1/* "Bag-of-pages" garbage collector for the GNU compiler.
2   Copyright (C) 1999-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "hash-set.h"
25#include "machmode.h"
26#include "vec.h"
27#include "double-int.h"
28#include "input.h"
29#include "alias.h"
30#include "symtab.h"
31#include "wide-int.h"
32#include "inchash.h"
33#include "tree.h"
34#include "rtl.h"
35#include "tm_p.h"
36#include "diagnostic-core.h"
37#include "flags.h"
38#include "ggc.h"
39#include "ggc-internal.h"
40#include "timevar.h"
41#include "params.h"
42#include "hash-map.h"
43#include "is-a.h"
44#include "plugin-api.h"
45#include "vec.h"
46#include "hashtab.h"
47#include "hash-set.h"
48#include "machmode.h"
49#include "hard-reg-set.h"
50#include "input.h"
51#include "function.h"
52#include "ipa-ref.h"
53#include "cgraph.h"
54#include "cfgloop.h"
55#include "plugin.h"
56#include "basic-block.h"
57
58/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
59   file open.  Prefer either to valloc.  */
60#ifdef HAVE_MMAP_ANON
61# undef HAVE_MMAP_DEV_ZERO
62# define USING_MMAP
63#endif
64
65#ifdef HAVE_MMAP_DEV_ZERO
66# define USING_MMAP
67#endif
68
69#ifndef USING_MMAP
70#define USING_MALLOC_PAGE_GROUPS
71#endif
72
73#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
74    && defined(USING_MMAP)
75# define USING_MADVISE
76#endif
77
78/* Strategy:
79
80   This garbage-collecting allocator allocates objects on one of a set
81   of pages.  Each page can allocate objects of a single size only;
82   available sizes are powers of two starting at four bytes.  The size
83   of an allocation request is rounded up to the next power of two
84   (`order'), and satisfied from the appropriate page.
85
86   Each page is recorded in a page-entry, which also maintains an
87   in-use bitmap of object positions on the page.  This allows the
88   allocation state of a particular object to be flipped without
89   touching the page itself.
90
91   Each page-entry also has a context depth, which is used to track
92   pushing and popping of allocation contexts.  Only objects allocated
93   in the current (highest-numbered) context may be collected.
94
95   Page entries are arranged in an array of singly-linked lists.  The
96   array is indexed by the allocation size, in bits, of the pages on
97   it; i.e. all pages on a list allocate objects of the same size.
98   Pages are ordered on the list such that all non-full pages precede
99   all full pages, with non-full pages arranged in order of decreasing
100   context depth.
101
102   Empty pages (of all orders) are kept on a single page cache list,
103   and are considered first when new pages are required; they are
104   deallocated at the start of the next collection if they haven't
105   been recycled by then.  */
106
107/* Define GGC_DEBUG_LEVEL to print debugging information.
108     0: No debugging output.
109     1: GC statistics only.
110     2: Page-entry allocations/deallocations as well.
111     3: Object allocations as well.
112     4: Object marks as well.  */
113#define GGC_DEBUG_LEVEL (0)
114
115#ifndef HOST_BITS_PER_PTR
116#define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
117#endif
118
119
120/* A two-level tree is used to look up the page-entry for a given
121   pointer.  Two chunks of the pointer's bits are extracted to index
122   the first and second levels of the tree, as follows:
123
124				   HOST_PAGE_SIZE_BITS
125			   32		|      |
126       msb +----------------+----+------+------+ lsb
127			    |    |      |
128			 PAGE_L1_BITS   |
129				 |      |
130			       PAGE_L2_BITS
131
132   The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133   pages are aligned on system page boundaries.  The next most
134   significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135   index values in the lookup table, respectively.
136
137   For 32-bit architectures and the settings below, there are no
138   leftover bits.  For architectures with wider pointers, the lookup
139   tree points to a list of pages, which must be scanned to find the
140   correct one.  */
141
142#define PAGE_L1_BITS	(8)
143#define PAGE_L2_BITS	(32 - PAGE_L1_BITS - G.lg_pagesize)
144#define PAGE_L1_SIZE	((uintptr_t) 1 << PAGE_L1_BITS)
145#define PAGE_L2_SIZE	((uintptr_t) 1 << PAGE_L2_BITS)
146
147#define LOOKUP_L1(p) \
148  (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149
150#define LOOKUP_L2(p) \
151  (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152
153/* The number of objects per allocation page, for objects on a page of
154   the indicated ORDER.  */
155#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156
157/* The number of objects in P.  */
158#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159
160/* The size of an object on a page of the indicated ORDER.  */
161#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162
163/* For speed, we avoid doing a general integer divide to locate the
164   offset in the allocation bitmap, by precalculating numbers M, S
165   such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166   within the page which is evenly divisible by the object size Z.  */
167#define DIV_MULT(ORDER) inverse_table[ORDER].mult
168#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169#define OFFSET_TO_BIT(OFFSET, ORDER) \
170  (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
171
172/* We use this structure to determine the alignment required for
173   allocations.  For power-of-two sized allocations, that's not a
174   problem, but it does matter for odd-sized allocations.
175   We do not care about alignment for floating-point types.  */
176
177struct max_alignment {
178  char c;
179  union {
180    int64_t i;
181    void *p;
182  } u;
183};
184
185/* The biggest alignment required.  */
186
187#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
188
189
190/* The number of extra orders, not corresponding to power-of-two sized
191   objects.  */
192
193#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
194
195#define RTL_SIZE(NSLOTS) \
196  (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
197
198#define TREE_EXP_SIZE(OPS) \
199  (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
200
201/* The Ith entry is the maximum size of an object to be stored in the
202   Ith extra order.  Adding a new entry to this array is the *only*
203   thing you need to do to add a new special allocation size.  */
204
205static const size_t extra_order_size_table[] = {
206  /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
207     There are a lot of structures with these sizes and explicitly
208     listing them risks orders being dropped because they changed size.  */
209  MAX_ALIGNMENT * 3,
210  MAX_ALIGNMENT * 5,
211  MAX_ALIGNMENT * 6,
212  MAX_ALIGNMENT * 7,
213  MAX_ALIGNMENT * 9,
214  MAX_ALIGNMENT * 10,
215  MAX_ALIGNMENT * 11,
216  MAX_ALIGNMENT * 12,
217  MAX_ALIGNMENT * 13,
218  MAX_ALIGNMENT * 14,
219  MAX_ALIGNMENT * 15,
220  sizeof (struct tree_decl_non_common),
221  sizeof (struct tree_field_decl),
222  sizeof (struct tree_parm_decl),
223  sizeof (struct tree_var_decl),
224  sizeof (struct tree_type_non_common),
225  sizeof (struct function),
226  sizeof (struct basic_block_def),
227  sizeof (struct cgraph_node),
228  sizeof (struct loop),
229};
230
231/* The total number of orders.  */
232
233#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
234
235/* Compute the smallest nonnegative number which when added to X gives
236   a multiple of F.  */
237
238#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
239
240/* Compute the smallest multiple of F that is >= X.  */
241
242#define ROUND_UP(x, f) (CEIL (x, f) * (f))
243
244/* Round X to next multiple of the page size */
245
246#define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
247
248/* The Ith entry is the number of objects on a page or order I.  */
249
250static unsigned objects_per_page_table[NUM_ORDERS];
251
252/* The Ith entry is the size of an object on a page of order I.  */
253
254static size_t object_size_table[NUM_ORDERS];
255
256/* The Ith entry is a pair of numbers (mult, shift) such that
257   ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
258   for all k evenly divisible by OBJECT_SIZE(I).  */
259
260static struct
261{
262  size_t mult;
263  unsigned int shift;
264}
265inverse_table[NUM_ORDERS];
266
267/* A page_entry records the status of an allocation page.  This
268   structure is dynamically sized to fit the bitmap in_use_p.  */
269typedef struct page_entry
270{
271  /* The next page-entry with objects of the same size, or NULL if
272     this is the last page-entry.  */
273  struct page_entry *next;
274
275  /* The previous page-entry with objects of the same size, or NULL if
276     this is the first page-entry.   The PREV pointer exists solely to
277     keep the cost of ggc_free manageable.  */
278  struct page_entry *prev;
279
280  /* The number of bytes allocated.  (This will always be a multiple
281     of the host system page size.)  */
282  size_t bytes;
283
284  /* The address at which the memory is allocated.  */
285  char *page;
286
287#ifdef USING_MALLOC_PAGE_GROUPS
288  /* Back pointer to the page group this page came from.  */
289  struct page_group *group;
290#endif
291
292  /* This is the index in the by_depth varray where this page table
293     can be found.  */
294  unsigned long index_by_depth;
295
296  /* Context depth of this page.  */
297  unsigned short context_depth;
298
299  /* The number of free objects remaining on this page.  */
300  unsigned short num_free_objects;
301
302  /* A likely candidate for the bit position of a free object for the
303     next allocation from this page.  */
304  unsigned short next_bit_hint;
305
306  /* The lg of size of objects allocated from this page.  */
307  unsigned char order;
308
309  /* Discarded page? */
310  bool discarded;
311
312  /* A bit vector indicating whether or not objects are in use.  The
313     Nth bit is one if the Nth object on this page is allocated.  This
314     array is dynamically sized.  */
315  unsigned long in_use_p[1];
316} page_entry;
317
318#ifdef USING_MALLOC_PAGE_GROUPS
319/* A page_group describes a large allocation from malloc, from which
320   we parcel out aligned pages.  */
321typedef struct page_group
322{
323  /* A linked list of all extant page groups.  */
324  struct page_group *next;
325
326  /* The address we received from malloc.  */
327  char *allocation;
328
329  /* The size of the block.  */
330  size_t alloc_size;
331
332  /* A bitmask of pages in use.  */
333  unsigned int in_use;
334} page_group;
335#endif
336
337#if HOST_BITS_PER_PTR <= 32
338
339/* On 32-bit hosts, we use a two level page table, as pictured above.  */
340typedef page_entry **page_table[PAGE_L1_SIZE];
341
342#else
343
344/* On 64-bit hosts, we use the same two level page tables plus a linked
345   list that disambiguates the top 32-bits.  There will almost always be
346   exactly one entry in the list.  */
347typedef struct page_table_chain
348{
349  struct page_table_chain *next;
350  size_t high_bits;
351  page_entry **table[PAGE_L1_SIZE];
352} *page_table;
353
354#endif
355
356class finalizer
357{
358public:
359  finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
360
361  void *addr () const { return m_addr; }
362
363  void call () const { m_function (m_addr); }
364
365private:
366  void *m_addr;
367  void (*m_function)(void *);
368};
369
370class vec_finalizer
371{
372public:
373  vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
374    m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
375
376  void call () const
377    {
378      for (size_t i = 0; i < m_n_objects; i++)
379	m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
380    }
381
382  void *addr () const { return reinterpret_cast<void *> (m_addr); }
383
384private:
385  uintptr_t m_addr;
386  void (*m_function)(void *);
387  size_t m_object_size;
388  size_t m_n_objects;
389  };
390
391#ifdef ENABLE_GC_ALWAYS_COLLECT
392/* List of free objects to be verified as actually free on the
393   next collection.  */
394struct free_object
395{
396  void *object;
397  struct free_object *next;
398};
399#endif
400
401/* The rest of the global variables.  */
402static struct ggc_globals
403{
404  /* The Nth element in this array is a page with objects of size 2^N.
