
191	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
192	MV_PCI_DISC_TIMER	= 0xd04,
193	MV_PCI_MSI_TRIGGER	= 0xc38,
194	MV_PCI_SERR_MASK	= 0xc28,
195	MV_PCI_XBAR_TMOUT	= 0x1d04,
196	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
197	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
198	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
199	MV_PCI_ERR_COMMAND	= 0x1d50,
200
201	PCI_IRQ_CAUSE		= 0x1d58,
202	PCI_IRQ_MASK		= 0x1d5c,
203	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
204
205	PCIE_IRQ_CAUSE		= 0x1900,
206	PCIE_IRQ_MASK		= 0x1910,
207	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
208
209	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
211	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
212	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
213	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
214	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
215	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
216	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
217	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
218	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
219	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
220	PCI_ERR			= (1 << 18),
221	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
222	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
223	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
224	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
225	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
226	GPIO_INT		= (1 << 22),
227	SELF_INT		= (1 << 23),
228	TWSI_INT		= (1 << 24),
229	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
230	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
231	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
232
233	/* SATAHC registers */
234	HC_CFG			= 0x00,
235
236	HC_IRQ_CAUSE		= 0x14,
237	DMA_IRQ			= (1 << 0),	/* shift by port # */
238	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
239	DEV_IRQ			= (1 << 8),	/* shift by port # */
240
241	/*
242	 * Per-HC (Host-Controller) interrupt coalescing feature.
243	 * This is present on all chip generations.
244	 *
245	 * Coalescing defers the interrupt until either the IO_THRESHOLD
246	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247	 */
248	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
249	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
250
251	SOC_LED_CTRL		= 0x2c,
252	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
253	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
254						/*  with dev activity LED */
255
256	/* Shadow block registers */
257	SHD_BLK			= 0x100,
258	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
259
260	/* SATA registers */
261	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
262	SATA_ACTIVE		= 0x350,
263	FIS_IRQ_CAUSE		= 0x364,
264	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
265
266	LTMODE			= 0x30c,	/* requires read-after-write */
267	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
268
269	PHY_MODE2		= 0x330,
270	PHY_MODE3		= 0x310,
271
272	PHY_MODE4		= 0x314,	/* requires read-after-write */
273	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
274	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
275	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
276	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
277
278	SATA_IFCTL		= 0x344,
279	SATA_TESTCTL		= 0x348,
280	SATA_IFSTAT		= 0x34c,
281	VENDOR_UNIQUE_FIS	= 0x35c,
282
283	FISCFG			= 0x360,
284	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
285	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
286
287	PHY_MODE9_GEN2		= 0x398,
288	PHY_MODE9_GEN1		= 0x39c,
289	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
290
291	MV5_PHY_MODE		= 0x74,
292	MV5_LTMODE		= 0x30,
293	MV5_PHY_CTL		= 0x0C,
294	SATA_IFCFG		= 0x050,
295	LP_PHY_CTL		= 0x058,
296	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
297	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
298	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
299	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
300	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
301
302	MV_M2_PREAMP_MASK	= 0x7e0,
303
304	/* Port registers */
305	EDMA_CFG		= 0,
306	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
307	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
308	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
309	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
310	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
311	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
312	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
313
314	EDMA_ERR_IRQ_CAUSE	= 0x8,
315	EDMA_ERR_IRQ_MASK	= 0xc,
316	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
317	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
318	EDMA_ERR_DEV		= (1 << 2),	/* device error */
319	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
320	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
321	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
322	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
323	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
324	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
325	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
326	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
327	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
328	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
329	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
330
331	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
332	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
333	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
334	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
335	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
336
337	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
338
339	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
340	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
341	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
342	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
343	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
344	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
345
346	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
347
348	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
349	EDMA_ERR_OVERRUN_5	= (1 << 5),
350	EDMA_ERR_UNDERRUN_5	= (1 << 6),
351
352	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
353				  EDMA_ERR_LNK_CTRL_RX_1 |
354				  EDMA_ERR_LNK_CTRL_RX_3 |
355				  EDMA_ERR_LNK_CTRL_TX,
356
357	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
358				  EDMA_ERR_PRD_PAR |
359				  EDMA_ERR_DEV_DCON |
360				  EDMA_ERR_DEV_CON |
361				  EDMA_ERR_SERR |
362				  EDMA_ERR_SELF_DIS |
363				  EDMA_ERR_CRQB_PAR |
364				  EDMA_ERR_CRPB_PAR |
365				  EDMA_ERR_INTRL_PAR |
366				  EDMA_ERR_IORDY |
367				  EDMA_ERR_LNK_CTRL_RX_2 |
368				  EDMA_ERR_LNK_DATA_RX |
369				  EDMA_ERR_LNK_DATA_TX |
370				  EDMA_ERR_TRANS_PROTO,
371
372	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
373				  EDMA_ERR_PRD_PAR |
374				  EDMA_ERR_DEV_DCON |
375				  EDMA_ERR_DEV_CON |
376				  EDMA_ERR_OVERRUN_5 |
377				  EDMA_ERR_UNDERRUN_5 |
378				  EDMA_ERR_SELF_DIS_5 |
379				  EDMA_ERR_CRQB_PAR |
380				  EDMA_ERR_CRPB_PAR |
381				  EDMA_ERR_INTRL_PAR |
382				  EDMA_ERR_IORDY,
383
384	EDMA_REQ_Q_BASE_HI	= 0x10,
385	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
386
387	EDMA_REQ_Q_OUT_PTR	= 0x18,
388	EDMA_REQ_Q_PTR_SHIFT	= 5,
389
390	EDMA_RSP_Q_BASE_HI	= 0x1c,
391	EDMA_RSP_Q_IN_PTR	= 0x20,
392	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
393	EDMA_RSP_Q_PTR_SHIFT	= 3,
394
395	EDMA_CMD		= 0x28,		/* EDMA command register */
396	EDMA_EN			= (1 << 0),	/* enable EDMA */
397	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
398	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
399
400	EDMA_STATUS		= 0x30,		/* EDMA engine status */
401	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
402	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
403
404	EDMA_IORDY_TMOUT	= 0x34,
405	EDMA_ARB_CFG		= 0x38,
406
407	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
408	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
409
410	BMDMA_CMD		= 0x224,	/* bmdma command register */
411	BMDMA_STATUS		= 0x228,	/* bmdma status register */
412	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
413	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
414
415	/* Host private flags (hp_flags) */
416	MV_HP_FLAG_MSI		= (1 << 0),
417	MV_HP_ERRATA_50XXB0	= (1 << 1),
418	MV_HP_ERRATA_50XXB2	= (1 << 2),
419	MV_HP_ERRATA_60X1B2	= (1 << 3),
420	MV_HP_ERRATA_60X1C0	= (1 << 4),
421	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
422	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
423	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
424	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
425	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
426	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
427	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
428	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
429
430	/* Port private flags (pp_flags) */
431	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
432	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
433	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
434	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
435	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
436};
437
438#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443
444#define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
445#define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
446
447enum {
448	/* DMA boundary 0xffff is required by the s/g splitting
449	 * we need on /length/ in mv_fill-sg().
450	 */
451	MV_DMA_BOUNDARY		= 0xffffU,
452
453	/* mask of register bits containing lower 32 bits
454	 * of EDMA request queue DMA address
455	 */
456	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
457
458	/* ditto, for response queue */
459	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
460};
461
462enum chip_type {
463	chip_504x,
464	chip_508x,
465	chip_5080,
466	chip_604x,
467	chip_608x,
468	chip_6042,
469	chip_7042,
470	chip_soc,
471};
472
473/* Command ReQuest Block: 32B */
474struct mv_crqb {
475	__le32			sg_addr;
476	__le32			sg_addr_hi;
477	__le16			ctrl_flags;
478	__le16			ata_cmd[11];
479};
480
481struct mv_crqb_iie {
482	__le32			addr;
483	__le32			addr_hi;
484	__le32			flags;
485	__le32			len;
486	__le32			ata_cmd[4];
487};
488
489/* Command ResPonse Block: 8B */
490struct mv_crpb {
491	__le16			id;
492	__le16			flags;
493	__le32			tmstmp;
494};
495
496/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497struct mv_sg {
498	__le32			addr;
499	__le32			flags_size;
500	__le32			addr_hi;
501	__le32			reserved;
502};
503
504/*
505 * We keep a local cache of a few frequently accessed port
506 * registers here, to avoid having to read them (very slow)
507 * when switching between EDMA and non-EDMA modes.
508 */
509struct mv_cached_regs {
510	u32			fiscfg;
511	u32			ltmode;
512	u32			haltcond;
513	u32			unknown_rsvd;
514};
515
516struct mv_port_priv {
517	struct mv_crqb		*crqb;
518	dma_addr_t		crqb_dma;
519	struct mv_crpb		*crpb;
520	dma_addr_t		crpb_dma;
521	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
522	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
523
524	unsigned int		req_idx;
525	unsigned int		resp_idx;
526
527	u32			pp_flags;
528	struct mv_cached_regs	cached;
529	unsigned int		delayed_eh_pmp_map;
530};
531
532struct mv_port_signal {
533	u32			amps;
534	u32			pre;
535};
536
537struct mv_host_priv {
538	u32			hp_flags;
539	unsigned int 		board_idx;
540	u32			main_irq_mask;
541	struct mv_port_signal	signal[8];
542	const struct mv_hw_ops	*ops;
543	int			n_ports;
544	void __iomem		*base;
545	void __iomem		*main_irq_cause_addr;
546	void __iomem		*main_irq_mask_addr;
547	u32			irq_cause_offset;
548	u32			irq_mask_offset;
549	u32			unmask_all_irqs;
550
551	/*
552	 * Needed on some devices that require their clocks to be enabled.
553	 * These are optional: if the platform device does not have any
554	 * clocks, they won't be used.  Also, if the underlying hardware
555	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556	 * all the clock operations become no-ops (see clk.h).
557	 */
558	struct clk		*clk;
559	struct clk              **port_clks;
560	/*
561	 * Some devices have a SATA PHY which can be enabled/disabled
562	 * in order to save power. These are optional: if the platform
563	 * devices does not have any phy, they won't be used.
564	 */
565	struct phy		**port_phys;
566	/*
567	 * These consistent DMA memory pools give us guaranteed
568	 * alignment for hardware-accessed data structures,
569	 * and less memory waste in accomplishing the alignment.
570	 */
571	struct dma_pool		*crqb_pool;
572	struct dma_pool		*crpb_pool;
573	struct dma_pool		*sg_tbl_pool;
574};
575
576struct mv_hw_ops {
577	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578			   unsigned int port);
579	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581			   void __iomem *mmio);
582	int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
583			unsigned int n_hc);
584	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586};
587
588static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592static int mv_port_start(struct ata_port *ap);
593static void mv_port_stop(struct ata_port *ap);
594static int mv_qc_defer(struct ata_queued_cmd *qc);
595static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598static int mv_hardreset(struct ata_link *link, unsigned int *class,
599			unsigned long deadline);
600static void mv_eh_freeze(struct ata_port *ap);
601static void mv_eh_thaw(struct ata_port *ap);
602static void mv6_dev_config(struct ata_device *dev);
603
604static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605			   unsigned int port);
606static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608			   void __iomem *mmio);
609static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
610			unsigned int n_hc);
611static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613
614static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615			   unsigned int port);
616static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618			   void __iomem *mmio);
619static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
620			unsigned int n_hc);
621static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623				      void __iomem *mmio);
624static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625				      void __iomem *mmio);
626static int mv_soc_reset_hc(struct ata_host *host,
627				  void __iomem *mmio, unsigned int n_hc);
628static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629				      void __iomem *mmio);
630static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632				  void __iomem *mmio, unsigned int port);
633static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635			     unsigned int port_no);
636static int mv_stop_edma(struct ata_port *ap);
637static int mv_stop_edma_engine(void __iomem *port_mmio);
638static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639
640static void mv_pmp_select(struct ata_port *ap, int pmp);
641static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642				unsigned long deadline);
643static int  mv_softreset(struct ata_link *link, unsigned int *class,
644				unsigned long deadline);
645static void mv_pmp_error_handler(struct ata_port *ap);
646static void mv_process_crpb_entries(struct ata_port *ap,
647					struct mv_port_priv *pp);
648
649static void mv_sff_irq_clear(struct ata_port *ap);
650static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652static void mv_bmdma_start(struct ata_queued_cmd *qc);
653static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654static u8   mv_bmdma_status(struct ata_port *ap);
655static u8 mv_sff_check_status(struct ata_port *ap);
656
657/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658 * because we have to allow room for worst case splitting of
659 * PRDs for 64K boundaries in mv_fill_sg().
660 */
661#ifdef CONFIG_PCI
662static const struct scsi_host_template mv5_sht = {
663	ATA_BASE_SHT(DRV_NAME),
664	.sg_tablesize		= MV_MAX_SG_CT / 2,
665	.dma_boundary		= MV_DMA_BOUNDARY,
666};
667#endif
668static const struct scsi_host_template mv6_sht = {
669	__ATA_BASE_SHT(DRV_NAME),
670	.can_queue		= MV_MAX_Q_DEPTH - 1,
671	.sg_tablesize		= MV_MAX_SG_CT / 2,
672	.dma_boundary		= MV_DMA_BOUNDARY,
673	.sdev_groups		= ata_ncq_sdev_groups,
674	.change_queue_depth	= ata_scsi_change_queue_depth,
675	.tag_alloc_policy	= BLK_TAG_ALLOC_RR,
676	.device_configure	= ata_scsi_device_configure
677};
678
679static struct ata_port_operations mv5_ops = {
680	.inherits		= &ata_sff_port_ops,
681
682	.lost_interrupt		= ATA_OP_NULL,
683
684	.qc_defer		= mv_qc_defer,
685	.qc_prep		= mv_qc_prep,
686	.qc_issue		= mv_qc_issue,
687
688	.freeze			= mv_eh_freeze,
689	.thaw			= mv_eh_thaw,
690	.hardreset		= mv_hardreset,
691
692	.scr_read		= mv5_scr_read,
693	.scr_write		= mv5_scr_write,
694
695	.port_start		= mv_port_start,
696	.port_stop		= mv_port_stop,
697};
698
699static struct ata_port_operations mv6_ops = {
700	.inherits		= &ata_bmdma_port_ops,
701
702	.lost_interrupt		= ATA_OP_NULL,
703
704	.qc_defer		= mv_qc_defer,
705	.qc_prep		= mv_qc_prep,
706	.qc_issue		= mv_qc_issue,
707
708	.dev_config             = mv6_dev_config,
709
710	.freeze			= mv_eh_freeze,
711	.thaw			= mv_eh_thaw,
712	.hardreset		= mv_hardreset,
713	.softreset		= mv_softreset,
714	.pmp_hardreset		= mv_pmp_hardreset,
715	.pmp_softreset		= mv_softreset,
716	.error_handler		= mv_pmp_error_handler,
717
718	.scr_read		= mv_scr_read,
719	.scr_write		= mv_scr_write,
720
721	.sff_check_status	= mv_sff_check_status,
722	.sff_irq_clear		= mv_sff_irq_clear,
723	.check_atapi_dma	= mv_check_atapi_dma,
724	.bmdma_setup		= mv_bmdma_setup,
725	.bmdma_start		= mv_bmdma_start,
726	.bmdma_stop		= mv_bmdma_stop,
727	.bmdma_status		= mv_bmdma_status,
728
729	.port_start		= mv_port_start,
730	.port_stop		= mv_port_stop,
731};
732
733static struct ata_port_operations mv_iie_ops = {
734	.inherits		= &mv6_ops,
735	.dev_config		= ATA_OP_NULL,
736	.qc_prep		= mv_qc_prep_iie,
737};
738
739static const struct ata_port_info mv_port_info[] = {
740	{  /* chip_504x */
741		.flags		= MV_GEN_I_FLAGS,
742		.pio_mask	= ATA_PIO4,
743		.udma_mask	= ATA_UDMA6,
744		.port_ops	= &mv5_ops,
745	},
746	{  /* chip_508x */
747		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748		.pio_mask	= ATA_PIO4,
749		.udma_mask	= ATA_UDMA6,
750		.port_ops	= &mv5_ops,
751	},
752	{  /* chip_5080 */
753		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754		.pio_mask	= ATA_PIO4,
755		.udma_mask	= ATA_UDMA6,
756		.port_ops	= &mv5_ops,
757	},
758	{  /* chip_604x */
759		.flags		= MV_GEN_II_FLAGS,
760		.pio_mask	= ATA_PIO4,
761		.udma_mask	= ATA_UDMA6,
762		.port_ops	= &mv6_ops,
763	},
764	{  /* chip_608x */
765		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766		.pio_mask	= ATA_PIO4,
767		.udma_mask	= ATA_UDMA6,
768		.port_ops	= &mv6_ops,
769	},
770	{  /* chip_6042 */
771		.flags		= MV_GEN_IIE_FLAGS,
772		.pio_mask	= ATA_PIO4,
773		.udma_mask	= ATA_UDMA6,
774		.port_ops	= &mv_iie_ops,
775	},
776	{  /* chip_7042 */
777		.flags		= MV_GEN_IIE_FLAGS,
778		.pio_mask	= ATA_PIO4,
779		.udma_mask	= ATA_UDMA6,
780		.port_ops	= &mv_iie_ops,
781	},
782	{  /* chip_soc */
783		.flags		= MV_GEN_IIE_FLAGS,
784		.pio_mask	= ATA_PIO4,
785		.udma_mask	= ATA_UDMA6,
786		.port_ops	= &mv_iie_ops,
787	},
788};
789
790static const struct mv_hw_ops mv5xxx_ops = {
791	.phy_errata		= mv5_phy_errata,
792	.enable_leds		= mv5_enable_leds,
793	.read_preamp		= mv5_read_preamp,
794	.reset_hc		= mv5_reset_hc,
795	.reset_flash		= mv5_reset_flash,
796	.reset_bus		= mv5_reset_bus,
797};
798
799static const struct mv_hw_ops mv6xxx_ops = {
800	.phy_errata		= mv6_phy_errata,
801	.enable_leds		= mv6_enable_leds,
802	.read_preamp		= mv6_read_preamp,
803	.reset_hc		= mv6_reset_hc,
804	.reset_flash		= mv6_reset_flash,
805	.reset_bus		= mv_reset_pci_bus,
806};
807
808static const struct mv_hw_ops mv_soc_ops = {
809	.phy_errata		= mv6_phy_errata,
810	.enable_leds		= mv_soc_enable_leds,
811	.read_preamp		= mv_soc_read_preamp,
812	.reset_hc		= mv_soc_reset_hc,
813	.reset_flash		= mv_soc_reset_flash,
814	.reset_bus		= mv_soc_reset_bus,
815};
816
817static const struct mv_hw_ops mv_soc_65n_ops = {
818	.phy_errata		= mv_soc_65n_phy_errata,
819	.enable_leds		= mv_soc_enable_leds,
820	.reset_hc		= mv_soc_reset_hc,
821	.reset_flash		= mv_soc_reset_flash,
822	.reset_bus		= mv_soc_reset_bus,
823};
824
825/*
826 * Functions
827 */
828
829static inline void writelfl(unsigned long data, void __iomem *addr)
830{
831	writel(data, addr);
832	(void) readl(addr);	/* flush to avoid PCI posted write */
833}
834
835static inline unsigned int mv_hc_from_port(unsigned int port)
836{
837	return port >> MV_PORT_HC_SHIFT;
838}
839
840static inline unsigned int mv_hardport_from_port(unsigned int port)
841{
842	return port & MV_PORT_MASK;
843}
844
845/*
846 * Consolidate some rather tricky bit shift calculations.
