1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/uio.h>
10#include <linux/iocontext.h>
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
17#include <linux/cgroup.h>
18#include <linux/highmem.h>
19#include <linux/blk-crypto.h>
20#include <linux/xarray.h>
21
22#include <trace/events/block.h>
23#include "blk.h"
24#include "blk-rq-qos.h"
25#include "blk-cgroup.h"
26
27#define ALLOC_CACHE_THRESHOLD	16
28#define ALLOC_CACHE_MAX		256
29
30struct bio_alloc_cache {
31	struct bio		*free_list;
32	struct bio		*free_list_irq;
33	unsigned int		nr;
34	unsigned int		nr_irq;
35};
36
37static struct biovec_slab {
38	int nr_vecs;
39	char *name;
40	struct kmem_cache *slab;
41} bvec_slabs[] __read_mostly = {
42	{ .nr_vecs = 16, .name = "biovec-16" },
43	{ .nr_vecs = 64, .name = "biovec-64" },
44	{ .nr_vecs = 128, .name = "biovec-128" },
45	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46};
47
48static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49{
50	switch (nr_vecs) {
51	/* smaller bios use inline vecs */
52	case 5 ... 16:
53		return &bvec_slabs[0];
54	case 17 ... 64:
55		return &bvec_slabs[1];
56	case 65 ... 128:
57		return &bvec_slabs[2];
58	case 129 ... BIO_MAX_VECS:
59		return &bvec_slabs[3];
60	default:
61		BUG();
62		return NULL;
63	}
64}
65
66/*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
70struct bio_set fs_bio_set;
71EXPORT_SYMBOL(fs_bio_set);
72
73/*
74 * Our slab pool management
75 */
76struct bio_slab {
77	struct kmem_cache *slab;
78	unsigned int slab_ref;
79	unsigned int slab_size;
80	char name[8];
81};
82static DEFINE_MUTEX(bio_slab_lock);
83static DEFINE_XARRAY(bio_slabs);
84
85static struct bio_slab *create_bio_slab(unsigned int size)
86{
87	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89	if (!bslab)
90		return NULL;
91
92	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93	bslab->slab = kmem_cache_create(bslab->name, size,
94			ARCH_KMALLOC_MINALIGN,
95			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96	if (!bslab->slab)
97		goto fail_alloc_slab;
98
99	bslab->slab_ref = 1;
100	bslab->slab_size = size;
101
102	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103		return bslab;
104
105	kmem_cache_destroy(bslab->slab);
106
107fail_alloc_slab:
108	kfree(bslab);
109	return NULL;
110}
111
112static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113{
114	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115}
116
117static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118{
119	unsigned int size = bs_bio_slab_size(bs);
120	struct bio_slab *bslab;
121
122	mutex_lock(&bio_slab_lock);
123	bslab = xa_load(&bio_slabs, size);
124	if (bslab)
125		bslab->slab_ref++;
126	else
127		bslab = create_bio_slab(size);
128	mutex_unlock(&bio_slab_lock);
129
130	if (bslab)
131		return bslab->slab;
132	return NULL;
133}
134
135static void bio_put_slab(struct bio_set *bs)
136{
137	struct bio_slab *bslab = NULL;
138	unsigned int slab_size = bs_bio_slab_size(bs);
139
140	mutex_lock(&bio_slab_lock);
141
142	bslab = xa_load(&bio_slabs, slab_size);
143	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144		goto out;
145
146	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148	WARN_ON(!bslab->slab_ref);
149
150	if (--bslab->slab_ref)
151		goto out;
152
153	xa_erase(&bio_slabs, slab_size);
154
155	kmem_cache_destroy(bslab->slab);
156	kfree(bslab);
157
158out:
159	mutex_unlock(&bio_slab_lock);
160}
161
162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163{
164	BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166	if (nr_vecs == BIO_MAX_VECS)
167		mempool_free(bv, pool);
168	else if (nr_vecs > BIO_INLINE_VECS)
169		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170}
171
172/*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
176static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177{
178	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180}
181
182struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183		gfp_t gfp_mask)
184{
185	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187	if (WARN_ON_ONCE(!bvs))
188		return NULL;
189
190	/*
191	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192	 * We also rely on this in the bvec_free path.
193	 */
194	*nr_vecs = bvs->nr_vecs;
195
196	/*
197	 * Try a slab allocation first for all smaller allocations.  If that
198	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200	 */
201	if (*nr_vecs < BIO_MAX_VECS) {
202		struct bio_vec *bvl;
203
204		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206			return bvl;
207		*nr_vecs = BIO_MAX_VECS;
208	}
209
210	return mempool_alloc(pool, gfp_mask);
211}
212
213void bio_uninit(struct bio *bio)
214{
215#ifdef CONFIG_BLK_CGROUP
216	if (bio->bi_blkg) {
217		blkg_put(bio->bi_blkg);
218		bio->bi_blkg = NULL;
219	}
220#endif
221	if (bio_integrity(bio))
222		bio_integrity_free(bio);
223
224	bio_crypt_free_ctx(bio);
225}
226EXPORT_SYMBOL(bio_uninit);
227
228static void bio_free(struct bio *bio)
229{
230	struct bio_set *bs = bio->bi_pool;
231	void *p = bio;
232
233	WARN_ON_ONCE(!bs);
234
235	bio_uninit(bio);
236	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237	mempool_free(p - bs->front_pad, &bs->bio_pool);
238}
239
240/*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
245void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246	      unsigned short max_vecs, blk_opf_t opf)
247{
248	bio->bi_next = NULL;
249	bio->bi_bdev = bdev;
250	bio->bi_opf = opf;
251	bio->bi_flags = 0;
252	bio->bi_ioprio = 0;
253	bio->bi_write_hint = 0;
254	bio->bi_status = 0;
255	bio->bi_iter.bi_sector = 0;
256	bio->bi_iter.bi_size = 0;
257	bio->bi_iter.bi_idx = 0;
258	bio->bi_iter.bi_bvec_done = 0;
259	bio->bi_end_io = NULL;
260	bio->bi_private = NULL;
261#ifdef CONFIG_BLK_CGROUP
262	bio->bi_blkg = NULL;
263	bio->bi_issue.value = 0;
264	if (bdev)
265		bio_associate_blkg(bio);
266#ifdef CONFIG_BLK_CGROUP_IOCOST
267	bio->bi_iocost_cost = 0;
268#endif
269#endif
270#ifdef CONFIG_BLK_INLINE_ENCRYPTION
271	bio->bi_crypt_context = NULL;
272#endif
273#ifdef CONFIG_BLK_DEV_INTEGRITY
274	bio->bi_integrity = NULL;
275#endif
276	bio->bi_vcnt = 0;
277
278	atomic_set(&bio->__bi_remaining, 1);
279	atomic_set(&bio->__bi_cnt, 1);
280	bio->bi_cookie = BLK_QC_T_NONE;
281
282	bio->bi_max_vecs = max_vecs;
283	bio->bi_io_vec = table;
284	bio->bi_pool = NULL;
285}
286EXPORT_SYMBOL(bio_init);
287
288/**
289 * bio_reset - reinitialize a bio
290 * @bio:	bio to reset
291 * @bdev:	block device to use the bio for
292 * @opf:	operation and flags for bio
293 *
294 * Description:
295 *   After calling bio_reset(), @bio will be in the same state as a freshly
296 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
298 *   comment in struct bio.
