1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21
22/*
23 * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
24 * supports only 2Ghz operation.
25 */
26
27#include "opt_ah.h"
28
29#include "ah.h"
30#include "ah_internal.h"
31#include "ah_devid.h"
32
33#include "ah_eeprom_v14.h"
34#include "ah_eeprom_v4k.h"
35
36#include "ar9002/ar9285.h"
37#include "ar5416/ar5416.h"
38#include "ar5416/ar5416reg.h"
39#include "ar5416/ar5416phy.h"
40#include "ar9002/ar9002phy.h"
41#include "ar9002/ar9285phy.h"
42#include "ar9002/ar9285an.h"
43#include "ar9002/ar9285_diversity.h"
44
45/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
46#define	EEP_MINOR(_ah) \
47	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
48#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
49#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
50
51/* Additional Time delay to wait after activiting the Base band */
52#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
53#define PLL_SETTLE_DELAY	300	/* 300 usec */
54#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
55
56static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
57	struct ar5416eeprom_4k *pEepData,
58	const struct ieee80211_channel *chan, int16_t *ratesArray,
59	uint16_t cfgCtl, uint16_t AntennaReduction,
60	uint16_t twiceMaxRegulatoryPower,
61	uint16_t powerLimit);
62static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
63	struct ar5416eeprom_4k *pEepData,
64	const struct ieee80211_channel *chan,
65	int16_t *pTxPowerIndexOffset);
66static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
67	const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
68	uint8_t * bChans, uint16_t availPiers,
69	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
70	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
71	uint16_t numXpdGains);
72
73HAL_BOOL
74ar9285SetTransmitPower(struct ath_hal *ah,
75	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
76{
77#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
78#define N(a)            (sizeof (a) / sizeof (a[0]))
79
80    MODAL_EEP4K_HEADER	*pModal;
81    struct ath_hal_5212 *ahp = AH5212(ah);
82    int16_t		txPowerIndexOffset = 0;
83    int			i;
84
85    uint16_t		cfgCtl;
86    uint16_t		powerLimit;
87    uint16_t		twiceAntennaReduction;
88    uint16_t		twiceMaxRegulatoryPower;
89    int16_t		maxPower;
90    HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
91    struct ar5416eeprom_4k *pEepData = &ee->ee_base;
92
93    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
94
95    AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
96
97    /* Setup info for the actual eeprom */
98    OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
99    cfgCtl = ath_hal_getctl(ah, chan);
100    powerLimit = chan->ic_maxregpower * 2;
101    twiceAntennaReduction = chan->ic_maxantgain;
102    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
103    pModal = &pEepData->modalHeader;
104    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
105	__func__,chan->ic_freq, cfgCtl );
106
107    if (IS_EEP_MINOR_V2(ah)) {
108        AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
109    }
110
111    if (!ar9285SetPowerPerRateTable(ah, pEepData,  chan,
112                                    &AH5416(ah)->ah_ratesArray[0],cfgCtl,
113                                    twiceAntennaReduction,
114				    twiceMaxRegulatoryPower, powerLimit)) {
115        HALDEBUG(ah, HAL_DEBUG_ANY,
116	    "%s: unable to set tx power per rate table\n", __func__);
117        return AH_FALSE;
118    }
119
120    if (!ar9285SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
121        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
122	    __func__);
123        return AH_FALSE;
124    }
125
126    maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
127      AH5416(ah)->ah_ratesArray[rateHt20_0]);
128    maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
129
130    if (IEEE80211_IS_CHAN_HT40(chan)) {
131        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
132    }
133
134    ahp->ah_tx6PowerInHalfDbm = maxPower;
135    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
136    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
137
138    /*
139     * txPowerIndexOffset is set by the SetPowerTable() call -
140     *  adjust the rate table (0 offset if rates EEPROM not loaded)
141     */
142    for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
143        AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
144	/* -5 dBm offset for Merlin and later; this includes Kite */
145	AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
146        if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
147            AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
148	if (AH5416(ah)->ah_ratesArray[i] < 0)
149		AH5416(ah)->ah_ratesArray[i] = 0;
150    }
151
152#ifdef AH_EEPROM_DUMP
153    ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
154#endif
155
156    /*
157     * Adjust the HT40 power to meet the correct target TX power
158     * for 40MHz mode, based on TX power curves that are established
159     * for 20MHz mode.
