1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  libata-core.c - helper library for ATA
4 *
5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6 *  Copyright 2003-2004 Jeff Garzik
7 *
8 *  libata documentation is available via 'make {ps|pdf}docs',
9 *  as Documentation/driver-api/libata.rst
10 *
11 *  Hardware documentation available from http://www.t13.org/ and
12 *  http://www.sata-io.org/
13 *
14 *  Standards documents from:
15 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 *	http://www.sata-io.org (SATA)
18 *	http://www.compactflash.org (CF)
19 *	http://www.qic.org (QIC157 - Tape and DSC)
20 *	http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers.  As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <asm/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68	.prereset		= ata_std_prereset,
69	.postreset		= ata_std_postreset,
70	.error_handler		= ata_std_error_handler,
71	.sched_eh		= ata_std_sched_eh,
72	.end_eh			= ata_std_end_eh,
73};
74
75const struct ata_port_operations sata_port_ops = {
76	.inherits		= &ata_base_port_ops,
77
78	.qc_defer		= ata_std_qc_defer,
79	.hardreset		= sata_std_hardreset,
80};
81EXPORT_SYMBOL_GPL(sata_port_ops);
82
83static unsigned int ata_dev_init_params(struct ata_device *dev,
84					u16 heads, u16 sectors);
85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86static void ata_dev_xfermask(struct ata_device *dev);
87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89atomic_t ata_print_id = ATOMIC_INIT(0);
90
91#ifdef CONFIG_ATA_FORCE
92struct ata_force_param {
93	const char	*name;
94	u8		cbl;
95	u8		spd_limit;
96	unsigned int	xfer_mask;
97	unsigned int	horkage_on;
98	unsigned int	horkage_off;
99	u16		lflags_on;
100	u16		lflags_off;
101};
102
103struct ata_force_ent {
104	int			port;
105	int			device;
106	struct ata_force_param	param;
107};
108
109static struct ata_force_ent *ata_force_tbl;
110static int ata_force_tbl_size;
111
112static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113/* param_buf is thrown away after initialization, disallow read */
114module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116#endif
117
118static int atapi_enabled = 1;
119module_param(atapi_enabled, int, 0444);
120MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122static int atapi_dmadir = 0;
123module_param(atapi_dmadir, int, 0444);
124MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126int atapi_passthru16 = 1;
127module_param(atapi_passthru16, int, 0444);
128MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130int libata_fua = 0;
131module_param_named(fua, libata_fua, int, 0444);
132MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134static int ata_ignore_hpa;
135module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139module_param_named(dma, libata_dma_mask, int, 0444);
140MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142static int ata_probe_timeout;
143module_param(ata_probe_timeout, int, 0444);
144MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146int libata_noacpi = 0;
147module_param_named(noacpi, libata_noacpi, int, 0444);
148MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150int libata_allow_tpm = 0;
151module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154static int atapi_an;
155module_param(atapi_an, int, 0444);
156MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158MODULE_AUTHOR("Jeff Garzik");
159MODULE_DESCRIPTION("Library module for ATA devices");
160MODULE_LICENSE("GPL");
161MODULE_VERSION(DRV_VERSION);
162
163static inline bool ata_dev_print_info(struct ata_device *dev)
164{
165	struct ata_eh_context *ehc = &dev->link->eh_context;
166
167	return ehc->i.flags & ATA_EHI_PRINTINFO;
168}
169
170static bool ata_sstatus_online(u32 sstatus)
171{
172	return (sstatus & 0xf) == 0x3;
173}
174
175/**
176 *	ata_link_next - link iteration helper
177 *	@link: the previous link, NULL to start
178 *	@ap: ATA port containing links to iterate
179 *	@mode: iteration mode, one of ATA_LITER_*
180 *
181 *	LOCKING:
182 *	Host lock or EH context.
183 *
184 *	RETURNS:
185 *	Pointer to the next link.
186 */
187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188			       enum ata_link_iter_mode mode)
189{
190	BUG_ON(mode != ATA_LITER_EDGE &&
191	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193	/* NULL link indicates start of iteration */
194	if (!link)
195		switch (mode) {
196		case ATA_LITER_EDGE:
197		case ATA_LITER_PMP_FIRST:
198			if (sata_pmp_attached(ap))
199				return ap->pmp_link;
200			fallthrough;
201		case ATA_LITER_HOST_FIRST:
202			return &ap->link;
203		}
204
205	/* we just iterated over the host link, what's next? */
206	if (link == &ap->link)
207		switch (mode) {
208		case ATA_LITER_HOST_FIRST:
209			if (sata_pmp_attached(ap))
210				return ap->pmp_link;
211			fallthrough;
212		case ATA_LITER_PMP_FIRST:
213			if (unlikely(ap->slave_link))
214				return ap->slave_link;
215			fallthrough;
216		case ATA_LITER_EDGE:
217			return NULL;
218		}
219
220	/* slave_link excludes PMP */
221	if (unlikely(link == ap->slave_link))
222		return NULL;
223
224	/* we were over a PMP link */
225	if (++link < ap->pmp_link + ap->nr_pmp_links)
226		return link;
227
228	if (mode == ATA_LITER_PMP_FIRST)
229		return &ap->link;
230
231	return NULL;
232}
233EXPORT_SYMBOL_GPL(ata_link_next);
234
235/**
236 *	ata_dev_next - device iteration helper
237 *	@dev: the previous device, NULL to start
238 *	@link: ATA link containing devices to iterate
239 *	@mode: iteration mode, one of ATA_DITER_*
240 *
241 *	LOCKING:
242 *	Host lock or EH context.
243 *
244 *	RETURNS:
245 *	Pointer to the next device.
246 */
247struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248				enum ata_dev_iter_mode mode)
249{
250	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253	/* NULL dev indicates start of iteration */
254	if (!dev)
255		switch (mode) {
256		case ATA_DITER_ENABLED:
257		case ATA_DITER_ALL:
258			dev = link->device;
259			goto check;
260		case ATA_DITER_ENABLED_REVERSE:
261		case ATA_DITER_ALL_REVERSE:
262			dev = link->device + ata_link_max_devices(link) - 1;
263			goto check;
264		}
265
266 next:
267	/* move to the next one */
268	switch (mode) {
269	case ATA_DITER_ENABLED:
270	case ATA_DITER_ALL:
271		if (++dev < link->device + ata_link_max_devices(link))
272			goto check;
273		return NULL;
274	case ATA_DITER_ENABLED_REVERSE:
275	case ATA_DITER_ALL_REVERSE:
276		if (--dev >= link->device)
277			goto check;
278		return NULL;
279	}
280
281 check:
282	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283	    !ata_dev_enabled(dev))
284		goto next;
285	return dev;
286}
287EXPORT_SYMBOL_GPL(ata_dev_next);
288
289/**
290 *	ata_dev_phys_link - find physical link for a device
291 *	@dev: ATA device to look up physical link for
292 *
293 *	Look up physical link which @dev is attached to.  Note that
294 *	this is different from @dev->link only when @dev is on slave
295 *	link.  For all other cases, it's the same as @dev->link.
296 *
297 *	LOCKING:
298 *	Don't care.
299 *
300 *	RETURNS:
301 *	Pointer to the found physical link.
302 */
303struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304{
305	struct ata_port *ap = dev->link->ap;
306
307	if (!ap->slave_link)
308		return dev->link;
309	if (!dev->devno)
310		return &ap->link;
311	return ap->slave_link;
312}
313
314#ifdef CONFIG_ATA_FORCE
315/**
316 *	ata_force_cbl - force cable type according to libata.force
317 *	@ap: ATA port of interest
318 *
319 *	Force cable type according to libata.force and whine about it.
320 *	The last entry which has matching port number is used, so it
321 *	can be specified as part of device force parameters.  For
322 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 *	same effect.
324 *
325 *	LOCKING:
326 *	EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330	int i;
331
332	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333		const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335		if (fe->port != -1 && fe->port != ap->print_id)
336			continue;
337
338		if (fe->param.cbl == ATA_CBL_NONE)
339			continue;
340
341		ap->cbl = fe->param.cbl;
342		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343		return;
344	}
345}
346
347/**
348 *	ata_force_link_limits - force link limits according to libata.force
349 *	@link: ATA link of interest
350 *
351 *	Force link flags and SATA spd limit according to libata.force
352 *	and whine about it.  When only the port part is specified
353 *	(e.g. 1:), the limit applies to all links connected to both
354 *	the host link and all fan-out ports connected via PMP.  If the
355 *	device part is specified as 0 (e.g. 1.00:), it specifies the
356 *	first fan-out link not the host link.  Device number 15 always
357 *	points to the host link whether PMP is attached or not.  If the
358 *	controller has slave link, device number 16 points to it.
359 *
360 *	LOCKING:
361 *	EH context.
362 */
363static void ata_force_link_limits(struct ata_link *link)
364{
365	bool did_spd = false;
366	int linkno = link->pmp;
367	int i;
368
369	if (ata_is_host_link(link))
370		linkno += 15;
371
372	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373		const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375		if (fe->port != -1 && fe->port != link->ap->print_id)
376			continue;
377
378		if (fe->device != -1 && fe->device != linkno)
379			continue;
380
381		/* only honor the first spd limit */
382		if (!did_spd && fe->param.spd_limit) {
383			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385					fe->param.name);
386			did_spd = true;
387		}
388
389		/* let lflags stack */
390		if (fe->param.lflags_on) {
391			link->flags |= fe->param.lflags_on;
392			ata_link_notice(link,
393					"FORCE: link flag 0x%x forced -> 0x%x\n",
394					fe->param.lflags_on, link->flags);
395		}
396		if (fe->param.lflags_off) {
397			link->flags &= ~fe->param.lflags_off;
398			ata_link_notice(link,
399				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400				fe->param.lflags_off, link->flags);
401		}
402	}
403}
404
405/**
406 *	ata_force_xfermask - force xfermask according to libata.force
407 *	@dev: ATA device of interest
408 *
409 *	Force xfer_mask according to libata.force and whine about it.
410 *	For consistency with link selection, device number 15 selects
411 *	the first device connected to the host link.
412 *
413 *	LOCKING:
414 *	EH context.
415 */
416static void ata_force_xfermask(struct ata_device *dev)
417{
418	int devno = dev->link->pmp + dev->devno;
419	int alt_devno = devno;
420	int i;
421
422	/* allow n.15/16 for devices attached to host port */
423	if (ata_is_host_link(dev->link))
424		alt_devno += 15;
425
426	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427		const struct ata_force_ent *fe = &ata_force_tbl[i];
428		unsigned int pio_mask, mwdma_mask, udma_mask;
429
430		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431			continue;
432
433		if (fe->device != -1 && fe->device != devno &&
434		    fe->device != alt_devno)
435			continue;
436
437		if (!fe->param.xfer_mask)
438			continue;
439
440		ata_unpack_xfermask(fe->param.xfer_mask,
441				    &pio_mask, &mwdma_mask, &udma_mask);
442		if (udma_mask)
443			dev->udma_mask = udma_mask;
444		else if (mwdma_mask) {
445			dev->udma_mask = 0;
446			dev->mwdma_mask = mwdma_mask;
447		} else {
448			dev->udma_mask = 0;
449			dev->mwdma_mask = 0;
450			dev->pio_mask = pio_mask;
451		}
452
453		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454			       fe->param.name);
455		return;
456	}
457}
458
459/**
460 *	ata_force_horkage - force horkage according to libata.force
461 *	@dev: ATA device of interest
462 *
463 *	Force horkage according to libata.force and whine about it.
464 *	For consistency with link selection, device number 15 selects
465 *	the first device connected to the host link.
466 *
467 *	LOCKING:
468 *	EH context.
469 */
470static void ata_force_horkage(struct ata_device *dev)
471{
472	int devno = dev->link->pmp + dev->devno;
473	int alt_devno = devno;
474	int i;
475
476	/* allow n.15/16 for devices attached to host port */
477	if (ata_is_host_link(dev->link))
478		alt_devno += 15;
479
480	for (i = 0; i < ata_force_tbl_size; i++) {
481		const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484			continue;
485
486		if (fe->device != -1 && fe->device != devno &&
487		    fe->device != alt_devno)
488			continue;
489
490		if (!(~dev->horkage & fe->param.horkage_on) &&
491		    !(dev->horkage & fe->param.horkage_off))
492			continue;
493
494		dev->horkage |= fe->param.horkage_on;
495		dev->horkage &= ~fe->param.horkage_off;
496
497		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498			       fe->param.name);
499	}
500}
501#else
502static inline void ata_force_link_limits(struct ata_link *link) { }
503static inline void ata_force_xfermask(struct ata_device *dev) { }
504static inline void ata_force_horkage(struct ata_device *dev) { }
505#endif
506
507/**
508 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 *	@opcode: SCSI opcode
510 *
511 *	Determine ATAPI command type from @opcode.
512 *
513 *	LOCKING:
514 *	None.
515 *
516 *	RETURNS:
517 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
519int atapi_cmd_type(u8 opcode)
520{
521	switch (opcode) {
522	case GPCMD_READ_10:
523	case GPCMD_READ_12:
524		return ATAPI_READ;
525
526	case GPCMD_WRITE_10:
527	case GPCMD_WRITE_12:
528	case GPCMD_WRITE_AND_VERIFY_10:
529		return ATAPI_WRITE;
530
531	case GPCMD_READ_CD:
532	case GPCMD_READ_CD_MSF:
533		return ATAPI_READ_CD;
534
535	case ATA_16:
536	case ATA_12:
537		if (atapi_passthru16)
538			return ATAPI_PASS_THRU;
539		fallthrough;
540	default:
541		return ATAPI_MISC;
542	}
543}
544EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546static const u8 ata_rw_cmds[] = {
547	/* pio multi */
548	ATA_CMD_READ_MULTI,
549	ATA_CMD_WRITE_MULTI,
550	ATA_CMD_READ_MULTI_EXT,
551	ATA_CMD_WRITE_MULTI_EXT,
552	0,
553	0,
554	0,
555	0,
556	/* pio */
557	ATA_CMD_PIO_READ,
558	ATA_CMD_PIO_WRITE,
559	ATA_CMD_PIO_READ_EXT,
560	ATA_CMD_PIO_WRITE_EXT,
561	0,
562	0,
563	0,
564	0,
565	/* dma */
566	ATA_CMD_READ,
567	ATA_CMD_WRITE,
568	ATA_CMD_READ_EXT,
569	ATA_CMD_WRITE_EXT,
570	0,
571	0,
572	0,
573	ATA_CMD_WRITE_FUA_EXT
574};
575
576/**
577 *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578 *	@dev: target device for the taskfile
579 *	@tf: taskfile to examine and configure
580 *
581 *	Examine the device configuration and tf->flags to determine
582 *	the proper read/write command and protocol to use for @tf.
583 *
584 *	LOCKING:
585 *	caller.
586 */
587static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588				   struct ata_taskfile *tf)
589{
590	u8 cmd;
591
592	int index, fua, lba48, write;
593
594	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597
598	if (dev->flags & ATA_DFLAG_PIO) {
599		tf->protocol = ATA_PROT_PIO;
600		index = dev->multi_count ? 0 : 8;
601	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602		/* Unable to use DMA due to host limitation */
603		tf->protocol = ATA_PROT_PIO;
604		index = dev->multi_count ? 0 : 8;
605	} else {
606		tf->protocol = ATA_PROT_DMA;
607		index = 16;
608	}
609
610	cmd = ata_rw_cmds[index + fua + lba48 + write];
611	if (!cmd)
612		return false;
613
614	tf->command = cmd;
615
616	return true;
617}
618
619/**
620 *	ata_tf_read_block - Read block address from ATA taskfile
621 *	@tf: ATA taskfile of interest
622 *	@dev: ATA device @tf belongs to
623 *
624 *	LOCKING:
625 *	None.
626 *
627 *	Read block address from @tf.  This function can handle all
628 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
629 *	flags select the address format to use.
630 *
631 *	RETURNS:
632 *	Block address read from @tf.
633 */
634u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635{
636	u64 block = 0;
637
638	if (tf->flags & ATA_TFLAG_LBA) {
639		if (tf->flags & ATA_TFLAG_LBA48) {
640			block |= (u64)tf->hob_lbah << 40;
641			block |= (u64)tf->hob_lbam << 32;
642			block |= (u64)tf->hob_lbal << 24;
643		} else
644			block |= (tf->device & 0xf) << 24;
645
646		block |= tf->lbah << 16;
647		block |= tf->lbam << 8;
648		block |= tf->lbal;
649	} else {
650		u32 cyl, head, sect;
651
652		cyl = tf->lbam | (tf->lbah << 8);
653		head = tf->device & 0xf;
654		sect = tf->lbal;
655
656		if (!sect) {
657			ata_dev_warn(dev,
658				     "device reported invalid CHS sector 0\n");
659			return U64_MAX;
660		}
661
662		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663	}
664
665	return block;
666}
667
668/*
669 * Set a taskfile command duration limit index.
670 */
671static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672{
673	struct ata_taskfile *tf = &qc->tf;
674
675	if (tf->protocol == ATA_PROT_NCQ)
676		tf->auxiliary |= cdl;
677	else
678		tf->feature |= cdl;
679
680	/*
681	 * Mark this command as having a CDL and request the result
682	 * task file so that we can inspect the sense data available
683	 * bit on completion.
684	 */
685	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686}
687
688/**
689 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
690 *	@qc: Metadata associated with the taskfile to build
691 *	@block: Block address
692 *	@n_block: Number of blocks
693 *	@tf_flags: RW/FUA etc...
694 *	@cdl: Command duration limit index
695 *	@class: IO priority class
696 *
697 *	LOCKING:
698 *	None.
699 *
700 *	Build ATA taskfile for the command @qc for read/write request described
701 *	by @block, @n_block, @tf_flags and @class.
702 *
703 *	RETURNS:
704 *
705 *	0 on success, -ERANGE if the request is too large for @dev,
706 *	-EINVAL if the request is invalid.
707 */
708int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709		    unsigned int tf_flags, int cdl, int class)
710{
711	struct ata_taskfile *tf = &qc->tf;
712	struct ata_device *dev = qc->dev;
713
714	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715	tf->flags |= tf_flags;
716
717	if (ata_ncq_enabled(dev)) {
718		/* yay, NCQ */
719		if (!lba_48_ok(block, n_block))
720			return -ERANGE;
721
722		tf->protocol = ATA_PROT_NCQ;
723		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724
725		if (tf->flags & ATA_TFLAG_WRITE)
726			tf->command = ATA_CMD_FPDMA_WRITE;
727		else
728			tf->command = ATA_CMD_FPDMA_READ;
729
730		tf->nsect = qc->hw_tag << 3;
731		tf->hob_feature = (n_block >> 8) & 0xff;
732		tf->feature = n_block & 0xff;
733
734		tf->hob_lbah = (block >> 40) & 0xff;
735		tf->hob_lbam = (block >> 32) & 0xff;
736		tf->hob_lbal = (block >> 24) & 0xff;
737		tf->lbah = (block >> 16) & 0xff;
738		tf->lbam = (block >> 8) & 0xff;
739		tf->lbal = block & 0xff;
740
741		tf->device = ATA_LBA;
742		if (tf->flags & ATA_TFLAG_FUA)
743			tf->device |= 1 << 7;
744
745		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746		    class == IOPRIO_CLASS_RT)
747			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748
749		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750			ata_set_tf_cdl(qc, cdl);
751
752	} else if (dev->flags & ATA_DFLAG_LBA) {
753		tf->flags |= ATA_TFLAG_LBA;
754
755		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756			ata_set_tf_cdl(qc, cdl);
757
758		/* Both FUA writes and a CDL index require 48-bit commands */
759		if (!(tf->flags & ATA_TFLAG_FUA) &&
760		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761		    lba_28_ok(block, n_block)) {
762			/* use LBA28 */
763			tf->device |= (block >> 24) & 0xf;
764		} else if (lba_48_ok(block, n_block)) {
765			if (!(dev->flags & ATA_DFLAG_LBA48))
766				return -ERANGE;
767
768			/* use LBA48 */
769			tf->flags |= ATA_TFLAG_LBA48;
770
771			tf->hob_nsect = (n_block >> 8) & 0xff;
772
773			tf->hob_lbah = (block >> 40) & 0xff;
774			tf->hob_lbam = (block >> 32) & 0xff;
775			tf->hob_lbal = (block >> 24) & 0xff;
776		} else {
777			/* request too large even for LBA48 */
778			return -ERANGE;
779		}
780
781		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782			return -EINVAL;
783
784		tf->nsect = n_block & 0xff;
785
786		tf->lbah = (block >> 16) & 0xff;
787		tf->lbam = (block >> 8) & 0xff;
788		tf->lbal = block & 0xff;
789
790		tf->device |= ATA_LBA;
791	} else {
792		/* CHS */
793		u32 sect, head, cyl, track;
794
795		/* The request -may- be too large for CHS addressing. */
796		if (!lba_28_ok(block, n_block))
797			return -ERANGE;
798
799		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800			return -EINVAL;
801
802		/* Convert LBA to CHS */
803		track = (u32)block / dev->sectors;
804		cyl   = track / dev->heads;
805		head  = track % dev->heads;
806		sect  = (u32)block % dev->sectors + 1;
807
808		/* Check whether the converted CHS can fit.
809		   Cylinder: 0-65535
810		   Head: 0-15
811		   Sector: 1-255*/
812		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813			return -ERANGE;
814
815		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816		tf->lbal = sect;
817		tf->lbam = cyl;
818		tf->lbah = cyl >> 8;
819		tf->device |= head;
820	}
821
822	return 0;
823}
824
825/**
826 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827 *	@pio_mask: pio_mask
828 *	@mwdma_mask: mwdma_mask
829 *	@udma_mask: udma_mask
830 *
831 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832 *	unsigned int xfer_mask.
833 *
834 *	LOCKING:
835 *	None.
836 *
837 *	RETURNS:
838 *	Packed xfer_mask.
839 */
840unsigned int ata_pack_xfermask(unsigned int pio_mask,
841			       unsigned int mwdma_mask,
842			       unsigned int udma_mask)
843{
844	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847}
848EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849
850/**
851 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852 *	@xfer_mask: xfer_mask to unpack
853 *	@pio_mask: resulting pio_mask
854 *	@mwdma_mask: resulting mwdma_mask
855 *	@udma_mask: resulting udma_mask
856 *
857 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858 *	Any NULL destination masks will be ignored.
859 */
860void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861			 unsigned int *mwdma_mask, unsigned int *udma_mask)
862{
863	if (pio_mask)
864		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865	if (mwdma_mask)
866		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867	if (udma_mask)
868		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869}
870
871static const struct ata_xfer_ent {
872	int shift, bits;
873	u8 base;
874} ata_xfer_tbl[] = {
875	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878	{ -1, },
879};
880
881/**
882 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883 *	@xfer_mask: xfer_mask of interest
884 *
885 *	Return matching XFER_* value for @xfer_mask.  Only the highest
886 *	bit of @xfer_mask is considered.
887 *
888 *	LOCKING:
889 *	None.
890 *
891 *	RETURNS:
892 *	Matching XFER_* value, 0xff if no match found.
893 */
894u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895{
896	int highbit = fls(xfer_mask) - 1;
897	const struct ata_xfer_ent *ent;
898
899	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901			return ent->base + highbit - ent->shift;
902	return 0xff;
903}
904EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905
906/**
907 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908 *	@xfer_mode: XFER_* of interest
909 *
910 *	Return matching xfer_mask for @xfer_mode.
911 *
912 *	LOCKING:
913 *	None.
914 *
915 *	RETURNS:
916 *	Matching xfer_mask, 0 if no match found.
917 */
918unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919{
920	const struct ata_xfer_ent *ent;
921
922	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925				& ~((1 << ent->shift) - 1);
926	return 0;
927}
928EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929
930/**
931 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932 *	@xfer_mode: XFER_* of interest
933 *
934 *	Return matching xfer_shift for @xfer_mode.
935 *
936 *	LOCKING:
937 *	None.