299 */
300void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
301{
302	bio_uninit(bio);
303	memset(bio, 0, BIO_RESET_BYTES);
304	atomic_set(&bio->__bi_remaining, 1);
305	bio->bi_bdev = bdev;
306	if (bio->bi_bdev)
307		bio_associate_blkg(bio);
308	bio->bi_opf = opf;
309}
310EXPORT_SYMBOL(bio_reset);
311
312static struct bio *__bio_chain_endio(struct bio *bio)
313{
314	struct bio *parent = bio->bi_private;
315
316	if (bio->bi_status && !parent->bi_status)
317		parent->bi_status = bio->bi_status;
318	bio_put(bio);
319	return parent;
320}
321
322static void bio_chain_endio(struct bio *bio)
323{
324	bio_endio(__bio_chain_endio(bio));
325}
326
327/**
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338void bio_chain(struct bio *bio, struct bio *parent)
339{
340	BUG_ON(bio->bi_private || bio->bi_end_io);
341
342	bio->bi_private = parent;
343	bio->bi_end_io	= bio_chain_endio;
344	bio_inc_remaining(parent);
345}
346EXPORT_SYMBOL(bio_chain);
347
348/**
349 * bio_chain_and_submit - submit a bio after chaining it to another one
350 * @prev: bio to chain and submit
351 * @new: bio to chain to
352 *
353 * If @prev is non-NULL, chain it to @new and submit it.
354 *
355 * Return: @new.
356 */
357struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
358{
359	if (prev) {
360		bio_chain(prev, new);
361		submit_bio(prev);
362	}
363	return new;
364}
365
366struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
367		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
368{
369	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
370}
371EXPORT_SYMBOL_GPL(blk_next_bio);
372
373static void bio_alloc_rescue(struct work_struct *work)
374{
375	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
376	struct bio *bio;
377
378	while (1) {
379		spin_lock(&bs->rescue_lock);
380		bio = bio_list_pop(&bs->rescue_list);
381		spin_unlock(&bs->rescue_lock);
382
383		if (!bio)
384			break;
385
386		submit_bio_noacct(bio);
387	}
388}
389
390static void punt_bios_to_rescuer(struct bio_set *bs)
391{
392	struct bio_list punt, nopunt;
393	struct bio *bio;
394
395	if (WARN_ON_ONCE(!bs->rescue_workqueue))
396		return;
397	/*
398	 * In order to guarantee forward progress we must punt only bios that
399	 * were allocated from this bio_set; otherwise, if there was a bio on
400	 * there for a stacking driver higher up in the stack, processing it
401	 * could require allocating bios from this bio_set, and doing that from
402	 * our own rescuer would be bad.
403	 *
404	 * Since bio lists are singly linked, pop them all instead of trying to
405	 * remove from the middle of the list:
406	 */
407
408	bio_list_init(&punt);
409	bio_list_init(&nopunt);
410
411	while ((bio = bio_list_pop(&current->bio_list[0])))
412		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413	current->bio_list[0] = nopunt;
414
415	bio_list_init(&nopunt);
416	while ((bio = bio_list_pop(&current->bio_list[1])))
417		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
418	current->bio_list[1] = nopunt;
419
420	spin_lock(&bs->rescue_lock);
421	bio_list_merge(&bs->rescue_list, &punt);
422	spin_unlock(&bs->rescue_lock);
423
424	queue_work(bs->rescue_workqueue, &bs->rescue_work);
425}
426
427static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
428{
429	unsigned long flags;
430
431	/* cache->free_list must be empty */
432	if (WARN_ON_ONCE(cache->free_list))
433		return;
434
435	local_irq_save(flags);
436	cache->free_list = cache->free_list_irq;
437	cache->free_list_irq = NULL;
438	cache->nr += cache->nr_irq;
439	cache->nr_irq = 0;
440	local_irq_restore(flags);
441}
442
443static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
444		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
445		struct bio_set *bs)
446{
447	struct bio_alloc_cache *cache;
448	struct bio *bio;
449
450	cache = per_cpu_ptr(bs->cache, get_cpu());
451	if (!cache->free_list) {
452		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
453			bio_alloc_irq_cache_splice(cache);
454		if (!cache->free_list) {
455			put_cpu();
456			return NULL;
457		}
458	}
459	bio = cache->free_list;
460	cache->free_list = bio->bi_next;
461	cache->nr--;
462	put_cpu();
463
464	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
465	bio->bi_pool = bs;
466	return bio;
467}
468
469/**
470 * bio_alloc_bioset - allocate a bio for I/O
471 * @bdev:	block device to allocate the bio for (can be %NULL)
472 * @nr_vecs:	number of bvecs to pre-allocate
473 * @opf:	operation and flags for bio
474 * @gfp_mask:   the GFP_* mask given to the slab allocator
475 * @bs:		the bio_set to allocate from.
476 *
477 * Allocate a bio from the mempools in @bs.
478 *
479 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
480 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
481 * callers must never allocate more than 1 bio at a time from the general pool.
482 * Callers that need to allocate more than 1 bio must always submit the
483 * previously allocated bio for IO before attempting to allocate a new one.
484 * Failure to do so can cause deadlocks under memory pressure.
485 *
486 * Note that when running under submit_bio_noacct() (i.e. any block driver),
487 * bios are not submitted until after you return - see the code in
488 * submit_bio_noacct() that converts recursion into iteration, to prevent
489 * stack overflows.
490 *
491 * This would normally mean allocating multiple bios under submit_bio_noacct()
492 * would be susceptible to deadlocks, but we have
493 * deadlock avoidance code that resubmits any blocked bios from a rescuer
494 * thread.
495 *
496 * However, we do not guarantee forward progress for allocations from other
497 * mempools. Doing multiple allocations from the same mempool under
498 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
499 * for per bio allocations.
500 *
501 * Returns: Pointer to new bio on success, NULL on failure.
