1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8#ifndef _ASM_X86_KVM_HOST_H
9#define _ASM_X86_KVM_HOST_H
10
11#include <linux/types.h>
12#include <linux/mm.h>
13#include <linux/mmu_notifier.h>
14#include <linux/tracepoint.h>
15#include <linux/cpumask.h>
16#include <linux/irq_work.h>
17#include <linux/irq.h>
18#include <linux/workqueue.h>
19
20#include <linux/kvm.h>
21#include <linux/kvm_para.h>
22#include <linux/kvm_types.h>
23#include <linux/perf_event.h>
24#include <linux/pvclock_gtod.h>
25#include <linux/clocksource.h>
26#include <linux/irqbypass.h>
27#include <linux/hyperv.h>
28#include <linux/kfifo.h>
29
30#include <asm/apic.h>
31#include <asm/pvclock-abi.h>
32#include <asm/desc.h>
33#include <asm/mtrr.h>
34#include <asm/msr-index.h>
35#include <asm/asm.h>
36#include <asm/kvm_page_track.h>
37#include <asm/kvm_vcpu_regs.h>
38#include <asm/hyperv-tlfs.h>
39
40#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41
42/*
43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
45 */
46#ifdef CONFIG_KVM_MAX_NR_VCPUS
47#define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
48#else
49#define KVM_MAX_VCPUS 1024
50#endif
51
52/*
53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
54 * might be larger than the actual number of VCPUs because the
55 * APIC ID encodes CPU topology information.
56 *
57 * In the worst case, we'll need less than one extra bit for the
58 * Core ID, and less than one extra bit for the Package (Die) ID,
59 * so ratio of 4 should be enough.
60 */
61#define KVM_VCPU_ID_RATIO 4
62#define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
63
64/* memory slots that are not exposed to userspace */
65#define KVM_INTERNAL_MEM_SLOTS 3
66
67#define KVM_HALT_POLL_NS_DEFAULT 200000
68
69#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
70
71#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
72					KVM_DIRTY_LOG_INITIALLY_SET)
73
74#define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
75						 KVM_BUS_LOCK_DETECTION_EXIT)
76
77#define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
78						 KVM_X86_NOTIFY_VMEXIT_USER)
79
80/* x86-specific vcpu->requests bit members */
81#define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
82#define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
83#define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
84#define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
85#define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
86#define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
87#define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
88#define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
89#define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
90#define KVM_REQ_NMI			KVM_ARCH_REQ(9)
91#define KVM_REQ_PMU			KVM_ARCH_REQ(10)
92#define KVM_REQ_PMI			KVM_ARCH_REQ(11)
93#ifdef CONFIG_KVM_SMM
94#define KVM_REQ_SMI			KVM_ARCH_REQ(12)
95#endif
96#define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
97#define KVM_REQ_MCLOCK_INPROGRESS \
98	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99#define KVM_REQ_SCAN_IOAPIC \
100	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101#define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
102#define KVM_REQ_APIC_PAGE_RELOAD \
103	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104#define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
105#define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
106#define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
107#define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
108#define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
109#define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
110#define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
111#define KVM_REQ_APICV_UPDATE \
112	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
113#define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
114#define KVM_REQ_TLB_FLUSH_GUEST \
115	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116#define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
117#define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
118#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
119	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
121	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122#define KVM_REQ_HV_TLB_FLUSH \
123	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124
125#define CR0_RESERVED_BITS                                               \
126	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
127			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
128			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
129
130#define CR4_RESERVED_BITS                                               \
131	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
132			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
133			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
134			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
135			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
136			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
137			  | X86_CR4_LAM_SUP))
138
139#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
140
141
142
143#define INVALID_PAGE (~(hpa_t)0)
144#define VALID_PAGE(x) ((x) != INVALID_PAGE)
145
146/* KVM Hugepage definitions for x86 */
147#define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
148#define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
149#define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
150#define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
151#define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
152#define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
153#define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
154
155#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
156#define KVM_MIN_ALLOC_MMU_PAGES 64UL
157#define KVM_MMU_HASH_SHIFT 12
158#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
159#define KVM_MIN_FREE_MMU_PAGES 5
160#define KVM_REFILL_PAGES 25
161#define KVM_MAX_CPUID_ENTRIES 256
162#define KVM_NR_FIXED_MTRR_REGION 88
163#define KVM_NR_VAR_MTRR 8
164
165#define ASYNC_PF_PER_VCPU 64
166
167enum kvm_reg {
168	VCPU_REGS_RAX = __VCPU_REGS_RAX,
169	VCPU_REGS_RCX = __VCPU_REGS_RCX,
170	VCPU_REGS_RDX = __VCPU_REGS_RDX,
171	VCPU_REGS_RBX = __VCPU_REGS_RBX,
172	VCPU_REGS_RSP = __VCPU_REGS_RSP,
173	VCPU_REGS_RBP = __VCPU_REGS_RBP,
174	VCPU_REGS_RSI = __VCPU_REGS_RSI,
175	VCPU_REGS_RDI = __VCPU_REGS_RDI,
176#ifdef CONFIG_X86_64
177	VCPU_REGS_R8  = __VCPU_REGS_R8,
178	VCPU_REGS_R9  = __VCPU_REGS_R9,
179	VCPU_REGS_R10 = __VCPU_REGS_R10,
180	VCPU_REGS_R11 = __VCPU_REGS_R11,
181	VCPU_REGS_R12 = __VCPU_REGS_R12,
182	VCPU_REGS_R13 = __VCPU_REGS_R13,
183	VCPU_REGS_R14 = __VCPU_REGS_R14,
184	VCPU_REGS_R15 = __VCPU_REGS_R15,
185#endif
186	VCPU_REGS_RIP,
187	NR_VCPU_REGS,
188
189	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
190	VCPU_EXREG_CR0,
191	VCPU_EXREG_CR3,
192	VCPU_EXREG_CR4,
193	VCPU_EXREG_RFLAGS,
194	VCPU_EXREG_SEGMENTS,
195	VCPU_EXREG_EXIT_INFO_1,
196	VCPU_EXREG_EXIT_INFO_2,
197};
198
199enum {
200	VCPU_SREG_ES,
201	VCPU_SREG_CS,
202	VCPU_SREG_SS,
203	VCPU_SREG_DS,
204	VCPU_SREG_FS,
205	VCPU_SREG_GS,
206	VCPU_SREG_TR,
207	VCPU_SREG_LDTR,
208};
209
210enum exit_fastpath_completion {
211	EXIT_FASTPATH_NONE,
212	EXIT_FASTPATH_REENTER_GUEST,
213	EXIT_FASTPATH_EXIT_HANDLED,
214};
215typedef enum exit_fastpath_completion fastpath_t;
216
217struct x86_emulate_ctxt;
218struct x86_exception;
219union kvm_smram;
220enum x86_intercept;
221enum x86_intercept_stage;
222
223#define KVM_NR_DB_REGS	4
224
225#define DR6_BUS_LOCK   (1 << 11)
226#define DR6_BD		(1 << 13)
227#define DR6_BS		(1 << 14)
228#define DR6_BT		(1 << 15)
229#define DR6_RTM		(1 << 16)
230/*
231 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
232 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
233 * they will never be 0 for now, but when they are defined
234 * in the future it will require no code change.
235 *
236 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
237 */
238#define DR6_ACTIVE_LOW	0xffff0ff0
239#define DR6_VOLATILE	0x0001e80f
240#define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
241
242#define DR7_BP_EN_MASK	0x000000ff
243#define DR7_GE		(1 << 9)
244#define DR7_GD		(1 << 13)
245#define DR7_FIXED_1	0x00000400
246#define DR7_VOLATILE	0xffff2bff
247
248#define KVM_GUESTDBG_VALID_MASK \
249	(KVM_GUESTDBG_ENABLE | \
250	KVM_GUESTDBG_SINGLESTEP | \
251	KVM_GUESTDBG_USE_HW_BP | \
252	KVM_GUESTDBG_USE_SW_BP | \
253	KVM_GUESTDBG_INJECT_BP | \
254	KVM_GUESTDBG_INJECT_DB | \
255	KVM_GUESTDBG_BLOCKIRQ)
256
257#define PFERR_PRESENT_MASK	BIT(0)
258#define PFERR_WRITE_MASK	BIT(1)
259#define PFERR_USER_MASK		BIT(2)
260#define PFERR_RSVD_MASK		BIT(3)
261#define PFERR_FETCH_MASK	BIT(4)
262#define PFERR_PK_MASK		BIT(5)
263#define PFERR_SGX_MASK		BIT(15)
264#define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
265#define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
266#define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
267#define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
268#define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
269#define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
270
271/*
272 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
273 * when emulating instructions that triggers implicit access.
