1/* Vector API for GNU compiler.
2   Copyright (C) 2004-2015 Free Software Foundation, Inc.
3   Contributed by Nathan Sidwell <nathan@codesourcery.com>
4   Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
25/* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26   support because the headers generated by gengtype are still not
27   present.  In particular, the header file gtype-desc.h is missing,
28   so compilation may fail if we try to include ggc.h.
29
30   Since we use some of those declarations, we need to provide them
31   (even if the GC-based templates are not used).  This is not a
32   problem because the code that runs before gengtype is built will
33   never need to use GC vectors.  But it does force us to declare
34   these functions more than once.  */
35#ifdef GENERATOR_FILE
36#define VEC_GC_ENABLED	0
37#else
38#define VEC_GC_ENABLED	1
39#endif	// GENERATOR_FILE
40
41#include "statistics.h"		// For CXX_MEM_STAT_INFO.
42
43#if VEC_GC_ENABLED
44#include "ggc.h"
45#else
46# ifndef GCC_GGC_H
47  /* Even if we think that GC is not enabled, the test that sets it is
48     weak.  There are files compiled with -DGENERATOR_FILE that already
49     include ggc.h.  We only need to provide these definitions if ggc.h
50     has not been included.  Sigh.  */
51
52  extern void ggc_free (void *);
53  extern size_t ggc_round_alloc_size (size_t requested_size);
54  extern void *ggc_realloc (void *, size_t CXX_MEM_STAT_INFO);
55#  endif  // GCC_GGC_H
56#endif	// VEC_GC_ENABLED
57
58/* Templated vector type and associated interfaces.
59
60   The interface functions are typesafe and use inline functions,
61   sometimes backed by out-of-line generic functions.  The vectors are
62   designed to interoperate with the GTY machinery.
63
64   There are both 'index' and 'iterate' accessors.  The index accessor
65   is implemented by operator[].  The iterator returns a boolean
66   iteration condition and updates the iteration variable passed by
67   reference.  Because the iterator will be inlined, the address-of
68   can be optimized away.
69
70   Each operation that increases the number of active elements is
71   available in 'quick' and 'safe' variants.  The former presumes that
72   there is sufficient allocated space for the operation to succeed
73   (it dies if there is not).  The latter will reallocate the
74   vector, if needed.  Reallocation causes an exponential increase in
75   vector size.  If you know you will be adding N elements, it would
76   be more efficient to use the reserve operation before adding the
77   elements with the 'quick' operation.  This will ensure there are at
78   least as many elements as you ask for, it will exponentially
79   increase if there are too few spare slots.  If you want reserve a
80   specific number of slots, but do not want the exponential increase
81   (for instance, you know this is the last allocation), use the
82   reserve_exact operation.  You can also create a vector of a
83   specific size from the get go.
84
85   You should prefer the push and pop operations, as they append and
86   remove from the end of the vector. If you need to remove several
87   items in one go, use the truncate operation.  The insert and remove
88   operations allow you to change elements in the middle of the
89   vector.  There are two remove operations, one which preserves the
90   element ordering 'ordered_remove', and one which does not
91   'unordered_remove'.  The latter function copies the end element
92   into the removed slot, rather than invoke a memmove operation.  The
93   'lower_bound' function will determine where to place an item in the
94   array using insert that will maintain sorted order.
95
96   Vectors are template types with three arguments: the type of the
97   elements in the vector, the allocation strategy, and the physical
98   layout to use
99
100   Four allocation strategies are supported:
101
102	- Heap: allocation is done using malloc/free.  This is the
103	  default allocation strategy.
104
105  	- GC: allocation is done using ggc_alloc/ggc_free.
106
107  	- GC atomic: same as GC with the exception that the elements
108	  themselves are assumed to be of an atomic type that does
109	  not need to be garbage collected.  This means that marking
110	  routines do not need to traverse the array marking the
111	  individual elements.  This increases the performance of
112	  GC activities.
113
114   Two physical layouts are supported:
115
116	- Embedded: The vector is structured using the trailing array
117	  idiom.  The last member of the structure is an array of size
118	  1.  When the vector is initially allocated, a single memory
119	  block is created to hold the vector's control data and the
120	  array of elements.  These vectors cannot grow without
121	  reallocation (see discussion on embeddable vectors below).
122
123	- Space efficient: The vector is structured as a pointer to an
124	  embedded vector.  This is the default layout.  It means that
125	  vectors occupy a single word of storage before initial
126	  allocation.  Vectors are allowed to grow (the internal
127	  pointer is reallocated but the main vector instance does not
128	  need to relocate).
129
130   The type, allocation and layout are specified when the vector is
131   declared.
132
133   If you need to directly manipulate a vector, then the 'address'
134   accessor will return the address of the start of the vector.  Also
135   the 'space' predicate will tell you whether there is spare capacity
136   in the vector.  You will not normally need to use these two functions.
137
138   Notes on the different layout strategies
139
140   * Embeddable vectors (vec<T, A, vl_embed>)
141
142     These vectors are suitable to be embedded in other data
143     structures so that they can be pre-allocated in a contiguous
144     memory block.
145
146     Embeddable vectors are implemented using the trailing array
147     idiom, thus they are not resizeable without changing the address
148     of the vector object itself.  This means you cannot have
149     variables or fields of embeddable vector type -- always use a
150     pointer to a vector.  The one exception is the final field of a
151     structure, which could be a vector type.
152
153     You will have to use the embedded_size & embedded_init calls to
154     create such objects, and they will not be resizeable (so the
155     'safe' allocation variants are not available).
156
157     Properties of embeddable vectors:
158
159	  - The whole vector and control data are allocated in a single
160	    contiguous block.  It uses the trailing-vector idiom, so
161	    allocation must reserve enough space for all the elements
162	    in the vector plus its control data.
163	  - The vector cannot be re-allocated.
164	  - The vector cannot grow nor shrink.
165	  - No indirections needed for access/manipulation.
166	  - It requires 2 words of storage (prior to vector allocation).
167
168
169   * Space efficient vector (vec<T, A, vl_ptr>)
170
171     These vectors can grow dynamically and are allocated together
172     with their control data.  They are suited to be included in data
173     structures.  Prior to initial allocation, they only take a single
174     word of storage.
