1// SPDX-License-Identifier: GPL-2.0
2/*  Copyright(c) 2016-20 Intel Corporation. */
3
4#include <linux/file.h>
5#include <linux/freezer.h>
6#include <linux/highmem.h>
7#include <linux/kthread.h>
8#include <linux/miscdevice.h>
9#include <linux/node.h>
10#include <linux/pagemap.h>
11#include <linux/ratelimit.h>
12#include <linux/sched/mm.h>
13#include <linux/sched/signal.h>
14#include <linux/slab.h>
15#include <linux/sysfs.h>
16#include <linux/vmalloc.h>
17#include <asm/sgx.h>
18#include "driver.h"
19#include "encl.h"
20#include "encls.h"
21
22struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
23static int sgx_nr_epc_sections;
24static struct task_struct *ksgxd_tsk;
25static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
26static DEFINE_XARRAY(sgx_epc_address_space);
27
28/*
29 * These variables are part of the state of the reclaimer, and must be accessed
30 * with sgx_reclaimer_lock acquired.
31 */
32static LIST_HEAD(sgx_active_page_list);
33static DEFINE_SPINLOCK(sgx_reclaimer_lock);
34
35static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
36
37/* Nodes with one or more EPC sections. */
38static nodemask_t sgx_numa_mask;
39
40/*
41 * Array with one list_head for each possible NUMA node.  Each
42 * list contains all the sgx_epc_section's which are on that
43 * node.
44 */
45static struct sgx_numa_node *sgx_numa_nodes;
46
47static LIST_HEAD(sgx_dirty_page_list);
48
49/*
50 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
51 * from the input list, and made available for the page allocator. SECS pages
52 * prepending their children in the input list are left intact.
53 *
54 * Return 0 when sanitization was successful or kthread was stopped, and the
55 * number of unsanitized pages otherwise.
56 */
57static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list)
58{
59	unsigned long left_dirty = 0;
60	struct sgx_epc_page *page;
61	LIST_HEAD(dirty);
62	int ret;
63
64	/* dirty_page_list is thread-local, no need for a lock: */
65	while (!list_empty(dirty_page_list)) {
66		if (kthread_should_stop())
67			return 0;
68
69		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
70
71		/*
72		 * Checking page->poison without holding the node->lock
73		 * is racy, but losing the race (i.e. poison is set just
74		 * after the check) just means __eremove() will be uselessly
75		 * called for a page that sgx_free_epc_page() will put onto
76		 * the node->sgx_poison_page_list later.
77		 */
78		if (page->poison) {
79			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
80			struct sgx_numa_node *node = section->node;
81
82			spin_lock(&node->lock);
83			list_move(&page->list, &node->sgx_poison_page_list);
84			spin_unlock(&node->lock);
85
86			continue;
87		}
88
89		ret = __eremove(sgx_get_epc_virt_addr(page));
90		if (!ret) {
91			/*
92			 * page is now sanitized.  Make it available via the SGX
93			 * page allocator:
94			 */
95			list_del(&page->list);
96			sgx_free_epc_page(page);
97		} else {
98			/* The page is not yet clean - move to the dirty list. */
99			list_move_tail(&page->list, &dirty);
100			left_dirty++;
101		}
102
103		cond_resched();
104	}
105
106	list_splice(&dirty, dirty_page_list);
107	return left_dirty;
108}
109
110static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
111{
112	struct sgx_encl_page *page = epc_page->owner;
113	struct sgx_encl *encl = page->encl;
114	struct sgx_encl_mm *encl_mm;
115	bool ret = true;
116	int idx;
117
118	idx = srcu_read_lock(&encl->srcu);
119
120	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
121		if (!mmget_not_zero(encl_mm->mm))
122			continue;
123
124		mmap_read_lock(encl_mm->mm);
125		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
126		mmap_read_unlock(encl_mm->mm);
127
128		mmput_async(encl_mm->mm);
129
130		if (!ret)
131			break;
132	}
133
134	srcu_read_unlock(&encl->srcu, idx);
135
136	if (!ret)
137		return false;
138
139	return true;
140}
141
142static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
143{
144	struct sgx_encl_page *page = epc_page->owner;
145	unsigned long addr = page->desc & PAGE_MASK;
146	struct sgx_encl *encl = page->encl;
147	int ret;
148
149	sgx_zap_enclave_ptes(encl, addr);
150
151	mutex_lock(&encl->lock);
152