847 * This is hot-path stuff, so not a function.
848 * Simple code, with two return values, so macro rather than inline.
849 *
850 * port is the sole input, in range 0..7.
851 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
852 * hardport is the other output, in range 0..3.
853 *
854 * Note that port and hardport may be the same variable in some cases.
855 */
856#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
857{								\
858	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
859	hardport = mv_hardport_from_port(port);			\
860	shift   += hardport * 2;				\
861}
862
863static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
864{
865	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
866}
867
868static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
869						 unsigned int port)
870{
871	return mv_hc_base(base, mv_hc_from_port(port));
872}
873
874static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
875{
876	return  mv_hc_base_from_port(base, port) +
877		MV_SATAHC_ARBTR_REG_SZ +
878		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
879}
880
881static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
882{
883	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
884	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
885
886	return hc_mmio + ofs;
887}
888
889static inline void __iomem *mv_host_base(struct ata_host *host)
890{
891	struct mv_host_priv *hpriv = host->private_data;
892	return hpriv->base;
893}
894
895static inline void __iomem *mv_ap_base(struct ata_port *ap)
896{
897	return mv_port_base(mv_host_base(ap->host), ap->port_no);
898}
899
900static inline int mv_get_hc_count(unsigned long port_flags)
901{
902	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
903}
904
905/**
906 *      mv_save_cached_regs - (re-)initialize cached port registers
907 *      @ap: the port whose registers we are caching
908 *
909 *	Initialize the local cache of port registers,
910 *	so that reading them over and over again can
911 *	be avoided on the hotter paths of this driver.
912 *	This saves a few microseconds each time we switch
913 *	to/from EDMA mode to perform (eg.) a drive cache flush.
914 */
915static void mv_save_cached_regs(struct ata_port *ap)
916{
917	void __iomem *port_mmio = mv_ap_base(ap);
918	struct mv_port_priv *pp = ap->private_data;
919
920	pp->cached.fiscfg = readl(port_mmio + FISCFG);
921	pp->cached.ltmode = readl(port_mmio + LTMODE);
922	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
923	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
924}
925
926/**
927 *      mv_write_cached_reg - write to a cached port register
928 *      @addr: hardware address of the register
929 *      @old: pointer to cached value of the register
930 *      @new: new value for the register
931 *
932 *	Write a new value to a cached register,
933 *	but only if the value is different from before.
934 */
935static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
936{
937	if (new != *old) {
938		unsigned long laddr;
939		*old = new;
940		/*
941		 * Workaround for 88SX60x1-B2 FEr SATA#13:
942		 * Read-after-write is needed to prevent generating 64-bit
943		 * write cycles on the PCI bus for SATA interface registers
944		 * at offsets ending in 0x4 or 0xc.
945		 *
946		 * Looks like a lot of fuss, but it avoids an unnecessary
947		 * +1 usec read-after-write delay for unaffected registers.
948		 */
949		laddr = (unsigned long)addr & 0xffff;
950		if (laddr >= 0x300 && laddr <= 0x33c) {
951			laddr &= 0x000f;
952			if (laddr == 0x4 || laddr == 0xc) {
953				writelfl(new, addr); /* read after write */
954				return;
955			}
956		}
957		writel(new, addr); /* unaffected by the errata */
958	}
959}
960
961static void mv_set_edma_ptrs(void __iomem *port_mmio,
962			     struct mv_host_priv *hpriv,
963			     struct mv_port_priv *pp)
964{
965	u32 index;
966
967	/*
968	 * initialize request queue
969	 */
970	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
971	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
972
973	WARN_ON(pp->crqb_dma & 0x3ff);
974	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
975	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
976		 port_mmio + EDMA_REQ_Q_IN_PTR);
977	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
978
979	/*
980	 * initialize response queue
981	 */
982	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
983	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
984
985	WARN_ON(pp->crpb_dma & 0xff);
986	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
987	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
988	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
989		 port_mmio + EDMA_RSP_Q_OUT_PTR);
990}
991
992static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
993{
994	/*
995	 * When writing to the main_irq_mask in hardware,
996	 * we must ensure exclusivity between the interrupt coalescing bits
997	 * and the corresponding individual port DONE_IRQ bits.
998	 *
999	 * Note that this register is really an "IRQ enable" register,
1000	 * not an "IRQ mask" register as Marvell's naming might suggest.
1001	 */
1002	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1003		mask &= ~DONE_IRQ_0_3;
1004	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1005		mask &= ~DONE_IRQ_4_7;
1006	writelfl(mask, hpriv->main_irq_mask_addr);
1007}
1008
1009static void mv_set_main_irq_mask(struct ata_host *host,
1010				 u32 disable_bits, u32 enable_bits)
1011{
1012	struct mv_host_priv *hpriv = host->private_data;
1013	u32 old_mask, new_mask;
1014
1015	old_mask = hpriv->main_irq_mask;
1016	new_mask = (old_mask & ~disable_bits) | enable_bits;
1017	if (new_mask != old_mask) {
1018		hpriv->main_irq_mask = new_mask;
1019		mv_write_main_irq_mask(new_mask, hpriv);
1020	}
1021}
1022
1023static void mv_enable_port_irqs(struct ata_port *ap,
1024				     unsigned int port_bits)
1025{
1026	unsigned int shift, hardport, port = ap->port_no;
1027	u32 disable_bits, enable_bits;
1028
1029	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1030
1031	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1032	enable_bits  = port_bits << shift;
1033	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1034}
1035
1036static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1037					  void __iomem *port_mmio,
1038					  unsigned int port_irqs)
1039{
1040	struct mv_host_priv *hpriv = ap->host->private_data;
1041	int hardport = mv_hardport_from_port(ap->port_no);
1042	void __iomem *hc_mmio = mv_hc_base_from_port(
1043				mv_host_base(ap->host), ap->port_no);
1044	u32 hc_irq_cause;
1045
1046	/* clear EDMA event indicators, if any */
1047	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1048
1049	/* clear pending irq events */
1050	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1051	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1052
1053	/* clear FIS IRQ Cause */
1054	if (IS_GEN_IIE(hpriv))
1055		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1056
1057	mv_enable_port_irqs(ap, port_irqs);
1058}
1059
1060static void mv_set_irq_coalescing(struct ata_host *host,
1061				  unsigned int count, unsigned int usecs)
1062{
1063	struct mv_host_priv *hpriv = host->private_data;
1064	void __iomem *mmio = hpriv->base, *hc_mmio;
1065	u32 coal_enable = 0;
1066	unsigned long flags;
1067	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1068	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1069							ALL_PORTS_COAL_DONE;
1070
1071	/* Disable IRQ coalescing if either threshold is zero */
1072	if (!usecs || !count) {
1073		clks = count = 0;
1074	} else {
1075		/* Respect maximum limits of the hardware */
1076		clks = usecs * COAL_CLOCKS_PER_USEC;
1077		if (clks > MAX_COAL_TIME_THRESHOLD)
1078			clks = MAX_COAL_TIME_THRESHOLD;
1079		if (count > MAX_COAL_IO_COUNT)
1080			count = MAX_COAL_IO_COUNT;
1081	}
1082
1083	spin_lock_irqsave(&host->lock, flags);
1084	mv_set_main_irq_mask(host, coal_disable, 0);
1085
1086	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1087		/*
1088		 * GEN_II/GEN_IIE with dual host controllers:
1089		 * one set of global thresholds for the entire chip.
1090		 */
1091		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1092		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1093		/* clear leftover coal IRQ bit */
1094		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1095		if (count)
1096			coal_enable = ALL_PORTS_COAL_DONE;
1097		clks = count = 0; /* force clearing of regular regs below */
1098	}
1099
1100	/*
1101	 * All chips: independent thresholds for each HC on the chip.
1102	 */
1103	hc_mmio = mv_hc_base_from_port(mmio, 0);
1104	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1105	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1106	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1107	if (count)
1108		coal_enable |= PORTS_0_3_COAL_DONE;
1109	if (is_dual_hc) {
1110		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1111		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1112		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1113		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1114		if (count)
1115			coal_enable |= PORTS_4_7_COAL_DONE;
1116	}
1117
1118	mv_set_main_irq_mask(host, 0, coal_enable);
1119	spin_unlock_irqrestore(&host->lock, flags);
1120}
1121
1122/*
1123 *      mv_start_edma - Enable eDMA engine
1124 *      @pp: port private data
1125 *
1126 *      Verify the local cache of the eDMA state is accurate with a
1127 *      WARN_ON.
1128 *
1129 *      LOCKING:
1130 *      Inherited from caller.
1131 */
1132static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1133			 struct mv_port_priv *pp, u8 protocol)
1134{
1135	int want_ncq = (protocol == ATA_PROT_NCQ);
1136
1137	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1138		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1139		if (want_ncq != using_ncq)
1140			mv_stop_edma(ap);
1141	}
1142	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1143		struct mv_host_priv *hpriv = ap->host->private_data;
1144
1145		mv_edma_cfg(ap, want_ncq, 1);
1146
1147		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1148		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1149
1150		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1151		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1152	}
1153}
1154
1155static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1156{
1157	void __iomem *port_mmio = mv_ap_base(ap);
1158	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1159	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1160	int i;
1161
1162	/*
1163	 * Wait for the EDMA engine to finish transactions in progress.
1164	 * No idea what a good "timeout" value might be, but measurements
1165	 * indicate that it often requires hundreds of microseconds
1166	 * with two drives in-use.  So we use the 15msec value above
1167	 * as a rough guess at what even more drives might require.
1168	 */
1169	for (i = 0; i < timeout; ++i) {
1170		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1171		if ((edma_stat & empty_idle) == empty_idle)
1172			break;
1173		udelay(per_loop);
1174	}
1175	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1176}
1177
1178/**
1179 *      mv_stop_edma_engine - Disable eDMA engine
1180 *      @port_mmio: io base address
1181 *
1182 *      LOCKING:
1183 *      Inherited from caller.
1184 */
1185static int mv_stop_edma_engine(void __iomem *port_mmio)
1186{
1187	int i;
1188
1189	/* Disable eDMA.  The disable bit auto clears. */
1190	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1191
1192	/* Wait for the chip to confirm eDMA is off. */
1193	for (i = 10000; i > 0; i--) {
1194		u32 reg = readl(port_mmio + EDMA_CMD);
1195		if (!(reg & EDMA_EN))
1196			return 0;
1197		udelay(10);
1198	}
1199	return -EIO;
1200}
1201
1202static int mv_stop_edma(struct ata_port *ap)
1203{
1204	void __iomem *port_mmio = mv_ap_base(ap);
1205	struct mv_port_priv *pp = ap->private_data;
1206	int err = 0;
1207
1208	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1209		return 0;
1210	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1211	mv_wait_for_edma_empty_idle(ap);
1212	if (mv_stop_edma_engine(port_mmio)) {
1213		ata_port_err(ap, "Unable to stop eDMA\n");
1214		err = -EIO;
1215	}
1216	mv_edma_cfg(ap, 0, 0);
1217	return err;
1218}
1219
1220static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
1221{
1222	int b, w, o;
1223	unsigned char linebuf[38];
1224
1225	for (b = 0; b < bytes; ) {
1226		for (w = 0, o = 0; b < bytes && w < 4; w++) {
1227			o += scnprintf(linebuf + o, sizeof(linebuf) - o,
1228				       "%08x ", readl(start + b));
1229			b += sizeof(u32);
1230		}
1231		dev_dbg(dev, "%s: %p: %s\n",
1232			__func__, start + b, linebuf);
1233	}
1234}
1235
1236static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1237{
1238	int b, w, o;
1239	u32 dw = 0;
1240	unsigned char linebuf[38];
1241
1242	for (b = 0; b < bytes; ) {
1243		for (w = 0, o = 0; b < bytes && w < 4; w++) {
1244			(void) pci_read_config_dword(pdev, b, &dw);
1245			o += snprintf(linebuf + o, sizeof(linebuf) - o,
1246				      "%08x ", dw);
1247			b += sizeof(u32);
1248		}
1249		dev_dbg(&pdev->dev, "%s: %02x: %s\n",
1250			__func__, b, linebuf);
1251	}
1252}
1253
1254static void mv_dump_all_regs(void __iomem *mmio_base,
1255			     struct pci_dev *pdev)
1256{
1257	void __iomem *hc_base;
1258	void __iomem *port_base;
1259	int start_port, num_ports, p, start_hc, num_hcs, hc;
1260
1261	start_hc = start_port = 0;
1262	num_ports = 8;		/* should be benign for 4 port devs */
1263	num_hcs = 2;
1264	dev_dbg(&pdev->dev,
1265		"%s: All registers for port(s) %u-%u:\n", __func__,
1266		start_port, num_ports > 1 ? num_ports - 1 : start_port);
1267
1268	dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
1269	mv_dump_pci_cfg(pdev, 0x68);
1270
1271	dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
1272	mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
1273	mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
1274	mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
1275	mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
1276	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1277		hc_base = mv_hc_base(mmio_base, hc);
1278		dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
1279		mv_dump_mem(&pdev->dev, hc_base, 0x1c);
1280	}
1281	for (p = start_port; p < start_port + num_ports; p++) {
1282		port_base = mv_port_base(mmio_base, p);
1283		dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
1284		mv_dump_mem(&pdev->dev, port_base, 0x54);
1285		dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
1286		mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
1287	}
1288}
1289
1290static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1291{
1292	unsigned int ofs;
1293
1294	switch (sc_reg_in) {
1295	case SCR_STATUS:
1296	case SCR_CONTROL:
1297	case SCR_ERROR:
1298		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1299		break;
1300	case SCR_ACTIVE:
1301		ofs = SATA_ACTIVE;   /* active is not with the others */
1302		break;
1303	default:
1304		ofs = 0xffffffffU;
1305		break;
1306	}
1307	return ofs;
1308}
1309
1310static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1311{
1312	unsigned int ofs = mv_scr_offset(sc_reg_in);
1313
1314	if (ofs != 0xffffffffU) {
1315		*val = readl(mv_ap_base(link->ap) + ofs);
1316		return 0;
1317	} else
1318		return -EINVAL;
1319}
1320
1321static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1322{
1323	unsigned int ofs = mv_scr_offset(sc_reg_in);
1324
1325	if (ofs != 0xffffffffU) {
1326		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1327		struct mv_host_priv *hpriv = link->ap->host->private_data;
1328		if (sc_reg_in == SCR_CONTROL) {
1329			/*
1330			 * Workaround for 88SX60x1 FEr SATA#26:
1331			 *
1332			 * COMRESETs have to take care not to accidentally
1333			 * put the drive to sleep when writing SCR_CONTROL.
