1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/arch/arm/vfp/vfpmodule.c
4 *
5 *  Copyright (C) 2004 ARM Limited.
6 *  Written by Deep Blue Solutions Limited.
7 */
8#include <linux/types.h>
9#include <linux/cpu.h>
10#include <linux/cpu_pm.h>
11#include <linux/hardirq.h>
12#include <linux/kernel.h>
13#include <linux/notifier.h>
14#include <linux/signal.h>
15#include <linux/sched/signal.h>
16#include <linux/smp.h>
17#include <linux/init.h>
18#include <linux/uaccess.h>
19#include <linux/user.h>
20#include <linux/export.h>
21#include <linux/perf_event.h>
22
23#include <asm/cp15.h>
24#include <asm/cputype.h>
25#include <asm/system_info.h>
26#include <asm/thread_notify.h>
27#include <asm/traps.h>
28#include <asm/vfp.h>
29#include <asm/neon.h>
30
31#include "vfpinstr.h"
32#include "vfp.h"
33
34static bool have_vfp __ro_after_init;
35
36/*
37 * Dual-use variable.
38 * Used in startup: set to non-zero if VFP checks fail
39 * After startup, holds VFP architecture
40 */
41static unsigned int VFP_arch;
42
43#ifdef CONFIG_CPU_FEROCEON
44extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
45#endif
46
47/*
48 * The pointer to the vfpstate structure of the thread which currently
49 * owns the context held in the VFP hardware, or NULL if the hardware
50 * context is invalid.
51 *
52 * For UP, this is sufficient to tell which thread owns the VFP context.
53 * However, for SMP, we also need to check the CPU number stored in the
54 * saved state too to catch migrations.
55 */
56union vfp_state *vfp_current_hw_state[NR_CPUS];
57
58/*
59 * Is 'thread's most up to date state stored in this CPUs hardware?
60 * Must be called from non-preemptible context.
61 */
62static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
63{
64#ifdef CONFIG_SMP
65	if (thread->vfpstate.hard.cpu != cpu)
66		return false;
67#endif
68	return vfp_current_hw_state[cpu] == &thread->vfpstate;
69}
70
71/*
72 * Force a reload of the VFP context from the thread structure.  We do
73 * this by ensuring that access to the VFP hardware is disabled, and
74 * clear vfp_current_hw_state.  Must be called from non-preemptible context.
75 */
76static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
77{
78	if (vfp_state_in_hw(cpu, thread)) {
79		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
80		vfp_current_hw_state[cpu] = NULL;
81	}
82#ifdef CONFIG_SMP
83	thread->vfpstate.hard.cpu = NR_CPUS;
84#endif
85}
86
87/*
88 * Per-thread VFP initialization.
89 */
90static void vfp_thread_flush(struct thread_info *thread)
91{
92	union vfp_state *vfp = &thread->vfpstate;
93	unsigned int cpu;
94
95	/*
96	 * Disable VFP to ensure we initialize it first.  We must ensure
97	 * that the modification of vfp_current_hw_state[] and hardware
98	 * disable are done for the same CPU and without preemption.
99	 *
100	 * Do this first to ensure that preemption won't overwrite our
101	 * state saving should access to the VFP be enabled at this point.
102	 */
103	cpu = get_cpu();
104	if (vfp_current_hw_state[cpu] == vfp)
105		vfp_current_hw_state[cpu] = NULL;
106	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
107	put_cpu();
108
109	memset(vfp, 0, sizeof(union vfp_state));
110
111	vfp->hard.fpexc = FPEXC_EN;
112	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
113#ifdef CONFIG_SMP
114	vfp->hard.cpu = NR_CPUS;
115#endif
116}
117
118static void vfp_thread_exit(struct thread_info *thread)
119{
120	/* release case: Per-thread VFP cleanup. */
121	union vfp_state *vfp = &thread->vfpstate;
122	unsigned int cpu = get_cpu();
123
124	if (vfp_current_hw_state[cpu] == vfp)
125		vfp_current_hw_state[cpu] = NULL;
126	put_cpu();
127}
128
129static void vfp_thread_copy(struct thread_info *thread)
130{
131	struct thread_info *parent = current_thread_info();
132
133	vfp_sync_hwstate(parent);
134	thread->vfpstate = parent->vfpstate;
135#ifdef CONFIG_SMP
136	thread->vfpstate.hard.cpu = NR_CPUS;
137#endif
138}
139
140/*
141 * When this function is called with the following 'cmd's, the following
142 * is true while this function is being run:
143 *  THREAD_NOFTIFY_SWTICH:
144 *   - the previously running thread will not be scheduled onto another CPU.