153	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
154	if (encls_failed(ret))
155		ENCLS_WARN(ret, "EBLOCK");
156
157	mutex_unlock(&encl->lock);
158}
159
160static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
161			  struct sgx_backing *backing)
162{
163	struct sgx_pageinfo pginfo;
164	int ret;
165
166	pginfo.addr = 0;
167	pginfo.secs = 0;
168
169	pginfo.contents = (unsigned long)kmap_local_page(backing->contents);
170	pginfo.metadata = (unsigned long)kmap_local_page(backing->pcmd) +
171			  backing->pcmd_offset;
172
173	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
174	set_page_dirty(backing->pcmd);
175	set_page_dirty(backing->contents);
176
177	kunmap_local((void *)(unsigned long)(pginfo.metadata -
178					      backing->pcmd_offset));
179	kunmap_local((void *)(unsigned long)pginfo.contents);
180
181	return ret;
182}
183
184void sgx_ipi_cb(void *info)
185{
186}
187
188/*
189 * Swap page to the regular memory transformed to the blocked state by using
190 * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
191 *
192 * The first trial just tries to write the page assuming that some other thread
193 * has reset the count for threads inside the enclave by using ETRACK, and
194 * previous thread count has been zeroed out. The second trial calls ETRACK
195 * before EWB. If that fails we kick all the HW threads out, and then do EWB,
196 * which should be guaranteed the succeed.
197 */
198static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
199			 struct sgx_backing *backing)
200{
201	struct sgx_encl_page *encl_page = epc_page->owner;
202	struct sgx_encl *encl = encl_page->encl;
203	struct sgx_va_page *va_page;
204	unsigned int va_offset;
205	void *va_slot;
206	int ret;
207
208	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
209
210	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
211				   list);
212	va_offset = sgx_alloc_va_slot(va_page);
213	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
214	if (sgx_va_page_full(va_page))
215		list_move_tail(&va_page->list, &encl->va_pages);
216
217	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
218	if (ret == SGX_NOT_TRACKED) {
219		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
220		if (ret) {
221			if (encls_failed(ret))
222				ENCLS_WARN(ret, "ETRACK");
223		}
224
225		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
226		if (ret == SGX_NOT_TRACKED) {
227			/*
228			 * Slow path, send IPIs to kick cpus out of the
229			 * enclave.  Note, it's imperative that the cpu
230			 * mask is generated *after* ETRACK, else we'll
231			 * miss cpus that entered the enclave between
232			 * generating the mask and incrementing epoch.
233			 */
234			on_each_cpu_mask(sgx_encl_cpumask(encl),
235					 sgx_ipi_cb, NULL, 1);
236			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
237		}
238	}
239
240	if (ret) {
241		if (encls_failed(ret))
242			ENCLS_WARN(ret, "EWB");
243
244		sgx_free_va_slot(va_page, va_offset);
245	} else {
246		encl_page->desc |= va_offset;
247		encl_page->va_page = va_page;
248	}
249}
250
251static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
252				struct sgx_backing *backing)
253{
254	struct sgx_encl_page *encl_page = epc_page->owner;
255	struct sgx_encl *encl = encl_page->encl;
256	struct sgx_backing secs_backing;
257	int ret;
258
259	mutex_lock(&encl->lock);
260
261	sgx_encl_ewb(epc_page, backing);
262	encl_page->epc_page = NULL;
263	encl->secs_child_cnt--;
264	sgx_encl_put_backing(backing);
265
266	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
267		ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size),
268					   &secs_backing);
269		if (ret)
270			goto out;
271
272		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
273
274		sgx_encl_free_epc_page(encl->secs.epc_page);
275		encl->secs.epc_page = NULL;
276
277		sgx_encl_put_backing(&secs_backing);
278	}
279
280out:
281	mutex_unlock(&encl->lock);
282}
283
284/*
285 * Take a fixed number of pages from the head of the active page pool and
286 * reclaim them to the enclave's private shmem files. Skip the pages, which have
287 * been accessed since the last scan. Move those pages to the tail of active
288 * page pool so that the pages get scanned in LRU like fashion.
