1/* Straight-line strength reduction.
2   Copyright (C) 2012-2015 Free Software Foundation, Inc.
3   Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21/* There are many algorithms for performing strength reduction on
22   loops.  This is not one of them.  IVOPTS handles strength reduction
23   of induction variables just fine.  This pass is intended to pick
24   up the crumbs it leaves behind, by considering opportunities for
25   strength reduction along dominator paths.
26
27   Strength reduction addresses explicit multiplies, and certain
28   multiplies implicit in addressing expressions.  It would also be
29   possible to apply strength reduction to divisions and modulos,
30   but such opportunities are relatively uncommon.
31
32   Strength reduction is also currently restricted to integer operations.
33   If desired, it could be extended to floating-point operations under
34   control of something like -funsafe-math-optimizations.  */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
39#include "hash-set.h"
40#include "machmode.h"
41#include "vec.h"
42#include "double-int.h"
43#include "input.h"
44#include "alias.h"
45#include "symtab.h"
46#include "options.h"
47#include "wide-int.h"
48#include "inchash.h"
49#include "tree.h"
50#include "fold-const.h"
51#include "predict.h"
52#include "tm.h"
53#include "hard-reg-set.h"
54#include "function.h"
55#include "dominance.h"
56#include "cfg.h"
57#include "basic-block.h"
58#include "tree-ssa-alias.h"
59#include "internal-fn.h"
60#include "gimple-expr.h"
61#include "is-a.h"
62#include "gimple.h"
63#include "gimple-iterator.h"
64#include "gimplify-me.h"
65#include "stor-layout.h"
66#include "hashtab.h"
67#include "rtl.h"
68#include "flags.h"
69#include "statistics.h"
70#include "real.h"
71#include "fixed-value.h"
72#include "insn-config.h"
73#include "expmed.h"
74#include "dojump.h"
75#include "explow.h"
76#include "calls.h"
77#include "emit-rtl.h"
78#include "varasm.h"
79#include "stmt.h"
80#include "expr.h"
81#include "tree-pass.h"
82#include "cfgloop.h"
83#include "gimple-pretty-print.h"
84#include "gimple-ssa.h"
85#include "tree-cfg.h"
86#include "tree-phinodes.h"
87#include "ssa-iterators.h"
88#include "stringpool.h"
89#include "tree-ssanames.h"
90#include "domwalk.h"
91#include "params.h"
92#include "tree-ssa-address.h"
93#include "tree-affine.h"
94#include "wide-int-print.h"
95#include "builtins.h"
96
97/* Information about a strength reduction candidate.  Each statement
98   in the candidate table represents an expression of one of the
99   following forms (the special case of CAND_REF will be described
100   later):
101
102   (CAND_MULT)  S1:  X = (B + i) * S
103   (CAND_ADD)   S1:  X = B + (i * S)
104
105   Here X and B are SSA names, i is an integer constant, and S is
106   either an SSA name or a constant.  We call B the "base," i the
107   "index", and S the "stride."
108
109   Any statement S0 that dominates S1 and is of the form:
110
111   (CAND_MULT)  S0:  Y = (B + i') * S
112   (CAND_ADD)   S0:  Y = B + (i' * S)
113
114   is called a "basis" for S1.  In both cases, S1 may be replaced by
115
116                S1':  X = Y + (i - i') * S,
117
118   where (i - i') * S is folded to the extent possible.
119
120   All gimple statements are visited in dominator order, and each
121   statement that may contribute to one of the forms of S1 above is
122   given at least one entry in the candidate table.  Such statements
123   include addition, pointer addition, subtraction, multiplication,
124   negation, copies, and nontrivial type casts.  If a statement may
125   represent more than one expression of the forms of S1 above,
126   multiple "interpretations" are stored in the table and chained
127   together.  Examples:
128
129   * An add of two SSA names may treat either operand as the base.
130   * A multiply of two SSA names, likewise.
131   * A copy or cast may be thought of as either a CAND_MULT with
132     i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
133
134   Candidate records are allocated from an obstack.  They are addressed
135   both from a hash table keyed on S1, and from a vector of candidate
136   pointers arranged in predominator order.
137
138   Opportunity note
139   ----------------
140   Currently we don't recognize:
141
142     S0: Y = (S * i') - B
143     S1: X = (S * i) - B
144
145   as a strength reduction opportunity, even though this S1 would
146   also be replaceable by the S1' above.  This can be added if it
147   comes up in practice.
148
149   Strength reduction in addressing
150   --------------------------------
151   There is another kind of candidate known as CAND_REF.  A CAND_REF
152   describes a statement containing a memory reference having
153   complex addressing that might benefit from strength reduction.
154   Specifically, we are interested in references for which
155   get_inner_reference returns a base address, offset, and bitpos as
156   follows:
157
158     base:    MEM_REF (T1, C1)
159     offset:  MULT_EXPR (PLUS_EXPR (T2, C2), C3)
160     bitpos:  C4 * BITS_PER_UNIT
161
162   Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
163   arbitrary integer constants.  Note that C2 may be zero, in which
164   case the offset will be MULT_EXPR (T2, C3).
165
166   When this pattern is recognized, the original memory reference
167   can be replaced with:
168
169     MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
170              C1 + (C2 * C3) + C4)
171
172   which distributes the multiply to allow constant folding.  When
173   two or more addressing expressions can be represented by MEM_REFs
174   of this form, differing only in the constants C1, C2, and C4,
175   making this substitution produces more efficient addressing during
176   the RTL phases.  When there are not at least two expressions with
177   the same values of T1, T2, and C3, there is nothing to be gained
178   by the replacement.
179
180   Strength reduction of CAND_REFs uses the same infrastructure as
181   that used by CAND_MULTs and CAND_ADDs.  We record T1 in the base (B)
182   field, MULT_EXPR (T2, C3) in the stride (S) field, and
183   C1 + (C2 * C3) + C4 in the index (i) field.  A basis for a CAND_REF
184   is thus another CAND_REF with the same B and S values.  When at
185   least two CAND_REFs are chained together using the basis relation,
186   each of them is replaced as above, resulting in improved code
187   generation for addressing.
188
189   Conditional candidates
190   ======================
191
192   Conditional candidates are best illustrated with an example.
193   Consider the code sequence:
194
195   (1)  x_0 = ...;
196   (2)  a_0 = x_0 * 5;          MULT (B: x_0; i: 0; S: 5)
197        if (...)
198   (3)    x_1 = x_0 + 1;        ADD  (B: x_0, i: 1; S: 1)
199   (4)  x_2 = PHI <x_0, x_1>;   PHI  (B: x_0, i: 0, S: 1)
200   (5)  x_3 = x_2 + 1;          ADD  (B: x_2, i: 1, S: 1)
201   (6)  a_1 = x_3 * 5;          MULT (B: x_2, i: 1; S: 5)
202
203   Here strength reduction is complicated by the uncertain value of x_2.
204   A legitimate transformation is:
205
206   (1)  x_0 = ...;
207   (2)  a_0 = x_0 * 5;
208        if (...)
209	  {
210   (3)      [x_1 = x_0 + 1;]
211   (3a)     t_1 = a_0 + 5;
212          }
213   (4)  [x_2 = PHI <x_0, x_1>;]
214   (4a) t_2 = PHI <a_0, t_1>;
215   (5)  [x_3 = x_2 + 1;]
216   (6r) a_1 = t_2 + 5;
217
218   where the bracketed instructions may go dead.
219
220   To recognize this opportunity, we have to observe that statement (6)
221   has a "hidden basis" (2).  The hidden basis is unlike a normal basis
222   in that the statement and the hidden basis have different base SSA
223   names (x_2 and x_0, respectively).  The relationship is established
224   when a statement's base name (x_2) is defined by a phi statement (4),
225   each argument of which (x_0, x_1) has an identical "derived base name."
226   If the argument is defined by a candidate (as x_1 is by (3)) that is a
227   CAND_ADD having a stride of 1, the derived base name of the argument is
228   the base name of the candidate (x_0).  Otherwise, the argument itself
229   is its derived base name (as is the case with argument x_0).
230
231   The hidden basis for statement (6) is the nearest dominating candidate
232   whose base name is the derived base name (x_0) of the feeding phi (4),
233   and whose stride is identical to that of the statement.  We can then
234   create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
235   allowing the final replacement of (6) by the strength-reduced (6r).
236
237   To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
238   A CAND_PHI is not a candidate for replacement, but is maintained in the
239   candidate table to ease discovery of hidden bases.  Any phi statement
240   whose arguments share a common derived base name is entered into the
241   table with the derived base name, an (arbitrary) index of zero, and a
242   stride of 1.  A statement with a hidden basis can then be detected by
243   simply looking up its feeding phi definition in the candidate table,
244   extracting the derived base name, and searching for a basis in the
245   usual manner after substituting the derived base name.
246
247   Note that the transformation is only valid when the original phi and
248   the statements that define the phi's arguments are all at the same
249   position in the loop hierarchy.  */
250
251
252/* Index into the candidate vector, offset by 1.  VECs are zero-based,
253   while cand_idx's are one-based, with zero indicating null.  */
254typedef unsigned cand_idx;
255
256/* The kind of candidate.  */
257enum cand_kind
258{
259  CAND_MULT,
260  CAND_ADD,
261  CAND_REF,
262  CAND_PHI
263};
264
265struct slsr_cand_d
266{
267  /* The candidate statement S1.  */
268  gimple cand_stmt;
269
270  /* The base expression B:  often an SSA name, but not always.  */
271  tree base_expr;
272
273  /* The stride S.  */
274  tree stride;
275
276  /* The index constant i.  */
277  widest_int index;
278
279  /* The type of the candidate.  This is normally the type of base_expr,
280     but casts may have occurred when combining feeding instructions.
281     A candidate can only be a basis for candidates of the same final type.
282     (For CAND_REFs, this is the type to be used for operand 1 of the
283     replacement MEM_REF.)  */
284  tree cand_type;
285
286  /* The kind of candidate (CAND_MULT, etc.).  */
287  enum cand_kind kind;
288
289  /* Index of this candidate in the candidate vector.  */
290  cand_idx cand_num;
291
292  /* Index of the next candidate record for the same statement.
293     A statement may be useful in more than one way (e.g., due to
294     commutativity).  So we can have multiple "interpretations"
295     of a statement.  */
296  cand_idx next_interp;
297
298  /* Index of the basis statement S0, if any, in the candidate vector.  */
299  cand_idx basis;
300
301  /* First candidate for which this candidate is a basis, if one exists.  */
302  cand_idx dependent;
303
304  /* Next candidate having the same basis as this one.  */
305  cand_idx sibling;
306
307  /* If this is a conditional candidate, the CAND_PHI candidate
308     that defines the base SSA name B.  */
309  cand_idx def_phi;
310
311  /* Savings that can be expected from eliminating dead code if this
312     candidate is replaced.  */
313  int dead_savings;
314};
315
316typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
317typedef const struct slsr_cand_d *const_slsr_cand_t;
318
319/* Pointers to candidates are chained together as part of a mapping
320   from base expressions to the candidates that use them.  */
321
322struct cand_chain_d
323{
324  /* Base expression for the chain of candidates:  often, but not
325     always, an SSA name.  */
326  tree base_expr;
327
328  /* Pointer to a candidate.  */
329  slsr_cand_t cand;
330
331  /* Chain pointer.  */
332  struct cand_chain_d *next;
333
334};
335
336typedef struct cand_chain_d cand_chain, *cand_chain_t;
337typedef const struct cand_chain_d *const_cand_chain_t;
338
339/* Information about a unique "increment" associated with candidates
340   having an SSA name for a stride.  An increment is the difference
341   between the index of the candidate and the index of its basis,
342   i.e., (i - i') as discussed in the module commentary.
343
344   When we are not going to generate address arithmetic we treat
345   increments that differ only in sign as the same, allowing sharing
346   of the cost of initializers.  The absolute value of the increment
347   is stored in the incr_info.  */
348
349struct incr_info_d
350{
351  /* The increment that relates a candidate to its basis.  */
352  widest_int incr;
353
354  /* How many times the increment occurs in the candidate tree.  */
355  unsigned count;
356
357  /* Cost of replacing candidates using this increment.  Negative and
358     zero costs indicate replacement should be performed.  */
359  int cost;
360
361  /* If this increment is profitable but is not -1, 0, or 1, it requires
362     an initializer T_0 = stride * incr to be found or introduced in the
363     nearest common dominator of all candidates.  This field holds T_0
364     for subsequent use.  */
365  tree initializer;
366
367  /* If the initializer was found to already exist, this is the block
368     where it was found.  */
369  basic_block init_bb;
370};
371
372typedef struct incr_info_d incr_info, *incr_info_t;
373
374/* Candidates are maintained in a vector.  If candidate X dominates
375   candidate Y, then X appears before Y in the vector; but the
376   converse does not necessarily hold.  */
377static vec<slsr_cand_t> cand_vec;
378
379enum cost_consts
380{
381  COST_NEUTRAL = 0,
382  COST_INFINITE = 1000
383};
384
385enum stride_status
386{
387  UNKNOWN_STRIDE = 0,
388  KNOWN_STRIDE = 1
389};
390
391enum phi_adjust_status
392{
393  NOT_PHI_ADJUST = 0,
394  PHI_ADJUST = 1
395};
396
397enum count_phis_status
398{
399  DONT_COUNT_PHIS = 0,
400  COUNT_PHIS = 1
401};
402
403/* Pointer map embodying a mapping from statements to candidates.  */
404static hash_map<gimple, slsr_cand_t> *stmt_cand_map;
405
406/* Obstack for candidates.  */
407static struct obstack cand_obstack;
408
409/* Obstack for candidate chains.  */
410static struct obstack chain_obstack;
411
412/* An array INCR_VEC of incr_infos is used during analysis of related
413   candidates having an SSA name for a stride.  INCR_VEC_LEN describes
414   its current length.  MAX_INCR_VEC_LEN is used to avoid costly
415   pathological cases. */
416static incr_info_t incr_vec;
417static unsigned incr_vec_len;
418const int MAX_INCR_VEC_LEN = 16;
419
420/* For a chain of candidates with unknown stride, indicates whether or not
421   we must generate pointer arithmetic when replacing statements.  */
422static bool address_arithmetic_p;
423
424/* Forward function declarations.  */
425static slsr_cand_t base_cand_from_table (tree);
426static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
427static bool legal_cast_p_1 (tree, tree);
428
429/* Produce a pointer to the IDX'th candidate in the candidate vector.  */
430
431static slsr_cand_t
432lookup_cand (cand_idx idx)
433{
434  return cand_vec[idx - 1];
435}
436
437/* Helper for hashing a candidate chain header.  */
438
439struct cand_chain_hasher : typed_noop_remove <cand_chain>
440{
441  typedef cand_chain value_type;
442  typedef cand_chain compare_type;
443  static inline hashval_t hash (const value_type *);
444  static inline bool equal (const value_type *, const compare_type *);
445};
446
447inline hashval_t
448cand_chain_hasher::hash (const value_type *p)
449{
450  tree base_expr = p->base_expr;
451  return iterative_hash_expr (base_expr, 0);
452}
453
454inline bool
455cand_chain_hasher::equal (const value_type *chain1, const compare_type *chain2)
456{
457  return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
458}
459
460/* Hash table embodying a mapping from base exprs to chains of candidates.  */
461static hash_table<cand_chain_hasher> *base_cand_map;
462
463/* Pointer map used by tree_to_aff_combination_expand.  */
464static hash_map<tree, name_expansion *> *name_expansions;
465/* Pointer map embodying a mapping from bases to alternative bases.  */
466static hash_map<tree, tree> *alt_base_map;
467
468/* Given BASE, use the tree affine combiniation facilities to
469   find the underlying tree expression for BASE, with any
470   immediate offset excluded.