938 *
939 *	RETURNS:
940 *	Matching xfer_shift, -1 if no match found.
941 */
942int ata_xfer_mode2shift(u8 xfer_mode)
943{
944	const struct ata_xfer_ent *ent;
945
946	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948			return ent->shift;
949	return -1;
950}
951EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952
953/**
954 *	ata_mode_string - convert xfer_mask to string
955 *	@xfer_mask: mask of bits supported; only highest bit counts.
956 *
957 *	Determine string which represents the highest speed
958 *	(highest bit in @modemask).
959 *
960 *	LOCKING:
961 *	None.
962 *
963 *	RETURNS:
964 *	Constant C string representing highest speed listed in
965 *	@mode_mask, or the constant C string "<n/a>".
966 */
967const char *ata_mode_string(unsigned int xfer_mask)
968{
969	static const char * const xfer_mode_str[] = {
970		"PIO0",
971		"PIO1",
972		"PIO2",
973		"PIO3",
974		"PIO4",
975		"PIO5",
976		"PIO6",
977		"MWDMA0",
978		"MWDMA1",
979		"MWDMA2",
980		"MWDMA3",
981		"MWDMA4",
982		"UDMA/16",
983		"UDMA/25",
984		"UDMA/33",
985		"UDMA/44",
986		"UDMA/66",
987		"UDMA/100",
988		"UDMA/133",
989		"UDMA7",
990	};
991	int highbit;
992
993	highbit = fls(xfer_mask) - 1;
994	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995		return xfer_mode_str[highbit];
996	return "<n/a>";
997}
998EXPORT_SYMBOL_GPL(ata_mode_string);
999
1000const char *sata_spd_string(unsigned int spd)
1001{
1002	static const char * const spd_str[] = {
1003		"1.5 Gbps",
1004		"3.0 Gbps",
1005		"6.0 Gbps",
1006	};
1007
1008	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009		return "<unknown>";
1010	return spd_str[spd - 1];
1011}
1012
1013/**
1014 *	ata_dev_classify - determine device type based on ATA-spec signature
1015 *	@tf: ATA taskfile register set for device to be identified
1016 *
1017 *	Determine from taskfile register contents whether a device is
1018 *	ATA or ATAPI, as per "Signature and persistence" section
1019 *	of ATA/PI spec (volume 1, sect 5.14).
1020 *
1021 *	LOCKING:
1022 *	None.
1023 *
1024 *	RETURNS:
1025 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027 */
1028unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029{
1030	/* Apple's open source Darwin code hints that some devices only
1031	 * put a proper signature into the LBA mid/high registers,
1032	 * So, we only check those.  It's sufficient for uniqueness.
1033	 *
1034	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035	 * signatures for ATA and ATAPI devices attached on SerialATA,
1036	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1037	 * spec has never mentioned about using different signatures
1038	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1039	 * Multiplier specification began to use 0x69/0x96 to identify
1040	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042	 * 0x69/0x96 shortly and described them as reserved for
1043	 * SerialATA.
1044	 *
1045	 * We follow the current spec and consider that 0x69/0x96
1046	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048	 * SEMB signature.  This is worked around in
1049	 * ata_dev_read_id().
1050	 */
1051	if (tf->lbam == 0 && tf->lbah == 0)
1052		return ATA_DEV_ATA;
1053
1054	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055		return ATA_DEV_ATAPI;
1056
1057	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058		return ATA_DEV_PMP;
1059
1060	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061		return ATA_DEV_SEMB;
1062
1063	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064		return ATA_DEV_ZAC;
1065
1066	return ATA_DEV_UNKNOWN;
1067}
1068EXPORT_SYMBOL_GPL(ata_dev_classify);
1069
1070/**
1071 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1072 *	@id: IDENTIFY DEVICE results we will examine
1073 *	@s: string into which data is output
1074 *	@ofs: offset into identify device page
1075 *	@len: length of string to return. must be an even number.
1076 *
1077 *	The strings in the IDENTIFY DEVICE page are broken up into
1078 *	16-bit chunks.  Run through the string, and output each
1079 *	8-bit chunk linearly, regardless of platform.
1080 *
1081 *	LOCKING:
1082 *	caller.
1083 */
1084
1085void ata_id_string(const u16 *id, unsigned char *s,
1086		   unsigned int ofs, unsigned int len)
1087{
1088	unsigned int c;
1089
1090	BUG_ON(len & 1);
1091
1092	while (len > 0) {
1093		c = id[ofs] >> 8;
1094		*s = c;
1095		s++;
1096
1097		c = id[ofs] & 0xff;
1098		*s = c;
1099		s++;
1100
1101		ofs++;
1102		len -= 2;
1103	}
1104}
1105EXPORT_SYMBOL_GPL(ata_id_string);
1106
1107/**
1108 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109 *	@id: IDENTIFY DEVICE results we will examine
1110 *	@s: string into which data is output
1111 *	@ofs: offset into identify device page
1112 *	@len: length of string to return. must be an odd number.
1113 *
1114 *	This function is identical to ata_id_string except that it
1115 *	trims trailing spaces and terminates the resulting string with
1116 *	null.  @len must be actual maximum length (even number) + 1.
1117 *
1118 *	LOCKING:
1119 *	caller.
1120 */
1121void ata_id_c_string(const u16 *id, unsigned char *s,
1122		     unsigned int ofs, unsigned int len)
1123{
1124	unsigned char *p;
1125
1126	ata_id_string(id, s, ofs, len - 1);
1127
1128	p = s + strnlen(s, len - 1);
1129	while (p > s && p[-1] == ' ')
1130		p--;
1131	*p = '\0';
1132}
1133EXPORT_SYMBOL_GPL(ata_id_c_string);
1134
1135static u64 ata_id_n_sectors(const u16 *id)
1136{
1137	if (ata_id_has_lba(id)) {
1138		if (ata_id_has_lba48(id))
1139			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140
1141		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142	}
1143
1144	if (ata_id_current_chs_valid(id))
1145		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146		       (u32)id[ATA_ID_CUR_SECTORS];
1147
1148	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149	       (u32)id[ATA_ID_SECTORS];
1150}
1151
1152u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153{
1154	u64 sectors = 0;
1155
1156	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159	sectors |= (tf->lbah & 0xff) << 16;
1160	sectors |= (tf->lbam & 0xff) << 8;
1161	sectors |= (tf->lbal & 0xff);
1162
1163	return sectors;
1164}
1165
1166u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167{
1168	u64 sectors = 0;
1169
1170	sectors |= (tf->device & 0x0f) << 24;
1171	sectors |= (tf->lbah & 0xff) << 16;
1172	sectors |= (tf->lbam & 0xff) << 8;
1173	sectors |= (tf->lbal & 0xff);
1174
1175	return sectors;
1176}
1177
1178/**
1179 *	ata_read_native_max_address - Read native max address
1180 *	@dev: target device
1181 *	@max_sectors: out parameter for the result native max address
1182 *
1183 *	Perform an LBA48 or LBA28 native size query upon the device in
1184 *	question.
1185 *
1186 *	RETURNS:
1187 *	0 on success, -EACCES if command is aborted by the drive.
1188 *	-EIO on other errors.
1189 */
1190static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191{
1192	unsigned int err_mask;
1193	struct ata_taskfile tf;
1194	int lba48 = ata_id_has_lba48(dev->id);
1195
1196	ata_tf_init(dev, &tf);
1197
1198	/* always clear all address registers */
1199	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200
1201	if (lba48) {
1202		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203		tf.flags |= ATA_TFLAG_LBA48;
1204	} else
1205		tf.command = ATA_CMD_READ_NATIVE_MAX;
1206
1207	tf.protocol = ATA_PROT_NODATA;
1208	tf.device |= ATA_LBA;
1209
1210	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211	if (err_mask) {
1212		ata_dev_warn(dev,
1213			     "failed to read native max address (err_mask=0x%x)\n",
1214			     err_mask);
1215		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216			return -EACCES;
1217		return -EIO;
1218	}
1219
1220	if (lba48)
1221		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1222	else
1223		*max_sectors = ata_tf_to_lba(&tf) + 1;
1224	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225		(*max_sectors)--;
1226	return 0;
1227}
1228
1229/**
1230 *	ata_set_max_sectors - Set max sectors
1231 *	@dev: target device
1232 *	@new_sectors: new max sectors value to set for the device
1233 *
1234 *	Set max sectors of @dev to @new_sectors.
1235 *
1236 *	RETURNS:
1237 *	0 on success, -EACCES if command is aborted or denied (due to
1238 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1239 *	errors.
1240 */
1241static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242{
1243	unsigned int err_mask;
1244	struct ata_taskfile tf;
1245	int lba48 = ata_id_has_lba48(dev->id);
1246
1247	new_sectors--;
1248
1249	ata_tf_init(dev, &tf);
1250
1251	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252
1253	if (lba48) {
1254		tf.command = ATA_CMD_SET_MAX_EXT;
1255		tf.flags |= ATA_TFLAG_LBA48;
1256
1257		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260	} else {
1261		tf.command = ATA_CMD_SET_MAX;
1262
1263		tf.device |= (new_sectors >> 24) & 0xf;
1264	}
1265
1266	tf.protocol = ATA_PROT_NODATA;
1267	tf.device |= ATA_LBA;
1268
1269	tf.lbal = (new_sectors >> 0) & 0xff;
1270	tf.lbam = (new_sectors >> 8) & 0xff;
1271	tf.lbah = (new_sectors >> 16) & 0xff;
1272
1273	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274	if (err_mask) {
1275		ata_dev_warn(dev,
1276			     "failed to set max address (err_mask=0x%x)\n",
1277			     err_mask);
1278		if (err_mask == AC_ERR_DEV &&
1279		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280			return -EACCES;
1281		return -EIO;
1282	}
1283
1284	return 0;
1285}
1286
1287/**
1288 *	ata_hpa_resize		-	Resize a device with an HPA set
1289 *	@dev: Device to resize
1290 *
1291 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292 *	it if required to the full size of the media. The caller must check
1293 *	the drive has the HPA feature set enabled.
1294 *
1295 *	RETURNS:
1296 *	0 on success, -errno on failure.
1297 */
1298static int ata_hpa_resize(struct ata_device *dev)
1299{
1300	bool print_info = ata_dev_print_info(dev);
1301	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302	u64 sectors = ata_id_n_sectors(dev->id);
1303	u64 native_sectors;
1304	int rc;
1305
1306	/* do we need to do it? */
1307	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310		return 0;
1311
1312	/* read native max address */
1313	rc = ata_read_native_max_address(dev, &native_sectors);
1314	if (rc) {
1315		/* If device aborted the command or HPA isn't going to
1316		 * be unlocked, skip HPA resizing.
1317		 */
1318		if (rc == -EACCES || !unlock_hpa) {
1319			ata_dev_warn(dev,
1320				     "HPA support seems broken, skipping HPA handling\n");
1321			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322
1323			/* we can continue if device aborted the command */
1324			if (rc == -EACCES)
1325				rc = 0;
1326		}
1327
1328		return rc;
1329	}
1330	dev->n_native_sectors = native_sectors;
1331
1332	/* nothing to do? */
1333	if (native_sectors <= sectors || !unlock_hpa) {
1334		if (!print_info || native_sectors == sectors)
1335			return 0;
1336
1337		if (native_sectors > sectors)
1338			ata_dev_info(dev,
1339				"HPA detected: current %llu, native %llu\n",
1340				(unsigned long long)sectors,
1341				(unsigned long long)native_sectors);
1342		else if (native_sectors < sectors)
1343			ata_dev_warn(dev,
1344				"native sectors (%llu) is smaller than sectors (%llu)\n",
1345				(unsigned long long)native_sectors,
1346				(unsigned long long)sectors);
1347		return 0;
1348	}
1349
1350	/* let's unlock HPA */
1351	rc = ata_set_max_sectors(dev, native_sectors);
1352	if (rc == -EACCES) {
1353		/* if device aborted the command, skip HPA resizing */
1354		ata_dev_warn(dev,
1355			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356			     (unsigned long long)sectors,
1357			     (unsigned long long)native_sectors);
1358		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359		return 0;
1360	} else if (rc)
1361		return rc;
1362
1363	/* re-read IDENTIFY data */
1364	rc = ata_dev_reread_id(dev, 0);
1365	if (rc) {
1366		ata_dev_err(dev,
1367			    "failed to re-read IDENTIFY data after HPA resizing\n");
1368		return rc;
1369	}
1370
1371	if (print_info) {
1372		u64 new_sectors = ata_id_n_sectors(dev->id);
1373		ata_dev_info(dev,
1374			"HPA unlocked: %llu -> %llu, native %llu\n",
1375			(unsigned long long)sectors,
1376			(unsigned long long)new_sectors,
1377			(unsigned long long)native_sectors);
1378	}
1379
1380	return 0;
1381}
1382
1383/**
1384 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1385 *	@dev: device from which the information is fetched
1386 *	@id: IDENTIFY DEVICE page to dump
1387 *
1388 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1389 *	page.
1390 *
1391 *	LOCKING:
1392 *	caller.
1393 */
1394
1395static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396{
1397	ata_dev_dbg(dev,
1398		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1399		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1400		"88==0x%04x  93==0x%04x\n",
1401		id[49], id[53], id[63], id[64], id[75], id[80],
1402		id[81], id[82], id[83], id[84], id[88], id[93]);
1403}
1404
1405/**
1406 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407 *	@id: IDENTIFY data to compute xfer mask from
1408 *
1409 *	Compute the xfermask for this device. This is not as trivial
1410 *	as it seems if we must consider early devices correctly.
1411 *
1412 *	FIXME: pre IDE drive timing (do we care ?).
1413 *
1414 *	LOCKING:
1415 *	None.
1416 *
1417 *	RETURNS:
1418 *	Computed xfermask
1419 */
1420unsigned int ata_id_xfermask(const u16 *id)
1421{
1422	unsigned int pio_mask, mwdma_mask, udma_mask;
1423
1424	/* Usual case. Word 53 indicates word 64 is valid */
1425	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427		pio_mask <<= 3;
1428		pio_mask |= 0x7;
1429	} else {
1430		/* If word 64 isn't valid then Word 51 high byte holds
1431		 * the PIO timing number for the maximum. Turn it into
1432		 * a mask.
1433		 */
1434		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435		if (mode < 5)	/* Valid PIO range */
1436			pio_mask = (2 << mode) - 1;
1437		else
1438			pio_mask = 1;
1439
1440		/* But wait.. there's more. Design your standards by
1441		 * committee and you too can get a free iordy field to
1442		 * process. However it is the speeds not the modes that
1443		 * are supported... Note drivers using the timing API
1444		 * will get this right anyway
1445		 */
1446	}
1447
1448	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449
1450	if (ata_id_is_cfa(id)) {
1451		/*
1452		 *	Process compact flash extended modes
1453		 */
1454		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456
1457		if (pio)
1458			pio_mask |= (1 << 5);
1459		if (pio > 1)
1460			pio_mask |= (1 << 6);
1461		if (dma)
1462			mwdma_mask |= (1 << 3);
1463		if (dma > 1)
1464			mwdma_mask |= (1 << 4);
1465	}
1466
1467	udma_mask = 0;
1468	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470
1471	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472}
1473EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474
1475static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476{
1477	struct completion *waiting = qc->private_data;
1478
1479	complete(waiting);
1480}
1481
1482/**
1483 *	ata_exec_internal - execute libata internal command
1484 *	@dev: Device to which the command is sent
1485 *	@tf: Taskfile registers for the command and the result
1486 *	@cdb: CDB for packet command
1487 *	@dma_dir: Data transfer direction of the command
1488 *	@buf: Data buffer of the command
1489 *	@buflen: Length of data buffer
1490 *	@timeout: Timeout in msecs (0 for default)
1491 *
1492 *	Executes libata internal command with timeout. @tf contains
1493 *	the command on entry and the result on return. Timeout and error
1494 *	conditions are reported via the return value. No recovery action
1495 *	is taken after a command times out. It is the caller's duty to
1496 *	clean up after timeout.
1497 *
1498 *	LOCKING:
1499 *	None.  Should be called with kernel context, might sleep.
1500 *
1501 *	RETURNS:
1502 *	Zero on success, AC_ERR_* mask on failure
1503 */
1504unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1505			       const u8 *cdb, enum dma_data_direction dma_dir,
1506			       void *buf, unsigned int buflen,
1507			       unsigned int timeout)
1508{
1509	struct ata_link *link = dev->link;
1510	struct ata_port *ap = link->ap;
1511	u8 command = tf->command;
1512	struct ata_queued_cmd *qc;
1513	struct scatterlist sgl;
1514	unsigned int preempted_tag;
1515	u32 preempted_sactive;
1516	u64 preempted_qc_active;
1517	int preempted_nr_active_links;
1518	bool auto_timeout = false;
1519	DECLARE_COMPLETION_ONSTACK(wait);
1520	unsigned long flags;
1521	unsigned int err_mask;
1522	int rc;
1523
1524	if (WARN_ON(dma_dir != DMA_NONE && !buf))
1525		return AC_ERR_INVALID;
1526
1527	spin_lock_irqsave(ap->lock, flags);
1528
1529	/* No internal command while frozen */
1530	if (ata_port_is_frozen(ap)) {
1531		spin_unlock_irqrestore(ap->lock, flags);
1532		return AC_ERR_SYSTEM;
1533	}
1534
1535	/* Initialize internal qc */
1536	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1537
1538	qc->tag = ATA_TAG_INTERNAL;
1539	qc->hw_tag = 0;
1540	qc->scsicmd = NULL;
1541	qc->ap = ap;
1542	qc->dev = dev;
1543	ata_qc_reinit(qc);
1544
1545	preempted_tag = link->active_tag;
1546	preempted_sactive = link->sactive;
1547	preempted_qc_active = ap->qc_active;
1548	preempted_nr_active_links = ap->nr_active_links;
1549	link->active_tag = ATA_TAG_POISON;
1550	link->sactive = 0;
1551	ap->qc_active = 0;
1552	ap->nr_active_links = 0;
1553
1554	/* Prepare and issue qc */
1555	qc->tf = *tf;
1556	if (cdb)
1557		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1558
1559	/* Some SATA bridges need us to indicate data xfer direction */
1560	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1561	    dma_dir == DMA_FROM_DEVICE)
1562		qc->tf.feature |= ATAPI_DMADIR;
1563
1564	qc->flags |= ATA_QCFLAG_RESULT_TF;
1565	qc->dma_dir = dma_dir;
1566	if (dma_dir != DMA_NONE) {
1567		sg_init_one(&sgl, buf, buflen);
1568		ata_sg_init(qc, &sgl, 1);
1569		qc->nbytes = buflen;
1570	}
1571
1572	qc->private_data = &wait;
1573	qc->complete_fn = ata_qc_complete_internal;
1574
1575	ata_qc_issue(qc);
1576
1577	spin_unlock_irqrestore(ap->lock, flags);
1578
1579	if (!timeout) {
1580		if (ata_probe_timeout) {
1581			timeout = ata_probe_timeout * 1000;
1582		} else {
1583			timeout = ata_internal_cmd_timeout(dev, command);
1584			auto_timeout = true;
1585		}
1586	}
1587
1588	ata_eh_release(ap);
1589
1590	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1591
1592	ata_eh_acquire(ap);
1593
1594	ata_sff_flush_pio_task(ap);
1595
1596	if (!rc) {
1597		/*
1598		 * We are racing with irq here. If we lose, the following test
1599		 * prevents us from completing the qc twice. If we win, the port
1600		 * is frozen and will be cleaned up by ->post_internal_cmd().
1601		 */
1602		spin_lock_irqsave(ap->lock, flags);
1603		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1604			qc->err_mask |= AC_ERR_TIMEOUT;
1605			ata_port_freeze(ap);
1606			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1607				     timeout, command);
1608		}
1609		spin_unlock_irqrestore(ap->lock, flags);
1610	}
1611
1612	if (ap->ops->post_internal_cmd)
1613		ap->ops->post_internal_cmd(qc);
1614
1615	/* Perform minimal error analysis */
1616	if (qc->flags & ATA_QCFLAG_EH) {
1617		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1618			qc->err_mask |= AC_ERR_DEV;
1619
1620		if (!qc->err_mask)
1621			qc->err_mask |= AC_ERR_OTHER;
1622
1623		if (qc->err_mask & ~AC_ERR_OTHER)
1624			qc->err_mask &= ~AC_ERR_OTHER;
1625	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1626		qc->result_tf.status |= ATA_SENSE;
1627	}
1628
1629	/* Finish up */
1630	spin_lock_irqsave(ap->lock, flags);
1631
1632	*tf = qc->result_tf;
1633	err_mask = qc->err_mask;
1634
1635	ata_qc_free(qc);
1636	link->active_tag = preempted_tag;
1637	link->sactive = preempted_sactive;
1638	ap->qc_active = preempted_qc_active;
1639	ap->nr_active_links = preempted_nr_active_links;
1640
1641	spin_unlock_irqrestore(ap->lock, flags);
1642
1643	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1644		ata_internal_cmd_timed_out(dev, command);
1645
1646	return err_mask;
1647}
1648
1649/**
1650 *	ata_pio_need_iordy	-	check if iordy needed
1651 *	@adev: ATA device
1652 *
1653 *	Check if the current speed of the device requires IORDY. Used
1654 *	by various controllers for chip configuration.
1655 */
1656unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1657{
1658	/* Don't set IORDY if we're preparing for reset.  IORDY may
1659	 * lead to controller lock up on certain controllers if the
1660	 * port is not occupied.  See bko#11703 for details.
1661	 */
1662	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1663		return 0;
1664	/* Controller doesn't support IORDY.  Probably a pointless
1665	 * check as the caller should know this.
1666	 */
1667	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1668		return 0;
1669	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1670	if (ata_id_is_cfa(adev->id)
1671	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1672		return 0;
1673	/* PIO3 and higher it is mandatory */
1674	if (adev->pio_mode > XFER_PIO_2)
1675		return 1;
1676	/* We turn it on when possible */
1677	if (ata_id_has_iordy(adev->id))
1678		return 1;
1679	return 0;
1680}
1681EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1682
1683/**
1684 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1685 *	@adev: ATA device
1686 *
1687 *	Compute the highest mode possible if we are not using iordy. Return
1688 *	-1 if no iordy mode is available.
1689 */
1690static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1691{
1692	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1693	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1694		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1695		/* Is the speed faster than the drive allows non IORDY ? */
1696		if (pio) {
1697			/* This is cycle times not frequency - watch the logic! */
1698			if (pio > 240)	/* PIO2 is 240nS per cycle */
1699				return 3 << ATA_SHIFT_PIO;
1700			return 7 << ATA_SHIFT_PIO;
1701		}
1702	}
1703	return 3 << ATA_SHIFT_PIO;
1704}
1705
1706/**
1707 *	ata_do_dev_read_id		-	default ID read method
1708 *	@dev: device
1709 *	@tf: proposed taskfile
1710 *	@id: data buffer
1711 *
1712 *	Issue the identify taskfile and hand back the buffer containing
1713 *	identify data. For some RAID controllers and for pre ATA devices
1714 *	this function is wrapped or replaced by the driver
1715 */
1716unsigned int ata_do_dev_read_id(struct ata_device *dev,
1717				struct ata_taskfile *tf, __le16 *id)
1718{
1719	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1720				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1721}
1722EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1723
1724/**
1725 *	ata_dev_read_id - Read ID data from the specified device
1726 *	@dev: target device
1727 *	@p_class: pointer to class of the target device (may be changed)
1728 *	@flags: ATA_READID_* flags
1729 *	@id: buffer to read IDENTIFY data into
1730 *
1731 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1732 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1733 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1734 *	for pre-ATA4 drives.
1735 *
1736 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1737 *	now we abort if we hit that case.
1738 *
1739 *	LOCKING:
1740 *	Kernel thread context (may sleep)
1741 *
1742 *	RETURNS:
1743 *	0 on success, -errno otherwise.