289 *
290 * Batch process a chunk of pages (at the moment 16) in order to degrade amount
291 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
292 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
293 * + EWB) but not sufficiently. Reclaiming one page at a time would also be
294 * problematic as it would increase the lock contention too much, which would
295 * halt forward progress.
296 */
297static void sgx_reclaim_pages(void)
298{
299	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
300	struct sgx_backing backing[SGX_NR_TO_SCAN];
301	struct sgx_encl_page *encl_page;
302	struct sgx_epc_page *epc_page;
303	pgoff_t page_index;
304	int cnt = 0;
305	int ret;
306	int i;
307
308	spin_lock(&sgx_reclaimer_lock);
309	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
310		if (list_empty(&sgx_active_page_list))
311			break;
312
313		epc_page = list_first_entry(&sgx_active_page_list,
314					    struct sgx_epc_page, list);
315		list_del_init(&epc_page->list);
316		encl_page = epc_page->owner;
317
318		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
319			chunk[cnt++] = epc_page;
320		else
321			/* The owner is freeing the page. No need to add the
322			 * page back to the list of reclaimable pages.
323			 */
324			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
325	}
326	spin_unlock(&sgx_reclaimer_lock);
327
328	for (i = 0; i < cnt; i++) {
329		epc_page = chunk[i];
330		encl_page = epc_page->owner;
331
332		if (!sgx_reclaimer_age(epc_page))
333			goto skip;
334
335		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
336
337		mutex_lock(&encl_page->encl->lock);
338		ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]);
339		if (ret) {
340			mutex_unlock(&encl_page->encl->lock);
341			goto skip;
342		}
343
344		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
345		mutex_unlock(&encl_page->encl->lock);
346		continue;
347
348skip:
349		spin_lock(&sgx_reclaimer_lock);
350		list_add_tail(&epc_page->list, &sgx_active_page_list);
351		spin_unlock(&sgx_reclaimer_lock);
352
353		kref_put(&encl_page->encl->refcount, sgx_encl_release);
354
355		chunk[i] = NULL;
356	}
357
358	for (i = 0; i < cnt; i++) {
359		epc_page = chunk[i];
360		if (epc_page)
361			sgx_reclaimer_block(epc_page);
362	}
363
364	for (i = 0; i < cnt; i++) {
365		epc_page = chunk[i];
366		if (!epc_page)
367			continue;
368
369		encl_page = epc_page->owner;
370		sgx_reclaimer_write(epc_page, &backing[i]);
371
372		kref_put(&encl_page->encl->refcount, sgx_encl_release);
373		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
374
375		sgx_free_epc_page(epc_page);
376	}
377}
378
379static bool sgx_should_reclaim(unsigned long watermark)
380{
381	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
382	       !list_empty(&sgx_active_page_list);
383}
384
385/*
386 * sgx_reclaim_direct() should be called (without enclave's mutex held)
387 * in locations where SGX memory resources might be low and might be
388 * needed in order to make forward progress.
389 */
390void sgx_reclaim_direct(void)
391{
392	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
393		sgx_reclaim_pages();
394}
395
396static int ksgxd(void *p)
397{
398	set_freezable();
399
400	/*
401	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
402	 * required for SECS pages, whose child pages blocked EREMOVE.