175
176     These vectors are implemented as a pointer to embeddable vectors.
177     The semantics allow for this pointer to be NULL to represent
178     empty vectors.  This way, empty vectors occupy minimal space in
179     the structure containing them.
180
181     Properties:
182
183	- The whole vector and control data are allocated in a single
184	  contiguous block.
185  	- The whole vector may be re-allocated.
186  	- Vector data may grow and shrink.
187  	- Access and manipulation requires a pointer test and
188	  indirection.
189  	- It requires 1 word of storage (prior to vector allocation).
190
191   An example of their use would be,
192
193   struct my_struct {
194     // A space-efficient vector of tree pointers in GC memory.
195     vec<tree, va_gc, vl_ptr> v;
196   };
197
198   struct my_struct *s;
199
200   if (s->v.length ()) { we have some contents }
201   s->v.safe_push (decl); // append some decl onto the end
202   for (ix = 0; s->v.iterate (ix, &elt); ix++)
203     { do something with elt }
204*/
205
206/* Support function for statistics.  */
207extern void dump_vec_loc_statistics (void);
208
209
210/* Control data for vectors.  This contains the number of allocated
211   and used slots inside a vector.  */
212
213struct vec_prefix
214{
215  /* FIXME - These fields should be private, but we need to cater to
216	     compilers that have stricter notions of PODness for types.  */
217
218  /* Memory allocation support routines in vec.c.  */
219  void register_overhead (size_t, const char *, int, const char *);
220  void release_overhead (void);
221  static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
222  static unsigned calculate_allocation_1 (unsigned, unsigned);
223
224  /* Note that vec_prefix should be a base class for vec, but we use
225     offsetof() on vector fields of tree structures (e.g.,
226     tree_binfo::base_binfos), and offsetof only supports base types.
227
228     To compensate, we make vec_prefix a field inside vec and make
229     vec a friend class of vec_prefix so it can access its fields.  */
230  template <typename, typename, typename> friend struct vec;
231
232  /* The allocator types also need access to our internals.  */
233  friend struct va_gc;
234  friend struct va_gc_atomic;
235  friend struct va_heap;
236
237  unsigned m_alloc : 31;
238  unsigned m_using_auto_storage : 1;
239  unsigned m_num;
240};
241
242/* Calculate the number of slots to reserve a vector, making sure that
243   RESERVE slots are free.  If EXACT grow exactly, otherwise grow
244   exponentially.  PFX is the control data for the vector.  */
245
246inline unsigned
247vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
248				  bool exact)
249{
250  if (exact)
251    return (pfx ? pfx->m_num : 0) + reserve;
252  else if (!pfx)
253    return MAX (4, reserve);
254  return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
255}
256
257template<typename, typename, typename> struct vec;
258
259/* Valid vector layouts
260
261   vl_embed	- Embeddable vector that uses the trailing array idiom.
262   vl_ptr	- Space efficient vector that uses a pointer to an
263		  embeddable vector.  */
264struct vl_embed { };
265struct vl_ptr { };
266
267
268/* Types of supported allocations
269
270   va_heap	- Allocation uses malloc/free.
271   va_gc	- Allocation uses ggc_alloc.
272   va_gc_atomic	- Same as GC, but individual elements of the array
273		  do not need to be marked during collection.  */
274
275/* Allocator type for heap vectors.  */
276struct va_heap
277{
278  /* Heap vectors are frequently regular instances, so use the vl_ptr
279     layout for them.  */
280  typedef vl_ptr default_layout;
281
282  template<typename T>
283  static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
284		       CXX_MEM_STAT_INFO);
285
286  template<typename T>
287  static void release (vec<T, va_heap, vl_embed> *&);
288};
289
290
291/* Allocator for heap memory.  Ensure there are at least RESERVE free
292   slots in V.  If EXACT is true, grow exactly, else grow
293   exponentially.  As a special case, if the vector had not been
294   allocated and and RESERVE is 0, no vector will be created.  */
295
296template<typename T>
297inline void
298va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
299		  MEM_STAT_DECL)
300{
301  unsigned alloc
302    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
303  gcc_checking_assert (alloc);
304
305  if (GATHER_STATISTICS && v)
306    v->m_vecpfx.release_overhead ();
307
308  size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
309  unsigned nelem = v ? v->length () : 0;
310  v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
311  v->embedded_init (alloc, nelem);
312
313  if (GATHER_STATISTICS)
314    v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
315}
316
317
318/* Free the heap space allocated for vector V.  */
319
320template<typename T>
321void
322va_heap::release (vec<T, va_heap, vl_embed> *&v)
323{
324  if (v == NULL)
325    return;
326
327  if (GATHER_STATISTICS)
328    v->m_vecpfx.release_overhead ();
329  ::free (v);
330  v = NULL;
331}
332
333
334/* Allocator type for GC vectors.  Notice that we need the structure
335   declaration even if GC is not enabled.  */
336
337struct va_gc
338{
339  /* Use vl_embed as the default layout for GC vectors.  Due to GTY
340     limitations, GC vectors must always be pointers, so it is more
341     efficient to use a pointer to the vl_embed layout, rather than
342     using a pointer to a pointer as would be the case with vl_ptr.  */
343  typedef vl_embed default_layout;
344
345  template<typename T, typename A>
346  static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
347		       CXX_MEM_STAT_INFO);
348
349  template<typename T, typename A>
350  static void release (vec<T, A, vl_embed> *&v);
351};
352
353
354/* Free GC memory used by V and reset V to NULL.  */
355
356template<typename T, typename A>
357inline void
358va_gc::release (vec<T, A, vl_embed> *&v)
359{
360  if (v)
361    ::ggc_free (v);
362  v = NULL;
363}
364
365
366/* Allocator for GC memory.  Ensure there are at least RESERVE free
367   slots in V.  If EXACT is true, grow exactly, else grow
368   exponentially.  As a special case, if the vector had not been
369   allocated and and RESERVE is 0, no vector will be created.  */
370
371template<typename T, typename A>
372void
373va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
374		MEM_STAT_DECL)
375{
376  unsigned alloc
377    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
378  if (!alloc)
379    {
380      ::ggc_free (v);
381      v = NULL;
382      return;
383    }
384
385  /* Calculate the amount of space we want.  */
386  size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
387
388  /* Ask the allocator how much space it will really give us.  */
389  size = ::ggc_round_alloc_size (size);
390
391  /* Adjust the number of slots accordingly.  */
392  size_t vec_offset = sizeof (vec_prefix);
393  size_t elt_size = sizeof (T);
394  alloc = (size - vec_offset) / elt_size;
395
396  /* And finally, recalculate the amount of space we ask for.  */
397  size = vec_offset + alloc * elt_size;
398
399  unsigned nelem = v ? v->length () : 0;
400  v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
401							       PASS_MEM_STAT));
402  v->embedded_init (alloc, nelem);
403}
404
405
406/* Allocator type for GC vectors.  This is for vectors of types
407   atomics w.r.t. collection, so allocation and deallocation is
408   completely inherited from va_gc.  */
409struct va_gc_atomic : va_gc
410{
411};
412
413
414/* Generic vector template.  Default values for A and L indicate the
415   most commonly used strategies.