160     *
161     * XXX handle overflow/too high power level?
162     */
163    if (IEEE80211_IS_CHAN_HT40(chan)) {
164        AH5416(ah)->ah_ratesArray[rateHt40_0] +=
165          AH5416(ah)->ah_ht40PowerIncForPdadc;
166        AH5416(ah)->ah_ratesArray[rateHt40_1] +=
167          AH5416(ah)->ah_ht40PowerIncForPdadc;
168        AH5416(ah)->ah_ratesArray[rateHt40_2] +=
169          AH5416(ah)->ah_ht40PowerIncForPdadc;
170        AH5416(ah)->ah_ratesArray[rateHt40_3] +=
171          AH5416(ah)->ah_ht40PowerIncForPdadc;
172        AH5416(ah)->ah_ratesArray[rateHt40_4] +=
173          AH5416(ah)->ah_ht40PowerIncForPdadc;
174        AH5416(ah)->ah_ratesArray[rateHt40_5] +=
175          AH5416(ah)->ah_ht40PowerIncForPdadc;
176        AH5416(ah)->ah_ratesArray[rateHt40_6] +=
177          AH5416(ah)->ah_ht40PowerIncForPdadc;
178        AH5416(ah)->ah_ratesArray[rateHt40_7] +=
179          AH5416(ah)->ah_ht40PowerIncForPdadc;
180    }
181
182    /* Write the TX power rate registers */
183    ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
184
185    return AH_TRUE;
186#undef POW_SM
187#undef N
188}
189
190static void
191ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
192    const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
193{
194	OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
195		  pModal->antCtrlChain[0]);
196
197	OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
198		  (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
199		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
200		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
201		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
202		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
203
204	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
205	    AR5416_EEP_MINOR_VER_3) {
206		txRxAttenLocal = pModal->txRxAttenCh[0];
207
208		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
209		    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
210		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
211		    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
212		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
213		    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
214		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
215		    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
216
217		/* Set the block 1 value to block 0 value */
218		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
219		      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
220		      pModal->bswMargin[0]);
221		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
222		      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
223		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
224		      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
225		      pModal->xatten2Margin[0]);
226		OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
227		      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
228	}
229
230	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
231		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
232	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
233		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
234
235	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
236		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
237	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
238		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
239}
240
241/*
242 * Read EEPROM header info and program the device for correct operation
243 * given the channel value.
244 */
245HAL_BOOL
246ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
247{
248	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
249	const struct ar5416eeprom_4k *eep = &ee->ee_base;
250	const MODAL_EEP4K_HEADER *pModal;
251	uint8_t txRxAttenLocal;
252	uint8_t ob[5], db1[5], db2[5];
253
254	pModal = &eep->modalHeader;
255	txRxAttenLocal = 23;
256
257	OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
258
259	/* Single chain for 4K EEPROM*/
260	ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
261
262	/* Initialize Ant Diversity settings if supported */
263	(void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
264
265	/* Configure TX power calibration */
266	if (pModal->version >= 2) {
267		ob[0] = pModal->ob_0;
268		ob[1] = pModal->ob_1;
269		ob[2] = pModal->ob_2;
270		ob[3] = pModal->ob_3;
271		ob[4] = pModal->ob_4;
272
273		db1[0] = pModal->db1_0;
274		db1[1] = pModal->db1_1;
275		db1[2] = pModal->db1_2;
276		db1[3] = pModal->db1_3;
277		db1[4] = pModal->db1_4;
278
279		db2[0] = pModal->db2_0;
280		db2[1] = pModal->db2_1;
281		db2[2] = pModal->db2_2;
282		db2[3] = pModal->db2_3;
283		db2[4] = pModal->db2_4;
284	} else if (pModal->version == 1) {
285		ob[0] = pModal->ob_0;
286		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
287		db1[0] = pModal->db1_0;
288		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
289		db2[0] = pModal->db2_0;
290		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
291	} else {
292		int i;
293
294		for (i = 0; i < 5; i++) {
295			ob[i] = pModal->ob_0;
296			db1[i] = pModal->db1_0;
297			db2[i] = pModal->db1_0;
298		}
299	}
300
301	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
302	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
303	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
304	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
305	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
306
307	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
308	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
309	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
310	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
311	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
312
313	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
314	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
315	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
316	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
317	OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
318
319	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
320		      pModal->switchSettling);
321	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
322		      pModal->adcDesiredSize);
323
324	OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
325		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
326		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
327		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
328		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
329
330	OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
331		      pModal->txEndToRxOn);
332
333	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
334		      pModal->thresh62);
335	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
336		      pModal->thresh62);
337
338	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
339	    AR5416_EEP_MINOR_VER_2) {
340		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
341		    pModal->txFrameToDataStart);
342		OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
343		    pModal->txFrameToPaOn);
344	}
345
346	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
347	    AR5416_EEP_MINOR_VER_3) {
348		if (IEEE80211_IS_CHAN_HT40(chan))
349			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
350			    AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
351	}
352
353	/*
354	 * Program the CCK TX gain factor appropriately if needed.
