1/* Copyright (C) 2013-2015 Free Software Foundation, Inc.
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
7Software Foundation; either version 3, or (at your option) any later
8version.
9
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13for more details.
14
15You should have received a copy of the GNU General Public License
16along with GCC; see the file COPYING3.  If not see
17<http://www.gnu.org/licenses/>.  */
18
19/* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers
20   before using them for virtual method dispatches.  */
21
22/* This file is part of the vtable security feature implementation.
23   The vtable security feature is designed to detect when a virtual
24   call is about to be made through an invalid vtable pointer
25   (possibly due to data corruption or malicious attacks). The
26   compiler finds every virtual call, and inserts a verification call
27   before the virtual call.  The verification call takes the actual
28   vtable pointer value in the object through which the virtual call
29   is being made, and compares the vtable pointer against a set of all
30   valid vtable pointers that the object could contain (this set is
31   based on the declared type of the object).  If the pointer is in
32   the valid set, execution is allowed to continue; otherwise the
33   program is halted.
34
35  There are several pieces needed in order to make this work: 1. For
36  every virtual class in the program (i.e. a class that contains
37  virtual methods), we need to build the set of all possible valid
38  vtables that an object of that class could point to.  This includes
39  vtables for any class(es) that inherit from the class under
40  consideration.  2. For every such data set we build up, we need a
41  way to find and reference the data set.  This is complicated by the
42  fact that the real vtable addresses are not known until runtime,
43  when the program is loaded into memory, but we need to reference the
44  sets at compile time when we are inserting verification calls into
45  the program.  3.  We need to find every virtual call in the program,
46  and insert the verification call (with the appropriate arguments)
47  before the virtual call.  4. We need some runtime library pieces:
48  the code to build up the data sets at runtime; the code to actually
49  perform the verification using the data sets; and some code to set
50  protections on the data sets, so they themselves do not become
51  hacker targets.
52
53  To find and reference the set of valid vtable pointers for any given
54  virtual class, we create a special global variable for each virtual
55  class.  We refer to this as the "vtable map variable" for that
56  class.  The vtable map variable has the type "void *", and is
57  initialized by the compiler to NULL.  At runtime when the set of
58  valid vtable pointers for a virtual class, e.g. class Foo, is built,
59  the vtable map variable for class Foo is made to point to the set.
60  During compile time, when the compiler is inserting verification
61  calls into the program, it passes the vtable map variable for the
62  appropriate class to the verification call, so that at runtime the
63  verification call can find the appropriate data set.
64
65  The actual set of valid vtable pointers for a virtual class,
66  e.g. class Foo, cannot be built until runtime, when the vtables get
67  loaded into memory and their addresses are known.  But the knowledge
68  about which vtables belong in which class' hierarchy is only known
69  at compile time.  Therefore at compile time we collect class
70  hierarchy and vtable information about every virtual class, and we
71  generate calls to build up the data sets at runtime.  To build the
72  data sets, we call one of the functions we add to the runtime
73  library, __VLTRegisterPair.  __VLTRegisterPair takes two arguments,
74  a vtable map variable and the address of a vtable.  If the vtable
75  map variable is currently NULL, it creates a new data set (hash
76  table), makes the vtable map variable point to the new data set, and
77  inserts the vtable address into the data set.  If the vtable map
78  variable is not NULL, it just inserts the vtable address into the
79  data set.  In order to make sure that our data sets are built before
80  any verification calls happen, we create a special constructor
81  initialization function for each compilation unit, give it a very
82  high initialization priority, and insert all of our calls to
83  __VLTRegisterPair into our special constructor initialization
84  function.
85
86  The vtable verification feature is controlled by the flag
87  '-fvtable-verify='.  There are three flavors of this:
88  '-fvtable-verify=std', '-fvtable-verify=preinit', and
89  '-fvtable-verify=none'.  If the option '-fvtable-verfy=preinit' is
90  used, then our constructor initialization function gets put into the
91  preinit array.  This is necessary if there are data sets that need
92  to be built very early in execution.  If the constructor
93  initialization function gets put into the preinit array, the we also
94  add calls to __VLTChangePermission at the beginning and end of the
95  function.  The call at the beginning sets the permissions on the
96  data sets and vtable map variables to read/write, and the one at the
97  end makes them read-only.  If the '-fvtable-verify=std' option is
98  used, the constructor initialization functions are executed at their
99  normal time, and the __VLTChangePermission calls are handled
100  differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc).