416
417   FIXME - Ideally, they would all be vl_ptr to encourage using regular
418           instances for vectors, but the existing GTY machinery is limited
419	   in that it can only deal with GC objects that are pointers
420	   themselves.
421
422	   This means that vector operations that need to deal with
423	   potentially NULL pointers, must be provided as free
424	   functions (see the vec_safe_* functions above).  */
425template<typename T,
426         typename A = va_heap,
427         typename L = typename A::default_layout>
428struct GTY((user)) vec
429{
430};
431
432/* Type to provide NULL values for vec<T, A, L>.  This is used to
433   provide nil initializers for vec instances.  Since vec must be
434   a POD, we cannot have proper ctor/dtor for it.  To initialize
435   a vec instance, you can assign it the value vNULL.  */
436struct vnull
437{
438  template <typename T, typename A, typename L>
439  operator vec<T, A, L> () { return vec<T, A, L>(); }
440};
441extern vnull vNULL;
442
443
444/* Embeddable vector.  These vectors are suitable to be embedded
445   in other data structures so that they can be pre-allocated in a
446   contiguous memory block.
447
448   Embeddable vectors are implemented using the trailing array idiom,
449   thus they are not resizeable without changing the address of the
450   vector object itself.  This means you cannot have variables or
451   fields of embeddable vector type -- always use a pointer to a
452   vector.  The one exception is the final field of a structure, which
453   could be a vector type.
454
455   You will have to use the embedded_size & embedded_init calls to
456   create such objects, and they will not be resizeable (so the 'safe'
457   allocation variants are not available).
458
459   Properties:
460
461	- The whole vector and control data are allocated in a single
462	  contiguous block.  It uses the trailing-vector idiom, so
463	  allocation must reserve enough space for all the elements
464  	  in the vector plus its control data.
465  	- The vector cannot be re-allocated.
466  	- The vector cannot grow nor shrink.
467  	- No indirections needed for access/manipulation.
468  	- It requires 2 words of storage (prior to vector allocation).  */
469
470template<typename T, typename A>
471struct GTY((user)) vec<T, A, vl_embed>
472{
473public:
474  unsigned allocated (void) const { return m_vecpfx.m_alloc; }
475  unsigned length (void) const { return m_vecpfx.m_num; }
476  bool is_empty (void) const { return m_vecpfx.m_num == 0; }
477  T *address (void) { return m_vecdata; }
478  const T *address (void) const { return m_vecdata; }
479  const T &operator[] (unsigned) const;
480  T &operator[] (unsigned);
481  T &last (void);
482  bool space (unsigned) const;
483  bool iterate (unsigned, T *) const;
484  bool iterate (unsigned, T **) const;
485  vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
486  void splice (vec &);
487  void splice (vec *src);
488  T *quick_push (const T &);
489  T &pop (void);
490  void truncate (unsigned);
491  void quick_insert (unsigned, const T &);
492  void ordered_remove (unsigned);
493  void unordered_remove (unsigned);
494  void block_remove (unsigned, unsigned);
495  void qsort (int (*) (const void *, const void *));
496  T *bsearch (const void *key, int (*compar)(const void *, const void *));
497  unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
498  static size_t embedded_size (unsigned);
499  void embedded_init (unsigned, unsigned = 0, unsigned = 0);
500  void quick_grow (unsigned len);
501  void quick_grow_cleared (unsigned len);
502
503  /* vec class can access our internal data and functions.  */
504  template <typename, typename, typename> friend struct vec;
505
506  /* The allocator types also need access to our internals.  */
507  friend struct va_gc;
508  friend struct va_gc_atomic;
509  friend struct va_heap;
510
511  /* FIXME - These fields should be private, but we need to cater to
512	     compilers that have stricter notions of PODness for types.  */
513  vec_prefix m_vecpfx;
514  T m_vecdata[1];
515};
516
517
518/* Convenience wrapper functions to use when dealing with pointers to
519   embedded vectors.  Some functionality for these vectors must be
520   provided via free functions for these reasons:
521
522	1- The pointer may be NULL (e.g., before initial allocation).
523
524  	2- When the vector needs to grow, it must be reallocated, so
525  	   the pointer will change its value.