471
472   N.B. we should eliminate this backtracking with better forward
473   analysis in a future release.  */
474
475static tree
476get_alternative_base (tree base)
477{
478  tree *result = alt_base_map->get (base);
479
480  if (result == NULL)
481    {
482      tree expr;
483      aff_tree aff;
484
485      tree_to_aff_combination_expand (base, TREE_TYPE (base),
486				      &aff, &name_expansions);
487      aff.offset = 0;
488      expr = aff_combination_to_tree (&aff);
489
490      gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
491
492      return expr == base ? NULL : expr;
493    }
494
495  return *result;
496}
497
498/* Look in the candidate table for a CAND_PHI that defines BASE and
499   return it if found; otherwise return NULL.  */
500
501static cand_idx
502find_phi_def (tree base)
503{
504  slsr_cand_t c;
505
506  if (TREE_CODE (base) != SSA_NAME)
507    return 0;
508
509  c = base_cand_from_table (base);
510
511  if (!c || c->kind != CAND_PHI)
512    return 0;
513
514  return c->cand_num;
515}
516
517/* Helper routine for find_basis_for_candidate.  May be called twice:
518   once for the candidate's base expr, and optionally again either for
519   the candidate's phi definition or for a CAND_REF's alternative base
520   expression.  */
521
522static slsr_cand_t
523find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
524{
525  cand_chain mapping_key;
526  cand_chain_t chain;
527  slsr_cand_t basis = NULL;
528
529  // Limit potential of N^2 behavior for long candidate chains.
530  int iters = 0;
531  int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
532
533  mapping_key.base_expr = base_expr;
534  chain = base_cand_map->find (&mapping_key);
535
536  for (; chain && iters < max_iters; chain = chain->next, ++iters)
537    {
538      slsr_cand_t one_basis = chain->cand;
539
540      if (one_basis->kind != c->kind
541	  || one_basis->cand_stmt == c->cand_stmt
542	  || !operand_equal_p (one_basis->stride, c->stride, 0)
543	  || !types_compatible_p (one_basis->cand_type, c->cand_type)
544	  || !dominated_by_p (CDI_DOMINATORS,
545			      gimple_bb (c->cand_stmt),
546			      gimple_bb (one_basis->cand_stmt)))
547	continue;
548
549      if (!basis || basis->cand_num < one_basis->cand_num)
550	basis = one_basis;
551    }
552
553  return basis;
554}
555
556/* Use the base expr from candidate C to look for possible candidates
557   that can serve as a basis for C.  Each potential basis must also
558   appear in a block that dominates the candidate statement and have
559   the same stride and type.  If more than one possible basis exists,
560   the one with highest index in the vector is chosen; this will be
561   the most immediately dominating basis.  */
562
563static int
564find_basis_for_candidate (slsr_cand_t c)
565{
566  slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
567
568  /* If a candidate doesn't have a basis using its base expression,
569     it may have a basis hidden by one or more intervening phis.  */
570  if (!basis && c->def_phi)
571    {
572      basic_block basis_bb, phi_bb;
573      slsr_cand_t phi_cand = lookup_cand (c->def_phi);
574      basis = find_basis_for_base_expr (c, phi_cand->base_expr);
575
576      if (basis)
577	{
578	  /* A hidden basis must dominate the phi-definition of the
579	     candidate's base name.  */
580	  phi_bb = gimple_bb (phi_cand->cand_stmt);
581	  basis_bb = gimple_bb (basis->cand_stmt);
582
583	  if (phi_bb == basis_bb
584	      || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
585	    {
586	      basis = NULL;
587	      c->basis = 0;
588	    }
589
590	  /* If we found a hidden basis, estimate additional dead-code
591	     savings if the phi and its feeding statements can be removed.  */
592	  if (basis && has_single_use (gimple_phi_result (phi_cand->cand_stmt)))
593	    c->dead_savings += phi_cand->dead_savings;
594	}
595    }
596
597  if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
598    {
599      tree alt_base_expr = get_alternative_base (c->base_expr);
600      if (alt_base_expr)
601	basis = find_basis_for_base_expr (c, alt_base_expr);
602    }
603
604  if (basis)
605    {
606      c->sibling = basis->dependent;
607      basis->dependent = c->cand_num;
608      return basis->cand_num;
609    }
610
611  return 0;
612}
613
614/* Record a mapping from BASE to C, indicating that C may potentially serve
615   as a basis using that base expression.  BASE may be the same as
616   C->BASE_EXPR; alternatively BASE can be a different tree that share the
617   underlining expression of C->BASE_EXPR.  */
618
619static void
620record_potential_basis (slsr_cand_t c, tree base)
621{
622  cand_chain_t node;
623  cand_chain **slot;
624
625  gcc_assert (base);
626
627  node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
628  node->base_expr = base;
629  node->cand = c;
630  node->next = NULL;
631  slot = base_cand_map->find_slot (node, INSERT);
632
633  if (*slot)
634    {
635      cand_chain_t head = (cand_chain_t) (*slot);
636      node->next = head->next;
637      head->next = node;
638    }
639  else
640    *slot = node;
641}
642
643/* Allocate storage for a new candidate and initialize its fields.
644   Attempt to find a basis for the candidate.
645
646   For CAND_REF, an alternative base may also be recorded and used
647   to find a basis.  This helps cases where the expression hidden
648   behind BASE (which is usually an SSA_NAME) has immediate offset,
649   e.g.
650
651     a2[i][j] = 1;
652     a2[i + 20][j] = 2;  */
653
654static slsr_cand_t
655alloc_cand_and_find_basis (enum cand_kind kind, gimple gs, tree base,
656			   const widest_int &index, tree stride, tree ctype,
657			   unsigned savings)
658{
659  slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
660					       sizeof (slsr_cand));
661  c->cand_stmt = gs;
662  c->base_expr = base;
663  c->stride = stride;
664  c->index = index;
665  c->cand_type = ctype;
666  c->kind = kind;
667  c->cand_num = cand_vec.length () + 1;
668  c->next_interp = 0;
669  c->dependent = 0;
670  c->sibling = 0;
671  c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
672  c->dead_savings = savings;
673
674  cand_vec.safe_push (c);
675
676  if (kind == CAND_PHI)
677    c->basis = 0;
678  else
679    c->basis = find_basis_for_candidate (c);
680
681  record_potential_basis (c, base);
682  if (flag_expensive_optimizations && kind == CAND_REF)
683    {
684      tree alt_base = get_alternative_base (base);
685      if (alt_base)
686	record_potential_basis (c, alt_base);
687    }
688
689  return c;
690}
691
692/* Determine the target cost of statement GS when compiling according
693   to SPEED.  */
694
695static int
696stmt_cost (gimple gs, bool speed)
697{
698  tree lhs, rhs1, rhs2;
699  machine_mode lhs_mode;
700
701  gcc_assert (is_gimple_assign (gs));
702  lhs = gimple_assign_lhs (gs);
703  rhs1 = gimple_assign_rhs1 (gs);
704  lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
705
706  switch (gimple_assign_rhs_code (gs))
707    {
708    case MULT_EXPR:
709      rhs2 = gimple_assign_rhs2 (gs);
710
711      if (tree_fits_shwi_p (rhs2))
712	return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
713
714      gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
715      return mul_cost (speed, lhs_mode);
716
717    case PLUS_EXPR:
718    case POINTER_PLUS_EXPR:
719    case MINUS_EXPR:
720      return add_cost (speed, lhs_mode);
721
722    case NEGATE_EXPR:
723      return neg_cost (speed, lhs_mode);
724
725    CASE_CONVERT:
726      return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
727
728    /* Note that we don't assign costs to copies that in most cases
729       will go away.  */
730    default:
731      ;
732    }
733
734  gcc_unreachable ();
735  return 0;
736}
737
738/* Look up the defining statement for BASE_IN and return a pointer
739   to its candidate in the candidate table, if any; otherwise NULL.
740   Only CAND_ADD and CAND_MULT candidates are returned.  */
741
742static slsr_cand_t
743base_cand_from_table (tree base_in)
744{
745  slsr_cand_t *result;
746
747  gimple def = SSA_NAME_DEF_STMT (base_in);
748  if (!def)
749    return (slsr_cand_t) NULL;
750
751  result = stmt_cand_map->get (def);
752
753  if (result && (*result)->kind != CAND_REF)
754    return *result;
755
756  return (slsr_cand_t) NULL;
757}
758
759/* Add an entry to the statement-to-candidate mapping.  */
760
761static void
762add_cand_for_stmt (gimple gs, slsr_cand_t c)
763{
764  gcc_assert (!stmt_cand_map->put (gs, c));
765}
766
767/* Given PHI which contains a phi statement, determine whether it
768   satisfies all the requirements of a phi candidate.  If so, create
769   a candidate.  Note that a CAND_PHI never has a basis itself, but
770   is used to help find a basis for subsequent candidates.  */
771
772static void
773slsr_process_phi (gphi *phi, bool speed)
774{
775  unsigned i;
776  tree arg0_base = NULL_TREE, base_type;
777  slsr_cand_t c;
778  struct loop *cand_loop = gimple_bb (phi)->loop_father;
779  unsigned savings = 0;
780
781  /* A CAND_PHI requires each of its arguments to have the same
782     derived base name.  (See the module header commentary for a
783     definition of derived base names.)  Furthermore, all feeding
784     definitions must be in the same position in the loop hierarchy
785     as PHI.  */
786
787  for (i = 0; i < gimple_phi_num_args (phi); i++)
788    {
789      slsr_cand_t arg_cand;
790      tree arg = gimple_phi_arg_def (phi, i);
791      tree derived_base_name = NULL_TREE;
792      gimple arg_stmt = NULL;
793      basic_block arg_bb = NULL;
794
795      if (TREE_CODE (arg) != SSA_NAME)
796	return;
797
798      arg_cand = base_cand_from_table (arg);
799
800      if (arg_cand)
801	{
802	  while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
803	    {
804	      if (!arg_cand->next_interp)
805		return;
806
807	      arg_cand = lookup_cand (arg_cand->next_interp);
808	    }
809
810	  if (!integer_onep (arg_cand->stride))
811	    return;
812
813	  derived_base_name = arg_cand->base_expr;
814	  arg_stmt = arg_cand->cand_stmt;
815	  arg_bb = gimple_bb (arg_stmt);
816
817	  /* Gather potential dead code savings if the phi statement
818	     can be removed later on.  */
819	  if (has_single_use (arg))
820	    {
821	      if (gimple_code (arg_stmt) == GIMPLE_PHI)
822		savings += arg_cand->dead_savings;
823	      else
824		savings += stmt_cost (arg_stmt, speed);
825	    }
826	}
827      else
828	{
829	  derived_base_name = arg;
830
831	  if (SSA_NAME_IS_DEFAULT_DEF (arg))
832	    arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
833	  else
834	    gimple_bb (SSA_NAME_DEF_STMT (arg));
835	}
836
837      if (!arg_bb || arg_bb->loop_father != cand_loop)
838	return;
839
840      if (i == 0)
841	arg0_base = derived_base_name;
842      else if (!operand_equal_p (derived_base_name, arg0_base, 0))
843	return;
844    }
845
846  /* Create the candidate.  "alloc_cand_and_find_basis" is named
847     misleadingly for this case, as no basis will be sought for a
848     CAND_PHI.  */
849  base_type = TREE_TYPE (arg0_base);
850
851  c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
852				 0, integer_one_node, base_type, savings);
853
854  /* Add the candidate to the statement-candidate mapping.  */
855  add_cand_for_stmt (phi, c);
856}
857
858/* Given PBASE which is a pointer to tree, look up the defining
859   statement for it and check whether the candidate is in the
860   form of:
861
862     X = B + (1 * S), S is integer constant
863     X = B + (i * S), S is integer one
864
865   If so, set PBASE to the candidate's base_expr and return double
866   int (i * S).
867   Otherwise, just return double int zero.  */
868
869static widest_int
870backtrace_base_for_ref (tree *pbase)
871{
872  tree base_in = *pbase;
873  slsr_cand_t base_cand;
874
875  STRIP_NOPS (base_in);
876
877  /* Strip off widening conversion(s) to handle cases where
878     e.g. 'B' is widened from an 'int' in order to calculate
879     a 64-bit address.  */
880  if (CONVERT_EXPR_P (base_in)
881      && legal_cast_p_1 (base_in, TREE_OPERAND (base_in, 0)))
882    base_in = get_unwidened (base_in, NULL_TREE);
883
884  if (TREE_CODE (base_in) != SSA_NAME)
885    return 0;
886
887  base_cand = base_cand_from_table (base_in);
888
889  while (base_cand && base_cand->kind != CAND_PHI)
890    {
891      if (base_cand->kind == CAND_ADD
892	  && base_cand->index == 1
893	  && TREE_CODE (base_cand->stride) == INTEGER_CST)
894	{
895	  /* X = B + (1 * S), S is integer constant.  */
896	  *pbase = base_cand->base_expr;
897	  return wi::to_widest (base_cand->stride);
898	}
899      else if (base_cand->kind == CAND_ADD
900	       && TREE_CODE (base_cand->stride) == INTEGER_CST
901	       && integer_onep (base_cand->stride))
902	{
903	  /* X = B + (i * S), S is integer one.  */
904	  *pbase = base_cand->base_expr;
905	  return base_cand->index;
906	}
907
908      if (base_cand->next_interp)
909	base_cand = lookup_cand (base_cand->next_interp);
910      else
911	base_cand = NULL;
912    }
913
914  return 0;
915}
916
917/* Look for the following pattern:
918
919    *PBASE:    MEM_REF (T1, C1)
920
921    *POFFSET:  MULT_EXPR (T2, C3)        [C2 is zero]