355	 * The AR9285/AR9271 has a non-constant PA tx gain behaviour
356	 * for CCK versus OFDM rates; other chips deal with this
357	 * differently.
358	 *
359	 * The mask/shift/multiply hackery is done so place the same
360	 * value (bb_desired_scale) into multiple 5-bit fields.
361	 * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
362	 * to three fields: (0..4), (5..9) and (10..14).
363	 */
364	if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
365		uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
366		if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
367			uint32_t pwrctrl, mask, clr;
368			ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
369
370			mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
371			pwrctrl = mask * bb_desired_scale;
372			clr = mask * 0x1f;
373			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
374			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
375			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
376
377			mask = (1<<0) | (1<<5) | (1<<15);
378			pwrctrl = mask * bb_desired_scale;
379			clr = mask * 0x1f;
380			OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
381
382			mask = (1<<0) | (1<<5);
383			pwrctrl = mask * bb_desired_scale;
384			clr = mask * 0x1f;
385			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
386			OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
387		}
388	}
389
390	return AH_TRUE;
391}
392
393/*
394 * Helper functions common for AP/CB/XB
395 */
396
397static HAL_BOOL
398ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
399                           const struct ieee80211_channel *chan,
400                           int16_t *ratesArray, uint16_t cfgCtl,
401                           uint16_t AntennaReduction,
402                           uint16_t twiceMaxRegulatoryPower,
403                           uint16_t powerLimit)
404{
405#define	N(a)	(sizeof(a)/sizeof(a[0]))
406/* Local defines to distinguish between extension and control CTL's */
407#define EXT_ADDITIVE (0x8000)
408#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
409#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
410
411	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
412	int i;
413	int16_t  twiceLargestAntenna;
414	CAL_CTL_DATA_4K *rep;
415	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
416	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
417	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
418	int16_t scaledPower, minCtlPower;
419
420#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
421	static const uint16_t ctlModesFor11g[] = {
422	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
423	};
424	const uint16_t *pCtlMode;
425	uint16_t numCtlModes, ctlMode, freq;
426	CHAN_CENTERS centers;
427
428	ar5416GetChannelCenters(ah,  chan, &centers);
429
430	/* Compute TxPower reduction due to Antenna Gain */
431
432	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
433	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
434
435	/* XXX setup for 5212 use (really used?) */
436	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
437
438	/*
439	 * scaledPower is the minimum of the user input power level and
440	 * the regulatory allowed power level
441	 */
442	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
443
444	/* Get target powers from EEPROM - our baseline for TX Power */
445	/* Setup for CTL modes */
446	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
447	pCtlMode = ctlModesFor11g;
448
449	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
450			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
451	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
452			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
453	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
454			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
455
456	if (IEEE80211_IS_CHAN_HT40(chan)) {
457		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
458
459		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
460			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
461		/* Get target powers for extension channels */
462		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
463			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
464		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
465			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
466	}
467
468	/*
469	 * For MIMO, need to apply regulatory caps individually across dynamically
470	 * running modes: CCK, OFDM, HT20, HT40
471	 *
472	 * The outer loop walks through each possible applicable runtime mode.