145 *   - the next thread to be run (v) will not be running on another CPU.
146 *   - thread->cpu is the local CPU number
147 *   - not preemptible as we're called in the middle of a thread switch
148 *  THREAD_NOTIFY_FLUSH:
149 *   - the thread (v) will be running on the local CPU, so
150 *	v === current_thread_info()
151 *   - thread->cpu is the local CPU number at the time it is accessed,
152 *	but may change at any time.
153 *   - we could be preempted if tree preempt rcu is enabled, so
154 *	it is unsafe to use thread->cpu.
155 *  THREAD_NOTIFY_EXIT
156 *   - we could be preempted if tree preempt rcu is enabled, so
157 *	it is unsafe to use thread->cpu.
158 */
159static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
160{
161	struct thread_info *thread = v;
162	u32 fpexc;
163#ifdef CONFIG_SMP
164	unsigned int cpu;
165#endif
166
167	switch (cmd) {
168	case THREAD_NOTIFY_SWITCH:
169		fpexc = fmrx(FPEXC);
170
171#ifdef CONFIG_SMP
172		cpu = thread->cpu;
173
174		/*
175		 * On SMP, if VFP is enabled, save the old state in
176		 * case the thread migrates to a different CPU. The
177		 * restoring is done lazily.
178		 */
179		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
180			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
181#endif
182
183		/*
184		 * Always disable VFP so we can lazily save/restore the
185		 * old state.
186		 */
187		fmxr(FPEXC, fpexc & ~FPEXC_EN);
188		break;
189
190	case THREAD_NOTIFY_FLUSH:
191		vfp_thread_flush(thread);
192		break;
193
194	case THREAD_NOTIFY_EXIT:
195		vfp_thread_exit(thread);
196		break;
197
198	case THREAD_NOTIFY_COPY:
199		vfp_thread_copy(thread);
200		break;
201	}
202
203	return NOTIFY_DONE;
204}
205
206static struct notifier_block vfp_notifier_block = {
207	.notifier_call	= vfp_notifier,
208};
209
210/*
211 * Raise a SIGFPE for the current process.
212 * sicode describes the signal being raised.
213 */
214static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
215{
216	/*
217	 * This is the same as NWFPE, because it's not clear what
218	 * this is used for
219	 */
220	current->thread.error_code = 0;
221	current->thread.trap_no = 6;
222
223	send_sig_fault(SIGFPE, sicode,
224		       (void __user *)(instruction_pointer(regs) - 4),
225		       current);
226}
227
228static void vfp_panic(char *reason, u32 inst)
229{
230	int i;
231
232	pr_err("VFP: Error: %s\n", reason);
233	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
234		fmrx(FPEXC), fmrx(FPSCR), inst);
235	for (i = 0; i < 32; i += 2)
236		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
237		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
238}
239
240/*
241 * Process bitmask of exception conditions.
242 */
243static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
244{
245	int si_code = 0;
246
247	pr_debug("VFP: raising exceptions %08x\n", exceptions);
248
249	if (exceptions == VFP_EXCEPTION_ERROR) {
250		vfp_panic("unhandled bounce", inst);
251		vfp_raise_sigfpe(FPE_FLTINV, regs);
252		return;
253	}
254
255	/*
256	 * If any of the status flags are set, update the FPSCR.
257	 * Comparison instructions always return at least one of
258	 * these flags set.
259	 */
260	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
261		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
262
263	fpscr |= exceptions;
264
265	fmxr(FPSCR, fpscr);
266
267#define RAISE(stat,en,sig)				\
268	if (exceptions & stat && fpscr & en)		\
269		si_code = sig;
270
271	/*
272	 * These are arranged in priority order, least to highest.
273	 */
274	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
275	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
276	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
277	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
278	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
279
280	if (si_code)
281		vfp_raise_sigfpe(si_code, regs);
282}
283
284/*
285 * Emulate a VFP instruction.
