1/* Register Transfer Language (RTL) definitions for GCC
2   Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#ifndef GCC_RTL_H
21#define GCC_RTL_H
22
23#include "statistics.h"
24#include "machmode.h"
25#include "input.h"
26#include "real.h"
27#include "vec.h"
28#include "fixed-value.h"
29#include "alias.h"
30#include "hashtab.h"
31#include "wide-int.h"
32#include "flags.h"
33#include "is-a.h"
34
35/* Value used by some passes to "recognize" noop moves as valid
36 instructions.  */
37#define NOOP_MOVE_INSN_CODE	INT_MAX
38
39/* Register Transfer Language EXPRESSIONS CODES */
40
41#define RTX_CODE	enum rtx_code
42enum rtx_code  {
43
44#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS)   ENUM ,
45#include "rtl.def"		/* rtl expressions are documented here */
46#undef DEF_RTL_EXPR
47
48  LAST_AND_UNUSED_RTX_CODE};	/* A convenient way to get a value for
49				   NUM_RTX_CODE.
50				   Assumes default enum value assignment.  */
51
52/* The cast here, saves many elsewhere.  */
53#define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
54
55/* Similar, but since generator files get more entries... */
56#ifdef GENERATOR_FILE
57# define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
58#endif
59
60/* Register Transfer Language EXPRESSIONS CODE CLASSES */
61
62enum rtx_class  {
63  /* We check bit 0-1 of some rtx class codes in the predicates below.  */
64
65  /* Bit 0 = comparison if 0, arithmetic is 1
66     Bit 1 = 1 if commutative.  */
67  RTX_COMPARE,		/* 0 */
68  RTX_COMM_COMPARE,
69  RTX_BIN_ARITH,
70  RTX_COMM_ARITH,
71
72  /* Must follow the four preceding values.  */
73  RTX_UNARY,		/* 4 */
74
75  RTX_EXTRA,
76  RTX_MATCH,
77  RTX_INSN,
78
79  /* Bit 0 = 1 if constant.  */
80  RTX_OBJ,		/* 8 */
81  RTX_CONST_OBJ,
82
83  RTX_TERNARY,
84  RTX_BITFIELD_OPS,
85  RTX_AUTOINC
86};
87
88#define RTX_OBJ_MASK (~1)
89#define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
90#define RTX_COMPARE_MASK (~1)
91#define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
92#define RTX_ARITHMETIC_MASK (~1)
93#define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
94#define RTX_BINARY_MASK (~3)
95#define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
96#define RTX_COMMUTATIVE_MASK (~2)
97#define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
98#define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
99
100extern const unsigned char rtx_length[NUM_RTX_CODE];
101#define GET_RTX_LENGTH(CODE)		(rtx_length[(int) (CODE)])
102
103extern const char * const rtx_name[NUM_RTX_CODE];
104#define GET_RTX_NAME(CODE)		(rtx_name[(int) (CODE)])
105
106extern const char * const rtx_format[NUM_RTX_CODE];
107#define GET_RTX_FORMAT(CODE)		(rtx_format[(int) (CODE)])
108
109extern const enum rtx_class rtx_class[NUM_RTX_CODE];
110#define GET_RTX_CLASS(CODE)		(rtx_class[(int) (CODE)])
111
112/* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
113   and NEXT_INSN fields).  */
114#define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
115
116extern const unsigned char rtx_code_size[NUM_RTX_CODE];
117extern const unsigned char rtx_next[NUM_RTX_CODE];
118
119/* The flags and bitfields of an ADDR_DIFF_VEC.  BASE is the base label
120   relative to which the offsets are calculated, as explained in rtl.def.  */
121struct addr_diff_vec_flags
122{
123  /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
124  unsigned min_align: 8;
125  /* Flags: */
126  unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC.  */
127  unsigned min_after_vec: 1;  /* minimum address target label is
128				 after the ADDR_DIFF_VEC.  */
129  unsigned max_after_vec: 1;  /* maximum address target label is
130				 after the ADDR_DIFF_VEC.  */
131  unsigned min_after_base: 1; /* minimum address target label is
132				 after BASE.  */
133  unsigned max_after_base: 1; /* maximum address target label is
134				 after BASE.  */
135  /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
136  unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned.  */
137  unsigned : 2;
138  unsigned scale : 8;
139};
140
141/* Structure used to describe the attributes of a MEM.  These are hashed
142   so MEMs that the same attributes share a data structure.  This means
143   they cannot be modified in place.  */
144struct GTY(()) mem_attrs
145{
146  /* The expression that the MEM accesses, or null if not known.
147     This expression might be larger than the memory reference itself.
148     (In other words, the MEM might access only part of the object.)  */
149  tree expr;
150
151  /* The offset of the memory reference from the start of EXPR.
152     Only valid if OFFSET_KNOWN_P.  */
153  HOST_WIDE_INT offset;
154
155  /* The size of the memory reference in bytes.  Only valid if
156     SIZE_KNOWN_P.  */
157  HOST_WIDE_INT size;
158
159  /* The alias set of the memory reference.  */
160  alias_set_type alias;
161
162  /* The alignment of the reference in bits.  Always a multiple of
163     BITS_PER_UNIT.  Note that EXPR may have a stricter alignment
164     than the memory reference itself.  */
165  unsigned int align;
166
167  /* The address space that the memory reference uses.  */
168  unsigned char addrspace;
169
170  /* True if OFFSET is known.  */
171  bool offset_known_p;
172
173  /* True if SIZE is known.  */
174  bool size_known_p;
175};
176
177/* Structure used to describe the attributes of a REG in similar way as
178   mem_attrs does for MEM above.  Note that the OFFSET field is calculated
179   in the same way as for mem_attrs, rather than in the same way as a
180   SUBREG_BYTE.  For example, if a big-endian target stores a byte
181   object in the low part of a 4-byte register, the OFFSET field
182   will be -3 rather than 0.  */
183
184struct GTY((for_user)) reg_attrs {
185  tree decl;			/* decl corresponding to REG.  */
186  HOST_WIDE_INT offset;		/* Offset from start of DECL.  */
187};
188
189/* Common union for an element of an rtx.  */
190
191union rtunion
192{
193  int rt_int;
194  unsigned int rt_uint;
195  const char *rt_str;
196  rtx rt_rtx;
197  rtvec rt_rtvec;
198  machine_mode rt_type;
199  addr_diff_vec_flags rt_addr_diff_vec_flags;
200  struct cselib_val *rt_cselib;
201  tree rt_tree;
202  basic_block rt_bb;
203  mem_attrs *rt_mem;
204  reg_attrs *rt_reg;
205  struct constant_descriptor_rtx *rt_constant;
206  struct dw_cfi_node *rt_cfi;
207};
208
209/* This structure remembers the position of a SYMBOL_REF within an
210   object_block structure.  A SYMBOL_REF only provides this information
211   if SYMBOL_REF_HAS_BLOCK_INFO_P is true.  */
212struct GTY(()) block_symbol {
213  /* The usual SYMBOL_REF fields.  */
214  rtunion GTY ((skip)) fld[2];
215
216  /* The block that contains this object.  */
217  struct object_block *block;
218
219  /* The offset of this object from the start of its block.  It is negative
220     if the symbol has not yet been assigned an offset.  */
221  HOST_WIDE_INT offset;
222};
223
224/* Describes a group of objects that are to be placed together in such
225   a way that their relative positions are known.  */
226struct GTY((for_user)) object_block {
227  /* The section in which these objects should be placed.  */
228  section *sect;
229
230  /* The alignment of the first object, measured in bits.  */
231  unsigned int alignment;
232
233  /* The total size of the objects, measured in bytes.  */
234  HOST_WIDE_INT size;
235
236  /* The SYMBOL_REFs for each object.  The vector is sorted in
237     order of increasing offset and the following conditions will
238     hold for each element X:
239
240	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
241	 !SYMBOL_REF_ANCHOR_P (X)
242	 SYMBOL_REF_BLOCK (X) == [address of this structure]
243	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
244  vec<rtx, va_gc> *objects;
245
246  /* All the anchor SYMBOL_REFs used to address these objects, sorted
247     in order of increasing offset, and then increasing TLS model.
248     The following conditions will hold for each element X in this vector:
249
250	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
251	 SYMBOL_REF_ANCHOR_P (X)
252	 SYMBOL_REF_BLOCK (X) == [address of this structure]
253	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
254  vec<rtx, va_gc> *anchors;
255};
256
257struct GTY((variable_size)) hwivec_def {
258  HOST_WIDE_INT elem[1];
259};
260
261/* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT.  */
262#define CWI_GET_NUM_ELEM(RTX)					\
263  ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
264#define CWI_PUT_NUM_ELEM(RTX, NUM)					\
265  (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
266
267/* RTL expression ("rtx").  */
268
269/* The GTY "desc" and "tag" options below are a kludge: we need a desc
270   field for for gengtype to recognize that inheritance is occurring,
271   so that all subclasses are redirected to the traversal hook for the
272   base class.
273   However, all of the fields are in the base class, and special-casing
274   is at work.  Hence we use desc and tag of 0, generating a switch
275   statement of the form:
276     switch (0)
277       {
278       case 0: // all the work happens here
279      }
280   in order to work with the existing special-casing in gengtype.  */
281
282struct GTY((desc("0"), tag("0"),
283	    chain_next ("RTX_NEXT (&%h)"),
284	    chain_prev ("RTX_PREV (&%h)"))) rtx_def {
285  /* The kind of expression this is.  */
286  ENUM_BITFIELD(rtx_code) code: 16;
287
288  /* The kind of value the expression has.  */
289  ENUM_BITFIELD(machine_mode) mode : 8;
290
291  /* 1 in a MEM if we should keep the alias set for this mem unchanged
292     when we access a component.
293     1 in a JUMP_INSN if it is a crossing jump.
294     1 in a CALL_INSN if it is a sibling call.
295     1 in a SET that is for a return.
296     In a CODE_LABEL, part of the two-bit alternate entry field.
297     1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
298     1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
299     1 in a SUBREG generated by LRA for reload insns.
300     1 in a CALL for calls instrumented by Pointer Bounds Checker.  */
301  unsigned int jump : 1;
302  /* In a CODE_LABEL, part of the two-bit alternate entry field.
303     1 in a MEM if it cannot trap.
304     1 in a CALL_INSN logically equivalent to
305       ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306  unsigned int call : 1;
307  /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308     1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309     1 in a SYMBOL_REF if it addresses something in the per-function
310     constants pool.
311     1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312     1 in a NOTE, or EXPR_LIST for a const call.
313     1 in a JUMP_INSN of an annulling branch.
314     1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315     1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316     1 in a clobber temporarily created for LRA.  */
317  unsigned int unchanging : 1;
318  /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319     1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320     if it has been deleted.
321     1 in a REG expression if corresponds to a variable declared by the user,
322     0 for an internally generated temporary.
323     1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324     1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325     non-local label.
326     In a SYMBOL_REF, this flag is used for machine-specific purposes.
327     In a PREFETCH, this flag indicates that it should be considered a scheduling
328     barrier.
329     1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.  */
330  unsigned int volatil : 1;
331  /* 1 in a REG if the register is used only in exit code a loop.
332     1 in a SUBREG expression if was generated from a variable with a
333     promoted mode.
334     1 in a CODE_LABEL if the label is used for nonlocal gotos
335     and must not be deleted even if its count is zero.
336     1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337     together with the preceding insn.  Valid only within sched.
338     1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339     from the target of a branch.  Valid from reorg until end of compilation;
340     cleared before used.
341
342     The name of the field is historical.  It used to be used in MEMs
343     to record whether the MEM accessed part of a structure.  */
344  unsigned int in_struct : 1;
345  /* At the end of RTL generation, 1 if this rtx is used.  This is used for
346     copying shared structure.  See `unshare_all_rtl'.
347     In a REG, this is not needed for that purpose, and used instead
348     in `leaf_renumber_regs_insn'.
349     1 in a SYMBOL_REF, means that emit_library_call
350     has used it as the function.
351     1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352     1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c.  */
353  unsigned int used : 1;
354  /* 1 in an INSN or a SET if this rtx is related to the call frame,
355     either changing how we compute the frame address or saving and
356     restoring registers in the prologue and epilogue.
357     1 in a REG or MEM if it is a pointer.
358     1 in a SYMBOL_REF if it addresses something in the per-function
359     constant string pool.
360     1 in a VALUE is VALUE_CHANGED in var-tracking.c.  */
361  unsigned frame_related : 1;
362  /* 1 in a REG or PARALLEL that is the current function's return value.
363     1 in a SYMBOL_REF for a weak symbol.
364     1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365     1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366     1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.  */
367  unsigned return_val : 1;
368
369  union {
370    /* The final union field is aligned to 64 bits on LP64 hosts,
371       giving a 32-bit gap after the fields above.  We optimize the
372       layout for that case and use the gap for extra code-specific
373       information.  */
374
375    /* The ORIGINAL_REGNO of a REG.  */
376    unsigned int original_regno;
377
378    /* The INSN_UID of an RTX_INSN-class code.  */
379    int insn_uid;
380
381    /* The SYMBOL_REF_FLAGS of a SYMBOL_REF.  */
382    unsigned int symbol_ref_flags;
383
384    /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION.  */
385    enum var_init_status var_location_status;
386
387    /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388       HOST_WIDE_INTs in the hwivec_def.  */
389    unsigned int num_elem;
390  } GTY ((skip)) u2;
391
392  /* The first element of the operands of this rtx.
393     The number of operands and their types are controlled
394     by the `code' field, according to rtl.def.  */
395  union u {
396    rtunion fld[1];
397    HOST_WIDE_INT hwint[1];
398    struct block_symbol block_sym;
399    struct real_value rv;
400    struct fixed_value fv;
401    struct hwivec_def hwiv;
402  } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403};
404
405/* A node for constructing singly-linked lists of rtx.  */
406
407class GTY(()) rtx_expr_list : public rtx_def
408{
409  /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST).  */
410
411public:
412  /* Get next in list.  */
413  rtx_expr_list *next () const;
414
415  /* Get at the underlying rtx.  */
416  rtx element () const;
417};
418
419template <>
420template <>
421inline bool
422is_a_helper <rtx_expr_list *>::test (rtx rt)
423{
424  return rt->code == EXPR_LIST;
425}
426
427class GTY(()) rtx_insn_list : public rtx_def
428{
429  /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431     This is an instance of:
432
433       DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435     i.e. a node for constructing singly-linked lists of rtx_insn *, where
436     the list is "external" to the insn (as opposed to the doubly-linked
437     list embedded within rtx_insn itself).  */
438
439public:
440  /* Get next in list.  */
441  rtx_insn_list *next () const;
442
443  /* Get at the underlying instruction.  */
444  rtx_insn *insn () const;
445
446};
447
448template <>
449template <>
450inline bool
451is_a_helper <rtx_insn_list *>::test (rtx rt)
452{
453  return rt->code == INSN_LIST;
454}
455
456/* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457   typically (but not always) of rtx_insn *, used in the late passes.  */
458
459class GTY(()) rtx_sequence : public rtx_def
460{
461  /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE).  */
462
463public:
464  /* Get number of elements in sequence.  */
465  int len () const;
466
467  /* Get i-th element of the sequence.  */
468  rtx element (int index) const;
469
470  /* Get i-th element of the sequence, with a checked cast to
471     rtx_insn *.  */
472  rtx_insn *insn (int index) const;
473};
474
475template <>
476template <>
477inline bool
478is_a_helper <rtx_sequence *>::test (rtx rt)
479{
480  return rt->code == SEQUENCE;
481}
482
483template <>
484template <>
485inline bool
486is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487{
488  return rt->code == SEQUENCE;
489}
490
491class GTY(()) rtx_insn : public rtx_def
492{
493public:
494  /* No extra fields, but adds the invariant:
495
496     (INSN_P (X)
497      || NOTE_P (X)
498      || JUMP_TABLE_DATA_P (X)
499      || BARRIER_P (X)
500      || LABEL_P (X))
501
502     i.e. that we must be able to use the following:
503      INSN_UID ()
504      NEXT_INSN ()
505      PREV_INSN ()
506    i.e. we have an rtx that has an INSN_UID field and can be part of
507    a linked list of insns.
