1/* Partial redundancy elimination / Hoisting for RTL.
2   Copyright (C) 1997-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20/* TODO
21   - reordering of memory allocation and freeing to be more space efficient
22   - calc rough register pressure information and use the info to drive all
23     kinds of code motion (including code hoisting) in a unified way.
24*/
25
26/* References searched while implementing this.
27
28   Compilers Principles, Techniques and Tools
29   Aho, Sethi, Ullman
30   Addison-Wesley, 1988
31
32   Global Optimization by Suppression of Partial Redundancies
33   E. Morel, C. Renvoise
34   communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36   A Portable Machine-Independent Global Optimizer - Design and Measurements
37   Frederick Chow
38   Stanford Ph.D. thesis, Dec. 1983
39
40   A Fast Algorithm for Code Movement Optimization
41   D.M. Dhamdhere
42   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44   A Solution to a Problem with Morel and Renvoise's
45   Global Optimization by Suppression of Partial Redundancies
46   K-H Drechsler, M.P. Stadel
47   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49   Practical Adaptation of the Global Optimization
50   Algorithm of Morel and Renvoise
51   D.M. Dhamdhere
52   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54   Efficiently Computing Static Single Assignment Form and the Control
55   Dependence Graph
56   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59   Lazy Code Motion
60   J. Knoop, O. Ruthing, B. Steffen
61   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
64   Time for Reducible Flow Control
65   Thomas Ball
66   ACM Letters on Programming Languages and Systems,
67   Vol. 2, Num. 1-4, Mar-Dec 1993
68
69   An Efficient Representation for Sparse Sets
70   Preston Briggs, Linda Torczon
71   ACM Letters on Programming Languages and Systems,
72   Vol. 2, Num. 1-4, Mar-Dec 1993
73
74   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75   K-H Drechsler, M.P. Stadel
76   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78   Partial Dead Code Elimination
79   J. Knoop, O. Ruthing, B. Steffen
80   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82   Effective Partial Redundancy Elimination
83   P. Briggs, K.D. Cooper
84   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86   The Program Structure Tree: Computing Control Regions in Linear Time
87   R. Johnson, D. Pearson, K. Pingali
88   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90   Optimal Code Motion: Theory and Practice
91   J. Knoop, O. Ruthing, B. Steffen
92   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94   The power of assignment motion
95   J. Knoop, O. Ruthing, B. Steffen
96   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98   Global code motion / global value numbering
99   C. Click
100   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102   Value Driven Redundancy Elimination
103   L.T. Simpson
104   Rice University Ph.D. thesis, Apr. 1996
105
106   Value Numbering
107   L.T. Simpson
108   Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110   High Performance Compilers for Parallel Computing
111   Michael Wolfe
112   Addison-Wesley, 1996
113
114   Advanced Compiler Design and Implementation
115   Steven Muchnick
116   Morgan Kaufmann, 1997
117
118   Building an Optimizing Compiler
119   Robert Morgan
120   Digital Press, 1998
121
122   People wishing to speed up the code here should read:
123     Elimination Algorithms for Data Flow Analysis
124     B.G. Ryder, M.C. Paull
125     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127     How to Analyze Large Programs Efficiently and Informatively
128     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131   People wishing to do something different can find various possibilities
132   in the above papers and elsewhere.
133*/
134
135#include "config.h"
136#include "system.h"
137#include "coretypes.h"
138#include "tm.h"
139#include "diagnostic-core.h"
140#include "toplev.h"
141#include "hard-reg-set.h"
142#include "rtl.h"
143#include "hash-set.h"
144#include "machmode.h"
145#include "vec.h"
146#include "double-int.h"
147#include "input.h"
148#include "alias.h"
149#include "symtab.h"
150#include "wide-int.h"
151#include "inchash.h"
152#include "tree.h"
153#include "tm_p.h"
154#include "regs.h"
155#include "ira.h"
156#include "flags.h"
157#include "insn-config.h"
158#include "recog.h"
159#include "predict.h"
160#include "function.h"
161#include "dominance.h"
162#include "cfg.h"
163#include "cfgrtl.h"
164#include "cfganal.h"
165#include "lcm.h"
166#include "cfgcleanup.h"
167#include "basic-block.h"
168#include "hashtab.h"
169#include "statistics.h"
170#include "real.h"
171#include "fixed-value.h"
172#include "expmed.h"
173#include "dojump.h"
174#include "explow.h"
175#include "calls.h"
176#include "emit-rtl.h"
177#include "varasm.h"
178#include "stmt.h"
179#include "expr.h"
180#include "except.h"
181#include "ggc.h"
182#include "params.h"
183#include "cselib.h"
184#include "intl.h"
185#include "obstack.h"
186#include "tree-pass.h"
187#include "hash-table.h"
188#include "df.h"
189#include "dbgcnt.h"
190#include "target.h"
191#include "gcse.h"
192#include "gcse-common.h"
193
194/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
195   are a superset of those done by classic GCSE.
196
197   Two passes of copy/constant propagation are done around PRE or hoisting
198   because the first one enables more GCSE and the second one helps to clean
199   up the copies that PRE and HOIST create.  This is needed more for PRE than
200   for HOIST because code hoisting will try to use an existing register
201   containing the common subexpression rather than create a new one.  This is
202   harder to do for PRE because of the code motion (which HOIST doesn't do).
203
204   Expressions we are interested in GCSE-ing are of the form
205   (set (pseudo-reg) (expression)).
206   Function want_to_gcse_p says what these are.
207
208   In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
209   This allows PRE to hoist expressions that are expressed in multiple insns,
210   such as complex address calculations (e.g. for PIC code, or loads with a
211   high part and a low part).
212
213   PRE handles moving invariant expressions out of loops (by treating them as
214   partially redundant).
215
216   **********************
217
218   We used to support multiple passes but there are diminishing returns in
219   doing so.  The first pass usually makes 90% of the changes that are doable.
220   A second pass can make a few more changes made possible by the first pass.
221   Experiments show any further passes don't make enough changes to justify
222   the expense.
223
224   A study of spec92 using an unlimited number of passes:
225   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
228
229   It was found doing copy propagation between each pass enables further
230   substitutions.
231
232   This study was done before expressions in REG_EQUAL notes were added as
233   candidate expressions for optimization, and before the GIMPLE optimizers
234   were added.  Probably, multiple passes is even less efficient now than
235   at the time when the study was conducted.
236
237   PRE is quite expensive in complicated functions because the DFA can take
238   a while to converge.  Hence we only perform one pass.
239
240   **********************
241
242   The steps for PRE are:
243
244   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245
246   2) Perform the data flow analysis for PRE.
247
248   3) Delete the redundant instructions
249
250   4) Insert the required copies [if any] that make the partially
251      redundant instructions fully redundant.
252
253   5) For other reaching expressions, insert an instruction to copy the value
254      to a newly created pseudo that will reach the redundant instruction.
255
256   The deletion is done first so that when we do insertions we
257   know which pseudo reg to use.
258
259   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
260   argue it is not.  The number of iterations for the algorithm to converge
261   is typically 2-4 so I don't view it as that expensive (relatively speaking).
262
263   PRE GCSE depends heavily on the second CPROP pass to clean up the copies
264   we create.  To make an expression reach the place where it's redundant,
265   the result of the expression is copied to a new register, and the redundant
266   expression is deleted by replacing it with this new register.  Classic GCSE
267   doesn't have this problem as much as it computes the reaching defs of
268   each register in each block and thus can try to use an existing
269   register.  */
270
271/* GCSE global vars.  */
272
273struct target_gcse default_target_gcse;
274#if SWITCHABLE_TARGET
275struct target_gcse *this_target_gcse = &default_target_gcse;
276#endif
277
278/* Set to non-zero if CSE should run after all GCSE optimizations are done.  */
279int flag_rerun_cse_after_global_opts;
280
281/* An obstack for our working variables.  */
282static struct obstack gcse_obstack;
283
284/* Hash table of expressions.  */
285
286struct gcse_expr
287{
288  /* The expression.  */
289  rtx expr;
290  /* Index in the available expression bitmaps.  */
291  int bitmap_index;
292  /* Next entry with the same hash.  */
293  struct gcse_expr *next_same_hash;
294  /* List of anticipatable occurrences in basic blocks in the function.
295     An "anticipatable occurrence" is one that is the first occurrence in the
296     basic block, the operands are not modified in the basic block prior
297     to the occurrence and the output is not used between the start of
298     the block and the occurrence.  */
299  struct gcse_occr *antic_occr;
300  /* List of available occurrence in basic blocks in the function.
301     An "available occurrence" is one that is the last occurrence in the
302     basic block and the operands are not modified by following statements in
303     the basic block [including this insn].  */
304  struct gcse_occr *avail_occr;
305  /* Non-null if the computation is PRE redundant.
306     The value is the newly created pseudo-reg to record a copy of the
307     expression in all the places that reach the redundant copy.  */
308  rtx reaching_reg;
309  /* Maximum distance in instructions this expression can travel.
310     We avoid moving simple expressions for more than a few instructions
311     to keep register pressure under control.
312     A value of "0" removes restrictions on how far the expression can
313     travel.  */
314  int max_distance;
315};
316
317/* Occurrence of an expression.
318   There is one per basic block.  If a pattern appears more than once the
319   last appearance is used [or first for anticipatable expressions].  */
320
321struct gcse_occr
322{
323  /* Next occurrence of this expression.  */
324  struct gcse_occr *next;
325  /* The insn that computes the expression.  */
326  rtx_insn *insn;
327  /* Nonzero if this [anticipatable] occurrence has been deleted.  */
328  char deleted_p;
329  /* Nonzero if this [available] occurrence has been copied to
330     reaching_reg.  */
331  /* ??? This is mutually exclusive with deleted_p, so they could share
332     the same byte.  */
333  char copied_p;
334};
335
336typedef struct gcse_occr *occr_t;
337
338/* Expression hash tables.
339   Each hash table is an array of buckets.
340   ??? It is known that if it were an array of entries, structure elements
341   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
342   not clear whether in the final analysis a sufficient amount of memory would
343   be saved as the size of the available expression bitmaps would be larger
344   [one could build a mapping table without holes afterwards though].
345   Someday I'll perform the computation and figure it out.  */
346
347struct gcse_hash_table_d
348{
349  /* The table itself.
350     This is an array of `expr_hash_table_size' elements.  */
351  struct gcse_expr **table;
352
353  /* Size of the hash table, in elements.  */
354  unsigned int size;
355
356  /* Number of hash table elements.  */
357  unsigned int n_elems;
358};
359
360/* Expression hash table.  */
361static struct gcse_hash_table_d expr_hash_table;
362
363/* This is a list of expressions which are MEMs and will be used by load
364   or store motion.
365   Load motion tracks MEMs which aren't killed by anything except itself,
366   i.e. loads and stores to a single location.
367   We can then allow movement of these MEM refs with a little special
368   allowance. (all stores copy the same value to the reaching reg used
369   for the loads).  This means all values used to store into memory must have
370   no side effects so we can re-issue the setter value.  */
371
372struct ls_expr
373{
374  struct gcse_expr * expr;	/* Gcse expression reference for LM.  */
375  rtx pattern;			/* Pattern of this mem.  */
376  rtx pattern_regs;		/* List of registers mentioned by the mem.  */
377  rtx_insn_list *loads;		/* INSN list of loads seen.  */
378  rtx_insn_list *stores;	/* INSN list of stores seen.  */
379  struct ls_expr * next;	/* Next in the list.  */
380  int invalid;			/* Invalid for some reason.  */
381  int index;			/* If it maps to a bitmap index.  */
382  unsigned int hash_index;	/* Index when in a hash table.  */
383  rtx reaching_reg;		/* Register to use when re-writing.  */
384};
385
386/* Head of the list of load/store memory refs.  */
387static struct ls_expr * pre_ldst_mems = NULL;
388
389struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
390{
391  typedef ls_expr value_type;
392  typedef value_type compare_type;
393  static inline hashval_t hash (const value_type *);
394  static inline bool equal (const value_type *, const compare_type *);
395};
396
397/* Hashtable helpers.  */
398inline hashval_t
399pre_ldst_expr_hasher::hash (const value_type *x)
400{
401  int do_not_record_p = 0;
402  return
403    hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
404}
405
406static int expr_equiv_p (const_rtx, const_rtx);
407
408inline bool
409pre_ldst_expr_hasher::equal (const value_type *ptr1,
410			     const compare_type *ptr2)
411{
412  return expr_equiv_p (ptr1->pattern, ptr2->pattern);
413}
414
415/* Hashtable for the load/store memory refs.  */
416static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
417
418/* Bitmap containing one bit for each register in the program.
419   Used when performing GCSE to track which registers have been set since
420   the start of the basic block.  */
421static regset reg_set_bitmap;
422
423/* Array, indexed by basic block number for a list of insns which modify
424   memory within that block.  */
425static vec<rtx_insn *> *modify_mem_list;
426static bitmap modify_mem_list_set;
427
428/* This array parallels modify_mem_list, except that it stores MEMs
429   being set and their canonicalized memory addresses.  */
430static vec<modify_pair> *canon_modify_mem_list;
431
432/* Bitmap indexed by block numbers to record which blocks contain
433   function calls.  */
434static bitmap blocks_with_calls;
435
436/* Various variables for statistics gathering.  */
437
438/* Memory used in a pass.
