11297Salm/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
21297Salm/*
31297Salm * ====================================================
41297Salm * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
51297Salm *
61297Salm * Developed at SunSoft, a Sun Microsystems, Inc. business.
71297Salm * Permission to use, copy, modify, and distribute this
81297Salm * software is freely granted, provided that this notice
91297Salm * is preserved.
101297Salm * ====================================================
111297Salm */
121297Salm/*
131297Salm * jn(n, x), yn(n, x)
141297Salm * floating point Bessel's function of the 1st and 2nd kind
151297Salm * of order n
161297Salm *
171297Salm * Special cases:
181297Salm *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
191297Salm *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
201297Salm * Note 2. About jn(n,x), yn(n,x)
211297Salm *      For n=0, j0(x) is called,
221297Salm *      for n=1, j1(x) is called,
231297Salm *      for n<=x, forward recursion is used starting
241297Salm *      from values of j0(x) and j1(x).
251297Salm *      for n>x, a continued fraction approximation to
261297Salm *      j(n,x)/j(n-1,x) is evaluated and then backward
271297Salm *      recursion is used starting from a supposed value
281297Salm *      for j(n,x). The resulting value of j(0,x) is
291297Salm *      compared with the actual value to correct the
3081220Smike *      supposed value of j(n,x).
3150471Speter *
321297Salm *      yn(n,x) is similar in all respects, except
331297Salm *      that forward recursion is used for all
3467183Sbrian *      values of n>1.
3567183Sbrian */
361297Salm
371297Salm#include "libm.h"
381297Salm
391297Salmstatic const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
401297Salm
411297Salmdouble jn(int n, double x)
421297Salm{
431297Salm	uint32_t ix, lx;
441297Salm	int nm1, i, sign;
451297Salm	double a, b, temp;
461297Salm
471297Salm	EXTRACT_WORDS(ix, lx, x);
481297Salm	sign = ix>>31;
491297Salm	ix &= 0x7fffffff;
501297Salm
511297Salm	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
521297Salm		return x;
531297Salm
5481220Smike	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
551297Salm	 * Thus, J(-n,x) = J(n,-x)
561297Salm	 */
571297Salm	/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
581297Salm	if (n == 0)
591297Salm		return j0(x);
601297Salm	if (n < 0) {
611297Salm		nm1 = -(n+1);
621297Salm		x = -x;
631297Salm		sign ^= 1;
641297Salm	} else
651297Salm		nm1 = n-1;
661297Salm	if (nm1 == 0)
671297Salm		return j1(x);
681297Salm
691297Salm	sign &= n;  /* even n: 0, odd n: signbit(x) */
701297Salm	x = fabs(x);
711297Salm	if ((ix|lx) == 0 || ix == 0x7ff00000)  /* if x is 0 or inf */
721297Salm		b = 0.0;
731297Salm	else if (nm1 < x) {
741297Salm		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
751297Salm		if (ix >= 0x52d00000) { /* x > 2**302 */
761297Salm			/* (x >> n**2)
771297Salm			 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
781297Salm			 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
791297Salm			 *      Let s=sin(x), c=cos(x),
801297Salm			 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
811297Salm			 *
821297Salm			 *             n    sin(xn)*sqt2    cos(xn)*sqt2
831297Salm			 *          ----------------------------------
841297Salm			 *             0     s-c             c+s
851297Salm			 *             1    -s-c            -c+s
861297Salm			 *             2    -s+c            -c-s
871297Salm			 *             3     s+c             c-s
881297Salm			 */
891297Salm			switch(nm1&3) {
901297Salm			case 0: temp = -cos(x)+sin(x); break;
911297Salm			case 1: temp = -cos(x)-sin(x); break;
921297Salm			case 2: temp =  cos(x)-sin(x); break;
931297Salm			default:
941297Salm			case 3: temp =  cos(x)+sin(x); break;
951297Salm			}
961297Salm			b = invsqrtpi*temp/sqrt(x);
971297Salm		} else {
981297Salm			a = j0(x);
991297Salm			b = j1(x);
1001297Salm			for (i=0; i<nm1; ) {
1011297Salm				i++;
1021297Salm				temp = b;
1031297Salm				b = b*(2.0*i/x) - a; /* avoid underflow */
1041297Salm				a = temp;
1051297Salm			}
1061297Salm		}
1071297Salm	} else {
1081297Salm		if (ix < 0x3e100000) { /* x < 2**-29 */
1091297Salm			/* x is tiny, return the first Taylor expansion of J(n,x)
1101297Salm			 * J(n,x) = 1/n!*(x/2)^n  - ...
1111297Salm			 */
1121297Salm			if (nm1 > 32)  /* underflow */
1131297Salm				b = 0.0;
11481220Smike			else {
1151297Salm				temp = x*0.5;
1161297Salm				b = temp;
1171297Salm				a = 1.0;
1181297Salm				for (i=2; i<=nm1+1; i++) {
1191297Salm					a *= (double)i; /* a = n! */
12081220Smike					b *= temp;      /* b = (x/2)^n */
1211297Salm				}
1221297Salm				b = b/a;
1231297Salm			}
1241297Salm		} else {
1251297Salm			/* use backward recurrence */
1261297Salm			/*                      x      x^2      x^2
1271297Salm			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
1281297Salm			 *                      2n  - 2(n+1) - 2(n+2)
1291297Salm			 *
1301297Salm			 *                      1      1        1
1311297Salm			 *  (for large x)   =  ----  ------   ------   .....