1334			 * Setting bits 12..15 prevents this problem.
1335			 *
1336			 * So if we see an outbound COMMRESET, set those bits.
1337			 * Ditto for the followup write that clears the reset.
1338			 *
1339			 * The proprietary driver does this for
1340			 * all chip versions, and so do we.
1341			 */
1342			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1343				val |= 0xf000;
1344
1345			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1346				void __iomem *lp_phy_addr =
1347					mv_ap_base(link->ap) + LP_PHY_CTL;
1348				/*
1349				 * Set PHY speed according to SControl speed.
1350				 */
1351				u32 lp_phy_val =
1352					LP_PHY_CTL_PIN_PU_PLL |
1353					LP_PHY_CTL_PIN_PU_RX  |
1354					LP_PHY_CTL_PIN_PU_TX;
1355
1356				if ((val & 0xf0) != 0x10)
1357					lp_phy_val |=
1358						LP_PHY_CTL_GEN_TX_3G |
1359						LP_PHY_CTL_GEN_RX_3G;
1360
1361				writelfl(lp_phy_val, lp_phy_addr);
1362			}
1363		}
1364		writelfl(val, addr);
1365		return 0;
1366	} else
1367		return -EINVAL;
1368}
1369
1370static void mv6_dev_config(struct ata_device *adev)
1371{
1372	/*
1373	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1374	 *
1375	 * Gen-II does not support NCQ over a port multiplier
1376	 *  (no FIS-based switching).
1377	 */
1378	if (adev->flags & ATA_DFLAG_NCQ) {
1379		if (sata_pmp_attached(adev->link->ap)) {
1380			adev->flags &= ~ATA_DFLAG_NCQ;
1381			ata_dev_info(adev,
1382				"NCQ disabled for command-based switching\n");
1383		}
1384	}
1385}
1386
1387static int mv_qc_defer(struct ata_queued_cmd *qc)
1388{
1389	struct ata_link *link = qc->dev->link;
1390	struct ata_port *ap = link->ap;
1391	struct mv_port_priv *pp = ap->private_data;
1392
1393	/*
1394	 * Don't allow new commands if we're in a delayed EH state
1395	 * for NCQ and/or FIS-based switching.
1396	 */
1397	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1398		return ATA_DEFER_PORT;
1399
1400	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1401	 * can run concurrently.
1402	 * set excl_link when we want to send a PIO command in DMA mode
1403	 * or a non-NCQ command in NCQ mode.
1404	 * When we receive a command from that link, and there are no
1405	 * outstanding commands, mark a flag to clear excl_link and let
1406	 * the command go through.
1407	 */
1408	if (unlikely(ap->excl_link)) {
1409		if (link == ap->excl_link) {
1410			if (ap->nr_active_links)
1411				return ATA_DEFER_PORT;
1412			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1413			return 0;
1414		} else
1415			return ATA_DEFER_PORT;
1416	}
1417
1418	/*
1419	 * If the port is completely idle, then allow the new qc.
1420	 */
1421	if (ap->nr_active_links == 0)
1422		return 0;
1423
1424	/*
1425	 * The port is operating in host queuing mode (EDMA) with NCQ
1426	 * enabled, allow multiple NCQ commands.  EDMA also allows
1427	 * queueing multiple DMA commands but libata core currently
1428	 * doesn't allow it.
1429	 */
1430	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1431	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1432		if (ata_is_ncq(qc->tf.protocol))
1433			return 0;
1434		else {
1435			ap->excl_link = link;
1436			return ATA_DEFER_PORT;
1437		}
1438	}
1439
1440	return ATA_DEFER_PORT;
1441}
1442
1443static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1444{
1445	struct mv_port_priv *pp = ap->private_data;
1446	void __iomem *port_mmio;
1447
1448	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1449	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1450	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1451
1452	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1453	haltcond = *old_haltcond | EDMA_ERR_DEV;
1454
1455	if (want_fbs) {
1456		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1457		ltmode = *old_ltmode | LTMODE_BIT8;
1458		if (want_ncq)
1459			haltcond &= ~EDMA_ERR_DEV;
1460		else
1461			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1462	} else {
1463		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1464	}
1465
1466	port_mmio = mv_ap_base(ap);
1467	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1468	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1469	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1470}
1471
1472static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1473{
1474	struct mv_host_priv *hpriv = ap->host->private_data;
1475	u32 old, new;
1476
1477	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1478	old = readl(hpriv->base + GPIO_PORT_CTL);
1479	if (want_ncq)
1480		new = old | (1 << 22);
1481	else
1482		new = old & ~(1 << 22);
1483	if (new != old)
1484		writel(new, hpriv->base + GPIO_PORT_CTL);
1485}
1486
1487/*
1488 *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1489 *	@ap: Port being initialized
1490 *
1491 *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1492 *
1493 *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1494 *	of basic DMA on the GEN_IIE versions of the chips.
1495 *
1496 *	This bit survives EDMA resets, and must be set for basic DMA
1497 *	to function, and should be cleared when EDMA is active.
1498 */
1499static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1500{
1501	struct mv_port_priv *pp = ap->private_data;
1502	u32 new, *old = &pp->cached.unknown_rsvd;
1503
1504	if (enable_bmdma)
1505		new = *old | 1;
1506	else
1507		new = *old & ~1;
1508	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1509}
1510
1511/*
1512 * SOC chips have an issue whereby the HDD LEDs don't always blink
1513 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1514 * of the SOC takes care of it, generating a steady blink rate when
1515 * any drive on the chip is active.
1516 *
1517 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1518 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1519 *
1520 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1521 * LED operation works then, and provides better (more accurate) feedback.
1522 *
1523 * Note that this code assumes that an SOC never has more than one HC onboard.
1524 */
1525static void mv_soc_led_blink_enable(struct ata_port *ap)
1526{
1527	struct ata_host *host = ap->host;
1528	struct mv_host_priv *hpriv = host->private_data;
1529	void __iomem *hc_mmio;
1530	u32 led_ctrl;
1531
1532	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1533		return;
1534	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1535	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1536	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1537	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1538}
1539
1540static void mv_soc_led_blink_disable(struct ata_port *ap)
1541{
1542	struct ata_host *host = ap->host;
1543	struct mv_host_priv *hpriv = host->private_data;
1544	void __iomem *hc_mmio;
1545	u32 led_ctrl;
1546	unsigned int port;
1547
1548	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1549		return;
1550
1551	/* disable led-blink only if no ports are using NCQ */
1552	for (port = 0; port < hpriv->n_ports; port++) {
1553		struct ata_port *this_ap = host->ports[port];
1554		struct mv_port_priv *pp = this_ap->private_data;
1555
1556		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1557			return;
1558	}
1559
1560	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1561	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1562	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1563	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1564}
1565
1566static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1567{
1568	u32 cfg;
1569	struct mv_port_priv *pp    = ap->private_data;
1570	struct mv_host_priv *hpriv = ap->host->private_data;
1571	void __iomem *port_mmio    = mv_ap_base(ap);
1572
1573	/* set up non-NCQ EDMA configuration */
1574	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1575	pp->pp_flags &=
1576	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1577
1578	if (IS_GEN_I(hpriv))
1579		cfg |= (1 << 8);	/* enab config burst size mask */
1580
1581	else if (IS_GEN_II(hpriv)) {
1582		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1583		mv_60x1_errata_sata25(ap, want_ncq);
1584
1585	} else if (IS_GEN_IIE(hpriv)) {
1586		int want_fbs = sata_pmp_attached(ap);
1587		/*
1588		 * Possible future enhancement:
1589		 *
1590		 * The chip can use FBS with non-NCQ, if we allow it,
1591		 * But first we need to have the error handling in place
1592		 * for this mode (datasheet section 7.3.15.4.2.3).
1593		 * So disallow non-NCQ FBS for now.
1594		 */
1595		want_fbs &= want_ncq;
1596
1597		mv_config_fbs(ap, want_ncq, want_fbs);
1598
1599		if (want_fbs) {
1600			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1601			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1602		}
1603
1604		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1605		if (want_edma) {
1606			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1607			if (!IS_SOC(hpriv))
1608				cfg |= (1 << 18); /* enab early completion */
1609		}
1610		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1611			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1612		mv_bmdma_enable_iie(ap, !want_edma);
1613
1614		if (IS_SOC(hpriv)) {
1615			if (want_ncq)
1616				mv_soc_led_blink_enable(ap);
1617			else
1618				mv_soc_led_blink_disable(ap);
1619		}
1620	}
1621
1622	if (want_ncq) {
1623		cfg |= EDMA_CFG_NCQ;
1624		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1625	}
1626
1627	writelfl(cfg, port_mmio + EDMA_CFG);
1628}
1629
1630static void mv_port_free_dma_mem(struct ata_port *ap)
1631{
1632	struct mv_host_priv *hpriv = ap->host->private_data;
1633	struct mv_port_priv *pp = ap->private_data;
1634	int tag;
1635
1636	if (pp->crqb) {
1637		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1638		pp->crqb = NULL;
1639	}
1640	if (pp->crpb) {
1641		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1642		pp->crpb = NULL;
1643	}
1644	/*
1645	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1646	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1647	 */
1648	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1649		if (pp->sg_tbl[tag]) {
1650			if (tag == 0 || !IS_GEN_I(hpriv))
1651				dma_pool_free(hpriv->sg_tbl_pool,
1652					      pp->sg_tbl[tag],
1653					      pp->sg_tbl_dma[tag]);
1654			pp->sg_tbl[tag] = NULL;
1655		}
1656	}
1657}
1658
1659/**
1660 *      mv_port_start - Port specific init/start routine.
1661 *      @ap: ATA channel to manipulate
1662 *
1663 *      Allocate and point to DMA memory, init port private memory,
1664 *      zero indices.
1665 *
1666 *      LOCKING:
1667 *      Inherited from caller.
1668 */
1669static int mv_port_start(struct ata_port *ap)
1670{
1671	struct device *dev = ap->host->dev;
1672	struct mv_host_priv *hpriv = ap->host->private_data;
1673	struct mv_port_priv *pp;
1674	unsigned long flags;
1675	int tag;
1676
1677	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1678	if (!pp)
1679		return -ENOMEM;
1680	ap->private_data = pp;
1681
1682	pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1683	if (!pp->crqb)
1684		return -ENOMEM;
1685
1686	pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1687	if (!pp->crpb)
1688		goto out_port_free_dma_mem;
1689
1690	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1691	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1692		ap->flags |= ATA_FLAG_AN;
1693	/*
1694	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1695	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1696	 */
1697	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1698		if (tag == 0 || !IS_GEN_I(hpriv)) {
1699			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1700					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1701			if (!pp->sg_tbl[tag])
1702				goto out_port_free_dma_mem;
1703		} else {
1704			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1705			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1706		}
1707	}
1708
1709	spin_lock_irqsave(ap->lock, flags);
1710	mv_save_cached_regs(ap);
1711	mv_edma_cfg(ap, 0, 0);
1712	spin_unlock_irqrestore(ap->lock, flags);
1713
1714	return 0;
1715
1716out_port_free_dma_mem:
1717	mv_port_free_dma_mem(ap);
1718	return -ENOMEM;
1719}
1720
1721/**
1722 *      mv_port_stop - Port specific cleanup/stop routine.
1723 *      @ap: ATA channel to manipulate
1724 *
1725 *      Stop DMA, cleanup port memory.
1726 *
1727 *      LOCKING:
1728 *      This routine uses the host lock to protect the DMA stop.
1729 */
1730static void mv_port_stop(struct ata_port *ap)
1731{
1732	unsigned long flags;
1733
1734	spin_lock_irqsave(ap->lock, flags);
1735	mv_stop_edma(ap);
1736	mv_enable_port_irqs(ap, 0);
1737	spin_unlock_irqrestore(ap->lock, flags);
1738	mv_port_free_dma_mem(ap);
1739}
1740
1741/**
1742 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1743 *      @qc: queued command whose SG list to source from
1744 *
1745 *      Populate the SG list and mark the last entry.
1746 *
1747 *      LOCKING:
1748 *      Inherited from caller.
1749 */
1750static void mv_fill_sg(struct ata_queued_cmd *qc)
1751{
1752	struct mv_port_priv *pp = qc->ap->private_data;
1753	struct scatterlist *sg;
1754	struct mv_sg *mv_sg, *last_sg = NULL;
1755	unsigned int si;
1756
1757	mv_sg = pp->sg_tbl[qc->hw_tag];
1758	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1759		dma_addr_t addr = sg_dma_address(sg);
1760		u32 sg_len = sg_dma_len(sg);
1761
1762		while (sg_len) {
1763			u32 offset = addr & 0xffff;
1764			u32 len = sg_len;
1765
1766			if (offset + len > 0x10000)
1767				len = 0x10000 - offset;
1768
1769			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1770			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1771			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1772			mv_sg->reserved = 0;
1773
1774			sg_len -= len;
1775			addr += len;
1776
1777			last_sg = mv_sg;
1778			mv_sg++;
1779		}
1780	}
1781
1782	if (likely(last_sg))
1783		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1784	mb(); /* ensure data structure is visible to the chipset */
1785}
1786
1787static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1788{
1789	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1790		(last ? CRQB_CMD_LAST : 0);
1791	*cmdw = cpu_to_le16(tmp);
1792}
1793
1794/**
1795 *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1796 *	@ap: Port associated with this ATA transaction.
1797 *
1798 *	We need this only for ATAPI bmdma transactions,
1799 *	as otherwise we experience spurious interrupts
1800 *	after libata-sff handles the bmdma interrupts.
1801 */
1802static void mv_sff_irq_clear(struct ata_port *ap)
1803{
1804	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1805}
1806
1807/**
1808 *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1809 *	@qc: queued command to check for chipset/DMA compatibility.
1810 *
1811 *	The bmdma engines cannot handle speculative data sizes
1812 *	(bytecount under/over flow).  So only allow DMA for
1813 *	data transfer commands with known data sizes.
1814 *
1815 *	LOCKING:
1816 *	Inherited from caller.
1817 */
1818static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1819{
1820	struct scsi_cmnd *scmd = qc->scsicmd;
1821
1822	if (scmd) {
1823		switch (scmd->cmnd[0]) {
1824		case READ_6:
1825		case READ_10:
1826		case READ_12:
1827		case WRITE_6:
1828		case WRITE_10:
1829		case WRITE_12:
1830		case GPCMD_READ_CD:
1831		case GPCMD_SEND_DVD_STRUCTURE:
1832		case GPCMD_SEND_CUE_SHEET:
1833			return 0; /* DMA is safe */
1834		}
1835	}
1836	return -EOPNOTSUPP; /* use PIO instead */
1837}
1838
1839/**
1840 *	mv_bmdma_setup - Set up BMDMA transaction
1841 *	@qc: queued command to prepare DMA for.