1744 */
1745int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1746		    unsigned int flags, u16 *id)
1747{
1748	struct ata_port *ap = dev->link->ap;
1749	unsigned int class = *p_class;
1750	struct ata_taskfile tf;
1751	unsigned int err_mask = 0;
1752	const char *reason;
1753	bool is_semb = class == ATA_DEV_SEMB;
1754	int may_fallback = 1, tried_spinup = 0;
1755	int rc;
1756
1757retry:
1758	ata_tf_init(dev, &tf);
1759
1760	switch (class) {
1761	case ATA_DEV_SEMB:
1762		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1763		fallthrough;
1764	case ATA_DEV_ATA:
1765	case ATA_DEV_ZAC:
1766		tf.command = ATA_CMD_ID_ATA;
1767		break;
1768	case ATA_DEV_ATAPI:
1769		tf.command = ATA_CMD_ID_ATAPI;
1770		break;
1771	default:
1772		rc = -ENODEV;
1773		reason = "unsupported class";
1774		goto err_out;
1775	}
1776
1777	tf.protocol = ATA_PROT_PIO;
1778
1779	/* Some devices choke if TF registers contain garbage.  Make
1780	 * sure those are properly initialized.
1781	 */
1782	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1783
1784	/* Device presence detection is unreliable on some
1785	 * controllers.  Always poll IDENTIFY if available.
1786	 */
1787	tf.flags |= ATA_TFLAG_POLLING;
1788
1789	if (ap->ops->read_id)
1790		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1791	else
1792		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1793
1794	if (err_mask) {
1795		if (err_mask & AC_ERR_NODEV_HINT) {
1796			ata_dev_dbg(dev, "NODEV after polling detection\n");
1797			return -ENOENT;
1798		}
1799
1800		if (is_semb) {
1801			ata_dev_info(dev,
1802		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1803			/* SEMB is not supported yet */
1804			*p_class = ATA_DEV_SEMB_UNSUP;
1805			return 0;
1806		}
1807
1808		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1809			/* Device or controller might have reported
1810			 * the wrong device class.  Give a shot at the
1811			 * other IDENTIFY if the current one is
1812			 * aborted by the device.
1813			 */
1814			if (may_fallback) {
1815				may_fallback = 0;
1816
1817				if (class == ATA_DEV_ATA)
1818					class = ATA_DEV_ATAPI;
1819				else
1820					class = ATA_DEV_ATA;
1821				goto retry;
1822			}
1823
1824			/* Control reaches here iff the device aborted
1825			 * both flavors of IDENTIFYs which happens
1826			 * sometimes with phantom devices.
1827			 */
1828			ata_dev_dbg(dev,
1829				    "both IDENTIFYs aborted, assuming NODEV\n");
1830			return -ENOENT;
1831		}
1832
1833		rc = -EIO;
1834		reason = "I/O error";
1835		goto err_out;
1836	}
1837
1838	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1839		ata_dev_info(dev, "dumping IDENTIFY data, "
1840			    "class=%d may_fallback=%d tried_spinup=%d\n",
1841			    class, may_fallback, tried_spinup);
1842		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1843			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1844	}
1845
1846	/* Falling back doesn't make sense if ID data was read
1847	 * successfully at least once.
1848	 */
1849	may_fallback = 0;
1850
1851	swap_buf_le16(id, ATA_ID_WORDS);
1852
1853	/* sanity check */
1854	rc = -EINVAL;
1855	reason = "device reports invalid type";
1856
1857	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1858		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1859			goto err_out;
1860		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1861							ata_id_is_ata(id)) {
1862			ata_dev_dbg(dev,
1863				"host indicates ignore ATA devices, ignored\n");
1864			return -ENOENT;
1865		}
1866	} else {
1867		if (ata_id_is_ata(id))
1868			goto err_out;
1869	}
1870
1871	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1872		tried_spinup = 1;
1873		/*
1874		 * Drive powered-up in standby mode, and requires a specific
1875		 * SET_FEATURES spin-up subcommand before it will accept
1876		 * anything other than the original IDENTIFY command.
1877		 */
1878		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1879		if (err_mask && id[2] != 0x738c) {
1880			rc = -EIO;
1881			reason = "SPINUP failed";
1882			goto err_out;
1883		}
1884		/*
1885		 * If the drive initially returned incomplete IDENTIFY info,
1886		 * we now must reissue the IDENTIFY command.
1887		 */
1888		if (id[2] == 0x37c8)
1889			goto retry;
1890	}
1891
1892	if ((flags & ATA_READID_POSTRESET) &&
1893	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1894		/*
1895		 * The exact sequence expected by certain pre-ATA4 drives is:
1896		 * SRST RESET
1897		 * IDENTIFY (optional in early ATA)
1898		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1899		 * anything else..
1900		 * Some drives were very specific about that exact sequence.
1901		 *
1902		 * Note that ATA4 says lba is mandatory so the second check
1903		 * should never trigger.
1904		 */
1905		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1906			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1907			if (err_mask) {
1908				rc = -EIO;
1909				reason = "INIT_DEV_PARAMS failed";
1910				goto err_out;
1911			}
1912
1913			/* current CHS translation info (id[53-58]) might be
1914			 * changed. reread the identify device info.
1915			 */
1916			flags &= ~ATA_READID_POSTRESET;
1917			goto retry;
1918		}
1919	}
1920
1921	*p_class = class;
1922
1923	return 0;
1924
1925 err_out:
1926	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1927		     reason, err_mask);
1928	return rc;
1929}
1930
1931bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1932			   bool set_active)
1933{
1934	/* Only applies to ATA and ZAC devices */
1935	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1936		return false;
1937
1938	ata_tf_init(dev, tf);
1939	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1940	tf->protocol = ATA_PROT_NODATA;
1941
1942	if (set_active) {
1943		/* VERIFY for 1 sector at lba=0 */
1944		tf->command = ATA_CMD_VERIFY;
1945		tf->nsect = 1;
1946		if (dev->flags & ATA_DFLAG_LBA) {
1947			tf->flags |= ATA_TFLAG_LBA;
1948			tf->device |= ATA_LBA;
1949		} else {
1950			/* CHS */
1951			tf->lbal = 0x1; /* sect */
1952		}
1953	} else {
1954		tf->command = ATA_CMD_STANDBYNOW1;
1955	}
1956
1957	return true;
1958}
1959
1960static bool ata_dev_power_is_active(struct ata_device *dev)
1961{
1962	struct ata_taskfile tf;
1963	unsigned int err_mask;
1964
1965	ata_tf_init(dev, &tf);
1966	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1967	tf.protocol = ATA_PROT_NODATA;
1968	tf.command = ATA_CMD_CHK_POWER;
1969
1970	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1971	if (err_mask) {
1972		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1973			    err_mask);
1974		/*
1975		 * Assume we are in standby mode so that we always force a
1976		 * spinup in ata_dev_power_set_active().
1977		 */
1978		return false;
1979	}
1980
1981	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
1982
1983	/* Active or idle */
1984	return tf.nsect == 0xff;
1985}
1986
1987/**
1988 *	ata_dev_power_set_standby - Set a device power mode to standby
1989 *	@dev: target device
1990 *
1991 *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1992 *	For an HDD device, this spins down the disks.
1993 *
1994 *	LOCKING:
1995 *	Kernel thread context (may sleep).
1996 */
1997void ata_dev_power_set_standby(struct ata_device *dev)
1998{
1999	unsigned long ap_flags = dev->link->ap->flags;
2000	struct ata_taskfile tf;
2001	unsigned int err_mask;
2002
2003	/* If the device is already sleeping or in standby, do nothing. */
2004	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2005	    !ata_dev_power_is_active(dev))
2006		return;
2007
2008	/*
2009	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2010	 * causing some drives to spin up and down again. For these, do nothing
2011	 * if we are being called on shutdown.
2012	 */
2013	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2014	    system_state == SYSTEM_POWER_OFF)
2015		return;
2016
2017	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2018	    system_entering_hibernation())
2019		return;
2020
2021	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2022	if (!ata_dev_power_init_tf(dev, &tf, false))
2023		return;
2024
2025	ata_dev_notice(dev, "Entering standby power mode\n");
2026
2027	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2028	if (err_mask)
2029		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2030			    err_mask);
2031}
2032
2033/**
2034 *	ata_dev_power_set_active -  Set a device power mode to active
2035 *	@dev: target device
2036 *
2037 *	Issue a VERIFY command to enter to ensure that the device is in the
2038 *	active power mode. For a spun-down HDD (standby or idle power mode),
2039 *	the VERIFY command will complete after the disk spins up.
2040 *
2041 *	LOCKING:
2042 *	Kernel thread context (may sleep).
2043 */
2044void ata_dev_power_set_active(struct ata_device *dev)
2045{
2046	struct ata_taskfile tf;
2047	unsigned int err_mask;
2048
2049	/*
2050	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2051	 * if supported by the device.
2052	 */
2053	if (!ata_dev_power_init_tf(dev, &tf, true))
2054		return;
2055
2056	/*
2057	 * Check the device power state & condition and force a spinup with
2058	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2059	 */
2060	if (ata_dev_power_is_active(dev))
2061		return;
2062
2063	ata_dev_notice(dev, "Entering active power mode\n");
2064
2065	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2066	if (err_mask)
2067		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2068			    err_mask);
2069}
2070
2071/**
2072 *	ata_read_log_page - read a specific log page
2073 *	@dev: target device
2074 *	@log: log to read
2075 *	@page: page to read
2076 *	@buf: buffer to store read page
2077 *	@sectors: number of sectors to read
2078 *
2079 *	Read log page using READ_LOG_EXT command.
2080 *
2081 *	LOCKING:
2082 *	Kernel thread context (may sleep).
2083 *
2084 *	RETURNS:
2085 *	0 on success, AC_ERR_* mask otherwise.
2086 */
2087unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2088			       u8 page, void *buf, unsigned int sectors)
2089{
2090	unsigned long ap_flags = dev->link->ap->flags;
2091	struct ata_taskfile tf;
2092	unsigned int err_mask;
2093	bool dma = false;
2094
2095	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2096
2097	/*
2098	 * Return error without actually issuing the command on controllers
2099	 * which e.g. lockup on a read log page.
2100	 */
2101	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2102		return AC_ERR_DEV;
2103
2104retry:
2105	ata_tf_init(dev, &tf);
2106	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2107	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2108		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2109		tf.protocol = ATA_PROT_DMA;
2110		dma = true;
2111	} else {
2112		tf.command = ATA_CMD_READ_LOG_EXT;
2113		tf.protocol = ATA_PROT_PIO;
2114		dma = false;
2115	}
2116	tf.lbal = log;
2117	tf.lbam = page;
2118	tf.nsect = sectors;
2119	tf.hob_nsect = sectors >> 8;
2120	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2121
2122	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2123				     buf, sectors * ATA_SECT_SIZE, 0);
2124
2125	if (err_mask) {
2126		if (dma) {
2127			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2128			if (!ata_port_is_frozen(dev->link->ap))
2129				goto retry;
2130		}
2131		ata_dev_err(dev,
2132			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2133			    (unsigned int)log, (unsigned int)page, err_mask);
2134	}
2135
2136	return err_mask;
2137}
2138
2139static int ata_log_supported(struct ata_device *dev, u8 log)
2140{
2141	struct ata_port *ap = dev->link->ap;
2142
2143	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2144		return 0;
2145
2146	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2147		return 0;
2148	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2149}
2150
2151static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2152{
2153	struct ata_port *ap = dev->link->ap;
2154	unsigned int err, i;
2155
2156	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2157		return false;
2158
2159	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2160		/*
2161		 * IDENTIFY DEVICE data log is defined as mandatory starting
2162		 * with ACS-3 (ATA version 10). Warn about the missing log
2163		 * for drives which implement this ATA level or above.
2164		 */
2165		if (ata_id_major_version(dev->id) >= 10)
2166			ata_dev_warn(dev,
2167				"ATA Identify Device Log not supported\n");
2168		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2169		return false;
2170	}
2171
2172	/*
2173	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2174	 * supported.
2175	 */
2176	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2177				1);
2178	if (err)
2179		return false;
2180
2181	for (i = 0; i < ap->sector_buf[8]; i++) {
2182		if (ap->sector_buf[9 + i] == page)
2183			return true;
2184	}
2185
2186	return false;
2187}
2188
2189static int ata_do_link_spd_horkage(struct ata_device *dev)
2190{
2191	struct ata_link *plink = ata_dev_phys_link(dev);
2192	u32 target, target_limit;
2193
2194	if (!sata_scr_valid(plink))
2195		return 0;
2196
2197	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2198		target = 1;
2199	else
2200		return 0;
2201
2202	target_limit = (1 << target) - 1;
2203
2204	/* if already on stricter limit, no need to push further */
2205	if (plink->sata_spd_limit <= target_limit)
2206		return 0;
2207
2208	plink->sata_spd_limit = target_limit;
2209
2210	/* Request another EH round by returning -EAGAIN if link is
2211	 * going faster than the target speed.  Forward progress is
2212	 * guaranteed by setting sata_spd_limit to target_limit above.
2213	 */
2214	if (plink->sata_spd > target) {
2215		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2216			     sata_spd_string(target));
2217		return -EAGAIN;
2218	}
2219	return 0;
2220}
2221
2222static inline u8 ata_dev_knobble(struct ata_device *dev)
2223{
2224	struct ata_port *ap = dev->link->ap;
2225
2226	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2227		return 0;
2228
2229	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2230}
2231
2232static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2233{
2234	struct ata_port *ap = dev->link->ap;
2235	unsigned int err_mask;
2236
2237	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2238		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2239		return;
2240	}
2241	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2242				     0, ap->sector_buf, 1);
2243	if (!err_mask) {
2244		u8 *cmds = dev->ncq_send_recv_cmds;
2245
2246		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2247		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2248
2249		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2250			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2251			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2252				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2253		}
2254	}
2255}
2256
2257static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2258{
2259	struct ata_port *ap = dev->link->ap;
2260	unsigned int err_mask;
2261
2262	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2263		ata_dev_warn(dev,
2264			     "NCQ Send/Recv Log not supported\n");
2265		return;
2266	}
2267	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2268				     0, ap->sector_buf, 1);
2269	if (!err_mask) {
2270		u8 *cmds = dev->ncq_non_data_cmds;
2271
2272		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2273	}
2274}
2275
2276static void ata_dev_config_ncq_prio(struct ata_device *dev)
2277{
2278	struct ata_port *ap = dev->link->ap;
2279	unsigned int err_mask;
2280
2281	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2282		return;
2283
2284	err_mask = ata_read_log_page(dev,
2285				     ATA_LOG_IDENTIFY_DEVICE,
2286				     ATA_LOG_SATA_SETTINGS,
2287				     ap->sector_buf,
2288				     1);
2289	if (err_mask)
2290		goto not_supported;
2291
2292	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2293		goto not_supported;
2294
2295	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2296
2297	return;
2298
2299not_supported:
2300	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2301	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2302}
2303
2304static bool ata_dev_check_adapter(struct ata_device *dev,
2305				  unsigned short vendor_id)
2306{
2307	struct pci_dev *pcidev = NULL;
2308	struct device *parent_dev = NULL;
2309
2310	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2311	     parent_dev = parent_dev->parent) {
2312		if (dev_is_pci(parent_dev)) {
2313			pcidev = to_pci_dev(parent_dev);
2314			if (pcidev->vendor == vendor_id)
2315				return true;
2316			break;
2317		}
2318	}
2319
2320	return false;
2321}
2322
2323static int ata_dev_config_ncq(struct ata_device *dev,
2324			       char *desc, size_t desc_sz)
2325{
2326	struct ata_port *ap = dev->link->ap;
2327	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2328	unsigned int err_mask;
2329	char *aa_desc = "";
2330
2331	if (!ata_id_has_ncq(dev->id)) {
2332		desc[0] = '\0';
2333		return 0;
2334	}
2335	if (!IS_ENABLED(CONFIG_SATA_HOST))
2336		return 0;
2337	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2338		snprintf(desc, desc_sz, "NCQ (not used)");
2339		return 0;
2340	}
2341
2342	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2343	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2344		snprintf(desc, desc_sz, "NCQ (not used)");
2345		return 0;
2346	}
2347
2348	if (ap->flags & ATA_FLAG_NCQ) {
2349		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2350		dev->flags |= ATA_DFLAG_NCQ;
2351	}
2352
2353	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2354		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2355		ata_id_has_fpdma_aa(dev->id)) {
2356		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2357			SATA_FPDMA_AA);
2358		if (err_mask) {
2359			ata_dev_err(dev,
2360				    "failed to enable AA (error_mask=0x%x)\n",
2361				    err_mask);
2362			if (err_mask != AC_ERR_DEV) {
2363				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2364				return -EIO;
2365			}
2366		} else
2367			aa_desc = ", AA";
2368	}
2369
2370	if (hdepth >= ddepth)
2371		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2372	else
2373		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2374			ddepth, aa_desc);
2375
2376	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2377		if (ata_id_has_ncq_send_and_recv(dev->id))
2378			ata_dev_config_ncq_send_recv(dev);
2379		if (ata_id_has_ncq_non_data(dev->id))
2380			ata_dev_config_ncq_non_data(dev);
2381		if (ata_id_has_ncq_prio(dev->id))
2382			ata_dev_config_ncq_prio(dev);
2383	}
2384
2385	return 0;
2386}
2387
2388static void ata_dev_config_sense_reporting(struct ata_device *dev)
2389{
2390	unsigned int err_mask;
2391
2392	if (!ata_id_has_sense_reporting(dev->id))
2393		return;
2394
2395	if (ata_id_sense_reporting_enabled(dev->id))
2396		return;
2397
2398	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2399	if (err_mask) {
2400		ata_dev_dbg(dev,
2401			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2402			    err_mask);
2403	}
2404}
2405
2406static void ata_dev_config_zac(struct ata_device *dev)
2407{
2408	struct ata_port *ap = dev->link->ap;
2409	unsigned int err_mask;
2410	u8 *identify_buf = ap->sector_buf;
2411
2412	dev->zac_zones_optimal_open = U32_MAX;
2413	dev->zac_zones_optimal_nonseq = U32_MAX;
2414	dev->zac_zones_max_open = U32_MAX;
2415
2416	/*
2417	 * Always set the 'ZAC' flag for Host-managed devices.
2418	 */
2419	if (dev->class == ATA_DEV_ZAC)
2420		dev->flags |= ATA_DFLAG_ZAC;
2421	else if (ata_id_zoned_cap(dev->id) == 0x01)
2422		/*
2423		 * Check for host-aware devices.
2424		 */
2425		dev->flags |= ATA_DFLAG_ZAC;
2426
2427	if (!(dev->flags & ATA_DFLAG_ZAC))
2428		return;
2429
2430	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2431		ata_dev_warn(dev,
2432			     "ATA Zoned Information Log not supported\n");
2433		return;
2434	}
2435
2436	/*
2437	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2438	 */
2439	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2440				     ATA_LOG_ZONED_INFORMATION,
2441				     identify_buf, 1);
2442	if (!err_mask) {
2443		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2444
2445		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2446		if ((zoned_cap >> 63))
2447			dev->zac_zoned_cap = (zoned_cap & 1);
2448		opt_open = get_unaligned_le64(&identify_buf[24]);
2449		if ((opt_open >> 63))
2450			dev->zac_zones_optimal_open = (u32)opt_open;
2451		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2452		if ((opt_nonseq >> 63))
2453			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2454		max_open = get_unaligned_le64(&identify_buf[40]);
2455		if ((max_open >> 63))
2456			dev->zac_zones_max_open = (u32)max_open;
2457	}
2458}
2459
2460static void ata_dev_config_trusted(struct ata_device *dev)
2461{
2462	struct ata_port *ap = dev->link->ap;
2463	u64 trusted_cap;
2464	unsigned int err;
2465
2466	if (!ata_id_has_trusted(dev->id))
2467		return;
2468
2469	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2470		ata_dev_warn(dev,
2471			     "Security Log not supported\n");
2472		return;
2473	}
2474
2475	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2476			ap->sector_buf, 1);
2477	if (err)
2478		return;
2479
2480	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2481	if (!(trusted_cap & (1ULL << 63))) {
2482		ata_dev_dbg(dev,
2483			    "Trusted Computing capability qword not valid!\n");
2484		return;
2485	}
2486
2487	if (trusted_cap & (1 << 0))
2488		dev->flags |= ATA_DFLAG_TRUSTED;
2489}
2490
2491static void ata_dev_config_cdl(struct ata_device *dev)
2492{
2493	struct ata_port *ap = dev->link->ap;
2494	unsigned int err_mask;
2495	bool cdl_enabled;
2496	u64 val;
2497
2498	if (ata_id_major_version(dev->id) < 11)
2499		goto not_supported;
2500
2501	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2502	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2503	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2504		goto not_supported;
2505
2506	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2507				     ATA_LOG_SUPPORTED_CAPABILITIES,
2508				     ap->sector_buf, 1);
2509	if (err_mask)
2510		goto not_supported;
2511
2512	/* Check Command Duration Limit Supported bits */
2513	val = get_unaligned_le64(&ap->sector_buf[168]);
2514	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2515		goto not_supported;
2516
2517	/* Warn the user if command duration guideline is not supported */
2518	if (!(val & BIT_ULL(1)))
2519		ata_dev_warn(dev,
2520			"Command duration guideline is not supported\n");
2521
2522	/*
2523	 * We must have support for the sense data for successful NCQ commands
2524	 * log indicated by the successful NCQ command sense data supported bit.
2525	 */
2526	val = get_unaligned_le64(&ap->sector_buf[8]);
2527	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2528		ata_dev_warn(dev,
2529			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2530		goto not_supported;
2531	}
2532
2533	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2534	if (!ata_id_has_ncq_autosense(dev->id)) {
2535		ata_dev_warn(dev,
2536			"CDL supported but NCQ autosense is not supported\n");
2537		goto not_supported;
2538	}
2539
2540	/*
2541	 * If CDL is marked as enabled, make sure the feature is enabled too.
2542	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2543	 */
2544	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2545				     ATA_LOG_CURRENT_SETTINGS,
2546				     ap->sector_buf, 1);
2547	if (err_mask)
2548		goto not_supported;
2549
2550	val = get_unaligned_le64(&ap->sector_buf[8]);
2551	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2552	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2553		if (!cdl_enabled) {
2554			/* Enable CDL on the device */
2555			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2556			if (err_mask) {
2557				ata_dev_err(dev,
2558					    "Enable CDL feature failed\n");
2559				goto not_supported;
2560			}
2561		}
2562	} else {
2563		if (cdl_enabled) {
2564			/* Disable CDL on the device */
2565			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2566			if (err_mask) {
2567				ata_dev_err(dev,
2568					    "Disable CDL feature failed\n");
2569				goto not_supported;
2570			}
2571		}
2572	}
2573
2574	/*
2575	 * While CDL itself has to be enabled using sysfs, CDL requires that
2576	 * sense data for successful NCQ commands is enabled to work properly.
2577	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2578	 * if supported.
2579	 */
2580	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2581		err_mask = ata_dev_set_feature(dev,
2582					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2583		if (err_mask) {
2584			ata_dev_warn(dev,
2585				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2586				     err_mask);
2587			goto not_supported;
2588		}
2589	}
2590
2591	/*
2592	 * Allocate a buffer to handle reading the sense data for successful
2593	 * NCQ Commands log page for commands using a CDL with one of the limit
2594	 * policy set to 0xD (successful completion with sense data available
2595	 * bit set).
2596	 */
2597	if (!ap->ncq_sense_buf) {
2598		ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2599		if (!ap->ncq_sense_buf)
2600			goto not_supported;
2601	}
2602
2603	/*
2604	 * Command duration limits is supported: cache the CDL log page 18h
2605	 * (command duration descriptors).