473	 * The inner loop walks through each ctlIndex entry in EEPROM.
474	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
475	 *
476	 */
477	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
478		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
479		    (pCtlMode[ctlMode] == CTL_2GHT40);
480		if (isHt40CtlMode) {
481			freq = centers.ctl_center;
482		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
483			freq = centers.ext_center;
484		} else {
485			freq = centers.ctl_center;
486		}
487
488		/* walk through each CTL index stored in EEPROM */
489		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
490			uint16_t twiceMinEdgePower;
491
492			/* compare test group from regulatory channel list with test mode from pCtlMode list */
493			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
494				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
495				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
496				rep = &(pEepData->ctlData[i]);
497				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
498							rep->ctlEdges[
499							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
500				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
501					/* Find the minimum of all CTL edge powers that apply to this channel */
502					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
503				} else {
504					/* specific */
505					twiceMaxEdgePower = twiceMinEdgePower;
506					break;
507				}
508			}
509		}
510		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
511		/* Apply ctl mode to correct target power set */
512		switch(pCtlMode[ctlMode]) {
513		case CTL_11B:
514			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
515				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
516			}
517			break;
518		case CTL_11A:
519		case CTL_11G:
520			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
521				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
522			}
523			break;
524		case CTL_5GHT20:
525		case CTL_2GHT20:
526			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
527				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
528			}
529			break;
530		case CTL_11B_EXT:
531			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
532			break;
533		case CTL_11G_EXT:
534			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
535			break;
536		case CTL_5GHT40:
537		case CTL_2GHT40:
538			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
539				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
540			}
541			break;
542		default:
543			return AH_FALSE;
544			break;
545		}
546	} /* end ctl mode checking */
547
548        /* Set rates Array from collected data */
549	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
550	    &targetPowerCck,
551	    &targetPowerCckExt,
552	    &targetPowerOfdm,
553	    &targetPowerOfdmExt,
554	    &targetPowerHt20,
555	    &targetPowerHt40);
556
557	return AH_TRUE;
558#undef EXT_ADDITIVE
559#undef CTL_11G_EXT
560#undef CTL_11B_EXT
561#undef SUB_NUM_CTL_MODES_AT_2G_40
562#undef N
563}
564
565static HAL_BOOL
566ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
567	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
568{
569    CAL_DATA_PER_FREQ_4K *pRawDataset;
570    uint8_t  *pCalBChans = AH_NULL;
571    uint16_t pdGainOverlap_t2;
572    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
573    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
574    uint16_t numPiers, i;
575    int16_t  tMinCalPower;
576    uint16_t numXpdGain, xpdMask;
577    uint16_t xpdGainValues[4];	/* v4k eeprom has 2; the other two stay 0 */
578    uint32_t regChainOffset;
579
580    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
581
582    xpdMask = pEepData->modalHeader.xpdGain;
583
584    if (IS_EEP_MINOR_V2(ah)) {
585        pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
586    } else {
587    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
588    }
589
590    pCalBChans = pEepData->calFreqPier2G;
591    numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
592    numXpdGain = 0;
593
594    /* Calculate the value of xpdgains from the xpdGain Mask */
595    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
596        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
597            if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
598                HALASSERT(0);
599                break;
600            }
601            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
602            numXpdGain++;
603        }
604    }
605
606    /* Write the detector gain biases and their number */
607    ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
608
609    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
610	regChainOffset = ar5416GetRegChainOffset(ah, i);
611        if (pEepData->baseEepHeader.txMask & (1 << i)) {
612            pRawDataset = pEepData->calPierData2G[i];
613
614            ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
615                                             pCalBChans, numPiers,
616                                             pdGainOverlap_t2,
617                                             &tMinCalPower, gainBoundaries,
618                                             pdadcValues, numXpdGain);
619
620            if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
621                /*
622                 * Note the pdadc table may not start at 0 dBm power, could be
623                 * negative or greater than 0.  Need to offset the power
624                 * values by the amount of minPower for griffin
625                 */
626		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
627            }
628
629            /* Write the power values into the baseband power table */
630	    ar5416WritePdadcValues(ah, i, pdadcValues);
631        }
632    }
633    *pTxPowerIndexOffset = 0;
634
635    return AH_TRUE;
636}
637
638static void
639ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
640                                 const struct ieee80211_channel *chan,
641				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
642                                 uint8_t * bChans,  uint16_t availPiers,
643                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
644                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
645{
646
647    int       i, j, k;
648    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
649    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