403	 */
404	__sgx_sanitize_pages(&sgx_dirty_page_list);
405	WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list));
406
407	while (!kthread_should_stop()) {
408		if (try_to_freeze())
409			continue;
410
411		wait_event_freezable(ksgxd_waitq,
412				     kthread_should_stop() ||
413				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
414
415		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
416			sgx_reclaim_pages();
417
418		cond_resched();
419	}
420
421	return 0;
422}
423
424static bool __init sgx_page_reclaimer_init(void)
425{
426	struct task_struct *tsk;
427
428	tsk = kthread_run(ksgxd, NULL, "ksgxd");
429	if (IS_ERR(tsk))
430		return false;
431
432	ksgxd_tsk = tsk;
433
434	return true;
435}
436
437bool current_is_ksgxd(void)
438{
439	return current == ksgxd_tsk;
440}
441
442static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
443{
444	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
445	struct sgx_epc_page *page = NULL;
446
447	spin_lock(&node->lock);
448
449	if (list_empty(&node->free_page_list)) {
450		spin_unlock(&node->lock);
451		return NULL;
452	}
453
454	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
455	list_del_init(&page->list);
456	page->flags = 0;
457
458	spin_unlock(&node->lock);
459	atomic_long_dec(&sgx_nr_free_pages);
460
461	return page;
462}
463
464/**
465 * __sgx_alloc_epc_page() - Allocate an EPC page
466 *
467 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
468 * from the NUMA node, where the caller is executing.
469 *
470 * Return:
471 * - an EPC page:	A borrowed EPC pages were available.
472 * - NULL:		Out of EPC pages.
473 */
474struct sgx_epc_page *__sgx_alloc_epc_page(void)
475{
476	struct sgx_epc_page *page;
477	int nid_of_current = numa_node_id();
478	int nid = nid_of_current;
479
480	if (node_isset(nid_of_current, sgx_numa_mask)) {
481		page = __sgx_alloc_epc_page_from_node(nid_of_current);
482		if (page)
483			return page;
484	}
485
486	/* Fall back to the non-local NUMA nodes: */
487	while (true) {
488		nid = next_node_in(nid, sgx_numa_mask);
489		if (nid == nid_of_current)
490			break;
491
492		page = __sgx_alloc_epc_page_from_node(nid);
493		if (page)
494			return page;
495	}
496
497	return ERR_PTR(-ENOMEM);
498}
499
500/**
501 * sgx_mark_page_reclaimable() - Mark a page as reclaimable
502 * @page:	EPC page
503 *
504 * Mark a page as reclaimable and add it to the active page list. Pages
505 * are automatically removed from the active list when freed.
506 */
507void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
508{
509	spin_lock(&sgx_reclaimer_lock);
510	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
511	list_add_tail(&page->list, &sgx_active_page_list);
512	spin_unlock(&sgx_reclaimer_lock);
513}
514
515/**
516 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
517 * @page:	EPC page
518 *
519 * Clear the reclaimable flag and remove the page from the active page list.
520 *
521 * Return:
522 *   0 on success,
523 *   -EBUSY if the page is in the process of being reclaimed
524 */
525int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
526{
527	spin_lock(&sgx_reclaimer_lock);
528	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
529		/* The page is being reclaimed. */
530		if (list_empty(&page->list)) {
531			spin_unlock(&sgx_reclaimer_lock);
532			return -EBUSY;
533		}
534
535		list_del(&page->list);
536		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
537	}
538	spin_unlock(&sgx_reclaimer_lock);
539
540	return 0;
541}
542
543/**
544 * sgx_alloc_epc_page() - Allocate an EPC page
545 * @owner:	the owner of the EPC page
546 * @reclaim:	reclaim pages if necessary
547 *
548 * Iterate through EPC sections and borrow a free EPC page to the caller. When a
549 * page is no longer needed it must be released with sgx_free_epc_page(). If
550 * @reclaim is set to true, directly reclaim pages when we are out of pages. No
551 * mm's can be locked when @reclaim is set to true.