2606	 */
2607	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2608	if (err_mask) {
2609		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2610		goto not_supported;
2611	}
2612
2613	memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2614	dev->flags |= ATA_DFLAG_CDL;
2615
2616	return;
2617
2618not_supported:
2619	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2620	kfree(ap->ncq_sense_buf);
2621	ap->ncq_sense_buf = NULL;
2622}
2623
2624static int ata_dev_config_lba(struct ata_device *dev)
2625{
2626	const u16 *id = dev->id;
2627	const char *lba_desc;
2628	char ncq_desc[32];
2629	int ret;
2630
2631	dev->flags |= ATA_DFLAG_LBA;
2632
2633	if (ata_id_has_lba48(id)) {
2634		lba_desc = "LBA48";
2635		dev->flags |= ATA_DFLAG_LBA48;
2636		if (dev->n_sectors >= (1UL << 28) &&
2637		    ata_id_has_flush_ext(id))
2638			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2639	} else {
2640		lba_desc = "LBA";
2641	}
2642
2643	/* config NCQ */
2644	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2645
2646	/* print device info to dmesg */
2647	if (ata_dev_print_info(dev))
2648		ata_dev_info(dev,
2649			     "%llu sectors, multi %u: %s %s\n",
2650			     (unsigned long long)dev->n_sectors,
2651			     dev->multi_count, lba_desc, ncq_desc);
2652
2653	return ret;
2654}
2655
2656static void ata_dev_config_chs(struct ata_device *dev)
2657{
2658	const u16 *id = dev->id;
2659
2660	if (ata_id_current_chs_valid(id)) {
2661		/* Current CHS translation is valid. */
2662		dev->cylinders = id[54];
2663		dev->heads     = id[55];
2664		dev->sectors   = id[56];
2665	} else {
2666		/* Default translation */
2667		dev->cylinders	= id[1];
2668		dev->heads	= id[3];
2669		dev->sectors	= id[6];
2670	}
2671
2672	/* print device info to dmesg */
2673	if (ata_dev_print_info(dev))
2674		ata_dev_info(dev,
2675			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2676			     (unsigned long long)dev->n_sectors,
2677			     dev->multi_count, dev->cylinders,
2678			     dev->heads, dev->sectors);
2679}
2680
2681static void ata_dev_config_fua(struct ata_device *dev)
2682{
2683	/* Ignore FUA support if its use is disabled globally */
2684	if (!libata_fua)
2685		goto nofua;
2686
2687	/* Ignore devices without support for WRITE DMA FUA EXT */
2688	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2689		goto nofua;
2690
2691	/* Ignore known bad devices and devices that lack NCQ support */
2692	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2693		goto nofua;
2694
2695	dev->flags |= ATA_DFLAG_FUA;
2696
2697	return;
2698
2699nofua:
2700	dev->flags &= ~ATA_DFLAG_FUA;
2701}
2702
2703static void ata_dev_config_devslp(struct ata_device *dev)
2704{
2705	u8 *sata_setting = dev->link->ap->sector_buf;
2706	unsigned int err_mask;
2707	int i, j;
2708
2709	/*
2710	 * Check device sleep capability. Get DevSlp timing variables
2711	 * from SATA Settings page of Identify Device Data Log.
2712	 */
2713	if (!ata_id_has_devslp(dev->id) ||
2714	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2715		return;
2716
2717	err_mask = ata_read_log_page(dev,
2718				     ATA_LOG_IDENTIFY_DEVICE,
2719				     ATA_LOG_SATA_SETTINGS,
2720				     sata_setting, 1);
2721	if (err_mask)
2722		return;
2723
2724	dev->flags |= ATA_DFLAG_DEVSLP;
2725	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2726		j = ATA_LOG_DEVSLP_OFFSET + i;
2727		dev->devslp_timing[i] = sata_setting[j];
2728	}
2729}
2730
2731static void ata_dev_config_cpr(struct ata_device *dev)
2732{
2733	unsigned int err_mask;
2734	size_t buf_len;
2735	int i, nr_cpr = 0;
2736	struct ata_cpr_log *cpr_log = NULL;
2737	u8 *desc, *buf = NULL;
2738
2739	if (ata_id_major_version(dev->id) < 11)
2740		goto out;
2741
2742	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2743	if (buf_len == 0)
2744		goto out;
2745
2746	/*
2747	 * Read the concurrent positioning ranges log (0x47). We can have at
2748	 * most 255 32B range descriptors plus a 64B header. This log varies in
2749	 * size, so use the size reported in the GPL directory. Reading beyond
2750	 * the supported length will result in an error.
2751	 */
2752	buf_len <<= 9;
2753	buf = kzalloc(buf_len, GFP_KERNEL);
2754	if (!buf)
2755		goto out;
2756
2757	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2758				     0, buf, buf_len >> 9);
2759	if (err_mask)
2760		goto out;
2761
2762	nr_cpr = buf[0];
2763	if (!nr_cpr)
2764		goto out;
2765
2766	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2767	if (!cpr_log)
2768		goto out;
2769
2770	cpr_log->nr_cpr = nr_cpr;
2771	desc = &buf[64];
2772	for (i = 0; i < nr_cpr; i++, desc += 32) {
2773		cpr_log->cpr[i].num = desc[0];
2774		cpr_log->cpr[i].num_storage_elements = desc[1];
2775		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2776		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2777	}
2778
2779out:
2780	swap(dev->cpr_log, cpr_log);
2781	kfree(cpr_log);
2782	kfree(buf);
2783}
2784
2785static void ata_dev_print_features(struct ata_device *dev)
2786{
2787	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2788		return;
2789
2790	ata_dev_info(dev,
2791		     "Features:%s%s%s%s%s%s%s%s\n",
2792		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2793		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2794		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2795		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2796		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2797		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2798		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2799		     dev->cpr_log ? " CPR" : "");
2800}
2801
2802/**
2803 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2804 *	@dev: Target device to configure
2805 *
2806 *	Configure @dev according to @dev->id.  Generic and low-level
2807 *	driver specific fixups are also applied.
2808 *
2809 *	LOCKING:
2810 *	Kernel thread context (may sleep)
2811 *
2812 *	RETURNS:
2813 *	0 on success, -errno otherwise
2814 */
2815int ata_dev_configure(struct ata_device *dev)
2816{
2817	struct ata_port *ap = dev->link->ap;
2818	bool print_info = ata_dev_print_info(dev);
2819	const u16 *id = dev->id;
2820	unsigned int xfer_mask;
2821	unsigned int err_mask;
2822	char revbuf[7];		/* XYZ-99\0 */
2823	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2824	char modelbuf[ATA_ID_PROD_LEN+1];
2825	int rc;
2826
2827	if (!ata_dev_enabled(dev)) {
2828		ata_dev_dbg(dev, "no device\n");
2829		return 0;
2830	}
2831
2832	/* set horkage */
2833	dev->horkage |= ata_dev_blacklisted(dev);
2834	ata_force_horkage(dev);
2835
2836	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2837		ata_dev_info(dev, "unsupported device, disabling\n");
2838		ata_dev_disable(dev);
2839		return 0;
2840	}
2841
2842	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2843	    dev->class == ATA_DEV_ATAPI) {
2844		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2845			     atapi_enabled ? "not supported with this driver"
2846			     : "disabled");
2847		ata_dev_disable(dev);
2848		return 0;
2849	}
2850
2851	rc = ata_do_link_spd_horkage(dev);
2852	if (rc)
2853		return rc;
2854
2855	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2856	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2857	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2858		dev->horkage |= ATA_HORKAGE_NOLPM;
2859
2860	if (ap->flags & ATA_FLAG_NO_LPM)
2861		dev->horkage |= ATA_HORKAGE_NOLPM;
2862
2863	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2864		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2865		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2866	}
2867
2868	/* let ACPI work its magic */
2869	rc = ata_acpi_on_devcfg(dev);
2870	if (rc)
2871		return rc;
2872
2873	/* massage HPA, do it early as it might change IDENTIFY data */
2874	rc = ata_hpa_resize(dev);
2875	if (rc)
2876		return rc;
2877
2878	/* print device capabilities */
2879	ata_dev_dbg(dev,
2880		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2881		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2882		    __func__,
2883		    id[49], id[82], id[83], id[84],
2884		    id[85], id[86], id[87], id[88]);
2885
2886	/* initialize to-be-configured parameters */
2887	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2888	dev->max_sectors = 0;
2889	dev->cdb_len = 0;
2890	dev->n_sectors = 0;
2891	dev->cylinders = 0;
2892	dev->heads = 0;
2893	dev->sectors = 0;
2894	dev->multi_count = 0;
2895
2896	/*
2897	 * common ATA, ATAPI feature tests
2898	 */
2899
2900	/* find max transfer mode; for printk only */
2901	xfer_mask = ata_id_xfermask(id);
2902
2903	ata_dump_id(dev, id);
2904
2905	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2906	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2907			sizeof(fwrevbuf));
2908
2909	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2910			sizeof(modelbuf));
2911
2912	/* ATA-specific feature tests */
2913	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2914		if (ata_id_is_cfa(id)) {
2915			/* CPRM may make this media unusable */
2916			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2917				ata_dev_warn(dev,
2918	"supports DRM functions and may not be fully accessible\n");
2919			snprintf(revbuf, 7, "CFA");
2920		} else {
2921			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2922			/* Warn the user if the device has TPM extensions */
2923			if (ata_id_has_tpm(id))
2924				ata_dev_warn(dev,
2925	"supports DRM functions and may not be fully accessible\n");
2926		}
2927
2928		dev->n_sectors = ata_id_n_sectors(id);
2929
2930		/* get current R/W Multiple count setting */
2931		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2932			unsigned int max = dev->id[47] & 0xff;
2933			unsigned int cnt = dev->id[59] & 0xff;
2934			/* only recognize/allow powers of two here */
2935			if (is_power_of_2(max) && is_power_of_2(cnt))
2936				if (cnt <= max)
2937					dev->multi_count = cnt;
2938		}
2939
2940		/* print device info to dmesg */
2941		if (print_info)
2942			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2943				     revbuf, modelbuf, fwrevbuf,
2944				     ata_mode_string(xfer_mask));
2945
2946		if (ata_id_has_lba(id)) {
2947			rc = ata_dev_config_lba(dev);
2948			if (rc)
2949				return rc;
2950		} else {
2951			ata_dev_config_chs(dev);
2952		}
2953
2954		ata_dev_config_fua(dev);
2955		ata_dev_config_devslp(dev);
2956		ata_dev_config_sense_reporting(dev);
2957		ata_dev_config_zac(dev);
2958		ata_dev_config_trusted(dev);
2959		ata_dev_config_cpr(dev);
2960		ata_dev_config_cdl(dev);
2961		dev->cdb_len = 32;
2962
2963		if (print_info)
2964			ata_dev_print_features(dev);
2965	}
2966
2967	/* ATAPI-specific feature tests */
2968	else if (dev->class == ATA_DEV_ATAPI) {
2969		const char *cdb_intr_string = "";
2970		const char *atapi_an_string = "";
2971		const char *dma_dir_string = "";
2972		u32 sntf;
2973
2974		rc = atapi_cdb_len(id);
2975		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2976			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2977			rc = -EINVAL;
2978			goto err_out_nosup;
2979		}
2980		dev->cdb_len = (unsigned int) rc;
2981
2982		/* Enable ATAPI AN if both the host and device have
2983		 * the support.  If PMP is attached, SNTF is required
2984		 * to enable ATAPI AN to discern between PHY status
2985		 * changed notifications and ATAPI ANs.
2986		 */
2987		if (atapi_an &&
2988		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2989		    (!sata_pmp_attached(ap) ||
2990		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2991			/* issue SET feature command to turn this on */
2992			err_mask = ata_dev_set_feature(dev,
2993					SETFEATURES_SATA_ENABLE, SATA_AN);
2994			if (err_mask)
2995				ata_dev_err(dev,
2996					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2997					    err_mask);
2998			else {
2999				dev->flags |= ATA_DFLAG_AN;
3000				atapi_an_string = ", ATAPI AN";
3001			}
3002		}
3003
3004		if (ata_id_cdb_intr(dev->id)) {
3005			dev->flags |= ATA_DFLAG_CDB_INTR;
3006			cdb_intr_string = ", CDB intr";
3007		}
3008
3009		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
3010			dev->flags |= ATA_DFLAG_DMADIR;
3011			dma_dir_string = ", DMADIR";
3012		}
3013
3014		if (ata_id_has_da(dev->id)) {
3015			dev->flags |= ATA_DFLAG_DA;
3016			zpodd_init(dev);
3017		}
3018
3019		/* print device info to dmesg */
3020		if (print_info)
3021			ata_dev_info(dev,
3022				     "ATAPI: %s, %s, max %s%s%s%s\n",
3023				     modelbuf, fwrevbuf,
3024				     ata_mode_string(xfer_mask),
3025				     cdb_intr_string, atapi_an_string,
3026				     dma_dir_string);
3027	}
3028
3029	/* determine max_sectors */
3030	dev->max_sectors = ATA_MAX_SECTORS;
3031	if (dev->flags & ATA_DFLAG_LBA48)
3032		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3033
3034	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3035	   200 sectors */
3036	if (ata_dev_knobble(dev)) {
3037		if (print_info)
3038			ata_dev_info(dev, "applying bridge limits\n");
3039		dev->udma_mask &= ATA_UDMA5;
3040		dev->max_sectors = ATA_MAX_SECTORS;
3041	}
3042
3043	if ((dev->class == ATA_DEV_ATAPI) &&
3044	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3045		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3046		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3047	}
3048
3049	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3050		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3051					 dev->max_sectors);
3052
3053	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3054		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3055					 dev->max_sectors);
3056
3057	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3058		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3059
3060	if (ap->ops->dev_config)
3061		ap->ops->dev_config(dev);
3062
3063	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3064		/* Let the user know. We don't want to disallow opens for
3065		   rescue purposes, or in case the vendor is just a blithering
3066		   idiot. Do this after the dev_config call as some controllers
3067		   with buggy firmware may want to avoid reporting false device
3068		   bugs */
3069
3070		if (print_info) {
3071			ata_dev_warn(dev,
3072"Drive reports diagnostics failure. This may indicate a drive\n");
3073			ata_dev_warn(dev,
3074"fault or invalid emulation. Contact drive vendor for information.\n");
3075		}
3076	}
3077
3078	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3079		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3080		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3081	}
3082
3083	return 0;
3084
3085err_out_nosup:
3086	return rc;
3087}
3088
3089/**
3090 *	ata_cable_40wire	-	return 40 wire cable type
3091 *	@ap: port
3092 *
3093 *	Helper method for drivers which want to hardwire 40 wire cable
3094 *	detection.
3095 */
3096
3097int ata_cable_40wire(struct ata_port *ap)
3098{
3099	return ATA_CBL_PATA40;
3100}
3101EXPORT_SYMBOL_GPL(ata_cable_40wire);
3102
3103/**
3104 *	ata_cable_80wire	-	return 80 wire cable type
3105 *	@ap: port
3106 *
3107 *	Helper method for drivers which want to hardwire 80 wire cable
3108 *	detection.
3109 */
3110
3111int ata_cable_80wire(struct ata_port *ap)
3112{
3113	return ATA_CBL_PATA80;
3114}
3115EXPORT_SYMBOL_GPL(ata_cable_80wire);
3116
3117/**
3118 *	ata_cable_unknown	-	return unknown PATA cable.
3119 *	@ap: port
3120 *
3121 *	Helper method for drivers which have no PATA cable detection.
3122 */
3123
3124int ata_cable_unknown(struct ata_port *ap)
3125{
3126	return ATA_CBL_PATA_UNK;
3127}
3128EXPORT_SYMBOL_GPL(ata_cable_unknown);
3129
3130/**
3131 *	ata_cable_ignore	-	return ignored PATA cable.
3132 *	@ap: port
3133 *
3134 *	Helper method for drivers which don't use cable type to limit
3135 *	transfer mode.
3136 */
3137int ata_cable_ignore(struct ata_port *ap)
3138{
3139	return ATA_CBL_PATA_IGN;
3140}
3141EXPORT_SYMBOL_GPL(ata_cable_ignore);
3142
3143/**
3144 *	ata_cable_sata	-	return SATA cable type
3145 *	@ap: port
3146 *
3147 *	Helper method for drivers which have SATA cables
3148 */
3149
3150int ata_cable_sata(struct ata_port *ap)
3151{
3152	return ATA_CBL_SATA;
3153}
3154EXPORT_SYMBOL_GPL(ata_cable_sata);
3155
3156/**
3157 *	sata_print_link_status - Print SATA link status
3158 *	@link: SATA link to printk link status about
3159 *
3160 *	This function prints link speed and status of a SATA link.
3161 *
3162 *	LOCKING:
3163 *	None.
3164 */
3165static void sata_print_link_status(struct ata_link *link)
3166{
3167	u32 sstatus, scontrol, tmp;
3168
3169	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3170		return;
3171	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3172		return;
3173
3174	if (ata_phys_link_online(link)) {
3175		tmp = (sstatus >> 4) & 0xf;
3176		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3177			      sata_spd_string(tmp), sstatus, scontrol);
3178	} else {
3179		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3180			      sstatus, scontrol);
3181	}
3182}
3183
3184/**
3185 *	ata_dev_pair		-	return other device on cable
3186 *	@adev: device
3187 *
3188 *	Obtain the other device on the same cable, or if none is
3189 *	present NULL is returned
3190 */
3191
3192struct ata_device *ata_dev_pair(struct ata_device *adev)
3193{
3194	struct ata_link *link = adev->link;
3195	struct ata_device *pair = &link->device[1 - adev->devno];
3196	if (!ata_dev_enabled(pair))
3197		return NULL;
3198	return pair;
3199}
3200EXPORT_SYMBOL_GPL(ata_dev_pair);
3201
3202/**
3203 *	sata_down_spd_limit - adjust SATA spd limit downward
3204 *	@link: Link to adjust SATA spd limit for
3205 *	@spd_limit: Additional limit
3206 *
3207 *	Adjust SATA spd limit of @link downward.  Note that this
3208 *	function only adjusts the limit.  The change must be applied
3209 *	using sata_set_spd().
3210 *
3211 *	If @spd_limit is non-zero, the speed is limited to equal to or
3212 *	lower than @spd_limit if such speed is supported.  If
3213 *	@spd_limit is slower than any supported speed, only the lowest
3214 *	supported speed is allowed.
3215 *
3216 *	LOCKING:
3217 *	Inherited from caller.
3218 *
3219 *	RETURNS:
3220 *	0 on success, negative errno on failure
3221 */
3222int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3223{
3224	u32 sstatus, spd, mask;
3225	int rc, bit;
3226
3227	if (!sata_scr_valid(link))
3228		return -EOPNOTSUPP;
3229
3230	/* If SCR can be read, use it to determine the current SPD.
3231	 * If not, use cached value in link->sata_spd.
3232	 */
3233	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3234	if (rc == 0 && ata_sstatus_online(sstatus))
3235		spd = (sstatus >> 4) & 0xf;
3236	else
3237		spd = link->sata_spd;
3238
3239	mask = link->sata_spd_limit;
3240	if (mask <= 1)
3241		return -EINVAL;
3242
3243	/* unconditionally mask off the highest bit */
3244	bit = fls(mask) - 1;
3245	mask &= ~(1 << bit);
3246
3247	/*
3248	 * Mask off all speeds higher than or equal to the current one.  At
3249	 * this point, if current SPD is not available and we previously
3250	 * recorded the link speed from SStatus, the driver has already
3251	 * masked off the highest bit so mask should already be 1 or 0.
3252	 * Otherwise, we should not force 1.5Gbps on a link where we have
3253	 * not previously recorded speed from SStatus.  Just return in this
3254	 * case.
3255	 */
3256	if (spd > 1)
3257		mask &= (1 << (spd - 1)) - 1;
3258	else if (link->sata_spd)
3259		return -EINVAL;
3260
3261	/* were we already at the bottom? */
3262	if (!mask)
3263		return -EINVAL;
3264
3265	if (spd_limit) {
3266		if (mask & ((1 << spd_limit) - 1))
3267			mask &= (1 << spd_limit) - 1;
3268		else {
3269			bit = ffs(mask) - 1;
3270			mask = 1 << bit;
3271		}
3272	}
3273
3274	link->sata_spd_limit = mask;
3275
3276	ata_link_warn(link, "limiting SATA link speed to %s\n",
3277		      sata_spd_string(fls(mask)));
3278
3279	return 0;
3280}
3281
3282#ifdef CONFIG_ATA_ACPI
3283/**
3284 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3285 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3286 *	@cycle: cycle duration in ns
3287 *
3288 *	Return matching xfer mode for @cycle.  The returned mode is of
3289 *	the transfer type specified by @xfer_shift.  If @cycle is too
3290 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3291 *	than the fastest known mode, the fasted mode is returned.
3292 *
3293 *	LOCKING:
3294 *	None.
3295 *
3296 *	RETURNS:
3297 *	Matching xfer_mode, 0xff if no match found.
3298 */
3299u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3300{
3301	u8 base_mode = 0xff, last_mode = 0xff;
3302	const struct ata_xfer_ent *ent;
3303	const struct ata_timing *t;
3304
3305	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3306		if (ent->shift == xfer_shift)
3307			base_mode = ent->base;
3308
3309	for (t = ata_timing_find_mode(base_mode);
3310	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3311		unsigned short this_cycle;
3312
3313		switch (xfer_shift) {
3314		case ATA_SHIFT_PIO:
3315		case ATA_SHIFT_MWDMA:
3316			this_cycle = t->cycle;
3317			break;
3318		case ATA_SHIFT_UDMA:
3319			this_cycle = t->udma;
3320			break;
3321		default:
3322			return 0xff;
3323		}
3324
3325		if (cycle > this_cycle)
3326			break;
3327
3328		last_mode = t->mode;
3329	}
3330
3331	return last_mode;
3332}
3333#endif
3334
3335/**
3336 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3337 *	@dev: Device to adjust xfer masks
3338 *	@sel: ATA_DNXFER_* selector
3339 *
3340 *	Adjust xfer masks of @dev downward.  Note that this function
3341 *	does not apply the change.  Invoking ata_set_mode() afterwards
3342 *	will apply the limit.
3343 *
3344 *	LOCKING:
3345 *	Inherited from caller.