650
651    /* filled out Vpd table for all pdGains (chanL) */
652    static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
653
654    /* filled out Vpd table for all pdGains (chanR) */
655    static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
656
657    /* filled out Vpd table for all pdGains (interpolated) */
658    static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
659
660    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
661    uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
662    uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
663    int16_t   vpdStep;
664    int16_t   tmpVal;
665    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
666    HAL_BOOL    match;
667    int16_t  minDelta = 0;
668    CHAN_CENTERS centers;
669
670    ar5416GetChannelCenters(ah, chan, &centers);
671
672    /* Trim numPiers for the number of populated channel Piers */
673    for (numPiers = 0; numPiers < availPiers; numPiers++) {
674        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
675            break;
676        }
677    }
678
679    /* Find pier indexes around the current channel */
680    match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
681      IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
682
683    if (match) {
684        /* Directly fill both vpd tables from the matching index */
685        for (i = 0; i < numXpdGains; i++) {
686            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
687            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
688            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
689			       pRawDataSet[idxL].pwrPdg[i],
690                               pRawDataSet[idxL].vpdPdg[i],
691			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
692        }
693    } else {
694        for (i = 0; i < numXpdGains; i++) {
695            pVpdL = pRawDataSet[idxL].vpdPdg[i];
696            pPwrL = pRawDataSet[idxL].pwrPdg[i];
697            pVpdR = pRawDataSet[idxR].vpdPdg[i];
698            pPwrR = pRawDataSet[idxR].pwrPdg[i];
699
700            /* Start Vpd interpolation from the max of the minimum powers */
701            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
702
703            /* End Vpd interpolation from the min of the max powers */
704            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
705            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
706
707            /* Fill pier Vpds */
708            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
709			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
710            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
711			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
712
713            /* Interpolate the final vpd */
714            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
715                vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
716                    IEEE80211_IS_CHAN_2GHZ(chan)),
717                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
718            }
719        }
720    }
721    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
722
723    k = 0; /* index for the final table */
724    for (i = 0; i < numXpdGains; i++) {
725        if (i == (numXpdGains - 1)) {
726            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
727        } else {
728            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
729        }
730
731        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
732
733	/* NB: only applies to owl 1.0 */
734        if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
735	    /*
736             * fix the gain delta, but get a delta that can be applied to min to
737             * keep the upper power values accurate, don't think max needs to
738             * be adjusted because should not be at that area of the table?
739	     */
740            minDelta = pPdGainBoundaries[0] - 23;
741            pPdGainBoundaries[0] = 23;
742        }
743        else {
744            minDelta = 0;
745        }
746
747        /* Find starting index for this pdGain */
748        if (i == 0) {
749            if (AR_SREV_MERLIN_20_OR_LATER(ah))
750                ss = (int16_t)(0 - (minPwrT4[i] / 2));
751            else
752                ss = 0; /* for the first pdGain, start from index 0 */
753        } else {
754	    /* need overlap entries extrapolated below. */
755            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
756        }
757        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
758        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
759        /*
760         *-ve ss indicates need to extrapolate data below for this pdGain
761         */
762        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
763            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
764            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
765            ss++;
766        }
767
768        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
769        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
770        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
771
772        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
773            pPDADCValues[k++] = vpdTableI[i][ss++];
774        }
775
776        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
777        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
778        /*
779         * for last gain, pdGainBoundary == Pmax_t2, so will
780         * have to extrapolate
781         */
782        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
783            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
784                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
785                          (ss - maxIndex +1) * vpdStep));
786                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
787                ss++;
788            }
789        }               /* extrapolated above */
790    }                   /* for all pdGainUsed */
791
792    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
793    while (i < AR5416_PD_GAINS_IN_MASK) {
794        pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
795        i++;
796    }
797
798    while (k < AR5416_NUM_PDADC_VALUES) {
799        pPDADCValues[k] = pPDADCValues[k-1];
800        k++;
801    }
802    return;
803}
804