502 */
503struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
504			     blk_opf_t opf, gfp_t gfp_mask,
505			     struct bio_set *bs)
506{
507	gfp_t saved_gfp = gfp_mask;
508	struct bio *bio;
509	void *p;
510
511	/* should not use nobvec bioset for nr_vecs > 0 */
512	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
513		return NULL;
514
515	if (opf & REQ_ALLOC_CACHE) {
516		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
517			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
518						     gfp_mask, bs);
519			if (bio)
520				return bio;
521			/*
522			 * No cached bio available, bio returned below marked with
523			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
524			 */
525		} else {
526			opf &= ~REQ_ALLOC_CACHE;
527		}
528	}
529
530	/*
531	 * submit_bio_noacct() converts recursion to iteration; this means if
532	 * we're running beneath it, any bios we allocate and submit will not be
533	 * submitted (and thus freed) until after we return.
534	 *
535	 * This exposes us to a potential deadlock if we allocate multiple bios
536	 * from the same bio_set() while running underneath submit_bio_noacct().
537	 * If we were to allocate multiple bios (say a stacking block driver
538	 * that was splitting bios), we would deadlock if we exhausted the
539	 * mempool's reserve.
540	 *
541	 * We solve this, and guarantee forward progress, with a rescuer
542	 * workqueue per bio_set. If we go to allocate and there are bios on
543	 * current->bio_list, we first try the allocation without
544	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
545	 * blocking to the rescuer workqueue before we retry with the original
546	 * gfp_flags.
547	 */
548	if (current->bio_list &&
549	    (!bio_list_empty(&current->bio_list[0]) ||
550	     !bio_list_empty(&current->bio_list[1])) &&
551	    bs->rescue_workqueue)
552		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
553
554	p = mempool_alloc(&bs->bio_pool, gfp_mask);
555	if (!p && gfp_mask != saved_gfp) {
556		punt_bios_to_rescuer(bs);
557		gfp_mask = saved_gfp;
558		p = mempool_alloc(&bs->bio_pool, gfp_mask);
559	}
560	if (unlikely(!p))
561		return NULL;
562	if (!mempool_is_saturated(&bs->bio_pool))
563		opf &= ~REQ_ALLOC_CACHE;
564
565	bio = p + bs->front_pad;
566	if (nr_vecs > BIO_INLINE_VECS) {
567		struct bio_vec *bvl = NULL;
568
569		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
570		if (!bvl && gfp_mask != saved_gfp) {
571			punt_bios_to_rescuer(bs);
572			gfp_mask = saved_gfp;
573			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
574		}
575		if (unlikely(!bvl))
576			goto err_free;
577
578		bio_init(bio, bdev, bvl, nr_vecs, opf);
579	} else if (nr_vecs) {
580		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
581	} else {
582		bio_init(bio, bdev, NULL, 0, opf);
583	}
584
585	bio->bi_pool = bs;
586	return bio;
587
588err_free:
589	mempool_free(p, &bs->bio_pool);
590	return NULL;
591}
592EXPORT_SYMBOL(bio_alloc_bioset);
593
594/**
595 * bio_kmalloc - kmalloc a bio
596 * @nr_vecs:	number of bio_vecs to allocate
597 * @gfp_mask:   the GFP_* mask given to the slab allocator
598 *
599 * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
600 * using bio_init() before use.  To free a bio returned from this function use
601 * kfree() after calling bio_uninit().  A bio returned from this function can
602 * be reused by calling bio_uninit() before calling bio_init() again.
603 *
604 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
605 * function are not backed by a mempool can fail.  Do not use this function
606 * for allocations in the file system I/O path.
607 *
608 * Returns: Pointer to new bio on success, NULL on failure.
609 */
610struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
611{
612	struct bio *bio;
613
614	if (nr_vecs > UIO_MAXIOV)
615		return NULL;
616	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
617}
618EXPORT_SYMBOL(bio_kmalloc);
619
620void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
621{
622	struct bio_vec bv;
623	struct bvec_iter iter;
624
625	__bio_for_each_segment(bv, bio, iter, start)
626		memzero_bvec(&bv);
627}
628EXPORT_SYMBOL(zero_fill_bio_iter);
629
630/**
631 * bio_truncate - truncate the bio to small size of @new_size
632 * @bio:	the bio to be truncated
633 * @new_size:	new size for truncating the bio
634 *
635 * Description:
636 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
637 *   REQ_OP_READ, zero the truncated part. This function should only
638 *   be used for handling corner cases, such as bio eod.
639 */
640static void bio_truncate(struct bio *bio, unsigned new_size)
641{
642	struct bio_vec bv;
643	struct bvec_iter iter;
644	unsigned int done = 0;
645	bool truncated = false;
646
647	if (new_size >= bio->bi_iter.bi_size)
648		return;
649
650	if (bio_op(bio) != REQ_OP_READ)
651		goto exit;
652
653	bio_for_each_segment(bv, bio, iter) {
654		if (done + bv.bv_len > new_size) {
655			unsigned offset;
656
657			if (!truncated)
658				offset = new_size - done;
659			else
660				offset = 0;
661			zero_user(bv.bv_page, bv.bv_offset + offset,
662				  bv.bv_len - offset);
663			truncated = true;
664		}
665		done += bv.bv_len;
666	}
667
668 exit:
669	/*
670	 * Don't touch bvec table here and make it really immutable, since
671	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
672	 * in its .end_bio() callback.
673	 *
674	 * It is enough to truncate bio by updating .bi_size since we can make
675	 * correct bvec with the updated .bi_size for drivers.
676	 */
677	bio->bi_iter.bi_size = new_size;
678}
679
680/**
681 * guard_bio_eod - truncate a BIO to fit the block device
682 * @bio:	bio to truncate
683 *
684 * This allows us to do IO even on the odd last sectors of a device, even if the
685 * block size is some multiple of the physical sector size.
686 *
687 * We'll just truncate the bio to the size of the device, and clear the end of
688 * the buffer head manually.  Truly out-of-range accesses will turn into actual
689 * I/O errors, this only handles the "we need to be able to do I/O at the final
690 * sector" case.
691 */
692void guard_bio_eod(struct bio *bio)
693{
694	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
695
696	if (!maxsector)
697		return;
698
699	/*
700	 * If the *whole* IO is past the end of the device,
701	 * let it through, and the IO layer will turn it into
702	 * an EIO.
