1/*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010      INRIA Saclay
4 *
5 * Use of this software is governed by the MIT license
6 *
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
11 */
12
13#include <isl_mat_private.h>
14#include <isl/seq.h>
15#include "isl_map_private.h"
16#include "isl_equalities.h"
17#include <isl_val_private.h>
18
19/* Given a set of modulo constraints
20 *
21 *		c + A y = 0 mod d
22 *
23 * this function computes a particular solution y_0
24 *
25 * The input is given as a matrix B = [ c A ] and a vector d.
26 *
27 * The output is matrix containing the solution y_0 or
28 * a zero-column matrix if the constraints admit no integer solution.
29 *
30 * The given set of constrains is equivalent to
31 *
32 *		c + A y = -D x
33 *
34 * with D = diag d and x a fresh set of variables.
35 * Reducing both c and A modulo d does not change the
36 * value of y in the solution and may lead to smaller coefficients.
37 * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
38 * Then
39 *		  [ x ]
40 *		M [ y ] = - c
41 * and so
42 *		               [ x ]
43 *		[ H 0 ] U^{-1} [ y ] = - c
44 * Let
45 *		[ A ]          [ x ]
46 *		[ B ] = U^{-1} [ y ]
47 * then
48 *		H A + 0 B = -c
49 *
50 * so B may be chosen arbitrarily, e.g., B = 0, and then
51 *
52 *		       [ x ] = [ -c ]
53 *		U^{-1} [ y ] = [  0 ]
54 * or
55 *		[ x ]     [ -c ]
56 *		[ y ] = U [  0 ]
57 * specifically,
58 *
59 *		y = U_{2,1} (-c)
60 *
61 * If any of the coordinates of this y are non-integer
62 * then the constraints admit no integer solution and
63 * a zero-column matrix is returned.
64 */
65static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d)
66{
67	int i, j;
68	struct isl_mat *M = NULL;
69	struct isl_mat *C = NULL;
70	struct isl_mat *U = NULL;
71	struct isl_mat *H = NULL;
72	struct isl_mat *cst = NULL;
73	struct isl_mat *T = NULL;
74
75	M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1);
76	C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1);
77	if (!M || !C)
78		goto error;
79	isl_int_set_si(C->row[0][0], 1);
80	for (i = 0; i < B->n_row; ++i) {
81		isl_seq_clr(M->row[i], B->n_row);
82		isl_int_set(M->row[i][i], d->block.data[i]);
83		isl_int_neg(C->row[1 + i][0], B->row[i][0]);
84		isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]);
85		for (j = 0; j < B->n_col - 1; ++j)
86			isl_int_fdiv_r(M->row[i][B->n_row + j],
87					B->row[i][1 + j], M->row[i][i]);
88	}
89	M = isl_mat_left_hermite(M, 0, &U, NULL);
90	if (!M || !U)
91		goto error;
92	H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row);
93	H = isl_mat_lin_to_aff(H);
94	C = isl_mat_inverse_product(H, C);
95	if (!C)
96		goto error;
97	for (i = 0; i < B->n_row; ++i) {
98		if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0]))
99			break;
100		isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]);
101	}
102	if (i < B->n_row)
103		cst = isl_mat_alloc(B->ctx, B->n_row, 0);
104	else
105		cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1);
106	T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row);
107	cst = isl_mat_product(T, cst);
108	isl_mat_free(M);
109	isl_mat_free(C);
110	isl_mat_free(U);
111	return cst;
112error:
113	isl_mat_free(M);
114	isl_mat_free(C);
115	isl_mat_free(U);
116	return NULL;
117}
118
119/* Compute and return the matrix
120 *
121 *		U_1^{-1} diag(d_1, 1, ..., 1)
122 *
123 * with U_1 the unimodular completion of the first (and only) row of B.
124 * The columns of this matrix generate the lattice that satisfies
125 * the single (linear) modulo constraint.
126 */
127static struct isl_mat *parameter_compression_1(
128			struct isl_mat *B, struct isl_vec *d)
129{
130	struct isl_mat *U;
131
132	U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1);
133	if (!U)
134		return NULL;
135	isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1);
136	U = isl_mat_unimodular_complete(U, 1);
137	U = isl_mat_right_inverse(U);
138	if (!U)
139		return NULL;
140	isl_mat_col_mul(U, 0, d->block.data[0], 0);
141	U = isl_mat_lin_to_aff(U);
142	return U;
143}
144
145/* Compute a common lattice of solutions to the linear modulo
146 * constraints specified by B and d.