101  The option '-fvtable-verify=none' turns off vtable verification.
102
103  This file contains code for the tree pass that goes through all the
104  statements in each basic block, looking for virtual calls, and
105  inserting a call to __VLTVerifyVtablePointer (with appropriate
106  arguments) before each one.  It also contains the hash table
107  functions for the data structures used for collecting the class
108  hierarchy data and building/maintaining the vtable map variable data
109  are defined in gcc/vtable-verify.h.  These data structures are
110  shared with the code in the C++ front end that collects the class
111  hierarchy & vtable information and generates the vtable map
112  variables (see cp/vtable-class-hierarchy.c).  This tree pass should
113  run just before the gimple is converted to RTL.
114
115  Some implementation details for this pass:
116
117  To find all of the virtual calls, we iterate through all the
118  gimple statements in each basic block, looking for any call
119  statement with the code "OBJ_TYPE_REF".  Once we have found the
120  virtual call, we need to find the vtable pointer through which the
121  call is being made, and the type of the object containing the
122  pointer (to find the appropriate vtable map variable).  We then use
123  these to build a call to __VLTVerifyVtablePointer, passing the
124  vtable map variable, and the vtable pointer.  We insert the
125  verification call just after the gimple statement that gets the
126  vtable pointer out of the object, and we update the next
127  statement to depend on the result returned from
128  __VLTVerifyVtablePointer (the vtable pointer value), to ensure
129  subsequent compiler phases don't remove or reorder the call (it's no
130  good to have the verification occur after the virtual call, for
131  example).  To find the vtable pointer being used (and the type of
132  the object) we search backwards through the def_stmts chain from the
133  virtual call (see verify_bb_vtables for more details).  */
134
135#include "config.h"
136#include "system.h"
137#include "coretypes.h"
138#include "hash-set.h"
139#include "machmode.h"
140#include "vec.h"
141#include "double-int.h"
142#include "input.h"
143#include "alias.h"
144#include "symtab.h"
145#include "options.h"
146#include "wide-int.h"
147#include "inchash.h"
148#include "tree.h"
149#include "fold-const.h"
150#include "predict.h"
151#include "tm.h"
152#include "hard-reg-set.h"
153#include "input.h"
154#include "function.h"
155#include "dominance.h"
156#include "cfg.h"
157#include "basic-block.h"
158#include "tree-ssa-alias.h"
159#include "internal-fn.h"
160#include "gimple-expr.h"
161#include "is-a.h"
162#include "gimple.h"
163#include "gimple-iterator.h"
164#include "gimple-ssa.h"
165#include "tree-phinodes.h"
166#include "ssa-iterators.h"
167#include "stringpool.h"
168#include "tree-ssanames.h"
169#include "tree-pass.h"
170#include "cfgloop.h"
171
172#include "vtable-verify.h"
173
174unsigned num_vtable_map_nodes = 0;
175int total_num_virtual_calls = 0;
176int total_num_verified_vcalls = 0;
177
178extern GTY(()) tree verify_vtbl_ptr_fndecl;
179tree verify_vtbl_ptr_fndecl = NULL_TREE;
180
181/* Keep track of whether or not any virtual call were verified.  */
182static bool any_verification_calls_generated = false;
183
184unsigned int vtable_verify_main (void);
185
186
187/* The following few functions are for the vtbl pointer hash table
188   in the 'registered' field of the struct vtable_map_node.  The hash
189   table keeps track of which vtable pointers have been used in
190   calls to __VLTRegisterPair with that particular vtable map variable.  */
191
192/* This function checks to see if a particular VTABLE_DECL and OFFSET are
193   already in the 'registered' hash table for NODE.  */
194
195bool
196vtbl_map_node_registration_find (struct vtbl_map_node *node,
197                                 tree vtable_decl,