703	 */
704	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
705		return;
706
707	maxsector -= bio->bi_iter.bi_sector;
708	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
709		return;
710
711	bio_truncate(bio, maxsector << 9);
712}
713
714static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
715				   unsigned int nr)
716{
717	unsigned int i = 0;
718	struct bio *bio;
719
720	while ((bio = cache->free_list) != NULL) {
721		cache->free_list = bio->bi_next;
722		cache->nr--;
723		bio_free(bio);
724		if (++i == nr)
725			break;
726	}
727	return i;
728}
729
730static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
731				  unsigned int nr)
732{
733	nr -= __bio_alloc_cache_prune(cache, nr);
734	if (!READ_ONCE(cache->free_list)) {
735		bio_alloc_irq_cache_splice(cache);
736		__bio_alloc_cache_prune(cache, nr);
737	}
738}
739
740static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
741{
742	struct bio_set *bs;
743
744	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
745	if (bs->cache) {
746		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
747
748		bio_alloc_cache_prune(cache, -1U);
749	}
750	return 0;
751}
752
753static void bio_alloc_cache_destroy(struct bio_set *bs)
754{
755	int cpu;
756
757	if (!bs->cache)
758		return;
759
760	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
761	for_each_possible_cpu(cpu) {
762		struct bio_alloc_cache *cache;
763
764		cache = per_cpu_ptr(bs->cache, cpu);
765		bio_alloc_cache_prune(cache, -1U);
766	}
767	free_percpu(bs->cache);
768	bs->cache = NULL;
769}
770
771static inline void bio_put_percpu_cache(struct bio *bio)
772{
773	struct bio_alloc_cache *cache;
774
775	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
776	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
777		goto out_free;
778
779	if (in_task()) {
780		bio_uninit(bio);
781		bio->bi_next = cache->free_list;
782		/* Not necessary but helps not to iopoll already freed bios */
783		bio->bi_bdev = NULL;
784		cache->free_list = bio;
785		cache->nr++;
786	} else if (in_hardirq()) {
787		lockdep_assert_irqs_disabled();
788
789		bio_uninit(bio);
790		bio->bi_next = cache->free_list_irq;
791		cache->free_list_irq = bio;
792		cache->nr_irq++;
793	} else {
794		goto out_free;
795	}
796	put_cpu();
797	return;
798out_free:
799	put_cpu();
800	bio_free(bio);
801}
802
803/**
804 * bio_put - release a reference to a bio
805 * @bio:   bio to release reference to
806 *
807 * Description:
808 *   Put a reference to a &struct bio, either one you have gotten with
809 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
810 **/
811void bio_put(struct bio *bio)
812{
813	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
814		BUG_ON(!atomic_read(&bio->__bi_cnt));
815		if (!atomic_dec_and_test(&bio->__bi_cnt))
816			return;
817	}
818	if (bio->bi_opf & REQ_ALLOC_CACHE)
819		bio_put_percpu_cache(bio);
820	else
821		bio_free(bio);
822}
823EXPORT_SYMBOL(bio_put);
824
825static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
826{
827	bio_set_flag(bio, BIO_CLONED);
828	bio->bi_ioprio = bio_src->bi_ioprio;
829	bio->bi_write_hint = bio_src->bi_write_hint;
830	bio->bi_iter = bio_src->bi_iter;
831
832	if (bio->bi_bdev) {
833		if (bio->bi_bdev == bio_src->bi_bdev &&
834		    bio_flagged(bio_src, BIO_REMAPPED))
835			bio_set_flag(bio, BIO_REMAPPED);
836		bio_clone_blkg_association(bio, bio_src);
837	}
838
839	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
840		return -ENOMEM;
841	if (bio_integrity(bio_src) &&
842	    bio_integrity_clone(bio, bio_src, gfp) < 0)
843		return -ENOMEM;
844	return 0;
845}
846
847/**
848 * bio_alloc_clone - clone a bio that shares the original bio's biovec
849 * @bdev: block_device to clone onto
850 * @bio_src: bio to clone from
851 * @gfp: allocation priority
852 * @bs: bio_set to allocate from
853 *
854 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
855 * bio, but not the actual data it points to.
856 *
857 * The caller must ensure that the return bio is not freed before @bio_src.
858 */
859struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
860		gfp_t gfp, struct bio_set *bs)
861{
862	struct bio *bio;
863
864	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
865	if (!bio)
866		return NULL;
867
868	if (__bio_clone(bio, bio_src, gfp) < 0) {
869		bio_put(bio);
870		return NULL;
871	}
872	bio->bi_io_vec = bio_src->bi_io_vec;
873
874	return bio;
875}
876EXPORT_SYMBOL(bio_alloc_clone);
877
878/**
879 * bio_init_clone - clone a bio that shares the original bio's biovec
880 * @bdev: block_device to clone onto
881 * @bio: bio to clone into
882 * @bio_src: bio to clone from
883 * @gfp: allocation priority
884 *
885 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
886 * The caller owns the returned bio, but not the actual data it points to.
887 *
888 * The caller must ensure that @bio_src is not freed before @bio.
889 */
890int bio_init_clone(struct block_device *bdev, struct bio *bio,
891		struct bio *bio_src, gfp_t gfp)
892{
893	int ret;
894
895	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
896	ret = __bio_clone(bio, bio_src, gfp);
897	if (ret)
898		bio_uninit(bio);
899	return ret;
900}
901EXPORT_SYMBOL(bio_init_clone);
902
903/**
904 * bio_full - check if the bio is full
905 * @bio:	bio to check
906 * @len:	length of one segment to be added
907 *
908 * Return true if @bio is full and one segment with @len bytes can't be
909 * added to the bio, otherwise return false
910 */
911static inline bool bio_full(struct bio *bio, unsigned len)
912{
913	if (bio->bi_vcnt >= bio->bi_max_vecs)
914		return true;
915	if (bio->bi_iter.bi_size > UINT_MAX - len)
916		return true;
917	return false;
918}
919
920static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
921		unsigned int len, unsigned int off, bool *same_page)
922{
923	size_t bv_end = bv->bv_offset + bv->bv_len;
924	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
925	phys_addr_t page_addr = page_to_phys(page);
926
927	if (vec_end_addr + 1 != page_addr + off)
928		return false;
929	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
930		return false;
931	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
932		return false;
933
934	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
935	if (!*same_page) {
936		if (IS_ENABLED(CONFIG_KMSAN))
937			return false;
938		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
939			return false;
940	}
941
942	bv->bv_len += len;
943	return true;
944}
945
946/*
947 * Try to merge a page into a segment, while obeying the hardware segment
948 * size limit.  This is not for normal read/write bios, but for passthrough
949 * or Zone Append operations that we can't split.