147 * See also the documentation of isl_mat_parameter_compression.
148 * We put the matrix
149 *
150 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
151 *
152 * on a common denominator.  This denominator D is the lcm of modulos d.
153 * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
154 * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
155 * Putting this on the common denominator, we have
156 * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
157 */
158static struct isl_mat *parameter_compression_multi(
159			struct isl_mat *B, struct isl_vec *d)
160{
161	int i, j, k;
162	isl_int D;
163	struct isl_mat *A = NULL, *U = NULL;
164	struct isl_mat *T;
165	unsigned size;
166
167	isl_int_init(D);
168
169	isl_vec_lcm(d, &D);
170
171	size = B->n_col - 1;
172	A = isl_mat_alloc(B->ctx, size, B->n_row * size);
173	U = isl_mat_alloc(B->ctx, size, size);
174	if (!U || !A)
175		goto error;
176	for (i = 0; i < B->n_row; ++i) {
177		isl_seq_cpy(U->row[0], B->row[i] + 1, size);
178		U = isl_mat_unimodular_complete(U, 1);
179		if (!U)
180			goto error;
181		isl_int_divexact(D, D, d->block.data[i]);
182		for (k = 0; k < U->n_col; ++k)
183			isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
184		isl_int_mul(D, D, d->block.data[i]);
185		for (j = 1; j < U->n_row; ++j)
186			for (k = 0; k < U->n_col; ++k)
187				isl_int_mul(A->row[k][i*size+j],
188						D, U->row[j][k]);
189	}
190	A = isl_mat_left_hermite(A, 0, NULL, NULL);
191	T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
192	T = isl_mat_lin_to_aff(T);
193	if (!T)
194		goto error;
195	isl_int_set(T->row[0][0], D);
196	T = isl_mat_right_inverse(T);
197	if (!T)
198		goto error;
199	isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
200	T = isl_mat_transpose(T);
201	isl_mat_free(A);
202	isl_mat_free(U);
203
204	isl_int_clear(D);
205	return T;
206error:
207	isl_mat_free(A);
208	isl_mat_free(U);
209	isl_int_clear(D);
210	return NULL;
211}
212
213/* Given a set of modulo constraints
214 *
215 *		c + A y = 0 mod d
216 *
217 * this function returns an affine transformation T,
218 *
219 *		y = T y'
220 *
221 * that bijectively maps the integer vectors y' to integer
222 * vectors y that satisfy the modulo constraints.
223 *
224 * This function is inspired by Section 2.5.3
225 * of B. Meister, "Stating and Manipulating Periodicity in the Polytope
226 * Model.  Applications to Program Analysis and Optimization".
227 * However, the implementation only follows the algorithm of that
228 * section for computing a particular solution and not for computing
229 * a general homogeneous solution.  The latter is incomplete and
230 * may remove some valid solutions.
231 * Instead, we use an adaptation of the algorithm in Section 7 of
232 * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
233 * Model: Bringing the Power of Quasi-Polynomials to the Masses".
234 *
235 * The input is given as a matrix B = [ c A ] and a vector d.
236 * Each element of the vector d corresponds to a row in B.
237 * The output is a lower triangular matrix.
238 * If no integer vector y satisfies the given constraints then
239 * a matrix with zero columns is returned.
240 *
241 * We first compute a particular solution y_0 to the given set of
242 * modulo constraints in particular_solution.  If no such solution
243 * exists, then we return a zero-columned transformation matrix.
244 * Otherwise, we compute the generic solution to
245 *
246 *		A y = 0 mod d
247 *
248 * That is we want to compute G such that
249 *
250 *		y = G y''
251 *
252 * with y'' integer, describes the set of solutions.
253 *
254 * We first remove the common factors of each row.
255 * In particular if gcd(A_i,d_i) != 1, then we divide the whole
256 * row i (including d_i) by this common factor.  If afterwards gcd(A_i) != 1,
257 * then we divide this row of A by the common factor, unless gcd(A_i) = 0.