439   This isn't intended to be absolutely precise.  Its intent is only
440   to keep an eye on memory usage.  */
441static int bytes_used;
442
443/* GCSE substitutions made.  */
444static int gcse_subst_count;
445/* Number of copy instructions created.  */
446static int gcse_create_count;
447
448/* Doing code hoisting.  */
449static bool doing_code_hoisting_p = false;
450
451/* For available exprs */
452static sbitmap *ae_kill;
453
454/* Data stored for each basic block.  */
455struct bb_data
456{
457  /* Maximal register pressure inside basic block for given register class
458     (defined only for the pressure classes).  */
459  int max_reg_pressure[N_REG_CLASSES];
460  /* Recorded register pressure of basic block before trying to hoist
461     an expression.  Will be used to restore the register pressure
462     if the expression should not be hoisted.  */
463  int old_pressure;
464  /* Recorded register live_in info of basic block during code hoisting
465     process.  BACKUP is used to record live_in info before trying to
466     hoist an expression, and will be used to restore LIVE_IN if the
467     expression should not be hoisted.  */
468  bitmap live_in, backup;
469};
470
471#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
472
473static basic_block curr_bb;
474
475/* Current register pressure for each pressure class.  */
476static int curr_reg_pressure[N_REG_CLASSES];
477
478
479static void compute_can_copy (void);
480static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
481static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
482static void *gcse_alloc (unsigned long);
483static void alloc_gcse_mem (void);
484static void free_gcse_mem (void);
485static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
486static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
487static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
488static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
489static int want_to_gcse_p (rtx, int *);
490static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
491static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
492static int oprs_available_p (const_rtx, const rtx_insn *);
493static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
494				  int, struct gcse_hash_table_d *);
495static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
496static void record_last_reg_set_info (rtx, int);
497static void record_last_mem_set_info (rtx_insn *);
498static void record_last_set_info (rtx, const_rtx, void *);
499static void compute_hash_table (struct gcse_hash_table_d *);
500static void alloc_hash_table (struct gcse_hash_table_d *);
501static void free_hash_table (struct gcse_hash_table_d *);
502static void compute_hash_table_work (struct gcse_hash_table_d *);
503static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
504static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
505				      struct gcse_hash_table_d *);
506static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
507static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
508static void alloc_pre_mem (int, int);
509static void free_pre_mem (void);
510static struct edge_list *compute_pre_data (void);
511static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
512				    basic_block);
513static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
514static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
515static void pre_insert_copies (void);
516static int pre_delete (void);
517static int pre_gcse (struct edge_list *);
518static int one_pre_gcse_pass (void);
519static void add_label_notes (rtx, rtx);
520static void alloc_code_hoist_mem (int, int);
521static void free_code_hoist_mem (void);
522static void compute_code_hoist_vbeinout (void);
523static void compute_code_hoist_data (void);
524static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
525				     sbitmap, int, int *, enum reg_class,
526				     int *, bitmap, rtx_insn *);
527static int hoist_code (void);
528static enum reg_class get_regno_pressure_class (int regno, int *nregs);
529static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
530static int one_code_hoisting_pass (void);
531static rtx_insn *process_insert_insn (struct gcse_expr *);
532static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
533static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
534					 basic_block, char *);
535static struct ls_expr * ldst_entry (rtx);
536static void free_ldst_entry (struct ls_expr *);
537static void free_ld_motion_mems (void);
538static void print_ldst_list (FILE *);
539static struct ls_expr * find_rtx_in_ldst (rtx);
540static int simple_mem (const_rtx);
541static void invalidate_any_buried_refs (rtx);
542static void compute_ld_motion_mems (void);
543static void trim_ld_motion_mems (void);
544static void update_ld_motion_stores (struct gcse_expr *);
545static void clear_modify_mem_tables (void);
546static void free_modify_mem_tables (void);
547static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
548static bool is_too_expensive (const char *);
549
550#define GNEW(T)			((T *) gmalloc (sizeof (T)))
551#define GCNEW(T)		((T *) gcalloc (1, sizeof (T)))
552
553#define GNEWVEC(T, N)		((T *) gmalloc (sizeof (T) * (N)))
554#define GCNEWVEC(T, N)		((T *) gcalloc ((N), sizeof (T)))
555
556#define GNEWVAR(T, S)		((T *) gmalloc ((S)))
557#define GCNEWVAR(T, S)		((T *) gcalloc (1, (S)))
558
559#define GOBNEW(T)		((T *) gcse_alloc (sizeof (T)))
560#define GOBNEWVAR(T, S)		((T *) gcse_alloc ((S)))
561
562/* Misc. utilities.  */
563
564#define can_copy \
565  (this_target_gcse->x_can_copy)
566#define can_copy_init_p \
567  (this_target_gcse->x_can_copy_init_p)
568
569/* Compute which modes support reg/reg copy operations.  */
570
571static void
572compute_can_copy (void)
573{
574  int i;
575#ifndef AVOID_CCMODE_COPIES
576  rtx reg, insn;
577#endif
578  memset (can_copy, 0, NUM_MACHINE_MODES);
579
580  start_sequence ();
581  for (i = 0; i < NUM_MACHINE_MODES; i++)
582    if (GET_MODE_CLASS (i) == MODE_CC)
583      {
584#ifdef AVOID_CCMODE_COPIES
585	can_copy[i] = 0;
586#else
587	reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
588	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
589	if (recog (PATTERN (insn), insn, NULL) >= 0)
590	  can_copy[i] = 1;
591#endif
592      }
593    else
594      can_copy[i] = 1;
595
596  end_sequence ();
597}
598
599/* Returns whether the mode supports reg/reg copy operations.  */
600
601bool
602can_copy_p (machine_mode mode)
603{
604  if (! can_copy_init_p)
605    {
606      compute_can_copy ();
607      can_copy_init_p = true;
608    }
609
610  return can_copy[mode] != 0;
611}
612
613/* Cover function to xmalloc to record bytes allocated.  */
614
615static void *
616gmalloc (size_t size)
617{
618  bytes_used += size;
619  return xmalloc (size);
620}
621
622/* Cover function to xcalloc to record bytes allocated.  */
623
624static void *
625gcalloc (size_t nelem, size_t elsize)
626{
627  bytes_used += nelem * elsize;
628  return xcalloc (nelem, elsize);
629}
630
631/* Cover function to obstack_alloc.  */
632
633static void *
634gcse_alloc (unsigned long size)
635{
636  bytes_used += size;
637  return obstack_alloc (&gcse_obstack, size);
638}
639
640/* Allocate memory for the reg/memory set tracking tables.
641   This is called at the start of each pass.  */
642
643static void
644alloc_gcse_mem (void)
645{
646  /* Allocate vars to track sets of regs.  */
647  reg_set_bitmap = ALLOC_REG_SET (NULL);
648
649  /* Allocate array to keep a list of insns which modify memory in each
650     basic block.  The two typedefs are needed to work around the
651     pre-processor limitation with template types in macro arguments.  */
652  typedef vec<rtx_insn *> vec_rtx_heap;
653  typedef vec<modify_pair> vec_modify_pair_heap;
654  modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
655  canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
656				    last_basic_block_for_fn (cfun));
657  modify_mem_list_set = BITMAP_ALLOC (NULL);
658  blocks_with_calls = BITMAP_ALLOC (NULL);
659}
660
661/* Free memory allocated by alloc_gcse_mem.  */
662
663static void
664free_gcse_mem (void)
665{
666  FREE_REG_SET (reg_set_bitmap);
667
668  free_modify_mem_tables ();
669  BITMAP_FREE (modify_mem_list_set);
670  BITMAP_FREE (blocks_with_calls);
671}
672
673/* Compute the local properties of each recorded expression.
674
675   Local properties are those that are defined by the block, irrespective of
676   other blocks.
677
678   An expression is transparent in a block if its operands are not modified
679   in the block.
680
681   An expression is computed (locally available) in a block if it is computed
682   at least once and expression would contain the same value if the
683   computation was moved to the end of the block.
684
685   An expression is locally anticipatable in a block if it is computed at
686   least once and expression would contain the same value if the computation
687   was moved to the beginning of the block.
688
689   We call this routine for pre and code hoisting.  They all compute
690   basically the same information and thus can easily share this code.
691
692   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
693   properties.  If NULL, then it is not necessary to compute or record that
694   particular property.
695
696   TABLE controls which hash table to look at.  */
697
698static void
699compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
700			  struct gcse_hash_table_d *table)
701{
702  unsigned int i;
703
704  /* Initialize any bitmaps that were passed in.  */
705  if (transp)
706    {
707      bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
708    }
709
710  if (comp)
711    bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
712  if (antloc)
713    bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
714
715  for (i = 0; i < table->size; i++)
716    {
717      struct gcse_expr *expr;
718
719      for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
720	{
721	  int indx = expr->bitmap_index;
722	  struct gcse_occr *occr;
723
724	  /* The expression is transparent in this block if it is not killed.
725	     We start by assuming all are transparent [none are killed], and
726	     then reset the bits for those that are.  */
727	  if (transp)
728	    compute_transp (expr->expr, indx, transp,
729			    blocks_with_calls,
730			    modify_mem_list_set,
731			    canon_modify_mem_list);
732
733	  /* The occurrences recorded in antic_occr are exactly those that
734	     we want to set to nonzero in ANTLOC.  */
735	  if (antloc)
736	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
737	      {
738		bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
739
740		/* While we're scanning the table, this is a good place to
741		   initialize this.  */
742		occr->deleted_p = 0;
743	      }
744
745	  /* The occurrences recorded in avail_occr are exactly those that
746	     we want to set to nonzero in COMP.  */
747	  if (comp)
748	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
749	      {
750		bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
751
752		/* While we're scanning the table, this is a good place to
753		   initialize this.  */
754		occr->copied_p = 0;
755	      }
756
757	  /* While we're scanning the table, this is a good place to
758	     initialize this.  */
759	  expr->reaching_reg = 0;
760	}
761    }
762}
763
764/* Hash table support.  */
765
766struct reg_avail_info
767{
768  basic_block last_bb;
769  int first_set;
770  int last_set;
771};
772
773static struct reg_avail_info *reg_avail_info;
774static basic_block current_bb;
775
776/* See whether X, the source of a set, is something we want to consider for
777   GCSE.  */
778
779static int
780want_to_gcse_p (rtx x, int *max_distance_ptr)
781{
782#ifdef STACK_REGS
783  /* On register stack architectures, don't GCSE constants from the
784     constant pool, as the benefits are often swamped by the overhead
785     of shuffling the register stack between basic blocks.  */
786  if (IS_STACK_MODE (GET_MODE (x)))
787    x = avoid_constant_pool_reference (x);
788#endif
789
790  /* GCSE'ing constants:
791
792     We do not specifically distinguish between constant and non-constant
793     expressions in PRE and Hoist.  We use set_src_cost below to limit
794     the maximum distance simple expressions can travel.
795
796     Nevertheless, constants are much easier to GCSE, and, hence,
797     it is easy to overdo the optimizations.  Usually, excessive PRE and
798     Hoisting of constant leads to increased register pressure.
799
800     RA can deal with this by rematerialing some of the constants.
801     Therefore, it is important that the back-end generates sets of constants
802     in a way that allows reload rematerialize them under high register
803     pressure, i.e., a pseudo register with REG_EQUAL to constant
804     is set only once.  Failing to do so will result in IRA/reload
805     spilling such constants under high register pressure instead of
806     rematerializing them.  */
807
808  switch (GET_CODE (x))
809    {
810    case REG:
811    case SUBREG:
812    case CALL:
813      return 0;
814
815    CASE_CONST_ANY:
816      if (!doing_code_hoisting_p)
817	/* Do not PRE constants.  */
818	return 0;
819
820      /* FALLTHRU */
821
822    default:
823      if (doing_code_hoisting_p)
824	/* PRE doesn't implement max_distance restriction.  */
825	{
826	  int cost;
827	  int max_distance;
828
829	  gcc_assert (!optimize_function_for_speed_p (cfun)
830		      && optimize_function_for_size_p (cfun));
831	  cost = set_src_cost (x, 0);
832
833	  if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
834	    {
835	      max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
836	      if (max_distance == 0)
837		return 0;
838
839	      gcc_assert (max_distance > 0);
840	    }
841	  else
842	    max_distance = 0;
843
844	  if (max_distance_ptr)
845	    *max_distance_ptr = max_distance;
846	}
847
848      return can_assign_to_reg_without_clobbers_p (x);
849    }
850}
851
852/* Used internally by can_assign_to_reg_without_clobbers_p.  */
853
854static GTY(()) rtx_insn *test_insn;
855
856/* Return true if we can assign X to a pseudo register such that the
857   resulting insn does not result in clobbering a hard register as a
858   side-effect.
859
860   Additionally, if the target requires it, check that the resulting insn
861   can be copied.  If it cannot, this means that X is special and probably
862   has hidden side-effects we don't want to mess with.