526
527   Because of limitations with the current GC machinery, all vectors
528   in GC memory *must* be pointers.  */
529
530
531/* If V contains no room for NELEMS elements, return false. Otherwise,
532   return true.  */
533template<typename T, typename A>
534inline bool
535vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
536{
537  return v ? v->space (nelems) : nelems == 0;
538}
539
540
541/* If V is NULL, return 0.  Otherwise, return V->length().  */
542template<typename T, typename A>
543inline unsigned
544vec_safe_length (const vec<T, A, vl_embed> *v)
545{
546  return v ? v->length () : 0;
547}
548
549
550/* If V is NULL, return NULL.  Otherwise, return V->address().  */
551template<typename T, typename A>
552inline T *
553vec_safe_address (vec<T, A, vl_embed> *v)
554{
555  return v ? v->address () : NULL;
556}
557
558
559/* If V is NULL, return true.  Otherwise, return V->is_empty().  */
560template<typename T, typename A>
561inline bool
562vec_safe_is_empty (vec<T, A, vl_embed> *v)
563{
564  return v ? v->is_empty () : true;
565}
566
567
568/* If V does not have space for NELEMS elements, call
569   V->reserve(NELEMS, EXACT).  */
570template<typename T, typename A>
571inline bool
572vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
573		  CXX_MEM_STAT_INFO)
574{
575  bool extend = nelems ? !vec_safe_space (v, nelems) : false;
576  if (extend)
577    A::reserve (v, nelems, exact PASS_MEM_STAT);
578  return extend;
579}
580
581template<typename T, typename A>
582inline bool
583vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
584			CXX_MEM_STAT_INFO)
585{
586  return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
587}
588
589
590/* Allocate GC memory for V with space for NELEMS slots.  If NELEMS
591   is 0, V is initialized to NULL.  */
592
593template<typename T, typename A>
594inline void
595vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
596{
597  v = NULL;
598  vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
599}
600
601
602/* Free the GC memory allocated by vector V and set it to NULL.  */
603
604template<typename T, typename A>
605inline void
606vec_free (vec<T, A, vl_embed> *&v)
607{
608  A::release (v);
609}
610
611
612/* Grow V to length LEN.  Allocate it, if necessary.  */
613template<typename T, typename A>
614inline void
615vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
616{
617  unsigned oldlen = vec_safe_length (v);
618  gcc_checking_assert (len >= oldlen);
619  vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
620  v->quick_grow (len);
621}
622
623
624/* If V is NULL, allocate it.  Call V->safe_grow_cleared(LEN).  */
625template<typename T, typename A>
626inline void
627vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
628{
629  unsigned oldlen = vec_safe_length (v);
630  vec_safe_grow (v, len PASS_MEM_STAT);
631  memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
632}
633
634
635/* If V is NULL return false, otherwise return V->iterate(IX, PTR).  */
636template<typename T, typename A>
637inline bool
638vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
639{
640  if (v)
641    return v->iterate (ix, ptr);
642  else
643    {
644      *ptr = 0;
645      return false;
646    }
647}
648
649template<typename T, typename A>
650inline bool
651vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
652{
653  if (v)
654    return v->iterate (ix, ptr);
655  else
656    {
657      *ptr = 0;
658      return false;
659    }
660}
661
662
663/* If V has no room for one more element, reallocate it.  Then call
664   V->quick_push(OBJ).  */
665template<typename T, typename A>
666inline T *
667vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
668{
669  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
670  return v->quick_push (obj);
671}
672
673
674/* if V has no room for one more element, reallocate it.  Then call
675   V->quick_insert(IX, OBJ).  */
676template<typename T, typename A>
677inline void
678vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
679		 CXX_MEM_STAT_INFO)
680{
681  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
682  v->quick_insert (ix, obj);
683}
684
685
686/* If V is NULL, do nothing.  Otherwise, call V->truncate(SIZE).  */
687template<typename T, typename A>
688inline void
689vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
690{
691  if (v)
692    v->truncate (size);
693}
694
695
696/* If SRC is not NULL, return a pointer to a copy of it.  */
697template<typename T, typename A>
698inline vec<T, A, vl_embed> *
699vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
700{
701  return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
702}
703
704/* Copy the elements from SRC to the end of DST as if by memcpy.
705   Reallocate DST, if necessary.  */
706template<typename T, typename A>
707inline void
708vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
709		 CXX_MEM_STAT_INFO)
710{
711  unsigned src_len = vec_safe_length (src);
712  if (src_len)
713    {
714      vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
715			      PASS_MEM_STAT);
716      dst->splice (*src);
717    }
718}
719
720
721/* Index into vector.  Return the IX'th element.  IX must be in the
722   domain of the vector.  */
723
724template<typename T, typename A>
725inline const T &
726vec<T, A, vl_embed>::operator[] (unsigned ix) const
727{
728  gcc_checking_assert (ix < m_vecpfx.m_num);
729  return m_vecdata[ix];
730}
731
732template<typename T, typename A>
733inline T &
734vec<T, A, vl_embed>::operator[] (unsigned ix)
735{
736  gcc_checking_assert (ix < m_vecpfx.m_num);
737  return m_vecdata[ix];
738}
739
740
741/* Get the final element of the vector, which must not be empty.  */
742
743template<typename T, typename A>
744inline T &
745vec<T, A, vl_embed>::last (void)
746{
747  gcc_checking_assert (m_vecpfx.m_num > 0);
748  return (*this)[m_vecpfx.m_num - 1];
749}
750
751
752/* If this vector has space for NELEMS additional entries, return
753   true.  You usually only need to use this if you are doing your
754   own vector reallocation, for instance on an embedded vector.  This
755   returns true in exactly the same circumstances that vec::reserve
756   will.  */
757
758template<typename T, typename A>
759inline bool
760vec<T, A, vl_embed>::space (unsigned nelems) const
761{
762  return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
763}
764
765
766/* Return iteration condition and update PTR to point to the IX'th
767   element of this vector.  Use this to iterate over the elements of a
768   vector as follows,
769
770     for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
771       continue;  */
772
773template<typename T, typename A>
774inline bool
775vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
776{
777  if (ix < m_vecpfx.m_num)
778    {
779      *ptr = m_vecdata[ix];
780      return true;
781    }
782  else
783    {
784      *ptr = 0;
785      return false;
786    }
787}
788
789
790/* Return iteration condition and update *PTR to point to the
791   IX'th element of this vector.  Use this to iterate over the
792   elements of a vector as follows,
793
794     for (ix = 0; v->iterate (ix, &ptr); ix++)
795       continue;
796
797   This variant is for vectors of objects.  */
798
799template<typename T, typename A>
800inline bool
801vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
802{
803  if (ix < m_vecpfx.m_num)
804    {
805      *ptr = CONST_CAST (T *, &m_vecdata[ix]);
806      return true;
807    }
808  else
809    {
810      *ptr = 0;
811      return false;
812    }
813}
814
815
816/* Return a pointer to a copy of this vector.  */
817
818template<typename T, typename A>
819inline vec<T, A, vl_embed> *
820vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
821{
822  vec<T, A, vl_embed> *new_vec = NULL;
823  unsigned len = length ();
824  if (len)
825    {
826      vec_alloc (new_vec, len PASS_MEM_STAT);
827      new_vec->embedded_init (len, len);
828      memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
829    }
830  return new_vec;
831}
832
833
834/* Copy the elements from SRC to the end of this vector as if by memcpy.