950 */
951bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
952		struct page *page, unsigned len, unsigned offset,
953		bool *same_page)
954{
955	unsigned long mask = queue_segment_boundary(q);
956	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
957	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
958
959	if ((addr1 | mask) != (addr2 | mask))
960		return false;
961	if (len > queue_max_segment_size(q) - bv->bv_len)
962		return false;
963	return bvec_try_merge_page(bv, page, len, offset, same_page);
964}
965
966/**
967 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
968 * @q: the target queue
969 * @bio: destination bio
970 * @page: page to add
971 * @len: vec entry length
972 * @offset: vec entry offset
973 * @max_sectors: maximum number of sectors that can be added
974 * @same_page: return if the segment has been merged inside the same page
975 *
976 * Add a page to a bio while respecting the hardware max_sectors, max_segment
977 * and gap limitations.
978 */
979int bio_add_hw_page(struct request_queue *q, struct bio *bio,
980		struct page *page, unsigned int len, unsigned int offset,
981		unsigned int max_sectors, bool *same_page)
982{
983	unsigned int max_size = max_sectors << SECTOR_SHIFT;
984
985	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
986		return 0;
987
988	len = min3(len, max_size, queue_max_segment_size(q));
989	if (len > max_size - bio->bi_iter.bi_size)
990		return 0;
991
992	if (bio->bi_vcnt > 0) {
993		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
994
995		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
996				same_page)) {
997			bio->bi_iter.bi_size += len;
998			return len;
999		}
1000
1001		if (bio->bi_vcnt >=
1002		    min(bio->bi_max_vecs, queue_max_segments(q)))
1003			return 0;
1004
1005		/*
1006		 * If the queue doesn't support SG gaps and adding this segment
1007		 * would create a gap, disallow it.
1008		 */
1009		if (bvec_gap_to_prev(&q->limits, bv, offset))
1010			return 0;
1011	}
1012
1013	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1014	bio->bi_vcnt++;
1015	bio->bi_iter.bi_size += len;
1016	return len;
1017}
1018
1019/**
1020 * bio_add_pc_page	- attempt to add page to passthrough bio
1021 * @q: the target queue
1022 * @bio: destination bio
1023 * @page: page to add
1024 * @len: vec entry length
1025 * @offset: vec entry offset
1026 *
1027 * Attempt to add a page to the bio_vec maplist. This can fail for a
1028 * number of reasons, such as the bio being full or target block device
1029 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1030 * so it is always possible to add a single page to an empty bio.
1031 *
1032 * This should only be used by passthrough bios.
1033 */
1034int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1035		struct page *page, unsigned int len, unsigned int offset)
1036{
1037	bool same_page = false;
1038	return bio_add_hw_page(q, bio, page, len, offset,
1039			queue_max_hw_sectors(q), &same_page);
1040}
1041EXPORT_SYMBOL(bio_add_pc_page);
1042
1043/**
1044 * bio_add_zone_append_page - attempt to add page to zone-append bio
1045 * @bio: destination bio
1046 * @page: page to add
1047 * @len: vec entry length
1048 * @offset: vec entry offset
1049 *
1050 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1051 * for a zone-append request. This can fail for a number of reasons, such as the
1052 * bio being full or the target block device is not a zoned block device or
1053 * other limitations of the target block device. The target block device must
1054 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1055 * to an empty bio.
1056 *
1057 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1058 */
1059int bio_add_zone_append_page(struct bio *bio, struct page *page,
1060			     unsigned int len, unsigned int offset)
1061{
1062	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1063	bool same_page = false;
1064
1065	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1066		return 0;
1067
1068	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1069		return 0;
1070
1071	return bio_add_hw_page(q, bio, page, len, offset,
1072			       queue_max_zone_append_sectors(q), &same_page);
1073}
1074EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1075
1076/**
1077 * __bio_add_page - add page(s) to a bio in a new segment
1078 * @bio: destination bio
1079 * @page: start page to add
1080 * @len: length of the data to add, may cross pages
1081 * @off: offset of the data relative to @page, may cross pages
1082 *
1083 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1084 * that @bio has space for another bvec.
1085 */
1086void __bio_add_page(struct bio *bio, struct page *page,
1087		unsigned int len, unsigned int off)
1088{
1089	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1090	WARN_ON_ONCE(bio_full(bio, len));
1091
1092	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1093	bio->bi_iter.bi_size += len;
1094	bio->bi_vcnt++;
1095}
1096EXPORT_SYMBOL_GPL(__bio_add_page);
1097
1098/**
1099 *	bio_add_page	-	attempt to add page(s) to bio
1100 *	@bio: destination bio
1101 *	@page: start page to add
1102 *	@len: vec entry length, may cross pages
1103 *	@offset: vec entry offset relative to @page, may cross pages
1104 *
1105 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1106 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1107 */
1108int bio_add_page(struct bio *bio, struct page *page,
1109		 unsigned int len, unsigned int offset)
1110{
1111	bool same_page = false;
1112
1113	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1114		return 0;
1115	if (bio->bi_iter.bi_size > UINT_MAX - len)
1116		return 0;
1117
1118	if (bio->bi_vcnt > 0 &&
1119	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1120				page, len, offset, &same_page)) {
1121		bio->bi_iter.bi_size += len;
1122		return len;
1123	}
1124
1125	if (bio->bi_vcnt >= bio->bi_max_vecs)
1126		return 0;
1127	__bio_add_page(bio, page, len, offset);
1128	return len;
1129}
1130EXPORT_SYMBOL(bio_add_page);
1131
1132void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1133			  size_t off)
1134{
1135	WARN_ON_ONCE(len > UINT_MAX);
1136	WARN_ON_ONCE(off > UINT_MAX);
1137	__bio_add_page(bio, &folio->page, len, off);
1138}
1139EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1140
1141/**
1142 * bio_add_folio - Attempt to add part of a folio to a bio.
1143 * @bio: BIO to add to.
1144 * @folio: Folio to add.
1145 * @len: How many bytes from the folio to add.
1146 * @off: First byte in this folio to add.
1147 *
1148 * Filesystems that use folios can call this function instead of calling
1149 * bio_add_page() for each page in the folio.  If @off is bigger than
1150 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1151 * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1152 *
1153 * Return: Whether the addition was successful.