863
864   This function is typically used by code motion passes, to verify
865   that it is safe to insert an insn without worrying about clobbering
866   maybe live hard regs.  */
867
868bool
869can_assign_to_reg_without_clobbers_p (rtx x)
870{
871  int num_clobbers = 0;
872  int icode;
873  bool can_assign = false;
874
875  /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
876  if (general_operand (x, GET_MODE (x)))
877    return 1;
878  else if (GET_MODE (x) == VOIDmode)
879    return 0;
880
881  /* Otherwise, check if we can make a valid insn from it.  First initialize
882     our test insn if we haven't already.  */
883  if (test_insn == 0)
884    {
885      test_insn
886	= make_insn_raw (gen_rtx_SET (VOIDmode,
887				      gen_rtx_REG (word_mode,
888						   FIRST_PSEUDO_REGISTER * 2),
889				      const0_rtx));
890      SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
891      INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
892    }
893
894  /* Now make an insn like the one we would make when GCSE'ing and see if
895     valid.  */
896  PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
897  SET_SRC (PATTERN (test_insn)) = x;
898
899  icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
900
901  /* If the test insn is valid and doesn't need clobbers, and the target also
902     has no objections, we're good.  */
903  if (icode >= 0
904      && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
905      && ! (targetm.cannot_copy_insn_p
906	    && targetm.cannot_copy_insn_p (test_insn)))
907    can_assign = true;
908
909  /* Make sure test_insn doesn't have any pointers into GC space.  */
910  SET_SRC (PATTERN (test_insn)) = NULL_RTX;
911
912  return can_assign;
913}
914
915/* Return nonzero if the operands of expression X are unchanged from the
916   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
917   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
918
919static int
920oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
921{
922  int i, j;
923  enum rtx_code code;
924  const char *fmt;
925
926  if (x == 0)
927    return 1;
928
929  code = GET_CODE (x);
930  switch (code)
931    {
932    case REG:
933      {
934	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
935
936	if (info->last_bb != current_bb)
937	  return 1;
938	if (avail_p)
939	  return info->last_set < DF_INSN_LUID (insn);
940	else
941	  return info->first_set >= DF_INSN_LUID (insn);
942      }
943
944    case MEM:
945      if (! flag_gcse_lm
946	  || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
947				     x, avail_p))
948	return 0;
949      else
950	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
951
952    case PRE_DEC:
953    case PRE_INC:
954    case POST_DEC:
955    case POST_INC:
956    case PRE_MODIFY:
957    case POST_MODIFY:
958      return 0;
959
960    case PC:
961    case CC0: /*FIXME*/
962    case CONST:
963    CASE_CONST_ANY:
964    case SYMBOL_REF:
965    case LABEL_REF:
966    case ADDR_VEC:
967    case ADDR_DIFF_VEC:
968      return 1;
969
970    default:
971      break;
972    }
973
974  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
975    {
976      if (fmt[i] == 'e')
977	{
978	  /* If we are about to do the last recursive call needed at this
979	     level, change it into iteration.  This function is called enough
980	     to be worth it.  */
981	  if (i == 0)
982	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
983
984	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
985	    return 0;
986	}
987      else if (fmt[i] == 'E')
988	for (j = 0; j < XVECLEN (x, i); j++)
989	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
990	    return 0;
991    }
992
993  return 1;
994}
995
996/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p.  */
997
998struct mem_conflict_info
999{
1000  /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1001     see if a memory store conflicts with this memory load.  */
1002  const_rtx mem;
1003
1004  /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1005     references.  */
1006  bool conflict;
1007};
1008
1009/* DEST is the output of an instruction.  If it is a memory reference and
1010   possibly conflicts with the load found in DATA, then communicate this
1011   information back through DATA.  */
1012
1013static void
1014mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1015			  void *data)
1016{
1017  struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1018
1019  while (GET_CODE (dest) == SUBREG
1020	 || GET_CODE (dest) == ZERO_EXTRACT
1021	 || GET_CODE (dest) == STRICT_LOW_PART)
1022    dest = XEXP (dest, 0);
1023
1024  /* If DEST is not a MEM, then it will not conflict with the load.  Note
1025     that function calls are assumed to clobber memory, but are handled
1026     elsewhere.  */
1027  if (! MEM_P (dest))
1028    return;
1029
1030  /* If we are setting a MEM in our list of specially recognized MEMs,
1031     don't mark as killed this time.  */
1032  if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1033    {
1034      if (!find_rtx_in_ldst (dest))
1035	mci->conflict = true;
1036      return;
1037    }
1038
1039  if (true_dependence (dest, GET_MODE (dest), mci->mem))
1040    mci->conflict = true;
1041}
1042
1043/* Return nonzero if the expression in X (a memory reference) is killed
1044   in block BB before or after the insn with the LUID in UID_LIMIT.
1045   AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1046   before UID_LIMIT.
1047
1048   To check the entire block, set UID_LIMIT to max_uid + 1 and
1049   AVAIL_P to 0.  */
1050
1051static int
1052load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1053			int avail_p)
1054{
1055  vec<rtx_insn *> list = modify_mem_list[bb->index];
1056  rtx_insn *setter;
1057  unsigned ix;
1058
1059  /* If this is a readonly then we aren't going to be changing it.  */
1060  if (MEM_READONLY_P (x))
1061    return 0;
1062
1063  FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1064    {
1065      struct mem_conflict_info mci;
1066
1067      /* Ignore entries in the list that do not apply.  */
1068      if ((avail_p
1069	   && DF_INSN_LUID (setter) < uid_limit)
1070	  || (! avail_p
1071	      && DF_INSN_LUID (setter) > uid_limit))
1072	continue;
1073
1074      /* If SETTER is a call everything is clobbered.  Note that calls
1075	 to pure functions are never put on the list, so we need not
1076	 worry about them.  */
1077      if (CALL_P (setter))
1078	return 1;
1079
1080      /* SETTER must be an INSN of some kind that sets memory.  Call
1081	 note_stores to examine each hunk of memory that is modified.  */
1082      mci.mem = x;
1083      mci.conflict = false;
1084      note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1085      if (mci.conflict)
1086	return 1;
1087    }
1088  return 0;
1089}
1090
1091/* Return nonzero if the operands of expression X are unchanged from
1092   the start of INSN's basic block up to but not including INSN.  */
1093
1094static int
1095oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1096{
1097  return oprs_unchanged_p (x, insn, 0);
1098}
1099
1100/* Return nonzero if the operands of expression X are unchanged from
1101   INSN to the end of INSN's basic block.  */
1102
1103static int
1104oprs_available_p (const_rtx x, const rtx_insn *insn)
1105{
1106  return oprs_unchanged_p (x, insn, 1);
1107}
1108
1109/* Hash expression X.
1110
1111   MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
1112   indicating if a volatile operand is found or if the expression contains
1113   something we don't want to insert in the table.  HASH_TABLE_SIZE is
1114   the current size of the hash table to be probed.  */
1115
1116static unsigned int
1117hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1118	   int hash_table_size)
1119{
1120  unsigned int hash;
1121
1122  *do_not_record_p = 0;
1123
1124  hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1125  return hash % hash_table_size;
1126}
1127
1128/* Return nonzero if exp1 is equivalent to exp2.  */
1129
1130static int
1131expr_equiv_p (const_rtx x, const_rtx y)
1132{
1133  return exp_equiv_p (x, y, 0, true);
1134}
1135
1136/* Insert expression X in INSN in the hash TABLE.
1137   If it is already present, record it as the last occurrence in INSN's
1138   basic block.
1139
1140   MODE is the mode of the value X is being stored into.
1141   It is only used if X is a CONST_INT.
1142
1143   ANTIC_P is nonzero if X is an anticipatable expression.
1144   AVAIL_P is nonzero if X is an available expression.
1145
1146   MAX_DISTANCE is the maximum distance in instructions this expression can
1147   be moved.  */
1148
1149static void
1150insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1151		      int antic_p,
1152		      int avail_p, int max_distance, struct gcse_hash_table_d *table)
1153{
1154  int found, do_not_record_p;
1155  unsigned int hash;
1156  struct gcse_expr *cur_expr, *last_expr = NULL;
1157  struct gcse_occr *antic_occr, *avail_occr;
1158
1159  hash = hash_expr (x, mode, &do_not_record_p, table->size);
1160
1161  /* Do not insert expression in table if it contains volatile operands,
1162     or if hash_expr determines the expression is something we don't want
1163     to or can't handle.  */
1164  if (do_not_record_p)
1165    return;
1166
1167  cur_expr = table->table[hash];
1168  found = 0;
1169
1170  while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1171    {
1172      /* If the expression isn't found, save a pointer to the end of
1173	 the list.  */
1174      last_expr = cur_expr;
1175      cur_expr = cur_expr->next_same_hash;
1176    }
1177
1178  if (! found)
1179    {
1180      cur_expr = GOBNEW (struct gcse_expr);
1181      bytes_used += sizeof (struct gcse_expr);
1182      if (table->table[hash] == NULL)
1183	/* This is the first pattern that hashed to this index.  */
1184	table->table[hash] = cur_expr;
1185      else
1186	/* Add EXPR to end of this hash chain.  */
1187	last_expr->next_same_hash = cur_expr;
1188
1189      /* Set the fields of the expr element.  */
1190      cur_expr->expr = x;
1191      cur_expr->bitmap_index = table->n_elems++;
1192      cur_expr->next_same_hash = NULL;
1193      cur_expr->antic_occr = NULL;
1194      cur_expr->avail_occr = NULL;
1195      gcc_assert (max_distance >= 0);
1196      cur_expr->max_distance = max_distance;
1197    }
1198  else
1199    gcc_assert (cur_expr->max_distance == max_distance);
1200
1201  /* Now record the occurrence(s).  */
1202  if (antic_p)
1203    {
1204      antic_occr = cur_expr->antic_occr;
1205
1206      if (antic_occr
1207	  && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1208	antic_occr = NULL;
1209
1210      if (antic_occr)
1211	/* Found another instance of the expression in the same basic block.
1212	   Prefer the currently recorded one.  We want the first one in the
1213	   block and the block is scanned from start to end.  */
1214	; /* nothing to do */
1215      else
1216	{
1217	  /* First occurrence of this expression in this basic block.  */
1218	  antic_occr = GOBNEW (struct gcse_occr);
1219	  bytes_used += sizeof (struct gcse_occr);
1220	  antic_occr->insn = insn;
1221	  antic_occr->next = cur_expr->antic_occr;
1222	  antic_occr->deleted_p = 0;
1223	  cur_expr->antic_occr = antic_occr;
1224	}
1225    }
1226
1227  if (avail_p)
1228    {
1229      avail_occr = cur_expr->avail_occr;
1230
1231      if (avail_occr
1232	  && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1233	{
1234	  /* Found another instance of the expression in the same basic block.
1235	     Prefer this occurrence to the currently recorded one.  We want
1236	     the last one in the block and the block is scanned from start
1237	     to end.  */
1238	  avail_occr->insn = insn;
1239	}
1240      else
1241	{
1242	  /* First occurrence of this expression in this basic block.  */
1243	  avail_occr = GOBNEW (struct gcse_occr);
1244	  bytes_used += sizeof (struct gcse_occr);
1245	  avail_occr->insn = insn;
1246	  avail_occr->next = cur_expr->avail_occr;
1247	  avail_occr->deleted_p = 0;
1248	  cur_expr->avail_occr = avail_occr;
1249	}
1250    }
1251}
1252
1253/* Scan SET present in INSN and add an entry to the hash TABLE.  */
1254
1255static void
1256hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1257{
1258  rtx src = SET_SRC (set);
1259  rtx dest = SET_DEST (set);
1260  rtx note;
1261
1262  if (GET_CODE (src) == CALL)
1263    hash_scan_call (src, insn, table);
1264
1265  else if (REG_P (dest))
1266    {
1267      unsigned int regno = REGNO (dest);
1268      int max_distance = 0;
1269
1270      /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1271
1272	 This allows us to do a single GCSE pass and still eliminate
1273	 redundant constants, addresses or other expressions that are
1274	 constructed with multiple instructions.
1275
1276	 However, keep the original SRC if INSN is a simple reg-reg move.
1277	 In this case, there will almost always be a REG_EQUAL note on the
1278	 insn that sets SRC.  By recording the REG_EQUAL value here as SRC
1279	 for INSN, we miss copy propagation opportunities and we perform the
1280	 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1281	 do more than one PRE GCSE pass.
1282
1283	 Note that this does not impede profitable constant propagations.  We
1284	 "look through" reg-reg sets in lookup_avail_set.  */
1285      note = find_reg_equal_equiv_note (insn);
1286      if (note != 0
1287	  && REG_NOTE_KIND (note) == REG_EQUAL
1288	  && !REG_P (src)
1289	  && want_to_gcse_p (XEXP (note, 0), NULL))
1290	src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1291
1292      /* Only record sets of pseudo-regs in the hash table.  */
1293      if (regno >= FIRST_PSEUDO_REGISTER
1294	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1295	  && can_copy_p (GET_MODE (dest))
1296	  /* GCSE commonly inserts instruction after the insn.  We can't
1297	     do that easily for EH edges so disable GCSE on these for now.  */
1298	  /* ??? We can now easily create new EH landing pads at the
1299	     gimple level, for splitting edges; there's no reason we
1300	     can't do the same thing at the rtl level.  */
1301	  && !can_throw_internal (insn)
1302	  /* Is SET_SRC something we want to gcse?  */
1303	  && want_to_gcse_p (src, &max_distance)
1304	  /* Don't CSE a nop.  */
1305	  && ! set_noop_p (set)
1306	  /* Don't GCSE if it has attached REG_EQUIV note.