835   The vector must have sufficient headroom available.  */
836
837template<typename T, typename A>
838inline void
839vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
840{
841  unsigned len = src.length ();
842  if (len)
843    {
844      gcc_checking_assert (space (len));
845      memcpy (address () + length (), src.address (), len * sizeof (T));
846      m_vecpfx.m_num += len;
847    }
848}
849
850template<typename T, typename A>
851inline void
852vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
853{
854  if (src)
855    splice (*src);
856}
857
858
859/* Push OBJ (a new element) onto the end of the vector.  There must be
860   sufficient space in the vector.  Return a pointer to the slot
861   where OBJ was inserted.  */
862
863template<typename T, typename A>
864inline T *
865vec<T, A, vl_embed>::quick_push (const T &obj)
866{
867  gcc_checking_assert (space (1));
868  T *slot = &m_vecdata[m_vecpfx.m_num++];
869  *slot = obj;
870  return slot;
871}
872
873
874/* Pop and return the last element off the end of the vector.  */
875
876template<typename T, typename A>
877inline T &
878vec<T, A, vl_embed>::pop (void)
879{
880  gcc_checking_assert (length () > 0);
881  return m_vecdata[--m_vecpfx.m_num];
882}
883
884
885/* Set the length of the vector to SIZE.  The new length must be less
886   than or equal to the current length.  This is an O(1) operation.  */
887
888template<typename T, typename A>
889inline void
890vec<T, A, vl_embed>::truncate (unsigned size)
891{
892  gcc_checking_assert (length () >= size);
893  m_vecpfx.m_num = size;
894}
895
896
897/* Insert an element, OBJ, at the IXth position of this vector.  There
898   must be sufficient space.  */
899
900template<typename T, typename A>
901inline void
902vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
903{
904  gcc_checking_assert (length () < allocated ());
905  gcc_checking_assert (ix <= length ());
906  T *slot = &m_vecdata[ix];
907  memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
908  *slot = obj;
909}
910
911
912/* Remove an element from the IXth position of this vector.  Ordering of
913   remaining elements is preserved.  This is an O(N) operation due to
914   memmove.  */
915
916template<typename T, typename A>
917inline void
918vec<T, A, vl_embed>::ordered_remove (unsigned ix)
919{
920  gcc_checking_assert (ix < length ());
921  T *slot = &m_vecdata[ix];
922  memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
923}
924
925
926/* Remove an element from the IXth position of this vector.  Ordering of
927   remaining elements is destroyed.  This is an O(1) operation.  */
928
929template<typename T, typename A>
930inline void
931vec<T, A, vl_embed>::unordered_remove (unsigned ix)
932{
933  gcc_checking_assert (ix < length ());
934  m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
935}
936
937
938/* Remove LEN elements starting at the IXth.  Ordering is retained.
939   This is an O(N) operation due to memmove.  */
940
941template<typename T, typename A>
942inline void
943vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
944{
945  gcc_checking_assert (ix + len <= length ());
946  T *slot = &m_vecdata[ix];
947  m_vecpfx.m_num -= len;
948  memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
949}
950
951
952/* Sort the contents of this vector with qsort.  CMP is the comparison
953   function to pass to qsort.  */
954
955template<typename T, typename A>
956inline void
957vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
958{
959  if (length () > 1)
960    ::qsort (address (), length (), sizeof (T), cmp);
961}
962
963
964/* Search the contents of the sorted vector with a binary search.
965   CMP is the comparison function to pass to bsearch.  */
966
967template<typename T, typename A>
968inline T *
969vec<T, A, vl_embed>::bsearch (const void *key,
970			      int (*compar) (const void *, const void *))
971{
972  const void *base = this->address ();
973  size_t nmemb = this->length ();
974  size_t size = sizeof (T);
975  /* The following is a copy of glibc stdlib-bsearch.h.  */
976  size_t l, u, idx;
977  const void *p;
978  int comparison;
979
980  l = 0;
981  u = nmemb;
982  while (l < u)
983    {
984      idx = (l + u) / 2;
985      p = (const void *) (((const char *) base) + (idx * size));
986      comparison = (*compar) (key, p);
987      if (comparison < 0)
988	u = idx;
989      else if (comparison > 0)
990	l = idx + 1;
991      else
992	return (T *)const_cast<void *>(p);
993    }
994
995  return NULL;
996}
997
998
999/* Find and return the first position in which OBJ could be inserted
1000   without changing the ordering of this vector.  LESSTHAN is a
1001   function that returns true if the first argument is strictly less
1002   than the second.  */
1003
1004template<typename T, typename A>
1005unsigned
1006vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1007  const
1008{
1009  unsigned int len = length ();
1010  unsigned int half, middle;
1011  unsigned int first = 0;
1012  while (len > 0)
1013    {
1014      half = len / 2;
1015      middle = first;
1016      middle += half;
1017      T middle_elem = (*this)[middle];
1018      if (lessthan (middle_elem, obj))
1019	{
1020	  first = middle;
1021	  ++first;
1022	  len = len - half - 1;
1023	}
1024      else
1025	len = half;
1026    }
1027  return first;
1028}
1029
1030
1031/* Return the number of bytes needed to embed an instance of an
1032   embeddable vec inside another data structure.