405     If there are any pages with free objects, they will be at the
406     head of the list.  NULL if there are no page-entries for this
407     object size.  */
408  page_entry *pages[NUM_ORDERS];
409
410  /* The Nth element in this array is the last page with objects of
411     size 2^N.  NULL if there are no page-entries for this object
412     size.  */
413  page_entry *page_tails[NUM_ORDERS];
414
415  /* Lookup table for associating allocation pages with object addresses.  */
416  page_table lookup;
417
418  /* The system's page size.  */
419  size_t pagesize;
420  size_t lg_pagesize;
421
422  /* Bytes currently allocated.  */
423  size_t allocated;
424
425  /* Bytes currently allocated at the end of the last collection.  */
426  size_t allocated_last_gc;
427
428  /* Total amount of memory mapped.  */
429  size_t bytes_mapped;
430
431  /* Bit N set if any allocations have been done at context depth N.  */
432  unsigned long context_depth_allocations;
433
434  /* Bit N set if any collections have been done at context depth N.  */
435  unsigned long context_depth_collections;
436
437  /* The current depth in the context stack.  */
438  unsigned short context_depth;
439
440  /* A file descriptor open to /dev/zero for reading.  */
441#if defined (HAVE_MMAP_DEV_ZERO)
442  int dev_zero_fd;
443#endif
444
445  /* A cache of free system pages.  */
446  page_entry *free_pages;
447
448#ifdef USING_MALLOC_PAGE_GROUPS
449  page_group *page_groups;
450#endif
451
452  /* The file descriptor for debugging output.  */
453  FILE *debug_file;
454
455  /* Current number of elements in use in depth below.  */
456  unsigned int depth_in_use;
457
458  /* Maximum number of elements that can be used before resizing.  */
459  unsigned int depth_max;
460
461  /* Each element of this array is an index in by_depth where the given
462     depth starts.  This structure is indexed by that given depth we
463     are interested in.  */
464  unsigned int *depth;
465
466  /* Current number of elements in use in by_depth below.  */
467  unsigned int by_depth_in_use;
468
469  /* Maximum number of elements that can be used before resizing.  */
470  unsigned int by_depth_max;
471
472  /* Each element of this array is a pointer to a page_entry, all
473     page_entries can be found in here by increasing depth.
474     index_by_depth in the page_entry is the index into this data
475     structure where that page_entry can be found.  This is used to
476     speed up finding all page_entries at a particular depth.  */
477  page_entry **by_depth;
478
479  /* Each element is a pointer to the saved in_use_p bits, if any,
480     zero otherwise.  We allocate them all together, to enable a
481     better runtime data access pattern.  */
482  unsigned long **save_in_use;
483
484  /* Finalizers for single objects.  */
485  vec<finalizer> finalizers;
486
487  /* Finalizers for vectors of objects.  */
488  vec<vec_finalizer> vec_finalizers;
489
490#ifdef ENABLE_GC_ALWAYS_COLLECT
491  /* List of free objects to be verified as actually free on the
492     next collection.  */
493  struct free_object *free_object_list;
494#endif
495
496  struct
497  {
498    /* Total GC-allocated memory.  */
499    unsigned long long total_allocated;
500    /* Total overhead for GC-allocated memory.  */
501    unsigned long long total_overhead;
502
503    /* Total allocations and overhead for sizes less than 32, 64 and 128.
504       These sizes are interesting because they are typical cache line
505       sizes.  */
506
507    unsigned long long total_allocated_under32;
508    unsigned long long total_overhead_under32;
509
510    unsigned long long total_allocated_under64;
511    unsigned long long total_overhead_under64;
512
513    unsigned long long total_allocated_under128;
514    unsigned long long total_overhead_under128;
515
516    /* The allocations for each of the allocation orders.  */
517    unsigned long long total_allocated_per_order[NUM_ORDERS];
518
519    /* The overhead for each of the allocation orders.  */
520    unsigned long long total_overhead_per_order[NUM_ORDERS];
521  } stats;
522} G;
523
524/* True if a gc is currently taking place.  */
525
526static bool in_gc = false;
527
528/* The size in bytes required to maintain a bitmap for the objects
529   on a page-entry.  */
530#define BITMAP_SIZE(Num_objects) \
531  (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
532
533/* Allocate pages in chunks of this size, to throttle calls to memory
534   allocation routines.  The first page is used, the rest go onto the
535   free list.  This cannot be larger than HOST_BITS_PER_INT for the
536   in_use bitmask for page_group.  Hosts that need a different value
537   can override this by defining GGC_QUIRE_SIZE explicitly.  */
538#ifndef GGC_QUIRE_SIZE
539# ifdef USING_MMAP
540#  define GGC_QUIRE_SIZE 512	/* 2MB for 4K pages */
541# else
542#  define GGC_QUIRE_SIZE 16
543# endif
544#endif
545
546/* Initial guess as to how many page table entries we might need.  */
547#define INITIAL_PTE_COUNT 128
548
549static int ggc_allocated_p (const void *);
550static page_entry *lookup_page_table_entry (const void *);
551static void set_page_table_entry (void *, page_entry *);
552#ifdef USING_MMAP
553static char *alloc_anon (char *, size_t, bool check);
554#endif
555#ifdef USING_MALLOC_PAGE_GROUPS
556static size_t page_group_index (char *, char *);
557static void set_page_group_in_use (page_group *, char *);
558static void clear_page_group_in_use (page_group *, char *);
559#endif
560static struct page_entry * alloc_page (unsigned);
561static void free_page (struct page_entry *);
562static void release_pages (void);
563static void clear_marks (void);
564static void sweep_pages (void);
565static void ggc_recalculate_in_use_p (page_entry *);
566static void compute_inverse (unsigned);
567static inline void adjust_depth (void);
568static void move_ptes_to_front (int, int);
569
570void debug_print_page_list (int);
571static void push_depth (unsigned int);
572static void push_by_depth (page_entry *, unsigned long *);
573
574/* Push an entry onto G.depth.  */
575
576inline static void
577push_depth (unsigned int i)
578{
579  if (G.depth_in_use >= G.depth_max)
580    {
581      G.depth_max *= 2;
582      G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
583    }
584  G.depth[G.depth_in_use++] = i;
585}
586
587/* Push an entry onto G.by_depth and G.save_in_use.  */
588
589inline static void
590push_by_depth (page_entry *p, unsigned long *s)
591{
592  if (G.by_depth_in_use >= G.by_depth_max)
593    {
594      G.by_depth_max *= 2;
595      G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
596      G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
597				  G.by_depth_max);
598    }
599  G.by_depth[G.by_depth_in_use] = p;
600  G.save_in_use[G.by_depth_in_use++] = s;
601}
602
603#if (GCC_VERSION < 3001)
604#define prefetch(X) ((void) X)
605#else
606#define prefetch(X) __builtin_prefetch (X)
607#endif
608
609#define save_in_use_p_i(__i) \
610  (G.save_in_use[__i])
611#define save_in_use_p(__p) \
612  (save_in_use_p_i (__p->index_by_depth))
613
614/* Returns nonzero if P was allocated in GC'able memory.  */
615
616static inline int
617ggc_allocated_p (const void *p)
618{
619  page_entry ***base;
620  size_t L1, L2;
621
622#if HOST_BITS_PER_PTR <= 32
623  base = &G.lookup[0];
624#else
625  page_table table = G.lookup;
626  uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
627  while (1)
628    {
629      if (table == NULL)
630	return 0;
631      if (table->high_bits == high_bits)
632	break;
633      table = table->next;
634    }
635  base = &table->table[0];
636#endif
637
638  /* Extract the level 1 and 2 indices.  */
639  L1 = LOOKUP_L1 (p);
640  L2 = LOOKUP_L2 (p);
641
642  return base[L1] && base[L1][L2];
643}
644
645/* Traverse the page table and find the entry for a page.