1307	     At this point this only function parameters should have
1308	     REG_EQUIV notes and if the argument slot is used somewhere
1309	     explicitly, it means address of parameter has been taken,
1310	     so we should not extend the lifetime of the pseudo.  */
1311	  && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1312	{
1313	  /* An expression is not anticipatable if its operands are
1314	     modified before this insn or if this is not the only SET in
1315	     this insn.  The latter condition does not have to mean that
1316	     SRC itself is not anticipatable, but we just will not be
1317	     able to handle code motion of insns with multiple sets.  */
1318	  int antic_p = oprs_anticipatable_p (src, insn)
1319			&& !multiple_sets (insn);
1320	  /* An expression is not available if its operands are
1321	     subsequently modified, including this insn.  It's also not
1322	     available if this is a branch, because we can't insert
1323	     a set after the branch.  */
1324	  int avail_p = (oprs_available_p (src, insn)
1325			 && ! JUMP_P (insn));
1326
1327	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1328				max_distance, table);
1329	}
1330    }
1331  /* In case of store we want to consider the memory value as available in
1332     the REG stored in that memory. This makes it possible to remove
1333     redundant loads from due to stores to the same location.  */
1334  else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1335      {
1336        unsigned int regno = REGNO (src);
1337	int max_distance = 0;
1338
1339	/* Only record sets of pseudo-regs in the hash table.  */
1340        if (regno >= FIRST_PSEUDO_REGISTER
1341	   /* Don't GCSE something if we can't do a reg/reg copy.  */
1342	   && can_copy_p (GET_MODE (src))
1343	   /* GCSE commonly inserts instruction after the insn.  We can't
1344	      do that easily for EH edges so disable GCSE on these for now.  */
1345	   && !can_throw_internal (insn)
1346	   /* Is SET_DEST something we want to gcse?  */
1347	   && want_to_gcse_p (dest, &max_distance)
1348	   /* Don't CSE a nop.  */
1349	   && ! set_noop_p (set)
1350	   /* Don't GCSE if it has attached REG_EQUIV note.
1351	      At this point this only function parameters should have
1352	      REG_EQUIV notes and if the argument slot is used somewhere
1353	      explicitly, it means address of parameter has been taken,
1354	      so we should not extend the lifetime of the pseudo.  */
1355	   && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1356	       || ! MEM_P (XEXP (note, 0))))
1357             {
1358               /* Stores are never anticipatable.  */
1359               int antic_p = 0;
1360	       /* An expression is not available if its operands are
1361	          subsequently modified, including this insn.  It's also not
1362	          available if this is a branch, because we can't insert
1363	          a set after the branch.  */
1364               int avail_p = oprs_available_p (dest, insn)
1365			     && ! JUMP_P (insn);
1366
1367	       /* Record the memory expression (DEST) in the hash table.  */
1368	       insert_expr_in_table (dest, GET_MODE (dest), insn,
1369				     antic_p, avail_p, max_distance, table);
1370             }
1371      }
1372}
1373
1374static void
1375hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1376		   struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1377{
1378  /* Currently nothing to do.  */
1379}
1380
1381static void
1382hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1383		struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1384{
1385  /* Currently nothing to do.  */
1386}
1387
1388/* Process INSN and add hash table entries as appropriate.  */
1389
1390static void
1391hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1392{
1393  rtx pat = PATTERN (insn);
1394  int i;
1395
1396  /* Pick out the sets of INSN and for other forms of instructions record
1397     what's been modified.  */
1398
1399  if (GET_CODE (pat) == SET)
1400    hash_scan_set (pat, insn, table);
1401
1402  else if (GET_CODE (pat) == CLOBBER)
1403    hash_scan_clobber (pat, insn, table);
1404
1405  else if (GET_CODE (pat) == CALL)
1406    hash_scan_call (pat, insn, table);
1407
1408  else if (GET_CODE (pat) == PARALLEL)
1409    for (i = 0; i < XVECLEN (pat, 0); i++)
1410      {
1411	rtx x = XVECEXP (pat, 0, i);
1412
1413	if (GET_CODE (x) == SET)
1414	  hash_scan_set (x, insn, table);
1415	else if (GET_CODE (x) == CLOBBER)
1416	  hash_scan_clobber (x, insn, table);
1417	else if (GET_CODE (x) == CALL)
1418	  hash_scan_call (x, insn, table);
1419      }
1420}
1421
1422/* Dump the hash table TABLE to file FILE under the name NAME.  */
1423
1424static void
1425dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1426{
1427  int i;
1428  /* Flattened out table, so it's printed in proper order.  */
1429  struct gcse_expr **flat_table;
1430  unsigned int *hash_val;
1431  struct gcse_expr *expr;
1432
1433  flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1434  hash_val = XNEWVEC (unsigned int, table->n_elems);
1435
1436  for (i = 0; i < (int) table->size; i++)
1437    for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1438      {
1439	flat_table[expr->bitmap_index] = expr;
1440	hash_val[expr->bitmap_index] = i;
1441      }
1442
1443  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1444	   name, table->size, table->n_elems);
1445
1446  for (i = 0; i < (int) table->n_elems; i++)
1447    if (flat_table[i] != 0)
1448      {
1449	expr = flat_table[i];
1450	fprintf (file, "Index %d (hash value %d; max distance %d)\n  ",
1451		 expr->bitmap_index, hash_val[i], expr->max_distance);
1452	print_rtl (file, expr->expr);
1453	fprintf (file, "\n");
1454      }
1455
1456  fprintf (file, "\n");
1457
1458  free (flat_table);
1459  free (hash_val);
1460}
1461
1462/* Record register first/last/block set information for REGNO in INSN.
1463
1464   first_set records the first place in the block where the register
1465   is set and is used to compute "anticipatability".
1466
1467   last_set records the last place in the block where the register
1468   is set and is used to compute "availability".
1469
1470   last_bb records the block for which first_set and last_set are
1471   valid, as a quick test to invalidate them.  */
1472
1473static void
1474record_last_reg_set_info (rtx insn, int regno)
1475{
1476  struct reg_avail_info *info = &reg_avail_info[regno];
1477  int luid = DF_INSN_LUID (insn);
1478
1479  info->last_set = luid;
1480  if (info->last_bb != current_bb)
1481    {
1482      info->last_bb = current_bb;
1483      info->first_set = luid;
1484    }
1485}
1486
1487/* Record memory modification information for INSN.  We do not actually care
1488   about the memory location(s) that are set, or even how they are set (consider
1489   a CALL_INSN).  We merely need to record which insns modify memory.  */
1490
1491static void
1492record_last_mem_set_info (rtx_insn *insn)
1493{
1494  if (! flag_gcse_lm)
1495    return;
1496
1497  record_last_mem_set_info_common (insn, modify_mem_list,
1498				   canon_modify_mem_list,
1499				   modify_mem_list_set,
1500				   blocks_with_calls);
1501}
1502
1503/* Called from compute_hash_table via note_stores to handle one
1504   SET or CLOBBER in an insn.  DATA is really the instruction in which
1505   the SET is taking place.  */
1506
1507static void
1508record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1509{
1510  rtx_insn *last_set_insn = (rtx_insn *) data;
1511
1512  if (GET_CODE (dest) == SUBREG)
1513    dest = SUBREG_REG (dest);
1514
1515  if (REG_P (dest))
1516    record_last_reg_set_info (last_set_insn, REGNO (dest));
1517  else if (MEM_P (dest)
1518	   /* Ignore pushes, they clobber nothing.  */
1519	   && ! push_operand (dest, GET_MODE (dest)))
1520    record_last_mem_set_info (last_set_insn);
1521}
1522
1523/* Top level function to create an expression hash table.
1524
1525   Expression entries are placed in the hash table if
1526   - they are of the form (set (pseudo-reg) src),
1527   - src is something we want to perform GCSE on,
1528   - none of the operands are subsequently modified in the block
1529
1530   Currently src must be a pseudo-reg or a const_int.
1531
1532   TABLE is the table computed.  */
1533
1534static void
1535compute_hash_table_work (struct gcse_hash_table_d *table)
1536{
1537  int i;
1538
1539  /* re-Cache any INSN_LIST nodes we have allocated.  */
1540  clear_modify_mem_tables ();
1541  /* Some working arrays used to track first and last set in each block.  */
1542  reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1543
1544  for (i = 0; i < max_reg_num (); ++i)
1545    reg_avail_info[i].last_bb = NULL;
1546
1547  FOR_EACH_BB_FN (current_bb, cfun)
1548    {
1549      rtx_insn *insn;
1550      unsigned int regno;
1551
1552      /* First pass over the instructions records information used to
1553	 determine when registers and memory are first and last set.  */
1554      FOR_BB_INSNS (current_bb, insn)
1555	{
1556	  if (!NONDEBUG_INSN_P (insn))
1557	    continue;
1558
1559	  if (CALL_P (insn))
1560	    {
1561	      hard_reg_set_iterator hrsi;
1562	      EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1563					      0, regno, hrsi)
1564		record_last_reg_set_info (insn, regno);
1565
1566	      if (! RTL_CONST_OR_PURE_CALL_P (insn))
1567		record_last_mem_set_info (insn);
1568	    }
1569
1570	  note_stores (PATTERN (insn), record_last_set_info, insn);
1571	}
1572
1573      /* The next pass builds the hash table.  */
1574      FOR_BB_INSNS (current_bb, insn)
1575	if (NONDEBUG_INSN_P (insn))
1576	  hash_scan_insn (insn, table);
1577    }
1578
1579  free (reg_avail_info);
1580  reg_avail_info = NULL;
1581}
1582
1583/* Allocate space for the set/expr hash TABLE.
1584   It is used to determine the number of buckets to use.  */
1585
1586static void
1587alloc_hash_table (struct gcse_hash_table_d *table)
1588{
1589  int n;
1590
1591  n = get_max_insn_count ();
1592
1593  table->size = n / 4;
1594  if (table->size < 11)
1595    table->size = 11;
1596
1597  /* Attempt to maintain efficient use of hash table.
1598     Making it an odd number is simplest for now.
1599     ??? Later take some measurements.  */
1600  table->size |= 1;
1601  n = table->size * sizeof (struct gcse_expr *);
1602  table->table = GNEWVAR (struct gcse_expr *, n);
1603}
1604
1605/* Free things allocated by alloc_hash_table.  */
1606
1607static void
1608free_hash_table (struct gcse_hash_table_d *table)
1609{
1610  free (table->table);
1611}
1612
1613/* Compute the expression hash table TABLE.  */
1614
1615static void
1616compute_hash_table (struct gcse_hash_table_d *table)
1617{
1618  /* Initialize count of number of entries in hash table.  */
1619  table->n_elems = 0;
1620  memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1621
1622  compute_hash_table_work (table);
1623}
1624
1625/* Expression tracking support.  */
1626
1627/* Clear canon_modify_mem_list and modify_mem_list tables.  */
1628static void
1629clear_modify_mem_tables (void)
1630{
1631  unsigned i;
1632  bitmap_iterator bi;
1633
1634  EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1635    {
1636      modify_mem_list[i].release ();
1637      canon_modify_mem_list[i].release ();
1638    }
1639  bitmap_clear (modify_mem_list_set);
1640  bitmap_clear (blocks_with_calls);
1641}
1642
1643/* Release memory used by modify_mem_list_set.  */
1644
1645static void
1646free_modify_mem_tables (void)
1647{
1648  clear_modify_mem_tables ();
1649  free (modify_mem_list);
1650  free (canon_modify_mem_list);
1651  modify_mem_list = 0;
1652  canon_modify_mem_list = 0;
1653}
1654
1655/* Compute PRE+LCM working variables.  */
1656
1657/* Local properties of expressions.  */
1658
1659/* Nonzero for expressions that are transparent in the block.  */
1660static sbitmap *transp;
1661
1662/* Nonzero for expressions that are computed (available) in the block.  */
1663static sbitmap *comp;
1664
1665/* Nonzero for expressions that are locally anticipatable in the block.  */
1666static sbitmap *antloc;
1667
1668/* Nonzero for expressions where this block is an optimal computation
1669   point.  */
1670static sbitmap *pre_optimal;
1671
1672/* Nonzero for expressions which are redundant in a particular block.  */
1673static sbitmap *pre_redundant;
1674
1675/* Nonzero for expressions which should be inserted on a specific edge.  */
1676static sbitmap *pre_insert_map;
1677
1678/* Nonzero for expressions which should be deleted in a specific block.  */
1679static sbitmap *pre_delete_map;
1680
1681/* Allocate vars used for PRE analysis.  */
1682
1683static void
1684alloc_pre_mem (int n_blocks, int n_exprs)
1685{
1686  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1687  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1688  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1689
1690  pre_optimal = NULL;
1691  pre_redundant = NULL;
1692  pre_insert_map = NULL;
1693  pre_delete_map = NULL;
1694  ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1695
1696  /* pre_insert and pre_delete are allocated later.  */
1697}
1698
1699/* Free vars used for PRE analysis.  */
1700
1701static void
1702free_pre_mem (void)
1703{
1704  sbitmap_vector_free (transp);
1705  sbitmap_vector_free (comp);
1706
1707  /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
1708
1709  if (pre_optimal)
1710    sbitmap_vector_free (pre_optimal);
1711  if (pre_redundant)
1712    sbitmap_vector_free (pre_redundant);
1713  if (pre_insert_map)
1714    sbitmap_vector_free (pre_insert_map);
1715  if (pre_delete_map)
1716    sbitmap_vector_free (pre_delete_map);
1717
1718  transp = comp = NULL;
1719  pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1720}
1721
1722/* Remove certain expressions from anticipatable and transparent
1723   sets of basic blocks that have incoming abnormal edge.