508  */
509
510  /* Returns true if this insn has been deleted.  */
511
512  bool deleted () const { return volatil; }
513
514  /* Mark this insn as deleted.  */
515
516  void set_deleted () { volatil = true; }
517
518  /* Mark this insn as not deleted.  */
519
520  void set_undeleted () { volatil = false; }
521};
522
523/* Subclasses of rtx_insn.  */
524
525class GTY(()) rtx_debug_insn : public rtx_insn
526{
527  /* No extra fields, but adds the invariant:
528       DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
529     i.e. an annotation for tracking variable assignments.
530
531     This is an instance of:
532       DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
533     from rtl.def.  */
534};
535
536class GTY(()) rtx_nonjump_insn : public rtx_insn
537{
538  /* No extra fields, but adds the invariant:
539       NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
540     i.e an instruction that cannot jump.
541
542     This is an instance of:
543       DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
544     from rtl.def.  */
545};
546
547class GTY(()) rtx_jump_insn : public rtx_insn
548{
549  /* No extra fields, but adds the invariant:
550       JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
551     i.e. an instruction that can possibly jump.
552
553     This is an instance of:
554       DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
555     from rtl.def.  */
556};
557
558class GTY(()) rtx_call_insn : public rtx_insn
559{
560  /* No extra fields, but adds the invariant:
561       CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
562     i.e. an instruction that can possibly call a subroutine
563     but which will not change which instruction comes next
564     in the current function.
565
566     This is an instance of:
567       DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
568     from rtl.def.  */
569};
570
571class GTY(()) rtx_jump_table_data : public rtx_insn
572{
573  /* No extra fields, but adds the invariant:
574       JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
575     i.e. a data for a jump table, considered an instruction for
576     historical reasons.
577
578     This is an instance of:
579       DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
580     from rtl.def.  */
581
582public:
583
584  /* This can be either:
585
586       (a) a table of absolute jumps, in which case PATTERN (this) is an
587           ADDR_VEC with arg 0 a vector of labels, or
588
589       (b) a table of relative jumps (e.g. for -fPIC), in which case
590           PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
591	   arg 1 the vector of labels.
592
593     This method gets the underlying vec.  */
594
595  inline rtvec get_labels () const;
596};
597
598class GTY(()) rtx_barrier : public rtx_insn
599{
600  /* No extra fields, but adds the invariant:
601       BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
602     i.e. a marker that indicates that control will not flow through.
603
604     This is an instance of:
605       DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
606     from rtl.def.  */
607};
608
609class GTY(()) rtx_code_label : public rtx_insn
610{
611  /* No extra fields, but adds the invariant:
612       LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
613     i.e. a label in the assembler.
614
615     This is an instance of:
616       DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
617     from rtl.def.  */
618};
619
620class GTY(()) rtx_note : public rtx_insn
621{
622  /* No extra fields, but adds the invariant:
623       NOTE_P(X) aka (GET_CODE (X) == NOTE)
624     i.e. a note about the corresponding source code.
625
626     This is an instance of:
627       DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
628     from rtl.def.  */
629};
630
631/* The size in bytes of an rtx header (code, mode and flags).  */
632#define RTX_HDR_SIZE offsetof (struct rtx_def, u)
633
634/* The size in bytes of an rtx with code CODE.  */
635#define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
636
637#define NULL_RTX (rtx) 0
638
639/* The "next" and "previous" RTX, relative to this one.  */
640
641#define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL			\
642		     : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
643
644/* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
645 */
646#define RTX_PREV(X) ((INSN_P (X)       			\
647                      || NOTE_P (X)       		\
648                      || JUMP_TABLE_DATA_P (X)		\
649                      || BARRIER_P (X)        		\
650                      || LABEL_P (X))    		\
651		     && PREV_INSN (as_a <rtx_insn *> (X)) != NULL	\
652                     && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
653                     ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
654
655/* Define macros to access the `code' field of the rtx.  */
656
657#define GET_CODE(RTX)	    ((enum rtx_code) (RTX)->code)
658#define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
659
660#define GET_MODE(RTX)	    ((machine_mode) (RTX)->mode)
661#define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
662
663/* RTL vector.  These appear inside RTX's when there is a need
664   for a variable number of things.  The principle use is inside
665   PARALLEL expressions.  */
666
667struct GTY(()) rtvec_def {
668  int num_elem;		/* number of elements */
669  rtx GTY ((length ("%h.num_elem"))) elem[1];
670};
671
672#define NULL_RTVEC (rtvec) 0
673
674#define GET_NUM_ELEM(RTVEC)		((RTVEC)->num_elem)
675#define PUT_NUM_ELEM(RTVEC, NUM)	((RTVEC)->num_elem = (NUM))
676
677/* Predicate yielding nonzero iff X is an rtx for a register.  */
678#define REG_P(X) (GET_CODE (X) == REG)
679
680/* Predicate yielding nonzero iff X is an rtx for a memory location.  */
681#define MEM_P(X) (GET_CODE (X) == MEM)
682
683#if TARGET_SUPPORTS_WIDE_INT
684
685/* Match CONST_*s that can represent compile-time constant integers.  */
686#define CASE_CONST_SCALAR_INT \
687   case CONST_INT: \
688   case CONST_WIDE_INT
689
690/* Match CONST_*s for which pointer equality corresponds to value
691   equality.  */
692#define CASE_CONST_UNIQUE \
693   case CONST_INT: \
694   case CONST_WIDE_INT: \
695   case CONST_DOUBLE: \
696   case CONST_FIXED
697
698/* Match all CONST_* rtxes.  */
699#define CASE_CONST_ANY \
700   case CONST_INT: \
701   case CONST_WIDE_INT: \
702   case CONST_DOUBLE: \
703   case CONST_FIXED: \
704   case CONST_VECTOR
705
706#else
707
708/* Match CONST_*s that can represent compile-time constant integers.  */
709#define CASE_CONST_SCALAR_INT \
710   case CONST_INT: \
711   case CONST_DOUBLE
712
713/* Match CONST_*s for which pointer equality corresponds to value
714   equality.  */
715#define CASE_CONST_UNIQUE \
716   case CONST_INT: \
717   case CONST_DOUBLE: \
718   case CONST_FIXED
719
720/* Match all CONST_* rtxes.  */
721#define CASE_CONST_ANY \
722   case CONST_INT: \
723   case CONST_DOUBLE: \
724   case CONST_FIXED: \
725   case CONST_VECTOR
726#endif
727
728/* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
729#define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
730
731/* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
732#define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
733
734/* Predicate yielding nonzero iff X is an rtx for a constant fixed-point.  */
735#define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
736
737/* Predicate yielding true iff X is an rtx for a double-int
738   or floating point constant.  */
739#define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
740
741/* Predicate yielding true iff X is an rtx for a double-int.  */
742#define CONST_DOUBLE_AS_INT_P(X) \
743  (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
744
745/* Predicate yielding true iff X is an rtx for a integer const.  */
746#if TARGET_SUPPORTS_WIDE_INT
747#define CONST_SCALAR_INT_P(X) \
748  (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
749#else
750#define CONST_SCALAR_INT_P(X) \
751  (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
752#endif
753
754/* Predicate yielding true iff X is an rtx for a double-int.  */
755#define CONST_DOUBLE_AS_FLOAT_P(X) \
756  (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
757
758/* Predicate yielding nonzero iff X is a label insn.  */
759#define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
760
761/* Predicate yielding nonzero iff X is a jump insn.  */
762#define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
763
764/* Predicate yielding nonzero iff X is a call insn.  */
765#define CALL_P(X) (GET_CODE (X) == CALL_INSN)
766
767/* Predicate yielding nonzero iff X is an insn that cannot jump.  */
768#define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
769
770/* Predicate yielding nonzero iff X is a debug note/insn.  */
771#define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
772
773/* Predicate yielding nonzero iff X is an insn that is not a debug insn.  */
774#define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
775
776/* Nonzero if DEBUG_INSN_P may possibly hold.  */
777#define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
778
779/* Predicate yielding nonzero iff X is a real insn.  */
780#define INSN_P(X) \
781  (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
782
783/* Predicate yielding nonzero iff X is a note insn.  */
784#define NOTE_P(X) (GET_CODE (X) == NOTE)
785
786/* Predicate yielding nonzero iff X is a barrier insn.  */
787#define BARRIER_P(X) (GET_CODE (X) == BARRIER)
788
789/* Predicate yielding nonzero iff X is a data for a jump table.  */
790#define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
791
792/* Predicate yielding nonzero iff RTX is a subreg.  */
793#define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
794
795template <>
796template <>
797inline bool
798is_a_helper <rtx_insn *>::test (rtx rt)
799{
800  return (INSN_P (rt)
801	  || NOTE_P (rt)
802	  || JUMP_TABLE_DATA_P (rt)
803	  || BARRIER_P (rt)
804	  || LABEL_P (rt));
805}
806
807template <>
808template <>
809inline bool
810is_a_helper <const rtx_insn *>::test (const_rtx rt)
811{
812  return (INSN_P (rt)
813	  || NOTE_P (rt)
814	  || JUMP_TABLE_DATA_P (rt)
815	  || BARRIER_P (rt)
816	  || LABEL_P (rt));
817}
818
819template <>
820template <>
821inline bool
822is_a_helper <rtx_debug_insn *>::test (rtx rt)
823{
824  return DEBUG_INSN_P (rt);
825}
826
827template <>
828template <>
829inline bool
830is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
831{
832  return NONJUMP_INSN_P (rt);
833}
834
835template <>
836template <>
837inline bool
838is_a_helper <rtx_jump_insn *>::test (rtx rt)
839{
840  return JUMP_P (rt);
841}
842
843template <>
844template <>
845inline bool
846is_a_helper <rtx_call_insn *>::test (rtx rt)
847{
848  return CALL_P (rt);
849}
850
851template <>
852template <>
853inline bool
854is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
855{
856  return CALL_P (insn);
857}
858
859template <>
860template <>
861inline bool
862is_a_helper <rtx_jump_table_data *>::test (rtx rt)
863{
864  return JUMP_TABLE_DATA_P (rt);
865}
866
867template <>
868template <>
869inline bool
870is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
871{
872  return JUMP_TABLE_DATA_P (insn);
873}
874
875template <>
876template <>
877inline bool
878is_a_helper <rtx_barrier *>::test (rtx rt)
879{
880  return BARRIER_P (rt);
881}
882
883template <>
884template <>
885inline bool
886is_a_helper <rtx_code_label *>::test (rtx rt)
887{
888  return LABEL_P (rt);
889}
890
891template <>
892template <>
893inline bool
894is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
895{
896  return LABEL_P (insn);
897}
898
899template <>
900template <>
901inline bool
902is_a_helper <rtx_note *>::test (rtx rt)
903{
904  return NOTE_P (rt);
905}
906
907template <>
908template <>
909inline bool
910is_a_helper <rtx_note *>::test (rtx_insn *insn)
911{
912  return NOTE_P (insn);
913}
914
915/* Predicate yielding nonzero iff X is a return or simple_return.  */
916#define ANY_RETURN_P(X) \
917  (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
918
919/* 1 if X is a unary operator.  */
920
921#define UNARY_P(X)   \
922  (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
923
924/* 1 if X is a binary operator.  */
925
926#define BINARY_P(X)   \
927  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
928
929/* 1 if X is an arithmetic operator.  */
930
931#define ARITHMETIC_P(X)   \
932  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK)			\
933    == RTX_ARITHMETIC_RESULT)
934
935/* 1 if X is an arithmetic operator.  */
936
937#define COMMUTATIVE_ARITH_P(X)   \
938  (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
939
940/* 1 if X is a commutative arithmetic operator or a comparison operator.