286 */
287static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
288{
289	u32 exceptions = VFP_EXCEPTION_ERROR;
290
291	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
292
293	if (INST_CPRTDO(inst)) {
294		if (!INST_CPRT(inst)) {
295			/*
296			 * CPDO
297			 */
298			if (vfp_single(inst)) {
299				exceptions = vfp_single_cpdo(inst, fpscr);
300			} else {
301				exceptions = vfp_double_cpdo(inst, fpscr);
302			}
303		} else {
304			/*
305			 * A CPRT instruction can not appear in FPINST2, nor
306			 * can it cause an exception.  Therefore, we do not
307			 * have to emulate it.
308			 */
309		}
310	} else {
311		/*
312		 * A CPDT instruction can not appear in FPINST2, nor can
313		 * it cause an exception.  Therefore, we do not have to
314		 * emulate it.
315		 */
316	}
317	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
318	return exceptions & ~VFP_NAN_FLAG;
319}
320
321/*
322 * Package up a bounce condition.
323 */
324static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
325{
326	u32 fpscr, orig_fpscr, fpsid, exceptions;
327
328	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
329
330	/*
331	 * At this point, FPEXC can have the following configuration:
332	 *
333	 *  EX DEX IXE
334	 *  0   1   x   - synchronous exception
335	 *  1   x   0   - asynchronous exception
336	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
337	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
338	 *                implementation), undefined otherwise
339	 *
340	 * Clear various bits and enable access to the VFP so we can
341	 * handle the bounce.
342	 */
343	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
344
345	fpsid = fmrx(FPSID);
346	orig_fpscr = fpscr = fmrx(FPSCR);
347
348	/*
349	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
350	 */
351	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
352	    && (fpscr & FPSCR_IXE)) {
353		/*
354		 * Synchronous exception, emulate the trigger instruction
355		 */
356		goto emulate;
357	}
358
359	if (fpexc & FPEXC_EX) {
360		/*
361		 * Asynchronous exception. The instruction is read from FPINST
362		 * and the interrupted instruction has to be restarted.
363		 */
364		trigger = fmrx(FPINST);
365		regs->ARM_pc -= 4;
366	} else if (!(fpexc & FPEXC_DEX)) {
367		/*
368		 * Illegal combination of bits. It can be caused by an
369		 * unallocated VFP instruction but with FPSCR.IXE set and not
370		 * on VFP subarch 1.
371		 */
372		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
373		return;
374	}
375
376	/*
377	 * Modify fpscr to indicate the number of iterations remaining.
378	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
379	 * whether FPEXC.VECITR or FPSCR.LEN is used.
380	 */
381	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
382		u32 len;
383
384		len = fpexc + (1 << FPEXC_LENGTH_BIT);
385
386		fpscr &= ~FPSCR_LENGTH_MASK;
387		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
388	}
389
390	/*
391	 * Handle the first FP instruction.  We used to take note of the
392	 * FPEXC bounce reason, but this appears to be unreliable.
393	 * Emulate the bounced instruction instead.
394	 */
395	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
396	if (exceptions)
397		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
398
399	/*
400	 * If there isn't a second FP instruction, exit now. Note that
401	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
402	 */
403	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
404		return;
405
406	/*
407	 * The barrier() here prevents fpinst2 being read
408	 * before the condition above.
409	 */
410	barrier();
411	trigger = fmrx(FPINST2);
412
413 emulate:
414	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
415	if (exceptions)
416		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
417}
418
419static void vfp_enable(void *unused)
420{
421	u32 access;
422
423	BUG_ON(preemptible());
424	access = get_copro_access();
425
426	/*
427	 * Enable full access to VFP (cp10 and cp11)
428	 */
429	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
430}
431
432/* Called by platforms on which we want to disable VFP because it may not be
433 * present on all CPUs within a SMP complex. Needs to be called prior to
434 * vfp_init().