198                                 unsigned offset)
199{
200  struct vtable_registration key;
201  struct vtable_registration **slot;
202
203  gcc_assert (node && node->registered);
204
205  key.vtable_decl = vtable_decl;
206  slot = node->registered->find_slot (&key, NO_INSERT);
207
208  if (slot && (*slot))
209    {
210      unsigned i;
211      for (i = 0; i < ((*slot)->offsets).length (); ++i)
212        if ((*slot)->offsets[i] == offset)
213          return true;
214    }
215
216  return false;
217}
218
219/* This function inserts VTABLE_DECL and OFFSET into the 'registered'
220   hash table for NODE.  It returns a boolean indicating whether or not
221   it actually inserted anything.  */
222
223bool
224vtbl_map_node_registration_insert (struct vtbl_map_node *node,
225                                   tree vtable_decl,
226                                   unsigned offset)
227{
228  struct vtable_registration key;
229  struct vtable_registration **slot;
230  bool inserted_something = false;
231
232  if (!node || !node->registered)
233    return false;
234
235  key.vtable_decl = vtable_decl;
236  slot = node->registered->find_slot (&key, INSERT);
237
238  if (! *slot)
239    {
240      struct vtable_registration *node;
241      node = XNEW (struct vtable_registration);
242      node->vtable_decl = vtable_decl;
243
244      (node->offsets).create (10);
245      (node->offsets).safe_push (offset);
246      *slot = node;
247      inserted_something = true;
248    }
249  else
250    {
251      /* We found the vtable_decl slot; we need to see if it already
252         contains the offset.  If not, we need to add the offset.  */
253      unsigned i;
254      bool found = false;
255      for (i = 0; i < ((*slot)->offsets).length () && !found; ++i)
256        if ((*slot)->offsets[i] == offset)
257          found = true;
258
259      if (!found)
260        {
261          ((*slot)->offsets).safe_push (offset);
262          inserted_something = true;
263        }
264     }
265  return inserted_something;
266}
267
268/* Hashtable functions for vtable_registration hashtables.  */
269
270inline hashval_t
271registration_hasher::hash (const value_type *p)
272{
273  const struct vtable_registration *n = (const struct vtable_registration *) p;
274  return (hashval_t) (DECL_UID (n->vtable_decl));
275}
276
277inline bool
278registration_hasher::equal (const value_type *p1, const compare_type *p2)
279{
280  const struct vtable_registration *n1 =
281                                    (const struct vtable_registration *) p1;
282  const struct vtable_registration *n2 =
283                                    (const struct vtable_registration *) p2;
284  return (DECL_UID (n1->vtable_decl) == DECL_UID (n2->vtable_decl));
285}
286
287/* End of hashtable functions for "registered" hashtables.  */
288
289
290
291/* Hashtable definition and functions for vtbl_map_hash.  */
292
293struct vtbl_map_hasher : typed_noop_remove <struct vtbl_map_node>
294{
295  typedef struct vtbl_map_node value_type;
296  typedef struct vtbl_map_node compare_type;
297  static inline hashval_t hash (const value_type *);
298  static inline bool equal (const value_type *, const compare_type *);
299};
300
301/* Returns a hash code for P.  */
302
303inline hashval_t
304vtbl_map_hasher::hash (const value_type *p)
305{
306  const struct vtbl_map_node n = *((const struct vtbl_map_node *) p);
307  return (hashval_t) IDENTIFIER_HASH_VALUE (n.class_name);
308}
309
310/* Returns nonzero if P1 and P2 are equal.  */
311
312inline bool
313vtbl_map_hasher::equal (const value_type *p1, const compare_type *p2)
314{
315  const struct vtbl_map_node n1 = *((const struct vtbl_map_node *) p1);
316  const struct vtbl_map_node n2 = *((const struct vtbl_map_node *) p2);
317  return (IDENTIFIER_HASH_VALUE (n1.class_name) ==
318          IDENTIFIER_HASH_VALUE (n2.class_name));
319}
320
321/* Here are the two structures into which we insert vtable map nodes.