922                     or
923               MULT_EXPR (PLUS_EXPR (T2, C2), C3)
924                     or
925               MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
926
927    *PINDEX:   C4 * BITS_PER_UNIT
928
929   If not present, leave the input values unchanged and return FALSE.
930   Otherwise, modify the input values as follows and return TRUE:
931
932    *PBASE:    T1
933    *POFFSET:  MULT_EXPR (T2, C3)
934    *PINDEX:   C1 + (C2 * C3) + C4
935
936   When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
937   will be further restructured to:
938
939    *PBASE:    T1
940    *POFFSET:  MULT_EXPR (T2', C3)
941    *PINDEX:   C1 + (C2 * C3) + C4 + (C5 * C3)  */
942
943static bool
944restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
945		       tree *ptype)
946{
947  tree base = *pbase, offset = *poffset;
948  widest_int index = *pindex;
949  tree mult_op0, t1, t2, type;
950  widest_int c1, c2, c3, c4, c5;
951
952  if (!base
953      || !offset
954      || TREE_CODE (base) != MEM_REF
955      || TREE_CODE (offset) != MULT_EXPR
956      || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
957      || wi::umod_floor (index, BITS_PER_UNIT) != 0)
958    return false;
959
960  t1 = TREE_OPERAND (base, 0);
961  c1 = widest_int::from (mem_ref_offset (base), SIGNED);
962  type = TREE_TYPE (TREE_OPERAND (base, 1));
963
964  mult_op0 = TREE_OPERAND (offset, 0);
965  c3 = wi::to_widest (TREE_OPERAND (offset, 1));
966
967  if (TREE_CODE (mult_op0) == PLUS_EXPR)
968
969    if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
970      {
971	t2 = TREE_OPERAND (mult_op0, 0);
972	c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
973      }
974    else
975      return false;
976
977  else if (TREE_CODE (mult_op0) == MINUS_EXPR)
978
979    if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
980      {
981	t2 = TREE_OPERAND (mult_op0, 0);
982	c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
983      }
984    else
985      return false;
986
987  else
988    {
989      t2 = mult_op0;
990      c2 = 0;
991    }
992
993  c4 = wi::lrshift (index, LOG2_BITS_PER_UNIT);
994  c5 = backtrace_base_for_ref (&t2);
995
996  *pbase = t1;
997  *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
998			  wide_int_to_tree (sizetype, c3));
999  *pindex = c1 + c2 * c3 + c4 + c5 * c3;
1000  *ptype = type;
1001
1002  return true;
1003}
1004
1005/* Given GS which contains a data reference, create a CAND_REF entry in
1006   the candidate table and attempt to find a basis.  */
1007
1008static void
1009slsr_process_ref (gimple gs)
1010{
1011  tree ref_expr, base, offset, type;
1012  HOST_WIDE_INT bitsize, bitpos;
1013  machine_mode mode;
1014  int unsignedp, volatilep;
1015  slsr_cand_t c;
1016
1017  if (gimple_vdef (gs))
1018    ref_expr = gimple_assign_lhs (gs);
1019  else
1020    ref_expr = gimple_assign_rhs1 (gs);
1021
1022  if (!handled_component_p (ref_expr)
1023      || TREE_CODE (ref_expr) == BIT_FIELD_REF
1024      || (TREE_CODE (ref_expr) == COMPONENT_REF
1025	  && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1026    return;
1027
1028  base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
1029			      &unsignedp, &volatilep, false);
1030  widest_int index = bitpos;
1031
1032  if (!restructure_reference (&base, &offset, &index, &type))
1033    return;
1034
1035  c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
1036				 type, 0);
1037
1038  /* Add the candidate to the statement-candidate mapping.  */
1039  add_cand_for_stmt (gs, c);
1040}
1041
1042/* Create a candidate entry for a statement GS, where GS multiplies
1043   two SSA names BASE_IN and STRIDE_IN.  Propagate any known information
1044   about the two SSA names into the new candidate.  Return the new
1045   candidate.  */
1046
1047static slsr_cand_t
1048create_mul_ssa_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1049{
1050  tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1051  widest_int index;
1052  unsigned savings = 0;
1053  slsr_cand_t c;
1054  slsr_cand_t base_cand = base_cand_from_table (base_in);
1055
1056  /* Look at all interpretations of the base candidate, if necessary,
1057     to find information to propagate into this candidate.  */
1058  while (base_cand && !base && base_cand->kind != CAND_PHI)
1059    {
1060
1061      if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
1062	{
1063	  /* Y = (B + i') * 1
1064	     X = Y * Z
1065	     ================
1066	     X = (B + i') * Z  */
1067	  base = base_cand->base_expr;
1068	  index = base_cand->index;
1069	  stride = stride_in;
1070	  ctype = base_cand->cand_type;
1071	  if (has_single_use (base_in))
1072	    savings = (base_cand->dead_savings
1073		       + stmt_cost (base_cand->cand_stmt, speed));
1074	}
1075      else if (base_cand->kind == CAND_ADD
1076	       && TREE_CODE (base_cand->stride) == INTEGER_CST)
1077	{
1078	  /* Y = B + (i' * S), S constant
1079	     X = Y * Z
1080	     ============================
1081	     X = B + ((i' * S) * Z)  */
1082	  base = base_cand->base_expr;
1083	  index = base_cand->index * wi::to_widest (base_cand->stride);
1084	  stride = stride_in;
1085	  ctype = base_cand->cand_type;
1086	  if (has_single_use (base_in))
1087	    savings = (base_cand->dead_savings
1088		       + stmt_cost (base_cand->cand_stmt, speed));
1089	}
1090
1091      if (base_cand->next_interp)
1092	base_cand = lookup_cand (base_cand->next_interp);
1093      else
1094	base_cand = NULL;
1095    }
1096
1097  if (!base)
1098    {
1099      /* No interpretations had anything useful to propagate, so
1100	 produce X = (Y + 0) * Z.  */
1101      base = base_in;
1102      index = 0;
1103      stride = stride_in;
1104      ctype = TREE_TYPE (base_in);
1105    }
1106
1107  c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1108				 ctype, savings);
1109  return c;
1110}
1111
1112/* Create a candidate entry for a statement GS, where GS multiplies
1113   SSA name BASE_IN by constant STRIDE_IN.  Propagate any known
1114   information about BASE_IN into the new candidate.  Return the new
1115   candidate.  */
1116
1117static slsr_cand_t
1118create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1119{
1120  tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1121  widest_int index, temp;
1122  unsigned savings = 0;
1123  slsr_cand_t c;
1124  slsr_cand_t base_cand = base_cand_from_table (base_in);
1125
1126  /* Look at all interpretations of the base candidate, if necessary,
1127     to find information to propagate into this candidate.  */
1128  while (base_cand && !base && base_cand->kind != CAND_PHI)
1129    {
1130      if (base_cand->kind == CAND_MULT
1131	  && TREE_CODE (base_cand->stride) == INTEGER_CST)
1132	{
1133	  /* Y = (B + i') * S, S constant
1134	     X = Y * c
1135	     ============================
1136	     X = (B + i') * (S * c)  */
1137	  temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1138	  if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
1139	    {
1140	      base = base_cand->base_expr;
1141	      index = base_cand->index;
1142	      stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
1143	      ctype = base_cand->cand_type;
1144	      if (has_single_use (base_in))
1145		savings = (base_cand->dead_savings
1146			   + stmt_cost (base_cand->cand_stmt, speed));
1147	    }
1148	}
1149      else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
1150	{
1151	  /* Y = B + (i' * 1)
1152	     X = Y * c
1153	     ===========================
1154	     X = (B + i') * c  */
1155	  base = base_cand->base_expr;
1156	  index = base_cand->index;
1157	  stride = stride_in;
1158	  ctype = base_cand->cand_type;
1159	  if (has_single_use (base_in))
1160	    savings = (base_cand->dead_savings
1161		       + stmt_cost (base_cand->cand_stmt, speed));
1162	}
1163      else if (base_cand->kind == CAND_ADD
1164	       && base_cand->index == 1
1165	       && TREE_CODE (base_cand->stride) == INTEGER_CST)
1166	{
1167	  /* Y = B + (1 * S), S constant
1168	     X = Y * c
1169	     ===========================
1170	     X = (B + S) * c  */
1171	  base = base_cand->base_expr;
1172	  index = wi::to_widest (base_cand->stride);
1173	  stride = stride_in;
1174	  ctype = base_cand->cand_type;
1175	  if (has_single_use (base_in))
1176	    savings = (base_cand->dead_savings
1177		       + stmt_cost (base_cand->cand_stmt, speed));
1178	}
1179
1180      if (base_cand->next_interp)
1181	base_cand = lookup_cand (base_cand->next_interp);
1182      else
1183	base_cand = NULL;
1184    }
1185
1186  if (!base)
1187    {
1188      /* No interpretations had anything useful to propagate, so
1189	 produce X = (Y + 0) * c.  */
1190      base = base_in;
1191      index = 0;
1192      stride = stride_in;
1193      ctype = TREE_TYPE (base_in);
1194    }
1195
1196  c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1197				 ctype, savings);
1198  return c;
1199}
1200
1201/* Given GS which is a multiply of scalar integers, make an appropriate
1202   entry in the candidate table.  If this is a multiply of two SSA names,
1203   create two CAND_MULT interpretations and attempt to find a basis for
1204   each of them.  Otherwise, create a single CAND_MULT and attempt to
1205   find a basis.  */
1206
1207static void
1208slsr_process_mul (gimple gs, tree rhs1, tree rhs2, bool speed)
1209{
1210  slsr_cand_t c, c2;
1211
1212  /* If this is a multiply of an SSA name with itself, it is highly
1213     unlikely that we will get a strength reduction opportunity, so
1214     don't record it as a candidate.  This simplifies the logic for
1215     finding a basis, so if this is removed that must be considered.  */
1216  if (rhs1 == rhs2)
1217    return;
1218
1219  if (TREE_CODE (rhs2) == SSA_NAME)
1220    {
1221      /* Record an interpretation of this statement in the candidate table
1222	 assuming RHS1 is the base expression and RHS2 is the stride.  */
1223      c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1224
1225      /* Add the first interpretation to the statement-candidate mapping.  */
1226      add_cand_for_stmt (gs, c);
1227
1228      /* Record another interpretation of this statement assuming RHS1
1229	 is the stride and RHS2 is the base expression.  */
1230      c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1231      c->next_interp = c2->cand_num;
1232    }
1233  else
1234    {
1235      /* Record an interpretation for the multiply-immediate.  */
1236      c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1237
1238      /* Add the interpretation to the statement-candidate mapping.  */
1239      add_cand_for_stmt (gs, c);
1240    }
1241}
1242
1243/* Create a candidate entry for a statement GS, where GS adds two
1244   SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1245   subtracts ADDEND_IN from BASE_IN otherwise.  Propagate any known
1246   information about the two SSA names into the new candidate.
1247   Return the new candidate.  */
1248
1249static slsr_cand_t
1250create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
1251		     bool subtract_p, bool speed)
1252{
1253  tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
1254  widest_int index;
1255  unsigned savings = 0;
1256  slsr_cand_t c;
1257  slsr_cand_t base_cand = base_cand_from_table (base_in);
1258  slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1259
1260  /* The most useful transformation is a multiply-immediate feeding
1261     an add or subtract.  Look for that first.  */
1262  while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1263    {
1264      if (addend_cand->kind == CAND_MULT
1265	  && addend_cand->index == 0
1266	  && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1267	{
1268	  /* Z = (B + 0) * S, S constant
1269	     X = Y +/- Z
1270	     ===========================
1271	     X = Y + ((+/-1 * S) * B)  */
1272	  base = base_in;
1273	  index = wi::to_widest (addend_cand->stride);
1274	  if (subtract_p)
1275	    index = -index;
1276	  stride = addend_cand->base_expr;
1277	  ctype = TREE_TYPE (base_in);
1278	  if (has_single_use (addend_in))
1279	    savings = (addend_cand->dead_savings
1280		       + stmt_cost (addend_cand->cand_stmt, speed));
1281	}
1282
1283      if (addend_cand->next_interp)
1284	addend_cand = lookup_cand (addend_cand->next_interp);
1285      else
1286	addend_cand = NULL;
1287    }
1288
1289  while (base_cand && !base && base_cand->kind != CAND_PHI)
1290    {
1291      if (base_cand->kind == CAND_ADD
1292	  && (base_cand->index == 0
1293	      || operand_equal_p (base_cand->stride,
1294				  integer_zero_node, 0)))
1295	{
1296	  /* Y = B + (i' * S), i' * S = 0
1297	     X = Y +/- Z
1298	     ============================
1299	     X = B + (+/-1 * Z)  */
1300	  base = base_cand->base_expr;
1301	  index = subtract_p ? -1 : 1;
1302	  stride = addend_in;
1303	  ctype = base_cand->cand_type;
1304	  if (has_single_use (base_in))
1305	    savings = (base_cand->dead_savings
1306		       + stmt_cost (base_cand->cand_stmt, speed));
1307	}
1308      else if (subtract_p)
1309	{
1310	  slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1311
1312	  while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1313	    {
1314	      if (subtrahend_cand->kind == CAND_MULT
1315		  && subtrahend_cand->index == 0
1316		  && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1317		{
1318		  /* Z = (B + 0) * S, S constant
1319		     X = Y - Z
1320		     ===========================
1321		     Value:  X = Y + ((-1 * S) * B)  */
1322		  base = base_in;
1323		  index = wi::to_widest (subtrahend_cand->stride);
1324		  index = -index;
1325		  stride = subtrahend_cand->base_expr;
1326		  ctype = TREE_TYPE (base_in);
1327		  if (has_single_use (addend_in))
1328		    savings = (subtrahend_cand->dead_savings
1329			       + stmt_cost (subtrahend_cand->cand_stmt, speed));
1330		}
1331
1332	      if (subtrahend_cand->next_interp)
1333		subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1334	      else
1335		subtrahend_cand = NULL;
1336	    }
1337	}
1338
1339      if (base_cand->next_interp)
1340	base_cand = lookup_cand (base_cand->next_interp);
1341      else
1342	base_cand = NULL;
1343    }
1344
1345  if (!base)
1346    {
1347      /* No interpretations had anything useful to propagate, so
1348	 produce X = Y + (1 * Z).  */
1349      base = base_in;
1350      index = subtract_p ? -1 : 1;
1351      stride = addend_in;
1352      ctype = TREE_TYPE (base_in);
1353    }
1354
1355  c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1356				 ctype, savings);
1357  return c;
1358}
1359
1360/* Create a candidate entry for a statement GS, where GS adds SSA
1361   name BASE_IN to constant INDEX_IN.  Propagate any known information
1362   about BASE_IN into the new candidate.  Return the new candidate.  */
1363
1364static slsr_cand_t
1365create_add_imm_cand (gimple gs, tree base_in, const widest_int &index_in,
1366		     bool speed)
1367{
1368  enum cand_kind kind = CAND_ADD;
1369  tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1370  widest_int index, multiple;
1371  unsigned savings = 0;
1372  slsr_cand_t c;
1373  slsr_cand_t base_cand = base_cand_from_table (base_in);
1374
1375  while (base_cand && !base && base_cand->kind != CAND_PHI)
1376    {
1377      signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
1378
1379      if (TREE_CODE (base_cand->stride) == INTEGER_CST
1380	  && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1381				sign, &multiple))
1382	{
1383	  /* Y = (B + i') * S, S constant, c = kS for some integer k
1384	     X = Y + c
1385	     ============================
1386	     X = (B + (i'+ k)) * S
1387	  OR
1388	     Y = B + (i' * S), S constant, c = kS for some integer k
1389	     X = Y + c
1390	     ============================
1391	     X = (B + (i'+ k)) * S  */
1392	  kind = base_cand->kind;
1393	  base = base_cand->base_expr;
1394	  index = base_cand->index + multiple;
1395	  stride = base_cand->stride;
1396	  ctype = base_cand->cand_type;
1397	  if (has_single_use (base_in))
1398	    savings = (base_cand->dead_savings
1399		       + stmt_cost (base_cand->cand_stmt, speed));
1400	}
1401
1402      if (base_cand->next_interp)
1403	base_cand = lookup_cand (base_cand->next_interp);
1404      else
1405	base_cand = NULL;
1406    }
1407
1408  if (!base)
1409    {
1410      /* No interpretations had anything useful to propagate, so
1411	 produce X = Y + (c * 1).  */
1412      kind = CAND_ADD;
1413      base = base_in;
1414      index = index_in;
1415      stride = integer_one_node;
1416      ctype = TREE_TYPE (base_in);
1417    }
1418
1419  c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1420				 ctype, savings);
1421  return c;
1422}
1423
1424/* Given GS which is an add or subtract of scalar integers or pointers,
1425   make at least one appropriate entry in the candidate table.  */
1426
1427static void
1428slsr_process_add (gimple gs, tree rhs1, tree rhs2, bool speed)
1429{
1430  bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1431  slsr_cand_t c = NULL, c2;
1432
1433  if (TREE_CODE (rhs2) == SSA_NAME)
1434    {
1435      /* First record an interpretation assuming RHS1 is the base expression
1436	 and RHS2 is the stride.  But it doesn't make sense for the
1437	 stride to be a pointer, so don't record a candidate in that case.  */
1438      if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1439	{
1440	  c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1441
1442	  /* Add the first interpretation to the statement-candidate
1443	     mapping.  */
1444	  add_cand_for_stmt (gs, c);
1445	}
1446
1447      /* If the two RHS operands are identical, or this is a subtract,
1448	 we're done.  */
1449      if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1450	return;
1451
1452      /* Otherwise, record another interpretation assuming RHS2 is the
1453	 base expression and RHS1 is the stride, again provided that the
1454	 stride is not a pointer.  */
1455      if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1456	{
1457	  c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1458	  if (c)
1459	    c->next_interp = c2->cand_num;
1460	  else
1461	    add_cand_for_stmt (gs, c2);
1462	}
1463    }
1464  else
1465    {
1466      /* Record an interpretation for the add-immediate.  */
1467      widest_int index = wi::to_widest (rhs2);
1468      if (subtract_p)
1469	index = -index;
1470
1471      c = create_add_imm_cand (gs, rhs1, index, speed);
1472
1473      /* Add the interpretation to the statement-candidate mapping.  */
1474      add_cand_for_stmt (gs, c);
1475    }
1476}
1477
1478/* Given GS which is a negate of a scalar integer, make an appropriate
1479   entry in the candidate table.  A negate is equivalent to a multiply
1480   by -1.  */
1481
1482static void
1483slsr_process_neg (gimple gs, tree rhs1, bool speed)
1484{
1485  /* Record a CAND_MULT interpretation for the multiply by -1.  */
1486  slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1487
1488  /* Add the interpretation to the statement-candidate mapping.  */
1489  add_cand_for_stmt (gs, c);
1490}
1491
1492/* Help function for legal_cast_p, operating on two trees.  Checks
1493   whether it's allowable to cast from RHS to LHS.  See legal_cast_p
1494   for more details.  */
1495
1496static bool
1497legal_cast_p_1 (tree lhs, tree rhs)
1498{
1499  tree lhs_type, rhs_type;
1500  unsigned lhs_size, rhs_size;
1501  bool lhs_wraps, rhs_wraps;
1502
1503  lhs_type = TREE_TYPE (lhs);
1504  rhs_type = TREE_TYPE (rhs);
1505  lhs_size = TYPE_PRECISION (lhs_type);
1506  rhs_size = TYPE_PRECISION (rhs_type);
1507  lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1508  rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
1509
1510  if (lhs_size < rhs_size
1511      || (rhs_wraps && !lhs_wraps)
1512      || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1513    return false;
1514
1515  return true;
1516}
1517
1518/* Return TRUE if GS is a statement that defines an SSA name from
1519   a conversion and is legal for us to combine with an add and multiply
1520   in the candidate table.  For example, suppose we have:
1521
1522     A = B + i;
1523     C = (type) A;
1524     D = C * S;
1525
1526   Without the type-cast, we would create a CAND_MULT for D with base B,
1527   index i, and stride S.  We want to record this candidate only if it
1528   is equivalent to apply the type cast following the multiply:
1529
1530     A = B + i;
1531     E = A * S;
1532     D = (type) E;
1533
1534   We will record the type with the candidate for D.  This allows us
1535   to use a similar previous candidate as a basis.  If we have earlier seen
1536
1537     A' = B + i';
1538     C' = (type) A';
1539     D' = C' * S;
1540
1541   we can replace D with
1542
1543     D = D' + (i - i') * S;
1544
1545   But if moving the type-cast would change semantics, we mustn't do this.
1546
1547   This is legitimate for casts from a non-wrapping integral type to
1548   any integral type of the same or larger size.  It is not legitimate
1549   to convert a wrapping type to a non-wrapping type, or to a wrapping
1550   type of a different size.  I.e., with a wrapping type, we must
1551   assume that the addition B + i could wrap, in which case performing
1552   the multiply before or after one of the "illegal" type casts will
1553   have different semantics.  */
1554
1555static bool
1556legal_cast_p (gimple gs, tree rhs)
1557{
1558  if (!is_gimple_assign (gs)
1559      || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1560    return false;
1561
1562  return legal_cast_p_1 (gimple_assign_lhs (gs), rhs);
1563}
1564
1565/* Given GS which is a cast to a scalar integer type, determine whether
1566   the cast is legal for strength reduction.  If so, make at least one
1567   appropriate entry in the candidate table.  */
1568
1569static void
1570slsr_process_cast (gimple gs, tree rhs1, bool speed)
1571{
1572  tree lhs, ctype;
1573  slsr_cand_t base_cand, c, c2;
1574  unsigned savings = 0;
1575
1576  if (!legal_cast_p (gs, rhs1))
1577    return;
1578
1579  lhs = gimple_assign_lhs (gs);
1580  base_cand = base_cand_from_table (rhs1);
1581  ctype = TREE_TYPE (lhs);
1582
1583  if (base_cand && base_cand->kind != CAND_PHI)
1584    {
1585      while (base_cand)
1586	{
1587	  /* Propagate all data from the base candidate except the type,
1588	     which comes from the cast, and the base candidate's cast,
1589	     which is no longer applicable.  */
1590	  if (has_single_use (rhs1))
1591	    savings = (base_cand->dead_savings
1592		       + stmt_cost (base_cand->cand_stmt, speed));
1593
1594	  c = alloc_cand_and_find_basis (base_cand->kind, gs,
1595					 base_cand->base_expr,
1596					 base_cand->index, base_cand->stride,
1597					 ctype, savings);
1598	  if (base_cand->next_interp)
1599	    base_cand = lookup_cand (base_cand->next_interp);
1600	  else
1601	    base_cand = NULL;
1602	}
1603    }
1604  else
1605    {
1606      /* If nothing is known about the RHS, create fresh CAND_ADD and
1607	 CAND_MULT interpretations:
1608
1609	 X = Y + (0 * 1)
1610	 X = (Y + 0) * 1
1611
1612	 The first of these is somewhat arbitrary, but the choice of
1613	 1 for the stride simplifies the logic for propagating casts
1614	 into their uses.  */
1615      c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1616				     0, integer_one_node, ctype, 0);
1617      c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1618				      0, integer_one_node, ctype, 0);
1619      c->next_interp = c2->cand_num;
1620    }
1621
1622  /* Add the first (or only) interpretation to the statement-candidate
1623     mapping.  */
1624  add_cand_for_stmt (gs, c);
1625}
1626
1627/* Given GS which is a copy of a scalar integer type, make at least one
1628   appropriate entry in the candidate table.
1629
1630   This interface is included for completeness, but is unnecessary
1631   if this pass immediately follows a pass that performs copy
1632   propagation, such as DOM.  */
1633
1634static void
1635slsr_process_copy (gimple gs, tree rhs1, bool speed)
1636{
1637  slsr_cand_t base_cand, c, c2;
1638  unsigned savings = 0;
1639
1640  base_cand = base_cand_from_table (rhs1);
1641
1642  if (base_cand && base_cand->kind != CAND_PHI)
1643    {
1644      while (base_cand)
1645	{
1646	  /* Propagate all data from the base candidate.  */
1647	  if (has_single_use (rhs1))
1648	    savings = (base_cand->dead_savings
1649		       + stmt_cost (base_cand->cand_stmt, speed));
1650
1651	  c = alloc_cand_and_find_basis (base_cand->kind, gs,
1652					 base_cand->base_expr,
1653					 base_cand->index, base_cand->stride,
1654					 base_cand->cand_type, savings);
1655	  if (base_cand->next_interp)
1656	    base_cand = lookup_cand (base_cand->next_interp);
1657	  else
1658	    base_cand = NULL;
1659	}
1660    }
1661  else
1662    {
1663      /* If nothing is known about the RHS, create fresh CAND_ADD and
1664	 CAND_MULT interpretations:
1665
1666	 X = Y + (0 * 1)
1667	 X = (Y + 0) * 1
1668
1669	 The first of these is somewhat arbitrary, but the choice of
1670	 1 for the stride simplifies the logic for propagating casts
1671	 into their uses.  */
1672      c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1673				     0, integer_one_node, TREE_TYPE (rhs1), 0);
1674      c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1675				      0, integer_one_node, TREE_TYPE (rhs1), 0);
1676      c->next_interp = c2->cand_num;
1677    }
1678
1679  /* Add the first (or only) interpretation to the statement-candidate
1680     mapping.  */
1681  add_cand_for_stmt (gs, c);
1682}
1683
1684class find_candidates_dom_walker : public dom_walker
1685{
1686public:
1687  find_candidates_dom_walker (cdi_direction direction)
1688    : dom_walker (direction) {}
1689  virtual void before_dom_children (basic_block);
1690};
1691
1692/* Find strength-reduction candidates in block BB.  */
1693
1694void
1695find_candidates_dom_walker::before_dom_children (basic_block bb)
1696{
1697  bool speed = optimize_bb_for_speed_p (bb);
1698
1699  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1700       gsi_next (&gsi))
1701    slsr_process_phi (gsi.phi (), speed);
1702
1703  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1704       gsi_next (&gsi))
1705    {
1706      gimple gs = gsi_stmt (gsi);
1707
1708      if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1709	slsr_process_ref (gs);
1710
1711      else if (is_gimple_assign (gs)
1712	       && SCALAR_INT_MODE_P
1713	            (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
1714	{
1715	  tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1716
1717	  switch (gimple_assign_rhs_code (gs))
1718	    {
1719	    case MULT_EXPR:
1720	    case PLUS_EXPR:
1721	      rhs1 = gimple_assign_rhs1 (gs);
1722	      rhs2 = gimple_assign_rhs2 (gs);
1723	      /* Should never happen, but currently some buggy situations
1724		 in earlier phases put constants in rhs1.  */
1725	      if (TREE_CODE (rhs1) != SSA_NAME)
1726		continue;
1727	      break;
1728
1729	    /* Possible future opportunity: rhs1 of a ptr+ can be
1730	       an ADDR_EXPR.  */
1731	    case POINTER_PLUS_EXPR:
1732	    case MINUS_EXPR:
1733	      rhs2 = gimple_assign_rhs2 (gs);
1734	      /* Fall-through.  */
1735
1736	    CASE_CONVERT:
1737	    case MODIFY_EXPR:
1738	    case NEGATE_EXPR:
1739	      rhs1 = gimple_assign_rhs1 (gs);
1740	      if (TREE_CODE (rhs1) != SSA_NAME)
1741		continue;
1742	      break;
1743
1744	    default:
1745	      ;
1746	    }
1747
1748	  switch (gimple_assign_rhs_code (gs))
1749	    {
1750	    case MULT_EXPR:
1751	      slsr_process_mul (gs, rhs1, rhs2, speed);
1752	      break;
1753
1754	    case PLUS_EXPR:
1755	    case POINTER_PLUS_EXPR:
1756	    case MINUS_EXPR:
1757	      slsr_process_add (gs, rhs1, rhs2, speed);
1758	      break;
1759
1760	    case NEGATE_EXPR:
1761	      slsr_process_neg (gs, rhs1, speed);
1762	      break;
1763
1764	    CASE_CONVERT:
1765	      slsr_process_cast (gs, rhs1, speed);
1766	      break;
1767
1768	    case MODIFY_EXPR:
1769	      slsr_process_copy (gs, rhs1, speed);
1770	      break;
1771
1772	    default:
1773	      ;
1774	    }
1775	}
1776    }
1777}
1778
1779/* Dump a candidate for debug.  */
1780
1781static void
1782dump_candidate (slsr_cand_t c)
1783{
1784  fprintf (dump_file, "%3d  [%d] ", c->cand_num,
1785	   gimple_bb (c->cand_stmt)->index);
1786  print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1787  switch (c->kind)
1788    {
1789    case CAND_MULT:
1790      fputs ("     MULT : (", dump_file);
1791      print_generic_expr (dump_file, c->base_expr, 0);
1792      fputs (" + ", dump_file);
1793      print_decs (c->index, dump_file);
1794      fputs (") * ", dump_file);
1795      print_generic_expr (dump_file, c->stride, 0);
1796      fputs (" : ", dump_file);
1797      break;
1798    case CAND_ADD:
1799      fputs ("     ADD  : ", dump_file);
1800      print_generic_expr (dump_file, c->base_expr, 0);
1801      fputs (" + (", dump_file);
1802      print_decs (c->index, dump_file);
1803      fputs (" * ", dump_file);
1804      print_generic_expr (dump_file, c->stride, 0);
1805      fputs (") : ", dump_file);
1806      break;
1807    case CAND_REF:
1808      fputs ("     REF  : ", dump_file);
1809      print_generic_expr (dump_file, c->base_expr, 0);
1810      fputs (" + (", dump_file);
1811      print_generic_expr (dump_file, c->stride, 0);
1812      fputs (") + ", dump_file);
1813      print_decs (c->index, dump_file);
1814      fputs (" : ", dump_file);
1815      break;
1816    case CAND_PHI:
1817      fputs ("     PHI  : ", dump_file);
1818      print_generic_expr (dump_file, c->base_expr, 0);
1819      fputs (" + (unknown * ", dump_file);
1820      print_generic_expr (dump_file, c->stride, 0);
1821      fputs (") : ", dump_file);
1822      break;
1823    default:
1824      gcc_unreachable ();
1825    }
1826  print_generic_expr (dump_file, c->cand_type, 0);
1827  fprintf (dump_file, "\n     basis: %d  dependent: %d  sibling: %d\n",
1828	   c->basis, c->dependent, c->sibling);
1829  fprintf (dump_file, "     next-interp: %d  dead-savings: %d\n",
1830	   c->next_interp, c->dead_savings);
1831  if (c->def_phi)
1832    fprintf (dump_file, "     phi:  %d\n", c->def_phi);
1833  fputs ("\n", dump_file);
1834}
1835
1836/* Dump the candidate vector for debug.  */
1837
1838static void
1839dump_cand_vec (void)
1840{
1841  unsigned i;
1842  slsr_cand_t c;
1843
1844  fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1845
1846  FOR_EACH_VEC_ELT (cand_vec, i, c)
1847    dump_candidate (c);
1848}
1849
1850/* Callback used to dump the candidate chains hash table.  */
1851
1852int
1853ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1854{
1855  const_cand_chain_t chain = *slot;
1856  cand_chain_t p;
1857
1858  print_generic_expr (dump_file, chain->base_expr, 0);
1859  fprintf (dump_file, " -> %d", chain->cand->cand_num);
1860
1861  for (p = chain->next; p; p = p->next)
1862    fprintf (dump_file, " -> %d", p->cand->cand_num);
1863
1864  fputs ("\n", dump_file);
1865  return 1;
1866}
1867
1868/* Dump the candidate chains.  */
1869
1870static void
1871dump_cand_chains (void)
1872{
1873  fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
1874  base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1875    (NULL);
1876  fputs ("\n", dump_file);
1877}
1878
1879/* Dump the increment vector for debug.  */
1880
1881static void
1882dump_incr_vec (void)
1883{
1884  if (dump_file && (dump_flags & TDF_DETAILS))
1885    {
1886      unsigned i;
1887
1888      fprintf (dump_file, "\nIncrement vector:\n\n");
1889
1890      for (i = 0; i < incr_vec_len; i++)
1891	{
1892	  fprintf (dump_file, "%3d  increment:   ", i);
1893	  print_decs (incr_vec[i].incr, dump_file);
1894	  fprintf (dump_file, "\n     count:       %d", incr_vec[i].count);
1895	  fprintf (dump_file, "\n     cost:        %d", incr_vec[i].cost);
1896	  fputs ("\n     initializer: ", dump_file);
1897	  print_generic_expr (dump_file, incr_vec[i].initializer, 0);
1898	  fputs ("\n\n", dump_file);
1899	}
1900    }
1901}
1902
1903/* Replace *EXPR in candidate C with an equivalent strength-reduced
1904   data reference.  */
1905
1906static void
1907replace_ref (tree *expr, slsr_cand_t c)
1908{
1909  tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1910  unsigned HOST_WIDE_INT misalign;
1911  unsigned align;
1912
1913  /* Ensure the memory reference carries the minimum alignment
1914     requirement for the data type.  See PR58041.  */
1915  get_object_alignment_1 (*expr, &align, &misalign);
1916  if (misalign != 0)
1917    align = (misalign & -misalign);
1918  if (align < TYPE_ALIGN (acc_type))
1919    acc_type = build_aligned_type (acc_type, align);
1920
1921  add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr),
1922			  c->base_expr, c->stride);
1923  mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1924			 wide_int_to_tree (c->cand_type, c->index));
1925
1926  /* Gimplify the base addressing expression for the new MEM_REF tree.  */
1927  gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1928  TREE_OPERAND (mem_ref, 0)
1929    = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1930				/*simple_p=*/true, NULL,
1931				/*before=*/true, GSI_SAME_STMT);
1932  copy_ref_info (mem_ref, *expr);
1933  *expr = mem_ref;
1934  update_stmt (c->cand_stmt);
1935}
1936
1937/* Replace CAND_REF candidate C, each sibling of candidate C, and each
1938   dependent of candidate C with an equivalent strength-reduced data
1939   reference.  */
1940
1941static void
1942replace_refs (slsr_cand_t c)
1943{
1944  if (dump_file && (dump_flags & TDF_DETAILS))
1945    {
1946      fputs ("Replacing reference: ", dump_file);
1947      print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1948    }
1949
1950  if (gimple_vdef (c->cand_stmt))
1951    {
1952      tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
1953      replace_ref (lhs, c);
1954    }
1955  else
1956    {
1957      tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
1958      replace_ref (rhs, c);
1959    }
1960
1961  if (dump_file && (dump_flags & TDF_DETAILS))
1962    {
1963      fputs ("With: ", dump_file);
1964      print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1965      fputs ("\n", dump_file);
1966    }
1967
1968  if (c->sibling)
1969    replace_refs (lookup_cand (c->sibling));
1970
1971  if (c->dependent)
1972    replace_refs (lookup_cand (c->dependent));
1973}
1974
1975/* Return TRUE if candidate C is dependent upon a PHI.  */
1976
1977static bool
1978phi_dependent_cand_p (slsr_cand_t c)
1979{
1980  /* A candidate is not necessarily dependent upon a PHI just because
1981     it has a phi definition for its base name.  It may have a basis
1982     that relies upon the same phi definition, in which case the PHI
1983     is irrelevant to this candidate.  */
1984  return (c->def_phi
1985	  && c->basis
1986	  && lookup_cand (c->basis)->def_phi != c->def_phi);
1987}
1988
1989/* Calculate the increment required for candidate C relative to
1990   its basis.  */
1991
1992static widest_int
1993cand_increment (slsr_cand_t c)
1994{
1995  slsr_cand_t basis;
1996
1997  /* If the candidate doesn't have a basis, just return its own
1998     index.  This is useful in record_increments to help us find