1033
1034   Use these methods to determine the required size and initialization
1035   of a vector V of type T embedded within another structure (as the
1036   final member):
1037
1038   size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1039   void v->embedded_init (unsigned alloc, unsigned num);
1040
1041   These allow the caller to perform the memory allocation.  */
1042
1043template<typename T, typename A>
1044inline size_t
1045vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1046{
1047  typedef vec<T, A, vl_embed> vec_embedded;
1048  return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1049}
1050
1051
1052/* Initialize the vector to contain room for ALLOC elements and
1053   NUM active elements.  */
1054
1055template<typename T, typename A>
1056inline void
1057vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1058{
1059  m_vecpfx.m_alloc = alloc;
1060  m_vecpfx.m_using_auto_storage = aut;
1061  m_vecpfx.m_num = num;
1062}
1063
1064
1065/* Grow the vector to a specific length.  LEN must be as long or longer than
1066   the current length.  The new elements are uninitialized.  */
1067
1068template<typename T, typename A>
1069inline void
1070vec<T, A, vl_embed>::quick_grow (unsigned len)
1071{
1072  gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1073  m_vecpfx.m_num = len;
1074}
1075
1076
1077/* Grow the vector to a specific length.  LEN must be as long or longer than
1078   the current length.  The new elements are initialized to zero.  */
1079
1080template<typename T, typename A>
1081inline void
1082vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1083{
1084  unsigned oldlen = length ();
1085  quick_grow (len);
1086  memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1087}
1088
1089
1090/* Garbage collection support for vec<T, A, vl_embed>.  */
1091
1092template<typename T>
1093void
1094gt_ggc_mx (vec<T, va_gc> *v)
1095{
1096  extern void gt_ggc_mx (T &);
1097  for (unsigned i = 0; i < v->length (); i++)
1098    gt_ggc_mx ((*v)[i]);
1099}
1100
1101template<typename T>
1102void
1103gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1104{
1105  /* Nothing to do.  Vectors of atomic types wrt GC do not need to
1106     be traversed.  */
1107}
1108
1109
1110/* PCH support for vec<T, A, vl_embed>.  */
1111
1112template<typename T, typename A>
1113void
1114gt_pch_nx (vec<T, A, vl_embed> *v)
1115{
1116  extern void gt_pch_nx (T &);
1117  for (unsigned i = 0; i < v->length (); i++)
1118    gt_pch_nx ((*v)[i]);
1119}
1120
1121template<typename T, typename A>
1122void
1123gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1124{
1125  for (unsigned i = 0; i < v->length (); i++)
1126    op (&((*v)[i]), cookie);
1127}
1128
1129template<typename T, typename A>
1130void
1131gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1132{
1133  extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1134  for (unsigned i = 0; i < v->length (); i++)
1135    gt_pch_nx (&((*v)[i]), op, cookie);
1136}
1137
1138
1139/* Space efficient vector.  These vectors can grow dynamically and are
1140   allocated together with their control data.  They are suited to be
1141   included in data structures.  Prior to initial allocation, they
1142   only take a single word of storage.
1143
1144   These vectors are implemented as a pointer to an embeddable vector.
1145   The semantics allow for this pointer to be NULL to represent empty
1146   vectors.  This way, empty vectors occupy minimal space in the
1147   structure containing them.
1148
1149   Properties:
1150
1151	- The whole vector and control data are allocated in a single
1152	  contiguous block.
1153  	- The whole vector may be re-allocated.
1154  	- Vector data may grow and shrink.
1155  	- Access and manipulation requires a pointer test and
1156	  indirection.
1157	- It requires 1 word of storage (prior to vector allocation).
1158
1159
1160   Limitations:
1161
1162   These vectors must be PODs because they are stored in unions.
1163   (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1164   As long as we use C++03, we cannot have constructors nor
1165   destructors in classes that are stored in unions.  */
1166
1167template<typename T>
1168struct vec<T, va_heap, vl_ptr>
1169{
1170public:
1171  /* Memory allocation and deallocation for the embedded vector.
1172     Needed because we cannot have proper ctors/dtors defined.  */
1173  void create (unsigned nelems CXX_MEM_STAT_INFO);
1174  void release (void);
1175
1176  /* Vector operations.  */
1177  bool exists (void) const
1178  { return m_vec != NULL; }
1179
1180  bool is_empty (void) const
1181  { return m_vec ? m_vec->is_empty () : true; }
1182
1183  unsigned length (void) const
1184  { return m_vec ? m_vec->length () : 0; }
1185
1186  T *address (void)
1187  { return m_vec ? m_vec->m_vecdata : NULL; }
1188
1189  const T *address (void) const
1190  { return m_vec ? m_vec->m_vecdata : NULL; }
1191
1192  const T &operator[] (unsigned ix) const
1193  { return (*m_vec)[ix]; }
1194
1195  bool operator!=(const vec &other) const
1196  { return !(*this == other); }
1197
1198  bool operator==(const vec &other) const
1199  { return address () == other.address (); }
1200
1201  T &operator[] (unsigned ix)
1202  { return (*m_vec)[ix]; }
1203
1204  T &last (void)
1205  { return m_vec->last (); }
1206
1207  bool space (int nelems) const
1208  { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1209
1210  bool iterate (unsigned ix, T *p) const;
1211  bool iterate (unsigned ix, T **p) const;
1212  vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1213  bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1214  bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1215  void splice (vec &);
1216  void safe_splice (vec & CXX_MEM_STAT_INFO);
1217  T *quick_push (const T &);
1218  T *safe_push (const T &CXX_MEM_STAT_INFO);
1219  T &pop (void);
1220  void truncate (unsigned);
1221  void safe_grow (unsigned CXX_MEM_STAT_INFO);
1222  void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1223  void quick_grow (unsigned);
1224  void quick_grow_cleared (unsigned);
1225  void quick_insert (unsigned, const T &);
1226  void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1227  void ordered_remove (unsigned);
1228  void unordered_remove (unsigned);
1229  void block_remove (unsigned, unsigned);
1230  void qsort (int (*) (const void *, const void *));
1231  T *bsearch (const void *key, int (*compar)(const void *, const void *));
1232  unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1233
1234  bool using_auto_storage () const;
1235
1236  /* FIXME - This field should be private, but we need to cater to
1237	     compilers that have stricter notions of PODness for types.  */
1238  vec<T, va_heap, vl_embed> *m_vec;
1239};
1240
1241
1242/* auto_vec is a subclass of vec that automatically manages creating and
1243   releasing the internal vector. If N is non zero then it has N elements of
1244   internal storage.  The default is no internal storage, and you probably only
1245   want to ask for internal storage for vectors on the stack because if the
1246   size of the vector is larger than the internal storage that space is wasted.