1724   For PRE remove potentially trapping expressions to avoid placing
1725   them on abnormal edges.  For hoisting remove memory references that
1726   can be clobbered by calls.  */
1727
1728static void
1729prune_expressions (bool pre_p)
1730{
1731  sbitmap prune_exprs;
1732  struct gcse_expr *expr;
1733  unsigned int ui;
1734  basic_block bb;
1735
1736  prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1737  bitmap_clear (prune_exprs);
1738  for (ui = 0; ui < expr_hash_table.size; ui++)
1739    {
1740      for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1741	{
1742	  /* Note potentially trapping expressions.  */
1743	  if (may_trap_p (expr->expr))
1744	    {
1745	      bitmap_set_bit (prune_exprs, expr->bitmap_index);
1746	      continue;
1747	    }
1748
1749	  if (!pre_p && MEM_P (expr->expr))
1750	    /* Note memory references that can be clobbered by a call.
1751	       We do not split abnormal edges in hoisting, so would
1752	       a memory reference get hoisted along an abnormal edge,
1753	       it would be placed /before/ the call.  Therefore, only
1754	       constant memory references can be hoisted along abnormal
1755	       edges.  */
1756	    {
1757	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1758		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1759		continue;
1760
1761	      if (MEM_READONLY_P (expr->expr)
1762		  && !MEM_VOLATILE_P (expr->expr)
1763		  && MEM_NOTRAP_P (expr->expr))
1764		/* Constant memory reference, e.g., a PIC address.  */
1765		continue;
1766
1767	      /* ??? Optimally, we would use interprocedural alias
1768		 analysis to determine if this mem is actually killed
1769		 by this call.  */
1770
1771	      bitmap_set_bit (prune_exprs, expr->bitmap_index);
1772	    }
1773	}
1774    }
1775
1776  FOR_EACH_BB_FN (bb, cfun)
1777    {
1778      edge e;
1779      edge_iterator ei;
1780
1781      /* If the current block is the destination of an abnormal edge, we
1782	 kill all trapping (for PRE) and memory (for hoist) expressions
1783	 because we won't be able to properly place the instruction on
1784	 the edge.  So make them neither anticipatable nor transparent.
1785	 This is fairly conservative.
1786
1787	 ??? For hoisting it may be necessary to check for set-and-jump
1788	 instructions here, not just for abnormal edges.  The general problem
1789	 is that when an expression cannot not be placed right at the end of
1790	 a basic block we should account for any side-effects of a subsequent
1791	 jump instructions that could clobber the expression.  It would
1792	 be best to implement this check along the lines of
1793	 should_hoist_expr_to_dom where the target block is already known
1794	 and, hence, there's no need to conservatively prune expressions on
1795	 "intermediate" set-and-jump instructions.  */
1796      FOR_EACH_EDGE (e, ei, bb->preds)
1797	if ((e->flags & EDGE_ABNORMAL)
1798	    && (pre_p || CALL_P (BB_END (e->src))))
1799	  {
1800	    bitmap_and_compl (antloc[bb->index],
1801				antloc[bb->index], prune_exprs);
1802	    bitmap_and_compl (transp[bb->index],
1803				transp[bb->index], prune_exprs);
1804	    break;
1805	  }
1806    }
1807
1808  sbitmap_free (prune_exprs);
1809}
1810
1811/* It may be necessary to insert a large number of insns on edges to
1812   make the existing occurrences of expressions fully redundant.  This
1813   routine examines the set of insertions and deletions and if the ratio
1814   of insertions to deletions is too high for a particular expression, then
1815   the expression is removed from the insertion/deletion sets.
1816
1817   N_ELEMS is the number of elements in the hash table.  */
1818
1819static void
1820prune_insertions_deletions (int n_elems)
1821{
1822  sbitmap_iterator sbi;
1823  sbitmap prune_exprs;
1824
1825  /* We always use I to iterate over blocks/edges and J to iterate over
1826     expressions.  */
1827  unsigned int i, j;
1828
1829  /* Counts for the number of times an expression needs to be inserted and
1830     number of times an expression can be removed as a result.  */
1831  int *insertions = GCNEWVEC (int, n_elems);
1832  int *deletions = GCNEWVEC (int, n_elems);
1833
1834  /* Set of expressions which require too many insertions relative to
1835     the number of deletions achieved.  We will prune these out of the
1836     insertion/deletion sets.  */
1837  prune_exprs = sbitmap_alloc (n_elems);
1838  bitmap_clear (prune_exprs);
1839
1840  /* Iterate over the edges counting the number of times each expression
1841     needs to be inserted.  */
1842  for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1843    {
1844      EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1845	insertions[j]++;
1846    }
1847
1848  /* Similarly for deletions, but those occur in blocks rather than on
1849     edges.  */
1850  for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1851    {
1852      EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1853	deletions[j]++;
1854    }
1855
1856  /* Now that we have accurate counts, iterate over the elements in the
1857     hash table and see if any need too many insertions relative to the
1858     number of evaluations that can be removed.  If so, mark them in
1859     PRUNE_EXPRS.  */
1860  for (j = 0; j < (unsigned) n_elems; j++)
1861    if (deletions[j]
1862	&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1863      bitmap_set_bit (prune_exprs, j);
1864
1865  /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS.  */
1866  EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1867    {
1868      for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1869	bitmap_clear_bit (pre_insert_map[i], j);
1870
1871      for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1872	bitmap_clear_bit (pre_delete_map[i], j);
1873    }
1874
1875  sbitmap_free (prune_exprs);
1876  free (insertions);
1877  free (deletions);
1878}
1879
1880/* Top level routine to do the dataflow analysis needed by PRE.  */
1881
1882static struct edge_list *
1883compute_pre_data (void)
1884{
1885  struct edge_list *edge_list;
1886  basic_block bb;
1887
1888  compute_local_properties (transp, comp, antloc, &expr_hash_table);
1889  prune_expressions (true);
1890  bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1891
1892  /* Compute ae_kill for each basic block using:
1893
1894     ~(TRANSP | COMP)
1895  */
1896
1897  FOR_EACH_BB_FN (bb, cfun)
1898    {
1899      bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1900      bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1901    }
1902
1903  edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1904			    ae_kill, &pre_insert_map, &pre_delete_map);
1905  sbitmap_vector_free (antloc);
1906  antloc = NULL;
1907  sbitmap_vector_free (ae_kill);
1908  ae_kill = NULL;
1909
1910  prune_insertions_deletions (expr_hash_table.n_elems);
1911
1912  return edge_list;
1913}
1914
1915/* PRE utilities */
1916
1917/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1918   block BB.
1919
1920   VISITED is a pointer to a working buffer for tracking which BB's have
1921   been visited.  It is NULL for the top-level call.
1922
1923   We treat reaching expressions that go through blocks containing the same
1924   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
1925   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1926   2 as not reaching.  The intent is to improve the probability of finding
1927   only one reaching expression and to reduce register lifetimes by picking
1928   the closest such expression.  */
1929
1930static int
1931pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1932			      basic_block bb, char *visited)
1933{
1934  edge pred;
1935  edge_iterator ei;
1936
1937  FOR_EACH_EDGE (pred, ei, bb->preds)
1938    {
1939      basic_block pred_bb = pred->src;
1940
1941      if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1942	  /* Has predecessor has already been visited?  */
1943	  || visited[pred_bb->index])
1944	;/* Nothing to do.  */
1945
1946      /* Does this predecessor generate this expression?  */
1947      else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1948	{
1949	  /* Is this the occurrence we're looking for?
1950	     Note that there's only one generating occurrence per block
1951	     so we just need to check the block number.  */
1952	  if (occr_bb == pred_bb)
1953	    return 1;
1954
1955	  visited[pred_bb->index] = 1;
1956	}
1957      /* Ignore this predecessor if it kills the expression.  */
1958      else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1959	visited[pred_bb->index] = 1;
1960
1961      /* Neither gen nor kill.  */
1962      else
1963	{
1964	  visited[pred_bb->index] = 1;
1965	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1966	    return 1;
1967	}
1968    }
1969
1970  /* All paths have been checked.  */
1971  return 0;
1972}
1973
1974/* The wrapper for pre_expr_reaches_here_work that ensures that any
1975   memory allocated for that function is returned.  */
1976
1977static int
1978pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1979{
1980  int rval;
1981  char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1982
1983  rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1984
1985  free (visited);
1986  return rval;
1987}
1988
1989/* Generate RTL to copy an EXPR to its `reaching_reg' and return it.  */
1990
1991static rtx_insn *
1992process_insert_insn (struct gcse_expr *expr)
1993{
1994  rtx reg = expr->reaching_reg;
1995  /* Copy the expression to make sure we don't have any sharing issues.  */
1996  rtx exp = copy_rtx (expr->expr);
1997  rtx_insn *pat;
1998
1999  start_sequence ();
2000
2001  /* If the expression is something that's an operand, like a constant,
2002     just copy it to a register.  */
2003  if (general_operand (exp, GET_MODE (reg)))
2004    emit_move_insn (reg, exp);
2005
2006  /* Otherwise, make a new insn to compute this expression and make sure the
2007     insn will be recognized (this also adds any needed CLOBBERs).  */
2008  else
2009    {
2010      rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2011
2012      if (insn_invalid_p (insn, false))
2013	gcc_unreachable ();
2014    }
2015
2016  pat = get_insns ();
2017  end_sequence ();
2018
2019  return pat;
2020}
2021
2022/* Add EXPR to the end of basic block BB.
2023
2024   This is used by both the PRE and code hoisting.  */
2025
2026static void
2027insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2028{
2029  rtx_insn *insn = BB_END (bb);
2030  rtx_insn *new_insn;
2031  rtx reg = expr->reaching_reg;
2032  int regno = REGNO (reg);
2033  rtx_insn *pat, *pat_end;
2034
2035  pat = process_insert_insn (expr);
2036  gcc_assert (pat && INSN_P (pat));
2037
2038  pat_end = pat;
2039  while (NEXT_INSN (pat_end) != NULL_RTX)
2040    pat_end = NEXT_INSN (pat_end);
2041
2042  /* If the last insn is a jump, insert EXPR in front [taking care to
2043     handle cc0, etc. properly].  Similarly we need to care trapping
2044     instructions in presence of non-call exceptions.  */
2045
2046  if (JUMP_P (insn)
2047      || (NONJUMP_INSN_P (insn)
2048	  && (!single_succ_p (bb)
2049	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2050    {
2051#ifdef HAVE_cc0
2052      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2053	 if cc0 isn't set.  */
2054      rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2055      if (note)
2056	insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2057      else
2058	{
2059	  rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2060	  if (maybe_cc0_setter
2061	      && INSN_P (maybe_cc0_setter)
2062	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2063	    insn = maybe_cc0_setter;
2064	}
2065#endif
2066      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
2067      new_insn = emit_insn_before_noloc (pat, insn, bb);
2068    }
2069
2070  /* Likewise if the last insn is a call, as will happen in the presence
2071     of exception handling.  */
2072  else if (CALL_P (insn)
2073	   && (!single_succ_p (bb)
2074	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2075    {
2076      /* Keeping in mind targets with small register classes and parameters
2077         in registers, we search backward and place the instructions before
2078	 the first parameter is loaded.  Do this for everyone for consistency
2079	 and a presumption that we'll get better code elsewhere as well.  */
2080
2081      /* Since different machines initialize their parameter registers
2082	 in different orders, assume nothing.  Collect the set of all
2083	 parameter registers.  */
2084      insn = find_first_parameter_load (insn, BB_HEAD (bb));
2085
2086      /* If we found all the parameter loads, then we want to insert
2087	 before the first parameter load.
2088
2089	 If we did not find all the parameter loads, then we might have
2090	 stopped on the head of the block, which could be a CODE_LABEL.
2091	 If we inserted before the CODE_LABEL, then we would be putting
2092	 the insn in the wrong basic block.  In that case, put the insn
2093	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
2094      while (LABEL_P (insn)
2095	     || NOTE_INSN_BASIC_BLOCK_P (insn))
2096	insn = NEXT_INSN (insn);
2097
2098      new_insn = emit_insn_before_noloc (pat, insn, bb);
2099    }
2100  else
2101    new_insn = emit_insn_after_noloc (pat, insn, bb);
2102
2103  while (1)
2104    {
2105      if (INSN_P (pat))
2106	add_label_notes (PATTERN (pat), new_insn);
2107      if (pat == pat_end)
2108	break;
2109      pat = NEXT_INSN (pat);
2110    }
2111
2112  gcse_create_count++;
2113
2114  if (dump_file)
2115    {
2116      fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2117	       bb->index, INSN_UID (new_insn));
2118      fprintf (dump_file, "copying expression %d to reg %d\n",
2119	       expr->bitmap_index, regno);
2120    }
2121}
2122
2123/* Insert partially redundant expressions on edges in the CFG to make
2124   the expressions fully redundant.  */
2125
2126static int
2127pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2128{
2129  int e, i, j, num_edges, set_size, did_insert = 0;
2130  sbitmap *inserted;
2131
2132  /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2133     if it reaches any of the deleted expressions.  */
2134
2135  set_size = pre_insert_map[0]->size;
2136  num_edges = NUM_EDGES (edge_list);
2137  inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2138  bitmap_vector_clear (inserted, num_edges);
2139
2140  for (e = 0; e < num_edges; e++)
2141    {
2142      int indx;
2143      basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2144
2145      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2146	{
2147	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2148
2149	  for (j = indx;
2150	       insert && j < (int) expr_hash_table.n_elems;
2151	       j++, insert >>= 1)
2152	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2153	      {
2154		struct gcse_expr *expr = index_map[j];
2155		struct gcse_occr *occr;
2156
2157		/* Now look at each deleted occurrence of this expression.  */
2158		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2159		  {
2160		    if (! occr->deleted_p)
2161		      continue;
2162
2163		    /* Insert this expression on this edge if it would
2164		       reach the deleted occurrence in BB.  */
2165		    if (!bitmap_bit_p (inserted[e], j))
2166		      {
2167			rtx_insn *insn;
2168			edge eg = INDEX_EDGE (edge_list, e);
2169
2170			/* We can't insert anything on an abnormal and
2171			   critical edge, so we insert the insn at the end of
2172			   the previous block. There are several alternatives
2173			   detailed in Morgans book P277 (sec 10.5) for
2174			   handling this situation.  This one is easiest for
2175			   now.  */
2176
2177			if (eg->flags & EDGE_ABNORMAL)
2178			  insert_insn_end_basic_block (index_map[j], bb);
2179			else
2180			  {
2181			    insn = process_insert_insn (index_map[j]);
2182			    insert_insn_on_edge (insn, eg);
2183			  }
2184
2185			if (dump_file)
2186			  {
2187			    fprintf (dump_file, "PRE: edge (%d,%d), ",
2188				     bb->index,
2189				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2190			    fprintf (dump_file, "copy expression %d\n",
2191				     expr->bitmap_index);
2192			  }
2193
2194			update_ld_motion_stores (expr);
2195			bitmap_set_bit (inserted[e], j);
2196			did_insert = 1;
2197			gcse_create_count++;
2198		      }
2199		  }
2200	      }
2201	}
2202    }
2203
2204  sbitmap_vector_free (inserted);
2205  return did_insert;
2206}
2207
2208/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2209   Given "old_reg <- expr" (INSN), instead of adding after it
2210     reaching_reg <- old_reg
2211   it's better to do the following:
2212     reaching_reg <- expr
2213     old_reg      <- reaching_reg
2214   because this way copy propagation can discover additional PRE
2215   opportunities.  But if this fails, we try the old way.