274 */
275#define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
276/*
277 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
278 * when the guest was accessing private memory.
279 */
280#define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
281#define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
282
283#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
284				 PFERR_WRITE_MASK |		\
285				 PFERR_PRESENT_MASK)
286
287/* apic attention bits */
288#define KVM_APIC_CHECK_VAPIC	0
289/*
290 * The following bit is set with PV-EOI, unset on EOI.
291 * We detect PV-EOI changes by guest by comparing
292 * this bit with PV-EOI in guest memory.
293 * See the implementation in apic_update_pv_eoi.
294 */
295#define KVM_APIC_PV_EOI_PENDING	1
296
297struct kvm_kernel_irq_routing_entry;
298
299/*
300 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
301 * also includes TDP pages) to determine whether or not a page can be used in
302 * the given MMU context.  This is a subset of the overall kvm_cpu_role to
303 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
304 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
305 *
306 * Upper-level shadow pages having gptes are tracked for write-protection via
307 * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
308 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
309 * otherwise gfn_write_track will overflow and explosions will ensue.
310 *
311 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
312 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
313 * incorporates various mode bits and properties of the SP.  Roughly speaking,
314 * the number of unique SPs that can theoretically be created is 2^n, where n
315 * is the number of bits that are used to compute the role.
316 *
317 * But, even though there are 19 bits in the mask below, not all combinations
318 * of modes and flags are possible:
319 *
320 *   - invalid shadow pages are not accounted, so the bits are effectively 18
321 *
322 *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
323 *     execonly and ad_disabled are only used for nested EPT which has
324 *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
325 *
326 *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
327 *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
328 *     paging has exactly one upper level, making level completely redundant
329 *     when has_4_byte_gpte=1.
330 *
331 *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
332 *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
333 *
334 * Therefore, the maximum number of possible upper-level shadow pages for a
335 * single gfn is a bit less than 2^13.
336 */
337union kvm_mmu_page_role {
338	u32 word;
339	struct {
340		unsigned level:4;
341		unsigned has_4_byte_gpte:1;
342		unsigned quadrant:2;
343		unsigned direct:1;
344		unsigned access:3;
345		unsigned invalid:1;
346		unsigned efer_nx:1;
347		unsigned cr0_wp:1;
348		unsigned smep_andnot_wp:1;
349		unsigned smap_andnot_wp:1;
350		unsigned ad_disabled:1;
351		unsigned guest_mode:1;
352		unsigned passthrough:1;
353		unsigned :5;
354
355		/*
356		 * This is left at the top of the word so that
357		 * kvm_memslots_for_spte_role can extract it with a
358		 * simple shift.  While there is room, give it a whole
359		 * byte so it is also faster to load it from memory.
360		 */
361		unsigned smm:8;
362	};
363};
364
365/*
366 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
367 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
368 * including on nested transitions, if nothing in the full role changes then
369 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
370 * don't treat all-zero structure as valid data.
371 *
372 * The properties that are tracked in the extended role but not the page role
373 * are for things that either (a) do not affect the validity of the shadow page
374 * or (b) are indirectly reflected in the shadow page's role.  For example,
375 * CR4.PKE only affects permission checks for software walks of the guest page
376 * tables (because KVM doesn't support Protection Keys with shadow paging), and
377 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
378 *
379 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
380 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
381 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
382 * SMAP aware regardless of CR0.WP.
383 */
384union kvm_mmu_extended_role {
385	u32 word;
386	struct {
387		unsigned int valid:1;
388		unsigned int execonly:1;
389		unsigned int cr4_pse:1;
390		unsigned int cr4_pke:1;
391		unsigned int cr4_smap:1;
392		unsigned int cr4_smep:1;
393		unsigned int cr4_la57:1;
394		unsigned int efer_lma:1;
395	};
396};
397
398union kvm_cpu_role {
399	u64 as_u64;
400	struct {
401		union kvm_mmu_page_role base;
402		union kvm_mmu_extended_role ext;
403	};
404};
405
406struct kvm_rmap_head {
407	unsigned long val;
408};
409
410struct kvm_pio_request {
411	unsigned long linear_rip;
412	unsigned long count;
413	int in;
414	int port;
415	int size;
416};
417
418#define PT64_ROOT_MAX_LEVEL 5
419
420struct rsvd_bits_validate {
421	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
422	u64 bad_mt_xwr;
423};
424
425struct kvm_mmu_root_info {
426	gpa_t pgd;
427	hpa_t hpa;
428};
429
430#define KVM_MMU_ROOT_INFO_INVALID \
431	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
432
433#define KVM_MMU_NUM_PREV_ROOTS 3
434
435#define KVM_MMU_ROOT_CURRENT		BIT(0)
436#define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
437#define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
438
439#define KVM_HAVE_MMU_RWLOCK
440
441struct kvm_mmu_page;
442struct kvm_page_fault;
443
444/*
445 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
446 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
447 * current mmu mode.
448 */
449struct kvm_mmu {
450	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
451	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
452	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
453	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
454				  struct x86_exception *fault);
455	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
456			    gpa_t gva_or_gpa, u64 access,
457			    struct x86_exception *exception);
458	int (*sync_spte)(struct kvm_vcpu *vcpu,
459			 struct kvm_mmu_page *sp, int i);
460	struct kvm_mmu_root_info root;
461	union kvm_cpu_role cpu_role;
462	union kvm_mmu_page_role root_role;
463
464	/*
465	* The pkru_mask indicates if protection key checks are needed.  It
466	* consists of 16 domains indexed by page fault error code bits [4:1],
467	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
468	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
469	*/
470	u32 pkru_mask;
471
472	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
473
474	/*
475	 * Bitmap; bit set = permission fault
476	 * Byte index: page fault error code [4:1]
477	 * Bit index: pte permissions in ACC_* format
478	 */
479	u8 permissions[16];
480
481	u64 *pae_root;
482	u64 *pml4_root;
483	u64 *pml5_root;
484
485	/*
486	 * check zero bits on shadow page table entries, these
487	 * bits include not only hardware reserved bits but also
488	 * the bits spte never used.
489	 */
490	struct rsvd_bits_validate shadow_zero_check;
491
492	struct rsvd_bits_validate guest_rsvd_check;
493
494	u64 pdptrs[4]; /* pae */
495};
496
497enum pmc_type {
498	KVM_PMC_GP = 0,
499	KVM_PMC_FIXED,
500};
501
502struct kvm_pmc {
503	enum pmc_type type;
504	u8 idx;
505	bool is_paused;
506	bool intr;
507	/*
508	 * Base value of the PMC counter, relative to the *consumed* count in
509	 * the associated perf_event.  This value includes counter updates from
510	 * the perf_event and emulated_count since the last time the counter
511	 * was reprogrammed, but it is *not* the current value as seen by the
512	 * guest or userspace.
513	 *
514	 * The count is relative to the associated perf_event so that KVM
515	 * doesn't need to reprogram the perf_event every time the guest writes
516	 * to the counter.
517	 */
518	u64 counter;
519	/*
520	 * PMC events triggered by KVM emulation that haven't been fully
521	 * processed, i.e. haven't undergone overflow detection.
522	 */
523	u64 emulated_counter;
524	u64 eventsel;
525	struct perf_event *perf_event;
526	struct kvm_vcpu *vcpu;
527	/*
528	 * only for creating or reusing perf_event,
529	 * eventsel value for general purpose counters,
530	 * ctrl value for fixed counters.
531	 */
532	u64 current_config;
533};
534
535/* More counters may conflict with other existing Architectural MSRs */
536#define KVM_INTEL_PMC_MAX_GENERIC	8
537#define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
538#define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
539#define KVM_PMC_MAX_FIXED	3
540#define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
541#define KVM_AMD_PMC_MAX_GENERIC	6
542
543struct kvm_pmu {
544	u8 version;
545	unsigned nr_arch_gp_counters;
546	unsigned nr_arch_fixed_counters;
547	unsigned available_event_types;
548	u64 fixed_ctr_ctrl;
549	u64 fixed_ctr_ctrl_mask;
550	u64 global_ctrl;
551	u64 global_status;
552	u64 counter_bitmask[2];
553	u64 global_ctrl_mask;
554	u64 global_status_mask;
555	u64 reserved_bits;
556	u64 raw_event_mask;
557	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
558	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
559
560	/*
561	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
562	 * set in a single access, e.g. to reprogram all counters when the PMU
563	 * filter changes.