1842 *
1843 *	LOCKING:
1844 *	Inherited from caller.
1845 */
1846static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1847{
1848	struct ata_port *ap = qc->ap;
1849	void __iomem *port_mmio = mv_ap_base(ap);
1850	struct mv_port_priv *pp = ap->private_data;
1851
1852	mv_fill_sg(qc);
1853
1854	/* clear all DMA cmd bits */
1855	writel(0, port_mmio + BMDMA_CMD);
1856
1857	/* load PRD table addr. */
1858	writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1859		port_mmio + BMDMA_PRD_HIGH);
1860	writelfl(pp->sg_tbl_dma[qc->hw_tag],
1861		port_mmio + BMDMA_PRD_LOW);
1862
1863	/* issue r/w command */
1864	ap->ops->sff_exec_command(ap, &qc->tf);
1865}
1866
1867/**
1868 *	mv_bmdma_start - Start a BMDMA transaction
1869 *	@qc: queued command to start DMA on.
1870 *
1871 *	LOCKING:
1872 *	Inherited from caller.
1873 */
1874static void mv_bmdma_start(struct ata_queued_cmd *qc)
1875{
1876	struct ata_port *ap = qc->ap;
1877	void __iomem *port_mmio = mv_ap_base(ap);
1878	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1879	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1880
1881	/* start host DMA transaction */
1882	writelfl(cmd, port_mmio + BMDMA_CMD);
1883}
1884
1885/**
1886 *	mv_bmdma_stop_ap - Stop BMDMA transfer
1887 *	@ap: port to stop
1888 *
1889 *	Clears the ATA_DMA_START flag in the bmdma control register
1890 *
1891 *	LOCKING:
1892 *	Inherited from caller.
1893 */
1894static void mv_bmdma_stop_ap(struct ata_port *ap)
1895{
1896	void __iomem *port_mmio = mv_ap_base(ap);
1897	u32 cmd;
1898
1899	/* clear start/stop bit */
1900	cmd = readl(port_mmio + BMDMA_CMD);
1901	if (cmd & ATA_DMA_START) {
1902		cmd &= ~ATA_DMA_START;
1903		writelfl(cmd, port_mmio + BMDMA_CMD);
1904
1905		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1906		ata_sff_dma_pause(ap);
1907	}
1908}
1909
1910static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1911{
1912	mv_bmdma_stop_ap(qc->ap);
1913}
1914
1915/**
1916 *	mv_bmdma_status - Read BMDMA status
1917 *	@ap: port for which to retrieve DMA status.
1918 *
1919 *	Read and return equivalent of the sff BMDMA status register.
1920 *
1921 *	LOCKING:
1922 *	Inherited from caller.
1923 */
1924static u8 mv_bmdma_status(struct ata_port *ap)
1925{
1926	void __iomem *port_mmio = mv_ap_base(ap);
1927	u32 reg, status;
1928
1929	/*
1930	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1931	 * and the ATA_DMA_INTR bit doesn't exist.
1932	 */
1933	reg = readl(port_mmio + BMDMA_STATUS);
1934	if (reg & ATA_DMA_ACTIVE)
1935		status = ATA_DMA_ACTIVE;
1936	else if (reg & ATA_DMA_ERR)
1937		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1938	else {
1939		/*
1940		 * Just because DMA_ACTIVE is 0 (DMA completed),
1941		 * this does _not_ mean the device is "done".
1942		 * So we should not yet be signalling ATA_DMA_INTR
1943		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1944		 */
1945		mv_bmdma_stop_ap(ap);
1946		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1947			status = 0;
1948		else
1949			status = ATA_DMA_INTR;
1950	}
1951	return status;
1952}
1953
1954static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1955{
1956	struct ata_taskfile *tf = &qc->tf;
1957	/*
1958	 * Workaround for 88SX60x1 FEr SATA#24.
1959	 *
1960	 * Chip may corrupt WRITEs if multi_count >= 4kB.
1961	 * Note that READs are unaffected.
1962	 *
1963	 * It's not clear if this errata really means "4K bytes",
1964	 * or if it always happens for multi_count > 7
1965	 * regardless of device sector_size.
1966	 *
1967	 * So, for safety, any write with multi_count > 7
1968	 * gets converted here into a regular PIO write instead:
1969	 */
1970	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1971		if (qc->dev->multi_count > 7) {
1972			switch (tf->command) {
1973			case ATA_CMD_WRITE_MULTI:
1974				tf->command = ATA_CMD_PIO_WRITE;
1975				break;
1976			case ATA_CMD_WRITE_MULTI_FUA_EXT:
1977				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1978				fallthrough;
1979			case ATA_CMD_WRITE_MULTI_EXT:
1980				tf->command = ATA_CMD_PIO_WRITE_EXT;
1981				break;
1982			}
1983		}
1984	}
1985}
1986
1987/**
1988 *      mv_qc_prep - Host specific command preparation.
1989 *      @qc: queued command to prepare
1990 *
1991 *      This routine simply redirects to the general purpose routine
1992 *      if command is not DMA.  Else, it handles prep of the CRQB
1993 *      (command request block), does some sanity checking, and calls
1994 *      the SG load routine.
1995 *
1996 *      LOCKING:
1997 *      Inherited from caller.
1998 */
1999static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2000{
2001	struct ata_port *ap = qc->ap;
2002	struct mv_port_priv *pp = ap->private_data;
2003	__le16 *cw;
2004	struct ata_taskfile *tf = &qc->tf;
2005	u16 flags = 0;
2006	unsigned in_index;
2007
2008	switch (tf->protocol) {
2009	case ATA_PROT_DMA:
2010		if (tf->command == ATA_CMD_DSM)
2011			return AC_ERR_OK;
2012		fallthrough;
2013	case ATA_PROT_NCQ:
2014		break;	/* continue below */
2015	case ATA_PROT_PIO:
2016		mv_rw_multi_errata_sata24(qc);
2017		return AC_ERR_OK;
2018	default:
2019		return AC_ERR_OK;
2020	}
2021
2022	/* Fill in command request block
2023	 */
2024	if (!(tf->flags & ATA_TFLAG_WRITE))
2025		flags |= CRQB_FLAG_READ;
2026	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2027	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2028	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2029
2030	/* get current queue index from software */
2031	in_index = pp->req_idx;
2032
2033	pp->crqb[in_index].sg_addr =
2034		cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2035	pp->crqb[in_index].sg_addr_hi =
2036		cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2037	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2038
2039	cw = &pp->crqb[in_index].ata_cmd[0];
2040
2041	/* Sadly, the CRQB cannot accommodate all registers--there are
2042	 * only 11 bytes...so we must pick and choose required
2043	 * registers based on the command.  So, we drop feature and
2044	 * hob_feature for [RW] DMA commands, but they are needed for
2045	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2046	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2047	 */
2048	switch (tf->command) {
2049	case ATA_CMD_READ:
2050	case ATA_CMD_READ_EXT:
2051	case ATA_CMD_WRITE:
2052	case ATA_CMD_WRITE_EXT:
2053	case ATA_CMD_WRITE_FUA_EXT:
2054		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2055		break;
2056	case ATA_CMD_FPDMA_READ:
2057	case ATA_CMD_FPDMA_WRITE:
2058		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2059		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2060		break;
2061	default:
2062		/* The only other commands EDMA supports in non-queued and
2063		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2064		 * of which are defined/used by Linux.  If we get here, this
2065		 * driver needs work.
2066		 */
2067		ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2068				tf->command);
2069		return AC_ERR_INVALID;
2070	}
2071	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2072	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2073	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2074	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2075	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2076	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2077	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2078	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2079	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2080
2081	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2082		return AC_ERR_OK;
2083	mv_fill_sg(qc);
2084
2085	return AC_ERR_OK;
2086}
2087
2088/**
2089 *      mv_qc_prep_iie - Host specific command preparation.
2090 *      @qc: queued command to prepare
2091 *
2092 *      This routine simply redirects to the general purpose routine
2093 *      if command is not DMA.  Else, it handles prep of the CRQB
2094 *      (command request block), does some sanity checking, and calls
2095 *      the SG load routine.
2096 *
2097 *      LOCKING:
2098 *      Inherited from caller.
2099 */
2100static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2101{
2102	struct ata_port *ap = qc->ap;
2103	struct mv_port_priv *pp = ap->private_data;
2104	struct mv_crqb_iie *crqb;
2105	struct ata_taskfile *tf = &qc->tf;
2106	unsigned in_index;
2107	u32 flags = 0;
2108
2109	if ((tf->protocol != ATA_PROT_DMA) &&
2110	    (tf->protocol != ATA_PROT_NCQ))
2111		return AC_ERR_OK;
2112	if (tf->command == ATA_CMD_DSM)
2113		return AC_ERR_OK;  /* use bmdma for this */
2114
2115	/* Fill in Gen IIE command request block */
2116	if (!(tf->flags & ATA_TFLAG_WRITE))
2117		flags |= CRQB_FLAG_READ;
2118
2119	WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2120	flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2121	flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2122	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2123
2124	/* get current queue index from software */
2125	in_index = pp->req_idx;
2126
2127	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2128	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2129	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2130	crqb->flags = cpu_to_le32(flags);
2131
2132	crqb->ata_cmd[0] = cpu_to_le32(
2133			(tf->command << 16) |
2134			(tf->feature << 24)
2135		);
2136	crqb->ata_cmd[1] = cpu_to_le32(
2137			(tf->lbal << 0) |
2138			(tf->lbam << 8) |
2139			(tf->lbah << 16) |
2140			(tf->device << 24)
2141		);
2142	crqb->ata_cmd[2] = cpu_to_le32(
2143			(tf->hob_lbal << 0) |
2144			(tf->hob_lbam << 8) |
2145			(tf->hob_lbah << 16) |
2146			(tf->hob_feature << 24)
2147		);
2148	crqb->ata_cmd[3] = cpu_to_le32(
2149			(tf->nsect << 0) |
2150			(tf->hob_nsect << 8)
2151		);
2152
2153	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2154		return AC_ERR_OK;
2155	mv_fill_sg(qc);
2156
2157	return AC_ERR_OK;
2158}
2159
2160/**
2161 *	mv_sff_check_status - fetch device status, if valid
2162 *	@ap: ATA port to fetch status from
2163 *
2164 *	When using command issue via mv_qc_issue_fis(),
2165 *	the initial ATA_BUSY state does not show up in the
2166 *	ATA status (shadow) register.  This can confuse libata!
2167 *
2168 *	So we have a hook here to fake ATA_BUSY for that situation,
2169 *	until the first time a BUSY, DRQ, or ERR bit is seen.
2170 *
2171 *	The rest of the time, it simply returns the ATA status register.
2172 */
2173static u8 mv_sff_check_status(struct ata_port *ap)
2174{
2175	u8 stat = ioread8(ap->ioaddr.status_addr);
2176	struct mv_port_priv *pp = ap->private_data;
2177
2178	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2179		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2180			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2181		else
2182			stat = ATA_BUSY;
2183	}
2184	return stat;
2185}
2186
2187/**
2188 *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2189 *	@ap: ATA port to send a FIS
2190 *	@fis: fis to be sent
2191 *	@nwords: number of 32-bit words in the fis
2192 */
2193static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2194{
2195	void __iomem *port_mmio = mv_ap_base(ap);
2196	u32 ifctl, old_ifctl, ifstat;
2197	int i, timeout = 200, final_word = nwords - 1;
2198
2199	/* Initiate FIS transmission mode */
2200	old_ifctl = readl(port_mmio + SATA_IFCTL);
2201	ifctl = 0x100 | (old_ifctl & 0xf);
2202	writelfl(ifctl, port_mmio + SATA_IFCTL);
2203
2204	/* Send all words of the FIS except for the final word */
2205	for (i = 0; i < final_word; ++i)
2206		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2207
2208	/* Flag end-of-transmission, and then send the final word */
2209	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2210	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2211
2212	/*
2213	 * Wait for FIS transmission to complete.
2214	 * This typically takes just a single iteration.
2215	 */
2216	do {
2217		ifstat = readl(port_mmio + SATA_IFSTAT);
2218	} while (!(ifstat & 0x1000) && --timeout);
2219
2220	/* Restore original port configuration */
2221	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2222
2223	/* See if it worked */
2224	if ((ifstat & 0x3000) != 0x1000) {
2225		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2226			      __func__, ifstat);
2227		return AC_ERR_OTHER;
2228	}
2229	return 0;
2230}
2231
2232/**
2233 *	mv_qc_issue_fis - Issue a command directly as a FIS
2234 *	@qc: queued command to start
2235 *
2236 *	Note that the ATA shadow registers are not updated
2237 *	after command issue, so the device will appear "READY"
2238 *	if polled, even while it is BUSY processing the command.
2239 *
2240 *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2241 *
2242 *	Note: we don't get updated shadow regs on *completion*
2243 *	of non-data commands. So avoid sending them via this function,
2244 *	as they will appear to have completed immediately.
2245 *
2246 *	GEN_IIE has special registers that we could get the result tf from,
2247 *	but earlier chipsets do not.  For now, we ignore those registers.
2248 */
2249static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2250{
2251	struct ata_port *ap = qc->ap;
2252	struct mv_port_priv *pp = ap->private_data;
2253	struct ata_link *link = qc->dev->link;
2254	u32 fis[5];
2255	int err = 0;
2256
2257	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2258	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2259	if (err)
2260		return err;
2261
2262	switch (qc->tf.protocol) {
2263	case ATAPI_PROT_PIO:
2264		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2265		fallthrough;
2266	case ATAPI_PROT_NODATA:
2267		ap->hsm_task_state = HSM_ST_FIRST;
2268		break;
2269	case ATA_PROT_PIO:
2270		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2271		if (qc->tf.flags & ATA_TFLAG_WRITE)
2272			ap->hsm_task_state = HSM_ST_FIRST;
2273		else
2274			ap->hsm_task_state = HSM_ST;
2275		break;
2276	default:
2277		ap->hsm_task_state = HSM_ST_LAST;
2278		break;
2279	}
2280
2281	if (qc->tf.flags & ATA_TFLAG_POLLING)
2282		ata_sff_queue_pio_task(link, 0);
2283	return 0;
2284}
2285
2286/**
2287 *      mv_qc_issue - Initiate a command to the host
2288 *      @qc: queued command to start
2289 *
2290 *      This routine simply redirects to the general purpose routine
2291 *      if command is not DMA.  Else, it sanity checks our local
2292 *      caches of the request producer/consumer indices then enables
2293 *      DMA and bumps the request producer index.
2294 *
2295 *      LOCKING:
2296 *      Inherited from caller.
2297 */
2298static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2299{
2300	static int limit_warnings = 10;
2301	struct ata_port *ap = qc->ap;
2302	void __iomem *port_mmio = mv_ap_base(ap);
2303	struct mv_port_priv *pp = ap->private_data;
2304	u32 in_index;
2305	unsigned int port_irqs;
2306
2307	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2308
2309	switch (qc->tf.protocol) {
2310	case ATA_PROT_DMA:
2311		if (qc->tf.command == ATA_CMD_DSM) {
2312			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2313				return AC_ERR_OTHER;
2314			break;  /* use bmdma for this */
2315		}
2316		fallthrough;
2317	case ATA_PROT_NCQ:
2318		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2319		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2320		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2321
2322		/* Write the request in pointer to kick the EDMA to life */
2323		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2324					port_mmio + EDMA_REQ_Q_IN_PTR);
2325		return 0;
2326
2327	case ATA_PROT_PIO:
2328		/*
2329		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2330		 *
2331		 * Someday, we might implement special polling workarounds
2332		 * for these, but it all seems rather unnecessary since we
2333		 * normally use only DMA for commands which transfer more
2334		 * than a single block of data.
2335		 *
2336		 * Much of the time, this could just work regardless.
2337		 * So for now, just log the incident, and allow the attempt.