941   These two are sometimes selected together because it is possible to
942   swap the two operands.  */
943
944#define SWAPPABLE_OPERANDS_P(X)   \
945  ((1 << GET_RTX_CLASS (GET_CODE (X)))					\
946    & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE)			\
947       | (1 << RTX_COMPARE)))
948
949/* 1 if X is a non-commutative operator.  */
950
951#define NON_COMMUTATIVE_P(X)   \
952  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
953    == RTX_NON_COMMUTATIVE_RESULT)
954
955/* 1 if X is a commutative operator on integers.  */
956
957#define COMMUTATIVE_P(X)   \
958  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
959    == RTX_COMMUTATIVE_RESULT)
960
961/* 1 if X is a relational operator.  */
962
963#define COMPARISON_P(X)   \
964  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
965
966/* 1 if X is a constant value that is an integer.  */
967
968#define CONSTANT_P(X)   \
969  (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
970
971/* 1 if X can be used to represent an object.  */
972#define OBJECT_P(X)							\
973  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
974
975/* General accessor macros for accessing the fields of an rtx.  */
976
977#if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
978/* The bit with a star outside the statement expr and an & inside is
979   so that N can be evaluated only once.  */
980#define RTL_CHECK1(RTX, N, C1) __extension__				\
981(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
982     const enum rtx_code _code = GET_CODE (_rtx);			\
983     if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
984       rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
985				__FUNCTION__);				\
986     if (GET_RTX_FORMAT (_code)[_n] != C1)				\
987       rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__,	\
988			       __FUNCTION__);				\
989     &_rtx->u.fld[_n]; }))
990
991#define RTL_CHECK2(RTX, N, C1, C2) __extension__			\
992(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
993     const enum rtx_code _code = GET_CODE (_rtx);			\
994     if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
995       rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
996				__FUNCTION__);				\
997     if (GET_RTX_FORMAT (_code)[_n] != C1				\
998	 && GET_RTX_FORMAT (_code)[_n] != C2)				\
999       rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__,	\
1000			       __FUNCTION__);				\
1001     &_rtx->u.fld[_n]; }))
1002
1003#define RTL_CHECKC1(RTX, N, C) __extension__				\
1004(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1005     if (GET_CODE (_rtx) != (C))					\
1006       rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1007			       __FUNCTION__);				\
1008     &_rtx->u.fld[_n]; }))
1009
1010#define RTL_CHECKC2(RTX, N, C1, C2) __extension__			\
1011(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1012     const enum rtx_code _code = GET_CODE (_rtx);			\
1013     if (_code != (C1) && _code != (C2))				\
1014       rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__,	\
1015			       __FUNCTION__); \
1016     &_rtx->u.fld[_n]; }))
1017
1018#define RTVEC_ELT(RTVEC, I) __extension__				\
1019(*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I);	\
1020     if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec))				\
1021       rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__,	\
1022				  __FUNCTION__);			\
1023     &_rtvec->elem[_i]; }))
1024
1025#define XWINT(RTX, N) __extension__					\
1026(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1027     const enum rtx_code _code = GET_CODE (_rtx);			\
1028     if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1029       rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1030				__FUNCTION__);				\
1031     if (GET_RTX_FORMAT (_code)[_n] != 'w')				\
1032       rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__,	\
1033			       __FUNCTION__);				\
1034     &_rtx->u.hwint[_n]; }))
1035
1036#define CWI_ELT(RTX, I) __extension__					\
1037(*({ __typeof (RTX) const _cwi = (RTX);					\
1038     int _max = CWI_GET_NUM_ELEM (_cwi);				\
1039     const int _i = (I);						\
1040     if (_i < 0 || _i >= _max)						\
1041       cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__,		\
1042				__FUNCTION__);				\
1043     &_cwi->u.hwiv.elem[_i]; }))
1044
1045#define XCWINT(RTX, N, C) __extension__					\
1046(*({ __typeof (RTX) const _rtx = (RTX);					\
1047     if (GET_CODE (_rtx) != (C))					\
1048       rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1049			       __FUNCTION__);				\
1050     &_rtx->u.hwint[N]; }))
1051
1052#define XCMWINT(RTX, N, C, M) __extension__				\
1053(*({ __typeof (RTX) const _rtx = (RTX);					\
1054     if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M))		\
1055       rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__,	\
1056				   __LINE__, __FUNCTION__);		\
1057     &_rtx->u.hwint[N]; }))
1058
1059#define XCNMPRV(RTX, C, M) __extension__				\
1060({ __typeof (RTX) const _rtx = (RTX);					\
1061   if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1062     rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1063				 __LINE__, __FUNCTION__);		\
1064   &_rtx->u.rv; })
1065
1066#define XCNMPFV(RTX, C, M) __extension__				\
1067({ __typeof (RTX) const _rtx = (RTX);					\
1068   if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1069     rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1070				 __LINE__, __FUNCTION__);		\
1071   &_rtx->u.fv; })
1072
1073#define BLOCK_SYMBOL_CHECK(RTX) __extension__				\
1074({ __typeof (RTX) const _symbol = (RTX);				\
1075   const unsigned int flags = SYMBOL_REF_FLAGS (_symbol);		\
1076   if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0)			\
1077     rtl_check_failed_block_symbol (__FILE__, __LINE__,			\
1078				    __FUNCTION__);			\
1079   &_symbol->u.block_sym; })
1080
1081#define HWIVEC_CHECK(RTX,C) __extension__				\
1082({ __typeof (RTX) const _symbol = (RTX);				\
1083   RTL_CHECKC1 (_symbol, 0, C);						\
1084   &_symbol->u.hwiv; })
1085
1086extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1087				     const char *)
1088    ATTRIBUTE_NORETURN;
1089extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1090				    const char *)
1091    ATTRIBUTE_NORETURN;
1092extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1093				    int, const char *)
1094    ATTRIBUTE_NORETURN;
1095extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1096				    int, const char *)
1097    ATTRIBUTE_NORETURN;
1098extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1099				    const char *, int, const char *)
1100    ATTRIBUTE_NORETURN;
1101extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1102					bool, const char *, int, const char *)
1103    ATTRIBUTE_NORETURN;
1104extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1105    ATTRIBUTE_NORETURN;
1106extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1107				     const char *)
1108    ATTRIBUTE_NORETURN;
1109extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1110				       const char *)
1111    ATTRIBUTE_NORETURN;
1112
1113#else   /* not ENABLE_RTL_CHECKING */
1114
1115#define RTL_CHECK1(RTX, N, C1)      ((RTX)->u.fld[N])
1116#define RTL_CHECK2(RTX, N, C1, C2)  ((RTX)->u.fld[N])
1117#define RTL_CHECKC1(RTX, N, C)	    ((RTX)->u.fld[N])
1118#define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1119#define RTVEC_ELT(RTVEC, I)	    ((RTVEC)->elem[I])
1120#define XWINT(RTX, N)		    ((RTX)->u.hwint[N])
1121#define CWI_ELT(RTX, I)		    ((RTX)->u.hwiv.elem[I])
1122#define XCWINT(RTX, N, C)	    ((RTX)->u.hwint[N])
1123#define XCMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1124#define XCNMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1125#define XCNMPRV(RTX, C, M)	    (&(RTX)->u.rv)
1126#define XCNMPFV(RTX, C, M)	    (&(RTX)->u.fv)
1127#define BLOCK_SYMBOL_CHECK(RTX)	    (&(RTX)->u.block_sym)
1128#define HWIVEC_CHECK(RTX,C)	    (&(RTX)->u.hwiv)
1129
1130#endif
1131
1132/* General accessor macros for accessing the flags of an rtx.  */
1133
1134/* Access an individual rtx flag, with no checking of any kind.  */
1135#define RTX_FLAG(RTX, FLAG)	((RTX)->FLAG)
1136
1137#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1138#define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__			\
1139({ __typeof (RTX) const _rtx = (RTX);					\
1140   if (GET_CODE (_rtx) != C1)						\
1141     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1142			     __FUNCTION__);				\
1143   _rtx; })
1144
1145#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__		\
1146({ __typeof (RTX) const _rtx = (RTX);					\
1147   if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2)			\
1148     rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1149			      __FUNCTION__);				\
1150   _rtx; })
1151
1152#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__		\
1153({ __typeof (RTX) const _rtx = (RTX);					\
1154   if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1155       && GET_CODE (_rtx) != C3)					\
1156     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1157			     __FUNCTION__);				\
1158   _rtx; })
1159
1160#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__	\
1161({ __typeof (RTX) const _rtx = (RTX);					\
1162   if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1163       && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4)		\
1164     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1165			      __FUNCTION__);				\
1166   _rtx; })
1167
1168#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__	\
1169({ __typeof (RTX) const _rtx = (RTX);					\
1170   if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1171       && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1172       && GET_CODE (_rtx) != C5)					\
1173     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1174			     __FUNCTION__);				\
1175   _rtx; })
1176
1177#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		\
1178  __extension__								\
1179({ __typeof (RTX) const _rtx = (RTX);					\
1180   if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1181       && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1182       && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6)		\
1183     rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1184			     __FUNCTION__);				\
1185   _rtx; })
1186
1187#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		\
1188  __extension__								\
1189({ __typeof (RTX) const _rtx = (RTX);					\
1190   if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1191       && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1192       && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6		\
1193       && GET_CODE (_rtx) != C7)					\
1194     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1195			     __FUNCTION__);				\
1196   _rtx; })
1197
1198#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				\
1199  __extension__								\
1200({ __typeof (RTX) const _rtx = (RTX);					\
1201   if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx)))				\
1202     rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__,		\
1203			    __FUNCTION__);				\
1204   _rtx; })
1205
1206extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1207				   int, const char *)
1208    ATTRIBUTE_NORETURN
1209    ;
1210
1211#else	/* not ENABLE_RTL_FLAG_CHECKING */
1212
1213#define RTL_FLAG_CHECK1(NAME, RTX, C1)					(RTX)
1214#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2)				(RTX)
1215#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3)				(RTX)
1216#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4)			(RTX)
1217#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5)			(RTX)
1218#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		(RTX)
1219#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		(RTX)
1220#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				(RTX)
1221#endif
1222
1223#define XINT(RTX, N)	(RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1224#define XUINT(RTX, N)   (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1225#define XSTR(RTX, N)	(RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1226#define XEXP(RTX, N)	(RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1227#define XVEC(RTX, N)	(RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1228#define XMODE(RTX, N)	(RTL_CHECK1 (RTX, N, 'M').rt_type)
1229#define XTREE(RTX, N)   (RTL_CHECK1 (RTX, N, 't').rt_tree)
1230#define XBBDEF(RTX, N)	(RTL_CHECK1 (RTX, N, 'B').rt_bb)
1231#define XTMPL(RTX, N)	(RTL_CHECK1 (RTX, N, 'T').rt_str)
1232#define XCFI(RTX, N)	(RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1233
1234#define XVECEXP(RTX, N, M)	RTVEC_ELT (XVEC (RTX, N), M)
1235#define XVECLEN(RTX, N)		GET_NUM_ELEM (XVEC (RTX, N))
1236
1237/* These are like XINT, etc. except that they expect a '0' field instead
1238   of the normal type code.  */
1239
1240#define X0INT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_int)
1241#define X0UINT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_uint)
1242#define X0STR(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_str)
1243#define X0EXP(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1244#define X0VEC(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1245#define X0MODE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_type)
1246#define X0TREE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_tree)
1247#define X0BBDEF(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_bb)
1248#define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1249#define X0CSELIB(RTX, N)   (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1250#define X0MEMATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1251#define X0REGATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1252#define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1253
1254/* Access a '0' field with any type.  */
1255#define X0ANY(RTX, N)	   RTL_CHECK1 (RTX, N, '0')
1256
1257#define XCINT(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_int)
1258#define XCUINT(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_uint)
1259#define XCSTR(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_str)
1260#define XCEXP(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1261#define XCVEC(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1262#define XCMODE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_type)
1263#define XCTREE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_tree)
1264#define XCBBDEF(RTX, N, C)    (RTL_CHECKC1 (RTX, N, C).rt_bb)
1265#define XCCFI(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1266#define XCCSELIB(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1267
1268#define XCVECEXP(RTX, N, M, C)	RTVEC_ELT (XCVEC (RTX, N, C), M)
1269#define XCVECLEN(RTX, N, C)	GET_NUM_ELEM (XCVEC (RTX, N, C))
1270
1271#define XC2EXP(RTX, N, C1, C2)      (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1272
1273
1274/* Methods of rtx_expr_list.  */
1275
1276inline rtx_expr_list *rtx_expr_list::next () const
1277{
1278  rtx tmp = XEXP (this, 1);
1279  return safe_as_a <rtx_expr_list *> (tmp);
1280}
1281
1282inline rtx rtx_expr_list::element () const
1283{
1284  return XEXP (this, 0);
1285}
1286
1287/* Methods of rtx_insn_list.  */
1288
1289inline rtx_insn_list *rtx_insn_list::next () const
1290{
1291  rtx tmp = XEXP (this, 1);
1292  return safe_as_a <rtx_insn_list *> (tmp);
1293}
1294
1295inline rtx_insn *rtx_insn_list::insn () const
1296{
1297  rtx tmp = XEXP (this, 0);
1298  return safe_as_a <rtx_insn *> (tmp);
1299}
1300
1301/* Methods of rtx_sequence.  */
1302
1303inline int rtx_sequence::len () const
1304{
1305  return XVECLEN (this, 0);
1306}
1307
1308inline rtx rtx_sequence::element (int index) const
1309{
1310  return XVECEXP (this, 0, index);
1311}
1312
1313inline rtx_insn *rtx_sequence::insn (int index) const
1314{
1315  return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1316}
1317
1318/* ACCESS MACROS for particular fields of insns.  */
1319
1320/* Holds a unique number for each insn.
1321   These are not necessarily sequentially increasing.  */
1322inline int INSN_UID (const_rtx insn)
1323{
1324  return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1325				    (insn))->u2.insn_uid;
1326}
1327inline int& INSN_UID (rtx insn)
1328{
1329  return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1330				    (insn))->u2.insn_uid;
1331}
1332
1333/* Chain insns together in sequence.  */
1334
1335/* For now these are split in two: an rvalue form:
1336     PREV_INSN/NEXT_INSN
1337   and an lvalue form:
1338     SET_NEXT_INSN/SET_PREV_INSN.  */
1339
1340inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1341{
1342  rtx prev = XEXP (insn, 0);
1343  return safe_as_a <rtx_insn *> (prev);
1344}
1345
1346inline rtx& SET_PREV_INSN (rtx_insn *insn)
1347{
1348  return XEXP (insn, 0);
1349}
1350
1351inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1352{
1353  rtx next = XEXP (insn, 1);
1354  return safe_as_a <rtx_insn *> (next);
1355}
1356
1357inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1358{
1359  return XEXP (insn, 1);
1360}
1361
1362inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1363{
1364  return XBBDEF (insn, 2);
1365}
1366
1367inline basic_block& BLOCK_FOR_INSN (rtx insn)
1368{
1369  return XBBDEF (insn, 2);
1370}
1371
1372inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1373{
1374  BLOCK_FOR_INSN (insn) = bb;
1375}
1376
1377/* The body of an insn.  */
1378inline rtx PATTERN (const_rtx insn)
1379{
1380  return XEXP (insn, 3);
1381}
1382
1383inline rtx& PATTERN (rtx insn)
1384{
1385  return XEXP (insn, 3);
1386}
1387
1388inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1389{
1390  return XUINT (insn, 4);
1391}
1392
1393inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1394{
1395  return XUINT (insn, 4);
1396}
1397
1398inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1399{
1400  return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1401}
1402
1403/* LOCATION of an RTX if relevant.  */
1404#define RTL_LOCATION(X) (INSN_P (X) ? \
1405			 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1406			 : UNKNOWN_LOCATION)
1407
1408/* Code number of instruction, from when it was recognized.
1409   -1 means this instruction has not been recognized yet.  */
1410#define INSN_CODE(INSN) XINT (INSN, 5)
1411
1412inline rtvec rtx_jump_table_data::get_labels () const
1413{
1414  rtx pat = PATTERN (this);
1415  if (GET_CODE (pat) == ADDR_VEC)
1416    return XVEC (pat, 0);
1417  else
1418    return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1419}
1420
1421#define RTX_FRAME_RELATED_P(RTX)					\
1422  (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN,	\
1423		    CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1424
1425/* 1 if JUMP RTX is a crossing jump.  */
1426#define CROSSING_JUMP_P(RTX) \
1427  (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1428
1429/* 1 if RTX is a call to a const function.  Built from ECF_CONST and
1430   TREE_READONLY.  */
1431#define RTL_CONST_CALL_P(RTX)					\
1432  (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1433
1434/* 1 if RTX is a call to a pure function.  Built from ECF_PURE and
1435   DECL_PURE_P.  */
1436#define RTL_PURE_CALL_P(RTX)					\
1437  (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1438
1439/* 1 if RTX is a call to a const or pure function.  */
1440#define RTL_CONST_OR_PURE_CALL_P(RTX) \
1441  (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1442
1443/* 1 if RTX is a call to a looping const or pure function.  Built from
1444   ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.  */
1445#define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX)				\
1446  (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1447
1448/* 1 if RTX is a call_insn for a sibling call.  */
1449#define SIBLING_CALL_P(RTX)						\
1450  (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1451
1452/* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch.  */
1453#define INSN_ANNULLED_BRANCH_P(RTX)					\
1454  (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1455
1456/* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1457   If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1458   executed if the branch is taken.  For annulled branches with this bit
1459   clear, the insn should be executed only if the branch is not taken.  */
1460#define INSN_FROM_TARGET_P(RTX)						\
1461  (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1462		    CALL_INSN)->in_struct)
1463
1464/* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1465   See the comments for ADDR_DIFF_VEC in rtl.def.  */
1466#define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1467
1468/* In a VALUE, the value cselib has assigned to RTX.
1469   This is a "struct cselib_val", see cselib.h.  */
1470#define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1471
1472/* Holds a list of notes on what this insn does to various REGs.
1473   It is a chain of EXPR_LIST rtx's, where the second operand is the
1474   chain pointer and the first operand is the REG being described.