435 */
436void __init vfp_disable(void)
437{
438	if (VFP_arch) {
439		pr_debug("%s: should be called prior to vfp_init\n", __func__);
440		return;
441	}
442	VFP_arch = 1;
443}
444
445#ifdef CONFIG_CPU_PM
446static int vfp_pm_suspend(void)
447{
448	struct thread_info *ti = current_thread_info();
449	u32 fpexc = fmrx(FPEXC);
450
451	/* if vfp is on, then save state for resumption */
452	if (fpexc & FPEXC_EN) {
453		pr_debug("%s: saving vfp state\n", __func__);
454		vfp_save_state(&ti->vfpstate, fpexc);
455
456		/* disable, just in case */
457		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
458	} else if (vfp_current_hw_state[ti->cpu]) {
459#ifndef CONFIG_SMP
460		fmxr(FPEXC, fpexc | FPEXC_EN);
461		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
462		fmxr(FPEXC, fpexc);
463#endif
464	}
465
466	/* clear any information we had about last context state */
467	vfp_current_hw_state[ti->cpu] = NULL;
468
469	return 0;
470}
471
472static void vfp_pm_resume(void)
473{
474	/* ensure we have access to the vfp */
475	vfp_enable(NULL);
476
477	/* and disable it to ensure the next usage restores the state */
478	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
479}
480
481static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
482	void *v)
483{
484	switch (cmd) {
485	case CPU_PM_ENTER:
486		vfp_pm_suspend();
487		break;
488	case CPU_PM_ENTER_FAILED:
489	case CPU_PM_EXIT:
490		vfp_pm_resume();
491		break;
492	}
493	return NOTIFY_OK;
494}
495
496static struct notifier_block vfp_cpu_pm_notifier_block = {
497	.notifier_call = vfp_cpu_pm_notifier,
498};
499
500static void vfp_pm_init(void)
501{
502	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
503}
504
505#else
506static inline void vfp_pm_init(void) { }
507#endif /* CONFIG_CPU_PM */
508
509/*
510 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
511 * with the hardware state.
512 */
513void vfp_sync_hwstate(struct thread_info *thread)
514{
515	unsigned int cpu = get_cpu();
516
517	local_bh_disable();
518
519	if (vfp_state_in_hw(cpu, thread)) {
520		u32 fpexc = fmrx(FPEXC);
521
522		/*
523		 * Save the last VFP state on this CPU.
524		 */
525		fmxr(FPEXC, fpexc | FPEXC_EN);
526		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
527		fmxr(FPEXC, fpexc);
528	}
529
530	local_bh_enable();
531	put_cpu();
532}
533
534/* Ensure that the thread reloads the hardware VFP state on the next use. */
535void vfp_flush_hwstate(struct thread_info *thread)
536{
537	unsigned int cpu = get_cpu();
538
539	vfp_force_reload(cpu, thread);
540
541	put_cpu();
542}
543
544/*
545 * Save the current VFP state into the provided structures and prepare
546 * for entry into a new function (signal handler).
547 */
548int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
549				    struct user_vfp_exc *ufp_exc)
550{
551	struct thread_info *thread = current_thread_info();
552	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
553
554	/* Ensure that the saved hwstate is up-to-date. */
555	vfp_sync_hwstate(thread);
556
557	/*
558	 * Copy the floating point registers. There can be unused
559	 * registers see asm/hwcap.h for details.
560	 */
561	memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
562
563	/*
564	 * Copy the status and control register.
565	 */
566	ufp->fpscr = hwstate->fpscr;
567
568	/*
569	 * Copy the exception registers.
570	 */
571	ufp_exc->fpexc = hwstate->fpexc;
572	ufp_exc->fpinst = hwstate->fpinst;
573	ufp_exc->fpinst2 = hwstate->fpinst2;
574
575	/* Ensure that VFP is disabled. */
576	vfp_flush_hwstate(thread);
577
578	/*
579	 * As per the PCS, clear the length and stride bits for function
580	 * entry.
581	 */
582	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
583	return 0;
584}
585
586/* Sanitise and restore the current VFP state from the provided structures. */
587int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
588{
589	struct thread_info *thread = current_thread_info();
590	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591	unsigned long fpexc;
592
593	/* Disable VFP to avoid corrupting the new thread state. */
594	vfp_flush_hwstate(thread);
595
596	/*
597	 * Copy the floating point registers. There can be unused
598	 * registers see asm/hwcap.h for details.
599	 */
600	memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
601	/*
602	 * Copy the status and control register.
603	 */
604	hwstate->fpscr = ufp->fpscr;
605
606	/*
607	 * Sanitise and restore the exception registers.
608	 */
609	fpexc = ufp_exc->fpexc;
610
611	/* Ensure the VFP is enabled. */
612	fpexc |= FPEXC_EN;
613
614	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
615	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
616	hwstate->fpexc = fpexc;
617
618	hwstate->fpinst = ufp_exc->fpinst;
619	hwstate->fpinst2 = ufp_exc->fpinst2;
620
621	return 0;
622}
623
624/*
625 * VFP hardware can lose all context when a CPU goes offline.