2338		 */
2339		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2340			--limit_warnings;
2341			ata_link_warn(qc->dev->link, DRV_NAME
2342				      ": attempting PIO w/multiple DRQ: "
2343				      "this may fail due to h/w errata\n");
2344		}
2345		fallthrough;
2346	case ATA_PROT_NODATA:
2347	case ATAPI_PROT_PIO:
2348	case ATAPI_PROT_NODATA:
2349		if (ap->flags & ATA_FLAG_PIO_POLLING)
2350			qc->tf.flags |= ATA_TFLAG_POLLING;
2351		break;
2352	}
2353
2354	if (qc->tf.flags & ATA_TFLAG_POLLING)
2355		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2356	else
2357		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2358
2359	/*
2360	 * We're about to send a non-EDMA capable command to the
2361	 * port.  Turn off EDMA so there won't be problems accessing
2362	 * shadow block, etc registers.
2363	 */
2364	mv_stop_edma(ap);
2365	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2366	mv_pmp_select(ap, qc->dev->link->pmp);
2367
2368	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2369		struct mv_host_priv *hpriv = ap->host->private_data;
2370		/*
2371		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2372		 *
2373		 * After any NCQ error, the READ_LOG_EXT command
2374		 * from libata-eh *must* use mv_qc_issue_fis().
2375		 * Otherwise it might fail, due to chip errata.
2376		 *
2377		 * Rather than special-case it, we'll just *always*
2378		 * use this method here for READ_LOG_EXT, making for
2379		 * easier testing.
2380		 */
2381		if (IS_GEN_II(hpriv))
2382			return mv_qc_issue_fis(qc);
2383	}
2384	return ata_bmdma_qc_issue(qc);
2385}
2386
2387static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2388{
2389	struct mv_port_priv *pp = ap->private_data;
2390	struct ata_queued_cmd *qc;
2391
2392	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2393		return NULL;
2394	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2395	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2396		return qc;
2397	return NULL;
2398}
2399
2400static void mv_pmp_error_handler(struct ata_port *ap)
2401{
2402	unsigned int pmp, pmp_map;
2403	struct mv_port_priv *pp = ap->private_data;
2404
2405	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2406		/*
2407		 * Perform NCQ error analysis on failed PMPs
2408		 * before we freeze the port entirely.
2409		 *
2410		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2411		 */
2412		pmp_map = pp->delayed_eh_pmp_map;
2413		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2414		for (pmp = 0; pmp_map != 0; pmp++) {
2415			unsigned int this_pmp = (1 << pmp);
2416			if (pmp_map & this_pmp) {
2417				struct ata_link *link = &ap->pmp_link[pmp];
2418				pmp_map &= ~this_pmp;
2419				ata_eh_analyze_ncq_error(link);
2420			}
2421		}
2422		ata_port_freeze(ap);
2423	}
2424	sata_pmp_error_handler(ap);
2425}
2426
2427static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2428{
2429	void __iomem *port_mmio = mv_ap_base(ap);
2430
2431	return readl(port_mmio + SATA_TESTCTL) >> 16;
2432}
2433
2434static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2435{
2436	unsigned int pmp;
2437
2438	/*
2439	 * Initialize EH info for PMPs which saw device errors
2440	 */
2441	for (pmp = 0; pmp_map != 0; pmp++) {
2442		unsigned int this_pmp = (1 << pmp);
2443		if (pmp_map & this_pmp) {
2444			struct ata_link *link = &ap->pmp_link[pmp];
2445			struct ata_eh_info *ehi = &link->eh_info;
2446
2447			pmp_map &= ~this_pmp;
2448			ata_ehi_clear_desc(ehi);
2449			ata_ehi_push_desc(ehi, "dev err");
2450			ehi->err_mask |= AC_ERR_DEV;
2451			ehi->action |= ATA_EH_RESET;
2452			ata_link_abort(link);
2453		}
2454	}
2455}
2456
2457static int mv_req_q_empty(struct ata_port *ap)
2458{
2459	void __iomem *port_mmio = mv_ap_base(ap);
2460	u32 in_ptr, out_ptr;
2461
2462	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2463			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2464	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2465			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2466	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2467}
2468
2469static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2470{
2471	struct mv_port_priv *pp = ap->private_data;
2472	int failed_links;
2473	unsigned int old_map, new_map;
2474
2475	/*
2476	 * Device error during FBS+NCQ operation:
2477	 *
2478	 * Set a port flag to prevent further I/O being enqueued.
2479	 * Leave the EDMA running to drain outstanding commands from this port.
2480	 * Perform the post-mortem/EH only when all responses are complete.
2481	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2482	 */
2483	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2484		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2485		pp->delayed_eh_pmp_map = 0;
2486	}
2487	old_map = pp->delayed_eh_pmp_map;
2488	new_map = old_map | mv_get_err_pmp_map(ap);
2489
2490	if (old_map != new_map) {
2491		pp->delayed_eh_pmp_map = new_map;
2492		mv_pmp_eh_prep(ap, new_map & ~old_map);
2493	}
2494	failed_links = hweight16(new_map);
2495
2496	ata_port_info(ap,
2497		      "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2498		      __func__, pp->delayed_eh_pmp_map,
2499		      ap->qc_active, failed_links,
2500		      ap->nr_active_links);
2501
2502	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2503		mv_process_crpb_entries(ap, pp);
2504		mv_stop_edma(ap);
2505		mv_eh_freeze(ap);
2506		ata_port_info(ap, "%s: done\n", __func__);
2507		return 1;	/* handled */
2508	}
2509	ata_port_info(ap, "%s: waiting\n", __func__);
2510	return 1;	/* handled */
2511}
2512
2513static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2514{
2515	/*
2516	 * Possible future enhancement:
2517	 *
2518	 * FBS+non-NCQ operation is not yet implemented.
2519	 * See related notes in mv_edma_cfg().
2520	 *
2521	 * Device error during FBS+non-NCQ operation:
2522	 *
2523	 * We need to snapshot the shadow registers for each failed command.
2524	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2525	 */
2526	return 0;	/* not handled */
2527}
2528
2529static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2530{
2531	struct mv_port_priv *pp = ap->private_data;
2532
2533	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2534		return 0;	/* EDMA was not active: not handled */
2535	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2536		return 0;	/* FBS was not active: not handled */
2537
2538	if (!(edma_err_cause & EDMA_ERR_DEV))
2539		return 0;	/* non DEV error: not handled */
2540	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2541	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2542		return 0;	/* other problems: not handled */
2543
2544	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2545		/*
2546		 * EDMA should NOT have self-disabled for this case.
2547		 * If it did, then something is wrong elsewhere,
2548		 * and we cannot handle it here.
2549		 */
2550		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2551			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2552				      __func__, edma_err_cause, pp->pp_flags);
2553			return 0; /* not handled */
2554		}
2555		return mv_handle_fbs_ncq_dev_err(ap);
2556	} else {
2557		/*
2558		 * EDMA should have self-disabled for this case.
2559		 * If it did not, then something is wrong elsewhere,
2560		 * and we cannot handle it here.
2561		 */
2562		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2563			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2564				      __func__, edma_err_cause, pp->pp_flags);
2565			return 0; /* not handled */
2566		}
2567		return mv_handle_fbs_non_ncq_dev_err(ap);
2568	}
2569	return 0;	/* not handled */
2570}
2571
2572static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2573{
2574	struct ata_eh_info *ehi = &ap->link.eh_info;
2575	char *when = "idle";
2576
2577	ata_ehi_clear_desc(ehi);
2578	if (edma_was_enabled) {
2579		when = "EDMA enabled";
2580	} else {
2581		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2582		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2583			when = "polling";
2584	}
2585	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2586	ehi->err_mask |= AC_ERR_OTHER;
2587	ehi->action   |= ATA_EH_RESET;
2588	ata_port_freeze(ap);
2589}
2590
2591/**
2592 *      mv_err_intr - Handle error interrupts on the port
2593 *      @ap: ATA channel to manipulate
2594 *
2595 *      Most cases require a full reset of the chip's state machine,
2596 *      which also performs a COMRESET.
2597 *      Also, if the port disabled DMA, update our cached copy to match.
2598 *
2599 *      LOCKING:
2600 *      Inherited from caller.
2601 */
2602static void mv_err_intr(struct ata_port *ap)
2603{
2604	void __iomem *port_mmio = mv_ap_base(ap);
2605	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2606	u32 fis_cause = 0;
2607	struct mv_port_priv *pp = ap->private_data;
2608	struct mv_host_priv *hpriv = ap->host->private_data;
2609	unsigned int action = 0, err_mask = 0;
2610	struct ata_eh_info *ehi = &ap->link.eh_info;
2611	struct ata_queued_cmd *qc;
2612	int abort = 0;
2613
2614	/*
2615	 * Read and clear the SError and err_cause bits.
2616	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2617	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2618	 */
2619	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2620	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2621
2622	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2623	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2624		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2625		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2626	}
2627	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2628
2629	if (edma_err_cause & EDMA_ERR_DEV) {
2630		/*
2631		 * Device errors during FIS-based switching operation
2632		 * require special handling.
2633		 */
2634		if (mv_handle_dev_err(ap, edma_err_cause))
2635			return;
2636	}
2637
2638	qc = mv_get_active_qc(ap);
2639	ata_ehi_clear_desc(ehi);
2640	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2641			  edma_err_cause, pp->pp_flags);
2642
2643	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2644		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2645		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2646			u32 ec = edma_err_cause &
2647			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2648			sata_async_notification(ap);
2649			if (!ec)
2650				return; /* Just an AN; no need for the nukes */
2651			ata_ehi_push_desc(ehi, "SDB notify");
2652		}
2653	}
2654	/*
2655	 * All generations share these EDMA error cause bits:
2656	 */
2657	if (edma_err_cause & EDMA_ERR_DEV) {
2658		err_mask |= AC_ERR_DEV;
2659		action |= ATA_EH_RESET;
2660		ata_ehi_push_desc(ehi, "dev error");
2661	}
2662	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2663			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2664			EDMA_ERR_INTRL_PAR)) {
2665		err_mask |= AC_ERR_ATA_BUS;
2666		action |= ATA_EH_RESET;
2667		ata_ehi_push_desc(ehi, "parity error");
2668	}
2669	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2670		ata_ehi_hotplugged(ehi);
2671		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2672			"dev disconnect" : "dev connect");
2673		action |= ATA_EH_RESET;
2674	}
2675
2676	/*
2677	 * Gen-I has a different SELF_DIS bit,
2678	 * different FREEZE bits, and no SERR bit:
2679	 */
2680	if (IS_GEN_I(hpriv)) {
2681		eh_freeze_mask = EDMA_EH_FREEZE_5;
2682		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2683			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2684			ata_ehi_push_desc(ehi, "EDMA self-disable");
2685		}
2686	} else {
2687		eh_freeze_mask = EDMA_EH_FREEZE;
2688		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2689			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2690			ata_ehi_push_desc(ehi, "EDMA self-disable");
2691		}
2692		if (edma_err_cause & EDMA_ERR_SERR) {
2693			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2694			err_mask |= AC_ERR_ATA_BUS;
2695			action |= ATA_EH_RESET;
2696		}
2697	}
2698
2699	if (!err_mask) {
2700		err_mask = AC_ERR_OTHER;
2701		action |= ATA_EH_RESET;
2702	}
2703
2704	ehi->serror |= serr;
2705	ehi->action |= action;
2706
2707	if (qc)
2708		qc->err_mask |= err_mask;
2709	else
2710		ehi->err_mask |= err_mask;
2711
2712	if (err_mask == AC_ERR_DEV) {
2713		/*
2714		 * Cannot do ata_port_freeze() here,
2715		 * because it would kill PIO access,
2716		 * which is needed for further diagnosis.
2717		 */
2718		mv_eh_freeze(ap);
2719		abort = 1;
2720	} else if (edma_err_cause & eh_freeze_mask) {
2721		/*
2722		 * Note to self: ata_port_freeze() calls ata_port_abort()
2723		 */
2724		ata_port_freeze(ap);
2725	} else {
2726		abort = 1;
2727	}
2728
2729	if (abort) {
2730		if (qc)
2731			ata_link_abort(qc->dev->link);
2732		else
2733			ata_port_abort(ap);
2734	}
2735}
2736
2737static bool mv_process_crpb_response(struct ata_port *ap,
2738		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2739{
2740	u8 ata_status;
2741	u16 edma_status = le16_to_cpu(response->flags);
2742
2743	/*
2744	 * edma_status from a response queue entry:
2745	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2746	 *   MSB is saved ATA status from command completion.
2747	 */
2748	if (!ncq_enabled) {
2749		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2750		if (err_cause) {
2751			/*
2752			 * Error will be seen/handled by
2753			 * mv_err_intr().  So do nothing at all here.
2754			 */
2755			return false;
2756		}
2757	}
2758	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2759	if (!ac_err_mask(ata_status))
2760		return true;
2761	/* else: leave it for mv_err_intr() */
2762	return false;
2763}
2764
2765static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2766{
2767	void __iomem *port_mmio = mv_ap_base(ap);
2768	struct mv_host_priv *hpriv = ap->host->private_data;
2769	u32 in_index;
2770	bool work_done = false;
2771	u32 done_mask = 0;
2772	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2773
2774	/* Get the hardware queue position index */
2775	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2776			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2777
2778	/* Process new responses from since the last time we looked */
2779	while (in_index != pp->resp_idx) {
2780		unsigned int tag;
2781		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2782
2783		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2784
2785		if (IS_GEN_I(hpriv)) {
2786			/* 50xx: no NCQ, only one command active at a time */
2787			tag = ap->link.active_tag;
2788		} else {
2789			/* Gen II/IIE: get command tag from CRPB entry */
2790			tag = le16_to_cpu(response->id) & 0x1f;
2791		}
2792		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2793			done_mask |= 1 << tag;
2794		work_done = true;
2795	}
2796
2797	if (work_done) {
2798		ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2799
2800		/* Update the software queue position index in hardware */
2801		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2802			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2803			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2804	}
2805}
2806
2807static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2808{
2809	struct mv_port_priv *pp;
2810	int edma_was_enabled;
2811
2812	/*
2813	 * Grab a snapshot of the EDMA_EN flag setting,
2814	 * so that we have a consistent view for this port,
2815	 * even if something we call of our routines changes it.
2816	 */
2817	pp = ap->private_data;
2818	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2819	/*
2820	 * Process completed CRPB response(s) before other events.
2821	 */
2822	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2823		mv_process_crpb_entries(ap, pp);
2824		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2825			mv_handle_fbs_ncq_dev_err(ap);
2826	}
2827	/*
2828	 * Handle chip-reported errors, or continue on to handle PIO.
2829	 */
2830	if (unlikely(port_cause & ERR_IRQ)) {
2831		mv_err_intr(ap);
2832	} else if (!edma_was_enabled) {
2833		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2834		if (qc)
2835			ata_bmdma_port_intr(ap, qc);
2836		else
2837			mv_unexpected_intr(ap, edma_was_enabled);
2838	}
2839}
2840
2841/**
2842 *      mv_host_intr - Handle all interrupts on the given host controller
2843 *      @host: host specific structure
2844 *      @main_irq_cause: Main interrupt cause register for the chip.
2845 *
2846 *      LOCKING:
2847 *      Inherited from caller.
2848 */
2849static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2850{
2851	struct mv_host_priv *hpriv = host->private_data;
2852	void __iomem *mmio = hpriv->base, *hc_mmio;
2853	unsigned int handled = 0, port;
2854
2855	/* If asserted, clear the "all ports" IRQ coalescing bit */
2856	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2857		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2858
2859	for (port = 0; port < hpriv->n_ports; port++) {
2860		struct ata_port *ap = host->ports[port];
2861		unsigned int p, shift, hardport, port_cause;
2862
2863		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2864		/*
2865		 * Each hc within the host has its own hc_irq_cause register,
2866		 * where the interrupting ports bits get ack'd.
2867		 */
2868		if (hardport == 0) {	/* first port on this hc ? */
2869			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2870			u32 port_mask, ack_irqs;
2871			/*
2872			 * Skip this entire hc if nothing pending for any ports
2873			 */
2874			if (!hc_cause) {
2875				port += MV_PORTS_PER_HC - 1;
2876				continue;
2877			}
2878			/*
2879			 * We don't need/want to read the hc_irq_cause register,
2880			 * because doing so hurts performance, and
2881			 * main_irq_cause already gives us everything we need.