1321297Salm			 *                      2n   2(n+1)   2(n+2)
1331297Salm			 *                      -- - ------ - ------ -
1341297Salm			 *                       x     x         x
1351297Salm			 *
1367165Sjoerg			 * Let w = 2n/x and h=2/x, then the above quotient
1377165Sjoerg			 * is equal to the continued fraction:
1381297Salm			 *                  1
1391297Salm			 *      = -----------------------
1401297Salm			 *                     1
1411297Salm			 *         w - -----------------
1421297Salm			 *                        1
1431297Salm			 *              w+h - ---------
1441297Salm			 *                     w+2h - ...
1451297Salm			 *
1461297Salm			 * To determine how many terms needed, let
1471297Salm			 * Q(0) = w, Q(1) = w(w+h) - 1,
1481297Salm			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
1491297Salm			 * When Q(k) > 1e4      good for single
1501297Salm			 * When Q(k) > 1e9      good for double
1511297Salm			 * When Q(k) > 1e17     good for quadruple
1521297Salm			 */
1531297Salm			/* determine k */
1541297Salm			double t,q0,q1,w,h,z,tmp,nf;
1551297Salm			int k;
1561297Salm
1571297Salm			nf = nm1 + 1.0;
1581297Salm			w = 2*nf/x;
1591297Salm			h = 2/x;
1601297Salm			z = w+h;
1611297Salm			q0 = w;
1628855Srgrimes			q1 = w*z - 1.0;
1631297Salm			k = 1;
1641297Salm			while (q1 < 1.0e9) {
16581220Smike				k += 1;
1661297Salm				z += h;
1671297Salm				tmp = z*q1 - q0;
1681297Salm				q0 = q1;
1691297Salm				q1 = tmp;
1701297Salm			}
1718855Srgrimes			for (t=0.0, i=k; i>=0; i--)
1721297Salm				t = 1/(2*(i+nf)/x - t);
1731297Salm			a = t;
17481220Smike			b = 1.0;
1751297Salm			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
1761297Salm			 *  Hence, if n*(log(2n/x)) > ...
1771297Salm			 *  single 8.8722839355e+01
1781297Salm			 *  double 7.09782712893383973096e+02
1791297Salm			 *  long double 1.1356523406294143949491931077970765006170e+04
1801297Salm			 *  then recurrent value may overflow and the result is
1811297Salm			 *  likely underflow to zero
1821297Salm			 */
1831297Salm			tmp = nf*log(fabs(w));
1841297Salm			if (tmp < 7.09782712893383973096e+02) {
1851297Salm				for (i=nm1; i>0; i--) {
1861297Salm					temp = b;
1871297Salm					b = b*(2.0*i)/x - a;
1881297Salm					a = temp;
1891297Salm				}
1901297Salm			} else {
1911297Salm				for (i=nm1; i>0; i--) {
1921297Salm					temp = b;
1931297Salm					b = b*(2.0*i)/x - a;
1941297Salm					a = temp;
1951297Salm					/* scale b to avoid spurious overflow */
1961297Salm					if (b > 0x1p500) {
1971297Salm						a /= b;
1981297Salm						t /= b;
1991297Salm						b  = 1.0;
2001297Salm					}
2011297Salm				}
2021297Salm			}
2031297Salm			z = j0(x);
2041297Salm			w = j1(x);
2051297Salm			if (fabs(z) >= fabs(w))
2061297Salm				b = t*z/b;
2071297Salm			else
2081297Salm				b = t*w/a;
2091297Salm		}
2101297Salm	}
2111297Salm	return sign ? -b : b;
2121297Salm}
2131297Salm
2141297Salm
2151297Salmdouble yn(int n, double x)
2161297Salm{
2171297Salm	uint32_t ix, lx, ib;
2181297Salm	int nm1, sign, i;
2191297Salm	double a, b, temp;
2201297Salm
2211297Salm	EXTRACT_WORDS(ix, lx, x);
2221297Salm	sign = ix>>31;
2231297Salm	ix &= 0x7fffffff;
2241297Salm
2251297Salm	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
2261297Salm		return x;
227	if (sign && (ix|lx)!=0) /* x < 0 */
228		return 0/0.0;
229	if (ix == 0x7ff00000)
230		return 0.0;
231
232	if (n == 0)
233		return y0(x);
234	if (n < 0) {
235		nm1 = -(n+1);
236		sign = n&1;
237	} else {
238		nm1 = n-1;
239		sign = 0;
240	}
241	if (nm1 == 0)
242		return sign ? -y1(x) : y1(x);
243
244	if (ix >= 0x52d00000) { /* x > 2**302 */
245		/* (x >> n**2)
246		 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
247		 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
248		 *      Let s=sin(x), c=cos(x),
249		 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
250		 *
251		 *             n    sin(xn)*sqt2    cos(xn)*sqt2
252		 *          ----------------------------------
253		 *             0     s-c             c+s
254		 *             1    -s-c            -c+s
255		 *             2    -s+c            -c-s
256		 *             3     s+c             c-s
257		 */
258		switch(nm1&3) {
259		case 0: temp = -sin(x)-cos(x); break;
260		case 1: temp = -sin(x)+cos(x); break;
261		case 2: temp =  sin(x)+cos(x); break;
262		default:
263		case 3: temp =  sin(x)-cos(x); break;
264		}
265		b = invsqrtpi*temp/sqrt(x);
266	} else {
267		a = y0(x);
268		b = y1(x);
269		/* quit if b is -inf */
270		GET_HIGH_WORD(ib, b);
271		for (i=0; i<nm1 && ib!=0xfff00000; ){
272			i++;
273			temp = b;
274			b = (2.0*i/x)*b - a;
275			GET_HIGH_WORD(ib, b);
276			a = temp;
277		}
278	}
279	return sign ? -b : b;
280}
281