626 * As we will be running in SMP mode with CPU hotplug, we will save the
627 * hardware state at every thread switch.  We clear our held state when
628 * a CPU has been killed, indicating that the VFP hardware doesn't contain
629 * a threads VFP state.  When a CPU starts up, we re-enable access to the
630 * VFP hardware. The callbacks below are called on the CPU which
631 * is being offlined/onlined.
632 */
633static int vfp_dying_cpu(unsigned int cpu)
634{
635	vfp_current_hw_state[cpu] = NULL;
636	return 0;
637}
638
639static int vfp_starting_cpu(unsigned int unused)
640{
641	vfp_enable(NULL);
642	return 0;
643}
644
645static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
646{
647	/*
648	 * If we reach this point, a floating point exception has been raised
649	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
650	 * time, it means a VFP instruction has been issued that requires
651	 * software assistance to complete, something which is not currently
652	 * supported in kernel mode.
653	 * If the NEON/VFP unit was disabled, and the location pointed to below
654	 * is properly preceded by a call to kernel_neon_begin(), something has
655	 * caused the task to be scheduled out and back in again. In this case,
656	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
657	 * be helpful in localizing the problem.
658	 */
659	if (fmrx(FPEXC) & FPEXC_EN)
660		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
661	else
662		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
663	pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
664	return 1;
665}
666
667/*
668 * vfp_support_entry - Handle VFP exception
669 *
670 * @regs:	pt_regs structure holding the register state at exception entry
671 * @trigger:	The opcode of the instruction that triggered the exception
672 *
673 * Returns 0 if the exception was handled, or an error code otherwise.
674 */
675static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
676{
677	struct thread_info *ti = current_thread_info();
678	u32 fpexc;
679
680	if (unlikely(!have_vfp))
681		return -ENODEV;
682
683	if (!user_mode(regs))
684		return vfp_kmode_exception(regs, trigger);
685
686	local_bh_disable();
687	fpexc = fmrx(FPEXC);
688
689	/*
690	 * If the VFP unit was not enabled yet, we have to check whether the
691	 * VFP state in the CPU's registers is the most recent VFP state
692	 * associated with the process. On UP systems, we don't save the VFP
693	 * state eagerly on a context switch, so we may need to save the
694	 * VFP state to memory first, as it may belong to another process.
695	 */
696	if (!(fpexc & FPEXC_EN)) {
697		/*
698		 * Enable the VFP unit but mask the FP exception flag for the
699		 * time being, so we can access all the registers.
700		 */
701		fpexc |= FPEXC_EN;
702		fmxr(FPEXC, fpexc & ~FPEXC_EX);
703
704		/*
705		 * Check whether or not the VFP state in the CPU's registers is
706		 * the most recent VFP state associated with this task. On SMP,
707		 * migration may result in multiple CPUs holding VFP states
708		 * that belong to the same task, but only the most recent one
709		 * is valid.
710		 */
711		if (!vfp_state_in_hw(ti->cpu, ti)) {
712			if (!IS_ENABLED(CONFIG_SMP) &&
713			    vfp_current_hw_state[ti->cpu] != NULL) {
714				/*
715				 * This CPU is currently holding the most
716				 * recent VFP state associated with another
717				 * task, and we must save that to memory first.
718				 */
719				vfp_save_state(vfp_current_hw_state[ti->cpu],
720					       fpexc);
721			}
722
723			/*
724			 * We can now proceed with loading the task's VFP state
725			 * from memory into the CPU registers.
726			 */
727			fpexc = vfp_load_state(&ti->vfpstate);
728			vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
729#ifdef CONFIG_SMP
730			/*
731			 * Record that this CPU is now the one holding the most
732			 * recent VFP state of the task.
733			 */
734			ti->vfpstate.hard.cpu = ti->cpu;
735#endif
736		}
737
738		if (fpexc & FPEXC_EX)
739			/*
740			 * Might as well handle the pending exception before
741			 * retrying branch out before setting an FPEXC that
742			 * stops us reading stuff.
743			 */
744			goto bounce;
745
746		/*
747		 * No FP exception is pending: just enable the VFP and
748		 * replay the instruction that trapped.