1475   The mode field of the EXPR_LIST contains not a real machine mode
1476   but a value from enum reg_note.  */
1477#define REG_NOTES(INSN)	XEXP(INSN, 6)
1478
1479/* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1480   question.  */
1481#define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1482
1483enum reg_note
1484{
1485#define DEF_REG_NOTE(NAME) NAME,
1486#include "reg-notes.def"
1487#undef DEF_REG_NOTE
1488  REG_NOTE_MAX
1489};
1490
1491/* Define macros to extract and insert the reg-note kind in an EXPR_LIST.  */
1492#define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1493#define PUT_REG_NOTE_KIND(LINK, KIND) \
1494  PUT_MODE (LINK, (machine_mode) (KIND))
1495
1496/* Names for REG_NOTE's in EXPR_LIST insn's.  */
1497
1498extern const char * const reg_note_name[];
1499#define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1500
1501/* This field is only present on CALL_INSNs.  It holds a chain of EXPR_LIST of
1502   USE and CLOBBER expressions.
1503     USE expressions list the registers filled with arguments that
1504   are passed to the function.
1505     CLOBBER expressions document the registers explicitly clobbered
1506   by this CALL_INSN.
1507     Pseudo registers can not be mentioned in this list.  */
1508#define CALL_INSN_FUNCTION_USAGE(INSN)	XEXP(INSN, 7)
1509
1510/* The label-number of a code-label.  The assembler label
1511   is made from `L' and the label-number printed in decimal.
1512   Label numbers are unique in a compilation.  */
1513#define CODE_LABEL_NUMBER(INSN)	XINT (INSN, 5)
1514
1515/* In a NOTE that is a line number, this is a string for the file name that the
1516   line is in.  We use the same field to record block numbers temporarily in
1517   NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.  (We avoid lots of casts
1518   between ints and pointers if we use a different macro for the block number.)
1519   */
1520
1521/* Opaque data.  */
1522#define NOTE_DATA(INSN)	        RTL_CHECKC1 (INSN, 3, NOTE)
1523#define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1524#define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1525#define NOTE_BLOCK(INSN)	XCTREE (INSN, 3, NOTE)
1526#define NOTE_EH_HANDLER(INSN)	XCINT (INSN, 3, NOTE)
1527#define NOTE_BASIC_BLOCK(INSN)	XCBBDEF (INSN, 3, NOTE)
1528#define NOTE_VAR_LOCATION(INSN)	XCEXP (INSN, 3, NOTE)
1529#define NOTE_CFI(INSN)		XCCFI (INSN, 3, NOTE)
1530#define NOTE_LABEL_NUMBER(INSN)	XCINT (INSN, 3, NOTE)
1531
1532/* In a NOTE that is a line number, this is the line number.
1533   Other kinds of NOTEs are identified by negative numbers here.  */
1534#define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1535
1536/* Nonzero if INSN is a note marking the beginning of a basic block.  */
1537#define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1538  (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1539
1540/* Variable declaration and the location of a variable.  */
1541#define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1542#define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1543
1544/* Initialization status of the variable in the location.  Status
1545   can be unknown, uninitialized or initialized.  See enumeration
1546   type below.  */
1547#define PAT_VAR_LOCATION_STATUS(PAT) \
1548  (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1549   ->u2.var_location_status)
1550
1551/* Accessors for a NOTE_INSN_VAR_LOCATION.  */
1552#define NOTE_VAR_LOCATION_DECL(NOTE) \
1553  PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1554#define NOTE_VAR_LOCATION_LOC(NOTE) \
1555  PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1556#define NOTE_VAR_LOCATION_STATUS(NOTE) \
1557  PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1558
1559/* The VAR_LOCATION rtx in a DEBUG_INSN.  */
1560#define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1561
1562/* Accessors for a tree-expanded var location debug insn.  */
1563#define INSN_VAR_LOCATION_DECL(INSN) \
1564  PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1565#define INSN_VAR_LOCATION_LOC(INSN) \
1566  PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1567#define INSN_VAR_LOCATION_STATUS(INSN) \
1568  PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1569
1570/* Expand to the RTL that denotes an unknown variable location in a
1571   DEBUG_INSN.  */
1572#define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1573
1574/* Determine whether X is such an unknown location.  */
1575#define VAR_LOC_UNKNOWN_P(X) \
1576  (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1577
1578/* 1 if RTX is emitted after a call, but it should take effect before
1579   the call returns.  */
1580#define NOTE_DURING_CALL_P(RTX)				\
1581  (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1582
1583/* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX.  */
1584#define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1585
1586/* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of.  */
1587#define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1588
1589/* PARM_DECL DEBUG_PARAMETER_REF references.  */
1590#define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1591
1592/* Codes that appear in the NOTE_KIND field for kinds of notes
1593   that are not line numbers.  These codes are all negative.
1594
1595   Notice that we do not try to use zero here for any of
1596   the special note codes because sometimes the source line
1597   actually can be zero!  This happens (for example) when we
1598   are generating code for the per-translation-unit constructor
1599   and destructor routines for some C++ translation unit.  */
1600
1601enum insn_note
1602{
1603#define DEF_INSN_NOTE(NAME) NAME,
1604#include "insn-notes.def"
1605#undef DEF_INSN_NOTE
1606
1607  NOTE_INSN_MAX
1608};
1609
1610/* Names for NOTE insn's other than line numbers.  */
1611
1612extern const char * const note_insn_name[NOTE_INSN_MAX];
1613#define GET_NOTE_INSN_NAME(NOTE_CODE) \
1614  (note_insn_name[(NOTE_CODE)])
1615
1616/* The name of a label, in case it corresponds to an explicit label
1617   in the input source code.  */
1618#define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1619
1620/* In jump.c, each label contains a count of the number
1621   of LABEL_REFs that point at it, so unused labels can be deleted.  */
1622#define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1623
1624/* Labels carry a two-bit field composed of the ->jump and ->call
1625   bits.  This field indicates whether the label is an alternate
1626   entry point, and if so, what kind.  */
1627enum label_kind
1628{
1629  LABEL_NORMAL = 0,	/* ordinary label */
1630  LABEL_STATIC_ENTRY,	/* alternate entry point, not exported */
1631  LABEL_GLOBAL_ENTRY,	/* alternate entry point, exported */
1632  LABEL_WEAK_ENTRY	/* alternate entry point, exported as weak symbol */
1633};
1634
1635#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1636
1637/* Retrieve the kind of LABEL.  */
1638#define LABEL_KIND(LABEL) __extension__					\
1639({ __typeof (LABEL) const _label = (LABEL);				\
1640   if (! LABEL_P (_label))						\
1641     rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__,	\
1642			    __FUNCTION__);				\
1643   (enum label_kind) ((_label->jump << 1) | _label->call); })
1644
1645/* Set the kind of LABEL.  */
1646#define SET_LABEL_KIND(LABEL, KIND) do {				\
1647   __typeof (LABEL) const _label = (LABEL);				\
1648   const unsigned int _kind = (KIND);					\
1649   if (! LABEL_P (_label))						\
1650     rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1651			    __FUNCTION__);				\
1652   _label->jump = ((_kind >> 1) & 1);					\
1653   _label->call = (_kind & 1);						\
1654} while (0)
1655
1656#else
1657
1658/* Retrieve the kind of LABEL.  */
1659#define LABEL_KIND(LABEL) \
1660   ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1661
1662/* Set the kind of LABEL.  */
1663#define SET_LABEL_KIND(LABEL, KIND) do {				\
1664   rtx const _label = (LABEL);						\
1665   const unsigned int _kind = (KIND);					\
1666   _label->jump = ((_kind >> 1) & 1);					\
1667   _label->call = (_kind & 1);						\
1668} while (0)
1669
1670#endif /* rtl flag checking */
1671
1672#define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1673
1674/* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1675   so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1676   be decremented and possibly the label can be deleted.  */
1677#define JUMP_LABEL(INSN)   XCEXP (INSN, 7, JUMP_INSN)
1678
1679inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1680{
1681  return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1682}
1683
1684/* Once basic blocks are found, each CODE_LABEL starts a chain that
1685   goes through all the LABEL_REFs that jump to that label.  The chain
1686   eventually winds up at the CODE_LABEL: it is circular.  */
1687#define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1688
1689/* Get the label that a LABEL_REF references.  */
1690#define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1691
1692
1693/* For a REG rtx, REGNO extracts the register number.  REGNO can only
1694   be used on RHS.  Use SET_REGNO to change the value.  */
1695#define REGNO(RTX) (rhs_regno(RTX))
1696#define SET_REGNO(RTX,N) \
1697  (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1698#define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1699
1700/* ORIGINAL_REGNO holds the number the register originally had; for a
1701   pseudo register turned into a hard reg this will hold the old pseudo
1702   register number.  */
1703#define ORIGINAL_REGNO(RTX) \
1704  (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1705
1706/* Force the REGNO macro to only be used on the lhs.  */
1707static inline unsigned int
1708rhs_regno (const_rtx x)
1709{
1710  return XCUINT (x, 0, REG);
1711}
1712
1713
1714/* 1 if RTX is a reg or parallel that is the current function's return
1715   value.  */
1716#define REG_FUNCTION_VALUE_P(RTX)					\
1717  (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1718
1719/* 1 if RTX is a reg that corresponds to a variable declared by the user.  */
1720#define REG_USERVAR_P(RTX)						\
1721  (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1722
1723/* 1 if RTX is a reg that holds a pointer value.  */
1724#define REG_POINTER(RTX)						\
1725  (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1726
1727/* 1 if RTX is a mem that holds a pointer value.  */
1728#define MEM_POINTER(RTX)						\
1729  (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1730
1731/* 1 if the given register REG corresponds to a hard register.  */
1732#define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1733
1734/* 1 if the given register number REG_NO corresponds to a hard register.  */
1735#define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1736
1737/* For a CONST_INT rtx, INTVAL extracts the integer.  */
1738#define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1739#define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1740
1741/* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1742   elements actually needed to represent the constant.
1743   CONST_WIDE_INT_ELT gets one of the elements.  0 is the least
1744   significant HOST_WIDE_INT.  */
1745#define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1746#define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1747#define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1748
1749/* For a CONST_DOUBLE:
1750#if TARGET_SUPPORTS_WIDE_INT == 0
1751   For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1752     low-order word and ..._HIGH the high-order.
1753#endif
1754   For a float, there is a REAL_VALUE_TYPE structure, and
1755     CONST_DOUBLE_REAL_VALUE(r) is a pointer to it.  */
1756#define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1757#define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1758#define CONST_DOUBLE_REAL_VALUE(r) \
1759  ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1760
1761#define CONST_FIXED_VALUE(r) \
1762  ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1763#define CONST_FIXED_VALUE_HIGH(r) \
1764  ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1765#define CONST_FIXED_VALUE_LOW(r) \
1766  ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1767
1768/* For a CONST_VECTOR, return element #n.  */
1769#define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1770
1771/* For a CONST_VECTOR, return the number of elements in a vector.  */
1772#define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1773
1774/* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1775   SUBREG_BYTE extracts the byte-number.  */
1776
1777#define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1778#define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1779
1780/* in rtlanal.c */
1781/* Return the right cost to give to an operation
1782   to make the cost of the corresponding register-to-register instruction
1783   N times that of a fast register-to-register instruction.  */
1784#define COSTS_N_INSNS(N) ((N) * 4)
1785
1786/* Maximum cost of an rtl expression.  This value has the special meaning
1787   not to use an rtx with this cost under any circumstances.  */
1788#define MAX_COST INT_MAX
1789
1790/* A structure to hold all available cost information about an rtl
1791   expression.  */
1792struct full_rtx_costs
1793{
1794  int speed;
1795  int size;
1796};
1797
1798/* Initialize a full_rtx_costs structure C to the maximum cost.  */
1799static inline void
1800init_costs_to_max (struct full_rtx_costs *c)
1801{
1802  c->speed = MAX_COST;
1803  c->size = MAX_COST;
1804}
1805
1806/* Initialize a full_rtx_costs structure C to zero cost.  */
1807static inline void
1808init_costs_to_zero (struct full_rtx_costs *c)
1809{
1810  c->speed = 0;
1811  c->size = 0;
1812}
1813
1814/* Compare two full_rtx_costs structures A and B, returning true
1815   if A < B when optimizing for speed.  */
1816static inline bool
1817costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1818	    bool speed)
1819{
1820  if (speed)
1821    return (a->speed < b->speed
1822	    || (a->speed == b->speed && a->size < b->size));
1823  else
1824    return (a->size < b->size
1825	    || (a->size == b->size && a->speed < b->speed));
1826}
1827
1828/* Increase both members of the full_rtx_costs structure C by the
1829   cost of N insns.  */
1830static inline void
1831costs_add_n_insns (struct full_rtx_costs *c, int n)
1832{
1833  c->speed += COSTS_N_INSNS (n);
1834  c->size += COSTS_N_INSNS (n);
1835}
1836
1837/* Describes the shape of a subreg:
1838
1839   inner_mode == the mode of the SUBREG_REG
1840   offset     == the SUBREG_BYTE
1841   outer_mode == the mode of the SUBREG itself.  */
1842struct subreg_shape {
1843  subreg_shape (machine_mode, unsigned int, machine_mode);
1844  bool operator == (const subreg_shape &) const;
1845  bool operator != (const subreg_shape &) const;
1846  unsigned int unique_id () const;
1847
1848  machine_mode inner_mode;
1849  unsigned int offset;
1850  machine_mode outer_mode;
1851};
1852
1853inline
1854subreg_shape::subreg_shape (machine_mode inner_mode_in,
1855			    unsigned int offset_in,
1856			    machine_mode outer_mode_in)
1857  : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1858{}
1859
1860inline bool
1861subreg_shape::operator == (const subreg_shape &other) const
1862{
1863  return (inner_mode == other.inner_mode
1864	  && offset == other.offset
1865	  && outer_mode == other.outer_mode);
1866}
1867
1868inline bool
1869subreg_shape::operator != (const subreg_shape &other) const
1870{
1871  return !operator == (other);
1872}
1873
1874/* Return an integer that uniquely identifies this shape.  Structures
1875   like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1876   current mode is anywhere near being 65536 bytes in size, so the
1877   id comfortably fits in an int.  */
1878
1879inline unsigned int
1880subreg_shape::unique_id () const
1881{
1882  STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1883  return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1884}
1885
1886/* Return the shape of a SUBREG rtx.  */
1887
1888static inline subreg_shape
1889shape_of_subreg (const_rtx x)
1890{
1891  return subreg_shape (GET_MODE (SUBREG_REG (x)),
1892		       SUBREG_BYTE (x), GET_MODE (x));
1893}
1894
1895/* Information about an address.  This structure is supposed to be able
1896   to represent all supported target addresses.  Please extend it if it
1897   is not yet general enough.  */
1898struct address_info {
1899  /* The mode of the value being addressed, or VOIDmode if this is
1900     a load-address operation with no known address mode.  */
1901  machine_mode mode;
1902
1903  /* The address space.  */
1904  addr_space_t as;
1905
1906  /* A pointer to the top-level address.  */
1907  rtx *outer;
1908
1909  /* A pointer to the inner address, after all address mutations
1910     have been stripped from the top-level address.  It can be one
1911     of the following:
1912
1913     - A {PRE,POST}_{INC,DEC} of *BASE.  SEGMENT, INDEX and DISP are null.
1914
1915     - A {PRE,POST}_MODIFY of *BASE.  In this case either INDEX or DISP
1916       points to the step value, depending on whether the step is variable
1917       or constant respectively.  SEGMENT is null.
1918
1919     - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1920       with null fields evaluating to 0.  */
1921  rtx *inner;
1922
1923  /* Components that make up *INNER.  Each one may be null or nonnull.
1924     When nonnull, their meanings are as follows:
1925
1926     - *SEGMENT is the "segment" of memory to which the address refers.