3346 *
3347 *	RETURNS:
3348 *	0 on success, negative errno on failure
3349 */
3350int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3351{
3352	char buf[32];
3353	unsigned int orig_mask, xfer_mask;
3354	unsigned int pio_mask, mwdma_mask, udma_mask;
3355	int quiet, highbit;
3356
3357	quiet = !!(sel & ATA_DNXFER_QUIET);
3358	sel &= ~ATA_DNXFER_QUIET;
3359
3360	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3361						  dev->mwdma_mask,
3362						  dev->udma_mask);
3363	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3364
3365	switch (sel) {
3366	case ATA_DNXFER_PIO:
3367		highbit = fls(pio_mask) - 1;
3368		pio_mask &= ~(1 << highbit);
3369		break;
3370
3371	case ATA_DNXFER_DMA:
3372		if (udma_mask) {
3373			highbit = fls(udma_mask) - 1;
3374			udma_mask &= ~(1 << highbit);
3375			if (!udma_mask)
3376				return -ENOENT;
3377		} else if (mwdma_mask) {
3378			highbit = fls(mwdma_mask) - 1;
3379			mwdma_mask &= ~(1 << highbit);
3380			if (!mwdma_mask)
3381				return -ENOENT;
3382		}
3383		break;
3384
3385	case ATA_DNXFER_40C:
3386		udma_mask &= ATA_UDMA_MASK_40C;
3387		break;
3388
3389	case ATA_DNXFER_FORCE_PIO0:
3390		pio_mask &= 1;
3391		fallthrough;
3392	case ATA_DNXFER_FORCE_PIO:
3393		mwdma_mask = 0;
3394		udma_mask = 0;
3395		break;
3396
3397	default:
3398		BUG();
3399	}
3400
3401	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3402
3403	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3404		return -ENOENT;
3405
3406	if (!quiet) {
3407		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3408			snprintf(buf, sizeof(buf), "%s:%s",
3409				 ata_mode_string(xfer_mask),
3410				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3411		else
3412			snprintf(buf, sizeof(buf), "%s",
3413				 ata_mode_string(xfer_mask));
3414
3415		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3416	}
3417
3418	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3419			    &dev->udma_mask);
3420
3421	return 0;
3422}
3423
3424static int ata_dev_set_mode(struct ata_device *dev)
3425{
3426	struct ata_port *ap = dev->link->ap;
3427	struct ata_eh_context *ehc = &dev->link->eh_context;
3428	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3429	const char *dev_err_whine = "";
3430	int ign_dev_err = 0;
3431	unsigned int err_mask = 0;
3432	int rc;
3433
3434	dev->flags &= ~ATA_DFLAG_PIO;
3435	if (dev->xfer_shift == ATA_SHIFT_PIO)
3436		dev->flags |= ATA_DFLAG_PIO;
3437
3438	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3439		dev_err_whine = " (SET_XFERMODE skipped)";
3440	else {
3441		if (nosetxfer)
3442			ata_dev_warn(dev,
3443				     "NOSETXFER but PATA detected - can't "
3444				     "skip SETXFER, might malfunction\n");
3445		err_mask = ata_dev_set_xfermode(dev);
3446	}
3447
3448	if (err_mask & ~AC_ERR_DEV)
3449		goto fail;
3450
3451	/* revalidate */
3452	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3453	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3454	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3455	if (rc)
3456		return rc;
3457
3458	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3459		/* Old CFA may refuse this command, which is just fine */
3460		if (ata_id_is_cfa(dev->id))
3461			ign_dev_err = 1;
3462		/* Catch several broken garbage emulations plus some pre
3463		   ATA devices */
3464		if (ata_id_major_version(dev->id) == 0 &&
3465					dev->pio_mode <= XFER_PIO_2)
3466			ign_dev_err = 1;
3467		/* Some very old devices and some bad newer ones fail
3468		   any kind of SET_XFERMODE request but support PIO0-2
3469		   timings and no IORDY */
3470		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3471			ign_dev_err = 1;
3472	}
3473	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3474	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3475	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3476	    dev->dma_mode == XFER_MW_DMA_0 &&
3477	    (dev->id[63] >> 8) & 1)
3478		ign_dev_err = 1;
3479
3480	/* if the device is actually configured correctly, ignore dev err */
3481	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3482		ign_dev_err = 1;
3483
3484	if (err_mask & AC_ERR_DEV) {
3485		if (!ign_dev_err)
3486			goto fail;
3487		else
3488			dev_err_whine = " (device error ignored)";
3489	}
3490
3491	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3492		    dev->xfer_shift, (int)dev->xfer_mode);
3493
3494	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3495	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3496		ata_dev_info(dev, "configured for %s%s\n",
3497			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3498			     dev_err_whine);
3499
3500	return 0;
3501
3502 fail:
3503	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3504	return -EIO;
3505}
3506
3507/**
3508 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3509 *	@link: link on which timings will be programmed
3510 *	@r_failed_dev: out parameter for failed device
3511 *
3512 *	Standard implementation of the function used to tune and set
3513 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3514 *	ata_dev_set_mode() fails, pointer to the failing device is
3515 *	returned in @r_failed_dev.
3516 *
3517 *	LOCKING:
3518 *	PCI/etc. bus probe sem.
3519 *
3520 *	RETURNS:
3521 *	0 on success, negative errno otherwise
3522 */
3523
3524int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3525{
3526	struct ata_port *ap = link->ap;
3527	struct ata_device *dev;
3528	int rc = 0, used_dma = 0, found = 0;
3529
3530	/* step 1: calculate xfer_mask */
3531	ata_for_each_dev(dev, link, ENABLED) {
3532		unsigned int pio_mask, dma_mask;
3533		unsigned int mode_mask;
3534
3535		mode_mask = ATA_DMA_MASK_ATA;
3536		if (dev->class == ATA_DEV_ATAPI)
3537			mode_mask = ATA_DMA_MASK_ATAPI;
3538		else if (ata_id_is_cfa(dev->id))
3539			mode_mask = ATA_DMA_MASK_CFA;
3540
3541		ata_dev_xfermask(dev);
3542		ata_force_xfermask(dev);
3543
3544		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3545
3546		if (libata_dma_mask & mode_mask)
3547			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3548						     dev->udma_mask);
3549		else
3550			dma_mask = 0;
3551
3552		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3553		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3554
3555		found = 1;
3556		if (ata_dma_enabled(dev))
3557			used_dma = 1;
3558	}
3559	if (!found)
3560		goto out;
3561
3562	/* step 2: always set host PIO timings */
3563	ata_for_each_dev(dev, link, ENABLED) {
3564		if (dev->pio_mode == 0xff) {
3565			ata_dev_warn(dev, "no PIO support\n");
3566			rc = -EINVAL;
3567			goto out;
3568		}
3569
3570		dev->xfer_mode = dev->pio_mode;
3571		dev->xfer_shift = ATA_SHIFT_PIO;
3572		if (ap->ops->set_piomode)
3573			ap->ops->set_piomode(ap, dev);
3574	}
3575
3576	/* step 3: set host DMA timings */
3577	ata_for_each_dev(dev, link, ENABLED) {
3578		if (!ata_dma_enabled(dev))
3579			continue;
3580
3581		dev->xfer_mode = dev->dma_mode;
3582		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3583		if (ap->ops->set_dmamode)
3584			ap->ops->set_dmamode(ap, dev);
3585	}
3586
3587	/* step 4: update devices' xfer mode */
3588	ata_for_each_dev(dev, link, ENABLED) {
3589		rc = ata_dev_set_mode(dev);
3590		if (rc)
3591			goto out;
3592	}
3593
3594	/* Record simplex status. If we selected DMA then the other
3595	 * host channels are not permitted to do so.
3596	 */
3597	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3598		ap->host->simplex_claimed = ap;
3599
3600 out:
3601	if (rc)
3602		*r_failed_dev = dev;
3603	return rc;
3604}
3605EXPORT_SYMBOL_GPL(ata_do_set_mode);
3606
3607/**
3608 *	ata_wait_ready - wait for link to become ready
3609 *	@link: link to be waited on
3610 *	@deadline: deadline jiffies for the operation
3611 *	@check_ready: callback to check link readiness
3612 *
3613 *	Wait for @link to become ready.  @check_ready should return
3614 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3615 *	link doesn't seem to be occupied, other errno for other error
3616 *	conditions.
3617 *
3618 *	Transient -ENODEV conditions are allowed for
3619 *	ATA_TMOUT_FF_WAIT.
3620 *
3621 *	LOCKING:
3622 *	EH context.
3623 *
3624 *	RETURNS:
3625 *	0 if @link is ready before @deadline; otherwise, -errno.
3626 */
3627int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3628		   int (*check_ready)(struct ata_link *link))
3629{
3630	unsigned long start = jiffies;
3631	unsigned long nodev_deadline;
3632	int warned = 0;
3633
3634	/* choose which 0xff timeout to use, read comment in libata.h */
3635	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3636		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3637	else
3638		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3639
3640	/* Slave readiness can't be tested separately from master.  On
3641	 * M/S emulation configuration, this function should be called
3642	 * only on the master and it will handle both master and slave.
3643	 */
3644	WARN_ON(link == link->ap->slave_link);
3645
3646	if (time_after(nodev_deadline, deadline))
3647		nodev_deadline = deadline;
3648
3649	while (1) {
3650		unsigned long now = jiffies;
3651		int ready, tmp;
3652
3653		ready = tmp = check_ready(link);
3654		if (ready > 0)
3655			return 0;
3656
3657		/*
3658		 * -ENODEV could be transient.  Ignore -ENODEV if link
3659		 * is online.  Also, some SATA devices take a long
3660		 * time to clear 0xff after reset.  Wait for
3661		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3662		 * offline.
3663		 *
3664		 * Note that some PATA controllers (pata_ali) explode
3665		 * if status register is read more than once when
3666		 * there's no device attached.
3667		 */
3668		if (ready == -ENODEV) {
3669			if (ata_link_online(link))
3670				ready = 0;
3671			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3672				 !ata_link_offline(link) &&
3673				 time_before(now, nodev_deadline))
3674				ready = 0;
3675		}
3676
3677		if (ready)
3678			return ready;
3679		if (time_after(now, deadline))
3680			return -EBUSY;
3681
3682		if (!warned && time_after(now, start + 5 * HZ) &&
3683		    (deadline - now > 3 * HZ)) {
3684			ata_link_warn(link,
3685				"link is slow to respond, please be patient "
3686				"(ready=%d)\n", tmp);
3687			warned = 1;
3688		}
3689
3690		ata_msleep(link->ap, 50);
3691	}
3692}
3693
3694/**
3695 *	ata_wait_after_reset - wait for link to become ready after reset
3696 *	@link: link to be waited on
3697 *	@deadline: deadline jiffies for the operation
3698 *	@check_ready: callback to check link readiness
3699 *
3700 *	Wait for @link to become ready after reset.
3701 *
3702 *	LOCKING:
3703 *	EH context.
3704 *
3705 *	RETURNS:
3706 *	0 if @link is ready before @deadline; otherwise, -errno.
3707 */
3708int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3709				int (*check_ready)(struct ata_link *link))
3710{
3711	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3712
3713	return ata_wait_ready(link, deadline, check_ready);
3714}
3715EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3716
3717/**
3718 *	ata_std_prereset - prepare for reset
3719 *	@link: ATA link to be reset
3720 *	@deadline: deadline jiffies for the operation
3721 *
3722 *	@link is about to be reset.  Initialize it.  Failure from
3723 *	prereset makes libata abort whole reset sequence and give up
3724 *	that port, so prereset should be best-effort.  It does its
3725 *	best to prepare for reset sequence but if things go wrong, it
3726 *	should just whine, not fail.
3727 *
3728 *	LOCKING:
3729 *	Kernel thread context (may sleep)
3730 *
3731 *	RETURNS:
3732 *	Always 0.
3733 */
3734int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3735{
3736	struct ata_port *ap = link->ap;
3737	struct ata_eh_context *ehc = &link->eh_context;
3738	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3739	int rc;
3740
3741	/* if we're about to do hardreset, nothing more to do */
3742	if (ehc->i.action & ATA_EH_HARDRESET)
3743		return 0;
3744
3745	/* if SATA, resume link */
3746	if (ap->flags & ATA_FLAG_SATA) {
3747		rc = sata_link_resume(link, timing, deadline);
3748		/* whine about phy resume failure but proceed */
3749		if (rc && rc != -EOPNOTSUPP)
3750			ata_link_warn(link,
3751				      "failed to resume link for reset (errno=%d)\n",
3752				      rc);
3753	}
3754
3755	/* no point in trying softreset on offline link */
3756	if (ata_phys_link_offline(link))
3757		ehc->i.action &= ~ATA_EH_SOFTRESET;
3758
3759	return 0;
3760}
3761EXPORT_SYMBOL_GPL(ata_std_prereset);
3762
3763/**
3764 *	sata_std_hardreset - COMRESET w/o waiting or classification
3765 *	@link: link to reset
3766 *	@class: resulting class of attached device
3767 *	@deadline: deadline jiffies for the operation
3768 *
3769 *	Standard SATA COMRESET w/o waiting or classification.
3770 *
3771 *	LOCKING:
3772 *	Kernel thread context (may sleep)
3773 *
3774 *	RETURNS:
3775 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3776 */
3777int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3778		       unsigned long deadline)
3779{
3780	const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3781	bool online;
3782	int rc;
3783
3784	/* do hardreset */
3785	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3786	return online ? -EAGAIN : rc;
3787}
3788EXPORT_SYMBOL_GPL(sata_std_hardreset);
3789
3790/**
3791 *	ata_std_postreset - standard postreset callback
3792 *	@link: the target ata_link
3793 *	@classes: classes of attached devices
3794 *
3795 *	This function is invoked after a successful reset.  Note that
3796 *	the device might have been reset more than once using
3797 *	different reset methods before postreset is invoked.
3798 *
3799 *	LOCKING:
3800 *	Kernel thread context (may sleep)
3801 */
3802void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3803{
3804	u32 serror;
3805
3806	/* reset complete, clear SError */
3807	if (!sata_scr_read(link, SCR_ERROR, &serror))
3808		sata_scr_write(link, SCR_ERROR, serror);
3809
3810	/* print link status */
3811	sata_print_link_status(link);
3812}
3813EXPORT_SYMBOL_GPL(ata_std_postreset);
3814
3815/**
3816 *	ata_dev_same_device - Determine whether new ID matches configured device
3817 *	@dev: device to compare against
3818 *	@new_class: class of the new device
3819 *	@new_id: IDENTIFY page of the new device
3820 *
3821 *	Compare @new_class and @new_id against @dev and determine
3822 *	whether @dev is the device indicated by @new_class and
3823 *	@new_id.
3824 *
3825 *	LOCKING:
3826 *	None.
3827 *
3828 *	RETURNS:
3829 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3830 */
3831static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3832			       const u16 *new_id)
3833{
3834	const u16 *old_id = dev->id;
3835	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3836	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3837
3838	if (dev->class != new_class) {
3839		ata_dev_info(dev, "class mismatch %d != %d\n",
3840			     dev->class, new_class);
3841		return 0;
3842	}
3843
3844	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3845	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3846	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3847	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3848
3849	if (strcmp(model[0], model[1])) {
3850		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3851			     model[0], model[1]);
3852		return 0;
3853	}
3854
3855	if (strcmp(serial[0], serial[1])) {
3856		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3857			     serial[0], serial[1]);
3858		return 0;
3859	}
3860
3861	return 1;
3862}
3863
3864/**
3865 *	ata_dev_reread_id - Re-read IDENTIFY data
3866 *	@dev: target ATA device
3867 *	@readid_flags: read ID flags
3868 *
3869 *	Re-read IDENTIFY page and make sure @dev is still attached to
3870 *	the port.
3871 *
3872 *	LOCKING:
3873 *	Kernel thread context (may sleep)
3874 *
3875 *	RETURNS:
3876 *	0 on success, negative errno otherwise
3877 */
3878int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3879{
3880	unsigned int class = dev->class;
3881	u16 *id = (void *)dev->link->ap->sector_buf;
3882	int rc;
3883
3884	/* read ID data */
3885	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3886	if (rc)
3887		return rc;
3888
3889	/* is the device still there? */
3890	if (!ata_dev_same_device(dev, class, id))
3891		return -ENODEV;
3892
3893	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3894	return 0;
3895}
3896
3897/**
3898 *	ata_dev_revalidate - Revalidate ATA device
3899 *	@dev: device to revalidate
3900 *	@new_class: new class code
3901 *	@readid_flags: read ID flags
3902 *
3903 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3904 *	port and reconfigure it according to the new IDENTIFY page.
3905 *
3906 *	LOCKING:
3907 *	Kernel thread context (may sleep)
3908 *
3909 *	RETURNS:
3910 *	0 on success, negative errno otherwise
3911 */
3912int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3913		       unsigned int readid_flags)
3914{
3915	u64 n_sectors = dev->n_sectors;
3916	u64 n_native_sectors = dev->n_native_sectors;
3917	int rc;
3918
3919	if (!ata_dev_enabled(dev))
3920		return -ENODEV;
3921
3922	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3923	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3924		ata_dev_info(dev, "class mismatch %u != %u\n",
3925			     dev->class, new_class);
3926		rc = -ENODEV;
3927		goto fail;
3928	}
3929
3930	/* re-read ID */
3931	rc = ata_dev_reread_id(dev, readid_flags);
3932	if (rc)
3933		goto fail;
3934
3935	/* configure device according to the new ID */
3936	rc = ata_dev_configure(dev);
3937	if (rc)
3938		goto fail;
3939
3940	/* verify n_sectors hasn't changed */
3941	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3942	    dev->n_sectors == n_sectors)
3943		return 0;
3944
3945	/* n_sectors has changed */
3946	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3947		     (unsigned long long)n_sectors,
3948		     (unsigned long long)dev->n_sectors);
3949
3950	/*
3951	 * Something could have caused HPA to be unlocked
3952	 * involuntarily.  If n_native_sectors hasn't changed and the
3953	 * new size matches it, keep the device.
3954	 */
3955	if (dev->n_native_sectors == n_native_sectors &&
3956	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3957		ata_dev_warn(dev,
3958			     "new n_sectors matches native, probably "
3959			     "late HPA unlock, n_sectors updated\n");
3960		/* use the larger n_sectors */
3961		return 0;
3962	}
3963
3964	/*
3965	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3966	 * unlocking HPA in those cases.
3967	 *
3968	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3969	 */
3970	if (dev->n_native_sectors == n_native_sectors &&
3971	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3972	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3973		ata_dev_warn(dev,
3974			     "old n_sectors matches native, probably "
3975			     "late HPA lock, will try to unlock HPA\n");
3976		/* try unlocking HPA */
3977		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3978		rc = -EIO;
3979	} else
3980		rc = -ENODEV;
3981
3982	/* restore original n_[native_]sectors and fail */
3983	dev->n_native_sectors = n_native_sectors;
3984	dev->n_sectors = n_sectors;
3985 fail:
3986	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3987	return rc;
3988}
3989
3990struct ata_blacklist_entry {
3991	const char *model_num;
3992	const char *model_rev;
3993	unsigned long horkage;
3994};
3995
3996static const struct ata_blacklist_entry ata_device_blacklist [] = {
3997	/* Devices with DMA related problems under Linux */
3998	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3999	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4000	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4001	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4002	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4003	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4004	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4005	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4006	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4007	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4008	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4009	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4010	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4011	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4012	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4013	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4014	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4015	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4016	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4017	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4018	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4019	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4020	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4021	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4022	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4023	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4024	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4025	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4026	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4027	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4028	/* Odd clown on sil3726/4726 PMPs */
4029	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4030	/* Similar story with ASMedia 1092 */
4031	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
4032
4033	/* Weird ATAPI devices */
4034	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4035	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4036	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4037	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4038
4039	/*
4040	 * Causes silent data corruption with higher max sects.
4041	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4042	 */
4043	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4044
4045	/*
4046	 * These devices time out with higher max sects.
4047	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4048	 */
4049	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4050	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4051
4052	/* Devices we expect to fail diagnostics */
4053
4054	/* Devices where NCQ should be avoided */
4055	/* NCQ is slow */
4056	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4057	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
4058	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4059	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4060	/* NCQ is broken */
4061	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4062	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4063	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4064	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4065	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4066
4067	/* Seagate NCQ + FLUSH CACHE firmware bug */
4068	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4069						ATA_HORKAGE_FIRMWARE_WARN },
4070
4071	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4072						ATA_HORKAGE_FIRMWARE_WARN },
4073
4074	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4075						ATA_HORKAGE_FIRMWARE_WARN },
4076
4077	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4078						ATA_HORKAGE_FIRMWARE_WARN },
4079
4080	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4081	   the ST disks also have LPM issues */
4082	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4083						ATA_HORKAGE_NOLPM },
4084	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4085
4086	/* Blacklist entries taken from Silicon Image 3124/3132
4087	   Windows driver .inf file - also several Linux problem reports */
4088	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
4089	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
4090	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
4091
4092	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4093	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
4094
4095	/* Sandisk SD7/8/9s lock up hard on large trims */
4096	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
4097
4098	/* devices which puke on READ_NATIVE_MAX */
4099	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
4100	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4101	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4102	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4103
4104	/* this one allows HPA unlocking but fails IOs on the area */
4105	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4106
4107	/* Devices which report 1 sector over size HPA */
4108	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4109	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4110	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4111
4112	/* Devices which get the IVB wrong */
4113	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4114	/* Maybe we should just blacklist TSSTcorp... */
4115	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4116
4117	/* Devices that do not need bridging limits applied */
4118	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4119	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4120
4121	/* Devices which aren't very happy with higher link speeds */
4122	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4123	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4124
4125	/*
4126	 * Devices which choke on SETXFER.  Applies only if both the
4127	 * device and controller are SATA.
4128	 */
4129	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4130	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4131	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4132	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4133	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4134
4135	/* These specific Pioneer models have LPM issues */
4136	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4137	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4138
4139	/* Crucial devices with broken LPM support */
4140	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4141	{ "CT240BX500SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4142
4143	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4144	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4145						ATA_HORKAGE_ZERO_AFTER_TRIM |
4146						ATA_HORKAGE_NOLPM },
4147	/* 512GB MX100 with newer firmware has only LPM issues */
4148	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4149						ATA_HORKAGE_NOLPM },
4150
4151	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4152	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4153						ATA_HORKAGE_ZERO_AFTER_TRIM |
4154						ATA_HORKAGE_NOLPM },
4155	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4156						ATA_HORKAGE_ZERO_AFTER_TRIM |
4157						ATA_HORKAGE_NOLPM },
4158
4159	/* AMD Radeon devices with broken LPM support */
4160	{ "R3SL240G",			NULL,	ATA_HORKAGE_NOLPM },
4161
4162	/* Apacer models with LPM issues */
4163	{ "Apacer AS340*",		NULL,	ATA_HORKAGE_NOLPM },
4164
4165	/* These specific Samsung models/firmware-revs do not handle LPM well */
4166	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4167	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4168	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4169	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4170
4171	/* devices that don't properly handle queued TRIM commands */
4172	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4173						ATA_HORKAGE_ZERO_AFTER_TRIM },
4174	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4175						ATA_HORKAGE_ZERO_AFTER_TRIM },
4176	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4177						ATA_HORKAGE_ZERO_AFTER_TRIM },
4178	{ "Micron_1100_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4179						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4180	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4181						ATA_HORKAGE_ZERO_AFTER_TRIM },
4182	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4183						ATA_HORKAGE_ZERO_AFTER_TRIM },
4184	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4185						ATA_HORKAGE_ZERO_AFTER_TRIM },
4186	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4187						ATA_HORKAGE_NO_DMA_LOG |
4188						ATA_HORKAGE_ZERO_AFTER_TRIM },
4189	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4190						ATA_HORKAGE_ZERO_AFTER_TRIM },
4191	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4192						ATA_HORKAGE_ZERO_AFTER_TRIM },
4193	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4194						ATA_HORKAGE_ZERO_AFTER_TRIM |
4195						ATA_HORKAGE_NO_NCQ_ON_ATI },
4196	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4197						ATA_HORKAGE_ZERO_AFTER_TRIM |
4198						ATA_HORKAGE_NO_NCQ_ON_ATI },
4199	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4200						ATA_HORKAGE_ZERO_AFTER_TRIM |
4201						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4202	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4203						ATA_HORKAGE_ZERO_AFTER_TRIM },
4204
4205	/* devices that don't properly handle TRIM commands */
4206	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4207	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4208
4209	/*
4210	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4211	 * (Return Zero After Trim) flags in the ATA Command Set are
4212	 * unreliable in the sense that they only define what happens if
4213	 * the device successfully executed the DSM TRIM command. TRIM
4214	 * is only advisory, however, and the device is free to silently
4215	 * ignore all or parts of the request.
4216	 *
4217	 * Whitelist drives that are known to reliably return zeroes
4218	 * after TRIM.
4219	 */
4220
4221	/*
4222	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4223	 * that model before whitelisting all other intel SSDs.
4224	 */
4225	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4226
4227	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4228	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4229	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4230	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4231	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4232	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4233	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4234	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4235
4236	/*
4237	 * Some WD SATA-I drives spin up and down erratically when the link
4238	 * is put into the slumber mode.  We don't have full list of the
4239	 * affected devices.  Disable LPM if the device matches one of the
4240	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4241	 * lost too.
4242	 *
4243	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4244	 */
4245	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4246	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4247	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4248	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4249	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4250	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4251	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4252
4253	/*
4254	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4255	 * log page is accessed. Ensure we never ask for this log page with
4256	 * these devices.
4257	 */
4258	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4259
4260	/* Buggy FUA */
4261	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4262	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4263	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4264	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4265
4266	/* End Marker */
4267	{ }
4268};
4269
4270static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4271{
4272	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4273	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4274	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4275
4276	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4277	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4278
4279	while (ad->model_num) {
4280		if (glob_match(ad->model_num, model_num)) {
4281			if (ad->model_rev == NULL)
4282				return ad->horkage;
4283			if (glob_match(ad->model_rev, model_rev))
4284				return ad->horkage;
4285		}
4286		ad++;
4287	}
4288	return 0;
4289}
4290
4291static int ata_dma_blacklisted(const struct ata_device *dev)
4292{
4293	/* We don't support polling DMA.