1154 */
1155bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1156		   size_t off)
1157{
1158	if (len > UINT_MAX || off > UINT_MAX)
1159		return false;
1160	return bio_add_page(bio, &folio->page, len, off) > 0;
1161}
1162EXPORT_SYMBOL(bio_add_folio);
1163
1164void __bio_release_pages(struct bio *bio, bool mark_dirty)
1165{
1166	struct folio_iter fi;
1167
1168	bio_for_each_folio_all(fi, bio) {
1169		struct page *page;
1170		size_t nr_pages;
1171
1172		if (mark_dirty) {
1173			folio_lock(fi.folio);
1174			folio_mark_dirty(fi.folio);
1175			folio_unlock(fi.folio);
1176		}
1177		page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1178		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1179			   fi.offset / PAGE_SIZE + 1;
1180		do {
1181			bio_release_page(bio, page++);
1182		} while (--nr_pages != 0);
1183	}
1184}
1185EXPORT_SYMBOL_GPL(__bio_release_pages);
1186
1187void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1188{
1189	size_t size = iov_iter_count(iter);
1190
1191	WARN_ON_ONCE(bio->bi_max_vecs);
1192
1193	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1194		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1195		size_t max_sectors = queue_max_zone_append_sectors(q);
1196
1197		size = min(size, max_sectors << SECTOR_SHIFT);
1198	}
1199
1200	bio->bi_vcnt = iter->nr_segs;
1201	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1202	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1203	bio->bi_iter.bi_size = size;
1204	bio_set_flag(bio, BIO_CLONED);
1205}
1206
1207static int bio_iov_add_page(struct bio *bio, struct page *page,
1208		unsigned int len, unsigned int offset)
1209{
1210	bool same_page = false;
1211
1212	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1213		return -EIO;
1214
1215	if (bio->bi_vcnt > 0 &&
1216	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1217				page, len, offset, &same_page)) {
1218		bio->bi_iter.bi_size += len;
1219		if (same_page)
1220			bio_release_page(bio, page);
1221		return 0;
1222	}
1223	__bio_add_page(bio, page, len, offset);
1224	return 0;
1225}
1226
1227static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1228		unsigned int len, unsigned int offset)
1229{
1230	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1231	bool same_page = false;
1232
1233	if (bio_add_hw_page(q, bio, page, len, offset,
1234			queue_max_zone_append_sectors(q), &same_page) != len)
1235		return -EINVAL;
1236	if (same_page)
1237		bio_release_page(bio, page);
1238	return 0;
1239}
1240
1241#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1242
1243/**
1244 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1245 * @bio: bio to add pages to
1246 * @iter: iov iterator describing the region to be mapped
1247 *
1248 * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1249 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1250 * For a multi-segment *iter, this function only adds pages from the next
1251 * non-empty segment of the iov iterator.
1252 */
1253static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1254{
1255	iov_iter_extraction_t extraction_flags = 0;
1256	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1257	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1258	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1259	struct page **pages = (struct page **)bv;
1260	ssize_t size, left;
1261	unsigned len, i = 0;
1262	size_t offset;
1263	int ret = 0;
1264
1265	/*
1266	 * Move page array up in the allocated memory for the bio vecs as far as
1267	 * possible so that we can start filling biovecs from the beginning
1268	 * without overwriting the temporary page array.
1269	 */
1270	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1271	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1272
1273	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1274		extraction_flags |= ITER_ALLOW_P2PDMA;
1275
1276	/*
1277	 * Each segment in the iov is required to be a block size multiple.
1278	 * However, we may not be able to get the entire segment if it spans
1279	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1280	 * result to ensure the bio's total size is correct. The remainder of
1281	 * the iov data will be picked up in the next bio iteration.
1282	 */
1283	size = iov_iter_extract_pages(iter, &pages,
1284				      UINT_MAX - bio->bi_iter.bi_size,
1285				      nr_pages, extraction_flags, &offset);
1286	if (unlikely(size <= 0))
1287		return size ? size : -EFAULT;
1288
1289	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1290
1291	if (bio->bi_bdev) {
1292		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1293		iov_iter_revert(iter, trim);
1294		size -= trim;
1295	}
1296
1297	if (unlikely(!size)) {
1298		ret = -EFAULT;
1299		goto out;
1300	}
1301
1302	for (left = size, i = 0; left > 0; left -= len, i++) {
1303		struct page *page = pages[i];
1304
1305		len = min_t(size_t, PAGE_SIZE - offset, left);
1306		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1307			ret = bio_iov_add_zone_append_page(bio, page, len,
1308					offset);
1309			if (ret)
1310				break;
1311		} else
1312			bio_iov_add_page(bio, page, len, offset);
1313
1314		offset = 0;
1315	}
1316
1317	iov_iter_revert(iter, left);
1318out:
1319	while (i < nr_pages)
1320		bio_release_page(bio, pages[i++]);
1321
1322	return ret;
1323}
1324
1325/**
1326 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1327 * @bio: bio to add pages to
1328 * @iter: iov iterator describing the region to be added
1329 *
1330 * This takes either an iterator pointing to user memory, or one pointing to
1331 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1332 * map them into the kernel. On IO completion, the caller should put those
1333 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1334 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1335 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1336 * completed by a call to ->ki_complete() or returns with an error other than
1337 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1338 * on IO completion. If it isn't, then pages should be released.
1339 *
1340 * The function tries, but does not guarantee, to pin as many pages as
1341 * fit into the bio, or are requested in @iter, whatever is smaller. If
1342 * MM encounters an error pinning the requested pages, it stops. Error
1343 * is returned only if 0 pages could be pinned.
1344 */
1345int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1346{
1347	int ret = 0;
1348
1349	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1350		return -EIO;
1351
1352	if (iov_iter_is_bvec(iter)) {
1353		bio_iov_bvec_set(bio, iter);
1354		iov_iter_advance(iter, bio->bi_iter.bi_size);
1355		return 0;
1356	}
1357
1358	if (iov_iter_extract_will_pin(iter))
1359		bio_set_flag(bio, BIO_PAGE_PINNED);
1360	do {
1361		ret = __bio_iov_iter_get_pages(bio, iter);
1362	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1363
1364	return bio->bi_vcnt ? 0 : ret;
1365}
1366EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1367
1368static void submit_bio_wait_endio(struct bio *bio)
1369{
1370	complete(bio->bi_private);
1371}
1372
1373/**
1374 * submit_bio_wait - submit a bio, and wait until it completes
1375 * @bio: The &struct bio which describes the I/O
1376 *
1377 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1378 * bio_endio() on failure.
1379 *
1380 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1381 * result in bio reference to be consumed. The caller must drop the reference
1382 * on his own.