322   We use two data structures because of the vastly different ways we need
323   to find the nodes for various tasks (see comments in vtable-verify.h
324   for more details.  */
325
326typedef hash_table<vtbl_map_hasher> vtbl_map_table_type;
327typedef vtbl_map_table_type::iterator vtbl_map_iterator_type;
328
329/* Vtable map variable nodes stored in a hash table.  */
330static vtbl_map_table_type *vtbl_map_hash;
331
332/* Vtable map variable nodes stored in a vector.  */
333vec<struct vtbl_map_node *> vtbl_map_nodes_vec;
334
335/* Return vtbl_map node for CLASS_NAME  without creating a new one.  */
336
337struct vtbl_map_node *
338vtbl_map_get_node (tree class_type)
339{
340  struct vtbl_map_node key;
341  struct vtbl_map_node **slot;
342
343  tree class_type_decl;
344  tree class_name;
345  unsigned int type_quals;
346
347  if (!vtbl_map_hash)
348    return NULL;
349
350  gcc_assert (TREE_CODE (class_type) == RECORD_TYPE);
351
352
353  /* Find the TYPE_DECL for the class.  */
354  class_type_decl = TYPE_NAME (class_type);
355
356  /* Verify that there aren't any qualifiers on the type.  */
357  type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
358  gcc_assert (type_quals == TYPE_UNQUALIFIED);
359
360  /* Get the mangled name for the unqualified type.  */
361  gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
362  class_name = DECL_ASSEMBLER_NAME (class_type_decl);
363
364  key.class_name = class_name;
365  slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, NO_INSERT);
366  if (!slot)
367    return NULL;
368  return *slot;
369}
370
371/* Return vtbl_map node assigned to BASE_CLASS_TYPE.  Create new one
372   when needed.  */
373
374struct vtbl_map_node *
375find_or_create_vtbl_map_node (tree base_class_type)
376{
377  struct vtbl_map_node key;
378  struct vtbl_map_node *node;
379  struct vtbl_map_node **slot;
380  tree class_type_decl;
381  unsigned int type_quals;
382
383  if (!vtbl_map_hash)
384    vtbl_map_hash = new vtbl_map_table_type (10);
385
386  /* Find the TYPE_DECL for the class.  */
387  class_type_decl = TYPE_NAME (base_class_type);
388
389  /* Verify that there aren't any type qualifiers on type.  */
390  type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
391  gcc_assert (type_quals == TYPE_UNQUALIFIED);
392
393  gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
394  key.class_name = DECL_ASSEMBLER_NAME (class_type_decl);
395  slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, INSERT);
396
397  if (*slot)
398    return *slot;
399
400  node = XNEW (struct vtbl_map_node);
401  node->vtbl_map_decl = NULL_TREE;
402  node->class_name = key.class_name;
403  node->uid = num_vtable_map_nodes++;
404
405  node->class_info = XNEW (struct vtv_graph_node);
406  node->class_info->class_type = base_class_type;
407  node->class_info->class_uid = node->uid;
408  node->class_info->num_processed_children = 0;
409
410  (node->class_info->parents).create (4);
411  (node->class_info->children).create (4);
412
413  node->registered = new register_table_type (16);
414
415  node->is_used = false;
416
417  vtbl_map_nodes_vec.safe_push (node);
418  gcc_assert (vtbl_map_nodes_vec[node->uid] == node);
419
420  *slot = node;
421  return node;
422}
423
424/* End of hashtable functions for vtable_map variables hash table.   */
425
426/* Given a gimple STMT, this function checks to see if the statement
427   is an assignment, the rhs of which is getting the vtable pointer
428   value out of an object.  (i.e. it's the value we need to verify
429   because its the vtable pointer that will be used for a virtual
430   call).  */
431
432static bool
433is_vtable_assignment_stmt (gimple stmt)
434{
435
436  if (gimple_code (stmt) != GIMPLE_ASSIGN)
437    return false;
438  else
439    {
440      tree lhs = gimple_assign_lhs (stmt);
441      tree rhs = gimple_assign_rhs1 (stmt);
442
443      if (TREE_CODE (lhs) != SSA_NAME)
444        return false;
445
446      if (TREE_CODE (rhs) != COMPONENT_REF)
447        return false;
448
449      if (! (TREE_OPERAND (rhs, 1))
450          || (TREE_CODE (TREE_OPERAND (rhs, 1)) != FIELD_DECL))
451        return false;
452
453      if (! DECL_VIRTUAL_P (TREE_OPERAND (rhs, 1)))
454        return false;
455    }
456
457    return true;