1927       This value is entirely target-specific and is only called a "segment"
1928       because that's its most typical use.  It contains exactly one UNSPEC,
1929       pointed to by SEGMENT_TERM.  The contents of *SEGMENT do not need
1930       reloading.
1931
1932     - *BASE is a variable expression representing a base address.
1933       It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1934
1935     - *INDEX is a variable expression representing an index value.
1936       It may be a scaled expression, such as a MULT.  It has exactly
1937       one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1938
1939     - *DISP is a constant, possibly mutated.  DISP_TERM points to the
1940       unmutated RTX_CONST_OBJ.  */
1941  rtx *segment;
1942  rtx *base;
1943  rtx *index;
1944  rtx *disp;
1945
1946  rtx *segment_term;
1947  rtx *base_term;
1948  rtx *index_term;
1949  rtx *disp_term;
1950
1951  /* In a {PRE,POST}_MODIFY address, this points to a second copy
1952     of BASE_TERM, otherwise it is null.  */
1953  rtx *base_term2;
1954
1955  /* ADDRESS if this structure describes an address operand, MEM if
1956     it describes a MEM address.  */
1957  enum rtx_code addr_outer_code;
1958
1959  /* If BASE is nonnull, this is the code of the rtx that contains it.  */
1960  enum rtx_code base_outer_code;
1961
1962  /* True if this is an RTX_AUTOINC address.  */
1963  bool autoinc_p;
1964};
1965
1966/* This is used to bundle an rtx and a mode together so that the pair
1967   can be used with the wi:: routines.  If we ever put modes into rtx
1968   integer constants, this should go away and then just pass an rtx in.  */
1969typedef std::pair <rtx, machine_mode> rtx_mode_t;
1970
1971namespace wi
1972{
1973  template <>
1974  struct int_traits <rtx_mode_t>
1975  {
1976    static const enum precision_type precision_type = VAR_PRECISION;
1977    static const bool host_dependent_precision = false;
1978    /* This ought to be true, except for the special case that BImode
1979       is canonicalized to STORE_FLAG_VALUE, which might be 1.  */
1980    static const bool is_sign_extended = false;
1981    static unsigned int get_precision (const rtx_mode_t &);
1982    static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1983				      const rtx_mode_t &);
1984  };
1985}
1986
1987inline unsigned int
1988wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1989{
1990  gcc_checking_assert (x.second != BLKmode && x.second != VOIDmode);
1991  return GET_MODE_PRECISION (x.second);
1992}
1993
1994inline wi::storage_ref
1995wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1996					unsigned int precision,
1997					const rtx_mode_t &x)
1998{
1999  gcc_checking_assert (precision == get_precision (x));
2000  switch (GET_CODE (x.first))
2001    {
2002    case CONST_INT:
2003      if (precision < HOST_BITS_PER_WIDE_INT)
2004	/* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2005	   targets is 1 rather than -1.  */
2006	gcc_checking_assert (INTVAL (x.first)
2007			     == sext_hwi (INTVAL (x.first), precision)
2008			     || (x.second == BImode && INTVAL (x.first) == 1));
2009
2010      return wi::storage_ref (&INTVAL (x.first), 1, precision);
2011
2012    case CONST_WIDE_INT:
2013      return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2014			      CONST_WIDE_INT_NUNITS (x.first), precision);
2015
2016#if TARGET_SUPPORTS_WIDE_INT == 0
2017    case CONST_DOUBLE:
2018      return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2019#endif
2020
2021    default:
2022      gcc_unreachable ();
2023    }
2024}
2025
2026namespace wi
2027{
2028  hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2029  wide_int min_value (machine_mode, signop);
2030  wide_int max_value (machine_mode, signop);
2031}
2032
2033inline wi::hwi_with_prec
2034wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2035{
2036  return shwi (val, GET_MODE_PRECISION (mode));
2037}
2038
2039/* Produce the smallest number that is represented in MODE.  The precision
2040   is taken from MODE and the sign from SGN.  */
2041inline wide_int
2042wi::min_value (machine_mode mode, signop sgn)
2043{
2044  return min_value (GET_MODE_PRECISION (mode), sgn);
2045}
2046
2047/* Produce the largest number that is represented in MODE.  The precision
2048   is taken from MODE and the sign from SGN.  */
2049inline wide_int
2050wi::max_value (machine_mode mode, signop sgn)
2051{
2052  return max_value (GET_MODE_PRECISION (mode), sgn);
2053}
2054
2055extern void init_rtlanal (void);
2056extern int rtx_cost (rtx, enum rtx_code, int, bool);
2057extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2058extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2059			       struct full_rtx_costs *);
2060extern unsigned int subreg_lsb (const_rtx);
2061extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2062				  unsigned int);
2063extern unsigned int subreg_regno_offset	(unsigned int, machine_mode,
2064					 unsigned int, machine_mode);
2065extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2066					   unsigned int, machine_mode);
2067extern unsigned int subreg_regno (const_rtx);
2068extern int simplify_subreg_regno (unsigned int, machine_mode,
2069				  unsigned int, machine_mode);
2070extern unsigned int subreg_nregs (const_rtx);
2071extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2072extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2073extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2074extern bool constant_pool_constant_p (rtx);
2075extern bool truncated_to_mode (machine_mode, const_rtx);
2076extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2077extern void split_double (rtx, rtx *, rtx *);
2078extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2079extern void decompose_address (struct address_info *, rtx *,
2080			       machine_mode, addr_space_t, enum rtx_code);
2081extern void decompose_lea_address (struct address_info *, rtx *);
2082extern void decompose_mem_address (struct address_info *, rtx);
2083extern void update_address (struct address_info *);
2084extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2085extern enum rtx_code get_index_code (const struct address_info *);
2086
2087#ifndef GENERATOR_FILE
2088/* Return the cost of SET X.  SPEED_P is true if optimizing for speed
2089   rather than size.  */
2090
2091static inline int
2092set_rtx_cost (rtx x, bool speed_p)
2093{
2094  return rtx_cost (x, INSN, 4, speed_p);
2095}
2096
2097/* Like set_rtx_cost, but return both the speed and size costs in C.  */
2098
2099static inline void
2100get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2101{
2102  get_full_rtx_cost (x, INSN, 4, c);
2103}
2104
2105/* Return the cost of moving X into a register, relative to the cost
2106   of a register move.  SPEED_P is true if optimizing for speed rather
2107   than size.  */
2108
2109static inline int
2110set_src_cost (rtx x, bool speed_p)
2111{
2112  return rtx_cost (x, SET, 1, speed_p);
2113}
2114
2115/* Like set_src_cost, but return both the speed and size costs in C.  */
2116
2117static inline void
2118get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2119{
2120  get_full_rtx_cost (x, SET, 1, c);
2121}
2122#endif
2123
2124/* 1 if RTX is a subreg containing a reg that is already known to be
2125   sign- or zero-extended from the mode of the subreg to the mode of
2126   the reg.  SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2127   extension.
2128
2129   When used as a LHS, is means that this extension must be done
2130   when assigning to SUBREG_REG.  */
2131
2132#define SUBREG_PROMOTED_VAR_P(RTX)					\
2133  (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2134
2135/* Valid for subregs which are SUBREG_PROMOTED_VAR_P().  In that case
2136   this gives the necessary extensions:
2137   0  - signed (SPR_SIGNED)
2138   1  - normal unsigned (SPR_UNSIGNED)
2139   2  - value is both sign and unsign extended for mode
2140	(SPR_SIGNED_AND_UNSIGNED).
2141   -1 - pointer unsigned, which most often can be handled like unsigned
2142        extension, except for generating instructions where we need to
2143	emit special code (ptr_extend insns) on some architectures
2144	(SPR_POINTER). */
2145
2146const int SRP_POINTER = -1;
2147const int SRP_SIGNED = 0;
2148const int SRP_UNSIGNED = 1;
2149const int SRP_SIGNED_AND_UNSIGNED = 2;
2150
2151/* Sets promoted mode for SUBREG_PROMOTED_VAR_P().  */
2152#define SUBREG_PROMOTED_SET(RTX, VAL)		                        \
2153do {								        \
2154  rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET",		\
2155                                    (RTX), SUBREG);			\
2156  switch (VAL)								\
2157  {									\
2158    case SRP_POINTER:							\
2159      _rtx->volatil = 0;						\
2160      _rtx->unchanging = 0;						\
2161      break;								\
2162    case SRP_SIGNED:							\
2163      _rtx->volatil = 0;						\
2164      _rtx->unchanging = 1;						\
2165      break;								\
2166    case SRP_UNSIGNED:							\
2167      _rtx->volatil = 1;						\
2168      _rtx->unchanging = 0;						\
2169      break;								\
2170    case SRP_SIGNED_AND_UNSIGNED:					\
2171      _rtx->volatil = 1;						\
2172      _rtx->unchanging = 1;						\
2173      break;								\
2174  }									\
2175} while (0)
2176
2177/* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2178   including SRP_SIGNED_AND_UNSIGNED if promoted for
2179   both signed and unsigned.  */
2180#define SUBREG_PROMOTED_GET(RTX)	\
2181  (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2182   + (RTX)->unchanging - 1)
2183
2184/* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P().  */
2185#define SUBREG_PROMOTED_SIGN(RTX)	\
2186  ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2187   : (RTX)->unchanging - 1)
2188
2189/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2190   for SIGNED type.  */
2191#define SUBREG_PROMOTED_SIGNED_P(RTX)	\
2192  (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2193
2194/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2195   for UNSIGNED type.  */
2196#define SUBREG_PROMOTED_UNSIGNED_P(RTX)	\
2197  (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2198
2199/* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN.  */
2200#define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN)	\
2201((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER	\
2202 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX)		\
2203 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2204
2205/* True if the subreg was generated by LRA for reload insns.  Such
2206   subregs are valid only during LRA.  */
2207#define LRA_SUBREG_P(RTX)	\
2208  (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2209
2210/* True if call is instrumented by Pointer Bounds Checker.  */
2211#define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2212  (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2213
2214/* Access various components of an ASM_OPERANDS rtx.  */
2215
2216#define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2217#define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2218#define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2219#define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2220#define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2221#define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2222#define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2223#define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2224  XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2225#define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2226  XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2227#define ASM_OPERANDS_INPUT_MODE(RTX, N)  \
2228  GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2229#define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2230#define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2231#define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2232#define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2233#define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2234
2235/* 1 if RTX is a mem that is statically allocated in read-only memory.  */
2236#define MEM_READONLY_P(RTX) \
2237  (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2238
2239/* 1 if RTX is a mem and we should keep the alias set for this mem
2240   unchanged when we access a component.  Set to 1, or example, when we
2241   are already in a non-addressable component of an aggregate.  */
2242#define MEM_KEEP_ALIAS_SET_P(RTX)					\
2243  (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2244
2245/* 1 if RTX is a mem or asm_operand for a volatile reference.  */
2246#define MEM_VOLATILE_P(RTX)						\
2247  (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS,		\
2248		    ASM_INPUT)->volatil)
2249
2250/* 1 if RTX is a mem that cannot trap.  */
2251#define MEM_NOTRAP_P(RTX) \
2252  (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2253
2254/* The memory attribute block.  We provide access macros for each value
2255   in the block and provide defaults if none specified.  */
2256#define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2257
2258/* The register attribute block.  We provide access macros for each value
2259   in the block and provide defaults if none specified.  */
2260#define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2261
2262#ifndef GENERATOR_FILE
2263/* For a MEM rtx, the alias set.  If 0, this MEM is not in any alias
2264   set, and may alias anything.  Otherwise, the MEM can only alias
2265   MEMs in a conflicting alias set.  This value is set in a
2266   language-dependent manner in the front-end, and should not be
2267   altered in the back-end.  These set numbers are tested with
2268   alias_sets_conflict_p.  */
2269#define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2270
2271/* For a MEM rtx, the decl it is known to refer to, if it is known to
2272   refer to part of a DECL.  It may also be a COMPONENT_REF.  */
2273#define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2274
2275/* For a MEM rtx, true if its MEM_OFFSET is known.  */
2276#define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2277
2278/* For a MEM rtx, the offset from the start of MEM_EXPR.  */
2279#define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2280
2281/* For a MEM rtx, the address space.  */
2282#define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2283
2284/* For a MEM rtx, true if its MEM_SIZE is known.  */
2285#define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2286
2287/* For a MEM rtx, the size in bytes of the MEM.  */
2288#define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2289
2290/* For a MEM rtx, the alignment in bits.  We can use the alignment of the
2291   mode as a default when STRICT_ALIGNMENT, but not if not.  */
2292#define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2293#else
2294#define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2295#endif
2296
2297/* For a REG rtx, the decl it is known to refer to, if it is known to
2298   refer to part of a DECL.  */
2299#define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2300
2301/* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2302   HOST_WIDE_INT.  */
2303#define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2304
2305/* Copy the attributes that apply to memory locations from RHS to LHS.  */
2306#define MEM_COPY_ATTRIBUTES(LHS, RHS)				\
2307  (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS),			\
2308   MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS),			\
2309   MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS),			\
2310   MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS),	\
2311   MEM_POINTER (LHS) = MEM_POINTER (RHS),			\
2312   MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2313
2314/* 1 if RTX is a label_ref for a nonlocal label.  */
2315/* Likewise in an expr_list for a REG_LABEL_OPERAND or
2316   REG_LABEL_TARGET note.  */
2317#define LABEL_REF_NONLOCAL_P(RTX)					\
2318  (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2319
2320/* 1 if RTX is a code_label that should always be considered to be needed.  */
2321#define LABEL_PRESERVE_P(RTX)						\
2322  (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2323
2324/* During sched, 1 if RTX is an insn that must be scheduled together
2325   with the preceding insn.  */
2326#define SCHED_GROUP_P(RTX)						\
2327  (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN,		\
2328		    JUMP_INSN, CALL_INSN)->in_struct)
2329
2330/* For a SET rtx, SET_DEST is the place that is set
2331   and SET_SRC is the value it is set to.  */
2332#define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2333#define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2334#define SET_IS_RETURN_P(RTX)						\
2335  (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2336
2337/* For a TRAP_IF rtx, TRAP_CONDITION is an expression.  */
2338#define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2339#define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2340
2341/* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2342   conditionally executing the code on, COND_EXEC_CODE is the code
2343   to execute if the condition is true.  */
2344#define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2345#define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2346
2347/* 1 if RTX is a symbol_ref that addresses this function's rtl
2348   constants pool.  */
2349#define CONSTANT_POOL_ADDRESS_P(RTX)					\
2350  (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2351
2352/* 1 if RTX is a symbol_ref that addresses a value in the file's
2353   tree constant pool.  This information is private to varasm.c.  */
2354#define TREE_CONSTANT_POOL_ADDRESS_P(RTX)				\
2355  (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P",			\
2356		    (RTX), SYMBOL_REF)->frame_related)
2357
2358/* Used if RTX is a symbol_ref, for machine-specific purposes.  */
2359#define SYMBOL_REF_FLAG(RTX)						\
2360  (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2361
2362/* 1 if RTX is a symbol_ref that has been the library function in
2363   emit_library_call.  */
2364#define SYMBOL_REF_USED(RTX)						\
2365  (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2366
2367/* 1 if RTX is a symbol_ref for a weak symbol.  */
2368#define SYMBOL_REF_WEAK(RTX)						\
2369  (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2370
2371/* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2372   SYMBOL_REF_CONSTANT.  */
2373#define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2374
2375/* Set RTX's SYMBOL_REF_DECL to DECL.  RTX must not be a constant
2376   pool symbol.  */
2377#define SET_SYMBOL_REF_DECL(RTX, DECL) \
2378  (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2379
2380/* The tree (decl or constant) associated with the symbol, or null.  */
2381#define SYMBOL_REF_DECL(RTX) \
2382  (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2383
2384/* Set RTX's SYMBOL_REF_CONSTANT to C.  RTX must be a constant pool symbol.  */
2385#define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2386  (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2387
2388/* The rtx constant pool entry for a symbol, or null.  */
2389#define SYMBOL_REF_CONSTANT(RTX) \
2390  (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2391
2392/* A set of flags on a symbol_ref that are, in some respects, redundant with
2393   information derivable from the tree decl associated with this symbol.