749		 */
750		fmxr(FPEXC, fpexc);
751	} else {
752		/* Check for synchronous or asynchronous exceptions */
753		if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
754			u32 fpscr = fmrx(FPSCR);
755
756			/*
757			 * On some implementations of the VFP subarch 1,
758			 * setting FPSCR.IXE causes all the CDP instructions to
759			 * be bounced synchronously without setting the
760			 * FPEXC.EX bit
761			 */
762			if (!(fpscr & FPSCR_IXE)) {
763				if (!(fpscr & FPSCR_LENGTH_MASK)) {
764					pr_debug("not VFP\n");
765					local_bh_enable();
766					return -ENOEXEC;
767				}
768				fpexc |= FPEXC_DEX;
769			}
770		}
771bounce:		regs->ARM_pc += 4;
772		VFP_bounce(trigger, fpexc, regs);
773	}
774
775	local_bh_enable();
776	return 0;
777}
778
779static struct undef_hook neon_support_hook[] = {{
780	.instr_mask	= 0xfe000000,
781	.instr_val	= 0xf2000000,
782	.cpsr_mask	= PSR_T_BIT,
783	.cpsr_val	= 0,
784	.fn		= vfp_support_entry,
785}, {
786	.instr_mask	= 0xff100000,
787	.instr_val	= 0xf4000000,
788	.cpsr_mask	= PSR_T_BIT,
789	.cpsr_val	= 0,
790	.fn		= vfp_support_entry,
791}, {
792	.instr_mask	= 0xef000000,
793	.instr_val	= 0xef000000,
794	.cpsr_mask	= PSR_T_BIT,
795	.cpsr_val	= PSR_T_BIT,
796	.fn		= vfp_support_entry,
797}, {
798	.instr_mask	= 0xff100000,
799	.instr_val	= 0xf9000000,
800	.cpsr_mask	= PSR_T_BIT,
801	.cpsr_val	= PSR_T_BIT,
802	.fn		= vfp_support_entry,
803}, {
804	.instr_mask	= 0xff000800,
805	.instr_val	= 0xfc000800,
806	.cpsr_mask	= 0,
807	.cpsr_val	= 0,
808	.fn		= vfp_support_entry,
809}, {
810	.instr_mask	= 0xff000800,
811	.instr_val	= 0xfd000800,
812	.cpsr_mask	= 0,
813	.cpsr_val	= 0,
814	.fn		= vfp_support_entry,
815}, {
816	.instr_mask	= 0xff000800,
817	.instr_val	= 0xfe000800,
818	.cpsr_mask	= 0,
819	.cpsr_val	= 0,
820	.fn		= vfp_support_entry,
821}};
822
823static struct undef_hook vfp_support_hook = {
824	.instr_mask	= 0x0c000e00,
825	.instr_val	= 0x0c000a00,
826	.fn		= vfp_support_entry,
827};
828
829#ifdef CONFIG_KERNEL_MODE_NEON
830
831/*
832 * Kernel-side NEON support functions
833 */
834void kernel_neon_begin(void)
835{
836	struct thread_info *thread = current_thread_info();
837	unsigned int cpu;
838	u32 fpexc;
839
840	local_bh_disable();
841
842	/*
843	 * Kernel mode NEON is only allowed outside of hardirq context with
844	 * preemption and softirq processing disabled. This will make sure that
845	 * the kernel mode NEON register contents never need to be preserved.
846	 */
847	BUG_ON(in_hardirq());
848	cpu = __smp_processor_id();
849
850	fpexc = fmrx(FPEXC) | FPEXC_EN;
851	fmxr(FPEXC, fpexc);
852
853	/*
854	 * Save the userland NEON/VFP state. Under UP,
855	 * the owner could be a task other than 'current'
856	 */
857	if (vfp_state_in_hw(cpu, thread))
858		vfp_save_state(&thread->vfpstate, fpexc);
859#ifndef CONFIG_SMP
860	else if (vfp_current_hw_state[cpu] != NULL)
861		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
862#endif
863	vfp_current_hw_state[cpu] = NULL;
864}
865EXPORT_SYMBOL(kernel_neon_begin);
866
867void kernel_neon_end(void)
868{
869	/* Disable the NEON/VFP unit. */
870	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
871	local_bh_enable();
872}
873EXPORT_SYMBOL(kernel_neon_end);
874
875#endif /* CONFIG_KERNEL_MODE_NEON */
876
877static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
878{
879	VFP_arch = UINT_MAX;	/* mark as not present */
880	regs->ARM_pc += 4;
881	return 0;
882}
883
884static struct undef_hook vfp_detect_hook __initdata = {
885	.instr_mask	= 0x0c000e00,
886	.instr_val	= 0x0c000a00,
887	.cpsr_mask	= MODE_MASK,
888	.cpsr_val	= SVC_MODE,
889	.fn		= vfp_detect,
890};
891
892/*
893 * VFP support code initialisation.