564	 */
565	union {
566		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
567		atomic64_t __reprogram_pmi;
568	};
569	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
570	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
571
572	u64 ds_area;
573	u64 pebs_enable;
574	u64 pebs_enable_mask;
575	u64 pebs_data_cfg;
576	u64 pebs_data_cfg_mask;
577
578	/*
579	 * If a guest counter is cross-mapped to host counter with different
580	 * index, its PEBS capability will be temporarily disabled.
581	 *
582	 * The user should make sure that this mask is updated
583	 * after disabling interrupts and before perf_guest_get_msrs();
584	 */
585	u64 host_cross_mapped_mask;
586
587	/*
588	 * The gate to release perf_events not marked in
589	 * pmc_in_use only once in a vcpu time slice.
590	 */
591	bool need_cleanup;
592
593	/*
594	 * The total number of programmed perf_events and it helps to avoid
595	 * redundant check before cleanup if guest don't use vPMU at all.
596	 */
597	u8 event_count;
598};
599
600struct kvm_pmu_ops;
601
602enum {
603	KVM_DEBUGREG_BP_ENABLED = 1,
604	KVM_DEBUGREG_WONT_EXIT = 2,
605};
606
607struct kvm_mtrr_range {
608	u64 base;
609	u64 mask;
610	struct list_head node;
611};
612
613struct kvm_mtrr {
614	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
615	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
616	u64 deftype;
617
618	struct list_head head;
619};
620
621/* Hyper-V SynIC timer */
622struct kvm_vcpu_hv_stimer {
623	struct hrtimer timer;
624	int index;
625	union hv_stimer_config config;
626	u64 count;
627	u64 exp_time;
628	struct hv_message msg;
629	bool msg_pending;
630};
631
632/* Hyper-V synthetic interrupt controller (SynIC)*/
633struct kvm_vcpu_hv_synic {
634	u64 version;
635	u64 control;
636	u64 msg_page;
637	u64 evt_page;
638	atomic64_t sint[HV_SYNIC_SINT_COUNT];
639	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
640	DECLARE_BITMAP(auto_eoi_bitmap, 256);
641	DECLARE_BITMAP(vec_bitmap, 256);
642	bool active;
643	bool dont_zero_synic_pages;
644};
645
646/* The maximum number of entries on the TLB flush fifo. */
647#define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
648/*
649 * Note: the following 'magic' entry is made up by KVM to avoid putting
650 * anything besides GVA on the TLB flush fifo. It is theoretically possible
651 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
652 * which will look identical. KVM's action to 'flush everything' instead of
653 * flushing these particular addresses is, however, fully legitimate as
654 * flushing more than requested is always OK.
655 */
656#define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
657
658enum hv_tlb_flush_fifos {
659	HV_L1_TLB_FLUSH_FIFO,
660	HV_L2_TLB_FLUSH_FIFO,
661	HV_NR_TLB_FLUSH_FIFOS,
662};
663
664struct kvm_vcpu_hv_tlb_flush_fifo {
665	spinlock_t write_lock;
666	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
667};
668
669/* Hyper-V per vcpu emulation context */
670struct kvm_vcpu_hv {
671	struct kvm_vcpu *vcpu;
672	u32 vp_index;
673	u64 hv_vapic;
674	s64 runtime_offset;
675	struct kvm_vcpu_hv_synic synic;
676	struct kvm_hyperv_exit exit;
677	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
678	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
679	bool enforce_cpuid;
680	struct {
681		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
682		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
683		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
684		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
685		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
686		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
687		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
688		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
689	} cpuid_cache;
690
691	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
692
693	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
694	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
695
696	struct hv_vp_assist_page vp_assist_page;
697
698	struct {
699		u64 pa_page_gpa;
700		u64 vm_id;
701		u32 vp_id;
702	} nested;
703};
704
705struct kvm_hypervisor_cpuid {
706	u32 base;
707	u32 limit;
708};
709
710#ifdef CONFIG_KVM_XEN
711/* Xen HVM per vcpu emulation context */
712struct kvm_vcpu_xen {
713	u64 hypercall_rip;
714	u32 current_runstate;
715	u8 upcall_vector;
716	struct gfn_to_pfn_cache vcpu_info_cache;
717	struct gfn_to_pfn_cache vcpu_time_info_cache;
718	struct gfn_to_pfn_cache runstate_cache;
719	struct gfn_to_pfn_cache runstate2_cache;
720	u64 last_steal;
721	u64 runstate_entry_time;
722	u64 runstate_times[4];
723	unsigned long evtchn_pending_sel;
724	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
725	u32 timer_virq;
726	u64 timer_expires; /* In guest epoch */
727	atomic_t timer_pending;
728	struct hrtimer timer;
729	int poll_evtchn;
730	struct timer_list poll_timer;
731	struct kvm_hypervisor_cpuid cpuid;
732};
733#endif
734
735struct kvm_queued_exception {
736	bool pending;
737	bool injected;
738	bool has_error_code;
739	u8 vector;
740	u32 error_code;
741	unsigned long payload;
742	bool has_payload;
743};
744
745struct kvm_vcpu_arch {
746	/*
747	 * rip and regs accesses must go through
748	 * kvm_{register,rip}_{read,write} functions.
749	 */
750	unsigned long regs[NR_VCPU_REGS];
751	u32 regs_avail;
752	u32 regs_dirty;
753
754	unsigned long cr0;
755	unsigned long cr0_guest_owned_bits;
756	unsigned long cr2;
757	unsigned long cr3;
758	unsigned long cr4;
759	unsigned long cr4_guest_owned_bits;
760	unsigned long cr4_guest_rsvd_bits;
761	unsigned long cr8;
762	u32 host_pkru;
763	u32 pkru;
764	u32 hflags;
765	u64 efer;
766	u64 apic_base;
767	struct kvm_lapic *apic;    /* kernel irqchip context */
768	bool load_eoi_exitmap_pending;
769	DECLARE_BITMAP(ioapic_handled_vectors, 256);
770	unsigned long apic_attention;
771	int32_t apic_arb_prio;
772	int mp_state;
773	u64 ia32_misc_enable_msr;
774	u64 smbase;
775	u64 smi_count;
776	bool at_instruction_boundary;
777	bool tpr_access_reporting;
778	bool xfd_no_write_intercept;
779	u64 ia32_xss;
780	u64 microcode_version;
781	u64 arch_capabilities;
782	u64 perf_capabilities;
783
784	/*
785	 * Paging state of the vcpu
786	 *
787	 * If the vcpu runs in guest mode with two level paging this still saves
788	 * the paging mode of the l1 guest. This context is always used to
789	 * handle faults.
790	 */
791	struct kvm_mmu *mmu;
792
793	/* Non-nested MMU for L1 */
794	struct kvm_mmu root_mmu;
795
796	/* L1 MMU when running nested */
797	struct kvm_mmu guest_mmu;
798
799	/*
800	 * Paging state of an L2 guest (used for nested npt)
801	 *
802	 * This context will save all necessary information to walk page tables
803	 * of an L2 guest. This context is only initialized for page table
804	 * walking and not for faulting since we never handle l2 page faults on
805	 * the host.
806	 */
807	struct kvm_mmu nested_mmu;
808
809	/*
810	 * Pointer to the mmu context currently used for
811	 * gva_to_gpa translations.
812	 */
813	struct kvm_mmu *walk_mmu;
814
815	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
816	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
817	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
818	struct kvm_mmu_memory_cache mmu_page_header_cache;
819
820	/*
821	 * QEMU userspace and the guest each have their own FPU state.
822	 * In vcpu_run, we switch between the user and guest FPU contexts.
823	 * While running a VCPU, the VCPU thread will have the guest FPU
824	 * context.
825	 *
826	 * Note that while the PKRU state lives inside the fpu registers,
827	 * it is switched out separately at VMENTER and VMEXIT time. The
828	 * "guest_fpstate" state here contains the guest FPU context, with the
829	 * host PRKU bits.
830	 */
831	struct fpu_guest guest_fpu;
832
833	u64 xcr0;
834	u64 guest_supported_xcr0;
835
836	struct kvm_pio_request pio;
837	void *pio_data;
838	void *sev_pio_data;
839	unsigned sev_pio_count;
840
841	u8 event_exit_inst_len;
842
843	bool exception_from_userspace;
844
845	/* Exceptions to be injected to the guest. */
846	struct kvm_queued_exception exception;
847	/* Exception VM-Exits to be synthesized to L1. */
848	struct kvm_queued_exception exception_vmexit;
849
850	struct kvm_queued_interrupt {
851		bool injected;
852		bool soft;
853		u8 nr;
854	} interrupt;
855
856	int halt_request; /* real mode on Intel only */
857
858	int cpuid_nent;
859	struct kvm_cpuid_entry2 *cpuid_entries;
860	struct kvm_hypervisor_cpuid kvm_cpuid;
861	bool is_amd_compatible;
862
863	/*
864	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
865	 * when "struct kvm_vcpu_arch" is no longer defined in an
866	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
867	 * can be increased as necessary.