646   Die (probably) if the object wasn't allocated via GC.  */
647
648static inline page_entry *
649lookup_page_table_entry (const void *p)
650{
651  page_entry ***base;
652  size_t L1, L2;
653
654#if HOST_BITS_PER_PTR <= 32
655  base = &G.lookup[0];
656#else
657  page_table table = G.lookup;
658  uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
659  while (table->high_bits != high_bits)
660    table = table->next;
661  base = &table->table[0];
662#endif
663
664  /* Extract the level 1 and 2 indices.  */
665  L1 = LOOKUP_L1 (p);
666  L2 = LOOKUP_L2 (p);
667
668  return base[L1][L2];
669}
670
671/* Set the page table entry for a page.  */
672
673static void
674set_page_table_entry (void *p, page_entry *entry)
675{
676  page_entry ***base;
677  size_t L1, L2;
678
679#if HOST_BITS_PER_PTR <= 32
680  base = &G.lookup[0];
681#else
682  page_table table;
683  uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
684  for (table = G.lookup; table; table = table->next)
685    if (table->high_bits == high_bits)
686      goto found;
687
688  /* Not found -- allocate a new table.  */
689  table = XCNEW (struct page_table_chain);
690  table->next = G.lookup;
691  table->high_bits = high_bits;
692  G.lookup = table;
693found:
694  base = &table->table[0];
695#endif
696
697  /* Extract the level 1 and 2 indices.  */
698  L1 = LOOKUP_L1 (p);
699  L2 = LOOKUP_L2 (p);
700
701  if (base[L1] == NULL)
702    base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
703
704  base[L1][L2] = entry;
705}
706
707/* Prints the page-entry for object size ORDER, for debugging.  */
708
709DEBUG_FUNCTION void
710debug_print_page_list (int order)
711{
712  page_entry *p;
713  printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
714	  (void *) G.page_tails[order]);
715  p = G.pages[order];
716  while (p != NULL)
717    {
718      printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
719	      p->num_free_objects);
720      p = p->next;
721    }
722  printf ("NULL\n");
723  fflush (stdout);
724}
725
726#ifdef USING_MMAP
727/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
728   (if non-null).  The ifdef structure here is intended to cause a
729   compile error unless exactly one of the HAVE_* is defined.  */
730
731static inline char *
732alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
733{
734#ifdef HAVE_MMAP_ANON
735  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
736			      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
737#endif
738#ifdef HAVE_MMAP_DEV_ZERO
739  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
740			      MAP_PRIVATE, G.dev_zero_fd, 0);
741#endif
742
743  if (page == (char *) MAP_FAILED)
744    {
745      if (!check)
746        return NULL;
747      perror ("virtual memory exhausted");
748      exit (FATAL_EXIT_CODE);
749    }
750
751  /* Remember that we allocated this memory.  */
752  G.bytes_mapped += size;
753
754  /* Pretend we don't have access to the allocated pages.  We'll enable
755     access to smaller pieces of the area in ggc_internal_alloc.  Discard the
756     handle to avoid handle leak.  */
757  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
758
759  return page;
760}
761#endif
762#ifdef USING_MALLOC_PAGE_GROUPS
763/* Compute the index for this page into the page group.  */
764
765static inline size_t
766page_group_index (char *allocation, char *page)
767{
768  return (size_t) (page - allocation) >> G.lg_pagesize;
769}
770
771/* Set and clear the in_use bit for this page in the page group.  */
772
773static inline void
774set_page_group_in_use (page_group *group, char *page)
775{
776  group->in_use |= 1 << page_group_index (group->allocation, page);
777}
778
779static inline void
780clear_page_group_in_use (page_group *group, char *page)
781{
782  group->in_use &= ~(1 << page_group_index (group->allocation, page));
783}
784#endif
785
786/* Allocate a new page for allocating objects of size 2^ORDER,
787   and return an entry for it.  The entry is not added to the
788   appropriate page_table list.  */
789
790static inline struct page_entry *
791alloc_page (unsigned order)
792{
793  struct page_entry *entry, *p, **pp;
794  char *page;
795  size_t num_objects;
796  size_t bitmap_size;
797  size_t page_entry_size;
798  size_t entry_size;
799#ifdef USING_MALLOC_PAGE_GROUPS
800  page_group *group;
801#endif
802
803  num_objects = OBJECTS_PER_PAGE (order);
804  bitmap_size = BITMAP_SIZE (num_objects + 1);
805  page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
806  entry_size = num_objects * OBJECT_SIZE (order);
807  if (entry_size < G.pagesize)
808    entry_size = G.pagesize;
809  entry_size = PAGE_ALIGN (entry_size);
810
811  entry = NULL;
812  page = NULL;
813
814  /* Check the list of free pages for one we can use.  */
815  for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
816    if (p->bytes == entry_size)
817      break;
818
819  if (p != NULL)
820    {
821      if (p->discarded)
822        G.bytes_mapped += p->bytes;
823      p->discarded = false;
824
825      /* Recycle the allocated memory from this page ...  */
826      *pp = p->next;
827      page = p->page;
828
829#ifdef USING_MALLOC_PAGE_GROUPS
830      group = p->group;
831#endif
832
833      /* ... and, if possible, the page entry itself.  */
834      if (p->order == order)
835	{
836	  entry = p;
837	  memset (entry, 0, page_entry_size);
838	}
839      else
840	free (p);
841    }
842#ifdef USING_MMAP
843  else if (entry_size == G.pagesize)
844    {
845      /* We want just one page.  Allocate a bunch of them and put the
846	 extras on the freelist.  (Can only do this optimization with
847	 mmap for backing store.)  */
848      struct page_entry *e, *f = G.free_pages;
849      int i, entries = GGC_QUIRE_SIZE;
850
851      page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
852      if (page == NULL)
853     	{
854	  page = alloc_anon (NULL, G.pagesize, true);
855          entries = 1;
856	}
857
858      /* This loop counts down so that the chain will be in ascending
859	 memory order.  */
860      for (i = entries - 1; i >= 1; i--)
861	{
862	  e = XCNEWVAR (struct page_entry, page_entry_size);
863	  e->order = order;
864	  e->bytes = G.pagesize;
865	  e->page = page + (i << G.lg_pagesize);
866	  e->next = f;
867	  f = e;
868	}
869
870      G.free_pages = f;
871    }
872  else
873    page = alloc_anon (NULL, entry_size, true);
874#endif
875#ifdef USING_MALLOC_PAGE_GROUPS
876  else
877    {
878      /* Allocate a large block of memory and serve out the aligned
879	 pages therein.  This results in much less memory wastage
880	 than the traditional implementation of valloc.  */
881
882      char *allocation, *a, *enda;
883      size_t alloc_size, head_slop, tail_slop;
884      int multiple_pages = (entry_size == G.pagesize);
885
886      if (multiple_pages)
887	alloc_size = GGC_QUIRE_SIZE * G.pagesize;
888      else
889	alloc_size = entry_size + G.pagesize - 1;
890      allocation = XNEWVEC (char, alloc_size);
891
892      page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
893      head_slop = page - allocation;
894      if (multiple_pages)
895	tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
896      else
897	tail_slop = alloc_size - entry_size - head_slop;
898      enda = allocation + alloc_size - tail_slop;
899
900      /* We allocated N pages, which are likely not aligned, leaving
901	 us with N-1 usable pages.  We plan to place the page_group
902	 structure somewhere in the slop.  */
903      if (head_slop >= sizeof (page_group))
904	group = (page_group *)page - 1;
905      else
906	{
907	  /* We magically got an aligned allocation.  Too bad, we have
908	     to waste a page anyway.  */
909	  if (tail_slop == 0)
910	    {
911	      enda -= G.pagesize;
912	      tail_slop += G.pagesize;
913	    }
914	  gcc_assert (tail_slop >= sizeof (page_group));
915	  group = (page_group *)enda;
916	  tail_slop -= sizeof (page_group);
917	}
918
919      /* Remember that we allocated this memory.  */
920      group->next = G.page_groups;
921      group->allocation = allocation;
922      group->alloc_size = alloc_size;
923      group->in_use = 0;
924      G.page_groups = group;
925      G.bytes_mapped += alloc_size;
926
927      /* If we allocated multiple pages, put the rest on the free list.  */
928      if (multiple_pages)
929	{
930	  struct page_entry *e, *f = G.free_pages;
931	  for (a = enda - G.pagesize; a != page; a -= G.pagesize)
932	    {
933	      e = XCNEWVAR (struct page_entry, page_entry_size);
934	      e->order = order;
935	      e->bytes = G.pagesize;
936	      e->page = a;
937	      e->group = group;
938	      e->next = f;
939	      f = e;
940	    }
941	  G.free_pages = f;
942	}
943    }
944#endif
945
946  if (entry == NULL)
947    entry = XCNEWVAR (struct page_entry, page_entry_size);
948
949  entry->bytes = entry_size;
950  entry->page = page;
951  entry->context_depth = G.context_depth;
952  entry->order = order;
953  entry->num_free_objects = num_objects;
954  entry->next_bit_hint = 1;
955
956  G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
957
958#ifdef USING_MALLOC_PAGE_GROUPS
959  entry->group = group;
960  set_page_group_in_use (group, page);
961#endif
962
963  /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
964     increment the hint.  */
965  entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
966    = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
967
968  set_page_table_entry (page, entry);
969
970  if (GGC_DEBUG_LEVEL >= 2)
971    fprintf (G.debug_file,
972	     "Allocating page at %p, object size=%lu, data %p-%p\n",
973	     (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
974	     page + entry_size - 1);
975
976  return entry;
977}
978
979/* Adjust the size of G.depth so that no index greater than the one
980   used by the top of the G.by_depth is used.  */
981
982static inline void
983adjust_depth (void)
984{
985  page_entry *top;
986
987  if (G.by_depth_in_use)
988    {
989      top = G.by_depth[G.by_depth_in_use-1];
990
991      /* Peel back indices in depth that index into by_depth, so that
992	 as new elements are added to by_depth, we note the indices
993	 of those elements, if they are for new context depths.  */
994      while (G.depth_in_use > (size_t)top->context_depth+1)
995	--G.depth_in_use;
996    }
997}
998
999/* For a page that is no longer needed, put it on the free page list.  */
1000
1001static void
1002free_page (page_entry *entry)
1003{
1004  if (GGC_DEBUG_LEVEL >= 2)
1005    fprintf (G.debug_file,
1006	     "Deallocating page at %p, data %p-%p\n", (void *) entry,
1007	     entry->page, entry->page + entry->bytes - 1);
1008
1009  /* Mark the page as inaccessible.  Discard the handle to avoid handle
1010     leak.  */
1011  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
1012
1013  set_page_table_entry (entry->page, NULL);
1014
1015#ifdef USING_MALLOC_PAGE_GROUPS
1016  clear_page_group_in_use (entry->group, entry->page);
1017#endif
1018
1019  if (G.by_depth_in_use > 1)
1020    {
1021      page_entry *top = G.by_depth[G.by_depth_in_use-1];
1022      int i = entry->index_by_depth;
1023
1024      /* We cannot free a page from a context deeper than the current
1025	 one.  */
1026      gcc_assert (entry->context_depth == top->context_depth);
1027
1028      /* Put top element into freed slot.  */
1029      G.by_depth[i] = top;
1030      G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1031      top->index_by_depth = i;
1032    }
1033  --G.by_depth_in_use;
1034
1035  adjust_depth ();
1036
1037  entry->next = G.free_pages;
1038  G.free_pages = entry;
1039}
1040
1041/* Release the free page cache to the system.  */
1042
1043static void
1044release_pages (void)
1045{
1046#ifdef USING_MADVISE
1047  page_entry *p, *start_p;
1048  char *start;
1049  size_t len;
1050  size_t mapped_len;
1051  page_entry *next, *prev, *newprev;
1052  size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1053
1054  /* First free larger continuous areas to the OS.