458}
459
460/* This function attempts to recover the declared class of an object
461   that is used in making a virtual call.  We try to get the type from
462   the type cast in the gimple assignment statement that extracts the
463   vtable pointer from the object (DEF_STMT).  The gimple statement
464   usually looks something like this:
465
466   D.2201_4 = MEM[(struct Event *)this_1(D)]._vptr.Event    */
467
468static tree
469extract_object_class_type (tree rhs)
470{
471  tree result = NULL_TREE;
472
473  /* Try to find and extract the type cast from that stmt.  */
474  if (TREE_CODE (rhs) == COMPONENT_REF)
475    {
476      tree op0 = TREE_OPERAND (rhs, 0);
477      tree op1 = TREE_OPERAND (rhs, 1);
478
479      if (TREE_CODE (op1) == FIELD_DECL
480          && DECL_VIRTUAL_P (op1))
481        {
482          if (TREE_CODE (op0) == COMPONENT_REF
483              && TREE_CODE (TREE_OPERAND (op0, 0)) == MEM_REF
484              && TREE_CODE (TREE_TYPE (TREE_OPERAND (op0, 0)))== RECORD_TYPE)
485            result = TREE_TYPE (TREE_OPERAND (op0, 0));
486          else
487            result = TREE_TYPE (op0);
488        }
489      else if (TREE_CODE (op0) == COMPONENT_REF)
490        {
491          result = extract_object_class_type (op0);
492          if (result == NULL_TREE
493              && TREE_CODE (op1) == COMPONENT_REF)
494            result = extract_object_class_type (op1);
495        }
496    }
497
498  return result;
499}
500
501/* This function traces forward through the def-use chain of an SSA
502   variable to see if it ever gets used in a virtual function call.  It
503   returns a boolean indicating whether or not it found a virtual call in
504   the use chain.  */
505
506static bool
507var_is_used_for_virtual_call_p (tree lhs, int *mem_ref_depth)
508{
509  imm_use_iterator imm_iter;
510  bool found_vcall = false;
511  use_operand_p use_p;
512
513  if (TREE_CODE (lhs) != SSA_NAME)
514    return false;
515
516  if (*mem_ref_depth > 2)
517    return false;
518
519  /* Iterate through the immediate uses of the current variable.  If
520     it's a virtual function call, we're done.  Otherwise, if there's
521     an LHS for the use stmt, add the ssa var to the work list
522     (assuming it's not already in the list and is not a variable
523     we've already examined.  */
524
525  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
526    {
527      gimple stmt2 = USE_STMT (use_p);
528
529      if (is_gimple_call (stmt2))
530        {
531          tree fncall = gimple_call_fn (stmt2);
532          if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
533            found_vcall = true;
534	  else
535	    return false;
536        }
537      else if (gimple_code (stmt2) == GIMPLE_PHI)
538        {
539          found_vcall = var_is_used_for_virtual_call_p
540	                                            (gimple_phi_result (stmt2),
541	                                             mem_ref_depth);
542        }
543      else if (is_gimple_assign (stmt2))
544        {
545	  tree rhs = gimple_assign_rhs1 (stmt2);
546	  if (TREE_CODE (rhs) == ADDR_EXPR
547	      || TREE_CODE (rhs) == MEM_REF)
548	    *mem_ref_depth = *mem_ref_depth + 1;
549
550	  if (TREE_CODE (rhs) == COMPONENT_REF)
551	    {
552	      while (TREE_CODE (TREE_OPERAND (rhs, 0)) == COMPONENT_REF)
553		rhs = TREE_OPERAND (rhs, 0);
554
555	      if (TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
556		  || TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)
557		*mem_ref_depth = *mem_ref_depth + 1;
558	    }
559
560	  if (*mem_ref_depth < 3)
561	    found_vcall = var_is_used_for_virtual_call_p
562	                                            (gimple_assign_lhs (stmt2),
563						     mem_ref_depth);
564        }
565
566      else
567        break;
568
569      if (found_vcall)
570        return true;
571    }
572
573  return false;
574}
575
576/* Search through all the statements in a basic block (BB), searching
577   for virtual method calls.  For each virtual method dispatch, find
578   the vptr value used, and the statically declared type of the
579   object; retrieve the vtable map variable for the type of the
580   object; generate a call to __VLTVerifyVtablePointer; and insert the