868	 */
869#define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
870
871	/*
872	 * Track whether or not the guest is allowed to use features that are
873	 * governed by KVM, where "governed" means KVM needs to manage state
874	 * and/or explicitly enable the feature in hardware.  Typically, but
875	 * not always, governed features can be used by the guest if and only
876	 * if both KVM and userspace want to expose the feature to the guest.
877	 */
878	struct {
879		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
880	} governed_features;
881
882	u64 reserved_gpa_bits;
883	int maxphyaddr;
884
885	/* emulate context */
886
887	struct x86_emulate_ctxt *emulate_ctxt;
888	bool emulate_regs_need_sync_to_vcpu;
889	bool emulate_regs_need_sync_from_vcpu;
890	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
891
892	gpa_t time;
893	struct pvclock_vcpu_time_info hv_clock;
894	unsigned int hw_tsc_khz;
895	struct gfn_to_pfn_cache pv_time;
896	/* set guest stopped flag in pvclock flags field */
897	bool pvclock_set_guest_stopped_request;
898
899	struct {
900		u8 preempted;
901		u64 msr_val;
902		u64 last_steal;
903		struct gfn_to_hva_cache cache;
904	} st;
905
906	u64 l1_tsc_offset;
907	u64 tsc_offset; /* current tsc offset */
908	u64 last_guest_tsc;
909	u64 last_host_tsc;
910	u64 tsc_offset_adjustment;
911	u64 this_tsc_nsec;
912	u64 this_tsc_write;
913	u64 this_tsc_generation;
914	bool tsc_catchup;
915	bool tsc_always_catchup;
916	s8 virtual_tsc_shift;
917	u32 virtual_tsc_mult;
918	u32 virtual_tsc_khz;
919	s64 ia32_tsc_adjust_msr;
920	u64 msr_ia32_power_ctl;
921	u64 l1_tsc_scaling_ratio;
922	u64 tsc_scaling_ratio; /* current scaling ratio */
923
924	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
925	/* Number of NMIs pending injection, not including hardware vNMIs. */
926	unsigned int nmi_pending;
927	bool nmi_injected;    /* Trying to inject an NMI this entry */
928	bool smi_pending;    /* SMI queued after currently running handler */
929	u8 handling_intr_from_guest;
930
931	struct kvm_mtrr mtrr_state;
932	u64 pat;
933
934	unsigned switch_db_regs;
935	unsigned long db[KVM_NR_DB_REGS];
936	unsigned long dr6;
937	unsigned long dr7;
938	unsigned long eff_db[KVM_NR_DB_REGS];
939	unsigned long guest_debug_dr7;
940	u64 msr_platform_info;
941	u64 msr_misc_features_enables;
942
943	u64 mcg_cap;
944	u64 mcg_status;
945	u64 mcg_ctl;
946	u64 mcg_ext_ctl;
947	u64 *mce_banks;
948	u64 *mci_ctl2_banks;
949
950	/* Cache MMIO info */
951	u64 mmio_gva;
952	unsigned mmio_access;
953	gfn_t mmio_gfn;
954	u64 mmio_gen;
955
956	struct kvm_pmu pmu;
957
958	/* used for guest single stepping over the given code position */
959	unsigned long singlestep_rip;
960
961#ifdef CONFIG_KVM_HYPERV
962	bool hyperv_enabled;
963	struct kvm_vcpu_hv *hyperv;
964#endif
965#ifdef CONFIG_KVM_XEN
966	struct kvm_vcpu_xen xen;
967#endif
968	cpumask_var_t wbinvd_dirty_mask;
969
970	unsigned long last_retry_eip;
971	unsigned long last_retry_addr;
972
973	struct {
974		bool halted;
975		gfn_t gfns[ASYNC_PF_PER_VCPU];
976		struct gfn_to_hva_cache data;
977		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
978		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
979		u16 vec;
980		u32 id;
981		bool send_user_only;
982		u32 host_apf_flags;
983		bool delivery_as_pf_vmexit;
984		bool pageready_pending;
985	} apf;
986
987	/* OSVW MSRs (AMD only) */
988	struct {
989		u64 length;
990		u64 status;
991	} osvw;
992
993	struct {
994		u64 msr_val;
995		struct gfn_to_hva_cache data;
996	} pv_eoi;
997
998	u64 msr_kvm_poll_control;
999
1000	/* pv related host specific info */
1001	struct {
1002		bool pv_unhalted;
1003	} pv;
1004
1005	int pending_ioapic_eoi;
1006	int pending_external_vector;
1007
1008	/* be preempted when it's in kernel-mode(cpl=0) */
1009	bool preempted_in_kernel;
1010
1011	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1012	bool l1tf_flush_l1d;
1013
1014	/* Host CPU on which VM-entry was most recently attempted */
1015	int last_vmentry_cpu;
1016
1017	/* AMD MSRC001_0015 Hardware Configuration */
1018	u64 msr_hwcr;
1019
1020	/* pv related cpuid info */
1021	struct {
1022		/*
1023		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1024		 * leaf.
1025		 */
1026		u32 features;
1027
1028		/*
1029		 * indicates whether pv emulation should be disabled if features
1030		 * are not present in the guest's cpuid
1031		 */
1032		bool enforce;
1033	} pv_cpuid;
1034
1035	/* Protected Guests */
1036	bool guest_state_protected;
1037
1038	/*
1039	 * Set when PDPTS were loaded directly by the userspace without
1040	 * reading the guest memory
1041	 */
1042	bool pdptrs_from_userspace;
1043
1044#if IS_ENABLED(CONFIG_HYPERV)
1045	hpa_t hv_root_tdp;
1046#endif
1047};
1048
1049struct kvm_lpage_info {
1050	int disallow_lpage;
1051};
1052
1053struct kvm_arch_memory_slot {
1054	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1055	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1056	unsigned short *gfn_write_track;
1057};
1058
1059/*
1060 * Track the mode of the optimized logical map, as the rules for decoding the
1061 * destination vary per mode.  Enabling the optimized logical map requires all
1062 * software-enabled local APIs to be in the same mode, each addressable APIC to
1063 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1064 */
1065enum kvm_apic_logical_mode {
1066	/* All local APICs are software disabled. */
1067	KVM_APIC_MODE_SW_DISABLED,
1068	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1069	KVM_APIC_MODE_XAPIC_CLUSTER,
1070	/* All software enabled local APICs in xAPIC flat addressing mode. */
1071	KVM_APIC_MODE_XAPIC_FLAT,
1072	/* All software enabled local APICs in x2APIC mode. */
1073	KVM_APIC_MODE_X2APIC,
1074	/*
1075	 * Optimized map disabled, e.g. not all local APICs in the same logical
1076	 * mode, same logical ID assigned to multiple APICs, etc.