2394   Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2395   decl.  In some cases this is a bug.  But beyond that, it's nice to cache
2396   this information to avoid recomputing it.  Finally, this allows space for
2397   the target to store more than one bit of information, as with
2398   SYMBOL_REF_FLAG.  */
2399#define SYMBOL_REF_FLAGS(RTX) \
2400  (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2401   ->u2.symbol_ref_flags)
2402
2403/* These flags are common enough to be defined for all targets.  They
2404   are computed by the default version of targetm.encode_section_info.  */
2405
2406/* Set if this symbol is a function.  */
2407#define SYMBOL_FLAG_FUNCTION	(1 << 0)
2408#define SYMBOL_REF_FUNCTION_P(RTX) \
2409  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2410/* Set if targetm.binds_local_p is true.  */
2411#define SYMBOL_FLAG_LOCAL	(1 << 1)
2412#define SYMBOL_REF_LOCAL_P(RTX) \
2413  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2414/* Set if targetm.in_small_data_p is true.  */
2415#define SYMBOL_FLAG_SMALL	(1 << 2)
2416#define SYMBOL_REF_SMALL_P(RTX) \
2417  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2418/* The three-bit field at [5:3] is true for TLS variables; use
2419   SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model.  */
2420#define SYMBOL_FLAG_TLS_SHIFT	3
2421#define SYMBOL_REF_TLS_MODEL(RTX) \
2422  ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2423/* Set if this symbol is not defined in this translation unit.  */
2424#define SYMBOL_FLAG_EXTERNAL	(1 << 6)
2425#define SYMBOL_REF_EXTERNAL_P(RTX) \
2426  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2427/* Set if this symbol has a block_symbol structure associated with it.  */
2428#define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2429#define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2430  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2431/* Set if this symbol is a section anchor.  SYMBOL_REF_ANCHOR_P implies
2432   SYMBOL_REF_HAS_BLOCK_INFO_P.  */
2433#define SYMBOL_FLAG_ANCHOR	(1 << 8)
2434#define SYMBOL_REF_ANCHOR_P(RTX) \
2435  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2436
2437/* Subsequent bits are available for the target to use.  */
2438#define SYMBOL_FLAG_MACH_DEP_SHIFT	9
2439#define SYMBOL_FLAG_MACH_DEP		(1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2440
2441/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2442   structure to which the symbol belongs, or NULL if it has not been
2443   assigned a block.  */
2444#define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2445
2446/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2447   the first object in SYMBOL_REF_BLOCK (RTX).  The value is negative if
2448   RTX has not yet been assigned to a block, or it has not been given an
2449   offset within that block.  */
2450#define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2451
2452/* True if RTX is flagged to be a scheduling barrier.  */
2453#define PREFETCH_SCHEDULE_BARRIER_P(RTX)					\
2454  (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2455
2456/* Indicate whether the machine has any sort of auto increment addressing.
2457   If not, we can avoid checking for REG_INC notes.  */
2458
2459#if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2460     || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2461     || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2462     || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2463#define AUTO_INC_DEC
2464#endif
2465
2466/* Define a macro to look for REG_INC notes,
2467   but save time on machines where they never exist.  */
2468
2469#ifdef AUTO_INC_DEC
2470#define FIND_REG_INC_NOTE(INSN, REG)			\
2471  ((REG) != NULL_RTX && REG_P ((REG))			\
2472   ? find_regno_note ((INSN), REG_INC, REGNO (REG))	\
2473   : find_reg_note ((INSN), REG_INC, (REG)))
2474#else
2475#define FIND_REG_INC_NOTE(INSN, REG) 0
2476#endif
2477
2478#ifndef HAVE_PRE_INCREMENT
2479#define HAVE_PRE_INCREMENT 0
2480#endif
2481
2482#ifndef HAVE_PRE_DECREMENT
2483#define HAVE_PRE_DECREMENT 0
2484#endif
2485
2486#ifndef HAVE_POST_INCREMENT
2487#define HAVE_POST_INCREMENT 0
2488#endif
2489
2490#ifndef HAVE_POST_DECREMENT
2491#define HAVE_POST_DECREMENT 0
2492#endif
2493
2494#ifndef HAVE_POST_MODIFY_DISP
2495#define HAVE_POST_MODIFY_DISP 0
2496#endif
2497
2498#ifndef HAVE_POST_MODIFY_REG
2499#define HAVE_POST_MODIFY_REG 0
2500#endif
2501
2502#ifndef HAVE_PRE_MODIFY_DISP
2503#define HAVE_PRE_MODIFY_DISP 0
2504#endif
2505
2506#ifndef HAVE_PRE_MODIFY_REG
2507#define HAVE_PRE_MODIFY_REG 0
2508#endif
2509
2510
2511/* Some architectures do not have complete pre/post increment/decrement
2512   instruction sets, or only move some modes efficiently.  These macros
2513   allow us to tune autoincrement generation.  */
2514
2515#ifndef USE_LOAD_POST_INCREMENT
2516#define USE_LOAD_POST_INCREMENT(MODE)   HAVE_POST_INCREMENT
2517#endif
2518
2519#ifndef USE_LOAD_POST_DECREMENT
2520#define USE_LOAD_POST_DECREMENT(MODE)   HAVE_POST_DECREMENT
2521#endif
2522
2523#ifndef USE_LOAD_PRE_INCREMENT
2524#define USE_LOAD_PRE_INCREMENT(MODE)    HAVE_PRE_INCREMENT
2525#endif
2526
2527#ifndef USE_LOAD_PRE_DECREMENT
2528#define USE_LOAD_PRE_DECREMENT(MODE)    HAVE_PRE_DECREMENT
2529#endif
2530
2531#ifndef USE_STORE_POST_INCREMENT
2532#define USE_STORE_POST_INCREMENT(MODE)  HAVE_POST_INCREMENT
2533#endif
2534
2535#ifndef USE_STORE_POST_DECREMENT
2536#define USE_STORE_POST_DECREMENT(MODE)  HAVE_POST_DECREMENT
2537#endif
2538
2539#ifndef USE_STORE_PRE_INCREMENT
2540#define USE_STORE_PRE_INCREMENT(MODE)   HAVE_PRE_INCREMENT
2541#endif
2542
2543#ifndef USE_STORE_PRE_DECREMENT
2544#define USE_STORE_PRE_DECREMENT(MODE)   HAVE_PRE_DECREMENT
2545#endif
2546
2547/* Nonzero when we are generating CONCATs.  */
2548extern int generating_concat_p;
2549
2550/* Nonzero when we are expanding trees to RTL.  */
2551extern int currently_expanding_to_rtl;
2552
2553/* Generally useful functions.  */
2554
2555/* In explow.c */
2556extern HOST_WIDE_INT trunc_int_for_mode	(HOST_WIDE_INT, machine_mode);
2557extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2558
2559/* In rtl.c */
2560extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2561#define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2562extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2563#define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2564#define const_wide_int_alloc(NWORDS)				\
2565  rtx_alloc_v (CONST_WIDE_INT,					\
2566	       (sizeof (struct hwivec_def)			\
2567		+ ((NWORDS)-1) * sizeof (HOST_WIDE_INT)))	\
2568
2569extern rtvec rtvec_alloc (int);
2570extern rtvec shallow_copy_rtvec (rtvec);
2571extern bool shared_const_p (const_rtx);
2572extern rtx copy_rtx (rtx);
2573extern void dump_rtx_statistics (void);
2574
2575/* In emit-rtl.c */
2576extern rtx copy_rtx_if_shared (rtx);
2577
2578/* In rtl.c */
2579extern unsigned int rtx_size (const_rtx);
2580extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2581#define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2582extern int rtx_equal_p (const_rtx, const_rtx);
2583
2584/* In emit-rtl.c */
2585extern rtvec gen_rtvec_v (int, rtx *);
2586extern rtvec gen_rtvec_v (int, rtx_insn **);
2587extern rtx gen_reg_rtx (machine_mode);
2588extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2589extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2590extern rtx gen_reg_rtx_and_attrs (rtx);
2591extern rtx_code_label *gen_label_rtx (void);
2592extern rtx gen_lowpart_common (machine_mode, rtx);
2593
2594/* In cse.c */
2595extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2596
2597/* In emit-rtl.c */
2598extern rtx gen_highpart (machine_mode, rtx);
2599extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2600extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2601
2602/* In emit-rtl.c */
2603extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2604extern bool paradoxical_subreg_p (const_rtx);
2605extern int subreg_lowpart_p (const_rtx);
2606extern unsigned int subreg_lowpart_offset (machine_mode,
2607					   machine_mode);
2608extern unsigned int subreg_highpart_offset (machine_mode,
2609					    machine_mode);
2610extern int byte_lowpart_offset (machine_mode, machine_mode);
2611extern rtx make_safe_from (rtx, rtx);
2612extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2613					      addr_space_t);
2614#define convert_memory_address(to_mode,x) \
2615	convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2616extern const char *get_insn_name (int);
2617extern rtx_insn *get_last_insn_anywhere (void);
2618extern rtx_insn *get_first_nonnote_insn (void);
2619extern rtx_insn *get_last_nonnote_insn (void);
2620extern void start_sequence (void);
2621extern void push_to_sequence (rtx_insn *);
2622extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2623extern void end_sequence (void);
2624#if TARGET_SUPPORTS_WIDE_INT == 0
2625extern double_int rtx_to_double_int (const_rtx);
2626#endif
2627extern void cwi_output_hex (FILE *, const_rtx);
2628#ifndef GENERATOR_FILE
2629extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2630#endif
2631#if TARGET_SUPPORTS_WIDE_INT == 0
2632extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2633			       machine_mode);
2634#endif
2635
2636/* In loop-iv.c  */
2637
2638extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2639
2640/* In varasm.c  */
2641extern rtx force_const_mem (machine_mode, rtx);
2642
2643/* In varasm.c  */
2644
2645struct function;
2646extern rtx get_pool_constant (const_rtx);
2647extern rtx get_pool_constant_mark (rtx, bool *);
2648extern machine_mode get_pool_mode (const_rtx);
2649extern rtx simplify_subtraction (rtx);
2650extern void decide_function_section (tree);
2651
2652/* In emit-rtl.c */
2653extern rtx_insn *emit_insn_before (rtx, rtx);
2654extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2655extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2656extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2657extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2658extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2659extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2660extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2661extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2662extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2663extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2664extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2665extern rtx_barrier *emit_barrier_before (rtx);
2666extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2667extern rtx_note *emit_note_before (enum insn_note, rtx);
2668extern rtx_insn *emit_insn_after (rtx, rtx);
2669extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2670extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2671extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2672extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2673extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2674extern rtx_insn *emit_call_insn_after (rtx, rtx);
2675extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2676extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2677extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2678extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2679extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2680extern rtx_barrier *emit_barrier_after (rtx);
2681extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2682extern rtx_note *emit_note_after (enum insn_note, rtx);
2683extern rtx_insn *emit_insn (rtx);
2684extern rtx_insn *emit_debug_insn (rtx);
2685extern rtx_insn *emit_jump_insn (rtx);
2686extern rtx_insn *emit_call_insn (rtx);
2687extern rtx_insn *emit_label (rtx);
2688extern rtx_jump_table_data *emit_jump_table_data (rtx);
2689extern rtx_barrier *emit_barrier (void);
2690extern rtx_note *emit_note (enum insn_note);
2691extern rtx_note *emit_note_copy (rtx_note *);
2692extern rtx_insn *gen_clobber (rtx);
2693extern rtx_insn *emit_clobber (rtx);
2694extern rtx_insn *gen_use (rtx);
2695extern rtx_insn *emit_use (rtx);
2696extern rtx_insn *make_insn_raw (rtx);
2697extern void add_function_usage_to (rtx, rtx);
2698extern rtx_call_insn *last_call_insn (void);
2699extern rtx_insn *previous_insn (rtx_insn *);
2700extern rtx_insn *next_insn (rtx_insn *);
2701extern rtx_insn *prev_nonnote_insn (rtx);
2702extern rtx_insn *prev_nonnote_insn_bb (rtx);
2703extern rtx_insn *next_nonnote_insn (rtx);
2704extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2705extern rtx_insn *prev_nondebug_insn (rtx);
2706extern rtx_insn *next_nondebug_insn (rtx);
2707extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2708extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2709extern rtx_insn *prev_real_insn (rtx);
2710extern rtx_insn *next_real_insn (rtx);
2711extern rtx_insn *prev_active_insn (rtx);
2712extern rtx_insn *next_active_insn (rtx);
2713extern int active_insn_p (const_rtx);
2714extern rtx_insn *next_cc0_user (rtx);
2715extern rtx_insn *prev_cc0_setter (rtx);
2716
2717/* In emit-rtl.c  */
2718extern int insn_line (const rtx_insn *);
2719extern const char * insn_file (const rtx_insn *);
2720extern tree insn_scope (const rtx_insn *);
2721extern expanded_location insn_location (const rtx_insn *);
2722extern location_t prologue_location, epilogue_location;
2723
2724/* In jump.c */
2725extern enum rtx_code reverse_condition (enum rtx_code);
2726extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2727extern enum rtx_code swap_condition (enum rtx_code);
2728extern enum rtx_code unsigned_condition (enum rtx_code);
2729extern enum rtx_code signed_condition (enum rtx_code);
2730extern void mark_jump_label (rtx, rtx_insn *, int);
2731
2732/* In jump.c */
2733extern rtx_insn *delete_related_insns (rtx);
2734
2735/* In recog.c  */
2736extern rtx *find_constant_term_loc (rtx *);
2737
2738/* In emit-rtl.c  */
2739extern rtx_insn *try_split (rtx, rtx, int);
2740extern int split_branch_probability;
2741
2742/* In unknown file  */
2743extern rtx split_insns (rtx, rtx);
2744
2745/* In simplify-rtx.c  */
2746extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2747					   rtx, machine_mode);
2748extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2749				     machine_mode);
2750extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2751					    rtx, rtx);
2752extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2753				      rtx);
2754extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2755				       machine_mode, rtx, rtx, rtx);
2756extern rtx simplify_const_relational_operation (enum rtx_code,
2757						machine_mode, rtx, rtx);
2758extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2759					  machine_mode, rtx, rtx);
2760extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2761extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2762			       machine_mode);
2763extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2764				 machine_mode, rtx, rtx, rtx);
2765extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2766				    machine_mode, rtx, rtx);
2767extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2768			    unsigned int);
2769extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2770				unsigned int);
2771extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2772				    rtx (*fn) (rtx, const_rtx, void *), void *);
2773extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2774extern rtx simplify_rtx (const_rtx);
2775extern rtx avoid_constant_pool_reference (rtx);
2776extern rtx delegitimize_mem_from_attrs (rtx);
2777extern bool mode_signbit_p (machine_mode, const_rtx);
2778extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2779extern bool val_signbit_known_set_p (machine_mode,
2780				     unsigned HOST_WIDE_INT);
2781extern bool val_signbit_known_clear_p (machine_mode,
2782				       unsigned HOST_WIDE_INT);
2783
2784/* In reginfo.c  */
2785extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2786					       bool);
2787#ifdef HARD_CONST
2788extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2789#endif
2790
2791/* In emit-rtl.c  */
2792extern rtx set_for_reg_notes (rtx);
2793extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2794extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2795extern void set_insn_deleted (rtx);
2796
2797/* Functions in rtlanal.c */
2798
2799extern rtx single_set_2 (const rtx_insn *, const_rtx);
2800
2801/* Handle the cheap and common cases inline for performance.  */
2802
2803inline rtx single_set (const rtx_insn *insn)
2804{
2805  if (!INSN_P (insn))
2806    return NULL_RTX;
2807
2808  if (GET_CODE (PATTERN (insn)) == SET)
2809    return PATTERN (insn);
2810
2811  /* Defer to the more expensive case.  */
2812  return single_set_2 (insn, PATTERN (insn));
2813}
2814
2815extern machine_mode get_address_mode (rtx mem);
2816extern int rtx_addr_can_trap_p (const_rtx);
2817extern bool nonzero_address_p (const_rtx);
2818extern int rtx_unstable_p (const_rtx);
2819extern bool rtx_varies_p (const_rtx, bool);
2820extern bool rtx_addr_varies_p (const_rtx, bool);
2821extern rtx get_call_rtx_from (rtx);
2822extern HOST_WIDE_INT get_integer_term (const_rtx);
2823extern rtx get_related_value (const_rtx);
2824extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2825extern void split_const (rtx, rtx *, rtx *);
2826extern bool unsigned_reg_p (rtx);
2827extern int reg_mentioned_p (const_rtx, const_rtx);
2828extern int count_occurrences (const_rtx, const_rtx, int);
2829extern int reg_referenced_p (const_rtx, const_rtx);
2830extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2831extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2832extern int commutative_operand_precedence (rtx);
2833extern bool swap_commutative_operands_p (rtx, rtx);
2834extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2835extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2836extern int modified_in_p (const_rtx, const_rtx);
2837extern int reg_set_p (const_rtx, const_rtx);
2838extern int multiple_sets (const_rtx);
2839extern int set_noop_p (const_rtx);
2840extern int noop_move_p (const_rtx);
2841extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2842extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2843extern const_rtx set_of (const_rtx, const_rtx);
2844extern void record_hard_reg_sets (rtx, const_rtx, void *);
2845extern void record_hard_reg_uses (rtx *, void *);
2846#ifdef HARD_CONST