258 * In the later case, we simply drop the row (in both A and d).
259 *
260 * If there are no rows left in A, then G is the identity matrix. Otherwise,
261 * for each row i, we now determine the lattice of integer vectors
262 * that satisfies this row.  Let U_i be the unimodular extension of the
263 * row A_i.  This unimodular extension exists because gcd(A_i) = 1.
264 * The first component of
265 *
266 *		y' = U_i y
267 *
268 * needs to be a multiple of d_i.  Let y' = diag(d_i, 1, ..., 1) y''.
269 * Then,
270 *
271 *		y = U_i^{-1} diag(d_i, 1, ..., 1) y''
272 *
273 * for arbitrary integer vectors y''.  That is, y belongs to the lattice
274 * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
275 * If there is only one row, then G = L_1.
276 *
277 * If there is more than one row left, we need to compute the intersection
278 * of the lattices.  That is, we need to compute an L such that
279 *
280 *		L = L_i L_i'	for all i
281 *
282 * with L_i' some integer matrices.  Let A be constructed as follows
283 *
284 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
285 *
286 * and computed the Hermite Normal Form of A = [ H 0 ] U
287 * Then,
288 *
289 *		L_i^{-T} = H U_{1,i}
290 *
291 * or
292 *
293 *		H^{-T} = L_i U_{1,i}^T
294 *
295 * In other words G = L = H^{-T}.
296 * To ensure that G is lower triangular, we compute and use its Hermite
297 * normal form.
298 *
299 * The affine transformation matrix returned is then
300 *
301 *		[  1   0  ]
302 *		[ y_0  G  ]
303 *
304 * as any y = y_0 + G y' with y' integer is a solution to the original
305 * modulo constraints.
306 */
307struct isl_mat *isl_mat_parameter_compression(
308			struct isl_mat *B, struct isl_vec *d)
309{
310	int i;
311	struct isl_mat *cst = NULL;
312	struct isl_mat *T = NULL;
313	isl_int D;
314
315	if (!B || !d)
316		goto error;
317	isl_assert(B->ctx, B->n_row == d->size, goto error);
318	cst = particular_solution(B, d);
319	if (!cst)
320		goto error;
321	if (cst->n_col == 0) {
322		T = isl_mat_alloc(B->ctx, B->n_col, 0);
323		isl_mat_free(cst);
324		isl_mat_free(B);
325		isl_vec_free(d);
326		return T;
327	}
328	isl_int_init(D);
329	/* Replace a*g*row = 0 mod g*m by row = 0 mod m */
330	for (i = 0; i < B->n_row; ++i) {
331		isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
332		if (isl_int_is_one(D))
333			continue;
334		if (isl_int_is_zero(D)) {
335			B = isl_mat_drop_rows(B, i, 1);
336			d = isl_vec_cow(d);
337			if (!B || !d)
338				goto error2;
339			isl_seq_cpy(d->block.data+i, d->block.data+i+1,
340							d->size - (i+1));
341			d->size--;
342			i--;
343			continue;
344		}
345		B = isl_mat_cow(B);
346		if (!B)
347			goto error2;
348		isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
349		isl_int_gcd(D, D, d->block.data[i]);
350		d = isl_vec_cow(d);
351		if (!d)
352			goto error2;
353		isl_int_divexact(d->block.data[i], d->block.data[i], D);
354	}
355	isl_int_clear(D);
356	if (B->n_row == 0)
357		T = isl_mat_identity(B->ctx, B->n_col);
358	else if (B->n_row == 1)
359		T = parameter_compression_1(B, d);
360	else
361		T = parameter_compression_multi(B, d);
362	T = isl_mat_left_hermite(T, 0, NULL, NULL);
363	if (!T)
364		goto error;
365	isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
366	isl_mat_free(cst);
367	isl_mat_free(B);
368	isl_vec_free(d);
369	return T;
370error2:
371	isl_int_clear(D);
372error:
373	isl_mat_free(cst);
374	isl_mat_free(B);
375	isl_vec_free(d);
376	return NULL;
377}
378
379/* Given a set of equalities
380 *
381 *		B(y) + A x = 0						(*)
382 *
383 * compute and return an affine transformation T,
384 *
385 *		y = T y'
386 *
387 * that bijectively maps the integer vectors y' to integer
388 * vectors y that satisfy the modulo constraints for some value of x.