2882			 *
2883			 * But we do have to *write* to the hc_irq_cause to ack
2884			 * the ports that we are handling this time through.
2885			 *
2886			 * This requires that we create a bitmap for those
2887			 * ports which interrupted us, and use that bitmap
2888			 * to ack (only) those ports via hc_irq_cause.
2889			 */
2890			ack_irqs = 0;
2891			if (hc_cause & PORTS_0_3_COAL_DONE)
2892				ack_irqs = HC_COAL_IRQ;
2893			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2894				if ((port + p) >= hpriv->n_ports)
2895					break;
2896				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2897				if (hc_cause & port_mask)
2898					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2899			}
2900			hc_mmio = mv_hc_base_from_port(mmio, port);
2901			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2902			handled = 1;
2903		}
2904		/*
2905		 * Handle interrupts signalled for this port:
2906		 */
2907		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2908		if (port_cause)
2909			mv_port_intr(ap, port_cause);
2910	}
2911	return handled;
2912}
2913
2914static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2915{
2916	struct mv_host_priv *hpriv = host->private_data;
2917	struct ata_port *ap;
2918	struct ata_queued_cmd *qc;
2919	struct ata_eh_info *ehi;
2920	unsigned int i, err_mask, printed = 0;
2921	u32 err_cause;
2922
2923	err_cause = readl(mmio + hpriv->irq_cause_offset);
2924
2925	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2926
2927	dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
2928	mv_dump_all_regs(mmio, to_pci_dev(host->dev));
2929
2930	writelfl(0, mmio + hpriv->irq_cause_offset);
2931
2932	for (i = 0; i < host->n_ports; i++) {
2933		ap = host->ports[i];
2934		if (!ata_link_offline(&ap->link)) {
2935			ehi = &ap->link.eh_info;
2936			ata_ehi_clear_desc(ehi);
2937			if (!printed++)
2938				ata_ehi_push_desc(ehi,
2939					"PCI err cause 0x%08x", err_cause);
2940			err_mask = AC_ERR_HOST_BUS;
2941			ehi->action = ATA_EH_RESET;
2942			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2943			if (qc)
2944				qc->err_mask |= err_mask;
2945			else
2946				ehi->err_mask |= err_mask;
2947
2948			ata_port_freeze(ap);
2949		}
2950	}
2951	return 1;	/* handled */
2952}
2953
2954/**
2955 *      mv_interrupt - Main interrupt event handler
2956 *      @irq: unused
2957 *      @dev_instance: private data; in this case the host structure
2958 *
2959 *      Read the read only register to determine if any host
2960 *      controllers have pending interrupts.  If so, call lower level
2961 *      routine to handle.  Also check for PCI errors which are only
2962 *      reported here.
2963 *
2964 *      LOCKING:
2965 *      This routine holds the host lock while processing pending
2966 *      interrupts.
2967 */
2968static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2969{
2970	struct ata_host *host = dev_instance;
2971	struct mv_host_priv *hpriv = host->private_data;
2972	unsigned int handled = 0;
2973	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2974	u32 main_irq_cause, pending_irqs;
2975
2976	spin_lock(&host->lock);
2977
2978	/* for MSI:  block new interrupts while in here */
2979	if (using_msi)
2980		mv_write_main_irq_mask(0, hpriv);
2981
2982	main_irq_cause = readl(hpriv->main_irq_cause_addr);
2983	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
2984	/*
2985	 * Deal with cases where we either have nothing pending, or have read
2986	 * a bogus register value which can indicate HW removal or PCI fault.
2987	 */
2988	if (pending_irqs && main_irq_cause != 0xffffffffU) {
2989		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2990			handled = mv_pci_error(host, hpriv->base);
2991		else
2992			handled = mv_host_intr(host, pending_irqs);
2993	}
2994
2995	/* for MSI: unmask; interrupt cause bits will retrigger now */
2996	if (using_msi)
2997		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2998
2999	spin_unlock(&host->lock);
3000
3001	return IRQ_RETVAL(handled);
3002}
3003
3004static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3005{
3006	unsigned int ofs;
3007
3008	switch (sc_reg_in) {
3009	case SCR_STATUS:
3010	case SCR_ERROR:
3011	case SCR_CONTROL:
3012		ofs = sc_reg_in * sizeof(u32);
3013		break;
3014	default:
3015		ofs = 0xffffffffU;
3016		break;
3017	}
3018	return ofs;
3019}
3020
3021static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3022{
3023	struct mv_host_priv *hpriv = link->ap->host->private_data;
3024	void __iomem *mmio = hpriv->base;
3025	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3026	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3027
3028	if (ofs != 0xffffffffU) {
3029		*val = readl(addr + ofs);
3030		return 0;
3031	} else
3032		return -EINVAL;
3033}
3034
3035static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3036{
3037	struct mv_host_priv *hpriv = link->ap->host->private_data;
3038	void __iomem *mmio = hpriv->base;
3039	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3040	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3041
3042	if (ofs != 0xffffffffU) {
3043		writelfl(val, addr + ofs);
3044		return 0;
3045	} else
3046		return -EINVAL;
3047}
3048
3049static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3050{
3051	struct pci_dev *pdev = to_pci_dev(host->dev);
3052	int early_5080;
3053
3054	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3055
3056	if (!early_5080) {
3057		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3058		tmp |= (1 << 0);
3059		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3060	}
3061
3062	mv_reset_pci_bus(host, mmio);
3063}
3064
3065static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3066{
3067	writel(0x0fcfffff, mmio + FLASH_CTL);
3068}
3069
3070static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3071			   void __iomem *mmio)
3072{
3073	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3074	u32 tmp;
3075
3076	tmp = readl(phy_mmio + MV5_PHY_MODE);
3077
3078	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3079	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3080}
3081
3082static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3083{
3084	u32 tmp;
3085
3086	writel(0, mmio + GPIO_PORT_CTL);
3087
3088	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3089
3090	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3091	tmp |= ~(1 << 0);
3092	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3093}
3094
3095static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3096			   unsigned int port)
3097{
3098	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3099	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3100	u32 tmp;
3101	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3102
3103	if (fix_apm_sq) {
3104		tmp = readl(phy_mmio + MV5_LTMODE);
3105		tmp |= (1 << 19);
3106		writel(tmp, phy_mmio + MV5_LTMODE);
3107
3108		tmp = readl(phy_mmio + MV5_PHY_CTL);
3109		tmp &= ~0x3;
3110		tmp |= 0x1;
3111		writel(tmp, phy_mmio + MV5_PHY_CTL);
3112	}
3113
3114	tmp = readl(phy_mmio + MV5_PHY_MODE);
3115	tmp &= ~mask;
3116	tmp |= hpriv->signal[port].pre;
3117	tmp |= hpriv->signal[port].amps;
3118	writel(tmp, phy_mmio + MV5_PHY_MODE);
3119}
3120
3121
3122#undef ZERO
3123#define ZERO(reg) writel(0, port_mmio + (reg))
3124static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3125			     unsigned int port)
3126{
3127	void __iomem *port_mmio = mv_port_base(mmio, port);
3128
3129	mv_reset_channel(hpriv, mmio, port);
3130
3131	ZERO(0x028);	/* command */
3132	writel(0x11f, port_mmio + EDMA_CFG);
3133	ZERO(0x004);	/* timer */
3134	ZERO(0x008);	/* irq err cause */
3135	ZERO(0x00c);	/* irq err mask */
3136	ZERO(0x010);	/* rq bah */
3137	ZERO(0x014);	/* rq inp */
3138	ZERO(0x018);	/* rq outp */
3139	ZERO(0x01c);	/* respq bah */
3140	ZERO(0x024);	/* respq outp */
3141	ZERO(0x020);	/* respq inp */
3142	ZERO(0x02c);	/* test control */
3143	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3144}
3145#undef ZERO
3146
3147#define ZERO(reg) writel(0, hc_mmio + (reg))
3148static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3149			unsigned int hc)
3150{
3151	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3152	u32 tmp;
3153
3154	ZERO(0x00c);
3155	ZERO(0x010);
3156	ZERO(0x014);
3157	ZERO(0x018);
3158
3159	tmp = readl(hc_mmio + 0x20);
3160	tmp &= 0x1c1c1c1c;
3161	tmp |= 0x03030303;
3162	writel(tmp, hc_mmio + 0x20);
3163}
3164#undef ZERO
3165
3166static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
3167			unsigned int n_hc)
3168{
3169	struct mv_host_priv *hpriv = host->private_data;
3170	unsigned int hc, port;
3171
3172	for (hc = 0; hc < n_hc; hc++) {
3173		for (port = 0; port < MV_PORTS_PER_HC; port++)
3174			mv5_reset_hc_port(hpriv, mmio,
3175					  (hc * MV_PORTS_PER_HC) + port);
3176
3177		mv5_reset_one_hc(hpriv, mmio, hc);
3178	}
3179
3180	return 0;
3181}
3182
3183#undef ZERO
3184#define ZERO(reg) writel(0, mmio + (reg))
3185static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3186{
3187	struct mv_host_priv *hpriv = host->private_data;
3188	u32 tmp;
3189
3190	tmp = readl(mmio + MV_PCI_MODE);
3191	tmp &= 0xff00ffff;
3192	writel(tmp, mmio + MV_PCI_MODE);
3193
3194	ZERO(MV_PCI_DISC_TIMER);
3195	ZERO(MV_PCI_MSI_TRIGGER);
3196	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3197	ZERO(MV_PCI_SERR_MASK);
3198	ZERO(hpriv->irq_cause_offset);
3199	ZERO(hpriv->irq_mask_offset);
3200	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3201	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3202	ZERO(MV_PCI_ERR_ATTRIBUTE);
3203	ZERO(MV_PCI_ERR_COMMAND);
3204}
3205#undef ZERO
3206
3207static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3208{
3209	u32 tmp;
3210
3211	mv5_reset_flash(hpriv, mmio);
3212
3213	tmp = readl(mmio + GPIO_PORT_CTL);
3214	tmp &= 0x3;
3215	tmp |= (1 << 5) | (1 << 6);
3216	writel(tmp, mmio + GPIO_PORT_CTL);
3217}
3218
3219/*
3220 *      mv6_reset_hc - Perform the 6xxx global soft reset
3221 *      @mmio: base address of the HBA
3222 *
3223 *      This routine only applies to 6xxx parts.
3224 *
3225 *      LOCKING:
3226 *      Inherited from caller.
3227 */
3228static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
3229			unsigned int n_hc)
3230{
3231	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3232	int i, rc = 0;
3233	u32 t;
3234
3235	/* Following procedure defined in PCI "main command and status
3236	 * register" table.
3237	 */
3238	t = readl(reg);
3239	writel(t | STOP_PCI_MASTER, reg);
3240
3241	for (i = 0; i < 1000; i++) {
3242		udelay(1);
3243		t = readl(reg);
3244		if (PCI_MASTER_EMPTY & t)
3245			break;
3246	}
3247	if (!(PCI_MASTER_EMPTY & t)) {
3248		dev_err(host->dev, "PCI master won't flush\n");
3249		rc = 1;
3250		goto done;
3251	}
3252
3253	/* set reset */
3254	i = 5;
3255	do {
3256		writel(t | GLOB_SFT_RST, reg);
3257		t = readl(reg);
3258		udelay(1);
3259	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3260
3261	if (!(GLOB_SFT_RST & t)) {
3262		dev_err(host->dev, "can't set global reset\n");
3263		rc = 1;
3264		goto done;
3265	}
3266
3267	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3268	i = 5;
3269	do {
3270		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3271		t = readl(reg);
3272		udelay(1);
3273	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3274
3275	if (GLOB_SFT_RST & t) {
3276		dev_err(host->dev, "can't clear global reset\n");
3277		rc = 1;
3278	}
3279done:
3280	return rc;
3281}
3282
3283static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3284			   void __iomem *mmio)
3285{
3286	void __iomem *port_mmio;
3287	u32 tmp;
3288
3289	tmp = readl(mmio + RESET_CFG);
3290	if ((tmp & (1 << 0)) == 0) {
3291		hpriv->signal[idx].amps = 0x7 << 8;
3292		hpriv->signal[idx].pre = 0x1 << 5;
3293		return;
3294	}
3295
3296	port_mmio = mv_port_base(mmio, idx);
3297	tmp = readl(port_mmio + PHY_MODE2);
3298
3299	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3300	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3301}
3302
3303static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3304{
3305	writel(0x00000060, mmio + GPIO_PORT_CTL);
3306}
3307
3308static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3309			   unsigned int port)
3310{
3311	void __iomem *port_mmio = mv_port_base(mmio, port);
3312
3313	u32 hp_flags = hpriv->hp_flags;
3314	int fix_phy_mode2 =
3315		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3316	int fix_phy_mode4 =
3317		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3318	u32 m2, m3;
3319
3320	if (fix_phy_mode2) {
3321		m2 = readl(port_mmio + PHY_MODE2);
3322		m2 &= ~(1 << 16);
3323		m2 |= (1 << 31);
3324		writel(m2, port_mmio + PHY_MODE2);
3325
3326		udelay(200);
3327
3328		m2 = readl(port_mmio + PHY_MODE2);
3329		m2 &= ~((1 << 16) | (1 << 31));
3330		writel(m2, port_mmio + PHY_MODE2);
3331
3332		udelay(200);
3333	}
3334
3335	/*
3336	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3337	 * Achieves better receiver noise performance than the h/w default:
3338	 */
3339	m3 = readl(port_mmio + PHY_MODE3);
3340	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3341
3342	/* Guideline 88F5182 (GL# SATA-S11) */
3343	if (IS_SOC(hpriv))
3344		m3 &= ~0x1c;
3345
3346	if (fix_phy_mode4) {
3347		u32 m4 = readl(port_mmio + PHY_MODE4);
3348		/*
3349		 * Enforce reserved-bit restrictions on GenIIe devices only.
3350		 * For earlier chipsets, force only the internal config field
3351		 *  (workaround for errata FEr SATA#10 part 1).
3352		 */
3353		if (IS_GEN_IIE(hpriv))
3354			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3355		else
3356			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3357		writel(m4, port_mmio + PHY_MODE4);
3358	}
3359	/*
3360	 * Workaround for 60x1-B2 errata SATA#13:
3361	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3362	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3363	 * Or ensure we use writelfl() when writing PHY_MODE4.