1055     This allows other allocators to grab these areas if needed.
1056     This is only done on larger chunks to avoid fragmentation.
1057     This does not always work because the free_pages list is only
1058     approximately sorted. */
1059
1060  p = G.free_pages;
1061  prev = NULL;
1062  while (p)
1063    {
1064      start = p->page;
1065      start_p = p;
1066      len = 0;
1067      mapped_len = 0;
1068      newprev = prev;
1069      while (p && p->page == start + len)
1070        {
1071          len += p->bytes;
1072	  if (!p->discarded)
1073	      mapped_len += p->bytes;
1074	  newprev = p;
1075          p = p->next;
1076        }
1077      if (len >= free_unit)
1078        {
1079          while (start_p != p)
1080            {
1081              next = start_p->next;
1082              free (start_p);
1083              start_p = next;
1084            }
1085          munmap (start, len);
1086	  if (prev)
1087	    prev->next = p;
1088          else
1089            G.free_pages = p;
1090          G.bytes_mapped -= mapped_len;
1091	  continue;
1092        }
1093      prev = newprev;
1094   }
1095
1096  /* Now give back the fragmented pages to the OS, but keep the address
1097     space to reuse it next time. */
1098
1099  for (p = G.free_pages; p; )
1100    {
1101      if (p->discarded)
1102        {
1103          p = p->next;
1104          continue;
1105        }
1106      start = p->page;
1107      len = p->bytes;
1108      start_p = p;
1109      p = p->next;
1110      while (p && p->page == start + len)
1111        {
1112          len += p->bytes;
1113          p = p->next;
1114        }
1115      /* Give the page back to the kernel, but don't free the mapping.
1116         This avoids fragmentation in the virtual memory map of the
1117 	 process. Next time we can reuse it by just touching it. */
1118      madvise (start, len, MADV_DONTNEED);
1119      /* Don't count those pages as mapped to not touch the garbage collector
1120         unnecessarily. */
1121      G.bytes_mapped -= len;
1122      while (start_p != p)
1123        {
1124          start_p->discarded = true;
1125          start_p = start_p->next;
1126        }
1127    }
1128#endif
1129#if defined(USING_MMAP) && !defined(USING_MADVISE)
1130  page_entry *p, *next;
1131  char *start;
1132  size_t len;
1133
1134  /* Gather up adjacent pages so they are unmapped together.  */
1135  p = G.free_pages;
1136
1137  while (p)
1138    {
1139      start = p->page;
1140      next = p->next;
1141      len = p->bytes;
1142      free (p);
1143      p = next;
1144
1145      while (p && p->page == start + len)
1146	{
1147	  next = p->next;
1148	  len += p->bytes;
1149	  free (p);
1150	  p = next;
1151	}
1152
1153      munmap (start, len);
1154      G.bytes_mapped -= len;
1155    }
1156
1157  G.free_pages = NULL;
1158#endif
1159#ifdef USING_MALLOC_PAGE_GROUPS
1160  page_entry **pp, *p;
1161  page_group **gp, *g;
1162
1163  /* Remove all pages from free page groups from the list.  */
1164  pp = &G.free_pages;
1165  while ((p = *pp) != NULL)
1166    if (p->group->in_use == 0)
1167      {
1168	*pp = p->next;
1169	free (p);
1170      }
1171    else
1172      pp = &p->next;
1173
1174  /* Remove all free page groups, and release the storage.  */
1175  gp = &G.page_groups;
1176  while ((g = *gp) != NULL)
1177    if (g->in_use == 0)
1178      {
1179	*gp = g->next;
1180	G.bytes_mapped -= g->alloc_size;
1181	free (g->allocation);
1182      }
1183    else
1184      gp = &g->next;
1185#endif
1186}
1187
1188/* This table provides a fast way to determine ceil(log_2(size)) for
1189   allocation requests.  The minimum allocation size is eight bytes.  */
1190#define NUM_SIZE_LOOKUP 512
1191static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1192{
1193  3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1194  4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1195  5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1196  6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1197  6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1198  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1199  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1200  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1201  7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1202  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1203  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1204  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1205  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1206  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1207  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1208  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1209  8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1210  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1211  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1212  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1213  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1214  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1215  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1216  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1217  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1218  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1219  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1220  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1221  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1222  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1223  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1224  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1225};
1226
1227/* For a given size of memory requested for allocation, return the
1228   actual size that is going to be allocated, as well as the size
1229   order.  */
1230
1231static void
1232ggc_round_alloc_size_1 (size_t requested_size,
1233			size_t *size_order,
1234			size_t *alloced_size)
1235{
1236  size_t order, object_size;
1237
1238  if (requested_size < NUM_SIZE_LOOKUP)
1239    {
1240      order = size_lookup[requested_size];
1241      object_size = OBJECT_SIZE (order);
1242    }
1243  else
1244    {
1245      order = 10;
1246      while (requested_size > (object_size = OBJECT_SIZE (order)))
1247        order++;
1248    }
1249
1250  if (size_order)
1251    *size_order = order;
1252  if (alloced_size)
1253    *alloced_size = object_size;
1254}
1255
1256/* For a given size of memory requested for allocation, return the
1257   actual size that is going to be allocated.  */
1258
1259size_t
1260ggc_round_alloc_size (size_t requested_size)
1261{
1262  size_t size = 0;
1263
1264  ggc_round_alloc_size_1 (requested_size, NULL, &size);
1265  return size;
1266}
1267
1268/* Allocate a chunk of memory of SIZE bytes.  Its contents are undefined.  */
1269
1270void *
1271ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1272		    MEM_STAT_DECL)
1273{
1274  size_t order, word, bit, object_offset, object_size;
1275  struct page_entry *entry;
1276  void *result;
1277
1278  ggc_round_alloc_size_1 (size, &order, &object_size);
1279
1280  /* If there are non-full pages for this size allocation, they are at
1281     the head of the list.  */
1282  entry = G.pages[order];
1283
1284  /* If there is no page for this object size, or all pages in this
1285     context are full, allocate a new page.  */
1286  if (entry == NULL || entry->num_free_objects == 0)
1287    {
1288      struct page_entry *new_entry;
1289      new_entry = alloc_page (order);
1290
1291      new_entry->index_by_depth = G.by_depth_in_use;
1292      push_by_depth (new_entry, 0);
1293
1294      /* We can skip context depths, if we do, make sure we go all the
1295	 way to the new depth.  */
1296      while (new_entry->context_depth >= G.depth_in_use)
1297	push_depth (G.by_depth_in_use-1);
1298
1299      /* If this is the only entry, it's also the tail.  If it is not
1300	 the only entry, then we must update the PREV pointer of the
1301	 ENTRY (G.pages[order]) to point to our new page entry.  */
1302      if (entry == NULL)
1303	G.page_tails[order] = new_entry;
1304      else
1305	entry->prev = new_entry;
1306
1307      /* Put new pages at the head of the page list.  By definition the
1308	 entry at the head of the list always has a NULL pointer.  */
1309      new_entry->next = entry;
1310      new_entry->prev = NULL;
1311      entry = new_entry;
1312      G.pages[order] = new_entry;
1313
1314      /* For a new page, we know the word and bit positions (in the
1315	 in_use bitmap) of the first available object -- they're zero.  */
1316      new_entry->next_bit_hint = 1;
1317      word = 0;
1318      bit = 0;
1319      object_offset = 0;
1320    }
1321  else
1322    {
1323      /* First try to use the hint left from the previous allocation
1324	 to locate a clear bit in the in-use bitmap.  We've made sure
1325	 that the one-past-the-end bit is always set, so if the hint
1326	 has run over, this test will fail.  */
1327      unsigned hint = entry->next_bit_hint;
1328      word = hint / HOST_BITS_PER_LONG;
1329      bit = hint % HOST_BITS_PER_LONG;
1330
1331      /* If the hint didn't work, scan the bitmap from the beginning.  */
1332      if ((entry->in_use_p[word] >> bit) & 1)
1333	{
1334	  word = bit = 0;
1335	  while (~entry->in_use_p[word] == 0)
1336	    ++word;
1337
1338#if GCC_VERSION >= 3004
1339	  bit = __builtin_ctzl (~entry->in_use_p[word]);
1340#else
1341	  while ((entry->in_use_p[word] >> bit) & 1)
1342	    ++bit;
1343#endif
1344
1345	  hint = word * HOST_BITS_PER_LONG + bit;
1346	}
1347
1348      /* Next time, try the next bit.  */
1349      entry->next_bit_hint = hint + 1;
1350
1351      object_offset = hint * object_size;
1352    }
1353
1354  /* Set the in-use bit.  */
1355  entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1356
1357  /* Keep a running total of the number of free objects.  If this page
1358     fills up, we may have to move it to the end of the list if the
1359     next page isn't full.  If the next page is full, all subsequent
1360     pages are full, so there's no need to move it.  */
1361  if (--entry->num_free_objects == 0
1362      && entry->next != NULL
1363      && entry->next->num_free_objects > 0)
1364    {
1365      /* We have a new head for the list.  */
1366      G.pages[order] = entry->next;
1367
1368      /* We are moving ENTRY to the end of the page table list.