552 *
553 * Finally, wake up ksgxd when the number of pages goes below the watermark
554 * before returning back to the caller.
555 *
556 * Return:
557 *   an EPC page,
558 *   -errno on error
559 */
560struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
561{
562	struct sgx_epc_page *page;
563
564	for ( ; ; ) {
565		page = __sgx_alloc_epc_page();
566		if (!IS_ERR(page)) {
567			page->owner = owner;
568			break;
569		}
570
571		if (list_empty(&sgx_active_page_list))
572			return ERR_PTR(-ENOMEM);
573
574		if (!reclaim) {
575			page = ERR_PTR(-EBUSY);
576			break;
577		}
578
579		if (signal_pending(current)) {
580			page = ERR_PTR(-ERESTARTSYS);
581			break;
582		}
583
584		sgx_reclaim_pages();
585		cond_resched();
586	}
587
588	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
589		wake_up(&ksgxd_waitq);
590
591	return page;
592}
593
594/**
595 * sgx_free_epc_page() - Free an EPC page
596 * @page:	an EPC page
597 *
598 * Put the EPC page back to the list of free pages. It's the caller's
599 * responsibility to make sure that the page is in uninitialized state. In other
600 * words, do EREMOVE, EWB or whatever operation is necessary before calling
601 * this function.
602 */
603void sgx_free_epc_page(struct sgx_epc_page *page)
604{
605	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
606	struct sgx_numa_node *node = section->node;
607
608	spin_lock(&node->lock);
609
610	page->owner = NULL;
611	if (page->poison)
612		list_add(&page->list, &node->sgx_poison_page_list);
613	else
614		list_add_tail(&page->list, &node->free_page_list);
615	page->flags = SGX_EPC_PAGE_IS_FREE;
616
617	spin_unlock(&node->lock);
618	atomic_long_inc(&sgx_nr_free_pages);
619}
620
621static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
622					 unsigned long index,
623					 struct sgx_epc_section *section)
624{
625	unsigned long nr_pages = size >> PAGE_SHIFT;
626	unsigned long i;
627
628	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
629	if (!section->virt_addr)
630		return false;
631
632	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
633	if (!section->pages) {
634		memunmap(section->virt_addr);
635		return false;
636	}
637
638	section->phys_addr = phys_addr;
639	xa_store_range(&sgx_epc_address_space, section->phys_addr,
640		       phys_addr + size - 1, section, GFP_KERNEL);
641
642	for (i = 0; i < nr_pages; i++) {
643		section->pages[i].section = index;
644		section->pages[i].flags = 0;
645		section->pages[i].owner = NULL;
646		section->pages[i].poison = 0;
647		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
648	}
649
650	return true;
651}
652
653bool arch_is_platform_page(u64 paddr)
654{
655	return !!xa_load(&sgx_epc_address_space, paddr);
656}
657EXPORT_SYMBOL_GPL(arch_is_platform_page);
658
659static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
660{
661	struct sgx_epc_section *section;
662
663	section = xa_load(&sgx_epc_address_space, paddr);
664	if (!section)
665		return NULL;
666
667	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
668}
669
670/*
671 * Called in process context to handle a hardware reported
672 * error in an SGX EPC page.
673 * If the MF_ACTION_REQUIRED bit is set in flags, then the
674 * context is the task that consumed the poison data. Otherwise
675 * this is called from a kernel thread unrelated to the page.
676 */
677int arch_memory_failure(unsigned long pfn, int flags)
678{
679	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
680	struct sgx_epc_section *section;
681	struct sgx_numa_node *node;
682
683	/*
684	 * mm/memory-failure.c calls this routine for all errors
685	 * where there isn't a "struct page" for the address. But that
686	 * includes other address ranges besides SGX.