3364	 */
3365	writel(m3, port_mmio + PHY_MODE3);
3366
3367	/* Revert values of pre-emphasis and signal amps to the saved ones */
3368	m2 = readl(port_mmio + PHY_MODE2);
3369
3370	m2 &= ~MV_M2_PREAMP_MASK;
3371	m2 |= hpriv->signal[port].amps;
3372	m2 |= hpriv->signal[port].pre;
3373	m2 &= ~(1 << 16);
3374
3375	/* according to mvSata 3.6.1, some IIE values are fixed */
3376	if (IS_GEN_IIE(hpriv)) {
3377		m2 &= ~0xC30FF01F;
3378		m2 |= 0x0000900F;
3379	}
3380
3381	writel(m2, port_mmio + PHY_MODE2);
3382}
3383
3384/* TODO: use the generic LED interface to configure the SATA Presence */
3385/* & Acitivy LEDs on the board */
3386static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3387				      void __iomem *mmio)
3388{
3389	return;
3390}
3391
3392static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3393			   void __iomem *mmio)
3394{
3395	void __iomem *port_mmio;
3396	u32 tmp;
3397
3398	port_mmio = mv_port_base(mmio, idx);
3399	tmp = readl(port_mmio + PHY_MODE2);
3400
3401	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3402	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3403}
3404
3405#undef ZERO
3406#define ZERO(reg) writel(0, port_mmio + (reg))
3407static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3408					void __iomem *mmio, unsigned int port)
3409{
3410	void __iomem *port_mmio = mv_port_base(mmio, port);
3411
3412	mv_reset_channel(hpriv, mmio, port);
3413
3414	ZERO(0x028);		/* command */
3415	writel(0x101f, port_mmio + EDMA_CFG);
3416	ZERO(0x004);		/* timer */
3417	ZERO(0x008);		/* irq err cause */
3418	ZERO(0x00c);		/* irq err mask */
3419	ZERO(0x010);		/* rq bah */
3420	ZERO(0x014);		/* rq inp */
3421	ZERO(0x018);		/* rq outp */
3422	ZERO(0x01c);		/* respq bah */
3423	ZERO(0x024);		/* respq outp */
3424	ZERO(0x020);		/* respq inp */
3425	ZERO(0x02c);		/* test control */
3426	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3427}
3428
3429#undef ZERO
3430
3431#define ZERO(reg) writel(0, hc_mmio + (reg))
3432static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3433				       void __iomem *mmio)
3434{
3435	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3436
3437	ZERO(0x00c);
3438	ZERO(0x010);
3439	ZERO(0x014);
3440
3441}
3442
3443#undef ZERO
3444
3445static int mv_soc_reset_hc(struct ata_host *host,
3446				  void __iomem *mmio, unsigned int n_hc)
3447{
3448	struct mv_host_priv *hpriv = host->private_data;
3449	unsigned int port;
3450
3451	for (port = 0; port < hpriv->n_ports; port++)
3452		mv_soc_reset_hc_port(hpriv, mmio, port);
3453
3454	mv_soc_reset_one_hc(hpriv, mmio);
3455
3456	return 0;
3457}
3458
3459static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3460				      void __iomem *mmio)
3461{
3462	return;
3463}
3464
3465static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3466{
3467	return;
3468}
3469
3470static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3471				  void __iomem *mmio, unsigned int port)
3472{
3473	void __iomem *port_mmio = mv_port_base(mmio, port);
3474	u32	reg;
3475
3476	reg = readl(port_mmio + PHY_MODE3);
3477	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3478	reg |= (0x1 << 27);
3479	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3480	reg |= (0x1 << 29);
3481	writel(reg, port_mmio + PHY_MODE3);
3482
3483	reg = readl(port_mmio + PHY_MODE4);
3484	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3485	reg |= (0x1 << 16);
3486	writel(reg, port_mmio + PHY_MODE4);
3487
3488	reg = readl(port_mmio + PHY_MODE9_GEN2);
3489	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3490	reg |= 0x8;
3491	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3492	writel(reg, port_mmio + PHY_MODE9_GEN2);
3493
3494	reg = readl(port_mmio + PHY_MODE9_GEN1);
3495	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3496	reg |= 0x8;
3497	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3498	writel(reg, port_mmio + PHY_MODE9_GEN1);
3499}
3500
3501/*
3502 *	soc_is_65 - check if the soc is 65 nano device
3503 *
3504 *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3505 *	register, this register should contain non-zero value and it exists only
3506 *	in the 65 nano devices, when reading it from older devices we get 0.
3507 */
3508static bool soc_is_65n(struct mv_host_priv *hpriv)
3509{
3510	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3511
3512	if (readl(port0_mmio + PHYCFG_OFS))
3513		return true;
3514	return false;
3515}
3516
3517static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3518{
3519	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3520
3521	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3522	if (want_gen2i)
3523		ifcfg |= (1 << 7);		/* enable gen2i speed */
3524	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3525}
3526
3527static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3528			     unsigned int port_no)
3529{
3530	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3531
3532	/*
3533	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3534	 * (but doesn't say what the problem might be).  So we first try
3535	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3536	 */
3537	mv_stop_edma_engine(port_mmio);
3538	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3539
3540	if (!IS_GEN_I(hpriv)) {
3541		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3542		mv_setup_ifcfg(port_mmio, 1);
3543	}
3544	/*
3545	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3546	 * link, and physical layers.  It resets all SATA interface registers
3547	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3548	 */
3549	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3550	udelay(25);	/* allow reset propagation */
3551	writelfl(0, port_mmio + EDMA_CMD);
3552
3553	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3554
3555	if (IS_GEN_I(hpriv))
3556		usleep_range(500, 1000);
3557}
3558
3559static void mv_pmp_select(struct ata_port *ap, int pmp)
3560{
3561	if (sata_pmp_supported(ap)) {
3562		void __iomem *port_mmio = mv_ap_base(ap);
3563		u32 reg = readl(port_mmio + SATA_IFCTL);
3564		int old = reg & 0xf;
3565
3566		if (old != pmp) {
3567			reg = (reg & ~0xf) | pmp;
3568			writelfl(reg, port_mmio + SATA_IFCTL);
3569		}
3570	}
3571}
3572
3573static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3574				unsigned long deadline)
3575{
3576	mv_pmp_select(link->ap, sata_srst_pmp(link));
3577	return sata_std_hardreset(link, class, deadline);
3578}
3579
3580static int mv_softreset(struct ata_link *link, unsigned int *class,
3581				unsigned long deadline)
3582{
3583	mv_pmp_select(link->ap, sata_srst_pmp(link));
3584	return ata_sff_softreset(link, class, deadline);
3585}
3586
3587static int mv_hardreset(struct ata_link *link, unsigned int *class,
3588			unsigned long deadline)
3589{
3590	struct ata_port *ap = link->ap;
3591	struct mv_host_priv *hpriv = ap->host->private_data;
3592	struct mv_port_priv *pp = ap->private_data;
3593	void __iomem *mmio = hpriv->base;
3594	int rc, attempts = 0, extra = 0;
3595	u32 sstatus;
3596	bool online;
3597
3598	mv_reset_channel(hpriv, mmio, ap->port_no);
3599	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3600	pp->pp_flags &=
3601	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3602
3603	/* Workaround for errata FEr SATA#10 (part 2) */
3604	do {
3605		const unsigned int *timing =
3606				sata_ehc_deb_timing(&link->eh_context);
3607
3608		rc = sata_link_hardreset(link, timing, deadline + extra,
3609					 &online, NULL);
3610		rc = online ? -EAGAIN : rc;
3611		if (rc)
3612			return rc;
3613		sata_scr_read(link, SCR_STATUS, &sstatus);
3614		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3615			/* Force 1.5gb/s link speed and try again */
3616			mv_setup_ifcfg(mv_ap_base(ap), 0);
3617			if (time_after(jiffies + HZ, deadline))
3618				extra = HZ; /* only extend it once, max */
3619		}
3620	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3621	mv_save_cached_regs(ap);
3622	mv_edma_cfg(ap, 0, 0);
3623
3624	return rc;
3625}
3626
3627static void mv_eh_freeze(struct ata_port *ap)
3628{
3629	mv_stop_edma(ap);
3630	mv_enable_port_irqs(ap, 0);
3631}
3632
3633static void mv_eh_thaw(struct ata_port *ap)
3634{
3635	struct mv_host_priv *hpriv = ap->host->private_data;
3636	unsigned int port = ap->port_no;
3637	unsigned int hardport = mv_hardport_from_port(port);
3638	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3639	void __iomem *port_mmio = mv_ap_base(ap);
3640	u32 hc_irq_cause;
3641
3642	/* clear EDMA errors on this port */
3643	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3644
3645	/* clear pending irq events */
3646	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3647	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3648
3649	mv_enable_port_irqs(ap, ERR_IRQ);
3650}
3651
3652/**
3653 *      mv_port_init - Perform some early initialization on a single port.
3654 *      @port: libata data structure storing shadow register addresses
3655 *      @port_mmio: base address of the port
3656 *
3657 *      Initialize shadow register mmio addresses, clear outstanding
3658 *      interrupts on the port, and unmask interrupts for the future
3659 *      start of the port.
3660 *
3661 *      LOCKING:
3662 *      Inherited from caller.
3663 */
3664static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3665{
3666	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3667
3668	/* PIO related setup
3669	 */
3670	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3671	port->error_addr =
3672		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3673	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3674	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3675	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3676	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3677	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3678	port->status_addr =
3679		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3680	/* special case: control/altstatus doesn't have ATA_REG_ address */
3681	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3682
3683	/* Clear any currently outstanding port interrupt conditions */
3684	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3685	writelfl(readl(serr), serr);
3686	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3687
3688	/* unmask all non-transient EDMA error interrupts */
3689	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3690}
3691
3692static unsigned int mv_in_pcix_mode(struct ata_host *host)
3693{
3694	struct mv_host_priv *hpriv = host->private_data;
3695	void __iomem *mmio = hpriv->base;
3696	u32 reg;
3697
3698	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3699		return 0;	/* not PCI-X capable */
3700	reg = readl(mmio + MV_PCI_MODE);
3701	if ((reg & MV_PCI_MODE_MASK) == 0)
3702		return 0;	/* conventional PCI mode */
3703	return 1;	/* chip is in PCI-X mode */
3704}
3705
3706static int mv_pci_cut_through_okay(struct ata_host *host)
3707{
3708	struct mv_host_priv *hpriv = host->private_data;
3709	void __iomem *mmio = hpriv->base;
3710	u32 reg;
3711
3712	if (!mv_in_pcix_mode(host)) {
3713		reg = readl(mmio + MV_PCI_COMMAND);
3714		if (reg & MV_PCI_COMMAND_MRDTRIG)
3715			return 0; /* not okay */
3716	}
3717	return 1; /* okay */
3718}
3719
3720static void mv_60x1b2_errata_pci7(struct ata_host *host)
3721{
3722	struct mv_host_priv *hpriv = host->private_data;
3723	void __iomem *mmio = hpriv->base;
3724
3725	/* workaround for 60x1-B2 errata PCI#7 */
3726	if (mv_in_pcix_mode(host)) {
3727		u32 reg = readl(mmio + MV_PCI_COMMAND);
3728		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3729	}
3730}
3731
3732static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3733{
3734	struct pci_dev *pdev = to_pci_dev(host->dev);
3735	struct mv_host_priv *hpriv = host->private_data;
3736	u32 hp_flags = hpriv->hp_flags;
3737
3738	switch (board_idx) {
3739	case chip_5080:
3740		hpriv->ops = &mv5xxx_ops;
3741		hp_flags |= MV_HP_GEN_I;
3742
3743		switch (pdev->revision) {
3744		case 0x1:
3745			hp_flags |= MV_HP_ERRATA_50XXB0;
3746			break;
3747		case 0x3:
3748			hp_flags |= MV_HP_ERRATA_50XXB2;
3749			break;
3750		default:
3751			dev_warn(&pdev->dev,
3752				 "Applying 50XXB2 workarounds to unknown rev\n");
3753			hp_flags |= MV_HP_ERRATA_50XXB2;
3754			break;
3755		}
3756		break;
3757
3758	case chip_504x:
3759	case chip_508x:
3760		hpriv->ops = &mv5xxx_ops;
3761		hp_flags |= MV_HP_GEN_I;
3762
3763		switch (pdev->revision) {
3764		case 0x0:
3765			hp_flags |= MV_HP_ERRATA_50XXB0;
3766			break;
3767		case 0x3:
3768			hp_flags |= MV_HP_ERRATA_50XXB2;
3769			break;
3770		default:
3771			dev_warn(&pdev->dev,
3772				 "Applying B2 workarounds to unknown rev\n");
3773			hp_flags |= MV_HP_ERRATA_50XXB2;
3774			break;
3775		}
3776		break;
3777
3778	case chip_604x:
3779	case chip_608x:
3780		hpriv->ops = &mv6xxx_ops;
3781		hp_flags |= MV_HP_GEN_II;
3782
3783		switch (pdev->revision) {
3784		case 0x7:
3785			mv_60x1b2_errata_pci7(host);
3786			hp_flags |= MV_HP_ERRATA_60X1B2;
3787			break;
3788		case 0x9:
3789			hp_flags |= MV_HP_ERRATA_60X1C0;
3790			break;
3791		default:
3792			dev_warn(&pdev->dev,
3793				 "Applying B2 workarounds to unknown rev\n");
3794			hp_flags |= MV_HP_ERRATA_60X1B2;
3795			break;
3796		}
3797		break;
3798
3799	case chip_7042:
3800		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3801		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3802		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3803		{
3804			/*
3805			 * Highpoint RocketRAID PCIe 23xx series cards:
3806			 *
3807			 * Unconfigured drives are treated as "Legacy"
3808			 * by the BIOS, and it overwrites sector 8 with
3809			 * a "Lgcy" metadata block prior to Linux boot.
3810			 *
3811			 * Configured drives (RAID or JBOD) leave sector 8
3812			 * alone, but instead overwrite a high numbered
3813			 * sector for the RAID metadata.  This sector can
3814			 * be determined exactly, by truncating the physical
3815			 * drive capacity to a nice even GB value.
3816			 *
3817			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3818			 *
3819			 * Warn the user, lest they think we're just buggy.
3820			 */
3821			dev_warn(&pdev->dev, "Highpoint RocketRAID"
3822				" BIOS CORRUPTS DATA on all attached drives,"
3823				" regardless of if/how they are configured."
3824				" BEWARE!\n");
3825			dev_warn(&pdev->dev, "For data safety, do not"
3826				" use sectors 8-9 on \"Legacy\" drives,"
3827				" and avoid the final two gigabytes on"
3828				" all RocketRAID BIOS initialized drives.\n");
3829		}
3830		fallthrough;
3831	case chip_6042:
3832		hpriv->ops = &mv6xxx_ops;
3833		hp_flags |= MV_HP_GEN_IIE;
3834		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3835			hp_flags |= MV_HP_CUT_THROUGH;
3836
3837		switch (pdev->revision) {
3838		case 0x2: /* Rev.B0: the first/only public release */
3839			hp_flags |= MV_HP_ERRATA_60X1C0;
3840			break;
3841		default:
3842			dev_warn(&pdev->dev,
3843				 "Applying 60X1C0 workarounds to unknown rev\n");
3844			hp_flags |= MV_HP_ERRATA_60X1C0;
3845			break;
3846		}
3847		break;
3848	case chip_soc:
3849		if (soc_is_65n(hpriv))
3850			hpriv->ops = &mv_soc_65n_ops;
3851		else
3852			hpriv->ops = &mv_soc_ops;
3853		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3854			MV_HP_ERRATA_60X1C0;
3855		break;
3856
3857	default:
3858		dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3859		return -EINVAL;
3860	}
3861
3862	hpriv->hp_flags = hp_flags;
3863	if (hp_flags & MV_HP_PCIE) {
3864		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3865		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3866		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3867	} else {
3868		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3869		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3870		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3871	}
3872
3873	return 0;
3874}
3875
3876/**
3877 *      mv_init_host - Perform some early initialization of the host.
3878 *	@host: ATA host to initialize
3879 *
3880 *      If possible, do an early global reset of the host.  Then do
3881 *      our port init and clear/unmask all/relevant host interrupts.
3882 *
3883 *      LOCKING:
3884 *      Inherited from caller.
3885 */
3886static int mv_init_host(struct ata_host *host)
3887{
3888	int rc = 0, n_hc, port, hc;
3889	struct mv_host_priv *hpriv = host->private_data;
3890	void __iomem *mmio = hpriv->base;
3891
3892	rc = mv_chip_id(host, hpriv->board_idx);
3893	if (rc)
3894		goto done;
3895
3896	if (IS_SOC(hpriv)) {
3897		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3898		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3899	} else {
3900		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3901		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3902	}
3903
3904	/* initialize shadow irq mask with register's value */
3905	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3906
3907	/* global interrupt mask: 0 == mask everything */
3908	mv_set_main_irq_mask(host, ~0, 0);
3909
3910	n_hc = mv_get_hc_count(host->ports[0]->flags);
3911
3912	for (port = 0; port < host->n_ports; port++)
3913		if (hpriv->ops->read_preamp)
3914			hpriv->ops->read_preamp(hpriv, port, mmio);
3915
3916	rc = hpriv->ops->reset_hc(host, mmio, n_hc);
3917	if (rc)
3918		goto done;
3919
3920	hpriv->ops->reset_flash(hpriv, mmio);
3921	hpriv->ops->reset_bus(host, mmio);
3922	hpriv->ops->enable_leds(hpriv, mmio);
3923
3924	for (port = 0; port < host->n_ports; port++) {
3925		struct ata_port *ap = host->ports[port];
3926		void __iomem *port_mmio = mv_port_base(mmio, port);
3927
3928		mv_port_init(&ap->ioaddr, port_mmio);
3929	}
3930
3931	for (hc = 0; hc < n_hc; hc++) {
3932		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3933
3934		dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
3935			"(before clear)=0x%08x\n", hc,
3936			readl(hc_mmio + HC_CFG),
3937			readl(hc_mmio + HC_IRQ_CAUSE));
3938
3939		/* Clear any currently outstanding hc interrupt conditions */
3940		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3941	}
3942
3943	if (!IS_SOC(hpriv)) {
3944		/* Clear any currently outstanding host interrupt conditions */
3945		writelfl(0, mmio + hpriv->irq_cause_offset);
3946
3947		/* and unmask interrupt generation for host regs */
3948		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3949	}
3950
3951	/*
3952	 * enable only global host interrupts for now.