1369	 The new page at the head of the list will have NULL in
1370	 its PREV field and ENTRY will have NULL in its NEXT field.  */
1371      entry->next->prev = NULL;
1372      entry->next = NULL;
1373
1374      /* Append ENTRY to the tail of the list.  */
1375      entry->prev = G.page_tails[order];
1376      G.page_tails[order]->next = entry;
1377      G.page_tails[order] = entry;
1378    }
1379
1380  /* Calculate the object's address.  */
1381  result = entry->page + object_offset;
1382  if (GATHER_STATISTICS)
1383    ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1384			 result FINAL_PASS_MEM_STAT);
1385
1386#ifdef ENABLE_GC_CHECKING
1387  /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1388     exact same semantics in presence of memory bugs, regardless of
1389     ENABLE_VALGRIND_CHECKING.  We override this request below.  Drop the
1390     handle to avoid handle leak.  */
1391  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1392
1393  /* `Poison' the entire allocated object, including any padding at
1394     the end.  */
1395  memset (result, 0xaf, object_size);
1396
1397  /* Make the bytes after the end of the object unaccessible.  Discard the
1398     handle to avoid handle leak.  */
1399  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1400						object_size - size));
1401#endif
1402
1403  /* Tell Valgrind that the memory is there, but its content isn't
1404     defined.  The bytes at the end of the object are still marked
1405     unaccessible.  */
1406  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1407
1408  /* Keep track of how many bytes are being allocated.  This
1409     information is used in deciding when to collect.  */
1410  G.allocated += object_size;
1411
1412  /* For timevar statistics.  */
1413  timevar_ggc_mem_total += object_size;
1414
1415  if (f && n == 1)
1416    G.finalizers.safe_push (finalizer (result, f));
1417  else if (f)
1418    G.vec_finalizers.safe_push
1419      (vec_finalizer (reinterpret_cast<uintptr_t> (result), f, s, n));
1420
1421  if (GATHER_STATISTICS)
1422    {
1423      size_t overhead = object_size - size;
1424
1425      G.stats.total_overhead += overhead;
1426      G.stats.total_allocated += object_size;
1427      G.stats.total_overhead_per_order[order] += overhead;
1428      G.stats.total_allocated_per_order[order] += object_size;
1429
1430      if (size <= 32)
1431	{
1432	  G.stats.total_overhead_under32 += overhead;
1433	  G.stats.total_allocated_under32 += object_size;
1434	}
1435      if (size <= 64)
1436	{
1437	  G.stats.total_overhead_under64 += overhead;
1438	  G.stats.total_allocated_under64 += object_size;
1439	}
1440      if (size <= 128)
1441	{
1442	  G.stats.total_overhead_under128 += overhead;
1443	  G.stats.total_allocated_under128 += object_size;
1444	}
1445    }
1446
1447  if (GGC_DEBUG_LEVEL >= 3)
1448    fprintf (G.debug_file,
1449	     "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1450	     (unsigned long) size, (unsigned long) object_size, result,
1451	     (void *) entry);
1452
1453  return result;
1454}
1455
1456/* Mark function for strings.  */
1457
1458void
1459gt_ggc_m_S (const void *p)
1460{
1461  page_entry *entry;
1462  unsigned bit, word;
1463  unsigned long mask;
1464  unsigned long offset;
1465
1466  if (!p || !ggc_allocated_p (p))
1467    return;
1468
1469  /* Look up the page on which the object is alloced.  .  */
1470  entry = lookup_page_table_entry (p);
1471  gcc_assert (entry);
1472
1473  /* Calculate the index of the object on the page; this is its bit
1474     position in the in_use_p bitmap.  Note that because a char* might
1475     point to the middle of an object, we need special code here to
1476     make sure P points to the start of an object.  */
1477  offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1478  if (offset)
1479    {
1480      /* Here we've seen a char* which does not point to the beginning
1481	 of an allocated object.  We assume it points to the middle of
1482	 a STRING_CST.  */
1483      gcc_assert (offset == offsetof (struct tree_string, str));
1484      p = ((const char *) p) - offset;
1485      gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1486      return;
1487    }
1488
1489  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1490  word = bit / HOST_BITS_PER_LONG;
1491  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1492
1493  /* If the bit was previously set, skip it.  */
1494  if (entry->in_use_p[word] & mask)
1495    return;
1496
1497  /* Otherwise set it, and decrement the free object count.  */
1498  entry->in_use_p[word] |= mask;
1499  entry->num_free_objects -= 1;
1500
1501  if (GGC_DEBUG_LEVEL >= 4)
1502    fprintf (G.debug_file, "Marking %p\n", p);
1503
1504  return;
1505}
1506
1507
1508/* User-callable entry points for marking string X.  */
1509
1510void
1511gt_ggc_mx (const char *& x)
1512{
1513  gt_ggc_m_S (x);
1514}
1515
1516void
1517gt_ggc_mx (unsigned char *& x)
1518{
1519  gt_ggc_m_S (x);
1520}
1521
1522void
1523gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1524{
1525}
1526
1527/* If P is not marked, marks it and return false.  Otherwise return true.
1528   P must have been allocated by the GC allocator; it mustn't point to
1529   static objects, stack variables, or memory allocated with malloc.  */
1530
1531int
1532ggc_set_mark (const void *p)
1533{
1534  page_entry *entry;
1535  unsigned bit, word;
1536  unsigned long mask;
1537
1538  /* Look up the page on which the object is alloced.  If the object
1539     wasn't allocated by the collector, we'll probably die.  */
1540  entry = lookup_page_table_entry (p);
1541  gcc_assert (entry);
1542
1543  /* Calculate the index of the object on the page; this is its bit
1544     position in the in_use_p bitmap.  */
1545  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1546  word = bit / HOST_BITS_PER_LONG;
1547  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1548
1549  /* If the bit was previously set, skip it.  */
1550  if (entry->in_use_p[word] & mask)
1551    return 1;
1552
1553  /* Otherwise set it, and decrement the free object count.  */
1554  entry->in_use_p[word] |= mask;
1555  entry->num_free_objects -= 1;
1556
1557  if (GGC_DEBUG_LEVEL >= 4)
1558    fprintf (G.debug_file, "Marking %p\n", p);
1559
1560  return 0;
1561}
1562
1563/* Return 1 if P has been marked, zero otherwise.
1564   P must have been allocated by the GC allocator; it mustn't point to
1565   static objects, stack variables, or memory allocated with malloc.  */
1566
1567int
1568ggc_marked_p (const void *p)
1569{
1570  page_entry *entry;
1571  unsigned bit, word;
1572  unsigned long mask;
1573
1574  /* Look up the page on which the object is alloced.  If the object
1575     wasn't allocated by the collector, we'll probably die.  */
1576  entry = lookup_page_table_entry (p);
1577  gcc_assert (entry);
1578
1579  /* Calculate the index of the object on the page; this is its bit
1580     position in the in_use_p bitmap.  */
1581  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1582  word = bit / HOST_BITS_PER_LONG;
1583  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1584
1585  return (entry->in_use_p[word] & mask) != 0;
1586}
1587
1588/* Return the size of the gc-able object P.  */
1589
1590size_t
1591ggc_get_size (const void *p)
1592{
1593  page_entry *pe = lookup_page_table_entry (p);
1594  return OBJECT_SIZE (pe->order);
1595}
1596
1597/* Release the memory for object P.  */
1598
1599void
1600ggc_free (void *p)
1601{
1602  if (in_gc)
1603    return;
1604
1605  page_entry *pe = lookup_page_table_entry (p);
1606  size_t order = pe->order;
1607  size_t size = OBJECT_SIZE (order);
1608
1609  if (GATHER_STATISTICS)
1610    ggc_free_overhead (p);
1611
1612  if (GGC_DEBUG_LEVEL >= 3)
1613    fprintf (G.debug_file,
1614	     "Freeing object, actual size=%lu, at %p on %p\n",
1615	     (unsigned long) size, p, (void *) pe);
1616
1617#ifdef ENABLE_GC_CHECKING
1618  /* Poison the data, to indicate the data is garbage.  */
1619  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1620  memset (p, 0xa5, size);
1621#endif
1622  /* Let valgrind know the object is free.  */
1623  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1624
1625#ifdef ENABLE_GC_ALWAYS_COLLECT
1626  /* In the completely-anal-checking mode, we do *not* immediately free
1627     the data, but instead verify that the data is *actually* not
1628     reachable the next time we collect.  */
1629  {
1630    struct free_object *fo = XNEW (struct free_object);
1631    fo->object = p;
1632    fo->next = G.free_object_list;
1633    G.free_object_list = fo;
1634  }
1635#else
1636  {
1637    unsigned int bit_offset, word, bit;
1638
1639    G.allocated -= size;
1640
1641    /* Mark the object not-in-use.  */
1642    bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1643    word = bit_offset / HOST_BITS_PER_LONG;
1644    bit = bit_offset % HOST_BITS_PER_LONG;
1645    pe->in_use_p[word] &= ~(1UL << bit);
1646
1647    if (pe->num_free_objects++ == 0)
1648      {
1649	page_entry *p, *q;
1650
1651	/* If the page is completely full, then it's supposed to
1652	   be after all pages that aren't.  Since we've freed one
1653	   object from a page that was full, we need to move the
1654	   page to the head of the list.