1999     an existing initializer.  Also, if the candidate's basis is
2000     hidden by a phi, then its own index will be the increment
2001     from the newly introduced phi basis.  */
2002  if (!c->basis || phi_dependent_cand_p (c))
2003    return c->index;
2004
2005  basis = lookup_cand (c->basis);
2006  gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
2007  return c->index - basis->index;
2008}
2009
2010/* Calculate the increment required for candidate C relative to
2011   its basis.  If we aren't going to generate pointer arithmetic
2012   for this candidate, return the absolute value of that increment
2013   instead.  */
2014
2015static inline widest_int
2016cand_abs_increment (slsr_cand_t c)
2017{
2018  widest_int increment = cand_increment (c);
2019
2020  if (!address_arithmetic_p && wi::neg_p (increment))
2021    increment = -increment;
2022
2023  return increment;
2024}
2025
2026/* Return TRUE iff candidate C has already been replaced under
2027   another interpretation.  */
2028
2029static inline bool
2030cand_already_replaced (slsr_cand_t c)
2031{
2032  return (gimple_bb (c->cand_stmt) == 0);
2033}
2034
2035/* Common logic used by replace_unconditional_candidate and
2036   replace_conditional_candidate.  */
2037
2038static void
2039replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
2040{
2041  tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2042  enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2043
2044  /* It is highly unlikely, but possible, that the resulting
2045     bump doesn't fit in a HWI.  Abandon the replacement
2046     in this case.  This does not affect siblings or dependents
2047     of C.  Restriction to signed HWI is conservative for unsigned
2048     types but allows for safe negation without twisted logic.  */
2049  if (wi::fits_shwi_p (bump)
2050      && bump.to_shwi () != HOST_WIDE_INT_MIN
2051      /* It is not useful to replace casts, copies, or adds of
2052	 an SSA name and a constant.  */
2053      && cand_code != MODIFY_EXPR
2054      && !CONVERT_EXPR_CODE_P (cand_code)
2055      && cand_code != PLUS_EXPR
2056      && cand_code != POINTER_PLUS_EXPR
2057      && cand_code != MINUS_EXPR)
2058    {
2059      enum tree_code code = PLUS_EXPR;
2060      tree bump_tree;
2061      gimple stmt_to_print = NULL;
2062
2063      /* If the basis name and the candidate's LHS have incompatible
2064	 types, introduce a cast.  */
2065      if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2066	basis_name = introduce_cast_before_cand (c, target_type, basis_name);
2067      if (wi::neg_p (bump))
2068	{
2069	  code = MINUS_EXPR;
2070	  bump = -bump;
2071	}
2072
2073      bump_tree = wide_int_to_tree (target_type, bump);
2074
2075      if (dump_file && (dump_flags & TDF_DETAILS))
2076	{
2077	  fputs ("Replacing: ", dump_file);
2078	  print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
2079	}
2080
2081      if (bump == 0)
2082	{
2083	  tree lhs = gimple_assign_lhs (c->cand_stmt);
2084	  gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2085	  gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2086	  gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2087	  gsi_replace (&gsi, copy_stmt, false);
2088	  c->cand_stmt = copy_stmt;
2089	  if (dump_file && (dump_flags & TDF_DETAILS))
2090	    stmt_to_print = copy_stmt;
2091	}
2092      else
2093	{
2094	  tree rhs1, rhs2;
2095	  if (cand_code != NEGATE_EXPR) {
2096	    rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2097	    rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2098	  }
2099	  if (cand_code != NEGATE_EXPR
2100	      && ((operand_equal_p (rhs1, basis_name, 0)
2101		   && operand_equal_p (rhs2, bump_tree, 0))
2102		  || (operand_equal_p (rhs1, bump_tree, 0)
2103		      && operand_equal_p (rhs2, basis_name, 0))))
2104	    {
2105	      if (dump_file && (dump_flags & TDF_DETAILS))
2106		{
2107		  fputs ("(duplicate, not actually replacing)", dump_file);
2108		  stmt_to_print = c->cand_stmt;
2109		}
2110	    }
2111	  else
2112	    {
2113	      gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2114	      gimple_assign_set_rhs_with_ops (&gsi, code,
2115					      basis_name, bump_tree);
2116	      update_stmt (gsi_stmt (gsi));
2117              c->cand_stmt = gsi_stmt (gsi);
2118	      if (dump_file && (dump_flags & TDF_DETAILS))
2119		stmt_to_print = gsi_stmt (gsi);
2120	    }
2121	}
2122
2123      if (dump_file && (dump_flags & TDF_DETAILS))
2124	{
2125	  fputs ("With: ", dump_file);
2126	  print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
2127	  fputs ("\n", dump_file);
2128  	}
2129    }
2130}
2131
2132/* Replace candidate C with an add or subtract.   Note that we only
2133   operate on CAND_MULTs with known strides, so we will never generate
2134   a POINTER_PLUS_EXPR.  Each candidate X = (B + i) * S is replaced by
2135   X = Y + ((i - i') * S), as described in the module commentary.  The
2136   folded value ((i - i') * S) is referred to here as the "bump."  */
2137
2138static void
2139replace_unconditional_candidate (slsr_cand_t c)
2140{
2141  slsr_cand_t basis;
2142
2143  if (cand_already_replaced (c))
2144    return;
2145
2146  basis = lookup_cand (c->basis);
2147  widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
2148
2149  replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
2150}
2151
2152/* Return the index in the increment vector of the given INCREMENT,
2153   or -1 if not found.  The latter can occur if more than
2154   MAX_INCR_VEC_LEN increments have been found.  */
2155
2156static inline int
2157incr_vec_index (const widest_int &increment)
2158{
2159  unsigned i;
2160
2161  for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2162    ;
2163
2164  if (i < incr_vec_len)
2165    return i;
2166  else
2167    return -1;
2168}
2169
2170/* Create a new statement along edge E to add BASIS_NAME to the product
2171   of INCREMENT and the stride of candidate C.  Create and return a new
2172   SSA name from *VAR to be used as the LHS of the new statement.
2173   KNOWN_STRIDE is true iff C's stride is a constant.  */
2174
2175static tree
2176create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2177			     widest_int increment, edge e, location_t loc,
2178			     bool known_stride)
2179{
2180  basic_block insert_bb;
2181  gimple_stmt_iterator gsi;
2182  tree lhs, basis_type;
2183  gassign *new_stmt;
2184
2185  /* If the add candidate along this incoming edge has the same
2186     index as C's hidden basis, the hidden basis represents this
2187     edge correctly.  */
2188  if (increment == 0)
2189    return basis_name;
2190
2191  basis_type = TREE_TYPE (basis_name);
2192  lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2193
2194  if (known_stride)
2195    {
2196      tree bump_tree;
2197      enum tree_code code = PLUS_EXPR;
2198      widest_int bump = increment * wi::to_widest (c->stride);
2199      if (wi::neg_p (bump))
2200	{
2201	  code = MINUS_EXPR;
2202	  bump = -bump;
2203	}
2204
2205      bump_tree = wide_int_to_tree (basis_type, bump);
2206      new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
2207    }
2208  else
2209    {
2210      int i;
2211      bool negate_incr = (!address_arithmetic_p && wi::neg_p (increment));
2212      i = incr_vec_index (negate_incr ? -increment : increment);
2213      gcc_assert (i >= 0);
2214
2215      if (incr_vec[i].initializer)
2216	{
2217	  enum tree_code code = negate_incr ? MINUS_EXPR : PLUS_EXPR;
2218	  new_stmt = gimple_build_assign (lhs, code, basis_name,
2219					  incr_vec[i].initializer);
2220	}
2221      else if (increment == 1)
2222	new_stmt = gimple_build_assign (lhs, PLUS_EXPR, basis_name, c->stride);
2223      else if (increment == -1)
2224	new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name,
2225					c->stride);
2226      else
2227	gcc_unreachable ();
2228    }
2229
2230  insert_bb = single_succ_p (e->src) ? e->src : split_edge (e);
2231  gsi = gsi_last_bb (insert_bb);
2232
2233  if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2234    gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2235  else
2236    gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2237
2238  gimple_set_location (new_stmt, loc);
2239
2240  if (dump_file && (dump_flags & TDF_DETAILS))
2241    {
2242      fprintf (dump_file, "Inserting in block %d: ", insert_bb->index);
2243      print_gimple_stmt (dump_file, new_stmt, 0, 0);
2244    }
2245
2246  return lhs;
2247}
2248
2249/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2250   is hidden by the phi node FROM_PHI, create a new phi node in the same
2251   block as FROM_PHI.  The new phi is suitable for use as a basis by C,
2252   with its phi arguments representing conditional adjustments to the
2253   hidden basis along conditional incoming paths.  Those adjustments are
2254   made by creating add statements (and sometimes recursively creating
2255   phis) along those incoming paths.  LOC is the location to attach to
2256   the introduced statements.  KNOWN_STRIDE is true iff C's stride is a
2257   constant.  */
2258
2259static tree
2260create_phi_basis (slsr_cand_t c, gimple from_phi, tree basis_name,
2261		  location_t loc, bool known_stride)
2262{
2263  int i;
2264  tree name, phi_arg;
2265  gphi *phi;
2266  vec<tree> phi_args;
2267  slsr_cand_t basis = lookup_cand (c->basis);
2268  int nargs = gimple_phi_num_args (from_phi);
2269  basic_block phi_bb = gimple_bb (from_phi);
2270  slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
2271  phi_args.create (nargs);
2272
2273  /* Process each argument of the existing phi that represents
2274     conditionally-executed add candidates.  */
2275  for (i = 0; i < nargs; i++)
2276    {
2277      edge e = (*phi_bb->preds)[i];
2278      tree arg = gimple_phi_arg_def (from_phi, i);
2279      tree feeding_def;
2280
2281      /* If the phi argument is the base name of the CAND_PHI, then
2282	 this incoming arc should use the hidden basis.  */
2283      if (operand_equal_p (arg, phi_cand->base_expr, 0))
2284	if (basis->index == 0)
2285	  feeding_def = gimple_assign_lhs (basis->cand_stmt);
2286	else
2287	  {
2288	    widest_int incr = -basis->index;
2289	    feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2290						       e, loc, known_stride);
2291	  }
2292      else
2293	{
2294	  gimple arg_def = SSA_NAME_DEF_STMT (arg);
2295
2296	  /* If there is another phi along this incoming edge, we must
2297	     process it in the same fashion to ensure that all basis
2298	     adjustments are made along its incoming edges.  */
2299	  if (gimple_code (arg_def) == GIMPLE_PHI)
2300	    feeding_def = create_phi_basis (c, arg_def, basis_name,
2301					    loc, known_stride);
2302	  else
2303	    {
2304	      slsr_cand_t arg_cand = base_cand_from_table (arg);
2305	      widest_int diff = arg_cand->index - basis->index;
2306	      feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2307							 e, loc, known_stride);
2308	    }
2309	}
2310
2311      /* Because of recursion, we need to save the arguments in a vector
2312	 so we can create the PHI statement all at once.  Otherwise the
2313	 storage for the half-created PHI can be reclaimed.  */
2314      phi_args.safe_push (feeding_def);
2315    }
2316
2317  /* Create the new phi basis.  */
2318  name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2319  phi = create_phi_node (name, phi_bb);
2320  SSA_NAME_DEF_STMT (name) = phi;
2321
2322  FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2323    {
2324      edge e = (*phi_bb->preds)[i];
2325      add_phi_arg (phi, phi_arg, e, loc);
2326    }
2327
2328  update_stmt (phi);
2329
2330  if (dump_file && (dump_flags & TDF_DETAILS))
2331    {
2332      fputs ("Introducing new phi basis: ", dump_file);
2333      print_gimple_stmt (dump_file, phi, 0, 0);
2334    }
2335
2336  return name;
2337}
2338
2339/* Given a candidate C whose basis is hidden by at least one intervening
2340   phi, introduce a matching number of new phis to represent its basis
2341   adjusted by conditional increments along possible incoming paths.  Then
2342   replace C as though it were an unconditional candidate, using the new
2343   basis.  */
2344
2345static void
2346replace_conditional_candidate (slsr_cand_t c)
2347{
2348  tree basis_name, name;
2349  slsr_cand_t basis;
2350  location_t loc;
2351
2352  /* Look up the LHS SSA name from C's basis.  This will be the
2353     RHS1 of the adds we will introduce to create new phi arguments.  */
2354  basis = lookup_cand (c->basis);
2355  basis_name = gimple_assign_lhs (basis->cand_stmt);
2356
2357  /* Create a new phi statement which will represent C's true basis
2358     after the transformation is complete.  */
2359  loc = gimple_location (c->cand_stmt);
2360  name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2361			   basis_name, loc, KNOWN_STRIDE);
2362  /* Replace C with an add of the new basis phi and a constant.  */
2363  widest_int bump = c->index * wi::to_widest (c->stride);
2364
2365  replace_mult_candidate (c, name, bump);
2366}
2367
2368/* Compute the expected costs of inserting basis adjustments for
2369   candidate C with phi-definition PHI.  The cost of inserting
2370   one adjustment is given by ONE_ADD_COST.  If PHI has arguments
2371   which are themselves phi results, recursively calculate costs
2372   for those phis as well.  */
2373
2374static int
2375phi_add_costs (gimple phi, slsr_cand_t c, int one_add_cost)
2376{
2377  unsigned i;
2378  int cost = 0;
2379  slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2380
2381  /* If we work our way back to a phi that isn't dominated by the hidden
2382     basis, this isn't a candidate for replacement.  Indicate this by
2383     returning an unreasonably high cost.  It's not easy to detect
2384     these situations when determining the basis, so we defer the
2385     decision until now.  */
2386  basic_block phi_bb = gimple_bb (phi);
2387  slsr_cand_t basis = lookup_cand (c->basis);
2388  basic_block basis_bb = gimple_bb (basis->cand_stmt);
2389
2390  if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2391    return COST_INFINITE;
2392
2393  for (i = 0; i < gimple_phi_num_args (phi); i++)
2394    {
2395      tree arg = gimple_phi_arg_def (phi, i);
2396
2397      if (arg != phi_cand->base_expr)
2398	{
2399	  gimple arg_def = SSA_NAME_DEF_STMT (arg);
2400
2401	  if (gimple_code (arg_def) == GIMPLE_PHI)
2402	    cost += phi_add_costs (arg_def, c, one_add_cost);
2403	  else
2404	    {
2405	      slsr_cand_t arg_cand = base_cand_from_table (arg);
2406
2407	      if (arg_cand->index != c->index)
2408		cost += one_add_cost;
2409	    }
2410	}
2411    }
2412
2413  return cost;
2414}
2415
2416/* For candidate C, each sibling of candidate C, and each dependent of
2417   candidate C, determine whether the candidate is dependent upon a
2418   phi that hides its basis.  If not, replace the candidate unconditionally.