389 *
390 * Let [H 0] be the Hermite Normal Form of A, i.e.,
391 *
392 *		A = [H 0] Q
393 *
394 * Then y is a solution of (*) iff
395 *
396 *		H^-1 B(y) (= - [I 0] Q x)
397 *
398 * is an integer vector.  Let d be the common denominator of H^-1.
399 * We impose
400 *
401 *		d H^-1 B(y) = 0 mod d
402 *
403 * and compute the solution using isl_mat_parameter_compression.
404 */
405__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B,
406	__isl_take isl_mat *A)
407{
408	isl_ctx *ctx;
409	isl_vec *d;
410	int n_row, n_col;
411
412	if (!A)
413		return isl_mat_free(B);
414
415	ctx = isl_mat_get_ctx(A);
416	n_row = A->n_row;
417	n_col = A->n_col;
418	A = isl_mat_left_hermite(A, 0, NULL, NULL);
419	A = isl_mat_drop_cols(A, n_row, n_col - n_row);
420	A = isl_mat_lin_to_aff(A);
421	A = isl_mat_right_inverse(A);
422	d = isl_vec_alloc(ctx, n_row);
423	if (A)
424		d = isl_vec_set(d, A->row[0][0]);
425	A = isl_mat_drop_rows(A, 0, 1);
426	A = isl_mat_drop_cols(A, 0, 1);
427	B = isl_mat_product(A, B);
428
429	return isl_mat_parameter_compression(B, d);
430}
431
432/* Given a set of equalities
433 *
434 *		M x - c = 0
435 *
436 * this function computes a unimodular transformation from a lower-dimensional
437 * space to the original space that bijectively maps the integer points x'
438 * in the lower-dimensional space to the integer points x in the original
439 * space that satisfy the equalities.
440 *
441 * The input is given as a matrix B = [ -c M ] and the output is a
442 * matrix that maps [1 x'] to [1 x].
443 * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
444 *
445 * First compute the (left) Hermite normal form of M,
446 *
447 *		M [U1 U2] = M U = H = [H1 0]
448 * or
449 *		              M = H Q = [H1 0] [Q1]
450 *                                             [Q2]
451 *
452 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
453 * Define the transformed variables as
454 *
455 *		x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
456 *		            [ x2' ]           [Q2]
457 *
458 * The equalities then become
459 *
460 *		H1 x1' - c = 0   or   x1' = H1^{-1} c = c'
461 *
462 * If any of the c' is non-integer, then the original set has no
463 * integer solutions (since the x' are a unimodular transformation
464 * of the x) and a zero-column matrix is returned.
465 * Otherwise, the transformation is given by
466 *
467 *		x = U1 H1^{-1} c + U2 x2'
468 *
469 * The inverse transformation is simply
470 *
471 *		x2' = Q2 x
472 */
473__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B,
474	__isl_give isl_mat **T2)
475{
476	int i;
477	struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC;
478	unsigned dim;
479
480	if (T2)
481		*T2 = NULL;
482	if (!B)
483		goto error;
484
485	dim = B->n_col - 1;
486	H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim);
487	H = isl_mat_left_hermite(H, 0, &U, T2);
488	if (!H || !U || (T2 && !*T2))
489		goto error;
490	if (T2) {
491		*T2 = isl_mat_drop_rows(*T2, 0, B->n_row);
492		*T2 = isl_mat_lin_to_aff(*T2);
493		if (!*T2)
494			goto error;
495	}
496	C = isl_mat_alloc(B->ctx, 1+B->n_row, 1);
497	if (!C)
498		goto error;
499	isl_int_set_si(C->row[0][0], 1);
500	isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1);
501	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
502	H1 = isl_mat_lin_to_aff(H1);
503	TC = isl_mat_inverse_product(H1, C);
504	if (!TC)