1383 */
1384int submit_bio_wait(struct bio *bio)
1385{
1386	DECLARE_COMPLETION_ONSTACK_MAP(done,
1387			bio->bi_bdev->bd_disk->lockdep_map);
1388
1389	bio->bi_private = &done;
1390	bio->bi_end_io = submit_bio_wait_endio;
1391	bio->bi_opf |= REQ_SYNC;
1392	submit_bio(bio);
1393	blk_wait_io(&done);
1394
1395	return blk_status_to_errno(bio->bi_status);
1396}
1397EXPORT_SYMBOL(submit_bio_wait);
1398
1399static void bio_wait_end_io(struct bio *bio)
1400{
1401	complete(bio->bi_private);
1402	bio_put(bio);
1403}
1404
1405/*
1406 * bio_await_chain - ends @bio and waits for every chained bio to complete
1407 */
1408void bio_await_chain(struct bio *bio)
1409{
1410	DECLARE_COMPLETION_ONSTACK_MAP(done,
1411			bio->bi_bdev->bd_disk->lockdep_map);
1412
1413	bio->bi_private = &done;
1414	bio->bi_end_io = bio_wait_end_io;
1415	bio_endio(bio);
1416	blk_wait_io(&done);
1417}
1418
1419void __bio_advance(struct bio *bio, unsigned bytes)
1420{
1421	if (bio_integrity(bio))
1422		bio_integrity_advance(bio, bytes);
1423
1424	bio_crypt_advance(bio, bytes);
1425	bio_advance_iter(bio, &bio->bi_iter, bytes);
1426}
1427EXPORT_SYMBOL(__bio_advance);
1428
1429void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1430			struct bio *src, struct bvec_iter *src_iter)
1431{
1432	while (src_iter->bi_size && dst_iter->bi_size) {
1433		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1434		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1435		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1436		void *src_buf = bvec_kmap_local(&src_bv);
1437		void *dst_buf = bvec_kmap_local(&dst_bv);
1438
1439		memcpy(dst_buf, src_buf, bytes);
1440
1441		kunmap_local(dst_buf);
1442		kunmap_local(src_buf);
1443
1444		bio_advance_iter_single(src, src_iter, bytes);
1445		bio_advance_iter_single(dst, dst_iter, bytes);
1446	}
1447}
1448EXPORT_SYMBOL(bio_copy_data_iter);
1449
1450/**
1451 * bio_copy_data - copy contents of data buffers from one bio to another
1452 * @src: source bio
1453 * @dst: destination bio
1454 *
1455 * Stops when it reaches the end of either @src or @dst - that is, copies
1456 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1457 */
1458void bio_copy_data(struct bio *dst, struct bio *src)
1459{
1460	struct bvec_iter src_iter = src->bi_iter;
1461	struct bvec_iter dst_iter = dst->bi_iter;
1462
1463	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1464}
1465EXPORT_SYMBOL(bio_copy_data);
1466
1467void bio_free_pages(struct bio *bio)
1468{
1469	struct bio_vec *bvec;
1470	struct bvec_iter_all iter_all;
1471
1472	bio_for_each_segment_all(bvec, bio, iter_all)
1473		__free_page(bvec->bv_page);
1474}
1475EXPORT_SYMBOL(bio_free_pages);
1476
1477/*
1478 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1479 * for performing direct-IO in BIOs.
1480 *
1481 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1482 * because the required locks are not interrupt-safe.  So what we can do is to
1483 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1484 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1485 * in process context.
1486 *
1487 * Note that this code is very hard to test under normal circumstances because
1488 * direct-io pins the pages with get_user_pages().  This makes
1489 * is_page_cache_freeable return false, and the VM will not clean the pages.
1490 * But other code (eg, flusher threads) could clean the pages if they are mapped
1491 * pagecache.
1492 *
1493 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1494 * deferred bio dirtying paths.
1495 */
1496
1497/*
1498 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1499 */
1500void bio_set_pages_dirty(struct bio *bio)
1501{
1502	struct folio_iter fi;
1503
1504	bio_for_each_folio_all(fi, bio) {
1505		folio_lock(fi.folio);
1506		folio_mark_dirty(fi.folio);
1507		folio_unlock(fi.folio);
1508	}
1509}
1510EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1511
1512/*
1513 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1514 * If they are, then fine.  If, however, some pages are clean then they must
1515 * have been written out during the direct-IO read.  So we take another ref on
1516 * the BIO and re-dirty the pages in process context.
1517 *
1518 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1519 * here on.  It will unpin each page and will run one bio_put() against the
1520 * BIO.
1521 */
1522
1523static void bio_dirty_fn(struct work_struct *work);
1524
1525static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1526static DEFINE_SPINLOCK(bio_dirty_lock);
1527static struct bio *bio_dirty_list;
1528
1529/*
1530 * This runs in process context
1531 */
1532static void bio_dirty_fn(struct work_struct *work)
1533{
1534	struct bio *bio, *next;
1535
1536	spin_lock_irq(&bio_dirty_lock);
1537	next = bio_dirty_list;
1538	bio_dirty_list = NULL;
1539	spin_unlock_irq(&bio_dirty_lock);
1540
1541	while ((bio = next) != NULL) {
1542		next = bio->bi_private;
1543
1544		bio_release_pages(bio, true);
1545		bio_put(bio);
1546	}
1547}
1548
1549void bio_check_pages_dirty(struct bio *bio)
1550{
1551	struct folio_iter fi;
1552	unsigned long flags;
1553
1554	bio_for_each_folio_all(fi, bio) {
1555		if (!folio_test_dirty(fi.folio))
1556			goto defer;
1557	}
1558
1559	bio_release_pages(bio, false);
1560	bio_put(bio);
1561	return;
1562defer:
1563	spin_lock_irqsave(&bio_dirty_lock, flags);
1564	bio->bi_private = bio_dirty_list;
1565	bio_dirty_list = bio;
1566	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1567	schedule_work(&bio_dirty_work);
1568}
1569EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1570
1571static inline bool bio_remaining_done(struct bio *bio)
1572{
1573	/*
1574	 * If we're not chaining, then ->__bi_remaining is always 1 and
1575	 * we always end io on the first invocation.
1576	 */
1577	if (!bio_flagged(bio, BIO_CHAIN))
1578		return true;
1579
1580	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1581
1582	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1583		bio_clear_flag(bio, BIO_CHAIN);
1584		return true;
1585	}
1586
1587	return false;
1588}
1589
1590/**
1591 * bio_endio - end I/O on a bio
1592 * @bio:	bio
1593 *
1594 * Description:
1595 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1596 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1597 *   bio unless they own it and thus know that it has an end_io function.
1598 *
1599 *   bio_endio() can be called several times on a bio that has been chained
1600 *   using bio_chain().  The ->bi_end_io() function will only be called the
1601 *   last time.
1602 **/
1603void bio_endio(struct bio *bio)
1604{
1605again:
1606	if (!bio_remaining_done(bio))
1607		return;
1608	if (!bio_integrity_endio(bio))
1609		return;
1610
1611	blk_zone_bio_endio(bio);
1612
1613	rq_qos_done_bio(bio);
1614
1615	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1616		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1617		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1618	}
1619
1620	/*
1621	 * Need to have a real endio function for chained bios, otherwise
1622	 * various corner cases will break (like stacking block devices that
1623	 * save/restore bi_end_io) - however, we want to avoid unbounded
1624	 * recursion and blowing the stack. Tail call optimization would
1625	 * handle this, but compiling with frame pointers also disables
1626	 * gcc's sibling call optimization.