2216   When "expr" is a store, i.e.
2217   given "MEM <- old_reg", instead of adding after it
2218     reaching_reg <- old_reg
2219   it's better to add it before as follows:
2220     reaching_reg <- old_reg
2221     MEM          <- reaching_reg.  */
2222
2223static void
2224pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2225{
2226  rtx reg = expr->reaching_reg;
2227  int regno = REGNO (reg);
2228  int indx = expr->bitmap_index;
2229  rtx pat = PATTERN (insn);
2230  rtx set, first_set, new_insn;
2231  rtx old_reg;
2232  int i;
2233
2234  /* This block matches the logic in hash_scan_insn.  */
2235  switch (GET_CODE (pat))
2236    {
2237    case SET:
2238      set = pat;
2239      break;
2240
2241    case PARALLEL:
2242      /* Search through the parallel looking for the set whose
2243	 source was the expression that we're interested in.  */
2244      first_set = NULL_RTX;
2245      set = NULL_RTX;
2246      for (i = 0; i < XVECLEN (pat, 0); i++)
2247	{
2248	  rtx x = XVECEXP (pat, 0, i);
2249	  if (GET_CODE (x) == SET)
2250	    {
2251	      /* If the source was a REG_EQUAL or REG_EQUIV note, we
2252		 may not find an equivalent expression, but in this
2253		 case the PARALLEL will have a single set.  */
2254	      if (first_set == NULL_RTX)
2255		first_set = x;
2256	      if (expr_equiv_p (SET_SRC (x), expr->expr))
2257	        {
2258	          set = x;
2259	          break;
2260	        }
2261	    }
2262	}
2263
2264      gcc_assert (first_set);
2265      if (set == NULL_RTX)
2266        set = first_set;
2267      break;
2268
2269    default:
2270      gcc_unreachable ();
2271    }
2272
2273  if (REG_P (SET_DEST (set)))
2274    {
2275      old_reg = SET_DEST (set);
2276      /* Check if we can modify the set destination in the original insn.  */
2277      if (validate_change (insn, &SET_DEST (set), reg, 0))
2278        {
2279          new_insn = gen_move_insn (old_reg, reg);
2280          new_insn = emit_insn_after (new_insn, insn);
2281        }
2282      else
2283        {
2284          new_insn = gen_move_insn (reg, old_reg);
2285          new_insn = emit_insn_after (new_insn, insn);
2286        }
2287    }
2288  else /* This is possible only in case of a store to memory.  */
2289    {
2290      old_reg = SET_SRC (set);
2291      new_insn = gen_move_insn (reg, old_reg);
2292
2293      /* Check if we can modify the set source in the original insn.  */
2294      if (validate_change (insn, &SET_SRC (set), reg, 0))
2295        new_insn = emit_insn_before (new_insn, insn);
2296      else
2297        new_insn = emit_insn_after (new_insn, insn);
2298    }
2299
2300  gcse_create_count++;
2301
2302  if (dump_file)
2303    fprintf (dump_file,
2304	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2305	      BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2306	      INSN_UID (insn), regno);
2307}
2308
2309/* Copy available expressions that reach the redundant expression
2310   to `reaching_reg'.  */
2311
2312static void
2313pre_insert_copies (void)
2314{
2315  unsigned int i, added_copy;
2316  struct gcse_expr *expr;
2317  struct gcse_occr *occr;
2318  struct gcse_occr *avail;
2319
2320  /* For each available expression in the table, copy the result to
2321     `reaching_reg' if the expression reaches a deleted one.
2322
2323     ??? The current algorithm is rather brute force.
2324     Need to do some profiling.  */
2325
2326  for (i = 0; i < expr_hash_table.size; i++)
2327    for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2328      {
2329	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
2330	   we don't want to insert a copy here because the expression may not
2331	   really be redundant.  So only insert an insn if the expression was
2332	   deleted.  This test also avoids further processing if the
2333	   expression wasn't deleted anywhere.  */
2334	if (expr->reaching_reg == NULL)
2335	  continue;
2336
2337	/* Set when we add a copy for that expression.  */
2338	added_copy = 0;
2339
2340	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2341	  {
2342	    if (! occr->deleted_p)
2343	      continue;
2344
2345	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2346	      {
2347		rtx_insn *insn = avail->insn;
2348
2349		/* No need to handle this one if handled already.  */
2350		if (avail->copied_p)
2351		  continue;
2352
2353		/* Don't handle this one if it's a redundant one.  */
2354		if (insn->deleted ())
2355		  continue;
2356
2357		/* Or if the expression doesn't reach the deleted one.  */
2358		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2359					       expr,
2360					       BLOCK_FOR_INSN (occr->insn)))
2361		  continue;
2362
2363                added_copy = 1;
2364
2365		/* Copy the result of avail to reaching_reg.  */
2366		pre_insert_copy_insn (expr, insn);
2367		avail->copied_p = 1;
2368	      }
2369	  }
2370
2371	  if (added_copy)
2372            update_ld_motion_stores (expr);
2373      }
2374}
2375
2376struct set_data
2377{
2378  rtx_insn *insn;
2379  const_rtx set;
2380  int nsets;
2381};
2382
2383/* Increment number of sets and record set in DATA.  */
2384
2385static void
2386record_set_data (rtx dest, const_rtx set, void *data)
2387{
2388  struct set_data *s = (struct set_data *)data;
2389
2390  if (GET_CODE (set) == SET)
2391    {
2392      /* We allow insns having multiple sets, where all but one are
2393	 dead as single set insns.  In the common case only a single
2394	 set is present, so we want to avoid checking for REG_UNUSED
2395	 notes unless necessary.  */
2396      if (s->nsets == 1
2397	  && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2398	  && !side_effects_p (s->set))
2399	s->nsets = 0;
2400
2401      if (!s->nsets)
2402	{
2403	  /* Record this set.  */
2404	  s->nsets += 1;
2405	  s->set = set;
2406	}
2407      else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2408	       || side_effects_p (set))
2409	s->nsets += 1;
2410    }
2411}
2412
2413static const_rtx
2414single_set_gcse (rtx_insn *insn)
2415{
2416  struct set_data s;
2417  rtx pattern;
2418
2419  gcc_assert (INSN_P (insn));
2420
2421  /* Optimize common case.  */
2422  pattern = PATTERN (insn);
2423  if (GET_CODE (pattern) == SET)
2424    return pattern;
2425
2426  s.insn = insn;
2427  s.nsets = 0;
2428  note_stores (pattern, record_set_data, &s);
2429
2430  /* Considered invariant insns have exactly one set.  */
2431  gcc_assert (s.nsets == 1);
2432  return s.set;
2433}
2434
2435/* Emit move from SRC to DEST noting the equivalence with expression computed
2436   in INSN.  */
2437
2438static rtx
2439gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2440{
2441  rtx_insn *new_rtx;
2442  const_rtx set = single_set_gcse (insn);
2443  rtx set2;
2444  rtx note;
2445  rtx eqv = NULL_RTX;
2446
2447  /* This should never fail since we're creating a reg->reg copy
2448     we've verified to be valid.  */
2449
2450  new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2451
2452  /* Note the equivalence for local CSE pass.  Take the note from the old
2453     set if there was one.  Otherwise record the SET_SRC from the old set
2454     unless DEST is also an operand of the SET_SRC.  */
2455  set2 = single_set (new_rtx);
2456  if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2457    return new_rtx;
2458  if ((note = find_reg_equal_equiv_note (insn)))
2459    eqv = XEXP (note, 0);
2460  else if (! REG_P (dest)
2461	   || ! reg_mentioned_p (dest, SET_SRC (set)))
2462    eqv = SET_SRC (set);
2463
2464  if (eqv != NULL_RTX)
2465    set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2466
2467  return new_rtx;
2468}
2469
2470/* Delete redundant computations.
2471   Deletion is done by changing the insn to copy the `reaching_reg' of
2472   the expression into the result of the SET.  It is left to later passes
2473   to propagate the copy or eliminate it.
2474
2475   Return nonzero if a change is made.  */
2476
2477static int
2478pre_delete (void)
2479{
2480  unsigned int i;
2481  int changed;
2482  struct gcse_expr *expr;
2483  struct gcse_occr *occr;
2484
2485  changed = 0;
2486  for (i = 0; i < expr_hash_table.size; i++)
2487    for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2488      {
2489	int indx = expr->bitmap_index;
2490
2491	/* We only need to search antic_occr since we require ANTLOC != 0.  */
2492	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2493	  {
2494	    rtx_insn *insn = occr->insn;
2495	    rtx set;
2496	    basic_block bb = BLOCK_FOR_INSN (insn);
2497
2498	    /* We only delete insns that have a single_set.  */
2499	    if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2500		&& (set = single_set (insn)) != 0
2501                && dbg_cnt (pre_insn))
2502	      {
2503		/* Create a pseudo-reg to store the result of reaching
2504		   expressions into.  Get the mode for the new pseudo from
2505		   the mode of the original destination pseudo.  */
2506		if (expr->reaching_reg == NULL)
2507		  expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2508
2509		gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2510		delete_insn (insn);
2511		occr->deleted_p = 1;
2512		changed = 1;
2513		gcse_subst_count++;
2514
2515		if (dump_file)
2516		  {
2517		    fprintf (dump_file,
2518			     "PRE: redundant insn %d (expression %d) in ",
2519			       INSN_UID (insn), indx);
2520		    fprintf (dump_file, "bb %d, reaching reg is %d\n",
2521			     bb->index, REGNO (expr->reaching_reg));
2522		  }
2523	      }
2524	  }
2525      }
2526
2527  return changed;
2528}
2529
2530/* Perform GCSE optimizations using PRE.
2531   This is called by one_pre_gcse_pass after all the dataflow analysis
2532   has been done.
2533
2534   This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2535   lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2536   Compiler Design and Implementation.
2537
2538   ??? A new pseudo reg is created to hold the reaching expression.  The nice
2539   thing about the classical approach is that it would try to use an existing
2540   reg.  If the register can't be adequately optimized [i.e. we introduce
2541   reload problems], one could add a pass here to propagate the new register
2542   through the block.
2543
2544   ??? We don't handle single sets in PARALLELs because we're [currently] not
2545   able to copy the rest of the parallel when we insert copies to create full
2546   redundancies from partial redundancies.  However, there's no reason why we
2547   can't handle PARALLELs in the cases where there are no partial
2548   redundancies.  */
2549
2550static int
2551pre_gcse (struct edge_list *edge_list)
2552{
2553  unsigned int i;
2554  int did_insert, changed;
2555  struct gcse_expr **index_map;
2556  struct gcse_expr *expr;
2557
2558  /* Compute a mapping from expression number (`bitmap_index') to
2559     hash table entry.  */
2560
2561  index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2562  for (i = 0; i < expr_hash_table.size; i++)
2563    for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2564      index_map[expr->bitmap_index] = expr;
2565
2566  /* Delete the redundant insns first so that
2567     - we know what register to use for the new insns and for the other
2568       ones with reaching expressions
2569     - we know which insns are redundant when we go to create copies  */
2570
2571  changed = pre_delete ();
2572  did_insert = pre_edge_insert (edge_list, index_map);
2573
2574  /* In other places with reaching expressions, copy the expression to the
2575     specially allocated pseudo-reg that reaches the redundant expr.  */
2576  pre_insert_copies ();
2577  if (did_insert)
2578    {
2579      commit_edge_insertions ();
2580      changed = 1;
2581    }
2582
2583  free (index_map);
2584  return changed;
2585}
2586
2587/* Top level routine to perform one PRE GCSE pass.