894 */
895static int __init vfp_init(void)
896{
897	unsigned int vfpsid;
898	unsigned int cpu_arch = cpu_architecture();
899	unsigned int isar6;
900
901	/*
902	 * Enable the access to the VFP on all online CPUs so the
903	 * following test on FPSID will succeed.
904	 */
905	if (cpu_arch >= CPU_ARCH_ARMv6)
906		on_each_cpu(vfp_enable, NULL, 1);
907
908	/*
909	 * First check that there is a VFP that we can use.
910	 * The handler is already setup to just log calls, so
911	 * we just need to read the VFPSID register.
912	 */
913	register_undef_hook(&vfp_detect_hook);
914	barrier();
915	vfpsid = fmrx(FPSID);
916	barrier();
917	unregister_undef_hook(&vfp_detect_hook);
918
919	pr_info("VFP support v0.3: ");
920	if (VFP_arch) {
921		pr_cont("not present\n");
922		return 0;
923	/* Extract the architecture on CPUID scheme */
924	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
925		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
926		VFP_arch >>= FPSID_ARCH_BIT;
927		/*
928		 * Check for the presence of the Advanced SIMD
929		 * load/store instructions, integer and single
930		 * precision floating point operations. Only check
931		 * for NEON if the hardware has the MVFR registers.
932		 */
933		if (IS_ENABLED(CONFIG_NEON) &&
934		    (fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
935			elf_hwcap |= HWCAP_NEON;
936			for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
937				register_undef_hook(&neon_support_hook[i]);
938		}
939
940		if (IS_ENABLED(CONFIG_VFPv3)) {
941			u32 mvfr0 = fmrx(MVFR0);
942			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
943			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
944				elf_hwcap |= HWCAP_VFPv3;
945				/*
946				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
947				 * this configuration only have 16 x 64bit
948				 * registers.
949				 */
950				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
951					/* also v4-D16 */
952					elf_hwcap |= HWCAP_VFPv3D16;
953				else
954					elf_hwcap |= HWCAP_VFPD32;
955			}
956
957			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
958				elf_hwcap |= HWCAP_VFPv4;
959			if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
960				elf_hwcap |= HWCAP_ASIMDHP;
961			if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
962				elf_hwcap |= HWCAP_FPHP;
963		}
964
965		/*
966		 * Check for the presence of Advanced SIMD Dot Product
967		 * instructions.
968		 */
969		isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
970		if (cpuid_feature_extract_field(isar6, 4) == 0x1)
971			elf_hwcap |= HWCAP_ASIMDDP;
972		/*
973		 * Check for the presence of Advanced SIMD Floating point
974		 * half-precision multiplication instructions.
975		 */
976		if (cpuid_feature_extract_field(isar6, 8) == 0x1)
977			elf_hwcap |= HWCAP_ASIMDFHM;
978		/*
979		 * Check for the presence of Advanced SIMD Bfloat16
980		 * floating point instructions.
981		 */
982		if (cpuid_feature_extract_field(isar6, 20) == 0x1)
983			elf_hwcap |= HWCAP_ASIMDBF16;
984		/*
985		 * Check for the presence of Advanced SIMD and floating point
986		 * Int8 matrix multiplication instructions instructions.
987		 */
988		if (cpuid_feature_extract_field(isar6, 24) == 0x1)
989			elf_hwcap |= HWCAP_I8MM;
990
991	/* Extract the architecture version on pre-cpuid scheme */
992	} else {
993		if (vfpsid & FPSID_NODOUBLE) {
994			pr_cont("no double precision support\n");
995			return 0;
996		}
997
998		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
999	}
1000
1001	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
1002				  "arm/vfp:starting", vfp_starting_cpu,
1003				  vfp_dying_cpu);
1004
1005	have_vfp = true;
1006
1007	register_undef_hook(&vfp_support_hook);
1008	thread_register_notifier(&vfp_notifier_block);
1009	vfp_pm_init();
1010
1011	/*
1012	 * We detected VFP, and the support code is
1013	 * in place; report VFP support to userspace.
1014	 */
1015	elf_hwcap |= HWCAP_VFP;
1016
1017	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1018		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
1019		VFP_arch,
1020		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
1021		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
1022		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
1023
1024	return 0;
1025}
1026
1027core_initcall(vfp_init);
1028