2419   Otherwise, determine whether the cost of introducing compensation code
2420   for the candidate is offset by the gains from strength reduction.  If
2421   so, replace the candidate and introduce the compensation code.  */
2422
2423static void
2424replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2425{
2426  if (phi_dependent_cand_p (c))
2427    {
2428      if (c->kind == CAND_MULT)
2429	{
2430	  /* A candidate dependent upon a phi will replace a multiply by
2431	     a constant with an add, and will insert at most one add for
2432	     each phi argument.  Add these costs with the potential dead-code
2433	     savings to determine profitability.  */
2434	  bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2435	  int mult_savings = stmt_cost (c->cand_stmt, speed);
2436	  gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2437	  tree phi_result = gimple_phi_result (phi);
2438	  int one_add_cost = add_cost (speed,
2439				       TYPE_MODE (TREE_TYPE (phi_result)));
2440	  int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2441	  int cost = add_costs - mult_savings - c->dead_savings;
2442
2443	  if (dump_file && (dump_flags & TDF_DETAILS))
2444	    {
2445	      fprintf (dump_file, "  Conditional candidate %d:\n", c->cand_num);
2446	      fprintf (dump_file, "    add_costs = %d\n", add_costs);
2447	      fprintf (dump_file, "    mult_savings = %d\n", mult_savings);
2448	      fprintf (dump_file, "    dead_savings = %d\n", c->dead_savings);
2449	      fprintf (dump_file, "    cost = %d\n", cost);
2450	      if (cost <= COST_NEUTRAL)
2451		fputs ("  Replacing...\n", dump_file);
2452	      else
2453		fputs ("  Not replaced.\n", dump_file);
2454	    }
2455
2456	  if (cost <= COST_NEUTRAL)
2457	    replace_conditional_candidate (c);
2458	}
2459    }
2460  else
2461    replace_unconditional_candidate (c);
2462
2463  if (c->sibling)
2464    replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2465
2466  if (c->dependent)
2467    replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2468}
2469
2470/* Count the number of candidates in the tree rooted at C that have
2471   not already been replaced under other interpretations.  */
2472
2473static int
2474count_candidates (slsr_cand_t c)
2475{
2476  unsigned count = cand_already_replaced (c) ? 0 : 1;
2477
2478  if (c->sibling)
2479    count += count_candidates (lookup_cand (c->sibling));
2480
2481  if (c->dependent)
2482    count += count_candidates (lookup_cand (c->dependent));
2483
2484  return count;
2485}
2486
2487/* Increase the count of INCREMENT by one in the increment vector.
2488   INCREMENT is associated with candidate C.  If INCREMENT is to be
2489   conditionally executed as part of a conditional candidate replacement,
2490   IS_PHI_ADJUST is true, otherwise false.  If an initializer
2491   T_0 = stride * I is provided by a candidate that dominates all
2492   candidates with the same increment, also record T_0 for subsequent use.  */
2493
2494static void
2495record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
2496{
2497  bool found = false;
2498  unsigned i;
2499
2500  /* Treat increments that differ only in sign as identical so as to
2501     share initializers, unless we are generating pointer arithmetic.  */
2502  if (!address_arithmetic_p && wi::neg_p (increment))
2503    increment = -increment;
2504
2505  for (i = 0; i < incr_vec_len; i++)
2506    {
2507      if (incr_vec[i].incr == increment)
2508	{
2509	  incr_vec[i].count++;
2510	  found = true;
2511
2512	  /* If we previously recorded an initializer that doesn't
2513	     dominate this candidate, it's not going to be useful to
2514	     us after all.  */
2515	  if (incr_vec[i].initializer
2516	      && !dominated_by_p (CDI_DOMINATORS,
2517				  gimple_bb (c->cand_stmt),
2518				  incr_vec[i].init_bb))
2519	    {
2520	      incr_vec[i].initializer = NULL_TREE;
2521	      incr_vec[i].init_bb = NULL;
2522	    }
2523
2524	  break;
2525	}
2526    }
2527
2528  if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2529    {
2530      /* The first time we see an increment, create the entry for it.
2531	 If this is the root candidate which doesn't have a basis, set
2532	 the count to zero.  We're only processing it so it can possibly
2533	 provide an initializer for other candidates.  */
2534      incr_vec[incr_vec_len].incr = increment;
2535      incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2536      incr_vec[incr_vec_len].cost = COST_INFINITE;
2537
2538      /* Optimistically record the first occurrence of this increment
2539	 as providing an initializer (if it does); we will revise this
2540	 opinion later if it doesn't dominate all other occurrences.
2541         Exception:  increments of -1, 0, 1 never need initializers;
2542	 and phi adjustments don't ever provide initializers.  */
2543      if (c->kind == CAND_ADD
2544	  && !is_phi_adjust
2545	  && c->index == increment
2546	  && (wi::gts_p (increment, 1)
2547	      || wi::lts_p (increment, -1))
2548	  && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2549	      || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
2550	{
2551	  tree t0 = NULL_TREE;
2552	  tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2553	  tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2554	  if (operand_equal_p (rhs1, c->base_expr, 0))
2555	    t0 = rhs2;
2556	  else if (operand_equal_p (rhs2, c->base_expr, 0))
2557	    t0 = rhs1;
2558	  if (t0
2559	      && SSA_NAME_DEF_STMT (t0)
2560	      && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2561	    {
2562	      incr_vec[incr_vec_len].initializer = t0;
2563	      incr_vec[incr_vec_len++].init_bb
2564		= gimple_bb (SSA_NAME_DEF_STMT (t0));
2565	    }
2566	  else
2567	    {
2568	      incr_vec[incr_vec_len].initializer = NULL_TREE;
2569	      incr_vec[incr_vec_len++].init_bb = NULL;
2570	    }
2571	}
2572      else
2573	{
2574	  incr_vec[incr_vec_len].initializer = NULL_TREE;
2575	  incr_vec[incr_vec_len++].init_bb = NULL;
2576	}
2577    }
2578}
2579
2580/* Given phi statement PHI that hides a candidate from its BASIS, find
2581   the increments along each incoming arc (recursively handling additional
2582   phis that may be present) and record them.  These increments are the
2583   difference in index between the index-adjusting statements and the
2584   index of the basis.  */
2585
2586static void
2587record_phi_increments (slsr_cand_t basis, gimple phi)
2588{
2589  unsigned i;
2590  slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2591
2592  for (i = 0; i < gimple_phi_num_args (phi); i++)
2593    {
2594      tree arg = gimple_phi_arg_def (phi, i);
2595
2596      if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2597	{
2598	  gimple arg_def = SSA_NAME_DEF_STMT (arg);
2599
2600	  if (gimple_code (arg_def) == GIMPLE_PHI)
2601	    record_phi_increments (basis, arg_def);
2602	  else
2603	    {
2604	      slsr_cand_t arg_cand = base_cand_from_table (arg);
2605	      widest_int diff = arg_cand->index - basis->index;
2606	      record_increment (arg_cand, diff, PHI_ADJUST);
2607	    }
2608	}
2609    }
2610}
2611
2612/* Determine how many times each unique increment occurs in the set
2613   of candidates rooted at C's parent, recording the data in the
2614   increment vector.  For each unique increment I, if an initializer
2615   T_0 = stride * I is provided by a candidate that dominates all
2616   candidates with the same increment, also record T_0 for subsequent
2617   use.  */
2618
2619static void
2620record_increments (slsr_cand_t c)
2621{
2622  if (!cand_already_replaced (c))
2623    {
2624      if (!phi_dependent_cand_p (c))
2625	record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2626      else
2627	{
2628	  /* A candidate with a basis hidden by a phi will have one
2629	     increment for its relationship to the index represented by
2630	     the phi, and potentially additional increments along each
2631	     incoming edge.  For the root of the dependency tree (which
2632	     has no basis), process just the initial index in case it has
2633	     an initializer that can be used by subsequent candidates.  */
2634	  record_increment (c, c->index, NOT_PHI_ADJUST);
2635
2636	  if (c->basis)
2637	    record_phi_increments (lookup_cand (c->basis),
2638				   lookup_cand (c->def_phi)->cand_stmt);
2639	}
2640    }
2641
2642  if (c->sibling)
2643    record_increments (lookup_cand (c->sibling));
2644
2645  if (c->dependent)
2646    record_increments (lookup_cand (c->dependent));
2647}
2648
2649/* Add up and return the costs of introducing add statements that
2650   require the increment INCR on behalf of candidate C and phi
2651   statement PHI.  Accumulate into *SAVINGS the potential savings
2652   from removing existing statements that feed PHI and have no other
2653   uses.  */
2654
2655static int
2656phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple phi, int *savings)
2657{
2658  unsigned i;
2659  int cost = 0;
2660  slsr_cand_t basis = lookup_cand (c->basis);
2661  slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2662
2663  for (i = 0; i < gimple_phi_num_args (phi); i++)
2664    {
2665      tree arg = gimple_phi_arg_def (phi, i);
2666
2667      if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2668	{
2669	  gimple arg_def = SSA_NAME_DEF_STMT (arg);
2670
2671	  if (gimple_code (arg_def) == GIMPLE_PHI)
2672	    {
2673	      int feeding_savings = 0;
2674	      cost += phi_incr_cost (c, incr, arg_def, &feeding_savings);
2675	      if (has_single_use (gimple_phi_result (arg_def)))
2676		*savings += feeding_savings;
2677	    }
2678	  else
2679	    {
2680	      slsr_cand_t arg_cand = base_cand_from_table (arg);
2681	      widest_int diff = arg_cand->index - basis->index;
2682
2683	      if (incr == diff)
2684		{
2685		  tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2686		  tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2687		  cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2688		  if (has_single_use (lhs))
2689		    *savings += stmt_cost (arg_cand->cand_stmt, true);
2690		}
2691	    }
2692	}
2693    }
2694
2695  return cost;
2696}
2697
2698/* Return the first candidate in the tree rooted at C that has not
2699   already been replaced, favoring siblings over dependents.  */
2700
2701static slsr_cand_t
2702unreplaced_cand_in_tree (slsr_cand_t c)
2703{
2704  if (!cand_already_replaced (c))
2705    return c;
2706
2707  if (c->sibling)
2708    {
2709      slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2710      if (sib)
2711	return sib;
2712    }
2713
2714  if (c->dependent)
2715    {
2716      slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2717      if (dep)
2718	return dep;
2719    }
2720
2721  return NULL;
2722}
2723
2724/* Return TRUE if the candidates in the tree rooted at C should be
2725   optimized for speed, else FALSE.  We estimate this based on the block
2726   containing the most dominant candidate in the tree that has not yet
2727   been replaced.  */
2728
2729static bool
2730optimize_cands_for_speed_p (slsr_cand_t c)
2731{
2732  slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2733  gcc_assert (c2);
2734  return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2735}
2736
2737/* Add COST_IN to the lowest cost of any dependent path starting at
2738   candidate C or any of its siblings, counting only candidates along
2739   such paths with increment INCR.  Assume that replacing a candidate
2740   reduces cost by REPL_SAVINGS.  Also account for savings from any
2741   statements that would go dead.  If COUNT_PHIS is true, include
2742   costs of introducing feeding statements for conditional candidates.  */
2743
2744static int
2745lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2746		  const widest_int &incr, bool count_phis)
2747{
2748  int local_cost, sib_cost, savings = 0;
2749  widest_int cand_incr = cand_abs_increment (c);
2750
2751  if (cand_already_replaced (c))
2752    local_cost = cost_in;
2753  else if (incr == cand_incr)
2754    local_cost = cost_in - repl_savings - c->dead_savings;
2755  else
2756    local_cost = cost_in - c->dead_savings;
2757
2758  if (count_phis
2759      && phi_dependent_cand_p (c)
2760      && !cand_already_replaced (c))
2761    {
2762      gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2763      local_cost += phi_incr_cost (c, incr, phi, &savings);
2764
2765      if (has_single_use (gimple_phi_result (phi)))
2766	local_cost -= savings;
2767    }
2768
2769  if (c->dependent)
2770    local_cost = lowest_cost_path (local_cost, repl_savings,
2771				   lookup_cand (c->dependent), incr,
2772				   count_phis);
2773
2774  if (c->sibling)
2775    {
2776      sib_cost = lowest_cost_path (cost_in, repl_savings,
2777				   lookup_cand (c->sibling), incr,
2778				   count_phis);
2779      local_cost = MIN (local_cost, sib_cost);
2780    }
2781
2782  return local_cost;
2783}
2784
2785/* Compute the total savings that would accrue from all replacements
2786   in the candidate tree rooted at C, counting only candidates with
2787   increment INCR.  Assume that replacing a candidate reduces cost
2788   by REPL_SAVINGS.  Also account for savings from statements that
2789   would go dead.  */
2790
2791static int
2792total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
2793	       bool count_phis)
2794{
2795  int savings = 0;
2796  widest_int cand_incr = cand_abs_increment (c);
2797
2798  if (incr == cand_incr && !cand_already_replaced (c))
2799    savings += repl_savings + c->dead_savings;
2800
2801  if (count_phis
2802      && phi_dependent_cand_p (c)
2803      && !cand_already_replaced (c))
2804    {
2805      int phi_savings = 0;
2806      gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2807      savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2808
2809      if (has_single_use (gimple_phi_result (phi)))
2810	savings += phi_savings;
2811    }
2812
2813  if (c->dependent)
2814    savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2815			      count_phis);
2816
2817  if (c->sibling)
2818    savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
2819			      count_phis);
2820
2821  return savings;
2822}
2823
2824/* Use target-specific costs to determine and record which increments
2825   in the current candidate tree are profitable to replace, assuming
2826   MODE and SPEED.  FIRST_DEP is the first dependent of the root of
2827   the candidate tree.