1077	 */
1078	KVM_APIC_MODE_MAP_DISABLED,
1079};
1080
1081struct kvm_apic_map {
1082	struct rcu_head rcu;
1083	enum kvm_apic_logical_mode logical_mode;
1084	u32 max_apic_id;
1085	union {
1086		struct kvm_lapic *xapic_flat_map[8];
1087		struct kvm_lapic *xapic_cluster_map[16][4];
1088	};
1089	struct kvm_lapic *phys_map[];
1090};
1091
1092/* Hyper-V synthetic debugger (SynDbg)*/
1093struct kvm_hv_syndbg {
1094	struct {
1095		u64 control;
1096		u64 status;
1097		u64 send_page;
1098		u64 recv_page;
1099		u64 pending_page;
1100	} control;
1101	u64 options;
1102};
1103
1104/* Current state of Hyper-V TSC page clocksource */
1105enum hv_tsc_page_status {
1106	/* TSC page was not set up or disabled */
1107	HV_TSC_PAGE_UNSET = 0,
1108	/* TSC page MSR was written by the guest, update pending */
1109	HV_TSC_PAGE_GUEST_CHANGED,
1110	/* TSC page update was triggered from the host side */
1111	HV_TSC_PAGE_HOST_CHANGED,
1112	/* TSC page was properly set up and is currently active  */
1113	HV_TSC_PAGE_SET,
1114	/* TSC page was set up with an inaccessible GPA */
1115	HV_TSC_PAGE_BROKEN,
1116};
1117
1118#ifdef CONFIG_KVM_HYPERV
1119/* Hyper-V emulation context */
1120struct kvm_hv {
1121	struct mutex hv_lock;
1122	u64 hv_guest_os_id;
1123	u64 hv_hypercall;
1124	u64 hv_tsc_page;
1125	enum hv_tsc_page_status hv_tsc_page_status;
1126
1127	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1128	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1129	u64 hv_crash_ctl;
1130
1131	struct ms_hyperv_tsc_page tsc_ref;
1132
1133	struct idr conn_to_evt;
1134
1135	u64 hv_reenlightenment_control;
1136	u64 hv_tsc_emulation_control;
1137	u64 hv_tsc_emulation_status;
1138	u64 hv_invtsc_control;
1139
1140	/* How many vCPUs have VP index != vCPU index */
1141	atomic_t num_mismatched_vp_indexes;
1142
1143	/*
1144	 * How many SynICs use 'AutoEOI' feature
1145	 * (protected by arch.apicv_update_lock)
1146	 */
1147	unsigned int synic_auto_eoi_used;
1148
1149	struct kvm_hv_syndbg hv_syndbg;
1150
1151	bool xsaves_xsavec_checked;
1152};
1153#endif
1154
1155struct msr_bitmap_range {
1156	u32 flags;
1157	u32 nmsrs;
1158	u32 base;
1159	unsigned long *bitmap;
1160};
1161
1162#ifdef CONFIG_KVM_XEN
1163/* Xen emulation context */
1164struct kvm_xen {
1165	struct mutex xen_lock;
1166	u32 xen_version;
1167	bool long_mode;
1168	bool runstate_update_flag;
1169	u8 upcall_vector;
1170	struct gfn_to_pfn_cache shinfo_cache;
1171	struct idr evtchn_ports;
1172	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1173};
1174#endif
1175
1176enum kvm_irqchip_mode {
1177	KVM_IRQCHIP_NONE,
1178	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1179	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1180};
1181
1182struct kvm_x86_msr_filter {
1183	u8 count;
1184	bool default_allow:1;
1185	struct msr_bitmap_range ranges[16];
1186};
1187
1188struct kvm_x86_pmu_event_filter {
1189	__u32 action;
1190	__u32 nevents;
1191	__u32 fixed_counter_bitmap;
1192	__u32 flags;
1193	__u32 nr_includes;
1194	__u32 nr_excludes;
1195	__u64 *includes;
1196	__u64 *excludes;
1197	__u64 events[];
1198};
1199
1200enum kvm_apicv_inhibit {
1201
1202	/********************************************************************/
1203	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1204	/********************************************************************/
1205
1206	/*
1207	 * APIC acceleration is disabled by a module parameter
1208	 * and/or not supported in hardware.
1209	 */
1210	APICV_INHIBIT_REASON_DISABLE,
1211
1212	/*
1213	 * APIC acceleration is inhibited because AutoEOI feature is
1214	 * being used by a HyperV guest.
1215	 */
1216	APICV_INHIBIT_REASON_HYPERV,
1217
1218	/*
1219	 * APIC acceleration is inhibited because the userspace didn't yet
1220	 * enable the kernel/split irqchip.
1221	 */
1222	APICV_INHIBIT_REASON_ABSENT,
1223
1224	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1225	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1226	 * was enabled, to avoid AVIC/APICv bypassing it.
1227	 */
1228	APICV_INHIBIT_REASON_BLOCKIRQ,
1229
1230	/*
1231	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1232	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1233	 */
1234	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1235
1236	/*
1237	 * For simplicity, the APIC acceleration is inhibited
1238	 * first time either APIC ID or APIC base are changed by the guest
1239	 * from their reset values.
1240	 */
1241	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1242	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1243
1244	/******************************************************/
1245	/* INHIBITs that are relevant only to the AMD's AVIC. */
1246	/******************************************************/
1247
1248	/*
1249	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1250	 *
1251	 * This is needed because unlike APICv, the peers of this vCPU
1252	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1253	 * a vCPU runs nested.
1254	 */
1255	APICV_INHIBIT_REASON_NESTED,
1256
1257	/*
1258	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1259	 * which cannot be injected when the AVIC is enabled, thus AVIC
1260	 * is inhibited while KVM waits for IRQ window.
1261	 */
1262	APICV_INHIBIT_REASON_IRQWIN,
1263
1264	/*
1265	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1266	 * which AVIC doesn't support for edge triggered interrupts.
1267	 */
1268	APICV_INHIBIT_REASON_PIT_REINJ,
1269
1270	/*
1271	 * AVIC is disabled because SEV doesn't support it.
1272	 */
1273	APICV_INHIBIT_REASON_SEV,
1274
1275	/*
1276	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1277	 * mapping between logical ID and vCPU.
1278	 */
1279	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1280};
1281
1282struct kvm_arch {
1283	unsigned long n_used_mmu_pages;
1284	unsigned long n_requested_mmu_pages;
1285	unsigned long n_max_mmu_pages;
1286	unsigned int indirect_shadow_pages;
1287	u8 mmu_valid_gen;
1288	u8 vm_type;
1289	bool has_private_mem;
1290	bool has_protected_state;
1291	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1292	struct list_head active_mmu_pages;
1293	struct list_head zapped_obsolete_pages;
1294	/*
1295	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1296	 * replaced by an NX huge page.  A shadow page is on this list if its
1297	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1298	 * and there are no other conditions that prevent a huge page, e.g.
1299	 * the backing host page is huge, dirtly logging is not enabled for its
1300	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1301	 * guarantee an NX huge page will be created in its stead, e.g. if the
1302	 * guest attempts to execute from the region then KVM obviously can't
1303	 * create an NX huge page (without hanging the guest).
1304	 */
1305	struct list_head possible_nx_huge_pages;
1306#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1307	struct kvm_page_track_notifier_head track_notifier_head;
1308#endif
1309	/*
1310	 * Protects marking pages unsync during page faults, as TDP MMU page
1311	 * faults only take mmu_lock for read.  For simplicity, the unsync
1312	 * pages lock is always taken when marking pages unsync regardless of
1313	 * whether mmu_lock is held for read or write.
1314	 */
1315	spinlock_t mmu_unsync_pages_lock;
1316
1317	u64 shadow_mmio_value;
1318
1319	struct iommu_domain *iommu_domain;
1320	bool iommu_noncoherent;
1321#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1322	atomic_t noncoherent_dma_count;
1323#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1324	atomic_t assigned_device_count;
1325	struct kvm_pic *vpic;
1326	struct kvm_ioapic *vioapic;
1327	struct kvm_pit *vpit;
1328	atomic_t vapics_in_nmi_mode;
1329	struct mutex apic_map_lock;
1330	struct kvm_apic_map __rcu *apic_map;
1331	atomic_t apic_map_dirty;
1332
1333	bool apic_access_memslot_enabled;
1334	bool apic_access_memslot_inhibited;
1335
1336	/* Protects apicv_inhibit_reasons */
1337	struct rw_semaphore apicv_update_lock;
1338	unsigned long apicv_inhibit_reasons;
1339
1340	gpa_t wall_clock;
1341
1342	bool mwait_in_guest;
1343	bool hlt_in_guest;
1344	bool pause_in_guest;
1345	bool cstate_in_guest;
1346
1347	unsigned long irq_sources_bitmap;
1348	s64 kvmclock_offset;
1349
1350	/*
1351	 * This also protects nr_vcpus_matched_tsc which is read from a
1352	 * preemption-disabled region, so it must be a raw spinlock.