2847extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2848extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2849#endif
2850extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2851extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2852extern int dead_or_set_p (const_rtx, const_rtx);
2853extern int dead_or_set_regno_p (const_rtx, unsigned int);
2854extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2855extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2856extern rtx find_reg_equal_equiv_note (const_rtx);
2857extern rtx find_constant_src (const rtx_insn *);
2858extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2859extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2860extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2861extern void add_reg_note (rtx, enum reg_note, rtx);
2862extern void add_int_reg_note (rtx, enum reg_note, int);
2863extern void add_shallow_copy_of_reg_note (rtx, rtx);
2864extern void remove_note (rtx, const_rtx);
2865extern void remove_reg_equal_equiv_notes (rtx);
2866extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2867extern int side_effects_p (const_rtx);
2868extern int volatile_refs_p (const_rtx);
2869extern int volatile_insn_p (const_rtx);
2870extern int may_trap_p_1 (const_rtx, unsigned);
2871extern int may_trap_p (const_rtx);
2872extern int may_trap_or_fault_p (const_rtx);
2873extern bool can_throw_internal (const_rtx);
2874extern bool can_throw_external (const_rtx);
2875extern bool insn_could_throw_p (const_rtx);
2876extern bool insn_nothrow_p (const_rtx);
2877extern bool can_nonlocal_goto (const_rtx);
2878extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2879extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2880extern int inequality_comparisons_p (const_rtx);
2881extern rtx replace_rtx (rtx, rtx, rtx);
2882extern void replace_label (rtx *, rtx, rtx, bool);
2883extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2884extern bool rtx_referenced_p (const_rtx, const_rtx);
2885extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2886extern int computed_jump_p (const_rtx);
2887extern bool tls_referenced_p (const_rtx);
2888
2889/* Overload for refers_to_regno_p for checking a single register.  */
2890inline bool
2891refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2892{
2893  return refers_to_regno_p (regnum, regnum + 1, x, loc);
2894}
2895
2896/* Callback for for_each_inc_dec, to process the autoinc operation OP
2897   within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2898   NULL.  The callback is passed the same opaque ARG passed to
2899   for_each_inc_dec.  Return zero to continue looking for other
2900   autoinc operations or any other value to interrupt the traversal and
2901   return that value to the caller of for_each_inc_dec.  */
2902typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2903				    rtx srcoff, void *arg);
2904extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2905
2906typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2907                                              rtx *, rtx *);
2908extern int rtx_equal_p_cb (const_rtx, const_rtx,
2909                           rtx_equal_p_callback_function);
2910
2911typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
2912                                           machine_mode *);
2913extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
2914                             bool, hash_rtx_callback_function);
2915
2916extern rtx regno_use_in (unsigned int, rtx);
2917extern int auto_inc_p (const_rtx);
2918extern int in_expr_list_p (const_rtx, const_rtx);
2919extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2920extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2921extern int loc_mentioned_in_p (rtx *, const_rtx);
2922extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2923extern bool keep_with_call_p (const rtx_insn *);
2924extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2925extern int insn_rtx_cost (rtx, bool);
2926extern unsigned seq_cost (const rtx_insn *, bool);
2927
2928/* Given an insn and condition, return a canonical description of
2929   the test being made.  */
2930extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2931				   int, int);
2932
2933/* Given a JUMP_INSN, return a canonical description of the test
2934   being made.  */
2935extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2936
2937/* Information about a subreg of a hard register.  */
2938struct subreg_info
2939{
2940  /* Offset of first hard register involved in the subreg.  */
2941  int offset;
2942  /* Number of hard registers involved in the subreg.  In the case of
2943     a paradoxical subreg, this is the number of registers that would
2944     be modified by writing to the subreg; some of them may be don't-care
2945     when reading from the subreg.  */
2946  int nregs;
2947  /* Whether this subreg can be represented as a hard reg with the new
2948     mode (by adding OFFSET to the original hard register).  */
2949  bool representable_p;
2950};
2951
2952extern void subreg_get_info (unsigned int, machine_mode,
2953			     unsigned int, machine_mode,
2954			     struct subreg_info *);
2955
2956/* lists.c */
2957
2958extern void free_EXPR_LIST_list (rtx_expr_list **);
2959extern void free_INSN_LIST_list (rtx_insn_list **);
2960extern void free_EXPR_LIST_node (rtx);
2961extern void free_INSN_LIST_node (rtx);
2962extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2963extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2964extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2965extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2966extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2967extern rtx remove_list_elem (rtx, rtx *);
2968extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2969extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2970
2971
2972/* reginfo.c */
2973
2974/* Resize reg info.  */
2975extern bool resize_reg_info (void);
2976/* Free up register info memory.  */
2977extern void free_reg_info (void);
2978extern void init_subregs_of_mode (void);
2979extern void finish_subregs_of_mode (void);
2980
2981/* recog.c */
2982extern rtx extract_asm_operands (rtx);
2983extern int asm_noperands (const_rtx);
2984extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2985					machine_mode *, location_t *);
2986extern void get_referenced_operands (const char *, bool *, unsigned int);
2987
2988extern enum reg_class reg_preferred_class (int);
2989extern enum reg_class reg_alternate_class (int);
2990extern enum reg_class reg_allocno_class (int);
2991extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2992			       enum reg_class);
2993
2994extern void split_all_insns (void);
2995extern unsigned int split_all_insns_noflow (void);
2996
2997#define MAX_SAVED_CONST_INT 64
2998extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
2999
3000#define const0_rtx	(const_int_rtx[MAX_SAVED_CONST_INT])
3001#define const1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+1])
3002#define const2_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+2])
3003#define constm1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT-1])
3004extern GTY(()) rtx const_true_rtx;
3005
3006extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3007
3008/* Returns a constant 0 rtx in mode MODE.  Integer modes are treated the
3009   same as VOIDmode.  */
3010
3011#define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3012
3013/* Likewise, for the constants 1 and 2 and -1.  */
3014
3015#define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3016#define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3017#define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3018
3019extern GTY(()) rtx pc_rtx;
3020extern GTY(()) rtx cc0_rtx;
3021extern GTY(()) rtx ret_rtx;
3022extern GTY(()) rtx simple_return_rtx;
3023
3024/* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3025   is used to represent the frame pointer.  This is because the
3026   hard frame pointer and the automatic variables are separated by an amount
3027   that cannot be determined until after register allocation.  We can assume
3028   that in this case ELIMINABLE_REGS will be defined, one action of which
3029   will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM.  */
3030#ifndef HARD_FRAME_POINTER_REGNUM
3031#define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3032#endif
3033
3034#ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3035#define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3036  (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3037#endif
3038
3039#ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3040#define HARD_FRAME_POINTER_IS_ARG_POINTER \
3041  (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3042#endif
3043
3044/* Index labels for global_rtl.  */
3045enum global_rtl_index
3046{
3047  GR_STACK_POINTER,
3048  GR_FRAME_POINTER,
3049/* For register elimination to work properly these hard_frame_pointer_rtx,
3050   frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3051   the same register.  */
3052#if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3053  GR_ARG_POINTER = GR_FRAME_POINTER,
3054#endif
3055#if HARD_FRAME_POINTER_IS_FRAME_POINTER
3056  GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3057#else
3058  GR_HARD_FRAME_POINTER,
3059#endif
3060#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3061#if HARD_FRAME_POINTER_IS_ARG_POINTER
3062  GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3063#else
3064  GR_ARG_POINTER,
3065#endif
3066#endif
3067  GR_VIRTUAL_INCOMING_ARGS,
3068  GR_VIRTUAL_STACK_ARGS,
3069  GR_VIRTUAL_STACK_DYNAMIC,
3070  GR_VIRTUAL_OUTGOING_ARGS,
3071  GR_VIRTUAL_CFA,
3072  GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3073
3074  GR_MAX
3075};
3076
3077/* Target-dependent globals.  */
3078struct GTY(()) target_rtl {
3079  /* All references to the hard registers in global_rtl_index go through
3080     these unique rtl objects.  On machines where the frame-pointer and
3081     arg-pointer are the same register, they use the same unique object.
3082
3083     After register allocation, other rtl objects which used to be pseudo-regs
3084     may be clobbered to refer to the frame-pointer register.
3085     But references that were originally to the frame-pointer can be
3086     distinguished from the others because they contain frame_pointer_rtx.
3087
3088     When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3089     tricky: until register elimination has taken place hard_frame_pointer_rtx
3090     should be used if it is being set, and frame_pointer_rtx otherwise.  After
3091     register elimination hard_frame_pointer_rtx should always be used.
3092     On machines where the two registers are same (most) then these are the
3093     same.  */
3094  rtx x_global_rtl[GR_MAX];
3095
3096  /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM).  */
3097  rtx x_pic_offset_table_rtx;
3098
3099  /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3100     This is used to implement __builtin_return_address for some machines;
3101     see for instance the MIPS port.  */
3102  rtx x_return_address_pointer_rtx;
3103
3104  /* Commonly used RTL for hard registers.  These objects are not
3105     necessarily unique, so we allocate them separately from global_rtl.
3106     They are initialized once per compilation unit, then copied into
3107     regno_reg_rtx at the beginning of each function.  */
3108  rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3109
3110  /* A sample (mem:M stack_pointer_rtx) rtx for each mode M.  */
3111  rtx x_top_of_stack[MAX_MACHINE_MODE];
3112
3113  /* Static hunks of RTL used by the aliasing code; these are treated
3114     as persistent to avoid unnecessary RTL allocations.  */
3115  rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3116
3117  /* The default memory attributes for each mode.  */
3118  struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3119
3120  /* Track if RTL has been initialized.  */
3121  bool target_specific_initialized;
3122};
3123
3124extern GTY(()) struct target_rtl default_target_rtl;
3125#if SWITCHABLE_TARGET
3126extern struct target_rtl *this_target_rtl;
3127#else
3128#define this_target_rtl (&default_target_rtl)
3129#endif
3130
3131#define global_rtl				\
3132  (this_target_rtl->x_global_rtl)
3133#define pic_offset_table_rtx \
3134  (this_target_rtl->x_pic_offset_table_rtx)
3135#define return_address_pointer_rtx \
3136  (this_target_rtl->x_return_address_pointer_rtx)
3137#define top_of_stack \
3138  (this_target_rtl->x_top_of_stack)
3139#define mode_mem_attrs \
3140  (this_target_rtl->x_mode_mem_attrs)
3141
3142/* All references to certain hard regs, except those created
3143   by allocating pseudo regs into them (when that's possible),
3144   go through these unique rtx objects.  */
3145#define stack_pointer_rtx       (global_rtl[GR_STACK_POINTER])
3146#define frame_pointer_rtx       (global_rtl[GR_FRAME_POINTER])
3147#define hard_frame_pointer_rtx	(global_rtl[GR_HARD_FRAME_POINTER])
3148#define arg_pointer_rtx		(global_rtl[GR_ARG_POINTER])
3149
3150#ifndef GENERATOR_FILE
3151/* Return the attributes of a MEM rtx.  */
3152static inline struct mem_attrs *
3153get_mem_attrs (const_rtx x)
3154{
3155  struct mem_attrs *attrs;
3156
3157  attrs = MEM_ATTRS (x);
3158  if (!attrs)
3159    attrs = mode_mem_attrs[(int) GET_MODE (x)];
3160  return attrs;
3161}
3162#endif
3163
3164/* Include the RTL generation functions.  */
3165
3166#ifndef GENERATOR_FILE
3167#include "genrtl.h"
3168#undef gen_rtx_ASM_INPUT
3169#define gen_rtx_ASM_INPUT(MODE, ARG0)				\
3170  gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3171#define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC)			\
3172  gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3173#endif
3174
3175/* There are some RTL codes that require special attention; the
3176   generation functions included above do the raw handling.  If you
3177   add to this list, modify special_rtx in gengenrtl.c as well.  */
3178
3179extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3180extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3181extern rtx_insn *
3182gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3183	      basic_block bb, rtx pattern, int location, int code,
3184	      rtx reg_notes);
3185extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3186extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3187extern rtx gen_raw_REG (machine_mode, int);
3188extern rtx gen_rtx_REG (machine_mode, unsigned);
3189extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3190extern rtx gen_rtx_MEM (machine_mode, rtx);
3191extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3192				 enum var_init_status);
3193
3194#define GEN_INT(N)  gen_rtx_CONST_INT (VOIDmode, (N))
3195
3196/* Virtual registers are used during RTL generation to refer to locations into
3197   the stack frame when the actual location isn't known until RTL generation
3198   is complete.  The routine instantiate_virtual_regs replaces these with
3199   the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3200   a constant.  */
3201
3202#define FIRST_VIRTUAL_REGISTER	(FIRST_PSEUDO_REGISTER)
3203
3204/* This points to the first word of the incoming arguments passed on the stack,
3205   either by the caller or by the callee when pretending it was passed by the
3206   caller.  */
3207
3208#define virtual_incoming_args_rtx       (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3209
3210#define VIRTUAL_INCOMING_ARGS_REGNUM	(FIRST_VIRTUAL_REGISTER)
3211
3212/* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3213   variable on the stack.  Otherwise, it points to the first variable on
3214   the stack.  */
3215
3216#define virtual_stack_vars_rtx	        (global_rtl[GR_VIRTUAL_STACK_ARGS])
3217
3218#define VIRTUAL_STACK_VARS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 1)
3219
3220/* This points to the location of dynamically-allocated memory on the stack
3221   immediately after the stack pointer has been adjusted by the amount
3222   desired.  */
3223
3224#define virtual_stack_dynamic_rtx	(global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3225
3226#define VIRTUAL_STACK_DYNAMIC_REGNUM	((FIRST_VIRTUAL_REGISTER) + 2)
3227
3228/* This points to the location in the stack at which outgoing arguments should
3229   be written when the stack is pre-pushed (arguments pushed using push
3230   insns always use sp).  */
3231
3232#define virtual_outgoing_args_rtx	(global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3233
3234#define VIRTUAL_OUTGOING_ARGS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 3)
3235
3236/* This points to the Canonical Frame Address of the function.  This
3237   should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3238   but is calculated relative to the arg pointer for simplicity; the
3239   frame pointer nor stack pointer are necessarily fixed relative to
3240   the CFA until after reload.  */
3241
3242#define virtual_cfa_rtx			(global_rtl[GR_VIRTUAL_CFA])
3243
3244#define VIRTUAL_CFA_REGNUM		((FIRST_VIRTUAL_REGISTER) + 4)
3245
3246#define LAST_VIRTUAL_POINTER_REGISTER	((FIRST_VIRTUAL_REGISTER) + 4)
3247
3248/* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3249   when finalized.  */
3250
3251#define virtual_preferred_stack_boundary_rtx \
3252	(global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3253
3254#define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3255					((FIRST_VIRTUAL_REGISTER) + 5)
3256
3257#define LAST_VIRTUAL_REGISTER		((FIRST_VIRTUAL_REGISTER) + 5)
3258
3259/* Nonzero if REGNUM is a pointer into the stack frame.  */
3260#define REGNO_PTR_FRAME_P(REGNUM)		\
3261  ((REGNUM) == STACK_POINTER_REGNUM		\
3262   || (REGNUM) == FRAME_POINTER_REGNUM		\
3263   || (REGNUM) == HARD_FRAME_POINTER_REGNUM	\
3264   || (REGNUM) == ARG_POINTER_REGNUM		\
3265   || ((REGNUM) >= FIRST_VIRTUAL_REGISTER	\
3266       && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3267
3268/* REGNUM never really appearing in the INSN stream.  */
3269#define INVALID_REGNUM			(~(unsigned int) 0)
3270
3271/* REGNUM for which no debug information can be generated.  */
3272#define IGNORED_DWARF_REGNUM            (INVALID_REGNUM - 1)
3273
3274extern rtx output_constant_def (tree, int);
3275extern rtx lookup_constant_def (tree);
3276
3277/* Nonzero after end of reload pass.