1247   */
1248template<typename T, size_t N = 0>
1249class auto_vec : public vec<T, va_heap>
1250{
1251public:
1252  auto_vec ()
1253  {
1254    m_auto.embedded_init (MAX (N, 2), 0, 1);
1255    this->m_vec = &m_auto;
1256  }
1257
1258  ~auto_vec ()
1259  {
1260    this->release ();
1261  }
1262
1263private:
1264  vec<T, va_heap, vl_embed> m_auto;
1265  T m_data[MAX (N - 1, 1)];
1266};
1267
1268/* auto_vec is a sub class of vec whose storage is released when it is
1269  destroyed. */
1270template<typename T>
1271class auto_vec<T, 0> : public vec<T, va_heap>
1272{
1273public:
1274  auto_vec () { this->m_vec = NULL; }
1275  auto_vec (size_t n) { this->create (n); }
1276  ~auto_vec () { this->release (); }
1277};
1278
1279
1280/* Allocate heap memory for pointer V and create the internal vector
1281   with space for NELEMS elements.  If NELEMS is 0, the internal
1282   vector is initialized to empty.  */
1283
1284template<typename T>
1285inline void
1286vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1287{
1288  v = new vec<T>;
1289  v->create (nelems PASS_MEM_STAT);
1290}
1291
1292
1293/* Conditionally allocate heap memory for VEC and its internal vector.  */
1294
1295template<typename T>
1296inline void
1297vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1298{
1299  if (!vec)
1300    vec_alloc (vec, nelems PASS_MEM_STAT);
1301}
1302
1303
1304/* Free the heap memory allocated by vector V and set it to NULL.  */
1305
1306template<typename T>
1307inline void
1308vec_free (vec<T> *&v)
1309{
1310  if (v == NULL)
1311    return;
1312
1313  v->release ();
1314  delete v;
1315  v = NULL;
1316}
1317
1318
1319/* Return iteration condition and update PTR to point to the IX'th
1320   element of this vector.  Use this to iterate over the elements of a
1321   vector as follows,
1322
1323     for (ix = 0; v.iterate (ix, &ptr); ix++)
1324       continue;  */
1325
1326template<typename T>
1327inline bool
1328vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1329{
1330  if (m_vec)
1331    return m_vec->iterate (ix, ptr);
1332  else
1333    {
1334      *ptr = 0;
1335      return false;
1336    }
1337}
1338
1339
1340/* Return iteration condition and update *PTR to point to the
1341   IX'th element of this vector.  Use this to iterate over the
1342   elements of a vector as follows,
1343
1344     for (ix = 0; v->iterate (ix, &ptr); ix++)
1345       continue;
1346
1347   This variant is for vectors of objects.  */
1348
1349template<typename T>
1350inline bool
1351vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1352{
1353  if (m_vec)
1354    return m_vec->iterate (ix, ptr);
1355  else
1356    {
1357      *ptr = 0;
1358      return false;
1359    }
1360}
1361
1362
1363/* Convenience macro for forward iteration.  */
1364#define FOR_EACH_VEC_ELT(V, I, P)			\
1365  for (I = 0; (V).iterate ((I), &(P)); ++(I))
1366
1367#define FOR_EACH_VEC_SAFE_ELT(V, I, P)			\
1368  for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1369
1370/* Likewise, but start from FROM rather than 0.  */
1371#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)		\
1372  for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1373
1374/* Convenience macro for reverse iteration.  */
1375#define FOR_EACH_VEC_ELT_REVERSE(V, I, P)		\
1376  for (I = (V).length () - 1;				\
1377       (V).iterate ((I), &(P));				\
1378       (I)--)
1379
1380#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)		\
1381  for (I = vec_safe_length (V) - 1;			\
1382       vec_safe_iterate ((V), (I), &(P));	\
1383       (I)--)
1384
1385
1386/* Return a copy of this vector.  */
1387
1388template<typename T>
1389inline vec<T, va_heap, vl_ptr>
1390vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1391{
1392  vec<T, va_heap, vl_ptr> new_vec = vNULL;
1393  if (length ())
1394    new_vec.m_vec = m_vec->copy ();
1395  return new_vec;
1396}
1397
1398
1399/* Ensure that the vector has at least RESERVE slots available (if
1400   EXACT is false), or exactly RESERVE slots available (if EXACT is
1401   true).
1402
1403   This may create additional headroom if EXACT is false.
1404
1405   Note that this can cause the embedded vector to be reallocated.
1406   Returns true iff reallocation actually occurred.  */
1407
1408template<typename T>
1409inline bool
1410vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1411{
1412  if (space (nelems))
1413    return false;
1414
1415  /* For now play a game with va_heap::reserve to hide our auto storage if any,
1416     this is necessary because it doesn't have enough information to know the
1417     embedded vector is in auto storage, and so should not be freed.  */
1418  vec<T, va_heap, vl_embed> *oldvec = m_vec;
1419  unsigned int oldsize = 0;
1420  bool handle_auto_vec = m_vec && using_auto_storage ();
1421  if (handle_auto_vec)
1422    {
1423      m_vec = NULL;
1424      oldsize = oldvec->length ();
1425      nelems += oldsize;
1426    }
1427
1428  va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1429  if (handle_auto_vec)
1430    {
1431      memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1432      m_vec->m_vecpfx.m_num = oldsize;
1433    }
1434
1435  return true;
1436}
1437
1438
1439/* Ensure that this vector has exactly NELEMS slots available.  This
1440   will not create additional headroom.  Note this can cause the
1441   embedded vector to be reallocated.  Returns true iff reallocation
1442   actually occurred.  */
1443
1444template<typename T>
1445inline bool
1446vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1447{
1448  return reserve (nelems, true PASS_MEM_STAT);
1449}
1450
1451
1452/* Create the internal vector and reserve NELEMS for it.  This is
1453   exactly like vec::reserve, but the internal vector is
1454   unconditionally allocated from scratch.  The old one, if it
1455   existed, is lost.  */
1456
1457template<typename T>
1458inline void
1459vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1460{
1461  m_vec = NULL;
1462  if (nelems > 0)
1463    reserve_exact (nelems PASS_MEM_STAT);
1464}
1465
1466
1467/* Free the memory occupied by the embedded vector.  */
1468
1469template<typename T>
1470inline void
1471vec<T, va_heap, vl_ptr>::release (void)
1472{
1473  if (!m_vec)
1474    return;
1475
1476  if (using_auto_storage ())
1477    {
1478      m_vec->m_vecpfx.m_num = 0;
1479      return;
1480    }
1481
1482  va_heap::release (m_vec);
1483}
1484
1485/* Copy the elements from SRC to the end of this vector as if by memcpy.
1486   SRC and this vector must be allocated with the same memory
1487   allocation mechanism. This vector is assumed to have sufficient
1488   headroom available.  */
1489
1490template<typename T>
1491inline void
1492vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1493{
1494  if (src.m_vec)
1495    m_vec->splice (*(src.m_vec));
1496}
1497
1498
1499/* Copy the elements in SRC to the end of this vector as if by memcpy.