505		goto error;
506	isl_mat_free(H);
507	if (!isl_int_is_one(TC->row[0][0])) {
508		for (i = 0; i < B->n_row; ++i) {
509			if (!isl_int_is_divisible_by(TC->row[1+i][0], TC->row[0][0])) {
510				struct isl_ctx *ctx = B->ctx;
511				isl_mat_free(B);
512				isl_mat_free(TC);
513				isl_mat_free(U);
514				if (T2) {
515					isl_mat_free(*T2);
516					*T2 = NULL;
517				}
518				return isl_mat_alloc(ctx, 1 + dim, 0);
519			}
520			isl_seq_scale_down(TC->row[1+i], TC->row[1+i], TC->row[0][0], 1);
521		}
522		isl_int_set_si(TC->row[0][0], 1);
523	}
524	U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row);
525	U1 = isl_mat_lin_to_aff(U1);
526	U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row);
527	U2 = isl_mat_lin_to_aff(U2);
528	isl_mat_free(U);
529	TC = isl_mat_product(U1, TC);
530	TC = isl_mat_aff_direct_sum(TC, U2);
531
532	isl_mat_free(B);
533
534	return TC;
535error:
536	isl_mat_free(B);
537	isl_mat_free(H);
538	isl_mat_free(U);
539	if (T2) {
540		isl_mat_free(*T2);
541		*T2 = NULL;
542	}
543	return NULL;
544}
545
546/* Use the n equalities of bset to unimodularly transform the
547 * variables x such that n transformed variables x1' have a constant value
548 * and rewrite the constraints of bset in terms of the remaining
549 * transformed variables x2'.  The matrix pointed to by T maps
550 * the new variables x2' back to the original variables x, while T2
551 * maps the original variables to the new variables.
552 */
553static struct isl_basic_set *compress_variables(
554	struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2)
555{
556	struct isl_mat *B, *TC;
557	unsigned dim;
558
559	if (T)
560		*T = NULL;
561	if (T2)
562		*T2 = NULL;
563	if (!bset)
564		goto error;
565	isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
566	isl_assert(bset->ctx, bset->n_div == 0, goto error);
567	dim = isl_basic_set_n_dim(bset);
568	isl_assert(bset->ctx, bset->n_eq <= dim, goto error);
569	if (bset->n_eq == 0)
570		return bset;
571
572	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim);
573	TC = isl_mat_variable_compression(B, T2);
574	if (!TC)
575		goto error;
576	if (TC->n_col == 0) {
577		isl_mat_free(TC);
578		if (T2) {
579			isl_mat_free(*T2);
580			*T2 = NULL;
581		}
582		return isl_basic_set_set_to_empty(bset);
583	}
584
585	bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC);
586	if (T)
587		*T = TC;
588	return bset;
589error:
590	isl_basic_set_free(bset);
591	return NULL;
592}
593
594struct isl_basic_set *isl_basic_set_remove_equalities(
595	struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2)
596{
597	if (T)
598		*T = NULL;
599	if (T2)
600		*T2 = NULL;
601	if (!bset)
602		return NULL;
603	isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
604	bset = isl_basic_set_gauss(bset, NULL);
605	if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
606		return bset;
607	bset = compress_variables(bset, T, T2);
608	return bset;
609error:
610	isl_basic_set_free(bset);
611	*T = NULL;
612	return NULL;
613}
614
615/* Check if dimension dim belongs to a residue class
616 *		i_dim \equiv r mod m
617 * with m != 1 and if so return m in *modulo and r in *residue.
618 * As a special case, when i_dim has a fixed value v, then
619 * *modulo is set to 0 and *residue to v.
620 *
621 * If i_dim does not belong to such a residue class, then *modulo
622 * is set to 1 and *residue is set to 0.