687	 */
688	if (!page)
689		return -ENXIO;
690
691	/*
692	 * If poison was consumed synchronously. Send a SIGBUS to
693	 * the task. Hardware has already exited the SGX enclave and
694	 * will not allow re-entry to an enclave that has a memory
695	 * error. The signal may help the task understand why the
696	 * enclave is broken.
697	 */
698	if (flags & MF_ACTION_REQUIRED)
699		force_sig(SIGBUS);
700
701	section = &sgx_epc_sections[page->section];
702	node = section->node;
703
704	spin_lock(&node->lock);
705
706	/* Already poisoned? Nothing more to do */
707	if (page->poison)
708		goto out;
709
710	page->poison = 1;
711
712	/*
713	 * If the page is on a free list, move it to the per-node
714	 * poison page list.
715	 */
716	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
717		list_move(&page->list, &node->sgx_poison_page_list);
718		goto out;
719	}
720
721	/*
722	 * TBD: Add additional plumbing to enable pre-emptive
723	 * action for asynchronous poison notification. Until
724	 * then just hope that the poison:
725	 * a) is not accessed - sgx_free_epc_page() will deal with it
726	 *    when the user gives it back
727	 * b) results in a recoverable machine check rather than
728	 *    a fatal one
729	 */
730out:
731	spin_unlock(&node->lock);
732	return 0;
733}
734
735/**
736 * A section metric is concatenated in a way that @low bits 12-31 define the
737 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
738 * metric.
739 */
740static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
741{
742	return (low & GENMASK_ULL(31, 12)) +
743	       ((high & GENMASK_ULL(19, 0)) << 32);
744}
745
746#ifdef CONFIG_NUMA
747static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
748{
749	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
750}
751static DEVICE_ATTR_RO(sgx_total_bytes);
752
753static umode_t arch_node_attr_is_visible(struct kobject *kobj,
754		struct attribute *attr, int idx)
755{
756	/* Make all x86/ attributes invisible when SGX is not initialized: */
757	if (nodes_empty(sgx_numa_mask))
758		return 0;
759
760	return attr->mode;
761}
762
763static struct attribute *arch_node_dev_attrs[] = {
764	&dev_attr_sgx_total_bytes.attr,
765	NULL,
766};
767
768const struct attribute_group arch_node_dev_group = {
769	.name = "x86",
770	.attrs = arch_node_dev_attrs,
771	.is_visible = arch_node_attr_is_visible,
772};
773
774static void __init arch_update_sysfs_visibility(int nid)
775{
776	struct node *node = node_devices[nid];
777	int ret;
778
779	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
780
781	if (ret)
782		pr_err("sysfs update failed (%d), files may be invisible", ret);
783}
784#else /* !CONFIG_NUMA */
785static void __init arch_update_sysfs_visibility(int nid) {}
786#endif
787
788static bool __init sgx_page_cache_init(void)
789{
790	u32 eax, ebx, ecx, edx, type;
791	u64 pa, size;
792	int nid;
793	int i;
794
795	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
796	if (!sgx_numa_nodes)
797		return false;
798
799	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
800		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
801
802		type = eax & SGX_CPUID_EPC_MASK;
803		if (type == SGX_CPUID_EPC_INVALID)
804			break;
805
806		if (type != SGX_CPUID_EPC_SECTION) {
807			pr_err_once("Unknown EPC section type: %u\n", type);
808			break;
809		}
810
811		pa   = sgx_calc_section_metric(eax, ebx);
812		size = sgx_calc_section_metric(ecx, edx);
813
814		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
815
816		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
817			pr_err("No free memory for an EPC section\n");
818			break;
819		}
820
821		nid = numa_map_to_online_node(phys_to_target_node(pa));
822		if (nid == NUMA_NO_NODE) {
823			/* The physical address is already printed above. */
824			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
825			nid = 0;
826		}
827
828		if (!node_isset(nid, sgx_numa_mask)) {
829			spin_lock_init(&sgx_numa_nodes[nid].lock);
830			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
831			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
832			node_set(nid, sgx_numa_mask);
833			sgx_numa_nodes[nid].size = 0;
834
835			/* Make SGX-specific node sysfs files visible: */
836			arch_update_sysfs_visibility(nid);
837		}
838
839		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
840		sgx_numa_nodes[nid].size += size;
841
842		sgx_nr_epc_sections++;
843	}
844
845	if (!sgx_nr_epc_sections) {
846		pr_err("There are zero EPC sections.\n");
847		return false;
848	}
849
850	return true;
851}
852
853/*
854 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
855 * Bare-metal driver requires to update them to hash of enclave's signer
856 * before EINIT. KVM needs to update them to guest's virtual MSR values
857 * before doing EINIT from guest.