3953	 * The per-port interrupts get done later as ports are set up.
3954	 */
3955	mv_set_main_irq_mask(host, 0, PCI_ERR);
3956	mv_set_irq_coalescing(host, irq_coalescing_io_count,
3957				    irq_coalescing_usecs);
3958done:
3959	return rc;
3960}
3961
3962static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3963{
3964	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3965							     MV_CRQB_Q_SZ, 0);
3966	if (!hpriv->crqb_pool)
3967		return -ENOMEM;
3968
3969	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3970							     MV_CRPB_Q_SZ, 0);
3971	if (!hpriv->crpb_pool)
3972		return -ENOMEM;
3973
3974	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3975							     MV_SG_TBL_SZ, 0);
3976	if (!hpriv->sg_tbl_pool)
3977		return -ENOMEM;
3978
3979	return 0;
3980}
3981
3982static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3983				 const struct mbus_dram_target_info *dram)
3984{
3985	int i;
3986
3987	for (i = 0; i < 4; i++) {
3988		writel(0, hpriv->base + WINDOW_CTRL(i));
3989		writel(0, hpriv->base + WINDOW_BASE(i));
3990	}
3991
3992	for (i = 0; i < dram->num_cs; i++) {
3993		const struct mbus_dram_window *cs = dram->cs + i;
3994
3995		writel(((cs->size - 1) & 0xffff0000) |
3996			(cs->mbus_attr << 8) |
3997			(dram->mbus_dram_target_id << 4) | 1,
3998			hpriv->base + WINDOW_CTRL(i));
3999		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4000	}
4001}
4002
4003/**
4004 *      mv_platform_probe - handle a positive probe of an soc Marvell
4005 *      host
4006 *      @pdev: platform device found
4007 *
4008 *      LOCKING:
4009 *      Inherited from caller.
4010 */
4011static int mv_platform_probe(struct platform_device *pdev)
4012{
4013	const struct mv_sata_platform_data *mv_platform_data;
4014	const struct mbus_dram_target_info *dram;
4015	const struct ata_port_info *ppi[] =
4016	    { &mv_port_info[chip_soc], NULL };
4017	struct ata_host *host;
4018	struct mv_host_priv *hpriv;
4019	struct resource *res;
4020	int n_ports = 0, irq = 0;
4021	int rc;
4022	int port;
4023
4024	ata_print_version_once(&pdev->dev, DRV_VERSION);
4025
4026	/*
4027	 * Simple resource validation ..
4028	 */
4029	if (unlikely(pdev->num_resources != 1)) {
4030		dev_err(&pdev->dev, "invalid number of resources\n");
4031		return -EINVAL;
4032	}
4033
4034	/*
4035	 * Get the register base first
4036	 */
4037	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4038	if (res == NULL)
4039		return -EINVAL;
4040
4041	/* allocate host */
4042	if (pdev->dev.of_node) {
4043		rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4044					   &n_ports);
4045		if (rc) {
4046			dev_err(&pdev->dev,
4047				"error parsing nr-ports property: %d\n", rc);
4048			return rc;
4049		}
4050
4051		if (n_ports <= 0) {
4052			dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4053				n_ports);
4054			return -EINVAL;
4055		}
4056
4057		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4058	} else {
4059		mv_platform_data = dev_get_platdata(&pdev->dev);
4060		n_ports = mv_platform_data->n_ports;
4061		irq = platform_get_irq(pdev, 0);
4062	}
4063	if (irq < 0)
4064		return irq;
4065	if (!irq)
4066		return -EINVAL;
4067
4068	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4069	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4070
4071	if (!host || !hpriv)
4072		return -ENOMEM;
4073	hpriv->port_clks = devm_kcalloc(&pdev->dev,
4074					n_ports, sizeof(struct clk *),
4075					GFP_KERNEL);
4076	if (!hpriv->port_clks)
4077		return -ENOMEM;
4078	hpriv->port_phys = devm_kcalloc(&pdev->dev,
4079					n_ports, sizeof(struct phy *),
4080					GFP_KERNEL);
4081	if (!hpriv->port_phys)
4082		return -ENOMEM;
4083	host->private_data = hpriv;
4084	hpriv->board_idx = chip_soc;
4085
4086	host->iomap = NULL;
4087	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4088				   resource_size(res));
4089	if (!hpriv->base)
4090		return -ENOMEM;
4091
4092	hpriv->base -= SATAHC0_REG_BASE;
4093
4094	hpriv->clk = clk_get(&pdev->dev, NULL);
4095	if (IS_ERR(hpriv->clk)) {
4096		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4097	} else {
4098		rc = clk_prepare_enable(hpriv->clk);
4099		if (rc)
4100			goto err;
4101	}
4102
4103	for (port = 0; port < n_ports; port++) {
4104		char port_number[16];
4105		sprintf(port_number, "%d", port);
4106		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4107		if (!IS_ERR(hpriv->port_clks[port]))
4108			clk_prepare_enable(hpriv->port_clks[port]);
4109
4110		sprintf(port_number, "port%d", port);
4111		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4112							       port_number);
4113		if (IS_ERR(hpriv->port_phys[port])) {
4114			rc = PTR_ERR(hpriv->port_phys[port]);
4115			hpriv->port_phys[port] = NULL;
4116			if (rc != -EPROBE_DEFER)
4117				dev_warn(&pdev->dev, "error getting phy %d", rc);
4118
4119			/* Cleanup only the initialized ports */
4120			hpriv->n_ports = port;
4121			goto err;
4122		} else
4123			phy_power_on(hpriv->port_phys[port]);
4124	}
4125
4126	/* All the ports have been initialized */
4127	hpriv->n_ports = n_ports;
4128
4129	/*
4130	 * (Re-)program MBUS remapping windows if we are asked to.
4131	 */
4132	dram = mv_mbus_dram_info();
4133	if (dram)
4134		mv_conf_mbus_windows(hpriv, dram);
4135
4136	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4137	if (rc)
4138		goto err;
4139
4140	/*
4141	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4142	 * updated in the LP_PHY_CTL register.
4143	 */
4144	if (pdev->dev.of_node &&
4145		of_device_is_compatible(pdev->dev.of_node,
4146					"marvell,armada-370-sata"))
4147		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4148
4149	/* initialize adapter */
4150	rc = mv_init_host(host);
4151	if (rc)
4152		goto err;
4153
4154	dev_info(&pdev->dev, "slots %u ports %d\n",
4155		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4156
4157	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4158	if (!rc)
4159		return 0;
4160
4161err:
4162	if (!IS_ERR(hpriv->clk)) {
4163		clk_disable_unprepare(hpriv->clk);
4164		clk_put(hpriv->clk);
4165	}
4166	for (port = 0; port < hpriv->n_ports; port++) {
4167		if (!IS_ERR(hpriv->port_clks[port])) {
4168			clk_disable_unprepare(hpriv->port_clks[port]);
4169			clk_put(hpriv->port_clks[port]);
4170		}
4171		phy_power_off(hpriv->port_phys[port]);
4172	}
4173
4174	return rc;
4175}
4176
4177/*
4178 *
4179 *      mv_platform_remove    -       unplug a platform interface
4180 *      @pdev: platform device
4181 *
4182 *      A platform bus SATA device has been unplugged. Perform the needed
4183 *      cleanup. Also called on module unload for any active devices.
4184 */
4185static void mv_platform_remove(struct platform_device *pdev)
4186{
4187	struct ata_host *host = platform_get_drvdata(pdev);
4188	struct mv_host_priv *hpriv = host->private_data;
4189	int port;
4190	ata_host_detach(host);
4191
4192	if (!IS_ERR(hpriv->clk)) {
4193		clk_disable_unprepare(hpriv->clk);
4194		clk_put(hpriv->clk);
4195	}
4196	for (port = 0; port < host->n_ports; port++) {
4197		if (!IS_ERR(hpriv->port_clks[port])) {
4198			clk_disable_unprepare(hpriv->port_clks[port]);
4199			clk_put(hpriv->port_clks[port]);
4200		}
4201		phy_power_off(hpriv->port_phys[port]);
4202	}
4203}
4204
4205#ifdef CONFIG_PM_SLEEP
4206static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4207{
4208	struct ata_host *host = platform_get_drvdata(pdev);
4209
4210	if (host)
4211		ata_host_suspend(host, state);
4212	return 0;
4213}
4214
4215static int mv_platform_resume(struct platform_device *pdev)
4216{
4217	struct ata_host *host = platform_get_drvdata(pdev);
4218	const struct mbus_dram_target_info *dram;
4219	int ret;
4220
4221	if (host) {
4222		struct mv_host_priv *hpriv = host->private_data;
4223
4224		/*
4225		 * (Re-)program MBUS remapping windows if we are asked to.
4226		 */
4227		dram = mv_mbus_dram_info();
4228		if (dram)
4229			mv_conf_mbus_windows(hpriv, dram);
4230
4231		/* initialize adapter */
4232		ret = mv_init_host(host);
4233		if (ret) {
4234			dev_err(&pdev->dev, "Error during HW init\n");
4235			return ret;
4236		}
4237		ata_host_resume(host);
4238	}
4239
4240	return 0;
4241}
4242#else
4243#define mv_platform_suspend NULL
4244#define mv_platform_resume NULL
4245#endif
4246
4247#ifdef CONFIG_OF
4248static const struct of_device_id mv_sata_dt_ids[] = {
4249	{ .compatible = "marvell,armada-370-sata", },
4250	{ .compatible = "marvell,orion-sata", },
4251	{ /* sentinel */ }
4252};
4253MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4254#endif
4255
4256static struct platform_driver mv_platform_driver = {
4257	.probe		= mv_platform_probe,
4258	.remove_new	= mv_platform_remove,
4259	.suspend	= mv_platform_suspend,
4260	.resume		= mv_platform_resume,
4261	.driver		= {
4262		.name = DRV_NAME,
4263		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4264	},
4265};
4266
4267
4268#ifdef CONFIG_PCI
4269static int mv_pci_init_one(struct pci_dev *pdev,
4270			   const struct pci_device_id *ent);
4271#ifdef CONFIG_PM_SLEEP
4272static int mv_pci_device_resume(struct pci_dev *pdev);
4273#endif
4274
4275static const struct pci_device_id mv_pci_tbl[] = {
4276	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
4277	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
4278	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
4279	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
4280	/* RocketRAID 1720/174x have different identifiers */
4281	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4282	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
4283	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
4284
4285	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
4286	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
4287	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
4288	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
4289	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
4290
4291	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
4292
4293	/* Adaptec 1430SA */
4294	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
4295
4296	/* Marvell 7042 support */
4297	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
4298
4299	/* Highpoint RocketRAID PCIe series */
4300	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
4301	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
4302
4303	{ }			/* terminate list */
4304};
4305
4306static struct pci_driver mv_pci_driver = {
4307	.name			= DRV_NAME,
4308	.id_table		= mv_pci_tbl,
4309	.probe			= mv_pci_init_one,
4310	.remove			= ata_pci_remove_one,
4311#ifdef CONFIG_PM_SLEEP
4312	.suspend		= ata_pci_device_suspend,
4313	.resume			= mv_pci_device_resume,
4314#endif
4315
4316};
4317MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4318
4319/**
4320 *      mv_print_info - Dump key info to kernel log for perusal.
4321 *      @host: ATA host to print info about
4322 *
4323 *      FIXME: complete this.
4324 *
4325 *      LOCKING:
4326 *      Inherited from caller.
4327 */
4328static void mv_print_info(struct ata_host *host)
4329{
4330	struct pci_dev *pdev = to_pci_dev(host->dev);
4331	struct mv_host_priv *hpriv = host->private_data;
4332	u8 scc;
4333	const char *scc_s, *gen;
4334
4335	/* Use this to determine the HW stepping of the chip so we know
4336	 * what errata to workaround
4337	 */
4338	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4339	if (scc == 0)
4340		scc_s = "SCSI";
4341	else if (scc == 0x01)
4342		scc_s = "RAID";
4343	else
4344		scc_s = "?";
4345
4346	if (IS_GEN_I(hpriv))
4347		gen = "I";
4348	else if (IS_GEN_II(hpriv))
4349		gen = "II";
4350	else if (IS_GEN_IIE(hpriv))
4351		gen = "IIE";
4352	else
4353		gen = "?";
4354
4355	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4356		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4357		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4358}
4359
4360/**
4361 *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4362 *      @pdev: PCI device found
4363 *      @ent: PCI device ID entry for the matched host
4364 *
4365 *      LOCKING:
4366 *      Inherited from caller.
4367 */
4368static int mv_pci_init_one(struct pci_dev *pdev,
4369			   const struct pci_device_id *ent)
4370{
4371	unsigned int board_idx = (unsigned int)ent->driver_data;
4372	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4373	struct ata_host *host;
4374	struct mv_host_priv *hpriv;
4375	int n_ports, port, rc;
4376
4377	ata_print_version_once(&pdev->dev, DRV_VERSION);
4378
4379	/* allocate host */
4380	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4381
4382	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4383	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4384	if (!host || !hpriv)
4385		return -ENOMEM;
4386	host->private_data = hpriv;
4387	hpriv->n_ports = n_ports;
4388	hpriv->board_idx = board_idx;
4389
4390	/* acquire resources */
4391	rc = pcim_enable_device(pdev);
4392	if (rc)
4393		return rc;
4394
4395	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4396	if (rc == -EBUSY)
4397		pcim_pin_device(pdev);
4398	if (rc)
4399		return rc;
4400	host->iomap = pcim_iomap_table(pdev);
4401	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4402
4403	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4404	if (rc) {
4405		dev_err(&pdev->dev, "DMA enable failed\n");
4406		return rc;
4407	}
4408
4409	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4410	if (rc)
4411		return rc;
4412
4413	for (port = 0; port < host->n_ports; port++) {
4414		struct ata_port *ap = host->ports[port];
4415		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4416		unsigned int offset = port_mmio - hpriv->base;
4417
4418		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4419		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4420	}
4421
4422	/* initialize adapter */
4423	rc = mv_init_host(host);
4424	if (rc)
4425		return rc;
4426
4427	/* Enable message-switched interrupts, if requested */
4428	if (msi && pci_enable_msi(pdev) == 0)
4429		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4430
4431	mv_dump_pci_cfg(pdev, 0x68);
4432	mv_print_info(host);
4433
4434	pci_set_master(pdev);
4435	pci_try_set_mwi(pdev);
4436	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4437				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4438}
4439
4440#ifdef CONFIG_PM_SLEEP
4441static int mv_pci_device_resume(struct pci_dev *pdev)
4442{
4443	struct ata_host *host = pci_get_drvdata(pdev);
4444	int rc;
4445
4446	rc = ata_pci_device_do_resume(pdev);
4447	if (rc)
4448		return rc;
4449
4450	/* initialize adapter */
4451	rc = mv_init_host(host);
4452	if (rc)
4453		return rc;
4454
4455	ata_host_resume(host);
4456
4457	return 0;
4458}
4459#endif
4460#endif
4461
4462static int __init mv_init(void)
4463{
4464	int rc = -ENODEV;
4465#ifdef CONFIG_PCI
4466	rc = pci_register_driver(&mv_pci_driver);
4467	if (rc < 0)
4468		return rc;
4469#endif
4470	rc = platform_driver_register(&mv_platform_driver);
4471
4472#ifdef CONFIG_PCI
4473	if (rc < 0)
4474		pci_unregister_driver(&mv_pci_driver);
4475#endif
4476	return rc;
4477}
4478
4479static void __exit mv_exit(void)
4480{
4481#ifdef CONFIG_PCI
4482	pci_unregister_driver(&mv_pci_driver);
4483#endif
4484	platform_driver_unregister(&mv_platform_driver);
4485}
4486
4487MODULE_AUTHOR("Brett Russ");
4488MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4489MODULE_LICENSE("GPL v2");
4490MODULE_VERSION(DRV_VERSION);
4491MODULE_ALIAS("platform:" DRV_NAME);
4492
4493module_init(mv_init);
4494module_exit(mv_exit);
4495