1627	 */
1628	if (bio->bi_end_io == bio_chain_endio) {
1629		bio = __bio_chain_endio(bio);
1630		goto again;
1631	}
1632
1633	/* release cgroup info */
1634	bio_uninit(bio);
1635	if (bio->bi_end_io)
1636		bio->bi_end_io(bio);
1637}
1638EXPORT_SYMBOL(bio_endio);
1639
1640/**
1641 * bio_split - split a bio
1642 * @bio:	bio to split
1643 * @sectors:	number of sectors to split from the front of @bio
1644 * @gfp:	gfp mask
1645 * @bs:		bio set to allocate from
1646 *
1647 * Allocates and returns a new bio which represents @sectors from the start of
1648 * @bio, and updates @bio to represent the remaining sectors.
1649 *
1650 * Unless this is a discard request the newly allocated bio will point
1651 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1652 * neither @bio nor @bs are freed before the split bio.
1653 */
1654struct bio *bio_split(struct bio *bio, int sectors,
1655		      gfp_t gfp, struct bio_set *bs)
1656{
1657	struct bio *split;
1658
1659	BUG_ON(sectors <= 0);
1660	BUG_ON(sectors >= bio_sectors(bio));
1661
1662	/* Zone append commands cannot be split */
1663	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1664		return NULL;
1665
1666	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1667	if (!split)
1668		return NULL;
1669
1670	split->bi_iter.bi_size = sectors << 9;
1671
1672	if (bio_integrity(split))
1673		bio_integrity_trim(split);
1674
1675	bio_advance(bio, split->bi_iter.bi_size);
1676
1677	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1678		bio_set_flag(split, BIO_TRACE_COMPLETION);
1679
1680	return split;
1681}
1682EXPORT_SYMBOL(bio_split);
1683
1684/**
1685 * bio_trim - trim a bio
1686 * @bio:	bio to trim
1687 * @offset:	number of sectors to trim from the front of @bio
1688 * @size:	size we want to trim @bio to, in sectors
1689 *
1690 * This function is typically used for bios that are cloned and submitted
1691 * to the underlying device in parts.
1692 */
1693void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1694{
1695	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1696			 offset + size > bio_sectors(bio)))
1697		return;
1698
1699	size <<= 9;
1700	if (offset == 0 && size == bio->bi_iter.bi_size)
1701		return;
1702
1703	bio_advance(bio, offset << 9);
1704	bio->bi_iter.bi_size = size;
1705
1706	if (bio_integrity(bio))
1707		bio_integrity_trim(bio);
1708}
1709EXPORT_SYMBOL_GPL(bio_trim);
1710
1711/*
1712 * create memory pools for biovec's in a bio_set.
1713 * use the global biovec slabs created for general use.
1714 */
1715int biovec_init_pool(mempool_t *pool, int pool_entries)
1716{
1717	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1718
1719	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1720}
1721
1722/*
1723 * bioset_exit - exit a bioset initialized with bioset_init()
1724 *
1725 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1726 * kzalloc()).
1727 */
1728void bioset_exit(struct bio_set *bs)
1729{
1730	bio_alloc_cache_destroy(bs);
1731	if (bs->rescue_workqueue)
1732		destroy_workqueue(bs->rescue_workqueue);
1733	bs->rescue_workqueue = NULL;
1734
1735	mempool_exit(&bs->bio_pool);
1736	mempool_exit(&bs->bvec_pool);
1737
1738	bioset_integrity_free(bs);
1739	if (bs->bio_slab)
1740		bio_put_slab(bs);
1741	bs->bio_slab = NULL;
1742}
1743EXPORT_SYMBOL(bioset_exit);
1744
1745/**
1746 * bioset_init - Initialize a bio_set
1747 * @bs:		pool to initialize
1748 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1749 * @front_pad:	Number of bytes to allocate in front of the returned bio
1750 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1751 *              and %BIOSET_NEED_RESCUER
1752 *
1753 * Description:
1754 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1755 *    to ask for a number of bytes to be allocated in front of the bio.
1756 *    Front pad allocation is useful for embedding the bio inside
1757 *    another structure, to avoid allocating extra data to go with the bio.
1758 *    Note that the bio must be embedded at the END of that structure always,
1759 *    or things will break badly.
1760 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1761 *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1762 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1763 *    to dispatch queued requests when the mempool runs out of space.
1764 *
1765 */
1766int bioset_init(struct bio_set *bs,
1767		unsigned int pool_size,
1768		unsigned int front_pad,
1769		int flags)
1770{
1771	bs->front_pad = front_pad;
1772	if (flags & BIOSET_NEED_BVECS)
1773		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1774	else
1775		bs->back_pad = 0;
1776
1777	spin_lock_init(&bs->rescue_lock);
1778	bio_list_init(&bs->rescue_list);
1779	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1780
1781	bs->bio_slab = bio_find_or_create_slab(bs);
1782	if (!bs->bio_slab)
1783		return -ENOMEM;
1784
1785	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1786		goto bad;
1787
1788	if ((flags & BIOSET_NEED_BVECS) &&
1789	    biovec_init_pool(&bs->bvec_pool, pool_size))
1790		goto bad;
1791
1792	if (flags & BIOSET_NEED_RESCUER) {
1793		bs->rescue_workqueue = alloc_workqueue("bioset",
1794							WQ_MEM_RECLAIM, 0);
1795		if (!bs->rescue_workqueue)
1796			goto bad;
1797	}
1798	if (flags & BIOSET_PERCPU_CACHE) {
1799		bs->cache = alloc_percpu(struct bio_alloc_cache);
1800		if (!bs->cache)
1801			goto bad;
1802		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1803	}
1804
1805	return 0;
1806bad:
1807	bioset_exit(bs);
1808	return -ENOMEM;
1809}
1810EXPORT_SYMBOL(bioset_init);
1811
1812static int __init init_bio(void)
1813{
1814	int i;
1815
1816	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1817
1818	bio_integrity_init();
1819
1820	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1821		struct biovec_slab *bvs = bvec_slabs + i;
1822
1823		bvs->slab = kmem_cache_create(bvs->name,
1824				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1825				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1826	}
1827
1828	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1829					bio_cpu_dead);
1830
1831	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1832			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1833		panic("bio: can't allocate bios\n");
1834
1835	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1836		panic("bio: can't create integrity pool\n");
1837
1838	return 0;
1839}
1840subsys_initcall(init_bio);
1841