4294	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4295	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4296	 */
4297	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4298	    (dev->flags & ATA_DFLAG_CDB_INTR))
4299		return 1;
4300	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4301}
4302
4303/**
4304 *	ata_is_40wire		-	check drive side detection
4305 *	@dev: device
4306 *
4307 *	Perform drive side detection decoding, allowing for device vendors
4308 *	who can't follow the documentation.
4309 */
4310
4311static int ata_is_40wire(struct ata_device *dev)
4312{
4313	if (dev->horkage & ATA_HORKAGE_IVB)
4314		return ata_drive_40wire_relaxed(dev->id);
4315	return ata_drive_40wire(dev->id);
4316}
4317
4318/**
4319 *	cable_is_40wire		-	40/80/SATA decider
4320 *	@ap: port to consider
4321 *
4322 *	This function encapsulates the policy for speed management
4323 *	in one place. At the moment we don't cache the result but
4324 *	there is a good case for setting ap->cbl to the result when
4325 *	we are called with unknown cables (and figuring out if it
4326 *	impacts hotplug at all).
4327 *
4328 *	Return 1 if the cable appears to be 40 wire.
4329 */
4330
4331static int cable_is_40wire(struct ata_port *ap)
4332{
4333	struct ata_link *link;
4334	struct ata_device *dev;
4335
4336	/* If the controller thinks we are 40 wire, we are. */
4337	if (ap->cbl == ATA_CBL_PATA40)
4338		return 1;
4339
4340	/* If the controller thinks we are 80 wire, we are. */
4341	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4342		return 0;
4343
4344	/* If the system is known to be 40 wire short cable (eg
4345	 * laptop), then we allow 80 wire modes even if the drive
4346	 * isn't sure.
4347	 */
4348	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4349		return 0;
4350
4351	/* If the controller doesn't know, we scan.
4352	 *
4353	 * Note: We look for all 40 wire detects at this point.  Any
4354	 *       80 wire detect is taken to be 80 wire cable because
4355	 * - in many setups only the one drive (slave if present) will
4356	 *   give a valid detect
4357	 * - if you have a non detect capable drive you don't want it
4358	 *   to colour the choice
4359	 */
4360	ata_for_each_link(link, ap, EDGE) {
4361		ata_for_each_dev(dev, link, ENABLED) {
4362			if (!ata_is_40wire(dev))
4363				return 0;
4364		}
4365	}
4366	return 1;
4367}
4368
4369/**
4370 *	ata_dev_xfermask - Compute supported xfermask of the given device
4371 *	@dev: Device to compute xfermask for
4372 *
4373 *	Compute supported xfermask of @dev and store it in
4374 *	dev->*_mask.  This function is responsible for applying all
4375 *	known limits including host controller limits, device
4376 *	blacklist, etc...
4377 *
4378 *	LOCKING:
4379 *	None.
4380 */
4381static void ata_dev_xfermask(struct ata_device *dev)
4382{
4383	struct ata_link *link = dev->link;
4384	struct ata_port *ap = link->ap;
4385	struct ata_host *host = ap->host;
4386	unsigned int xfer_mask;
4387
4388	/* controller modes available */
4389	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4390				      ap->mwdma_mask, ap->udma_mask);
4391
4392	/* drive modes available */
4393	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4394				       dev->mwdma_mask, dev->udma_mask);
4395	xfer_mask &= ata_id_xfermask(dev->id);
4396
4397	/*
4398	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4399	 *	cable
4400	 */
4401	if (ata_dev_pair(dev)) {
4402		/* No PIO5 or PIO6 */
4403		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4404		/* No MWDMA3 or MWDMA 4 */
4405		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4406	}
4407
4408	if (ata_dma_blacklisted(dev)) {
4409		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4410		ata_dev_warn(dev,
4411			     "device is on DMA blacklist, disabling DMA\n");
4412	}
4413
4414	if ((host->flags & ATA_HOST_SIMPLEX) &&
4415	    host->simplex_claimed && host->simplex_claimed != ap) {
4416		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4417		ata_dev_warn(dev,
4418			     "simplex DMA is claimed by other device, disabling DMA\n");
4419	}
4420
4421	if (ap->flags & ATA_FLAG_NO_IORDY)
4422		xfer_mask &= ata_pio_mask_no_iordy(dev);
4423
4424	if (ap->ops->mode_filter)
4425		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4426
4427	/* Apply cable rule here.  Don't apply it early because when
4428	 * we handle hot plug the cable type can itself change.
4429	 * Check this last so that we know if the transfer rate was
4430	 * solely limited by the cable.
4431	 * Unknown or 80 wire cables reported host side are checked
4432	 * drive side as well. Cases where we know a 40wire cable
4433	 * is used safely for 80 are not checked here.
4434	 */
4435	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4436		/* UDMA/44 or higher would be available */
4437		if (cable_is_40wire(ap)) {
4438			ata_dev_warn(dev,
4439				     "limited to UDMA/33 due to 40-wire cable\n");
4440			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4441		}
4442
4443	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4444			    &dev->mwdma_mask, &dev->udma_mask);
4445}
4446
4447/**
4448 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4449 *	@dev: Device to which command will be sent
4450 *
4451 *	Issue SET FEATURES - XFER MODE command to device @dev
4452 *	on port @ap.
4453 *
4454 *	LOCKING:
4455 *	PCI/etc. bus probe sem.
4456 *
4457 *	RETURNS:
4458 *	0 on success, AC_ERR_* mask otherwise.
4459 */
4460
4461static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4462{
4463	struct ata_taskfile tf;
4464
4465	/* set up set-features taskfile */
4466	ata_dev_dbg(dev, "set features - xfer mode\n");
4467
4468	/* Some controllers and ATAPI devices show flaky interrupt
4469	 * behavior after setting xfer mode.  Use polling instead.
4470	 */
4471	ata_tf_init(dev, &tf);
4472	tf.command = ATA_CMD_SET_FEATURES;
4473	tf.feature = SETFEATURES_XFER;
4474	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4475	tf.protocol = ATA_PROT_NODATA;
4476	/* If we are using IORDY we must send the mode setting command */
4477	if (ata_pio_need_iordy(dev))
4478		tf.nsect = dev->xfer_mode;
4479	/* If the device has IORDY and the controller does not - turn it off */
4480 	else if (ata_id_has_iordy(dev->id))
4481		tf.nsect = 0x01;
4482	else /* In the ancient relic department - skip all of this */
4483		return 0;
4484
4485	/*
4486	 * On some disks, this command causes spin-up, so we need longer
4487	 * timeout.
4488	 */
4489	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4490}
4491
4492/**
4493 *	ata_dev_set_feature - Issue SET FEATURES
4494 *	@dev: Device to which command will be sent
4495 *	@subcmd: The SET FEATURES subcommand to be sent
4496 *	@action: The sector count represents a subcommand specific action
4497 *
4498 *	Issue SET FEATURES command to device @dev on port @ap with sector count
4499 *
4500 *	LOCKING:
4501 *	PCI/etc. bus probe sem.
4502 *
4503 *	RETURNS:
4504 *	0 on success, AC_ERR_* mask otherwise.
4505 */
4506unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4507{
4508	struct ata_taskfile tf;
4509	unsigned int timeout = 0;
4510
4511	/* set up set-features taskfile */
4512	ata_dev_dbg(dev, "set features\n");
4513
4514	ata_tf_init(dev, &tf);
4515	tf.command = ATA_CMD_SET_FEATURES;
4516	tf.feature = subcmd;
4517	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4518	tf.protocol = ATA_PROT_NODATA;
4519	tf.nsect = action;
4520
4521	if (subcmd == SETFEATURES_SPINUP)
4522		timeout = ata_probe_timeout ?
4523			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4524
4525	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4526}
4527EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4528
4529/**
4530 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4531 *	@dev: Device to which command will be sent
4532 *	@heads: Number of heads (taskfile parameter)
4533 *	@sectors: Number of sectors (taskfile parameter)
4534 *
4535 *	LOCKING:
4536 *	Kernel thread context (may sleep)
4537 *
4538 *	RETURNS:
4539 *	0 on success, AC_ERR_* mask otherwise.
4540 */
4541static unsigned int ata_dev_init_params(struct ata_device *dev,
4542					u16 heads, u16 sectors)
4543{
4544	struct ata_taskfile tf;
4545	unsigned int err_mask;
4546
4547	/* Number of sectors per track 1-255. Number of heads 1-16 */
4548	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4549		return AC_ERR_INVALID;
4550
4551	/* set up init dev params taskfile */
4552	ata_dev_dbg(dev, "init dev params \n");
4553
4554	ata_tf_init(dev, &tf);
4555	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4556	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4557	tf.protocol = ATA_PROT_NODATA;
4558	tf.nsect = sectors;
4559	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4560
4561	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4562	/* A clean abort indicates an original or just out of spec drive
4563	   and we should continue as we issue the setup based on the
4564	   drive reported working geometry */
4565	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4566		err_mask = 0;
4567
4568	return err_mask;
4569}
4570
4571/**
4572 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4573 *	@qc: Metadata associated with taskfile to check
4574 *
4575 *	Allow low-level driver to filter ATA PACKET commands, returning
4576 *	a status indicating whether or not it is OK to use DMA for the
4577 *	supplied PACKET command.
4578 *
4579 *	LOCKING:
4580 *	spin_lock_irqsave(host lock)
4581 *
4582 *	RETURNS: 0 when ATAPI DMA can be used
4583 *               nonzero otherwise
4584 */
4585int atapi_check_dma(struct ata_queued_cmd *qc)
4586{
4587	struct ata_port *ap = qc->ap;
4588
4589	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4590	 * few ATAPI devices choke on such DMA requests.
4591	 */
4592	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4593	    unlikely(qc->nbytes & 15))
4594		return 1;
4595
4596	if (ap->ops->check_atapi_dma)
4597		return ap->ops->check_atapi_dma(qc);
4598
4599	return 0;
4600}
4601
4602/**
4603 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4604 *	@qc: ATA command in question
4605 *
4606 *	Non-NCQ commands cannot run with any other command, NCQ or
4607 *	not.  As upper layer only knows the queue depth, we are
4608 *	responsible for maintaining exclusion.  This function checks
4609 *	whether a new command @qc can be issued.
4610 *
4611 *	LOCKING:
4612 *	spin_lock_irqsave(host lock)
4613 *
4614 *	RETURNS:
4615 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4616 */
4617int ata_std_qc_defer(struct ata_queued_cmd *qc)
4618{
4619	struct ata_link *link = qc->dev->link;
4620
4621	if (ata_is_ncq(qc->tf.protocol)) {
4622		if (!ata_tag_valid(link->active_tag))
4623			return 0;
4624	} else {
4625		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4626			return 0;
4627	}
4628
4629	return ATA_DEFER_LINK;
4630}
4631EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4632
4633enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4634{
4635	return AC_ERR_OK;
4636}
4637EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4638
4639/**
4640 *	ata_sg_init - Associate command with scatter-gather table.
4641 *	@qc: Command to be associated
4642 *	@sg: Scatter-gather table.
4643 *	@n_elem: Number of elements in s/g table.
4644 *
4645 *	Initialize the data-related elements of queued_cmd @qc
4646 *	to point to a scatter-gather table @sg, containing @n_elem
4647 *	elements.
4648 *
4649 *	LOCKING:
4650 *	spin_lock_irqsave(host lock)
4651 */
4652void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4653		 unsigned int n_elem)
4654{
4655	qc->sg = sg;
4656	qc->n_elem = n_elem;
4657	qc->cursg = qc->sg;
4658}
4659
4660#ifdef CONFIG_HAS_DMA
4661
4662/**
4663 *	ata_sg_clean - Unmap DMA memory associated with command
4664 *	@qc: Command containing DMA memory to be released
4665 *
4666 *	Unmap all mapped DMA memory associated with this command.
4667 *
4668 *	LOCKING:
4669 *	spin_lock_irqsave(host lock)
4670 */
4671static void ata_sg_clean(struct ata_queued_cmd *qc)
4672{
4673	struct ata_port *ap = qc->ap;
4674	struct scatterlist *sg = qc->sg;
4675	int dir = qc->dma_dir;
4676
4677	WARN_ON_ONCE(sg == NULL);
4678
4679	if (qc->n_elem)
4680		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4681
4682	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4683	qc->sg = NULL;
4684}
4685
4686/**
4687 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4688 *	@qc: Command with scatter-gather table to be mapped.
4689 *
4690 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4691 *
4692 *	LOCKING:
4693 *	spin_lock_irqsave(host lock)
4694 *
4695 *	RETURNS:
4696 *	Zero on success, negative on error.
4697 *
4698 */
4699static int ata_sg_setup(struct ata_queued_cmd *qc)
4700{
4701	struct ata_port *ap = qc->ap;
4702	unsigned int n_elem;
4703
4704	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4705	if (n_elem < 1)
4706		return -1;
4707
4708	qc->orig_n_elem = qc->n_elem;
4709	qc->n_elem = n_elem;
4710	qc->flags |= ATA_QCFLAG_DMAMAP;
4711
4712	return 0;
4713}
4714
4715#else /* !CONFIG_HAS_DMA */
4716
4717static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4718static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4719
4720#endif /* !CONFIG_HAS_DMA */
4721
4722/**
4723 *	swap_buf_le16 - swap halves of 16-bit words in place
4724 *	@buf:  Buffer to swap
4725 *	@buf_words:  Number of 16-bit words in buffer.
4726 *
4727 *	Swap halves of 16-bit words if needed to convert from
4728 *	little-endian byte order to native cpu byte order, or
4729 *	vice-versa.
4730 *
4731 *	LOCKING:
4732 *	Inherited from caller.
4733 */
4734void swap_buf_le16(u16 *buf, unsigned int buf_words)
4735{
4736#ifdef __BIG_ENDIAN
4737	unsigned int i;
4738
4739	for (i = 0; i < buf_words; i++)
4740		buf[i] = le16_to_cpu(buf[i]);
4741#endif /* __BIG_ENDIAN */
4742}
4743
4744/**
4745 *	ata_qc_free - free unused ata_queued_cmd
4746 *	@qc: Command to complete
4747 *
4748 *	Designed to free unused ata_queued_cmd object
4749 *	in case something prevents using it.
4750 *
4751 *	LOCKING:
4752 *	spin_lock_irqsave(host lock)
4753 */
4754void ata_qc_free(struct ata_queued_cmd *qc)
4755{
4756	qc->flags = 0;
4757	if (ata_tag_valid(qc->tag))
4758		qc->tag = ATA_TAG_POISON;
4759}
4760
4761void __ata_qc_complete(struct ata_queued_cmd *qc)
4762{
4763	struct ata_port *ap;
4764	struct ata_link *link;
4765
4766	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4767	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4768	ap = qc->ap;
4769	link = qc->dev->link;
4770
4771	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4772		ata_sg_clean(qc);
4773
4774	/* command should be marked inactive atomically with qc completion */
4775	if (ata_is_ncq(qc->tf.protocol)) {
4776		link->sactive &= ~(1 << qc->hw_tag);
4777		if (!link->sactive)
4778			ap->nr_active_links--;
4779	} else {
4780		link->active_tag = ATA_TAG_POISON;
4781		ap->nr_active_links--;
4782	}
4783
4784	/* clear exclusive status */
4785	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4786		     ap->excl_link == link))
4787		ap->excl_link = NULL;
4788
4789	/* atapi: mark qc as inactive to prevent the interrupt handler
4790	 * from completing the command twice later, before the error handler
4791	 * is called. (when rc != 0 and atapi request sense is needed)
4792	 */
4793	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4794	ap->qc_active &= ~(1ULL << qc->tag);
4795
4796	/* call completion callback */
4797	qc->complete_fn(qc);
4798}
4799
4800static void fill_result_tf(struct ata_queued_cmd *qc)
4801{
4802	struct ata_port *ap = qc->ap;
4803
4804	qc->result_tf.flags = qc->tf.flags;
4805	ap->ops->qc_fill_rtf(qc);
4806}
4807
4808static void ata_verify_xfer(struct ata_queued_cmd *qc)
4809{
4810	struct ata_device *dev = qc->dev;
4811
4812	if (!ata_is_data(qc->tf.protocol))
4813		return;
4814
4815	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4816		return;
4817
4818	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4819}
4820
4821/**
4822 *	ata_qc_complete - Complete an active ATA command
4823 *	@qc: Command to complete
4824 *
4825 *	Indicate to the mid and upper layers that an ATA command has
4826 *	completed, with either an ok or not-ok status.
4827 *
4828 *	Refrain from calling this function multiple times when
4829 *	successfully completing multiple NCQ commands.
4830 *	ata_qc_complete_multiple() should be used instead, which will
4831 *	properly update IRQ expect state.
4832 *
4833 *	LOCKING:
4834 *	spin_lock_irqsave(host lock)
4835 */
4836void ata_qc_complete(struct ata_queued_cmd *qc)
4837{
4838	struct ata_port *ap = qc->ap;
4839	struct ata_device *dev = qc->dev;
4840	struct ata_eh_info *ehi = &dev->link->eh_info;
4841
4842	/* Trigger the LED (if available) */
4843	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4844
4845	/*
4846	 * In order to synchronize EH with the regular execution path, a qc that
4847	 * is owned by EH is marked with ATA_QCFLAG_EH.
4848	 *
4849	 * The normal execution path is responsible for not accessing a qc owned
4850	 * by EH.  libata core enforces the rule by returning NULL from
4851	 * ata_qc_from_tag() for qcs owned by EH.
4852	 */
4853	if (unlikely(qc->err_mask))
4854		qc->flags |= ATA_QCFLAG_EH;
4855
4856	/*
4857	 * Finish internal commands without any further processing and always
4858	 * with the result TF filled.
4859	 */
4860	if (unlikely(ata_tag_internal(qc->tag))) {
4861		fill_result_tf(qc);
4862		trace_ata_qc_complete_internal(qc);
4863		__ata_qc_complete(qc);
4864		return;
4865	}
4866
4867	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4868	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4869		fill_result_tf(qc);
4870		trace_ata_qc_complete_failed(qc);
4871		ata_qc_schedule_eh(qc);
4872		return;
4873	}
4874
4875	WARN_ON_ONCE(ata_port_is_frozen(ap));
4876
4877	/* read result TF if requested */
4878	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4879		fill_result_tf(qc);
4880
4881	trace_ata_qc_complete_done(qc);
4882
4883	/*
4884	 * For CDL commands that completed without an error, check if we have
4885	 * sense data (ATA_SENSE is set). If we do, then the command may have
4886	 * been aborted by the device due to a limit timeout using the policy
4887	 * 0xD. For these commands, invoke EH to get the command sense data.
4888	 */
4889	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4890	    qc->result_tf.status & ATA_SENSE) {
4891		/*
4892		 * Tell SCSI EH to not overwrite scmd->result even if this
4893		 * command is finished with result SAM_STAT_GOOD.
4894		 */
4895		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4896		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4897		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4898
4899		/*
4900		 * set pending so that ata_qc_schedule_eh() does not trigger
4901		 * fast drain, and freeze the port.
4902		 */
4903		ap->pflags |= ATA_PFLAG_EH_PENDING;
4904		ata_qc_schedule_eh(qc);
4905		return;
4906	}
4907
4908	/* Some commands need post-processing after successful completion. */
4909	switch (qc->tf.command) {
4910	case ATA_CMD_SET_FEATURES:
4911		if (qc->tf.feature != SETFEATURES_WC_ON &&
4912		    qc->tf.feature != SETFEATURES_WC_OFF &&
4913		    qc->tf.feature != SETFEATURES_RA_ON &&
4914		    qc->tf.feature != SETFEATURES_RA_OFF)
4915			break;
4916		fallthrough;
4917	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4918	case ATA_CMD_SET_MULTI: /* multi_count changed */
4919		/* revalidate device */
4920		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4921		ata_port_schedule_eh(ap);
4922		break;
4923
4924	case ATA_CMD_SLEEP:
4925		dev->flags |= ATA_DFLAG_SLEEPING;
4926		break;
4927	}
4928
4929	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4930		ata_verify_xfer(qc);
4931
4932	__ata_qc_complete(qc);
4933}
4934EXPORT_SYMBOL_GPL(ata_qc_complete);
4935
4936/**
4937 *	ata_qc_get_active - get bitmask of active qcs
4938 *	@ap: port in question
4939 *
4940 *	LOCKING:
4941 *	spin_lock_irqsave(host lock)
4942 *
4943 *	RETURNS:
4944 *	Bitmask of active qcs
4945 */
4946u64 ata_qc_get_active(struct ata_port *ap)
4947{
4948	u64 qc_active = ap->qc_active;
4949
4950	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4951	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4952		qc_active |= (1 << 0);
4953		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4954	}
4955
4956	return qc_active;
4957}
4958EXPORT_SYMBOL_GPL(ata_qc_get_active);
4959
4960/**
4961 *	ata_qc_issue - issue taskfile to device
4962 *	@qc: command to issue to device
4963 *
4964 *	Prepare an ATA command to submission to device.
4965 *	This includes mapping the data into a DMA-able
4966 *	area, filling in the S/G table, and finally
4967 *	writing the taskfile to hardware, starting the command.
4968 *
4969 *	LOCKING:
4970 *	spin_lock_irqsave(host lock)
4971 */
4972void ata_qc_issue(struct ata_queued_cmd *qc)
4973{
4974	struct ata_port *ap = qc->ap;
4975	struct ata_link *link = qc->dev->link;
4976	u8 prot = qc->tf.protocol;
4977
4978	/* Make sure only one non-NCQ command is outstanding. */
4979	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4980
4981	if (ata_is_ncq(prot)) {
4982		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4983
4984		if (!link->sactive)
4985			ap->nr_active_links++;
4986		link->sactive |= 1 << qc->hw_tag;
4987	} else {
4988		WARN_ON_ONCE(link->sactive);
4989
4990		ap->nr_active_links++;
4991		link->active_tag = qc->tag;
4992	}
4993
4994	qc->flags |= ATA_QCFLAG_ACTIVE;
4995	ap->qc_active |= 1ULL << qc->tag;
4996
4997	/*
4998	 * We guarantee to LLDs that they will have at least one
4999	 * non-zero sg if the command is a data command.
5000	 */
5001	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5002		goto sys_err;
5003
5004	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5005				 (ap->flags & ATA_FLAG_PIO_DMA)))
5006		if (ata_sg_setup(qc))
5007			goto sys_err;
5008
5009	/* if device is sleeping, schedule reset and abort the link */
5010	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5011		link->eh_info.action |= ATA_EH_RESET;
5012		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5013		ata_link_abort(link);
5014		return;
5015	}
5016
5017	trace_ata_qc_prep(qc);
5018	qc->err_mask |= ap->ops->qc_prep(qc);
5019	if (unlikely(qc->err_mask))
5020		goto err;
5021	trace_ata_qc_issue(qc);
5022	qc->err_mask |= ap->ops->qc_issue(qc);
5023	if (unlikely(qc->err_mask))
5024		goto err;
5025	return;
5026
5027sys_err:
5028	qc->err_mask |= AC_ERR_SYSTEM;
5029err:
5030	ata_qc_complete(qc);
5031}
5032
5033/**
5034 *	ata_phys_link_online - test whether the given link is online
5035 *	@link: ATA link to test
5036 *
5037 *	Test whether @link is online.  Note that this function returns
5038 *	0 if online status of @link cannot be obtained, so
5039 *	ata_link_online(link) != !ata_link_offline(link).
5040 *
5041 *	LOCKING:
5042 *	None.
5043 *
5044 *	RETURNS:
5045 *	True if the port online status is available and online.