2588
2589   Return nonzero if a change was made.  */
2590
2591static int
2592one_pre_gcse_pass (void)
2593{
2594  int changed = 0;
2595
2596  gcse_subst_count = 0;
2597  gcse_create_count = 0;
2598
2599  /* Return if there's nothing to do, or it is too expensive.  */
2600  if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2601      || is_too_expensive (_("PRE disabled")))
2602    return 0;
2603
2604  /* We need alias.  */
2605  init_alias_analysis ();
2606
2607  bytes_used = 0;
2608  gcc_obstack_init (&gcse_obstack);
2609  alloc_gcse_mem ();
2610
2611  alloc_hash_table (&expr_hash_table);
2612  add_noreturn_fake_exit_edges ();
2613  if (flag_gcse_lm)
2614    compute_ld_motion_mems ();
2615
2616  compute_hash_table (&expr_hash_table);
2617  if (flag_gcse_lm)
2618    trim_ld_motion_mems ();
2619  if (dump_file)
2620    dump_hash_table (dump_file, "Expression", &expr_hash_table);
2621
2622  if (expr_hash_table.n_elems > 0)
2623    {
2624      struct edge_list *edge_list;
2625      alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2626      edge_list = compute_pre_data ();
2627      changed |= pre_gcse (edge_list);
2628      free_edge_list (edge_list);
2629      free_pre_mem ();
2630    }
2631
2632  if (flag_gcse_lm)
2633    free_ld_motion_mems ();
2634  remove_fake_exit_edges ();
2635  free_hash_table (&expr_hash_table);
2636
2637  free_gcse_mem ();
2638  obstack_free (&gcse_obstack, NULL);
2639
2640  /* We are finished with alias.  */
2641  end_alias_analysis ();
2642
2643  if (dump_file)
2644    {
2645      fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2646	       current_function_name (), n_basic_blocks_for_fn (cfun),
2647	       bytes_used);
2648      fprintf (dump_file, "%d substs, %d insns created\n",
2649	       gcse_subst_count, gcse_create_count);
2650    }
2651
2652  return changed;
2653}
2654
2655/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2656   to INSN.  If such notes are added to an insn which references a
2657   CODE_LABEL, the LABEL_NUSES count is incremented.  We have to add
2658   that note, because the following loop optimization pass requires
2659   them.  */
2660
2661/* ??? If there was a jump optimization pass after gcse and before loop,
2662   then we would not need to do this here, because jump would add the
2663   necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes.  */
2664
2665static void
2666add_label_notes (rtx x, rtx insn)
2667{
2668  enum rtx_code code = GET_CODE (x);
2669  int i, j;
2670  const char *fmt;
2671
2672  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2673    {
2674      /* This code used to ignore labels that referred to dispatch tables to
2675	 avoid flow generating (slightly) worse code.
2676
2677	 We no longer ignore such label references (see LABEL_REF handling in
2678	 mark_jump_label for additional information).  */
2679
2680      /* There's no reason for current users to emit jump-insns with
2681	 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2682	 notes.  */
2683      gcc_assert (!JUMP_P (insn));
2684      add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2685
2686      if (LABEL_P (LABEL_REF_LABEL (x)))
2687	LABEL_NUSES (LABEL_REF_LABEL (x))++;
2688
2689      return;
2690    }
2691
2692  for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2693    {
2694      if (fmt[i] == 'e')
2695	add_label_notes (XEXP (x, i), insn);
2696      else if (fmt[i] == 'E')
2697	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2698	  add_label_notes (XVECEXP (x, i, j), insn);
2699    }
2700}
2701
2702/* Code Hoisting variables and subroutines.  */
2703
2704/* Very busy expressions.  */
2705static sbitmap *hoist_vbein;
2706static sbitmap *hoist_vbeout;
2707
2708/* ??? We could compute post dominators and run this algorithm in
2709   reverse to perform tail merging, doing so would probably be
2710   more effective than the tail merging code in jump.c.
2711
2712   It's unclear if tail merging could be run in parallel with
2713   code hoisting.  It would be nice.  */
2714
2715/* Allocate vars used for code hoisting analysis.  */
2716
2717static void
2718alloc_code_hoist_mem (int n_blocks, int n_exprs)
2719{
2720  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2721  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2722  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2723
2724  hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2725  hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2726}
2727
2728/* Free vars used for code hoisting analysis.  */
2729
2730static void
2731free_code_hoist_mem (void)
2732{
2733  sbitmap_vector_free (antloc);
2734  sbitmap_vector_free (transp);
2735  sbitmap_vector_free (comp);
2736
2737  sbitmap_vector_free (hoist_vbein);
2738  sbitmap_vector_free (hoist_vbeout);
2739
2740  free_dominance_info (CDI_DOMINATORS);
2741}
2742
2743/* Compute the very busy expressions at entry/exit from each block.
2744
2745   An expression is very busy if all paths from a given point
2746   compute the expression.  */
2747
2748static void
2749compute_code_hoist_vbeinout (void)
2750{
2751  int changed, passes;
2752  basic_block bb;
2753
2754  bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2755  bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2756
2757  passes = 0;
2758  changed = 1;
2759
2760  while (changed)
2761    {
2762      changed = 0;
2763
2764      /* We scan the blocks in the reverse order to speed up
2765	 the convergence.  */
2766      FOR_EACH_BB_REVERSE_FN (bb, cfun)
2767	{
2768	  if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2769	    {
2770	      bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2771					    hoist_vbein, bb);
2772
2773	      /* Include expressions in VBEout that are calculated
2774		 in BB and available at its end.  */
2775	      bitmap_ior (hoist_vbeout[bb->index],
2776			      hoist_vbeout[bb->index], comp[bb->index]);
2777	    }
2778
2779	  changed |= bitmap_or_and (hoist_vbein[bb->index],
2780					      antloc[bb->index],
2781					      hoist_vbeout[bb->index],
2782					      transp[bb->index]);
2783	}
2784
2785      passes++;
2786    }
2787
2788  if (dump_file)
2789    {
2790      fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2791
2792      FOR_EACH_BB_FN (bb, cfun)
2793        {
2794	  fprintf (dump_file, "vbein (%d): ", bb->index);
2795	  dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2796	  fprintf (dump_file, "vbeout(%d): ", bb->index);
2797	  dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2798	}
2799    }
2800}
2801
2802/* Top level routine to do the dataflow analysis needed by code hoisting.  */
2803
2804static void
2805compute_code_hoist_data (void)
2806{
2807  compute_local_properties (transp, comp, antloc, &expr_hash_table);
2808  prune_expressions (false);
2809  compute_code_hoist_vbeinout ();
2810  calculate_dominance_info (CDI_DOMINATORS);
2811  if (dump_file)
2812    fprintf (dump_file, "\n");
2813}
2814
2815/* Update register pressure for BB when hoisting an expression from
2816   instruction FROM, if live ranges of inputs are shrunk.  Also
2817   maintain live_in information if live range of register referred
2818   in FROM is shrunk.
2819
2820   Return 0 if register pressure doesn't change, otherwise return
2821   the number by which register pressure is decreased.
2822
2823   NOTE: Register pressure won't be increased in this function.  */
2824
2825static int
2826update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2827{
2828  rtx dreg;
2829  rtx_insn *insn;
2830  basic_block succ_bb;
2831  df_ref use, op_ref;
2832  edge succ;
2833  edge_iterator ei;
2834  int decreased_pressure = 0;
2835  int nregs;
2836  enum reg_class pressure_class;
2837
2838  FOR_EACH_INSN_USE (use, from)
2839    {
2840      dreg = DF_REF_REAL_REG (use);
2841      /* The live range of register is shrunk only if it isn't:
2842	 1. referred on any path from the end of this block to EXIT, or
2843	 2. referred by insns other than FROM in this block.  */
2844      FOR_EACH_EDGE (succ, ei, bb->succs)
2845	{
2846	  succ_bb = succ->dest;
2847	  if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2848	    continue;
2849
2850	  if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2851	    break;
2852	}
2853      if (succ != NULL)
2854	continue;
2855
2856      op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2857      for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2858	{
2859	  if (!DF_REF_INSN_INFO (op_ref))
2860	    continue;
2861
2862	  insn = DF_REF_INSN (op_ref);
2863	  if (BLOCK_FOR_INSN (insn) == bb
2864	      && NONDEBUG_INSN_P (insn) && insn != from)
2865	    break;
2866	}
2867
2868      pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2869      /* Decrease register pressure and update live_in information for
2870	 this block.  */
2871      if (!op_ref && pressure_class != NO_REGS)
2872	{
2873	  decreased_pressure += nregs;
2874	  BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2875	  bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2876	}
2877    }
2878  return decreased_pressure;
2879}
2880
2881/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2882   flow graph, if it can reach BB unimpared.  Stop the search if the
2883   expression would need to be moved more than DISTANCE instructions.
2884
2885   DISTANCE is the number of instructions through which EXPR can be
2886   hoisted up in flow graph.
2887
2888   BB_SIZE points to an array which contains the number of instructions
2889   for each basic block.
2890
2891   PRESSURE_CLASS and NREGS are register class and number of hard registers
2892   for storing EXPR.
2893
2894   HOISTED_BBS points to a bitmap indicating basic blocks through which
2895   EXPR is hoisted.
2896
2897   FROM is the instruction from which EXPR is hoisted.
2898
2899   It's unclear exactly what Muchnick meant by "unimpared".  It seems
2900   to me that the expression must either be computed or transparent in
2901   *every* block in the path(s) from EXPR_BB to BB.  Any other definition
2902   would allow the expression to be hoisted out of loops, even if
2903   the expression wasn't a loop invariant.
2904
2905   Contrast this to reachability for PRE where an expression is
2906   considered reachable if *any* path reaches instead of *all*
2907   paths.  */
2908
2909static int
2910should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2911			  basic_block bb, sbitmap visited, int distance,
2912			  int *bb_size, enum reg_class pressure_class,
2913			  int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2914{
2915  unsigned int i;
2916  edge pred;
2917  edge_iterator ei;
2918  sbitmap_iterator sbi;
2919  int visited_allocated_locally = 0;
2920  int decreased_pressure = 0;
2921
2922  if (flag_ira_hoist_pressure)
2923    {
2924      /* Record old information of basic block BB when it is visited
2925	 at the first time.  */
2926      if (!bitmap_bit_p (hoisted_bbs, bb->index))
2927	{
2928	  struct bb_data *data = BB_DATA (bb);
2929	  bitmap_copy (data->backup, data->live_in);
2930	  data->old_pressure = data->max_reg_pressure[pressure_class];
2931	}
2932      decreased_pressure = update_bb_reg_pressure (bb, from);
2933    }
2934  /* Terminate the search if distance, for which EXPR is allowed to move,
2935     is exhausted.  */
2936  if (distance > 0)
2937    {
2938      if (flag_ira_hoist_pressure)
2939	{
2940	  /* Prefer to hoist EXPR if register pressure is decreased.  */
2941	  if (decreased_pressure > *nregs)
2942	    distance += bb_size[bb->index];
2943	  /* Let EXPR be hoisted through basic block at no cost if one
2944	     of following conditions is satisfied:
2945
2946	     1. The basic block has low register pressure.
2947	     2. Register pressure won't be increases after hoisting EXPR.
2948
2949	     Constant expressions is handled conservatively, because
2950	     hoisting constant expression aggressively results in worse
2951	     code.  This decision is made by the observation of CSiBE
2952	     on ARM target, while it has no obvious effect on other
2953	     targets like x86, x86_64, mips and powerpc.  */
2954	  else if (CONST_INT_P (expr->expr)
2955		   || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2956			 >= ira_class_hard_regs_num[pressure_class]
2957		       && decreased_pressure < *nregs))
2958	    distance -= bb_size[bb->index];
2959	}
2960      else
2961	distance -= bb_size[bb->index];
2962
2963      if (distance <= 0)
2964	return 0;
2965    }
2966  else
2967    gcc_assert (distance == 0);
2968
2969  if (visited == NULL)
2970    {
2971      visited_allocated_locally = 1;
2972      visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2973      bitmap_clear (visited);
2974    }
2975
2976  FOR_EACH_EDGE (pred, ei, bb->preds)
2977    {
2978      basic_block pred_bb = pred->src;
2979
2980      if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2981	break;
2982      else if (pred_bb == expr_bb)
2983	continue;
2984      else if (bitmap_bit_p (visited, pred_bb->index))
2985	continue;
2986      else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2987	break;
2988      /* Not killed.  */
2989      else
2990	{
2991	  bitmap_set_bit (visited, pred_bb->index);
2992	  if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2993					  visited, distance, bb_size,
2994					  pressure_class, nregs,
2995					  hoisted_bbs, from))
2996	    break;
2997	}
2998    }
2999  if (visited_allocated_locally)
3000    {
3001      /* If EXPR can be hoisted to expr_bb, record basic blocks through
3002	 which EXPR is hoisted in hoisted_bbs.  */
3003      if (flag_ira_hoist_pressure && !pred)
3004	{
3005	  /* Record the basic block from which EXPR is hoisted.  */
3006	  bitmap_set_bit (visited, bb->index);
3007	  EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3008	    bitmap_set_bit (hoisted_bbs, i);
3009	}
3010      sbitmap_free (visited);
3011    }
3012
3013  return (pred == NULL);
3014}
3015
3016/* Find occurrence in BB.  */
3017
3018static struct gcse_occr *
3019find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3020{
3021  /* Find the right occurrence of this expression.  */
3022  while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3023    occr = occr->next;
3024
3025  return occr;
3026}
3027
3028/* Actually perform code hoisting.