1353	 */
1354	raw_spinlock_t tsc_write_lock;
1355	u64 last_tsc_nsec;
1356	u64 last_tsc_write;
1357	u32 last_tsc_khz;
1358	u64 last_tsc_offset;
1359	u64 cur_tsc_nsec;
1360	u64 cur_tsc_write;
1361	u64 cur_tsc_offset;
1362	u64 cur_tsc_generation;
1363	int nr_vcpus_matched_tsc;
1364
1365	u32 default_tsc_khz;
1366	bool user_set_tsc;
1367
1368	seqcount_raw_spinlock_t pvclock_sc;
1369	bool use_master_clock;
1370	u64 master_kernel_ns;
1371	u64 master_cycle_now;
1372	struct delayed_work kvmclock_update_work;
1373	struct delayed_work kvmclock_sync_work;
1374
1375	struct kvm_xen_hvm_config xen_hvm_config;
1376
1377	/* reads protected by irq_srcu, writes by irq_lock */
1378	struct hlist_head mask_notifier_list;
1379
1380#ifdef CONFIG_KVM_HYPERV
1381	struct kvm_hv hyperv;
1382#endif
1383
1384#ifdef CONFIG_KVM_XEN
1385	struct kvm_xen xen;
1386#endif
1387
1388	bool backwards_tsc_observed;
1389	bool boot_vcpu_runs_old_kvmclock;
1390	u32 bsp_vcpu_id;
1391
1392	u64 disabled_quirks;
1393
1394	enum kvm_irqchip_mode irqchip_mode;
1395	u8 nr_reserved_ioapic_pins;
1396
1397	bool disabled_lapic_found;
1398
1399	bool x2apic_format;
1400	bool x2apic_broadcast_quirk_disabled;
1401
1402	bool guest_can_read_msr_platform_info;
1403	bool exception_payload_enabled;
1404
1405	bool triple_fault_event;
1406
1407	bool bus_lock_detection_enabled;
1408	bool enable_pmu;
1409
1410	u32 notify_window;
1411	u32 notify_vmexit_flags;
1412	/*
1413	 * If exit_on_emulation_error is set, and the in-kernel instruction
1414	 * emulator fails to emulate an instruction, allow userspace
1415	 * the opportunity to look at it.
1416	 */
1417	bool exit_on_emulation_error;
1418
1419	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1420	u32 user_space_msr_mask;
1421	struct kvm_x86_msr_filter __rcu *msr_filter;
1422
1423	u32 hypercall_exit_enabled;
1424
1425	/* Guest can access the SGX PROVISIONKEY. */
1426	bool sgx_provisioning_allowed;
1427
1428	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1429	struct task_struct *nx_huge_page_recovery_thread;
1430
1431#ifdef CONFIG_X86_64
1432	/* The number of TDP MMU pages across all roots. */
1433	atomic64_t tdp_mmu_pages;
1434
1435	/*
1436	 * List of struct kvm_mmu_pages being used as roots.
1437	 * All struct kvm_mmu_pages in the list should have
1438	 * tdp_mmu_page set.
1439	 *
1440	 * For reads, this list is protected by:
1441	 *	the MMU lock in read mode + RCU or
1442	 *	the MMU lock in write mode
1443	 *
1444	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1445	 * below for the details.
1446	 *
1447	 * Roots will remain in the list until their tdp_mmu_root_count
1448	 * drops to zero, at which point the thread that decremented the
1449	 * count to zero should removed the root from the list and clean
1450	 * it up, freeing the root after an RCU grace period.
1451	 */
1452	struct list_head tdp_mmu_roots;
1453
1454	/*
1455	 * Protects accesses to the following fields when the MMU lock
1456	 * is held in read mode:
1457	 *  - tdp_mmu_roots (above)
1458	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1459	 *  - possible_nx_huge_pages;
1460	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1461	 *    by the TDP MMU
1462	 * Because the lock is only taken within the MMU lock, strictly
1463	 * speaking it is redundant to acquire this lock when the thread
1464	 * holds the MMU lock in write mode.  However it often simplifies
1465	 * the code to do so.
1466	 */
1467	spinlock_t tdp_mmu_pages_lock;
1468#endif /* CONFIG_X86_64 */
1469
1470	/*
1471	 * If set, at least one shadow root has been allocated. This flag
1472	 * is used as one input when determining whether certain memslot
1473	 * related allocations are necessary.
1474	 */
1475	bool shadow_root_allocated;
1476
1477#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1478	/*
1479	 * If set, the VM has (or had) an external write tracking user, and
1480	 * thus all write tracking metadata has been allocated, even if KVM
1481	 * itself isn't using write tracking.
1482	 */
1483	bool external_write_tracking_enabled;
1484#endif
1485
1486#if IS_ENABLED(CONFIG_HYPERV)
1487	hpa_t	hv_root_tdp;
1488	spinlock_t hv_root_tdp_lock;
1489	struct hv_partition_assist_pg *hv_pa_pg;
1490#endif
1491	/*
1492	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1493	 * that increase along with the maximum vCPU ID, in which case, using
1494	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1495	 */
1496	u32 max_vcpu_ids;
1497
1498	bool disable_nx_huge_pages;
1499
1500	/*
1501	 * Memory caches used to allocate shadow pages when performing eager
1502	 * page splitting. No need for a shadowed_info_cache since eager page
1503	 * splitting only allocates direct shadow pages.
1504	 *
1505	 * Protected by kvm->slots_lock.
1506	 */
1507	struct kvm_mmu_memory_cache split_shadow_page_cache;
1508	struct kvm_mmu_memory_cache split_page_header_cache;
1509
1510	/*
1511	 * Memory cache used to allocate pte_list_desc structs while splitting
1512	 * huge pages. In the worst case, to split one huge page, 512
1513	 * pte_list_desc structs are needed to add each lower level leaf sptep
1514	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1515	 * page table.
1516	 *
1517	 * Protected by kvm->slots_lock.
1518	 */
1519#define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1520	struct kvm_mmu_memory_cache split_desc_cache;
1521};
1522
1523struct kvm_vm_stat {
1524	struct kvm_vm_stat_generic generic;
1525	u64 mmu_shadow_zapped;
1526	u64 mmu_pte_write;
1527	u64 mmu_pde_zapped;
1528	u64 mmu_flooded;
1529	u64 mmu_recycled;
1530	u64 mmu_cache_miss;
1531	u64 mmu_unsync;
1532	union {
1533		struct {
1534			atomic64_t pages_4k;
1535			atomic64_t pages_2m;
1536			atomic64_t pages_1g;
1537		};
1538		atomic64_t pages[KVM_NR_PAGE_SIZES];
1539	};
1540	u64 nx_lpage_splits;
1541	u64 max_mmu_page_hash_collisions;
1542	u64 max_mmu_rmap_size;
1543};
1544
1545struct kvm_vcpu_stat {
1546	struct kvm_vcpu_stat_generic generic;
1547	u64 pf_taken;
1548	u64 pf_fixed;
1549	u64 pf_emulate;
1550	u64 pf_spurious;
1551	u64 pf_fast;
1552	u64 pf_mmio_spte_created;
1553	u64 pf_guest;
1554	u64 tlb_flush;
1555	u64 invlpg;
1556
1557	u64 exits;
1558	u64 io_exits;
1559	u64 mmio_exits;
1560	u64 signal_exits;
1561	u64 irq_window_exits;
1562	u64 nmi_window_exits;
1563	u64 l1d_flush;
1564	u64 halt_exits;
1565	u64 request_irq_exits;
1566	u64 irq_exits;
1567	u64 host_state_reload;
1568	u64 fpu_reload;
1569	u64 insn_emulation;
1570	u64 insn_emulation_fail;
1571	u64 hypercalls;
1572	u64 irq_injections;
1573	u64 nmi_injections;
1574	u64 req_event;
1575	u64 nested_run;
1576	u64 directed_yield_attempted;
1577	u64 directed_yield_successful;
1578	u64 preemption_reported;
1579	u64 preemption_other;
1580	u64 guest_mode;
1581	u64 notify_window_exits;
1582};
1583
1584struct x86_instruction_info;
1585
1586struct msr_data {
1587	bool host_initiated;
1588	u32 index;
1589	u64 data;
1590};
1591
1592struct kvm_lapic_irq {
1593	u32 vector;
1594	u16 delivery_mode;
1595	u16 dest_mode;
1596	bool level;
1597	u16 trig_mode;
1598	u32 shorthand;
1599	u32 dest_id;
1600	bool msi_redir_hint;
1601};
1602
1603static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1604{
1605	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1606}
1607
1608struct kvm_x86_ops {
1609	const char *name;
1610
1611	int (*check_processor_compatibility)(void);
1612
1613	int (*hardware_enable)(void);
1614	void (*hardware_disable)(void);
1615	void (*hardware_unsetup)(void);
1616	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1617	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1618
1619	unsigned int vm_size;
1620	int (*vm_init)(struct kvm *kvm);
1621	void (*vm_destroy)(struct kvm *kvm);
1622
1623	/* Create, but do not attach this VCPU */
1624	int (*vcpu_precreate)(struct kvm *kvm);
1625	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1626	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1627	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1628
1629	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1630	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1631	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1632
1633	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1634	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1635	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1636	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1637	void (*get_segment)(struct kvm_vcpu *vcpu,
1638			    struct kvm_segment *var, int seg);
1639	int (*get_cpl)(struct kvm_vcpu *vcpu);
1640	void (*set_segment)(struct kvm_vcpu *vcpu,
1641			    struct kvm_segment *var, int seg);
1642	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1643	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1644	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1645	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1646	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1647	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1648	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1649	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1650	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1651	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1652	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1653	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1654	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1655	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1656	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1657	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1658	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1659
1660	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1661	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1662#if IS_ENABLED(CONFIG_HYPERV)
1663	int  (*flush_remote_tlbs)(struct kvm *kvm);
1664	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1665					gfn_t nr_pages);
1666#endif
1667
1668	/*
1669	 * Flush any TLB entries associated with the given GVA.