2828
2829   One slight limitation here is that we don't account for the possible
2830   introduction of casts in some cases.  See replace_one_candidate for
2831   the cases where these are introduced.  This should probably be cleaned
2832   up sometime.  */
2833
2834static void
2835analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
2836{
2837  unsigned i;
2838
2839  for (i = 0; i < incr_vec_len; i++)
2840    {
2841      HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
2842
2843      /* If somehow this increment is bigger than a HWI, we won't
2844	 be optimizing candidates that use it.  And if the increment
2845	 has a count of zero, nothing will be done with it.  */
2846      if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
2847	incr_vec[i].cost = COST_INFINITE;
2848
2849      /* Increments of 0, 1, and -1 are always profitable to replace,
2850	 because they always replace a multiply or add with an add or
2851	 copy, and may cause one or more existing instructions to go
2852	 dead.  Exception:  -1 can't be assumed to be profitable for
2853	 pointer addition.  */
2854      else if (incr == 0
2855	       || incr == 1
2856	       || (incr == -1
2857		   && (gimple_assign_rhs_code (first_dep->cand_stmt)
2858		       != POINTER_PLUS_EXPR)))
2859	incr_vec[i].cost = COST_NEUTRAL;
2860
2861      /* FORNOW: If we need to add an initializer, give up if a cast from
2862	 the candidate's type to its stride's type can lose precision.
2863	 This could eventually be handled better by expressly retaining the
2864	 result of a cast to a wider type in the stride.  Example:
2865
2866           short int _1;
2867	   _2 = (int) _1;
2868	   _3 = _2 * 10;
2869	   _4 = x + _3;    ADD: x + (10 * _1) : int
2870	   _5 = _2 * 15;
2871	   _6 = x + _3;    ADD: x + (15 * _1) : int
2872
2873         Right now replacing _6 would cause insertion of an initializer
2874	 of the form "short int T = _1 * 5;" followed by a cast to
2875	 int, which could overflow incorrectly.  Had we recorded _2 or
2876	 (int)_1 as the stride, this wouldn't happen.  However, doing
2877         this breaks other opportunities, so this will require some
2878	 care.  */
2879      else if (!incr_vec[i].initializer
2880	       && TREE_CODE (first_dep->stride) != INTEGER_CST
2881	       && !legal_cast_p_1 (first_dep->stride,
2882				   gimple_assign_lhs (first_dep->cand_stmt)))
2883
2884	incr_vec[i].cost = COST_INFINITE;
2885
2886      /* If we need to add an initializer, make sure we don't introduce
2887	 a multiply by a pointer type, which can happen in certain cast
2888	 scenarios.  FIXME: When cleaning up these cast issues, we can
2889         afford to introduce the multiply provided we cast out to an
2890         unsigned int of appropriate size.  */
2891      else if (!incr_vec[i].initializer
2892	       && TREE_CODE (first_dep->stride) != INTEGER_CST
2893	       && POINTER_TYPE_P (TREE_TYPE (first_dep->stride)))
2894
2895	incr_vec[i].cost = COST_INFINITE;
2896
2897      /* For any other increment, if this is a multiply candidate, we
2898	 must introduce a temporary T and initialize it with
2899	 T_0 = stride * increment.  When optimizing for speed, walk the
2900	 candidate tree to calculate the best cost reduction along any
2901	 path; if it offsets the fixed cost of inserting the initializer,
2902	 replacing the increment is profitable.  When optimizing for
2903         size, instead calculate the total cost reduction from replacing
2904	 all candidates with this increment.  */
2905      else if (first_dep->kind == CAND_MULT)
2906	{
2907	  int cost = mult_by_coeff_cost (incr, mode, speed);
2908	  int repl_savings = mul_cost (speed, mode) - add_cost (speed, mode);
2909	  if (speed)
2910	    cost = lowest_cost_path (cost, repl_savings, first_dep,
2911				     incr_vec[i].incr, COUNT_PHIS);
2912	  else
2913	    cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
2914				   COUNT_PHIS);
2915
2916	  incr_vec[i].cost = cost;
2917	}
2918
2919      /* If this is an add candidate, the initializer may already
2920	 exist, so only calculate the cost of the initializer if it
2921	 doesn't.  We are replacing one add with another here, so the
2922	 known replacement savings is zero.  We will account for removal
2923	 of dead instructions in lowest_cost_path or total_savings.  */
2924      else
2925	{
2926	  int cost = 0;
2927	  if (!incr_vec[i].initializer)
2928	    cost = mult_by_coeff_cost (incr, mode, speed);
2929
2930	  if (speed)
2931	    cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
2932				     DONT_COUNT_PHIS);
2933	  else
2934	    cost -= total_savings (0, first_dep, incr_vec[i].incr,
2935				   DONT_COUNT_PHIS);
2936
2937	  incr_vec[i].cost = cost;
2938	}
2939    }
2940}
2941
2942/* Return the nearest common dominator of BB1 and BB2.  If the blocks
2943   are identical, return the earlier of C1 and C2 in *WHERE.  Otherwise,
2944   if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2945   return C2 in *WHERE; and if the NCD matches neither, return NULL in
2946   *WHERE.  Note: It is possible for one of C1 and C2 to be NULL.  */
2947
2948static basic_block
2949ncd_for_two_cands (basic_block bb1, basic_block bb2,
2950		   slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
2951{
2952  basic_block ncd;
2953
2954  if (!bb1)
2955    {
2956      *where = c2;
2957      return bb2;
2958    }
2959
2960  if (!bb2)
2961    {
2962      *where = c1;
2963      return bb1;
2964    }
2965
2966  ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
2967
2968  /* If both candidates are in the same block, the earlier
2969     candidate wins.  */
2970  if (bb1 == ncd && bb2 == ncd)
2971    {
2972      if (!c1 || (c2 && c2->cand_num < c1->cand_num))
2973	*where = c2;
2974      else
2975	*where = c1;
2976    }
2977
2978  /* Otherwise, if one of them produced a candidate in the
2979     dominator, that one wins.  */
2980  else if (bb1 == ncd)
2981    *where = c1;
2982
2983  else if (bb2 == ncd)
2984    *where = c2;
2985
2986  /* If neither matches the dominator, neither wins.  */
2987  else
2988    *where = NULL;
2989
2990  return ncd;
2991}
2992
2993/* Consider all candidates that feed PHI.  Find the nearest common
2994   dominator of those candidates requiring the given increment INCR.
2995   Further find and return the nearest common dominator of this result
2996   with block NCD.  If the returned block contains one or more of the
2997   candidates, return the earliest candidate in the block in *WHERE.  */
2998
2999static basic_block
3000ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
3001	      basic_block ncd, slsr_cand_t *where)
3002{
3003  unsigned i;
3004  slsr_cand_t basis = lookup_cand (c->basis);
3005  slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
3006
3007  for (i = 0; i < gimple_phi_num_args (phi); i++)
3008    {
3009      tree arg = gimple_phi_arg_def (phi, i);
3010
3011      if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3012	{
3013	  gimple arg_def = SSA_NAME_DEF_STMT (arg);
3014
3015	  if (gimple_code (arg_def) == GIMPLE_PHI)
3016	    ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd,
3017				where);
3018	  else
3019	    {
3020	      slsr_cand_t arg_cand = base_cand_from_table (arg);
3021	      widest_int diff = arg_cand->index - basis->index;
3022	      basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3023
3024	      if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3025		ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
3026	    }
3027	}
3028    }
3029
3030  return ncd;
3031}
3032
3033/* Consider the candidate C together with any candidates that feed
3034   C's phi dependence (if any).  Find and return the nearest common
3035   dominator of those candidates requiring the given increment INCR.
3036   If the returned block contains one or more of the candidates,
3037   return the earliest candidate in the block in *WHERE.  */
3038
3039static basic_block
3040ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
3041{
3042  basic_block ncd = NULL;
3043
3044  if (cand_abs_increment (c) == incr)
3045    {
3046      ncd = gimple_bb (c->cand_stmt);
3047      *where = c;
3048    }
3049
3050  if (phi_dependent_cand_p (c))
3051    ncd = ncd_with_phi (c, incr,
3052			as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
3053			ncd, where);
3054
3055  return ncd;
3056}
3057
3058/* Consider all candidates in the tree rooted at C for which INCR
3059   represents the required increment of C relative to its basis.
3060   Find and return the basic block that most nearly dominates all
3061   such candidates.  If the returned block contains one or more of
3062   the candidates, return the earliest candidate in the block in
3063   *WHERE.  */
3064
3065static basic_block
3066nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
3067				    slsr_cand_t *where)
3068{
3069  basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3070  slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
3071
3072  /* First find the NCD of all siblings and dependents.  */
3073  if (c->sibling)
3074    sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3075						  incr, &sib_where);
3076  if (c->dependent)
3077    dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3078						  incr, &dep_where);
3079  if (!sib_ncd && !dep_ncd)
3080    {
3081      new_where = NULL;
3082      ncd = NULL;
3083    }
3084  else if (sib_ncd && !dep_ncd)
3085    {
3086      new_where = sib_where;
3087      ncd = sib_ncd;
3088    }
3089  else if (dep_ncd && !sib_ncd)
3090    {
3091      new_where = dep_where;
3092      ncd = dep_ncd;
3093    }
3094  else
3095    ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3096			     dep_where, &new_where);
3097
3098  /* If the candidate's increment doesn't match the one we're interested
3099     in (and nor do any increments for feeding defs of a phi-dependence),
3100     then the result depends only on siblings and dependents.  */
3101  this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
3102
3103  if (!this_ncd || cand_already_replaced (c))
3104    {
3105      *where = new_where;
3106      return ncd;
3107    }
3108
3109  /* Otherwise, compare this candidate with the result from all siblings
3110     and dependents.  */
3111  ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3112
3113  return ncd;
3114}
3115
3116/* Return TRUE if the increment indexed by INDEX is profitable to replace.  */
3117
3118static inline bool
3119profitable_increment_p (unsigned index)
3120{
3121  return (incr_vec[index].cost <= COST_NEUTRAL);
3122}
3123
3124/* For each profitable increment in the increment vector not equal to
3125   0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3126   dominator of all statements in the candidate chain rooted at C
3127   that require that increment, and insert an initializer
3128   T_0 = stride * increment at that location.  Record T_0 with the
3129   increment record.  */
3130
3131static void
3132insert_initializers (slsr_cand_t c)
3133{
3134  unsigned i;
3135
3136  for (i = 0; i < incr_vec_len; i++)
3137    {
3138      basic_block bb;
3139      slsr_cand_t where = NULL;
3140      gassign *init_stmt;
3141      tree stride_type, new_name, incr_tree;
3142      widest_int incr = incr_vec[i].incr;
3143
3144      if (!profitable_increment_p (i)
3145	  || incr == 1
3146	  || (incr == -1
3147	      && gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
3148	  || incr == 0)
3149	continue;
3150
3151      /* We may have already identified an existing initializer that
3152	 will suffice.  */
3153      if (incr_vec[i].initializer)
3154	{
3155	  if (dump_file && (dump_flags & TDF_DETAILS))
3156	    {
3157	      fputs ("Using existing initializer: ", dump_file);
3158	      print_gimple_stmt (dump_file,
3159				 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3160				 0, 0);
3161	    }
3162	  continue;
3163	}
3164
3165      /* Find the block that most closely dominates all candidates
3166	 with this increment.  If there is at least one candidate in
3167	 that block, the earliest one will be returned in WHERE.  */
3168      bb = nearest_common_dominator_for_cands (c, incr, &where);
3169
3170      /* Create a new SSA name to hold the initializer's value.  */
3171      stride_type = TREE_TYPE (c->stride);
3172      new_name = make_temp_ssa_name (stride_type, NULL, "slsr");
3173      incr_vec[i].initializer = new_name;
3174
3175      /* Create the initializer and insert it in the latest possible
3176	 dominating position.  */
3177      incr_tree = wide_int_to_tree (stride_type, incr);
3178      init_stmt = gimple_build_assign (new_name, MULT_EXPR,
3179				       c->stride, incr_tree);
3180      if (where)
3181	{
3182	  gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3183	  gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3184	  gimple_set_location (init_stmt, gimple_location (where->cand_stmt));
3185	}
3186      else
3187	{
3188	  gimple_stmt_iterator gsi = gsi_last_bb (bb);
3189	  gimple basis_stmt = lookup_cand (c->basis)->cand_stmt;
3190
3191	  if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
3192	    gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3193	  else
3194	    gsi_insert_after (&gsi, init_stmt, GSI_SAME_STMT);
3195
3196	  gimple_set_location (init_stmt, gimple_location (basis_stmt));
3197	}
3198
3199      if (dump_file && (dump_flags & TDF_DETAILS))
3200	{
3201	  fputs ("Inserting initializer: ", dump_file);
3202	  print_gimple_stmt (dump_file, init_stmt, 0, 0);
3203	}
3204    }
3205}
3206
3207/* Return TRUE iff all required increments for candidates feeding PHI
3208   are profitable to replace on behalf of candidate C.  */
3209
3210static bool
3211all_phi_incrs_profitable (slsr_cand_t c, gimple phi)
3212{
3213  unsigned i;
3214  slsr_cand_t basis = lookup_cand (c->basis);
3215  slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
3216
3217  for (i = 0; i < gimple_phi_num_args (phi); i++)
3218    {
3219      tree arg = gimple_phi_arg_def (phi, i);
3220
3221      if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3222	{
3223	  gimple arg_def = SSA_NAME_DEF_STMT (arg);
3224
3225	  if (gimple_code (arg_def) == GIMPLE_PHI)
3226	    {
3227	      if (!all_phi_incrs_profitable (c, arg_def))
3228		return false;
3229	    }
3230	  else
3231	    {
3232	      int j;
3233	      slsr_cand_t arg_cand = base_cand_from_table (arg);
3234	      widest_int increment = arg_cand->index - basis->index;
3235
3236	      if (!address_arithmetic_p && wi::neg_p (increment))
3237		increment = -increment;
3238
3239	      j = incr_vec_index (increment);
3240
3241	      if (dump_file && (dump_flags & TDF_DETAILS))
3242		{
3243		  fprintf (dump_file, "  Conditional candidate %d, phi: ",
3244			   c->cand_num);
3245		  print_gimple_stmt (dump_file, phi, 0, 0);
3246		  fputs ("    increment: ", dump_file);
3247		  print_decs (increment, dump_file);
3248		  if (j < 0)
3249		    fprintf (dump_file,
3250			     "\n  Not replaced; incr_vec overflow.\n");
3251		  else {
3252		    fprintf (dump_file, "\n    cost: %d\n", incr_vec[j].cost);
3253		    if (profitable_increment_p (j))
3254		      fputs ("  Replacing...\n", dump_file);
3255		    else
3256		      fputs ("  Not replaced.\n", dump_file);