581   generated call into the basic block, after the point where the vptr
582   value is gotten out of the object and before the virtual method
583   dispatch. Make the virtual method dispatch depend on the return
584   value from the verification call, so that subsequent optimizations
585   cannot reorder the two calls.  */
586
587static void
588verify_bb_vtables (basic_block bb)
589{
590  gimple_seq stmts;
591  gimple stmt = NULL;
592  gimple_stmt_iterator gsi_vtbl_assign;
593  gimple_stmt_iterator gsi_virtual_call;
594
595  stmts = bb_seq (bb);
596  gsi_virtual_call = gsi_start (stmts);
597  for (; !gsi_end_p (gsi_virtual_call); gsi_next (&gsi_virtual_call))
598    {
599      stmt = gsi_stmt (gsi_virtual_call);
600
601      /* Count virtual calls.  */
602      if (is_gimple_call (stmt))
603        {
604          tree fncall = gimple_call_fn (stmt);
605          if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
606            total_num_virtual_calls++;
607        }
608
609      if (is_vtable_assignment_stmt (stmt))
610        {
611          tree lhs = gimple_assign_lhs (stmt);
612          tree vtbl_var_decl = NULL_TREE;
613          struct vtbl_map_node *vtable_map_node;
614          tree vtbl_decl = NULL_TREE;
615          gcall *call_stmt;
616          const char *vtable_name = "<unknown>";
617          tree tmp0;
618          bool found;
619	  int mem_ref_depth = 0;
620
621          /* Make sure this vptr field access is for a virtual call.  */
622          if (!var_is_used_for_virtual_call_p (lhs, &mem_ref_depth))
623            continue;
624
625          /* Now we have found the virtual method dispatch and
626             the preceding access of the _vptr.* field... Next
627             we need to find the statically declared type of
628             the object, so we can find and use the right
629             vtable map variable in the verification call.  */
630          tree class_type = extract_object_class_type
631                                                   (gimple_assign_rhs1 (stmt));
632
633          gsi_vtbl_assign = gsi_for_stmt (stmt);
634
635          if (class_type
636              && (TREE_CODE (class_type) == RECORD_TYPE)
637              && TYPE_BINFO (class_type))
638            {
639              /* Get the vtable VAR_DECL for the type.  */
640              vtbl_var_decl = BINFO_VTABLE (TYPE_BINFO (class_type));
641
642              if (TREE_CODE (vtbl_var_decl) == POINTER_PLUS_EXPR)
643                vtbl_var_decl = TREE_OPERAND (TREE_OPERAND (vtbl_var_decl, 0),
644                                              0);
645
646              gcc_assert (vtbl_var_decl);
647
648              vtbl_decl = vtbl_var_decl;
649              vtable_map_node = vtbl_map_get_node
650                                               (TYPE_MAIN_VARIANT (class_type));
651
652              gcc_assert (verify_vtbl_ptr_fndecl);
653
654              /* Given the vtable pointer for the base class of the
655                 object, build the call to __VLTVerifyVtablePointer to
656                 verify that the object's vtable pointer (contained in
657                 lhs) is in the set of valid vtable pointers for the
658                 base class.  */
659
660              if (vtable_map_node && vtable_map_node->vtbl_map_decl)
661                {
662                  vtable_map_node->is_used = true;
663                  vtbl_var_decl = vtable_map_node->vtbl_map_decl;
664
665                  if (TREE_CODE (vtbl_decl) == VAR_DECL)
666                    vtable_name = IDENTIFIER_POINTER (DECL_NAME (vtbl_decl));
667
668                  /* Call different routines if we are interested in
669                     trace information to debug problems.  */
670                  if (flag_vtv_debug)
671                    {
672                      int len1 = IDENTIFIER_LENGTH
673                                                 (DECL_NAME (vtbl_var_decl));
674                      int len2 = strlen (vtable_name);
675
676                      call_stmt = gimple_build_call
677                                     (verify_vtbl_ptr_fndecl, 4,
678                                      build1 (ADDR_EXPR,
679                                                TYPE_POINTER_TO