623 */
624int isl_basic_set_dim_residue_class(struct isl_basic_set *bset,
625	int pos, isl_int *modulo, isl_int *residue)
626{
627	struct isl_ctx *ctx;
628	struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
629	unsigned total;
630	unsigned nparam;
631
632	if (!bset || !modulo || !residue)
633		return -1;
634
635	if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) {
636		isl_int_set_si(*modulo, 0);
637		return 0;
638	}
639
640	ctx = bset->ctx;
641	total = isl_basic_set_total_dim(bset);
642	nparam = isl_basic_set_n_param(bset);
643	H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 1, total);
644	H = isl_mat_left_hermite(H, 0, &U, NULL);
645	if (!H)
646		return -1;
647
648	isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
649			total-bset->n_eq, modulo);
650	if (isl_int_is_zero(*modulo))
651		isl_int_set_si(*modulo, 1);
652	if (isl_int_is_one(*modulo)) {
653		isl_int_set_si(*residue, 0);
654		isl_mat_free(H);
655		isl_mat_free(U);
656		return 0;
657	}
658
659	C = isl_mat_alloc(bset->ctx, 1+bset->n_eq, 1);
660	if (!C)
661		goto error;
662	isl_int_set_si(C->row[0][0], 1);
663	isl_mat_sub_neg(C->ctx, C->row+1, bset->eq, bset->n_eq, 0, 0, 1);
664	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
665	H1 = isl_mat_lin_to_aff(H1);
666	C = isl_mat_inverse_product(H1, C);
667	isl_mat_free(H);
668	U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
669	U1 = isl_mat_lin_to_aff(U1);
670	isl_mat_free(U);
671	C = isl_mat_product(U1, C);
672	if (!C)
673		goto error;
674	if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
675		bset = isl_basic_set_copy(bset);
676		bset = isl_basic_set_set_to_empty(bset);
677		isl_basic_set_free(bset);
678		isl_int_set_si(*modulo, 1);
679		isl_int_set_si(*residue, 0);
680		return 0;
681	}
682	isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
683	isl_int_fdiv_r(*residue, *residue, *modulo);
684	isl_mat_free(C);
685	return 0;
686error:
687	isl_mat_free(H);
688	isl_mat_free(U);
689	return -1;
690}
691
692/* Check if dimension dim belongs to a residue class
693 *		i_dim \equiv r mod m
694 * with m != 1 and if so return m in *modulo and r in *residue.
695 * As a special case, when i_dim has a fixed value v, then
696 * *modulo is set to 0 and *residue to v.
697 *
698 * If i_dim does not belong to such a residue class, then *modulo
699 * is set to 1 and *residue is set to 0.
700 */
701int isl_set_dim_residue_class(struct isl_set *set,
702	int pos, isl_int *modulo, isl_int *residue)
703{
704	isl_int m;
705	isl_int r;
706	int i;
707
708	if (!set || !modulo || !residue)
709		return -1;
710
711	if (set->n == 0) {
712		isl_int_set_si(*modulo, 0);
713		isl_int_set_si(*residue, 0);
714		return 0;
715	}
716
717	if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0)
718		return -1;
719
720	if (set->n == 1)
721		return 0;
722
723	if (isl_int_is_one(*modulo))
724		return 0;
725
726	isl_int_init(m);
727	isl_int_init(r);
728
729	for (i = 1; i < set->n; ++i) {
730		if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0)
731			goto error;
732		isl_int_gcd(*modulo, *modulo, m);
733		isl_int_sub(m, *residue, r);
734		isl_int_gcd(*modulo, *modulo, m);
735		if (!isl_int_is_zero(*modulo))
736			isl_int_fdiv_r(*residue, *residue, *modulo);
737		if (isl_int_is_one(*modulo))
738			break;
739	}
740
741	isl_int_clear(m);
742	isl_int_clear(r);
743
744	return 0;
745error:
746	isl_int_clear(m);
747	isl_int_clear(r);
748	return -1;
749}
750
751/* Check if dimension "dim" belongs to a residue class
752 *		i_dim \equiv r mod m
753 * with m != 1 and if so return m in *modulo and r in *residue.
754 * As a special case, when i_dim has a fixed value v, then
755 * *modulo is set to 0 and *residue to v.
756 *
757 * If i_dim does not belong to such a residue class, then *modulo
758 * is set to 1 and *residue is set to 0.
759 */
760int isl_set_dim_residue_class_val(__isl_keep isl_set *set,
761	int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue)
762{
763	*modulo = NULL;
764	*residue = NULL;
765	if (!set)
766		return -1;
767	*modulo = isl_val_alloc(isl_set_get_ctx(set));
768	*residue = isl_val_alloc(isl_set_get_ctx(set));
769	if (!*modulo || !*residue)
770		goto error;
771	if (isl_set_dim_residue_class(set, pos,
772					&(*modulo)->n, &(*residue)->n) < 0)
773		goto error;
774	isl_int_set_si((*modulo)->d, 1);
775	isl_int_set_si((*residue)->d, 1);
776	return 0;
777error:
778	isl_val_free(*modulo);
779	isl_val_free(*residue);
780	return -1;
781}
782