1655
1656	   PE is the node we want to move.  Q is the previous node
1657	   and P is the next node in the list.  */
1658	q = pe->prev;
1659	if (q && q->num_free_objects == 0)
1660	  {
1661	    p = pe->next;
1662
1663	    q->next = p;
1664
1665	    /* If PE was at the end of the list, then Q becomes the
1666	       new end of the list.  If PE was not the end of the
1667	       list, then we need to update the PREV field for P.  */
1668	    if (!p)
1669	      G.page_tails[order] = q;
1670	    else
1671	      p->prev = q;
1672
1673	    /* Move PE to the head of the list.  */
1674	    pe->next = G.pages[order];
1675	    pe->prev = NULL;
1676	    G.pages[order]->prev = pe;
1677	    G.pages[order] = pe;
1678	  }
1679
1680	/* Reset the hint bit to point to the only free object.  */
1681	pe->next_bit_hint = bit_offset;
1682      }
1683  }
1684#endif
1685}
1686
1687/* Subroutine of init_ggc which computes the pair of numbers used to
1688   perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1689
1690   This algorithm is taken from Granlund and Montgomery's paper
1691   "Division by Invariant Integers using Multiplication"
1692   (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1693   constants).  */
1694
1695static void
1696compute_inverse (unsigned order)
1697{
1698  size_t size, inv;
1699  unsigned int e;
1700
1701  size = OBJECT_SIZE (order);
1702  e = 0;
1703  while (size % 2 == 0)
1704    {
1705      e++;
1706      size >>= 1;
1707    }
1708
1709  inv = size;
1710  while (inv * size != 1)
1711    inv = inv * (2 - inv*size);
1712
1713  DIV_MULT (order) = inv;
1714  DIV_SHIFT (order) = e;
1715}
1716
1717/* Initialize the ggc-mmap allocator.  */
1718void
1719init_ggc (void)
1720{
1721  static bool init_p = false;
1722  unsigned order;
1723
1724  if (init_p)
1725    return;
1726  init_p = true;
1727
1728  G.pagesize = getpagesize ();
1729  G.lg_pagesize = exact_log2 (G.pagesize);
1730
1731#ifdef HAVE_MMAP_DEV_ZERO
1732  G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1733  if (G.dev_zero_fd == -1)
1734    internal_error ("open /dev/zero: %m");
1735#endif
1736
1737#if 0
1738  G.debug_file = fopen ("ggc-mmap.debug", "w");
1739#else
1740  G.debug_file = stdout;
1741#endif
1742
1743#ifdef USING_MMAP
1744  /* StunOS has an amazing off-by-one error for the first mmap allocation
1745     after fiddling with RLIMIT_STACK.  The result, as hard as it is to
1746     believe, is an unaligned page allocation, which would cause us to
1747     hork badly if we tried to use it.  */
1748  {
1749    char *p = alloc_anon (NULL, G.pagesize, true);
1750    struct page_entry *e;
1751    if ((uintptr_t)p & (G.pagesize - 1))
1752      {
1753	/* How losing.  Discard this one and try another.  If we still
1754	   can't get something useful, give up.  */
1755
1756	p = alloc_anon (NULL, G.pagesize, true);
1757	gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1758      }
1759
1760    /* We have a good page, might as well hold onto it...  */
1761    e = XCNEW (struct page_entry);
1762    e->bytes = G.pagesize;
1763    e->page = p;
1764    e->next = G.free_pages;
1765    G.free_pages = e;
1766  }
1767#endif
1768
1769  /* Initialize the object size table.  */
1770  for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1771    object_size_table[order] = (size_t) 1 << order;
1772  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1773    {
1774      size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1775
1776      /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1777	 so that we're sure of getting aligned memory.  */
1778      s = ROUND_UP (s, MAX_ALIGNMENT);
1779      object_size_table[order] = s;
1780    }
1781
1782  /* Initialize the objects-per-page and inverse tables.  */
1783  for (order = 0; order < NUM_ORDERS; ++order)
1784    {
1785      objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1786      if (objects_per_page_table[order] == 0)
1787	objects_per_page_table[order] = 1;
1788      compute_inverse (order);
1789    }
1790
1791  /* Reset the size_lookup array to put appropriately sized objects in
1792     the special orders.  All objects bigger than the previous power
1793     of two, but no greater than the special size, should go in the
1794     new order.  */
1795  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1796    {
1797      int o;
1798      int i;
1799
1800      i = OBJECT_SIZE (order);
1801      if (i >= NUM_SIZE_LOOKUP)
1802	continue;
1803
1804      for (o = size_lookup[i]; o == size_lookup [i]; --i)
1805	size_lookup[i] = order;
1806    }
1807
1808  G.depth_in_use = 0;
1809  G.depth_max = 10;
1810  G.depth = XNEWVEC (unsigned int, G.depth_max);
1811
1812  G.by_depth_in_use = 0;
1813  G.by_depth_max = INITIAL_PTE_COUNT;
1814  G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1815  G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1816}
1817
1818/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1819   reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */
1820
1821static void
1822ggc_recalculate_in_use_p (page_entry *p)
1823{
1824  unsigned int i;
1825  size_t num_objects;
1826
1827  /* Because the past-the-end bit in in_use_p is always set, we
1828     pretend there is one additional object.  */
1829  num_objects = OBJECTS_IN_PAGE (p) + 1;
1830
1831  /* Reset the free object count.  */
1832  p->num_free_objects = num_objects;
1833
1834  /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
1835  for (i = 0;
1836       i < CEIL (BITMAP_SIZE (num_objects),
1837		 sizeof (*p->in_use_p));
1838       ++i)
1839    {
1840      unsigned long j;
1841
1842      /* Something is in use if it is marked, or if it was in use in a
1843	 context further down the context stack.  */
1844      p->in_use_p[i] |= save_in_use_p (p)[i];
1845
1846      /* Decrement the free object count for every object allocated.  */
1847      for (j = p->in_use_p[i]; j; j >>= 1)
1848	p->num_free_objects -= (j & 1);
1849    }
1850
1851  gcc_assert (p->num_free_objects < num_objects);
1852}
1853
1854/* Unmark all objects.  */
1855
1856static void
1857clear_marks (void)
1858{
1859  unsigned order;
1860
1861  for (order = 2; order < NUM_ORDERS; order++)
1862    {
1863      page_entry *p;
1864
1865      for (p = G.pages[order]; p != NULL; p = p->next)
1866	{
1867	  size_t num_objects = OBJECTS_IN_PAGE (p);
1868	  size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1869
1870	  /* The data should be page-aligned.  */
1871	  gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1872
1873	  /* Pages that aren't in the topmost context are not collected;
1874	     nevertheless, we need their in-use bit vectors to store GC
1875	     marks.  So, back them up first.  */
1876	  if (p->context_depth < G.context_depth)
1877	    {
1878	      if (! save_in_use_p (p))
1879		save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1880	      memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1881	    }
1882
1883	  /* Reset reset the number of free objects and clear the
1884             in-use bits.  These will be adjusted by mark_obj.  */
1885	  p->num_free_objects = num_objects;
1886	  memset (p->in_use_p, 0, bitmap_size);
1887
1888	  /* Make sure the one-past-the-end bit is always set.  */
1889	  p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1890	    = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1891	}
1892    }
1893}
1894
1895/* Check if any blocks with a registered finalizer have become unmarked. If so
1896   run the finalizer and unregister it because the block is about to be freed.
1897   Note that no garantee is made about what order finalizers will run in so
1898   touching other objects in gc memory is extremely unwise.  */
1899
1900static void
1901ggc_handle_finalizers ()
1902{
1903  if (G.context_depth != 0)
1904    return;
1905
1906  unsigned length = G.finalizers.length ();
1907  for (unsigned int i = 0; i < length;)
1908    {
1909      finalizer &f = G.finalizers[i];
1910      if (!ggc_marked_p (f.addr ()))
1911	{
1912	  f.call ();
1913	  G.finalizers.unordered_remove (i);
1914	  length--;
1915	}
1916      else
1917	i++;
1918    }
1919
1920
1921  length = G.vec_finalizers.length ();
1922  for (unsigned int i = 0; i < length;)
1923    {
1924      vec_finalizer &f = G.vec_finalizers[i];
1925      if (!ggc_marked_p (f.addr ()))
1926	{
1927	  f.call ();
1928	  G.vec_finalizers.unordered_remove (i);
1929	  length--;
1930	}
1931      else
1932	i++;
1933    }
1934}
1935
1936/* Free all empty pages.  Partially empty pages need no attention
1937   because the `mark' bit doubles as an `unused' bit.  */
1938
1939static void
1940sweep_pages (void)
1941{
1942  unsigned order;
1943
1944  for (order = 2; order < NUM_ORDERS; order++)
1945    {
1946      /* The last page-entry to consider, regardless of entries
1947	 placed at the end of the list.  */
1948      page_entry * const last = G.page_tails[order];
1949
1950      size_t num_objects;
1951      size_t live_objects;
1952      page_entry *p, *previous;
1953      int done;
1954
1955      p = G.pages[order];
1956      if (p == NULL)
1957	continue;
1958
1959      previous = NULL;
1960      do
1961	{
1962	  page_entry *next = p->next;
1963
1964	  /* Loop until all entries have been examined.  */
1965	  done = (p == last);
1966
1967	  num_objects = OBJECTS_IN_PAGE (p);
1968
1969	  /* Add all live objects on this page to the count of
1970             allocated memory.  */
1971	  live_objects = num_objects - p->num_free_objects;
1972
1973	  G.allocated += OBJECT_SIZE (order) * live_objects;
1974
1975	  /* Only objects on pages in the topmost context should get
1976	     collected.  */
1977	  if (p->context_depth < G.context_depth)
1978	    ;
1979
1980	  /* Remove the page if it's empty.  */
1981	  else if (live_objects == 0)
1982	    {
1983	      /* If P was the first page in the list, then NEXT
1984		 becomes the new first page in the list, otherwise
1985		 splice P out of the forward pointers.  */
1986	      if (! previous)
1987		G.pages[order] = next;
1988	      else
1989		previous->next = next;
1990
1991	      /* Splice P out of the back pointers too.  */
1992	      if (next)
1993		next->prev = previous;
1994
1995	      /* Are we removing the last element?  */