5046 */
5047bool ata_phys_link_online(struct ata_link *link)
5048{
5049	u32 sstatus;
5050
5051	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5052	    ata_sstatus_online(sstatus))
5053		return true;
5054	return false;
5055}
5056
5057/**
5058 *	ata_phys_link_offline - test whether the given link is offline
5059 *	@link: ATA link to test
5060 *
5061 *	Test whether @link is offline.  Note that this function
5062 *	returns 0 if offline status of @link cannot be obtained, so
5063 *	ata_link_online(link) != !ata_link_offline(link).
5064 *
5065 *	LOCKING:
5066 *	None.
5067 *
5068 *	RETURNS:
5069 *	True if the port offline status is available and offline.
5070 */
5071bool ata_phys_link_offline(struct ata_link *link)
5072{
5073	u32 sstatus;
5074
5075	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5076	    !ata_sstatus_online(sstatus))
5077		return true;
5078	return false;
5079}
5080
5081/**
5082 *	ata_link_online - test whether the given link is online
5083 *	@link: ATA link to test
5084 *
5085 *	Test whether @link is online.  This is identical to
5086 *	ata_phys_link_online() when there's no slave link.  When
5087 *	there's a slave link, this function should only be called on
5088 *	the master link and will return true if any of M/S links is
5089 *	online.
5090 *
5091 *	LOCKING:
5092 *	None.
5093 *
5094 *	RETURNS:
5095 *	True if the port online status is available and online.
5096 */
5097bool ata_link_online(struct ata_link *link)
5098{
5099	struct ata_link *slave = link->ap->slave_link;
5100
5101	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5102
5103	return ata_phys_link_online(link) ||
5104		(slave && ata_phys_link_online(slave));
5105}
5106EXPORT_SYMBOL_GPL(ata_link_online);
5107
5108/**
5109 *	ata_link_offline - test whether the given link is offline
5110 *	@link: ATA link to test
5111 *
5112 *	Test whether @link is offline.  This is identical to
5113 *	ata_phys_link_offline() when there's no slave link.  When
5114 *	there's a slave link, this function should only be called on
5115 *	the master link and will return true if both M/S links are
5116 *	offline.
5117 *
5118 *	LOCKING:
5119 *	None.
5120 *
5121 *	RETURNS:
5122 *	True if the port offline status is available and offline.
5123 */
5124bool ata_link_offline(struct ata_link *link)
5125{
5126	struct ata_link *slave = link->ap->slave_link;
5127
5128	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5129
5130	return ata_phys_link_offline(link) &&
5131		(!slave || ata_phys_link_offline(slave));
5132}
5133EXPORT_SYMBOL_GPL(ata_link_offline);
5134
5135#ifdef CONFIG_PM
5136static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5137				unsigned int action, unsigned int ehi_flags,
5138				bool async)
5139{
5140	struct ata_link *link;
5141	unsigned long flags;
5142
5143	spin_lock_irqsave(ap->lock, flags);
5144
5145	/*
5146	 * A previous PM operation might still be in progress. Wait for
5147	 * ATA_PFLAG_PM_PENDING to clear.
5148	 */
5149	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5150		spin_unlock_irqrestore(ap->lock, flags);
5151		ata_port_wait_eh(ap);
5152		spin_lock_irqsave(ap->lock, flags);
5153	}
5154
5155	/* Request PM operation to EH */
5156	ap->pm_mesg = mesg;
5157	ap->pflags |= ATA_PFLAG_PM_PENDING;
5158	ata_for_each_link(link, ap, HOST_FIRST) {
5159		link->eh_info.action |= action;
5160		link->eh_info.flags |= ehi_flags;
5161	}
5162
5163	ata_port_schedule_eh(ap);
5164
5165	spin_unlock_irqrestore(ap->lock, flags);
5166
5167	if (!async)
5168		ata_port_wait_eh(ap);
5169}
5170
5171static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5172			     bool async)
5173{
5174	/*
5175	 * We are about to suspend the port, so we do not care about
5176	 * scsi_rescan_device() calls scheduled by previous resume operations.
5177	 * The next resume will schedule the rescan again. So cancel any rescan
5178	 * that is not done yet.
5179	 */
5180	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5181
5182	/*
5183	 * On some hardware, device fails to respond after spun down for
5184	 * suspend. As the device will not be used until being resumed, we
5185	 * do not need to touch the device. Ask EH to skip the usual stuff
5186	 * and proceed directly to suspend.
5187	 *
5188	 * http://thread.gmane.org/gmane.linux.ide/46764
5189	 */
5190	ata_port_request_pm(ap, mesg, 0,
5191			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5192			    ATA_EHI_NO_RECOVERY,
5193			    async);
5194}
5195
5196static int ata_port_pm_suspend(struct device *dev)
5197{
5198	struct ata_port *ap = to_ata_port(dev);
5199
5200	if (pm_runtime_suspended(dev))
5201		return 0;
5202
5203	ata_port_suspend(ap, PMSG_SUSPEND, false);
5204	return 0;
5205}
5206
5207static int ata_port_pm_freeze(struct device *dev)
5208{
5209	struct ata_port *ap = to_ata_port(dev);
5210
5211	if (pm_runtime_suspended(dev))
5212		return 0;
5213
5214	ata_port_suspend(ap, PMSG_FREEZE, false);
5215	return 0;
5216}
5217
5218static int ata_port_pm_poweroff(struct device *dev)
5219{
5220	if (!pm_runtime_suspended(dev))
5221		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5222	return 0;
5223}
5224
5225static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5226			    bool async)
5227{
5228	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5229			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5230			    async);
5231}
5232
5233static int ata_port_pm_resume(struct device *dev)
5234{
5235	if (!pm_runtime_suspended(dev))
5236		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5237	return 0;
5238}
5239
5240/*
5241 * For ODDs, the upper layer will poll for media change every few seconds,
5242 * which will make it enter and leave suspend state every few seconds. And
5243 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5244 * is very little and the ODD may malfunction after constantly being reset.
5245 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5246 * ODD is attached to the port.
5247 */
5248static int ata_port_runtime_idle(struct device *dev)
5249{
5250	struct ata_port *ap = to_ata_port(dev);
5251	struct ata_link *link;
5252	struct ata_device *adev;
5253
5254	ata_for_each_link(link, ap, HOST_FIRST) {
5255		ata_for_each_dev(adev, link, ENABLED)
5256			if (adev->class == ATA_DEV_ATAPI &&
5257			    !zpodd_dev_enabled(adev))
5258				return -EBUSY;
5259	}
5260
5261	return 0;
5262}
5263
5264static int ata_port_runtime_suspend(struct device *dev)
5265{
5266	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5267	return 0;
5268}
5269
5270static int ata_port_runtime_resume(struct device *dev)
5271{
5272	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5273	return 0;
5274}
5275
5276static const struct dev_pm_ops ata_port_pm_ops = {
5277	.suspend = ata_port_pm_suspend,
5278	.resume = ata_port_pm_resume,
5279	.freeze = ata_port_pm_freeze,
5280	.thaw = ata_port_pm_resume,
5281	.poweroff = ata_port_pm_poweroff,
5282	.restore = ata_port_pm_resume,
5283
5284	.runtime_suspend = ata_port_runtime_suspend,
5285	.runtime_resume = ata_port_runtime_resume,
5286	.runtime_idle = ata_port_runtime_idle,
5287};
5288
5289/* sas ports don't participate in pm runtime management of ata_ports,
5290 * and need to resume ata devices at the domain level, not the per-port
5291 * level. sas suspend/resume is async to allow parallel port recovery
5292 * since sas has multiple ata_port instances per Scsi_Host.
5293 */
5294void ata_sas_port_suspend(struct ata_port *ap)
5295{
5296	ata_port_suspend(ap, PMSG_SUSPEND, true);
5297}
5298EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5299
5300void ata_sas_port_resume(struct ata_port *ap)
5301{
5302	ata_port_resume(ap, PMSG_RESUME, true);
5303}
5304EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5305
5306/**
5307 *	ata_host_suspend - suspend host
5308 *	@host: host to suspend
5309 *	@mesg: PM message
5310 *
5311 *	Suspend @host.  Actual operation is performed by port suspend.
5312 */
5313void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5314{
5315	host->dev->power.power_state = mesg;
5316}
5317EXPORT_SYMBOL_GPL(ata_host_suspend);
5318
5319/**
5320 *	ata_host_resume - resume host
5321 *	@host: host to resume
5322 *
5323 *	Resume @host.  Actual operation is performed by port resume.
5324 */
5325void ata_host_resume(struct ata_host *host)
5326{
5327	host->dev->power.power_state = PMSG_ON;
5328}
5329EXPORT_SYMBOL_GPL(ata_host_resume);
5330#endif
5331
5332const struct device_type ata_port_type = {
5333	.name = ATA_PORT_TYPE_NAME,
5334#ifdef CONFIG_PM
5335	.pm = &ata_port_pm_ops,
5336#endif
5337};
5338
5339/**
5340 *	ata_dev_init - Initialize an ata_device structure
5341 *	@dev: Device structure to initialize
5342 *
5343 *	Initialize @dev in preparation for probing.
5344 *
5345 *	LOCKING:
5346 *	Inherited from caller.
5347 */
5348void ata_dev_init(struct ata_device *dev)
5349{
5350	struct ata_link *link = ata_dev_phys_link(dev);
5351	struct ata_port *ap = link->ap;
5352	unsigned long flags;
5353
5354	/* SATA spd limit is bound to the attached device, reset together */
5355	link->sata_spd_limit = link->hw_sata_spd_limit;
5356	link->sata_spd = 0;
5357
5358	/* High bits of dev->flags are used to record warm plug
5359	 * requests which occur asynchronously.  Synchronize using
5360	 * host lock.
5361	 */
5362	spin_lock_irqsave(ap->lock, flags);
5363	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5364	dev->horkage = 0;
5365	spin_unlock_irqrestore(ap->lock, flags);
5366
5367	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5368	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5369	dev->pio_mask = UINT_MAX;
5370	dev->mwdma_mask = UINT_MAX;
5371	dev->udma_mask = UINT_MAX;
5372}
5373
5374/**
5375 *	ata_link_init - Initialize an ata_link structure
5376 *	@ap: ATA port link is attached to
5377 *	@link: Link structure to initialize
5378 *	@pmp: Port multiplier port number
5379 *
5380 *	Initialize @link.
5381 *
5382 *	LOCKING:
5383 *	Kernel thread context (may sleep)
5384 */
5385void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5386{
5387	int i;
5388
5389	/* clear everything except for devices */
5390	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5391	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5392
5393	link->ap = ap;
5394	link->pmp = pmp;
5395	link->active_tag = ATA_TAG_POISON;
5396	link->hw_sata_spd_limit = UINT_MAX;
5397
5398	/* can't use iterator, ap isn't initialized yet */
5399	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5400		struct ata_device *dev = &link->device[i];
5401
5402		dev->link = link;
5403		dev->devno = dev - link->device;
5404#ifdef CONFIG_ATA_ACPI
5405		dev->gtf_filter = ata_acpi_gtf_filter;
5406#endif
5407		ata_dev_init(dev);
5408	}
5409}
5410
5411/**
5412 *	sata_link_init_spd - Initialize link->sata_spd_limit
5413 *	@link: Link to configure sata_spd_limit for
5414 *
5415 *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5416 *	configured value.
5417 *
5418 *	LOCKING:
5419 *	Kernel thread context (may sleep).
5420 *
5421 *	RETURNS:
5422 *	0 on success, -errno on failure.
5423 */
5424int sata_link_init_spd(struct ata_link *link)
5425{
5426	u8 spd;
5427	int rc;
5428
5429	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5430	if (rc)
5431		return rc;
5432
5433	spd = (link->saved_scontrol >> 4) & 0xf;
5434	if (spd)
5435		link->hw_sata_spd_limit &= (1 << spd) - 1;
5436
5437	ata_force_link_limits(link);
5438
5439	link->sata_spd_limit = link->hw_sata_spd_limit;
5440
5441	return 0;
5442}
5443
5444/**
5445 *	ata_port_alloc - allocate and initialize basic ATA port resources
5446 *	@host: ATA host this allocated port belongs to
5447 *
5448 *	Allocate and initialize basic ATA port resources.
5449 *
5450 *	RETURNS:
5451 *	Allocate ATA port on success, NULL on failure.
5452 *
5453 *	LOCKING:
5454 *	Inherited from calling layer (may sleep).
5455 */
5456struct ata_port *ata_port_alloc(struct ata_host *host)
5457{
5458	struct ata_port *ap;
5459
5460	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5461	if (!ap)
5462		return NULL;
5463
5464	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5465	ap->lock = &host->lock;
5466	ap->print_id = -1;
5467	ap->local_port_no = -1;
5468	ap->host = host;
5469	ap->dev = host->dev;
5470
5471	mutex_init(&ap->scsi_scan_mutex);
5472	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5473	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5474	INIT_LIST_HEAD(&ap->eh_done_q);
5475	init_waitqueue_head(&ap->eh_wait_q);
5476	init_completion(&ap->park_req_pending);
5477	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5478		    TIMER_DEFERRABLE);
5479
5480	ap->cbl = ATA_CBL_NONE;
5481
5482	ata_link_init(ap, &ap->link, 0);
5483
5484#ifdef ATA_IRQ_TRAP
5485	ap->stats.unhandled_irq = 1;
5486	ap->stats.idle_irq = 1;
5487#endif
5488	ata_sff_port_init(ap);
5489
5490	return ap;
5491}
5492
5493static void ata_devres_release(struct device *gendev, void *res)
5494{
5495	struct ata_host *host = dev_get_drvdata(gendev);
5496	int i;
5497
5498	for (i = 0; i < host->n_ports; i++) {
5499		struct ata_port *ap = host->ports[i];
5500
5501		if (!ap)
5502			continue;
5503
5504		if (ap->scsi_host)
5505			scsi_host_put(ap->scsi_host);
5506
5507	}
5508
5509	dev_set_drvdata(gendev, NULL);
5510	ata_host_put(host);
5511}
5512
5513static void ata_host_release(struct kref *kref)
5514{
5515	struct ata_host *host = container_of(kref, struct ata_host, kref);
5516	int i;
5517
5518	for (i = 0; i < host->n_ports; i++) {
5519		struct ata_port *ap = host->ports[i];
5520
5521		kfree(ap->pmp_link);
5522		kfree(ap->slave_link);
5523		kfree(ap->ncq_sense_buf);
5524		kfree(ap);
5525		host->ports[i] = NULL;
5526	}
5527	kfree(host);
5528}
5529
5530void ata_host_get(struct ata_host *host)
5531{
5532	kref_get(&host->kref);
5533}
5534
5535void ata_host_put(struct ata_host *host)
5536{
5537	kref_put(&host->kref, ata_host_release);
5538}
5539EXPORT_SYMBOL_GPL(ata_host_put);
5540
5541/**
5542 *	ata_host_alloc - allocate and init basic ATA host resources
5543 *	@dev: generic device this host is associated with
5544 *	@max_ports: maximum number of ATA ports associated with this host
5545 *
5546 *	Allocate and initialize basic ATA host resources.  LLD calls
5547 *	this function to allocate a host, initializes it fully and
5548 *	attaches it using ata_host_register().
5549 *
5550 *	@max_ports ports are allocated and host->n_ports is
5551 *	initialized to @max_ports.  The caller is allowed to decrease
5552 *	host->n_ports before calling ata_host_register().  The unused
5553 *	ports will be automatically freed on registration.
5554 *
5555 *	RETURNS:
5556 *	Allocate ATA host on success, NULL on failure.
5557 *
5558 *	LOCKING:
5559 *	Inherited from calling layer (may sleep).
5560 */
5561struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5562{
5563	struct ata_host *host;
5564	size_t sz;
5565	int i;
5566	void *dr;
5567
5568	/* alloc a container for our list of ATA ports (buses) */
5569	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5570	host = kzalloc(sz, GFP_KERNEL);
5571	if (!host)
5572		return NULL;
5573
5574	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5575		goto err_free;
5576
5577	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5578	if (!dr)
5579		goto err_out;
5580
5581	devres_add(dev, dr);
5582	dev_set_drvdata(dev, host);
5583
5584	spin_lock_init(&host->lock);
5585	mutex_init(&host->eh_mutex);
5586	host->dev = dev;
5587	host->n_ports = max_ports;
5588	kref_init(&host->kref);
5589
5590	/* allocate ports bound to this host */
5591	for (i = 0; i < max_ports; i++) {
5592		struct ata_port *ap;
5593
5594		ap = ata_port_alloc(host);
5595		if (!ap)
5596			goto err_out;
5597
5598		ap->port_no = i;
5599		host->ports[i] = ap;
5600	}
5601
5602	devres_remove_group(dev, NULL);
5603	return host;
5604
5605 err_out:
5606	devres_release_group(dev, NULL);
5607 err_free:
5608	kfree(host);
5609	return NULL;
5610}
5611EXPORT_SYMBOL_GPL(ata_host_alloc);
5612
5613/**
5614 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5615 *	@dev: generic device this host is associated with
5616 *	@ppi: array of ATA port_info to initialize host with
5617 *	@n_ports: number of ATA ports attached to this host
5618 *
5619 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5620 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5621 *	last entry will be used for the remaining ports.
5622 *
5623 *	RETURNS:
5624 *	Allocate ATA host on success, NULL on failure.
5625 *
5626 *	LOCKING:
5627 *	Inherited from calling layer (may sleep).
5628 */
5629struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5630				      const struct ata_port_info * const * ppi,
5631				      int n_ports)
5632{
5633	const struct ata_port_info *pi = &ata_dummy_port_info;
5634	struct ata_host *host;
5635	int i, j;
5636
5637	host = ata_host_alloc(dev, n_ports);
5638	if (!host)
5639		return NULL;
5640
5641	for (i = 0, j = 0; i < host->n_ports; i++) {
5642		struct ata_port *ap = host->ports[i];
5643
5644		if (ppi[j])
5645			pi = ppi[j++];
5646
5647		ap->pio_mask = pi->pio_mask;
5648		ap->mwdma_mask = pi->mwdma_mask;
5649		ap->udma_mask = pi->udma_mask;
5650		ap->flags |= pi->flags;
5651		ap->link.flags |= pi->link_flags;
5652		ap->ops = pi->port_ops;
5653
5654		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5655			host->ops = pi->port_ops;
5656	}
5657
5658	return host;
5659}
5660EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5661
5662static void ata_host_stop(struct device *gendev, void *res)
5663{
5664	struct ata_host *host = dev_get_drvdata(gendev);
5665	int i;
5666
5667	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5668
5669	for (i = 0; i < host->n_ports; i++) {
5670		struct ata_port *ap = host->ports[i];
5671
5672		if (ap->ops->port_stop)
5673			ap->ops->port_stop(ap);
5674	}
5675
5676	if (host->ops->host_stop)
5677		host->ops->host_stop(host);
5678}
5679
5680/**
5681 *	ata_finalize_port_ops - finalize ata_port_operations
5682 *	@ops: ata_port_operations to finalize
5683 *
5684 *	An ata_port_operations can inherit from another ops and that
5685 *	ops can again inherit from another.  This can go on as many
5686 *	times as necessary as long as there is no loop in the
5687 *	inheritance chain.
5688 *
5689 *	Ops tables are finalized when the host is started.  NULL or
5690 *	unspecified entries are inherited from the closet ancestor
5691 *	which has the method and the entry is populated with it.
5692 *	After finalization, the ops table directly points to all the
5693 *	methods and ->inherits is no longer necessary and cleared.
5694 *
5695 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5696 *
5697 *	LOCKING:
5698 *	None.
5699 */
5700static void ata_finalize_port_ops(struct ata_port_operations *ops)
5701{
5702	static DEFINE_SPINLOCK(lock);
5703	const struct ata_port_operations *cur;
5704	void **begin = (void **)ops;
5705	void **end = (void **)&ops->inherits;
5706	void **pp;
5707
5708	if (!ops || !ops->inherits)
5709		return;
5710
5711	spin_lock(&lock);
5712
5713	for (cur = ops->inherits; cur; cur = cur->inherits) {
5714		void **inherit = (void **)cur;
5715
5716		for (pp = begin; pp < end; pp++, inherit++)
5717			if (!*pp)
5718				*pp = *inherit;
5719	}
5720
5721	for (pp = begin; pp < end; pp++)
5722		if (IS_ERR(*pp))
5723			*pp = NULL;
5724
5725	ops->inherits = NULL;
5726
5727	spin_unlock(&lock);
5728}
5729
5730/**
5731 *	ata_host_start - start and freeze ports of an ATA host
5732 *	@host: ATA host to start ports for
5733 *
5734 *	Start and then freeze ports of @host.  Started status is
5735 *	recorded in host->flags, so this function can be called
5736 *	multiple times.  Ports are guaranteed to get started only
5737 *	once.  If host->ops is not initialized yet, it is set to the
5738 *	first non-dummy port ops.
5739 *
5740 *	LOCKING:
5741 *	Inherited from calling layer (may sleep).
5742 *
5743 *	RETURNS:
5744 *	0 if all ports are started successfully, -errno otherwise.
5745 */
5746int ata_host_start(struct ata_host *host)
5747{
5748	int have_stop = 0;
5749	void *start_dr = NULL;
5750	int i, rc;
5751
5752	if (host->flags & ATA_HOST_STARTED)
5753		return 0;
5754
5755	ata_finalize_port_ops(host->ops);
5756
5757	for (i = 0; i < host->n_ports; i++) {
5758		struct ata_port *ap = host->ports[i];
5759
5760		ata_finalize_port_ops(ap->ops);
5761
5762		if (!host->ops && !ata_port_is_dummy(ap))
5763			host->ops = ap->ops;
5764
5765		if (ap->ops->port_stop)
5766			have_stop = 1;
5767	}
5768
5769	if (host->ops && host->ops->host_stop)
5770		have_stop = 1;
5771
5772	if (have_stop) {
5773		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5774		if (!start_dr)
5775			return -ENOMEM;
5776	}
5777
5778	for (i = 0; i < host->n_ports; i++) {
5779		struct ata_port *ap = host->ports[i];
5780
5781		if (ap->ops->port_start) {
5782			rc = ap->ops->port_start(ap);
5783			if (rc) {
5784				if (rc != -ENODEV)
5785					dev_err(host->dev,
5786						"failed to start port %d (errno=%d)\n",
5787						i, rc);
5788				goto err_out;
5789			}
5790		}
5791		ata_eh_freeze_port(ap);
5792	}
5793
5794	if (start_dr)
5795		devres_add(host->dev, start_dr);
5796	host->flags |= ATA_HOST_STARTED;
5797	return 0;
5798
5799 err_out:
5800	while (--i >= 0) {
5801		struct ata_port *ap = host->ports[i];
5802
5803		if (ap->ops->port_stop)
5804			ap->ops->port_stop(ap);
5805	}
5806	devres_free(start_dr);
5807	return rc;
5808}
5809EXPORT_SYMBOL_GPL(ata_host_start);
5810
5811/**
5812 *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5813 *	@host:	host to initialize
5814 *	@dev:	device host is attached to
5815 *	@ops:	port_ops
5816 *
5817 */
5818void ata_host_init(struct ata_host *host, struct device *dev,
5819		   struct ata_port_operations *ops)
5820{
5821	spin_lock_init(&host->lock);
5822	mutex_init(&host->eh_mutex);
5823	host->n_tags = ATA_MAX_QUEUE;
5824	host->dev = dev;
5825	host->ops = ops;
5826	kref_init(&host->kref);
5827}
5828EXPORT_SYMBOL_GPL(ata_host_init);
5829
5830void ata_port_probe(struct ata_port *ap)
5831{
5832	struct ata_eh_info *ehi = &ap->link.eh_info;
5833	unsigned long flags;
5834
5835	/* kick EH for boot probing */
5836	spin_lock_irqsave(ap->lock, flags);
5837
5838	ehi->probe_mask |= ATA_ALL_DEVICES;
5839	ehi->action |= ATA_EH_RESET;
5840	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5841
5842	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5843	ap->pflags |= ATA_PFLAG_LOADING;
5844	ata_port_schedule_eh(ap);
5845
5846	spin_unlock_irqrestore(ap->lock, flags);
5847}
5848EXPORT_SYMBOL_GPL(ata_port_probe);
5849
5850static void async_port_probe(void *data, async_cookie_t cookie)
5851{
5852	struct ata_port *ap = data;
5853
5854	/*
5855	 * If we're not allowed to scan this host in parallel,
5856	 * we need to wait until all previous scans have completed
5857	 * before going further.