858 */
859void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
860{
861	int i;
862
863	WARN_ON_ONCE(preemptible());
864
865	for (i = 0; i < 4; i++)
866		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
867}
868
869const struct file_operations sgx_provision_fops = {
870	.owner			= THIS_MODULE,
871};
872
873static struct miscdevice sgx_dev_provision = {
874	.minor = MISC_DYNAMIC_MINOR,
875	.name = "sgx_provision",
876	.nodename = "sgx_provision",
877	.fops = &sgx_provision_fops,
878};
879
880/**
881 * sgx_set_attribute() - Update allowed attributes given file descriptor
882 * @allowed_attributes:		Pointer to allowed enclave attributes
883 * @attribute_fd:		File descriptor for specific attribute
884 *
885 * Append enclave attribute indicated by file descriptor to allowed
886 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
887 * /dev/sgx_provision is supported.
888 *
889 * Return:
890 * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
891 * -EINVAL:	Invalid, or not supported file descriptor
892 */
893int sgx_set_attribute(unsigned long *allowed_attributes,
894		      unsigned int attribute_fd)
895{
896	struct fd f = fdget(attribute_fd);
897
898	if (!f.file)
899		return -EINVAL;
900
901	if (f.file->f_op != &sgx_provision_fops) {
902		fdput(f);
903		return -EINVAL;
904	}
905
906	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
907
908	fdput(f);
909	return 0;
910}
911EXPORT_SYMBOL_GPL(sgx_set_attribute);
912
913static int __init sgx_init(void)
914{
915	int ret;
916	int i;
917
918	if (!cpu_feature_enabled(X86_FEATURE_SGX))
919		return -ENODEV;
920
921	if (!sgx_page_cache_init())
922		return -ENOMEM;
923
924	if (!sgx_page_reclaimer_init()) {
925		ret = -ENOMEM;
926		goto err_page_cache;
927	}
928
929	ret = misc_register(&sgx_dev_provision);
930	if (ret)
931		goto err_kthread;
932
933	/*
934	 * Always try to initialize the native *and* KVM drivers.
935	 * The KVM driver is less picky than the native one and
936	 * can function if the native one is not supported on the
937	 * current system or fails to initialize.
938	 *
939	 * Error out only if both fail to initialize.
940	 */
941	ret = sgx_drv_init();
942
943	if (sgx_vepc_init() && ret)
944		goto err_provision;
945
946	return 0;
947
948err_provision:
949	misc_deregister(&sgx_dev_provision);
950
951err_kthread:
952	kthread_stop(ksgxd_tsk);
953
954err_page_cache:
955	for (i = 0; i < sgx_nr_epc_sections; i++) {
956		vfree(sgx_epc_sections[i].pages);
957		memunmap(sgx_epc_sections[i].virt_addr);
958	}
959
960	return ret;
961}
962
963device_initcall(sgx_init);
964