1996	      if (p == G.page_tails[order])
1997		G.page_tails[order] = previous;
1998	      free_page (p);
1999	      p = previous;
2000	    }
2001
2002	  /* If the page is full, move it to the end.  */
2003	  else if (p->num_free_objects == 0)
2004	    {
2005	      /* Don't move it if it's already at the end.  */
2006	      if (p != G.page_tails[order])
2007		{
2008		  /* Move p to the end of the list.  */
2009		  p->next = NULL;
2010		  p->prev = G.page_tails[order];
2011		  G.page_tails[order]->next = p;
2012
2013		  /* Update the tail pointer...  */
2014		  G.page_tails[order] = p;
2015
2016		  /* ... and the head pointer, if necessary.  */
2017		  if (! previous)
2018		    G.pages[order] = next;
2019		  else
2020		    previous->next = next;
2021
2022		  /* And update the backpointer in NEXT if necessary.  */
2023		  if (next)
2024		    next->prev = previous;
2025
2026		  p = previous;
2027		}
2028	    }
2029
2030	  /* If we've fallen through to here, it's a page in the
2031	     topmost context that is neither full nor empty.  Such a
2032	     page must precede pages at lesser context depth in the
2033	     list, so move it to the head.  */
2034	  else if (p != G.pages[order])
2035	    {
2036	      previous->next = p->next;
2037
2038	      /* Update the backchain in the next node if it exists.  */
2039	      if (p->next)
2040		p->next->prev = previous;
2041
2042	      /* Move P to the head of the list.  */
2043	      p->next = G.pages[order];
2044	      p->prev = NULL;
2045	      G.pages[order]->prev = p;
2046
2047	      /* Update the head pointer.  */
2048	      G.pages[order] = p;
2049
2050	      /* Are we moving the last element?  */
2051	      if (G.page_tails[order] == p)
2052	        G.page_tails[order] = previous;
2053	      p = previous;
2054	    }
2055
2056	  previous = p;
2057	  p = next;
2058	}
2059      while (! done);
2060
2061      /* Now, restore the in_use_p vectors for any pages from contexts
2062         other than the current one.  */
2063      for (p = G.pages[order]; p; p = p->next)
2064	if (p->context_depth != G.context_depth)
2065	  ggc_recalculate_in_use_p (p);
2066    }
2067}
2068
2069#ifdef ENABLE_GC_CHECKING
2070/* Clobber all free objects.  */
2071
2072static void
2073poison_pages (void)
2074{
2075  unsigned order;
2076
2077  for (order = 2; order < NUM_ORDERS; order++)
2078    {
2079      size_t size = OBJECT_SIZE (order);
2080      page_entry *p;
2081
2082      for (p = G.pages[order]; p != NULL; p = p->next)
2083	{
2084	  size_t num_objects;
2085	  size_t i;
2086
2087	  if (p->context_depth != G.context_depth)
2088	    /* Since we don't do any collection for pages in pushed
2089	       contexts, there's no need to do any poisoning.  And
2090	       besides, the IN_USE_P array isn't valid until we pop
2091	       contexts.  */
2092	    continue;
2093
2094	  num_objects = OBJECTS_IN_PAGE (p);
2095	  for (i = 0; i < num_objects; i++)
2096	    {
2097	      size_t word, bit;
2098	      word = i / HOST_BITS_PER_LONG;
2099	      bit = i % HOST_BITS_PER_LONG;
2100	      if (((p->in_use_p[word] >> bit) & 1) == 0)
2101		{
2102		  char *object = p->page + i * size;
2103
2104		  /* Keep poison-by-write when we expect to use Valgrind,
2105		     so the exact same memory semantics is kept, in case
2106		     there are memory errors.  We override this request
2107		     below.  */
2108		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2109								 size));
2110		  memset (object, 0xa5, size);
2111
2112		  /* Drop the handle to avoid handle leak.  */
2113		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2114		}
2115	    }
2116	}
2117    }
2118}
2119#else
2120#define poison_pages()
2121#endif
2122
2123#ifdef ENABLE_GC_ALWAYS_COLLECT
2124/* Validate that the reportedly free objects actually are.  */
2125
2126static void
2127validate_free_objects (void)
2128{
2129  struct free_object *f, *next, *still_free = NULL;
2130
2131  for (f = G.free_object_list; f ; f = next)
2132    {
2133      page_entry *pe = lookup_page_table_entry (f->object);
2134      size_t bit, word;
2135
2136      bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2137      word = bit / HOST_BITS_PER_LONG;
2138      bit = bit % HOST_BITS_PER_LONG;
2139      next = f->next;
2140
2141      /* Make certain it isn't visible from any root.  Notice that we
2142	 do this check before sweep_pages merges save_in_use_p.  */
2143      gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2144
2145      /* If the object comes from an outer context, then retain the
2146	 free_object entry, so that we can verify that the address
2147	 isn't live on the stack in some outer context.  */
2148      if (pe->context_depth != G.context_depth)
2149	{
2150	  f->next = still_free;
2151	  still_free = f;
2152	}
2153      else
2154	free (f);
2155    }
2156
2157  G.free_object_list = still_free;
2158}
2159#else
2160#define validate_free_objects()
2161#endif
2162
2163/* Top level mark-and-sweep routine.  */
2164
2165void
2166ggc_collect (void)
2167{
2168  /* Avoid frequent unnecessary work by skipping collection if the
2169     total allocations haven't expanded much since the last
2170     collection.  */
2171  float allocated_last_gc =
2172    MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2173
2174  float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2175  if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2176    return;
2177
2178  timevar_push (TV_GC);
2179  if (!quiet_flag)
2180    fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2181  if (GGC_DEBUG_LEVEL >= 2)
2182    fprintf (G.debug_file, "BEGIN COLLECTING\n");
2183
2184  /* Zero the total allocated bytes.  This will be recalculated in the
2185     sweep phase.  */
2186  G.allocated = 0;
2187
2188  /* Release the pages we freed the last time we collected, but didn't
2189     reuse in the interim.  */
2190  release_pages ();
2191
2192  /* Indicate that we've seen collections at this context depth.  */
2193  G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2194
2195  invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2196
2197  in_gc = true;
2198  clear_marks ();
2199  ggc_mark_roots ();
2200  ggc_handle_finalizers ();
2201
2202  if (GATHER_STATISTICS)
2203    ggc_prune_overhead_list ();
2204
2205  poison_pages ();
2206  validate_free_objects ();
2207  sweep_pages ();
2208
2209  in_gc = false;
2210  G.allocated_last_gc = G.allocated;
2211
2212  invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2213
2214  timevar_pop (TV_GC);
2215
2216  if (!quiet_flag)
2217    fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2218  if (GGC_DEBUG_LEVEL >= 2)
2219    fprintf (G.debug_file, "END COLLECTING\n");
2220}
2221
2222/* Assume that all GGC memory is reachable and grow the limits for next collection.
2223   With checking, trigger GGC so -Q compilation outputs how much of memory really is
2224   reachable.  */
2225
2226void
2227ggc_grow (void)
2228{
2229#ifndef ENABLE_CHECKING
2230  G.allocated_last_gc = MAX (G.allocated_last_gc,
2231			     G.allocated);
2232#else
2233  ggc_collect ();
2234#endif
2235  if (!quiet_flag)
2236    fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2237}
2238
2239/* Print allocation statistics.  */
2240#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2241		  ? (x) \
2242		  : ((x) < 1024*1024*10 \
2243		     ? (x) / 1024 \
2244		     : (x) / (1024*1024))))
2245#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2246
2247void
2248ggc_print_statistics (void)
2249{
2250  struct ggc_statistics stats;
2251  unsigned int i;
2252  size_t total_overhead = 0;
2253
2254  /* Clear the statistics.  */
2255  memset (&stats, 0, sizeof (stats));
2256
2257  /* Make sure collection will really occur.  */
2258  G.allocated_last_gc = 0;
2259
2260  /* Collect and print the statistics common across collectors.  */
2261  ggc_print_common_statistics (stderr, &stats);
2262
2263  /* Release free pages so that we will not count the bytes allocated
2264     there as part of the total allocated memory.  */
2265  release_pages ();
2266
2267  /* Collect some information about the various sizes of
2268     allocation.  */
2269  fprintf (stderr,
2270           "Memory still allocated at the end of the compilation process\n");
2271  fprintf (stderr, "%-5s %10s  %10s  %10s\n",
2272	   "Size", "Allocated", "Used", "Overhead");
2273  for (i = 0; i < NUM_ORDERS; ++i)
2274    {
2275      page_entry *p;
2276      size_t allocated;
2277      size_t in_use;
2278      size_t overhead;
2279
2280      /* Skip empty entries.  */
2281      if (!G.pages[i])
2282	continue;
2283
2284      overhead = allocated = in_use = 0;
2285
2286      /* Figure out the total number of bytes allocated for objects of
2287	 this size, and how many of them are actually in use.  Also figure
2288	 out how much memory the page table is using.  */
2289      for (p = G.pages[i]; p; p = p->next)
2290	{
2291	  allocated += p->bytes;
2292	  in_use +=
2293	    (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2294
2295	  overhead += (sizeof (page_entry) - sizeof (long)
2296		       + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2297	}
2298      fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2299	       (unsigned long) OBJECT_SIZE (i),
2300	       SCALE (allocated), STAT_LABEL (allocated),
2301	       SCALE (in_use), STAT_LABEL (in_use),
2302	       SCALE (overhead), STAT_LABEL (overhead));
2303      total_overhead += overhead;
2304    }
2305  fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2306	   SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2307	   SCALE (G.allocated), STAT_LABEL (G.allocated),
2308	   SCALE (total_overhead), STAT_LABEL (total_overhead));
2309
2310  if (GATHER_STATISTICS)
2311    {
2312      fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2313
2314      fprintf (stderr, "Total Overhead:                        %10" HOST_LONG_LONG_FORMAT "d\n",
2315	       G.stats.total_overhead);
2316      fprintf (stderr, "Total Allocated:                       %10" HOST_LONG_LONG_FORMAT "d\n",
2317	       G.stats.total_allocated);
2318
2319      fprintf (stderr, "Total Overhead  under  32B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2320	       G.stats.total_overhead_under32);