3257		  }
3258		}
3259
3260	      if (j < 0 || !profitable_increment_p (j))
3261		return false;
3262	    }
3263	}
3264    }
3265
3266  return true;
3267}
3268
3269/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3270   type TO_TYPE, and insert it in front of the statement represented
3271   by candidate C.  Use *NEW_VAR to create the new SSA name.  Return
3272   the new SSA name.  */
3273
3274static tree
3275introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3276{
3277  tree cast_lhs;
3278  gassign *cast_stmt;
3279  gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3280
3281  cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
3282  cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
3283  gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3284  gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3285
3286  if (dump_file && (dump_flags & TDF_DETAILS))
3287    {
3288      fputs ("  Inserting: ", dump_file);
3289      print_gimple_stmt (dump_file, cast_stmt, 0, 0);
3290    }
3291
3292  return cast_lhs;
3293}
3294
3295/* Replace the RHS of the statement represented by candidate C with
3296   NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3297   leave C unchanged or just interchange its operands.  The original
3298   operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3299   If the replacement was made and we are doing a details dump,
3300   return the revised statement, else NULL.  */
3301
3302static gimple
3303replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3304			enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3305			slsr_cand_t c)
3306{
3307  if (new_code != old_code
3308      || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3309	   || !operand_equal_p (new_rhs2, old_rhs2, 0))
3310	  && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3311	      || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3312    {
3313      gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3314      gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3315      update_stmt (gsi_stmt (gsi));
3316      c->cand_stmt = gsi_stmt (gsi);
3317
3318      if (dump_file && (dump_flags & TDF_DETAILS))
3319	return gsi_stmt (gsi);
3320    }
3321
3322  else if (dump_file && (dump_flags & TDF_DETAILS))
3323    fputs ("  (duplicate, not actually replacing)\n", dump_file);
3324
3325  return NULL;
3326}
3327
3328/* Strength-reduce the statement represented by candidate C by replacing
3329   it with an equivalent addition or subtraction.  I is the index into
3330   the increment vector identifying C's increment.  NEW_VAR is used to
3331   create a new SSA name if a cast needs to be introduced.  BASIS_NAME
3332   is the rhs1 to use in creating the add/subtract.  */
3333
3334static void
3335replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3336{
3337  gimple stmt_to_print = NULL;
3338  tree orig_rhs1, orig_rhs2;
3339  tree rhs2;
3340  enum tree_code orig_code, repl_code;
3341  widest_int cand_incr;
3342
3343  orig_code = gimple_assign_rhs_code (c->cand_stmt);
3344  orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3345  orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3346  cand_incr = cand_increment (c);
3347
3348  if (dump_file && (dump_flags & TDF_DETAILS))
3349    {
3350      fputs ("Replacing: ", dump_file);
3351      print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
3352      stmt_to_print = c->cand_stmt;
3353    }
3354
3355  if (address_arithmetic_p)
3356    repl_code = POINTER_PLUS_EXPR;
3357  else
3358    repl_code = PLUS_EXPR;
3359
3360  /* If the increment has an initializer T_0, replace the candidate
3361     statement with an add of the basis name and the initializer.  */
3362  if (incr_vec[i].initializer)
3363    {
3364      tree init_type = TREE_TYPE (incr_vec[i].initializer);
3365      tree orig_type = TREE_TYPE (orig_rhs2);
3366
3367      if (types_compatible_p (orig_type, init_type))
3368	rhs2 = incr_vec[i].initializer;
3369      else
3370	rhs2 = introduce_cast_before_cand (c, orig_type,
3371					   incr_vec[i].initializer);
3372
3373      if (incr_vec[i].incr != cand_incr)
3374	{
3375	  gcc_assert (repl_code == PLUS_EXPR);
3376	  repl_code = MINUS_EXPR;
3377	}
3378
3379      stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3380					      orig_code, orig_rhs1, orig_rhs2,
3381					      c);
3382    }
3383
3384  /* Otherwise, the increment is one of -1, 0, and 1.  Replace
3385     with a subtract of the stride from the basis name, a copy
3386     from the basis name, or an add of the stride to the basis
3387     name, respectively.  It may be necessary to introduce a
3388     cast (or reuse an existing cast).  */
3389  else if (cand_incr == 1)
3390    {
3391      tree stride_type = TREE_TYPE (c->stride);
3392      tree orig_type = TREE_TYPE (orig_rhs2);
3393
3394      if (types_compatible_p (orig_type, stride_type))
3395	rhs2 = c->stride;
3396      else
3397	rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3398
3399      stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3400					      orig_code, orig_rhs1, orig_rhs2,
3401					      c);
3402    }
3403
3404  else if (cand_incr == -1)
3405    {
3406      tree stride_type = TREE_TYPE (c->stride);
3407      tree orig_type = TREE_TYPE (orig_rhs2);
3408      gcc_assert (repl_code != POINTER_PLUS_EXPR);
3409
3410      if (types_compatible_p (orig_type, stride_type))
3411	rhs2 = c->stride;
3412      else
3413	rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3414
3415      if (orig_code != MINUS_EXPR
3416	  || !operand_equal_p (basis_name, orig_rhs1, 0)
3417	  || !operand_equal_p (rhs2, orig_rhs2, 0))
3418	{
3419	  gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3420	  gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3421	  update_stmt (gsi_stmt (gsi));
3422          c->cand_stmt = gsi_stmt (gsi);
3423
3424	  if (dump_file && (dump_flags & TDF_DETAILS))
3425	    stmt_to_print = gsi_stmt (gsi);
3426	}
3427      else if (dump_file && (dump_flags & TDF_DETAILS))
3428	fputs ("  (duplicate, not actually replacing)\n", dump_file);
3429    }
3430
3431  else if (cand_incr == 0)
3432    {
3433      tree lhs = gimple_assign_lhs (c->cand_stmt);
3434      tree lhs_type = TREE_TYPE (lhs);
3435      tree basis_type = TREE_TYPE (basis_name);
3436
3437      if (types_compatible_p (lhs_type, basis_type))
3438	{
3439	  gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
3440	  gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3441	  gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3442	  gsi_replace (&gsi, copy_stmt, false);
3443	  c->cand_stmt = copy_stmt;
3444
3445	  if (dump_file && (dump_flags & TDF_DETAILS))
3446	    stmt_to_print = copy_stmt;
3447	}
3448      else
3449	{
3450	  gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3451	  gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
3452	  gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3453	  gsi_replace (&gsi, cast_stmt, false);
3454	  c->cand_stmt = cast_stmt;
3455
3456	  if (dump_file && (dump_flags & TDF_DETAILS))
3457	    stmt_to_print = cast_stmt;
3458	}
3459    }
3460  else
3461    gcc_unreachable ();
3462
3463  if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3464    {
3465      fputs ("With: ", dump_file);
3466      print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
3467      fputs ("\n", dump_file);
3468    }
3469}
3470
3471/* For each candidate in the tree rooted at C, replace it with
3472   an increment if such has been shown to be profitable.  */
3473
3474static void
3475replace_profitable_candidates (slsr_cand_t c)
3476{
3477  if (!cand_already_replaced (c))
3478    {
3479      widest_int increment = cand_abs_increment (c);
3480      enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
3481      int i;
3482
3483      i = incr_vec_index (increment);
3484
3485      /* Only process profitable increments.  Nothing useful can be done
3486	 to a cast or copy.  */
3487      if (i >= 0
3488	  && profitable_increment_p (i)
3489	  && orig_code != MODIFY_EXPR
3490	  && !CONVERT_EXPR_CODE_P (orig_code))
3491	{
3492	  if (phi_dependent_cand_p (c))
3493	    {
3494	      gimple phi = lookup_cand (c->def_phi)->cand_stmt;
3495
3496	      if (all_phi_incrs_profitable (c, phi))
3497		{
3498		  /* Look up the LHS SSA name from C's basis.  This will be
3499		     the RHS1 of the adds we will introduce to create new
3500		     phi arguments.  */
3501		  slsr_cand_t basis = lookup_cand (c->basis);
3502		  tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3503
3504		  /* Create a new phi statement that will represent C's true
3505		     basis after the transformation is complete.  */
3506		  location_t loc = gimple_location (c->cand_stmt);
3507		  tree name = create_phi_basis (c, phi, basis_name,
3508						loc, UNKNOWN_STRIDE);
3509
3510		  /* Replace C with an add of the new basis phi and the
3511		     increment.  */
3512		  replace_one_candidate (c, i, name);
3513		}
3514	    }
3515	  else
3516	    {
3517	      slsr_cand_t basis = lookup_cand (c->basis);
3518	      tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3519	      replace_one_candidate (c, i, basis_name);
3520	    }
3521	}
3522    }
3523
3524  if (c->sibling)
3525    replace_profitable_candidates (lookup_cand (c->sibling));
3526
3527  if (c->dependent)
3528    replace_profitable_candidates (lookup_cand (c->dependent));
3529}
3530
3531/* Analyze costs of related candidates in the candidate vector,
3532   and make beneficial replacements.  */
3533
3534static void
3535analyze_candidates_and_replace (void)
3536{
3537  unsigned i;
3538  slsr_cand_t c;
3539
3540  /* Each candidate that has a null basis and a non-null
3541     dependent is the root of a tree of related statements.
3542     Analyze each tree to determine a subset of those
3543     statements that can be replaced with maximum benefit.  */
3544  FOR_EACH_VEC_ELT (cand_vec, i, c)
3545    {
3546      slsr_cand_t first_dep;
3547
3548      if (c->basis != 0 || c->dependent == 0)
3549	continue;
3550
3551      if (dump_file && (dump_flags & TDF_DETAILS))
3552	fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3553		 c->cand_num);
3554
3555      first_dep = lookup_cand (c->dependent);
3556
3557      /* If this is a chain of CAND_REFs, unconditionally replace
3558	 each of them with a strength-reduced data reference.  */
3559      if (c->kind == CAND_REF)
3560	replace_refs (c);
3561
3562      /* If the common stride of all related candidates is a known
3563	 constant, each candidate without a phi-dependence can be
3564	 profitably replaced.  Each replaces a multiply by a single
3565	 add, with the possibility that a feeding add also goes dead.
3566	 A candidate with a phi-dependence is replaced only if the
3567	 compensation code it requires is offset by the strength
3568	 reduction savings.  */
3569      else if (TREE_CODE (c->stride) == INTEGER_CST)
3570	replace_uncond_cands_and_profitable_phis (first_dep);
3571
3572      /* When the stride is an SSA name, it may still be profitable
3573	 to replace some or all of the dependent candidates, depending
3574	 on whether the introduced increments can be reused, or are
3575	 less expensive to calculate than the replaced statements.  */
3576      else
3577	{
3578	  machine_mode mode;
3579	  bool speed;
3580
3581	  /* Determine whether we'll be generating pointer arithmetic
3582	     when replacing candidates.  */
3583	  address_arithmetic_p = (c->kind == CAND_ADD
3584				  && POINTER_TYPE_P (c->cand_type));
3585
3586	  /* If all candidates have already been replaced under other
3587	     interpretations, nothing remains to be done.  */
3588	  if (!count_candidates (c))
3589	    continue;
3590
3591	  /* Construct an array of increments for this candidate chain.  */
3592	  incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3593	  incr_vec_len = 0;
3594	  record_increments (c);
3595
3596	  /* Determine which increments are profitable to replace.  */
3597	  mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3598	  speed = optimize_cands_for_speed_p (c);
3599	  analyze_increments (first_dep, mode, speed);
3600
3601	  /* Insert initializers of the form T_0 = stride * increment
3602	     for use in profitable replacements.  */
3603	  insert_initializers (first_dep);
3604	  dump_incr_vec ();
3605
3606	  /* Perform the replacements.  */
3607	  replace_profitable_candidates (first_dep);
3608	  free (incr_vec);
3609	}
3610    }
3611}
3612
3613namespace {
3614
3615const pass_data pass_data_strength_reduction =
3616{
3617  GIMPLE_PASS, /* type */
3618  "slsr", /* name */
3619  OPTGROUP_NONE, /* optinfo_flags */
3620  TV_GIMPLE_SLSR, /* tv_id */
3621  ( PROP_cfg | PROP_ssa ), /* properties_required */
3622  0, /* properties_provided */
3623  0, /* properties_destroyed */
3624  0, /* todo_flags_start */
3625  0, /* todo_flags_finish */
3626};
3627
3628class pass_strength_reduction : public gimple_opt_pass
3629{
3630public:
3631  pass_strength_reduction (gcc::context *ctxt)
3632    : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3633  {}
3634
3635  /* opt_pass methods: */
3636  virtual bool gate (function *) { return flag_tree_slsr; }
3637  virtual unsigned int execute (function *);
3638
3639}; // class pass_strength_reduction
3640
3641unsigned
3642pass_strength_reduction::execute (function *fun)
3643{
3644  /* Create the obstack where candidates will reside.  */
3645  gcc_obstack_init (&cand_obstack);
3646
3647  /* Allocate the candidate vector.  */
3648  cand_vec.create (128);
3649
3650  /* Allocate the mapping from statements to candidate indices.  */
3651  stmt_cand_map = new hash_map<gimple, slsr_cand_t>;
3652
3653  /* Create the obstack where candidate chains will reside.  */
3654  gcc_obstack_init (&chain_obstack);
3655
3656  /* Allocate the mapping from base expressions to candidate chains.  */
3657  base_cand_map = new hash_table<cand_chain_hasher> (500);
3658
3659  /* Allocate the mapping from bases to alternative bases.  */
3660  alt_base_map = new hash_map<tree, tree>;
3661
3662  /* Initialize the loop optimizer.  We need to detect flow across
3663     back edges, and this gives us dominator information as well.  */
3664  loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3665
3666  /* Walk the CFG in predominator order looking for strength reduction
3667     candidates.  */
3668  find_candidates_dom_walker (CDI_DOMINATORS)
3669    .walk (fun->cfg->x_entry_block_ptr);
3670
3671  if (dump_file && (dump_flags & TDF_DETAILS))
3672    {
3673      dump_cand_vec ();
3674      dump_cand_chains ();
3675    }
3676
3677  delete alt_base_map;
3678  free_affine_expand_cache (&name_expansions);
3679
3680  /* Analyze costs and make appropriate replacements.  */
3681  analyze_candidates_and_replace ();
3682
3683  loop_optimizer_finalize ();
3684  delete base_cand_map;
3685  base_cand_map = NULL;
3686  obstack_free (&chain_obstack, NULL);
3687  delete stmt_cand_map;
3688  cand_vec.release ();
3689  obstack_free (&cand_obstack, NULL);
3690
3691  return 0;
3692}
3693
3694} // anon namespace
3695
3696gimple_opt_pass *
3697make_pass_strength_reduction (gcc::context *ctxt)
3698{
3699  return new pass_strength_reduction (ctxt);
3700}
3701