1500   SRC and this vector must be allocated with the same mechanism.
1501   If there is not enough headroom in this vector, it will be reallocated
1502   as needed.  */
1503
1504template<typename T>
1505inline void
1506vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1507				      MEM_STAT_DECL)
1508{
1509  if (src.length ())
1510    {
1511      reserve_exact (src.length ());
1512      splice (src);
1513    }
1514}
1515
1516
1517/* Push OBJ (a new element) onto the end of the vector.  There must be
1518   sufficient space in the vector.  Return a pointer to the slot
1519   where OBJ was inserted.  */
1520
1521template<typename T>
1522inline T *
1523vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1524{
1525  return m_vec->quick_push (obj);
1526}
1527
1528
1529/* Push a new element OBJ onto the end of this vector.  Reallocates
1530   the embedded vector, if needed.  Return a pointer to the slot where
1531   OBJ was inserted.  */
1532
1533template<typename T>
1534inline T *
1535vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1536{
1537  reserve (1, false PASS_MEM_STAT);
1538  return quick_push (obj);
1539}
1540
1541
1542/* Pop and return the last element off the end of the vector.  */
1543
1544template<typename T>
1545inline T &
1546vec<T, va_heap, vl_ptr>::pop (void)
1547{
1548  return m_vec->pop ();
1549}
1550
1551
1552/* Set the length of the vector to LEN.  The new length must be less
1553   than or equal to the current length.  This is an O(1) operation.  */
1554
1555template<typename T>
1556inline void
1557vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1558{
1559  if (m_vec)
1560    m_vec->truncate (size);
1561  else
1562    gcc_checking_assert (size == 0);
1563}
1564
1565
1566/* Grow the vector to a specific length.  LEN must be as long or
1567   longer than the current length.  The new elements are
1568   uninitialized.  Reallocate the internal vector, if needed.  */
1569
1570template<typename T>
1571inline void
1572vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1573{
1574  unsigned oldlen = length ();
1575  gcc_checking_assert (oldlen <= len);
1576  reserve_exact (len - oldlen PASS_MEM_STAT);
1577  if (m_vec)
1578    m_vec->quick_grow (len);
1579  else
1580    gcc_checking_assert (len == 0);
1581}
1582
1583
1584/* Grow the embedded vector to a specific length.  LEN must be as
1585   long or longer than the current length.  The new elements are
1586   initialized to zero.  Reallocate the internal vector, if needed.  */
1587
1588template<typename T>
1589inline void
1590vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1591{
1592  unsigned oldlen = length ();
1593  safe_grow (len PASS_MEM_STAT);
1594  memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1595}
1596
1597
1598/* Same as vec::safe_grow but without reallocation of the internal vector.
1599   If the vector cannot be extended, a runtime assertion will be triggered.  */
1600
1601template<typename T>
1602inline void
1603vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1604{
1605  gcc_checking_assert (m_vec);
1606  m_vec->quick_grow (len);
1607}
1608
1609
1610/* Same as vec::quick_grow_cleared but without reallocation of the
1611   internal vector. If the vector cannot be extended, a runtime
1612   assertion will be triggered.  */
1613
1614template<typename T>
1615inline void
1616vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1617{
1618  gcc_checking_assert (m_vec);
1619  m_vec->quick_grow_cleared (len);
1620}
1621
1622
1623/* Insert an element, OBJ, at the IXth position of this vector.  There
1624   must be sufficient space.  */
1625
1626template<typename T>
1627inline void
1628vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1629{
1630  m_vec->quick_insert (ix, obj);
1631}
1632
1633
1634/* Insert an element, OBJ, at the IXth position of the vector.
1635   Reallocate the embedded vector, if necessary.  */
1636
1637template<typename T>
1638inline void
1639vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1640{
1641  reserve (1, false PASS_MEM_STAT);
1642  quick_insert (ix, obj);
1643}
1644
1645
1646/* Remove an element from the IXth position of this vector.  Ordering of
1647   remaining elements is preserved.  This is an O(N) operation due to
1648   a memmove.  */
1649
1650template<typename T>
1651inline void
1652vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1653{
1654  m_vec->ordered_remove (ix);
1655}
1656
1657
1658/* Remove an element from the IXth position of this vector.  Ordering
1659   of remaining elements is destroyed.  This is an O(1) operation.  */
1660
1661template<typename T>
1662inline void
1663vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1664{
1665  m_vec->unordered_remove (ix);
1666}
1667
1668
1669/* Remove LEN elements starting at the IXth.  Ordering is retained.
1670   This is an O(N) operation due to memmove.  */
1671
1672template<typename T>
1673inline void
1674vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1675{
1676  m_vec->block_remove (ix, len);
1677}
1678
1679
1680/* Sort the contents of this vector with qsort.  CMP is the comparison
1681   function to pass to qsort.  */
1682
1683template<typename T>
1684inline void
1685vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1686{
1687  if (m_vec)
1688    m_vec->qsort (cmp);
1689}
1690
1691
1692/* Search the contents of the sorted vector with a binary search.
1693   CMP is the comparison function to pass to bsearch.  */
1694
1695template<typename T>
1696inline T *
1697vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1698				  int (*cmp) (const void *, const void *))
1699{
1700  if (m_vec)
1701    return m_vec->bsearch (key, cmp);
1702  return NULL;
1703}
1704
1705
1706/* Find and return the first position in which OBJ could be inserted
1707   without changing the ordering of this vector.  LESSTHAN is a
1708   function that returns true if the first argument is strictly less
1709   than the second.  */
1710
1711template<typename T>
1712inline unsigned
1713vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1714				      bool (*lessthan)(const T &, const T &))
1715    const
1716{
1717  return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1718}
1719
1720template<typename T>
1721inline bool
1722vec<T, va_heap, vl_ptr>::using_auto_storage () const
1723{
1724  return m_vec->m_vecpfx.m_using_auto_storage;
1725}
1726
1727#if (GCC_VERSION >= 3000)
1728# pragma GCC poison m_vec m_vecpfx m_vecdata
1729#endif
1730
1731#endif // GCC_VEC_H
1732