5858	 * Jeff Garzik says this is only within a controller, so we
5859	 * don't need to wait for port 0, only for later ports.
5860	 */
5861	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5862		async_synchronize_cookie(cookie);
5863
5864	ata_port_probe(ap);
5865	ata_port_wait_eh(ap);
5866
5867	/* in order to keep device order, we need to synchronize at this point */
5868	async_synchronize_cookie(cookie);
5869
5870	ata_scsi_scan_host(ap, 1);
5871}
5872
5873/**
5874 *	ata_host_register - register initialized ATA host
5875 *	@host: ATA host to register
5876 *	@sht: template for SCSI host
5877 *
5878 *	Register initialized ATA host.  @host is allocated using
5879 *	ata_host_alloc() and fully initialized by LLD.  This function
5880 *	starts ports, registers @host with ATA and SCSI layers and
5881 *	probe registered devices.
5882 *
5883 *	LOCKING:
5884 *	Inherited from calling layer (may sleep).
5885 *
5886 *	RETURNS:
5887 *	0 on success, -errno otherwise.
5888 */
5889int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5890{
5891	int i, rc;
5892
5893	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5894
5895	/* host must have been started */
5896	if (!(host->flags & ATA_HOST_STARTED)) {
5897		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5898		WARN_ON(1);
5899		return -EINVAL;
5900	}
5901
5902	/* Blow away unused ports.  This happens when LLD can't
5903	 * determine the exact number of ports to allocate at
5904	 * allocation time.
5905	 */
5906	for (i = host->n_ports; host->ports[i]; i++)
5907		kfree(host->ports[i]);
5908
5909	/* give ports names and add SCSI hosts */
5910	for (i = 0; i < host->n_ports; i++) {
5911		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5912		host->ports[i]->local_port_no = i + 1;
5913	}
5914
5915	/* Create associated sysfs transport objects  */
5916	for (i = 0; i < host->n_ports; i++) {
5917		rc = ata_tport_add(host->dev,host->ports[i]);
5918		if (rc) {
5919			goto err_tadd;
5920		}
5921	}
5922
5923	rc = ata_scsi_add_hosts(host, sht);
5924	if (rc)
5925		goto err_tadd;
5926
5927	/* set cable, sata_spd_limit and report */
5928	for (i = 0; i < host->n_ports; i++) {
5929		struct ata_port *ap = host->ports[i];
5930		unsigned int xfer_mask;
5931
5932		/* set SATA cable type if still unset */
5933		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5934			ap->cbl = ATA_CBL_SATA;
5935
5936		/* init sata_spd_limit to the current value */
5937		sata_link_init_spd(&ap->link);
5938		if (ap->slave_link)
5939			sata_link_init_spd(ap->slave_link);
5940
5941		/* print per-port info to dmesg */
5942		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5943					      ap->udma_mask);
5944
5945		if (!ata_port_is_dummy(ap)) {
5946			ata_port_info(ap, "%cATA max %s %s\n",
5947				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5948				      ata_mode_string(xfer_mask),
5949				      ap->link.eh_info.desc);
5950			ata_ehi_clear_desc(&ap->link.eh_info);
5951		} else
5952			ata_port_info(ap, "DUMMY\n");
5953	}
5954
5955	/* perform each probe asynchronously */
5956	for (i = 0; i < host->n_ports; i++) {
5957		struct ata_port *ap = host->ports[i];
5958		ap->cookie = async_schedule(async_port_probe, ap);
5959	}
5960
5961	return 0;
5962
5963 err_tadd:
5964	while (--i >= 0) {
5965		ata_tport_delete(host->ports[i]);
5966	}
5967	return rc;
5968
5969}
5970EXPORT_SYMBOL_GPL(ata_host_register);
5971
5972/**
5973 *	ata_host_activate - start host, request IRQ and register it
5974 *	@host: target ATA host
5975 *	@irq: IRQ to request
5976 *	@irq_handler: irq_handler used when requesting IRQ
5977 *	@irq_flags: irq_flags used when requesting IRQ
5978 *	@sht: scsi_host_template to use when registering the host
5979 *
5980 *	After allocating an ATA host and initializing it, most libata
5981 *	LLDs perform three steps to activate the host - start host,
5982 *	request IRQ and register it.  This helper takes necessary
5983 *	arguments and performs the three steps in one go.
5984 *
5985 *	An invalid IRQ skips the IRQ registration and expects the host to
5986 *	have set polling mode on the port. In this case, @irq_handler
5987 *	should be NULL.
5988 *
5989 *	LOCKING:
5990 *	Inherited from calling layer (may sleep).
5991 *
5992 *	RETURNS:
5993 *	0 on success, -errno otherwise.
5994 */
5995int ata_host_activate(struct ata_host *host, int irq,
5996		      irq_handler_t irq_handler, unsigned long irq_flags,
5997		      const struct scsi_host_template *sht)
5998{
5999	int i, rc;
6000	char *irq_desc;
6001
6002	rc = ata_host_start(host);
6003	if (rc)
6004		return rc;
6005
6006	/* Special case for polling mode */
6007	if (!irq) {
6008		WARN_ON(irq_handler);
6009		return ata_host_register(host, sht);
6010	}
6011
6012	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6013				  dev_driver_string(host->dev),
6014				  dev_name(host->dev));
6015	if (!irq_desc)
6016		return -ENOMEM;
6017
6018	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6019			      irq_desc, host);
6020	if (rc)
6021		return rc;
6022
6023	for (i = 0; i < host->n_ports; i++)
6024		ata_port_desc_misc(host->ports[i], irq);
6025
6026	rc = ata_host_register(host, sht);
6027	/* if failed, just free the IRQ and leave ports alone */
6028	if (rc)
6029		devm_free_irq(host->dev, irq, host);
6030
6031	return rc;
6032}
6033EXPORT_SYMBOL_GPL(ata_host_activate);
6034
6035/**
6036 *	ata_port_detach - Detach ATA port in preparation of device removal
6037 *	@ap: ATA port to be detached
6038 *
6039 *	Detach all ATA devices and the associated SCSI devices of @ap;
6040 *	then, remove the associated SCSI host.  @ap is guaranteed to
6041 *	be quiescent on return from this function.
6042 *
6043 *	LOCKING:
6044 *	Kernel thread context (may sleep).
6045 */
6046static void ata_port_detach(struct ata_port *ap)
6047{
6048	unsigned long flags;
6049	struct ata_link *link;
6050	struct ata_device *dev;
6051
6052	/* Ensure ata_port probe has completed */
6053	async_synchronize_cookie(ap->cookie + 1);
6054
6055	/* Wait for any ongoing EH */
6056	ata_port_wait_eh(ap);
6057
6058	mutex_lock(&ap->scsi_scan_mutex);
6059	spin_lock_irqsave(ap->lock, flags);
6060
6061	/* Remove scsi devices */
6062	ata_for_each_link(link, ap, HOST_FIRST) {
6063		ata_for_each_dev(dev, link, ALL) {
6064			if (dev->sdev) {
6065				spin_unlock_irqrestore(ap->lock, flags);
6066				scsi_remove_device(dev->sdev);
6067				spin_lock_irqsave(ap->lock, flags);
6068				dev->sdev = NULL;
6069			}
6070		}
6071	}
6072
6073	/* Tell EH to disable all devices */
6074	ap->pflags |= ATA_PFLAG_UNLOADING;
6075	ata_port_schedule_eh(ap);
6076
6077	spin_unlock_irqrestore(ap->lock, flags);
6078	mutex_unlock(&ap->scsi_scan_mutex);
6079
6080	/* wait till EH commits suicide */
6081	ata_port_wait_eh(ap);
6082
6083	/* it better be dead now */
6084	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6085
6086	cancel_delayed_work_sync(&ap->hotplug_task);
6087	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6088
6089	/* clean up zpodd on port removal */
6090	ata_for_each_link(link, ap, HOST_FIRST) {
6091		ata_for_each_dev(dev, link, ALL) {
6092			if (zpodd_dev_enabled(dev))
6093				zpodd_exit(dev);
6094		}
6095	}
6096	if (ap->pmp_link) {
6097		int i;
6098		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6099			ata_tlink_delete(&ap->pmp_link[i]);
6100	}
6101	/* remove the associated SCSI host */
6102	scsi_remove_host(ap->scsi_host);
6103	ata_tport_delete(ap);
6104}
6105
6106/**
6107 *	ata_host_detach - Detach all ports of an ATA host
6108 *	@host: Host to detach
6109 *
6110 *	Detach all ports of @host.
6111 *
6112 *	LOCKING:
6113 *	Kernel thread context (may sleep).
6114 */
6115void ata_host_detach(struct ata_host *host)
6116{
6117	int i;
6118
6119	for (i = 0; i < host->n_ports; i++)
6120		ata_port_detach(host->ports[i]);
6121
6122	/* the host is dead now, dissociate ACPI */
6123	ata_acpi_dissociate(host);
6124}
6125EXPORT_SYMBOL_GPL(ata_host_detach);
6126
6127#ifdef CONFIG_PCI
6128
6129/**
6130 *	ata_pci_remove_one - PCI layer callback for device removal
6131 *	@pdev: PCI device that was removed
6132 *
6133 *	PCI layer indicates to libata via this hook that hot-unplug or
6134 *	module unload event has occurred.  Detach all ports.  Resource
6135 *	release is handled via devres.
6136 *
6137 *	LOCKING:
6138 *	Inherited from PCI layer (may sleep).
6139 */
6140void ata_pci_remove_one(struct pci_dev *pdev)
6141{
6142	struct ata_host *host = pci_get_drvdata(pdev);
6143
6144	ata_host_detach(host);
6145}
6146EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6147
6148void ata_pci_shutdown_one(struct pci_dev *pdev)
6149{
6150	struct ata_host *host = pci_get_drvdata(pdev);
6151	int i;
6152
6153	for (i = 0; i < host->n_ports; i++) {
6154		struct ata_port *ap = host->ports[i];
6155
6156		ap->pflags |= ATA_PFLAG_FROZEN;
6157
6158		/* Disable port interrupts */
6159		if (ap->ops->freeze)
6160			ap->ops->freeze(ap);
6161
6162		/* Stop the port DMA engines */
6163		if (ap->ops->port_stop)
6164			ap->ops->port_stop(ap);
6165	}
6166}
6167EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6168
6169/* move to PCI subsystem */
6170int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6171{
6172	unsigned long tmp = 0;
6173
6174	switch (bits->width) {
6175	case 1: {
6176		u8 tmp8 = 0;
6177		pci_read_config_byte(pdev, bits->reg, &tmp8);
6178		tmp = tmp8;
6179		break;
6180	}
6181	case 2: {
6182		u16 tmp16 = 0;
6183		pci_read_config_word(pdev, bits->reg, &tmp16);
6184		tmp = tmp16;
6185		break;
6186	}
6187	case 4: {
6188		u32 tmp32 = 0;
6189		pci_read_config_dword(pdev, bits->reg, &tmp32);
6190		tmp = tmp32;
6191		break;
6192	}
6193
6194	default:
6195		return -EINVAL;
6196	}
6197
6198	tmp &= bits->mask;
6199
6200	return (tmp == bits->val) ? 1 : 0;
6201}
6202EXPORT_SYMBOL_GPL(pci_test_config_bits);
6203
6204#ifdef CONFIG_PM
6205void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6206{
6207	pci_save_state(pdev);
6208	pci_disable_device(pdev);
6209
6210	if (mesg.event & PM_EVENT_SLEEP)
6211		pci_set_power_state(pdev, PCI_D3hot);
6212}
6213EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6214
6215int ata_pci_device_do_resume(struct pci_dev *pdev)
6216{
6217	int rc;
6218
6219	pci_set_power_state(pdev, PCI_D0);
6220	pci_restore_state(pdev);
6221
6222	rc = pcim_enable_device(pdev);
6223	if (rc) {
6224		dev_err(&pdev->dev,
6225			"failed to enable device after resume (%d)\n", rc);
6226		return rc;
6227	}
6228
6229	pci_set_master(pdev);
6230	return 0;
6231}
6232EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6233
6234int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6235{
6236	struct ata_host *host = pci_get_drvdata(pdev);
6237
6238	ata_host_suspend(host, mesg);
6239
6240	ata_pci_device_do_suspend(pdev, mesg);
6241
6242	return 0;
6243}
6244EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6245
6246int ata_pci_device_resume(struct pci_dev *pdev)
6247{
6248	struct ata_host *host = pci_get_drvdata(pdev);
6249	int rc;
6250
6251	rc = ata_pci_device_do_resume(pdev);
6252	if (rc == 0)
6253		ata_host_resume(host);
6254	return rc;
6255}
6256EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6257#endif /* CONFIG_PM */
6258#endif /* CONFIG_PCI */
6259
6260/**
6261 *	ata_platform_remove_one - Platform layer callback for device removal
6262 *	@pdev: Platform device that was removed
6263 *
6264 *	Platform layer indicates to libata via this hook that hot-unplug or
6265 *	module unload event has occurred.  Detach all ports.  Resource
6266 *	release is handled via devres.
6267 *
6268 *	LOCKING:
6269 *	Inherited from platform layer (may sleep).
6270 */
6271void ata_platform_remove_one(struct platform_device *pdev)
6272{
6273	struct ata_host *host = platform_get_drvdata(pdev);
6274
6275	ata_host_detach(host);
6276}
6277EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6278
6279#ifdef CONFIG_ATA_FORCE
6280
6281#define force_cbl(name, flag)				\
6282	{ #name,	.cbl		= (flag) }
6283
6284#define force_spd_limit(spd, val)			\
6285	{ #spd,	.spd_limit		= (val) }
6286
6287#define force_xfer(mode, shift)				\
6288	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6289
6290#define force_lflag_on(name, flags)			\
6291	{ #name,	.lflags_on	= (flags) }
6292
6293#define force_lflag_onoff(name, flags)			\
6294	{ "no" #name,	.lflags_on	= (flags) },	\
6295	{ #name,	.lflags_off	= (flags) }
6296
6297#define force_horkage_on(name, flag)			\
6298	{ #name,	.horkage_on	= (flag) }
6299
6300#define force_horkage_onoff(name, flag)			\
6301	{ "no" #name,	.horkage_on	= (flag) },	\
6302	{ #name,	.horkage_off	= (flag) }
6303
6304static const struct ata_force_param force_tbl[] __initconst = {
6305	force_cbl(40c,			ATA_CBL_PATA40),
6306	force_cbl(80c,			ATA_CBL_PATA80),
6307	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6308	force_cbl(unk,			ATA_CBL_PATA_UNK),
6309	force_cbl(ign,			ATA_CBL_PATA_IGN),
6310	force_cbl(sata,			ATA_CBL_SATA),
6311
6312	force_spd_limit(1.5Gbps,	1),
6313	force_spd_limit(3.0Gbps,	2),
6314
6315	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6316	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6317	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6318	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6319	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6320	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6321	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6322	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6323	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6324	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6325	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6326	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6327	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6328	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6329	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6330	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6331	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6332	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6333	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6334	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6335	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6336	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6337	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6338	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6339	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6340	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6341	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6342	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6343	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6344	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6345	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6346	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6347	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6348	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6349
6350	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6351	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6352	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6353	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6354	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6355
6356	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6357	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6358	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6359
6360	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6361	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6362	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6363
6364	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6365	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6366	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6367
6368	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6369	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6370	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6371
6372	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6373	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6374	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6375
6376	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6377	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6378	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6379	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6380
6381	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6382};
6383
6384static int __init ata_parse_force_one(char **cur,
6385				      struct ata_force_ent *force_ent,
6386				      const char **reason)
6387{
6388	char *start = *cur, *p = *cur;
6389	char *id, *val, *endp;
6390	const struct ata_force_param *match_fp = NULL;
6391	int nr_matches = 0, i;
6392
6393	/* find where this param ends and update *cur */
6394	while (*p != '\0' && *p != ',')
6395		p++;
6396
6397	if (*p == '\0')
6398		*cur = p;
6399	else
6400		*cur = p + 1;
6401
6402	*p = '\0';
6403
6404	/* parse */
6405	p = strchr(start, ':');
6406	if (!p) {
6407		val = strstrip(start);
6408		goto parse_val;
6409	}
6410	*p = '\0';
6411
6412	id = strstrip(start);
6413	val = strstrip(p + 1);
6414
6415	/* parse id */
6416	p = strchr(id, '.');
6417	if (p) {
6418		*p++ = '\0';
6419		force_ent->device = simple_strtoul(p, &endp, 10);
6420		if (p == endp || *endp != '\0') {
6421			*reason = "invalid device";
6422			return -EINVAL;
6423		}
6424	}
6425
6426	force_ent->port = simple_strtoul(id, &endp, 10);
6427	if (id == endp || *endp != '\0') {
6428		*reason = "invalid port/link";
6429		return -EINVAL;
6430	}
6431
6432 parse_val:
6433	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6434	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6435		const struct ata_force_param *fp = &force_tbl[i];
6436
6437		if (strncasecmp(val, fp->name, strlen(val)))
6438			continue;
6439
6440		nr_matches++;
6441		match_fp = fp;
6442
6443		if (strcasecmp(val, fp->name) == 0) {
6444			nr_matches = 1;
6445			break;
6446		}
6447	}
6448
6449	if (!nr_matches) {
6450		*reason = "unknown value";
6451		return -EINVAL;
6452	}
6453	if (nr_matches > 1) {
6454		*reason = "ambiguous value";
6455		return -EINVAL;
6456	}
6457
6458	force_ent->param = *match_fp;
6459
6460	return 0;
6461}
6462
6463static void __init ata_parse_force_param(void)
6464{
6465	int idx = 0, size = 1;
6466	int last_port = -1, last_device = -1;
6467	char *p, *cur, *next;
6468
6469	/* Calculate maximum number of params and allocate ata_force_tbl */
6470	for (p = ata_force_param_buf; *p; p++)
6471		if (*p == ',')
6472			size++;
6473
6474	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6475	if (!ata_force_tbl) {
6476		printk(KERN_WARNING "ata: failed to extend force table, "
6477		       "libata.force ignored\n");
6478		return;
6479	}
6480
6481	/* parse and populate the table */
6482	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6483		const char *reason = "";
6484		struct ata_force_ent te = { .port = -1, .device = -1 };
6485
6486		next = cur;
6487		if (ata_parse_force_one(&next, &te, &reason)) {
6488			printk(KERN_WARNING "ata: failed to parse force "
6489			       "parameter \"%s\" (%s)\n",
6490			       cur, reason);
6491			continue;
6492		}
6493
6494		if (te.port == -1) {
6495			te.port = last_port;
6496			te.device = last_device;
6497		}
6498
6499		ata_force_tbl[idx++] = te;
6500
6501		last_port = te.port;
6502		last_device = te.device;
6503	}
6504
6505	ata_force_tbl_size = idx;
6506}
6507
6508static void ata_free_force_param(void)
6509{
6510	kfree(ata_force_tbl);
6511}
6512#else
6513static inline void ata_parse_force_param(void) { }
6514static inline void ata_free_force_param(void) { }
6515#endif
6516
6517static int __init ata_init(void)
6518{
6519	int rc;
6520
6521	ata_parse_force_param();
6522
6523	rc = ata_sff_init();
6524	if (rc) {
6525		ata_free_force_param();
6526		return rc;
6527	}
6528
6529	libata_transport_init();
6530	ata_scsi_transport_template = ata_attach_transport();
6531	if (!ata_scsi_transport_template) {
6532		ata_sff_exit();
6533		rc = -ENOMEM;
6534		goto err_out;
6535	}
6536
6537	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6538	return 0;
6539
6540err_out:
6541	return rc;
6542}
6543
6544static void __exit ata_exit(void)
6545{
6546	ata_release_transport(ata_scsi_transport_template);
6547	libata_transport_exit();
6548	ata_sff_exit();
6549	ata_free_force_param();
6550}
6551
6552subsys_initcall(ata_init);
6553module_exit(ata_exit);
6554
6555static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6556
6557int ata_ratelimit(void)
6558{
6559	return __ratelimit(&ratelimit);
6560}
6561EXPORT_SYMBOL_GPL(ata_ratelimit);
6562
6563/**
6564 *	ata_msleep - ATA EH owner aware msleep
6565 *	@ap: ATA port to attribute the sleep to
6566 *	@msecs: duration to sleep in milliseconds
6567 *
6568 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6569 *	ownership is released before going to sleep and reacquired
6570 *	after the sleep is complete.  IOW, other ports sharing the
6571 *	@ap->host will be allowed to own the EH while this task is
6572 *	sleeping.
6573 *
6574 *	LOCKING:
6575 *	Might sleep.
6576 */
6577void ata_msleep(struct ata_port *ap, unsigned int msecs)
6578{
6579	bool owns_eh = ap && ap->host->eh_owner == current;
6580
6581	if (owns_eh)
6582		ata_eh_release(ap);
6583
6584	if (msecs < 20) {
6585		unsigned long usecs = msecs * USEC_PER_MSEC;
6586		usleep_range(usecs, usecs + 50);
6587	} else {
6588		msleep(msecs);
6589	}
6590
6591	if (owns_eh)
6592		ata_eh_acquire(ap);
6593}
6594EXPORT_SYMBOL_GPL(ata_msleep);
6595
6596/**
6597 *	ata_wait_register - wait until register value changes
6598 *	@ap: ATA port to wait register for, can be NULL
6599 *	@reg: IO-mapped register
6600 *	@mask: Mask to apply to read register value
6601 *	@val: Wait condition
6602 *	@interval: polling interval in milliseconds
6603 *	@timeout: timeout in milliseconds
6604 *
6605 *	Waiting for some bits of register to change is a common
6606 *	operation for ATA controllers.  This function reads 32bit LE
6607 *	IO-mapped register @reg and tests for the following condition.
6608 *
6609 *	(*@reg & mask) != val
6610 *
6611 *	If the condition is met, it returns; otherwise, the process is
6612 *	repeated after @interval_msec until timeout.
6613 *
6614 *	LOCKING:
6615 *	Kernel thread context (may sleep)
6616 *
6617 *	RETURNS:
6618 *	The final register value.
6619 */
6620u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6621		      unsigned int interval, unsigned int timeout)
6622{
6623	unsigned long deadline;
6624	u32 tmp;
6625
6626	tmp = ioread32(reg);
6627
6628	/* Calculate timeout _after_ the first read to make sure
6629	 * preceding writes reach the controller before starting to
6630	 * eat away the timeout.
6631	 */
6632	deadline = ata_deadline(jiffies, timeout);
6633
6634	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6635		ata_msleep(ap, interval);
6636		tmp = ioread32(reg);
6637	}
6638
6639	return tmp;
6640}
6641EXPORT_SYMBOL_GPL(ata_wait_register);
6642
6643/*
6644 * Dummy port_ops
6645 */
6646static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6647{
6648	return AC_ERR_SYSTEM;
6649}
6650
6651static void ata_dummy_error_handler(struct ata_port *ap)
6652{
6653	/* truly dummy */
6654}
6655
6656struct ata_port_operations ata_dummy_port_ops = {
6657	.qc_prep		= ata_noop_qc_prep,
6658	.qc_issue		= ata_dummy_qc_issue,
6659	.error_handler		= ata_dummy_error_handler,
6660	.sched_eh		= ata_std_sched_eh,
6661	.end_eh			= ata_std_end_eh,
6662};
6663EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6664
6665const struct ata_port_info ata_dummy_port_info = {
6666	.port_ops		= &ata_dummy_port_ops,
6667};
6668EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6669
6670void ata_print_version(const struct device *dev, const char *version)
6671{
6672	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6673}
6674EXPORT_SYMBOL(ata_print_version);
6675
6676EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6677EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6678EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6679EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6680EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6681