1670	 * Does not need to flush GPA->HPA mappings.
1671	 * Can potentially get non-canonical addresses through INVLPGs, which
1672	 * the implementation may choose to ignore if appropriate.
1673	 */
1674	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1675
1676	/*
1677	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1678	 * does not need to flush GPA->HPA mappings.
1679	 */
1680	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1681
1682	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1683	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1684						  bool force_immediate_exit);
1685	int (*handle_exit)(struct kvm_vcpu *vcpu,
1686		enum exit_fastpath_completion exit_fastpath);
1687	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1688	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1689	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1690	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1691	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1692				unsigned char *hypercall_addr);
1693	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1694	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1695	void (*inject_exception)(struct kvm_vcpu *vcpu);
1696	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1697	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1698	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1699	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1700	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1701	/* Whether or not a virtual NMI is pending in hardware. */
1702	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1703	/*
1704	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1705	 * to allow using static_call_ret0 as the fallback.
1706	 */
1707	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1708	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1709	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1710	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1711	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1712	const unsigned long required_apicv_inhibits;
1713	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1714	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1715	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1716	void (*hwapic_isr_update)(int isr);
1717	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1718	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1719	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1720	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1721	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1722				  int trig_mode, int vector);
1723	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1724	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1725	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1726	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1727
1728	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1729			     int root_level);
1730
1731	bool (*has_wbinvd_exit)(void);
1732
1733	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1734	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1735	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1736	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1737
1738	/*
1739	 * Retrieve somewhat arbitrary exit information.  Intended to
1740	 * be used only from within tracepoints or error paths.
1741	 */
1742	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1743			      u64 *info1, u64 *info2,
1744			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1745
1746	int (*check_intercept)(struct kvm_vcpu *vcpu,
1747			       struct x86_instruction_info *info,
1748			       enum x86_intercept_stage stage,
1749			       struct x86_exception *exception);
1750	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1751
1752	void (*sched_in)(struct kvm_vcpu *vcpu, int cpu);
1753
1754	/*
1755	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1756	 * value indicates CPU dirty logging is unsupported or disabled.
1757	 */
1758	int cpu_dirty_log_size;
1759	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1760
1761	const struct kvm_x86_nested_ops *nested_ops;
1762
1763	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1764	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1765
1766	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1767			      uint32_t guest_irq, bool set);
1768	void (*pi_start_assignment)(struct kvm *kvm);
1769	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1770	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1771	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1772
1773	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1774			    bool *expired);
1775	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1776
1777	void (*setup_mce)(struct kvm_vcpu *vcpu);
1778
1779#ifdef CONFIG_KVM_SMM
1780	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1781	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1782	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1783	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1784#endif
1785
1786	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1787	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1788	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1789	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1790	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1791	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1792	void (*guest_memory_reclaimed)(struct kvm *kvm);
1793
1794	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1795
1796	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1797					 void *insn, int insn_len);
1798
1799	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1800	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1801
1802	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1803	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1804	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1805
1806	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1807
1808	/*
1809	 * Returns vCPU specific APICv inhibit reasons
1810	 */
1811	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1812
1813	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1814	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1815};
1816
1817struct kvm_x86_nested_ops {
1818	void (*leave_nested)(struct kvm_vcpu *vcpu);
1819	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1820				    u32 error_code);
1821	int (*check_events)(struct kvm_vcpu *vcpu);
1822	bool (*has_events)(struct kvm_vcpu *vcpu);
1823	void (*triple_fault)(struct kvm_vcpu *vcpu);
1824	int (*get_state)(struct kvm_vcpu *vcpu,
1825			 struct kvm_nested_state __user *user_kvm_nested_state,
1826			 unsigned user_data_size);
1827	int (*set_state)(struct kvm_vcpu *vcpu,
1828			 struct kvm_nested_state __user *user_kvm_nested_state,
1829			 struct kvm_nested_state *kvm_state);
1830	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1831	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1832
1833	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1834			    uint16_t *vmcs_version);
1835	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1836	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1837};
1838
1839struct kvm_x86_init_ops {
1840	int (*hardware_setup)(void);
1841	unsigned int (*handle_intel_pt_intr)(void);
1842
1843	struct kvm_x86_ops *runtime_ops;
1844	struct kvm_pmu_ops *pmu_ops;
1845};
1846
1847struct kvm_arch_async_pf {
1848	u32 token;
1849	gfn_t gfn;
1850	unsigned long cr3;
1851	bool direct_map;
1852	u64 error_code;
1853};
1854
1855extern u32 __read_mostly kvm_nr_uret_msrs;
1856extern u64 __read_mostly host_efer;
1857extern bool __read_mostly allow_smaller_maxphyaddr;
1858extern bool __read_mostly enable_apicv;
1859extern struct kvm_x86_ops kvm_x86_ops;
1860
1861#define KVM_X86_OP(func) \
1862	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1863#define KVM_X86_OP_OPTIONAL KVM_X86_OP
1864#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1865#include <asm/kvm-x86-ops.h>
1866
1867int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1868void kvm_x86_vendor_exit(void);
1869
1870#define __KVM_HAVE_ARCH_VM_ALLOC
1871static inline struct kvm *kvm_arch_alloc_vm(void)
1872{
1873	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1874}
1875
1876#define __KVM_HAVE_ARCH_VM_FREE
1877void kvm_arch_free_vm(struct kvm *kvm);
1878
1879#if IS_ENABLED(CONFIG_HYPERV)
1880#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1881static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1882{
1883	if (kvm_x86_ops.flush_remote_tlbs &&
1884	    !static_call(kvm_x86_flush_remote_tlbs)(kvm))
1885		return 0;
1886	else
1887		return -ENOTSUPP;
1888}
1889
1890#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1891static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1892						   u64 nr_pages)
1893{
1894	if (!kvm_x86_ops.flush_remote_tlbs_range)
1895		return -EOPNOTSUPP;
1896
1897	return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1898}
1899#endif /* CONFIG_HYPERV */
1900
1901enum kvm_intr_type {
1902	/* Values are arbitrary, but must be non-zero. */
1903	KVM_HANDLING_IRQ = 1,
1904	KVM_HANDLING_NMI,
1905};
1906
1907/* Enable perf NMI and timer modes to work, and minimise false positives. */
1908#define kvm_arch_pmi_in_guest(vcpu) \
1909	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1910	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1911
1912void __init kvm_mmu_x86_module_init(void);
1913int kvm_mmu_vendor_module_init(void);
1914void kvm_mmu_vendor_module_exit(void);
1915
1916void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1917int kvm_mmu_create(struct kvm_vcpu *vcpu);
1918void kvm_mmu_init_vm(struct kvm *kvm);
1919void kvm_mmu_uninit_vm(struct kvm *kvm);
1920
1921void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1922					    struct kvm_memory_slot *slot);
1923
1924void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1925void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1926void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1927				      const struct kvm_memory_slot *memslot,
1928				      int start_level);
1929void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1930				       const struct kvm_memory_slot *memslot,
1931				       int target_level);
1932void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1933				  const struct kvm_memory_slot *memslot,
1934				  u64 start, u64 end,
1935				  int target_level);
1936void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1937				   const struct kvm_memory_slot *memslot);
1938void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1939				   const struct kvm_memory_slot *memslot);
1940void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1941void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1942
1943int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1944
1945int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1946			  const void *val, int bytes);
1947
1948struct kvm_irq_mask_notifier {
1949	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1950	int irq;
1951	struct hlist_node link;
1952};
1953
1954void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1955				    struct kvm_irq_mask_notifier *kimn);
1956void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1957				      struct kvm_irq_mask_notifier *kimn);
1958void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1959			     bool mask);
1960
1961extern bool tdp_enabled;
1962
1963u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1964
1965/*
1966 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1967 *			userspace I/O) to indicate that the emulation context
1968 *			should be reused as is, i.e. skip initialization of
1969 *			emulation context, instruction fetch and decode.
1970 *
1971 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1972 *		      Indicates that only select instructions (tagged with
1973 *		      EmulateOnUD) should be emulated (to minimize the emulator
1974 *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1975 *
1976 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1977 *		   decode the instruction length.  For use *only* by
1978 *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1979 *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1980 *
1981 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1982 *			     retry native execution under certain conditions,
1983 *			     Can only be set in conjunction with EMULTYPE_PF.