3278   Set to 1 or 0 by reload1.c.  */
3279
3280extern int reload_completed;
3281
3282/* Nonzero after thread_prologue_and_epilogue_insns has run.  */
3283extern int epilogue_completed;
3284
3285/* Set to 1 while reload_as_needed is operating.
3286   Required by some machines to handle any generated moves differently.  */
3287
3288extern int reload_in_progress;
3289
3290/* Set to 1 while in lra.  */
3291extern int lra_in_progress;
3292
3293/* This macro indicates whether you may create a new
3294   pseudo-register.  */
3295
3296#define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3297
3298#ifdef STACK_REGS
3299/* Nonzero after end of regstack pass.
3300   Set to 1 or 0 by reg-stack.c.  */
3301extern int regstack_completed;
3302#endif
3303
3304/* If this is nonzero, we do not bother generating VOLATILE
3305   around volatile memory references, and we are willing to
3306   output indirect addresses.  If cse is to follow, we reject
3307   indirect addresses so a useful potential cse is generated;
3308   if it is used only once, instruction combination will produce
3309   the same indirect address eventually.  */
3310extern int cse_not_expected;
3311
3312/* Translates rtx code to tree code, for those codes needed by
3313   REAL_ARITHMETIC.  The function returns an int because the caller may not
3314   know what `enum tree_code' means.  */
3315
3316extern int rtx_to_tree_code (enum rtx_code);
3317
3318/* In cse.c */
3319extern int delete_trivially_dead_insns (rtx_insn *, int);
3320extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3321extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3322
3323/* In dse.c */
3324extern bool check_for_inc_dec (rtx_insn *insn);
3325
3326/* In jump.c */
3327extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3328extern bool jump_to_label_p (const rtx_insn *);
3329extern int condjump_p (const rtx_insn *);
3330extern int any_condjump_p (const rtx_insn *);
3331extern int any_uncondjump_p (const rtx_insn *);
3332extern rtx pc_set (const rtx_insn *);
3333extern rtx condjump_label (const rtx_insn *);
3334extern int simplejump_p (const rtx_insn *);
3335extern int returnjump_p (const rtx_insn *);
3336extern int eh_returnjump_p (rtx_insn *);
3337extern int onlyjump_p (const rtx_insn *);
3338extern int only_sets_cc0_p (const_rtx);
3339extern int sets_cc0_p (const_rtx);
3340extern int invert_jump_1 (rtx_insn *, rtx);
3341extern int invert_jump (rtx_insn *, rtx, int);
3342extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3343extern int true_regnum (const_rtx);
3344extern unsigned int reg_or_subregno (const_rtx);
3345extern int redirect_jump_1 (rtx, rtx);
3346extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3347extern int redirect_jump (rtx, rtx, int);
3348extern void rebuild_jump_labels (rtx_insn *);
3349extern void rebuild_jump_labels_chain (rtx_insn *);
3350extern rtx reversed_comparison (const_rtx, machine_mode);
3351extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3352extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3353						     const_rtx, const_rtx);
3354extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3355extern int condjump_in_parallel_p (const rtx_insn *);
3356
3357/* In emit-rtl.c.  */
3358extern int max_reg_num (void);
3359extern int max_label_num (void);
3360extern int get_first_label_num (void);
3361extern void maybe_set_first_label_num (rtx);
3362extern void delete_insns_since (rtx_insn *);
3363extern void mark_reg_pointer (rtx, int);
3364extern void mark_user_reg (rtx);
3365extern void reset_used_flags (rtx);
3366extern void set_used_flags (rtx);
3367extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3368extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3369extern int get_max_insn_count (void);
3370extern int in_sequence_p (void);
3371extern void init_emit (void);
3372extern void init_emit_regs (void);
3373extern void init_derived_machine_modes (void);
3374extern void init_emit_once (void);
3375extern void push_topmost_sequence (void);
3376extern void pop_topmost_sequence (void);
3377extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3378extern unsigned int unshare_all_rtl (void);
3379extern void unshare_all_rtl_again (rtx_insn *);
3380extern void unshare_all_rtl_in_chain (rtx_insn *);
3381extern void verify_rtl_sharing (void);
3382extern void add_insn (rtx_insn *);
3383extern void add_insn_before (rtx, rtx, basic_block);
3384extern void add_insn_after (rtx, rtx, basic_block);
3385extern void remove_insn (rtx);
3386extern rtx_insn *emit (rtx);
3387extern void emit_insn_at_entry (rtx);
3388extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3389extern rtx gen_const_mem (machine_mode, rtx);
3390extern rtx gen_frame_mem (machine_mode, rtx);
3391extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3392extern bool validate_subreg (machine_mode, machine_mode,
3393			     const_rtx, unsigned int);
3394
3395/* In combine.c  */
3396extern unsigned int extended_count (const_rtx, machine_mode, int);
3397extern rtx remove_death (unsigned int, rtx_insn *);
3398extern void dump_combine_stats (FILE *);
3399extern void dump_combine_total_stats (FILE *);
3400extern rtx make_compound_operation (rtx, enum rtx_code);
3401
3402/* In sched-rgn.c.  */
3403extern void schedule_insns (void);
3404
3405/* In sched-ebb.c.  */
3406extern void schedule_ebbs (void);
3407
3408/* In sel-sched-dump.c.  */
3409extern void sel_sched_fix_param (const char *param, const char *val);
3410
3411/* In print-rtl.c */
3412extern const char *print_rtx_head;
3413extern void debug (const rtx_def &ref);
3414extern void debug (const rtx_def *ptr);
3415extern void debug_rtx (const_rtx);
3416extern void debug_rtx_list (const rtx_insn *, int);
3417extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3418extern const_rtx debug_rtx_find (const rtx_insn *, int);
3419extern void print_mem_expr (FILE *, const_tree);
3420extern void print_rtl (FILE *, const_rtx);
3421extern void print_simple_rtl (FILE *, const_rtx);
3422extern int print_rtl_single (FILE *, const_rtx);
3423extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3424extern void print_inline_rtx (FILE *, const_rtx, int);
3425
3426/* Functions in sched-vis.c.  FIXME: Ideally these functions would
3427   not be in sched-vis.c but in rtl.c, because they are not only used
3428   by the scheduler anymore but for all "slim" RTL dumping.  */
3429extern void dump_value_slim (FILE *, const_rtx, int);
3430extern void dump_insn_slim (FILE *, const_rtx);
3431extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3432			   int, int);
3433extern void print_value (pretty_printer *, const_rtx, int);
3434extern void print_pattern (pretty_printer *, const_rtx, int);
3435extern void print_insn (pretty_printer *, const_rtx, int);
3436extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3437extern const char *str_pattern_slim (const_rtx);
3438
3439/* In stmt.c */
3440extern void expand_null_return (void);
3441extern void expand_naked_return (void);
3442extern void emit_jump (rtx);
3443
3444/* In expr.c */
3445extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3446			   unsigned int, int);
3447extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3448extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3449
3450/* In expmed.c */
3451extern void init_expmed (void);
3452extern void expand_inc (rtx, rtx);
3453extern void expand_dec (rtx, rtx);
3454
3455/* In lower-subreg.c */
3456extern void init_lower_subreg (void);
3457
3458/* In gcse.c */
3459extern bool can_copy_p (machine_mode);
3460extern bool can_assign_to_reg_without_clobbers_p (rtx);
3461extern rtx fis_get_condition (rtx_insn *);
3462
3463/* In ira.c */
3464#ifdef HARD_CONST
3465extern HARD_REG_SET eliminable_regset;
3466#endif
3467extern void mark_elimination (int, int);
3468
3469/* In reginfo.c */
3470extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3471extern int reg_class_subset_p (reg_class_t, reg_class_t);
3472extern void globalize_reg (tree, int);
3473extern void init_reg_modes_target (void);
3474extern void init_regs (void);
3475extern void reinit_regs (void);
3476extern void init_fake_stack_mems (void);
3477extern void save_register_info (void);
3478extern void init_reg_sets (void);
3479extern void regclass (rtx, int);
3480extern void reg_scan (rtx_insn *, unsigned int);
3481extern void fix_register (const char *, int, int);
3482#ifdef HARD_CONST
3483extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3484#endif
3485
3486/* In reload1.c */
3487extern int function_invariant_p (const_rtx);
3488
3489/* In calls.c */
3490enum libcall_type
3491{
3492  LCT_NORMAL = 0,
3493  LCT_CONST = 1,
3494  LCT_PURE = 2,
3495  LCT_NORETURN = 3,
3496  LCT_THROW = 4,
3497  LCT_RETURNS_TWICE = 5
3498};
3499
3500extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3501			       ...);
3502extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3503				    machine_mode, int, ...);
3504
3505/* In varasm.c */
3506extern void init_varasm_once (void);
3507
3508extern rtx make_debug_expr_from_rtl (const_rtx);
3509
3510/* In read-rtl.c */
3511extern bool read_rtx (const char *, rtx *);
3512
3513/* In alias.c */
3514extern rtx canon_rtx (rtx);
3515extern int true_dependence (const_rtx, machine_mode, const_rtx);
3516extern rtx get_addr (rtx);
3517extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3518				  const_rtx, rtx);
3519extern int read_dependence (const_rtx, const_rtx);
3520extern int anti_dependence (const_rtx, const_rtx);
3521extern int canon_anti_dependence (const_rtx, bool,
3522				  const_rtx, machine_mode, rtx);
3523extern int output_dependence (const_rtx, const_rtx);
3524extern int canon_output_dependence (const_rtx, bool,
3525				    const_rtx, machine_mode, rtx);
3526extern int may_alias_p (const_rtx, const_rtx);
3527extern void init_alias_target (void);
3528extern void init_alias_analysis (void);
3529extern void end_alias_analysis (void);
3530extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3531extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3532extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3533extern bool may_be_sp_based_p (rtx);
3534extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3535extern rtx get_reg_known_value (unsigned int);
3536extern bool get_reg_known_equiv_p (unsigned int);
3537extern rtx get_reg_base_value (unsigned int);
3538
3539#ifdef STACK_REGS
3540extern int stack_regs_mentioned (const_rtx insn);
3541#endif
3542
3543/* In toplev.c */
3544extern GTY(()) rtx stack_limit_rtx;
3545
3546/* In var-tracking.c */
3547extern unsigned int variable_tracking_main (void);
3548
3549/* In stor-layout.c.  */
3550extern void get_mode_bounds (machine_mode, int, machine_mode,
3551			     rtx *, rtx *);
3552
3553/* In loop-iv.c  */
3554extern rtx canon_condition (rtx);
3555extern void simplify_using_condition (rtx, rtx *, bitmap);
3556
3557/* In final.c  */
3558extern unsigned int compute_alignments (void);
3559extern void update_alignments (vec<rtx> &);
3560extern int asm_str_count (const char *templ);
3561
3562struct rtl_hooks
3563{
3564  rtx (*gen_lowpart) (machine_mode, rtx);
3565  rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3566  rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3567			   unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3568  rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3569				  unsigned int, unsigned int *);
3570  bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3571
3572  /* Whenever you add entries here, make sure you adjust rtlhooks-def.h.  */
3573};
3574
3575/* Each pass can provide its own.  */
3576extern struct rtl_hooks rtl_hooks;
3577
3578/* ... but then it has to restore these.  */
3579extern const struct rtl_hooks general_rtl_hooks;
3580
3581/* Keep this for the nonce.  */
3582#define gen_lowpart rtl_hooks.gen_lowpart
3583
3584extern void insn_locations_init (void);
3585extern void insn_locations_finalize (void);
3586extern void set_curr_insn_location (location_t);
3587extern location_t curr_insn_location (void);
3588
3589/* rtl-error.c */
3590extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3591     ATTRIBUTE_NORETURN;
3592extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3593     ATTRIBUTE_NORETURN;
3594
3595#define fatal_insn(msgid, insn) \
3596	_fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3597#define fatal_insn_not_found(insn) \
3598	_fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3599
3600/* reginfo.c */
3601extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3602
3603
3604#endif /* ! GCC_RTL_H */
3605