680                                                  (TREE_TYPE (vtbl_var_decl)),
681                                              vtbl_var_decl),
682                                      lhs,
683                                      build_string_literal
684                                                  (len1 + 1,
685                                                   IDENTIFIER_POINTER
686                                                       (DECL_NAME
687                                                            (vtbl_var_decl))),
688                                      build_string_literal (len2 + 1,
689                                                            vtable_name));
690                    }
691                  else
692                    call_stmt = gimple_build_call
693                                     (verify_vtbl_ptr_fndecl, 2,
694                                      build1 (ADDR_EXPR,
695                                                TYPE_POINTER_TO
696                                                  (TREE_TYPE (vtbl_var_decl)),
697                                                 vtbl_var_decl),
698                                      lhs);
699
700
701                  /* Create a new SSA_NAME var to hold the call's
702                     return value, and make the call_stmt use the
703                     variable for that purpose.  */
704                  tmp0 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "VTV");
705                  gimple_call_set_lhs (call_stmt, tmp0);
706                  update_stmt (call_stmt);
707
708                  /* Replace all uses of lhs with tmp0. */
709                  found = false;
710                  imm_use_iterator iterator;
711                  gimple use_stmt;
712                  FOR_EACH_IMM_USE_STMT (use_stmt, iterator, lhs)
713                    {
714                      use_operand_p use_p;
715                      if (use_stmt == call_stmt)
716                        continue;
717                      FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
718                        SET_USE (use_p, tmp0);
719                      update_stmt (use_stmt);
720                      found = true;
721                    }
722
723                  gcc_assert (found);
724
725                  /* Insert the new verification call just after the
726                     statement that gets the vtable pointer out of the
727                     object.  */
728                  gcc_assert (gsi_stmt (gsi_vtbl_assign) == stmt);
729                  gsi_insert_after (&gsi_vtbl_assign, call_stmt,
730                                    GSI_NEW_STMT);
731
732                  any_verification_calls_generated = true;
733                  total_num_verified_vcalls++;
734                }
735            }
736        }
737    }
738}
739
740/* Definition of this optimization pass.  */
741
742namespace {
743
744const pass_data pass_data_vtable_verify =
745{
746  GIMPLE_PASS, /* type */
747  "vtable-verify", /* name */
748  OPTGROUP_NONE, /* optinfo_flags */
749  TV_VTABLE_VERIFICATION, /* tv_id */
750  ( PROP_cfg | PROP_ssa ), /* properties_required */
751  0, /* properties_provided */
752  0, /* properties_destroyed */
753  0, /* todo_flags_start */
754  TODO_update_ssa, /* todo_flags_finish */
755};
756
757class pass_vtable_verify : public gimple_opt_pass
758{
759public:
760  pass_vtable_verify (gcc::context *ctxt)
761    : gimple_opt_pass (pass_data_vtable_verify, ctxt)
762  {}
763
764  /* opt_pass methods: */
765  virtual bool gate (function *) { return (flag_vtable_verify); }
766  virtual unsigned int execute (function *);
767
768}; // class pass_vtable_verify
769
770/* Loop through all the basic blocks in the current function, passing them to
771   verify_bb_vtables, which searches for virtual calls, and inserts
772   calls to __VLTVerifyVtablePointer.  */
773
774unsigned int
775pass_vtable_verify::execute (function *fun)
776{
777  unsigned int ret = 1;
778  basic_block bb;
779
780  FOR_ALL_BB_FN (bb, fun)
781      verify_bb_vtables (bb);
782
783  return ret;
784}
785
786} // anon namespace
787
788gimple_opt_pass *
789make_pass_vtable_verify (gcc::context *ctxt)
790{
791  return new pass_vtable_verify (ctxt);
792}
793
794#include "gt-vtable-verify.h"
795