1984 *
1985 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1986 *			     triggered by KVM's magic "force emulation" prefix,
1987 *			     which is opt in via module param (off by default).
1988 *			     Bypasses EmulateOnUD restriction despite emulating
1989 *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1990 *			     Used to test the full emulator from userspace.
1991 *
1992 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1993 *			backdoor emulation, which is opt in via module param.
1994 *			VMware backdoor emulation handles select instructions
1995 *			and reinjects the #GP for all other cases.
1996 *
1997 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1998 *		 case the CR2/GPA value pass on the stack is valid.
1999 *
2000 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2001 *				 state and inject single-step #DBs after skipping
2002 *				 an instruction (after completing userspace I/O).
2003 *
2004 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2005 *			     is attempting to write a gfn that contains one or
2006 *			     more of the PTEs used to translate the write itself,
2007 *			     and the owning page table is being shadowed by KVM.
2008 *			     If emulation of the faulting instruction fails and
2009 *			     this flag is set, KVM will exit to userspace instead
2010 *			     of retrying emulation as KVM cannot make forward
2011 *			     progress.
2012 *
2013 *			     If emulation fails for a write to guest page tables,
2014 *			     KVM unprotects (zaps) the shadow page for the target
2015 *			     gfn and resumes the guest to retry the non-emulatable
2016 *			     instruction (on hardware).  Unprotecting the gfn
2017 *			     doesn't allow forward progress for a self-changing
2018 *			     access because doing so also zaps the translation for
2019 *			     the gfn, i.e. retrying the instruction will hit a
2020 *			     !PRESENT fault, which results in a new shadow page
2021 *			     and sends KVM back to square one.
2022 */
2023#define EMULTYPE_NO_DECODE	    (1 << 0)
2024#define EMULTYPE_TRAP_UD	    (1 << 1)
2025#define EMULTYPE_SKIP		    (1 << 2)
2026#define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2027#define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2028#define EMULTYPE_VMWARE_GP	    (1 << 5)
2029#define EMULTYPE_PF		    (1 << 6)
2030#define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2031#define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2032
2033int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2034int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2035					void *insn, int insn_len);
2036void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2037					  u64 *data, u8 ndata);
2038void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2039
2040void kvm_enable_efer_bits(u64);
2041bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2042int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2043int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2044int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2045int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2046int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2047int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2048int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2049int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2050int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2051int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2052
2053int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2054int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2055int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2056int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2057int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2058int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2059
2060void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2061void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2062int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2063void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2064
2065int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2066		    int reason, bool has_error_code, u32 error_code);
2067
2068void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2069void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2070int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2071int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2072int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2073int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2074int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2075unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2076unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2077void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2078int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2079
2080int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2081int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2082
2083unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2084void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2085int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2086
2087void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2088void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2089void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2090void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2091void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2092void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2093void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2094				    struct x86_exception *fault);
2095bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2096bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2097
2098static inline int __kvm_irq_line_state(unsigned long *irq_state,
2099				       int irq_source_id, int level)
2100{
2101	/* Logical OR for level trig interrupt */
2102	if (level)
2103		__set_bit(irq_source_id, irq_state);
2104	else
2105		__clear_bit(irq_source_id, irq_state);
2106
2107	return !!(*irq_state);
2108}
2109
2110int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2111void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2112
2113void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2114int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2115
2116void kvm_update_dr7(struct kvm_vcpu *vcpu);
2117
2118int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2119void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2120			ulong roots_to_free);
2121void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2122gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2123			      struct x86_exception *exception);
2124gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2125			       struct x86_exception *exception);
2126gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2127				struct x86_exception *exception);
2128
2129bool kvm_apicv_activated(struct kvm *kvm);
2130bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2131void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2132void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2133				      enum kvm_apicv_inhibit reason, bool set);
2134void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2135				    enum kvm_apicv_inhibit reason, bool set);
2136
2137static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2138					 enum kvm_apicv_inhibit reason)
2139{
2140	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2141}
2142
2143static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2144					   enum kvm_apicv_inhibit reason)
2145{
2146	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2147}
2148
2149unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
2150				      unsigned long a0, unsigned long a1,
2151				      unsigned long a2, unsigned long a3,
2152				      int op_64_bit, int cpl);
2153int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2154
2155int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2156		       void *insn, int insn_len);
2157void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2158void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2159			     u64 addr, unsigned long roots);
2160void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2161void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2162
2163void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2164		       int tdp_max_root_level, int tdp_huge_page_level);
2165
2166
2167#ifdef CONFIG_KVM_PRIVATE_MEM
2168#define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2169#else
2170#define kvm_arch_has_private_mem(kvm) false
2171#endif
2172
2173static inline u16 kvm_read_ldt(void)
2174{
2175	u16 ldt;
2176	asm("sldt %0" : "=g"(ldt));
2177	return ldt;
2178}
2179
2180static inline void kvm_load_ldt(u16 sel)
2181{
2182	asm("lldt %0" : : "rm"(sel));
2183}
2184
2185#ifdef CONFIG_X86_64
2186static inline unsigned long read_msr(unsigned long msr)
2187{
2188	u64 value;
2189
2190	rdmsrl(msr, value);
2191	return value;
2192}
2193#endif
2194
2195static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2196{
2197	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2198}
2199
2200#define TSS_IOPB_BASE_OFFSET 0x66
2201#define TSS_BASE_SIZE 0x68
2202#define TSS_IOPB_SIZE (65536 / 8)
2203#define TSS_REDIRECTION_SIZE (256 / 8)
2204#define RMODE_TSS_SIZE							\
2205	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2206
2207enum {
2208	TASK_SWITCH_CALL = 0,
2209	TASK_SWITCH_IRET = 1,
2210	TASK_SWITCH_JMP = 2,
2211	TASK_SWITCH_GATE = 3,
2212};
2213
2214#define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2215
2216#ifdef CONFIG_KVM_SMM
2217#define HF_SMM_MASK		(1 << 1)
2218#define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2219
2220# define KVM_MAX_NR_ADDRESS_SPACES	2
2221/* SMM is currently unsupported for guests with private memory. */
2222# define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2223# define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2224# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2225#else
2226# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2227#endif
2228
2229int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2230int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2231int kvm_cpu_has_extint(struct kvm_vcpu *v);
2232int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2233int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2234void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2235
2236int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2237		    unsigned long ipi_bitmap_high, u32 min,
2238		    unsigned long icr, int op_64_bit);
2239
2240int kvm_add_user_return_msr(u32 msr);
2241int kvm_find_user_return_msr(u32 msr);
2242int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2243
2244static inline bool kvm_is_supported_user_return_msr(u32 msr)
2245{
2246	return kvm_find_user_return_msr(msr) >= 0;
2247}
2248
2249u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2250u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2251u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2252u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2253
2254unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2255bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2256
2257void kvm_make_scan_ioapic_request(struct kvm *kvm);
2258void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2259				       unsigned long *vcpu_bitmap);
2260
2261bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2262				     struct kvm_async_pf *work);
2263void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2264				 struct kvm_async_pf *work);
2265void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2266			       struct kvm_async_pf *work);
2267void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2268bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2269extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2270
2271int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2272int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2273
2274void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2275				     u32 size);
2276bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2277bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2278
2279bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2280			     struct kvm_vcpu **dest_vcpu);
2281
2282void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2283		     struct kvm_lapic_irq *irq);
2284
2285static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2286{
2287	/* We can only post Fixed and LowPrio IRQs */
2288	return (irq->delivery_mode == APIC_DM_FIXED ||
2289		irq->delivery_mode == APIC_DM_LOWEST);
2290}
2291
2292static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2293{
2294	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2295}
2296
2297static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2298{
2299	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2300}
2301
2302static inline int kvm_cpu_get_apicid(int mps_cpu)
2303{
2304#ifdef CONFIG_X86_LOCAL_APIC
2305	return default_cpu_present_to_apicid(mps_cpu);
2306#else
2307	WARN_ON_ONCE(1);
2308	return BAD_APICID;
2309#endif
2310}
2311
2312int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2313
2314#define KVM_CLOCK_VALID_FLAGS						\
2315	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2316
2317#define KVM_X86_VALID_QUIRKS			\
2318	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2319	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2320	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2321	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2322	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2323	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2324	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2325
2326/*
2327 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2328 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2329 * remaining 31 lower bits must be 0 to preserve ABI.
2330 */
2331#define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2332
2333#endif /* _ASM_X86_KVM_HOST_H */
2334