2321      fprintf (stderr, "Total Allocated under  32B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2322	       G.stats.total_allocated_under32);
2323      fprintf (stderr, "Total Overhead  under  64B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2324	       G.stats.total_overhead_under64);
2325      fprintf (stderr, "Total Allocated under  64B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2326	       G.stats.total_allocated_under64);
2327      fprintf (stderr, "Total Overhead  under 128B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2328	       G.stats.total_overhead_under128);
2329      fprintf (stderr, "Total Allocated under 128B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2330	       G.stats.total_allocated_under128);
2331
2332      for (i = 0; i < NUM_ORDERS; i++)
2333	if (G.stats.total_allocated_per_order[i])
2334	  {
2335	    fprintf (stderr, "Total Overhead  page size %7lu:     %10" HOST_LONG_LONG_FORMAT "d\n",
2336		     (unsigned long) OBJECT_SIZE (i),
2337		     G.stats.total_overhead_per_order[i]);
2338	    fprintf (stderr, "Total Allocated page size %7lu:     %10" HOST_LONG_LONG_FORMAT "d\n",
2339		     (unsigned long) OBJECT_SIZE (i),
2340		     G.stats.total_allocated_per_order[i]);
2341	  }
2342  }
2343}
2344
2345struct ggc_pch_ondisk
2346{
2347  unsigned totals[NUM_ORDERS];
2348};
2349
2350struct ggc_pch_data
2351{
2352  struct ggc_pch_ondisk d;
2353  uintptr_t base[NUM_ORDERS];
2354  size_t written[NUM_ORDERS];
2355};
2356
2357struct ggc_pch_data *
2358init_ggc_pch (void)
2359{
2360  return XCNEW (struct ggc_pch_data);
2361}
2362
2363void
2364ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2365		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2366{
2367  unsigned order;
2368
2369  if (size < NUM_SIZE_LOOKUP)
2370    order = size_lookup[size];
2371  else
2372    {
2373      order = 10;
2374      while (size > OBJECT_SIZE (order))
2375	order++;
2376    }
2377
2378  d->d.totals[order]++;
2379}
2380
2381size_t
2382ggc_pch_total_size (struct ggc_pch_data *d)
2383{
2384  size_t a = 0;
2385  unsigned i;
2386
2387  for (i = 0; i < NUM_ORDERS; i++)
2388    a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2389  return a;
2390}
2391
2392void
2393ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2394{
2395  uintptr_t a = (uintptr_t) base;
2396  unsigned i;
2397
2398  for (i = 0; i < NUM_ORDERS; i++)
2399    {
2400      d->base[i] = a;
2401      a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2402    }
2403}
2404
2405
2406char *
2407ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2408		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2409{
2410  unsigned order;
2411  char *result;
2412
2413  if (size < NUM_SIZE_LOOKUP)
2414    order = size_lookup[size];
2415  else
2416    {
2417      order = 10;
2418      while (size > OBJECT_SIZE (order))
2419	order++;
2420    }
2421
2422  result = (char *) d->base[order];
2423  d->base[order] += OBJECT_SIZE (order);
2424  return result;
2425}
2426
2427void
2428ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2429		       FILE *f ATTRIBUTE_UNUSED)
2430{
2431  /* Nothing to do.  */
2432}
2433
2434void
2435ggc_pch_write_object (struct ggc_pch_data *d,
2436		      FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2437		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2438{
2439  unsigned order;
2440  static const char emptyBytes[256] = { 0 };
2441
2442  if (size < NUM_SIZE_LOOKUP)
2443    order = size_lookup[size];
2444  else
2445    {
2446      order = 10;
2447      while (size > OBJECT_SIZE (order))
2448	order++;
2449    }
2450
2451  if (fwrite (x, size, 1, f) != 1)
2452    fatal_error (input_location, "can%'t write PCH file: %m");
2453
2454  /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2455     object out to OBJECT_SIZE(order).  This happens for strings.  */
2456
2457  if (size != OBJECT_SIZE (order))
2458    {
2459      unsigned padding = OBJECT_SIZE (order) - size;
2460
2461      /* To speed small writes, we use a nulled-out array that's larger
2462         than most padding requests as the source for our null bytes.  This
2463         permits us to do the padding with fwrite() rather than fseek(), and
2464         limits the chance the OS may try to flush any outstanding writes.  */
2465      if (padding <= sizeof (emptyBytes))
2466        {
2467          if (fwrite (emptyBytes, 1, padding, f) != padding)
2468            fatal_error (input_location, "can%'t write PCH file");
2469        }
2470      else
2471        {
2472          /* Larger than our buffer?  Just default to fseek.  */
2473          if (fseek (f, padding, SEEK_CUR) != 0)
2474            fatal_error (input_location, "can%'t write PCH file");
2475        }
2476    }
2477
2478  d->written[order]++;
2479  if (d->written[order] == d->d.totals[order]
2480      && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2481				   G.pagesize),
2482		SEEK_CUR) != 0)
2483    fatal_error (input_location, "can%'t write PCH file: %m");
2484}
2485
2486void
2487ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2488{
2489  if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2490    fatal_error (input_location, "can%'t write PCH file: %m");
2491  free (d);
2492}
2493
2494/* Move the PCH PTE entries just added to the end of by_depth, to the
2495   front.  */
2496
2497static void
2498move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2499{
2500  unsigned i;
2501
2502  /* First, we swap the new entries to the front of the varrays.  */
2503  page_entry **new_by_depth;
2504  unsigned long **new_save_in_use;
2505
2506  new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2507  new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2508
2509  memcpy (&new_by_depth[0],
2510	  &G.by_depth[count_old_page_tables],
2511	  count_new_page_tables * sizeof (void *));
2512  memcpy (&new_by_depth[count_new_page_tables],
2513	  &G.by_depth[0],
2514	  count_old_page_tables * sizeof (void *));
2515  memcpy (&new_save_in_use[0],
2516	  &G.save_in_use[count_old_page_tables],
2517	  count_new_page_tables * sizeof (void *));
2518  memcpy (&new_save_in_use[count_new_page_tables],
2519	  &G.save_in_use[0],
2520	  count_old_page_tables * sizeof (void *));
2521
2522  free (G.by_depth);
2523  free (G.save_in_use);
2524
2525  G.by_depth = new_by_depth;
2526  G.save_in_use = new_save_in_use;
2527
2528  /* Now update all the index_by_depth fields.  */
2529  for (i = G.by_depth_in_use; i > 0; --i)
2530    {
2531      page_entry *p = G.by_depth[i-1];
2532      p->index_by_depth = i-1;
2533    }
2534
2535  /* And last, we update the depth pointers in G.depth.  The first
2536     entry is already 0, and context 0 entries always start at index
2537     0, so there is nothing to update in the first slot.  We need a
2538     second slot, only if we have old ptes, and if we do, they start
2539     at index count_new_page_tables.  */
2540  if (count_old_page_tables)
2541    push_depth (count_new_page_tables);
2542}
2543
2544void
2545ggc_pch_read (FILE *f, void *addr)
2546{
2547  struct ggc_pch_ondisk d;
2548  unsigned i;
2549  char *offs = (char *) addr;
2550  unsigned long count_old_page_tables;
2551  unsigned long count_new_page_tables;
2552
2553  count_old_page_tables = G.by_depth_in_use;
2554
2555  /* We've just read in a PCH file.  So, every object that used to be
2556     allocated is now free.  */
2557  clear_marks ();
2558#ifdef ENABLE_GC_CHECKING
2559  poison_pages ();
2560#endif
2561  /* Since we free all the allocated objects, the free list becomes
2562     useless.  Validate it now, which will also clear it.  */
2563  validate_free_objects ();
2564
2565  /* No object read from a PCH file should ever be freed.  So, set the
2566     context depth to 1, and set the depth of all the currently-allocated
2567     pages to be 1 too.  PCH pages will have depth 0.  */
2568  gcc_assert (!G.context_depth);
2569  G.context_depth = 1;
2570  for (i = 0; i < NUM_ORDERS; i++)
2571    {
2572      page_entry *p;
2573      for (p = G.pages[i]; p != NULL; p = p->next)
2574	p->context_depth = G.context_depth;
2575    }
2576
2577  /* Allocate the appropriate page-table entries for the pages read from
2578     the PCH file.  */
2579  if (fread (&d, sizeof (d), 1, f) != 1)
2580    fatal_error (input_location, "can%'t read PCH file: %m");
2581
2582  for (i = 0; i < NUM_ORDERS; i++)
2583    {
2584      struct page_entry *entry;
2585      char *pte;
2586      size_t bytes;
2587      size_t num_objs;
2588      size_t j;
2589
2590      if (d.totals[i] == 0)
2591	continue;
2592
2593      bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2594      num_objs = bytes / OBJECT_SIZE (i);
2595      entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2596					    - sizeof (long)
2597					    + BITMAP_SIZE (num_objs + 1)));
2598      entry->bytes = bytes;
2599      entry->page = offs;
2600      entry->context_depth = 0;
2601      offs += bytes;
2602      entry->num_free_objects = 0;
2603      entry->order = i;
2604
2605      for (j = 0;
2606	   j + HOST_BITS_PER_LONG <= num_objs + 1;
2607	   j += HOST_BITS_PER_LONG)
2608	entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2609      for (; j < num_objs + 1; j++)
2610	entry->in_use_p[j / HOST_BITS_PER_LONG]
2611	  |= 1L << (j % HOST_BITS_PER_LONG);
2612
2613      for (pte = entry->page;
2614	   pte < entry->page + entry->bytes;
2615	   pte += G.pagesize)
2616	set_page_table_entry (pte, entry);
2617
2618      if (G.page_tails[i] != NULL)
2619	G.page_tails[i]->next = entry;
2620      else
2621	G.pages[i] = entry;
2622      G.page_tails[i] = entry;
2623
2624      /* We start off by just adding all the new information to the
2625	 end of the varrays, later, we will move the new information
2626	 to the front of the varrays, as the PCH page tables are at
2627	 context 0.  */
2628      push_by_depth (entry, 0);
2629    }
2630
2631  /* Now, we update the various data structures that speed page table
2632     handling.  */
2633  count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2634
2635  move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2636
2637  /* Update the statistics.  */
2638  G.allocated = G.allocated_last_gc = offs - (char *)addr;
2639}
2640