3029
3030   The code hoisting pass can hoist multiple computations of the same
3031   expression along dominated path to a dominating basic block, like
3032   from b2/b3 to b1 as depicted below:
3033
3034          b1      ------
3035          /\         |
3036         /  \        |
3037        bx   by   distance
3038       /      \      |
3039      /        \     |
3040     b2        b3 ------
3041
3042   Unfortunately code hoisting generally extends the live range of an
3043   output pseudo register, which increases register pressure and hurts
3044   register allocation.  To address this issue, an attribute MAX_DISTANCE
3045   is computed and attached to each expression.  The attribute is computed
3046   from rtx cost of the corresponding expression and it's used to control
3047   how long the expression can be hoisted up in flow graph.  As the
3048   expression is hoisted up in flow graph, GCC decreases its DISTANCE
3049   and stops the hoist if DISTANCE reaches 0.  Code hoisting can decrease
3050   register pressure if live ranges of inputs are shrunk.
3051
3052   Option "-fira-hoist-pressure" implements register pressure directed
3053   hoist based on upper method.  The rationale is:
3054     1. Calculate register pressure for each basic block by reusing IRA
3055	facility.
3056     2. When expression is hoisted through one basic block, GCC checks
3057	the change of live ranges for inputs/output.  The basic block's
3058	register pressure will be increased because of extended live
3059	range of output.  However, register pressure will be decreased
3060	if the live ranges of inputs are shrunk.
3061     3. After knowing how hoisting affects register pressure, GCC prefers
3062	to hoist the expression if it can decrease register pressure, by
3063	increasing DISTANCE of the corresponding expression.
3064     4. If hoisting the expression increases register pressure, GCC checks
3065	register pressure of the basic block and decrease DISTANCE only if
3066	the register pressure is high.  In other words, expression will be
3067	hoisted through at no cost if the basic block has low register
3068	pressure.
3069     5. Update register pressure information for basic blocks through
3070	which expression is hoisted.  */
3071
3072static int
3073hoist_code (void)
3074{
3075  basic_block bb, dominated;
3076  vec<basic_block> dom_tree_walk;
3077  unsigned int dom_tree_walk_index;
3078  vec<basic_block> domby;
3079  unsigned int i, j, k;
3080  struct gcse_expr **index_map;
3081  struct gcse_expr *expr;
3082  int *to_bb_head;
3083  int *bb_size;
3084  int changed = 0;
3085  struct bb_data *data;
3086  /* Basic blocks that have occurrences reachable from BB.  */
3087  bitmap from_bbs;
3088  /* Basic blocks through which expr is hoisted.  */
3089  bitmap hoisted_bbs = NULL;
3090  bitmap_iterator bi;
3091
3092  /* Compute a mapping from expression number (`bitmap_index') to
3093     hash table entry.  */
3094
3095  index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3096  for (i = 0; i < expr_hash_table.size; i++)
3097    for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3098      index_map[expr->bitmap_index] = expr;
3099
3100  /* Calculate sizes of basic blocks and note how far
3101     each instruction is from the start of its block.  We then use this
3102     data to restrict distance an expression can travel.  */
3103
3104  to_bb_head = XCNEWVEC (int, get_max_uid ());
3105  bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3106
3107  FOR_EACH_BB_FN (bb, cfun)
3108    {
3109      rtx_insn *insn;
3110      int to_head;
3111
3112      to_head = 0;
3113      FOR_BB_INSNS (bb, insn)
3114	{
3115	  /* Don't count debug instructions to avoid them affecting
3116	     decision choices.  */
3117	  if (NONDEBUG_INSN_P (insn))
3118	    to_bb_head[INSN_UID (insn)] = to_head++;
3119	}
3120
3121      bb_size[bb->index] = to_head;
3122    }
3123
3124  gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3125	      && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3126		  == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3127
3128  from_bbs = BITMAP_ALLOC (NULL);
3129  if (flag_ira_hoist_pressure)
3130    hoisted_bbs = BITMAP_ALLOC (NULL);
3131
3132  dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3133					    ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3134
3135  /* Walk over each basic block looking for potentially hoistable
3136     expressions, nothing gets hoisted from the entry block.  */
3137  FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3138    {
3139      domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3140
3141      if (domby.length () == 0)
3142	continue;
3143
3144      /* Examine each expression that is very busy at the exit of this
3145	 block.  These are the potentially hoistable expressions.  */
3146      for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3147	{
3148	  if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3149	    {
3150	      int nregs = 0;
3151	      enum reg_class pressure_class = NO_REGS;
3152	      /* Current expression.  */
3153	      struct gcse_expr *expr = index_map[i];
3154	      /* Number of occurrences of EXPR that can be hoisted to BB.  */
3155	      int hoistable = 0;
3156	      /* Occurrences reachable from BB.  */
3157	      vec<occr_t> occrs_to_hoist = vNULL;
3158	      /* We want to insert the expression into BB only once, so
3159		 note when we've inserted it.  */
3160	      int insn_inserted_p;
3161	      occr_t occr;
3162
3163	      /* If an expression is computed in BB and is available at end of
3164		 BB, hoist all occurrences dominated by BB to BB.  */
3165	      if (bitmap_bit_p (comp[bb->index], i))
3166		{
3167		  occr = find_occr_in_bb (expr->antic_occr, bb);
3168
3169		  if (occr)
3170		    {
3171		      /* An occurrence might've been already deleted
3172			 while processing a dominator of BB.  */
3173		      if (!occr->deleted_p)
3174			{
3175			  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3176			  hoistable++;
3177			}
3178		    }
3179		  else
3180		    hoistable++;
3181		}
3182
3183	      /* We've found a potentially hoistable expression, now
3184		 we look at every block BB dominates to see if it
3185		 computes the expression.  */
3186	      FOR_EACH_VEC_ELT (domby, j, dominated)
3187		{
3188		  int max_distance;
3189
3190		  /* Ignore self dominance.  */
3191		  if (bb == dominated)
3192		    continue;
3193		  /* We've found a dominated block, now see if it computes
3194		     the busy expression and whether or not moving that
3195		     expression to the "beginning" of that block is safe.  */
3196		  if (!bitmap_bit_p (antloc[dominated->index], i))
3197		    continue;
3198
3199		  occr = find_occr_in_bb (expr->antic_occr, dominated);
3200		  gcc_assert (occr);
3201
3202		  /* An occurrence might've been already deleted
3203		     while processing a dominator of BB.  */
3204		  if (occr->deleted_p)
3205		    continue;
3206		  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3207
3208		  max_distance = expr->max_distance;
3209		  if (max_distance > 0)
3210		    /* Adjust MAX_DISTANCE to account for the fact that
3211		       OCCR won't have to travel all of DOMINATED, but
3212		       only part of it.  */
3213		    max_distance += (bb_size[dominated->index]
3214				     - to_bb_head[INSN_UID (occr->insn)]);
3215
3216		  pressure_class = get_pressure_class_and_nregs (occr->insn,
3217								 &nregs);
3218
3219		  /* Note if the expression should be hoisted from the dominated
3220		     block to BB if it can reach DOMINATED unimpared.
3221
3222		     Keep track of how many times this expression is hoistable
3223		     from a dominated block into BB.  */
3224		  if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3225						max_distance, bb_size,
3226						pressure_class,	&nregs,
3227						hoisted_bbs, occr->insn))
3228		    {
3229		      hoistable++;
3230		      occrs_to_hoist.safe_push (occr);
3231		      bitmap_set_bit (from_bbs, dominated->index);
3232		    }
3233		}
3234
3235	      /* If we found more than one hoistable occurrence of this
3236		 expression, then note it in the vector of expressions to
3237		 hoist.  It makes no sense to hoist things which are computed
3238		 in only one BB, and doing so tends to pessimize register
3239		 allocation.  One could increase this value to try harder
3240		 to avoid any possible code expansion due to register
3241		 allocation issues; however experiments have shown that
3242		 the vast majority of hoistable expressions are only movable
3243		 from two successors, so raising this threshold is likely
3244		 to nullify any benefit we get from code hoisting.  */
3245	      if (hoistable > 1 && dbg_cnt (hoist_insn))
3246		{
3247		  /* If (hoistable != vec::length), then there is
3248		     an occurrence of EXPR in BB itself.  Don't waste
3249		     time looking for LCA in this case.  */
3250		  if ((unsigned) hoistable == occrs_to_hoist.length ())
3251		    {
3252		      basic_block lca;
3253
3254		      lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3255							      from_bbs);
3256		      if (lca != bb)
3257			/* Punt, it's better to hoist these occurrences to
3258			   LCA.  */
3259			occrs_to_hoist.release ();
3260		    }
3261		}
3262	      else
3263		/* Punt, no point hoisting a single occurrence.  */
3264		occrs_to_hoist.release ();
3265
3266	      if (flag_ira_hoist_pressure
3267		  && !occrs_to_hoist.is_empty ())
3268		{
3269		  /* Increase register pressure of basic blocks to which
3270		     expr is hoisted because of extended live range of
3271		     output.  */
3272		  data = BB_DATA (bb);
3273		  data->max_reg_pressure[pressure_class] += nregs;
3274		  EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3275		    {
3276		      data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3277		      data->max_reg_pressure[pressure_class] += nregs;
3278		    }
3279		}
3280	      else if (flag_ira_hoist_pressure)
3281		{
3282		  /* Restore register pressure and live_in info for basic
3283		     blocks recorded in hoisted_bbs when expr will not be
3284		     hoisted.  */
3285		  EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3286		    {
3287		      data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3288		      bitmap_copy (data->live_in, data->backup);
3289		      data->max_reg_pressure[pressure_class]
3290			  = data->old_pressure;
3291		    }
3292		}
3293
3294	      if (flag_ira_hoist_pressure)
3295		bitmap_clear (hoisted_bbs);
3296
3297	      insn_inserted_p = 0;
3298
3299	      /* Walk through occurrences of I'th expressions we want
3300		 to hoist to BB and make the transformations.  */
3301	      FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3302		{
3303		  rtx_insn *insn;
3304		  const_rtx set;
3305
3306		  gcc_assert (!occr->deleted_p);
3307
3308		  insn = occr->insn;
3309		  set = single_set_gcse (insn);
3310
3311		  /* Create a pseudo-reg to store the result of reaching
3312		     expressions into.  Get the mode for the new pseudo
3313		     from the mode of the original destination pseudo.
3314
3315		     It is important to use new pseudos whenever we
3316		     emit a set.  This will allow reload to use
3317		     rematerialization for such registers.  */
3318		  if (!insn_inserted_p)
3319		    expr->reaching_reg
3320		      = gen_reg_rtx_and_attrs (SET_DEST (set));
3321
3322		  gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3323					insn);
3324		  delete_insn (insn);
3325		  occr->deleted_p = 1;
3326		  changed = 1;
3327		  gcse_subst_count++;
3328
3329		  if (!insn_inserted_p)
3330		    {
3331		      insert_insn_end_basic_block (expr, bb);
3332		      insn_inserted_p = 1;
3333		    }
3334		}
3335
3336	      occrs_to_hoist.release ();
3337	      bitmap_clear (from_bbs);
3338	    }
3339	}
3340      domby.release ();
3341    }
3342
3343  dom_tree_walk.release ();
3344  BITMAP_FREE (from_bbs);
3345  if (flag_ira_hoist_pressure)
3346    BITMAP_FREE (hoisted_bbs);
3347
3348  free (bb_size);
3349  free (to_bb_head);
3350  free (index_map);
3351
3352  return changed;
3353}
3354
3355/* Return pressure class and number of needed hard registers (through
3356   *NREGS) of register REGNO.  */
3357static enum reg_class
3358get_regno_pressure_class (int regno, int *nregs)
3359{
3360  if (regno >= FIRST_PSEUDO_REGISTER)
3361    {
3362      enum reg_class pressure_class;
3363
3364      pressure_class = reg_allocno_class (regno);
3365      pressure_class = ira_pressure_class_translate[pressure_class];
3366      *nregs
3367	= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3368      return pressure_class;
3369    }
3370  else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3371	   && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3372    {
3373      *nregs = 1;
3374      return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3375    }
3376  else
3377    {
3378      *nregs = 0;
3379      return NO_REGS;
3380    }
3381}
3382
3383/* Return pressure class and number of hard registers (through *NREGS)
3384   for destination of INSN. */
3385static enum reg_class
3386get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3387{
3388  rtx reg;
3389  enum reg_class pressure_class;
3390  const_rtx set = single_set_gcse (insn);
3391
3392  reg = SET_DEST (set);
3393  if (GET_CODE (reg) == SUBREG)
3394    reg = SUBREG_REG (reg);
3395  if (MEM_P (reg))
3396    {
3397      *nregs = 0;
3398      pressure_class = NO_REGS;
3399    }
3400  else
3401    {
3402      gcc_assert (REG_P (reg));
3403      pressure_class = reg_allocno_class (REGNO (reg));
3404      pressure_class = ira_pressure_class_translate[pressure_class];
3405      *nregs
3406	= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3407    }
3408  return pressure_class;
3409}
3410
3411/* Increase (if INCR_P) or decrease current register pressure for
3412   register REGNO.  */
3413static void
3414change_pressure (int regno, bool incr_p)
3415{
3416  int nregs;
3417  enum reg_class pressure_class;
3418
3419  pressure_class = get_regno_pressure_class (regno, &nregs);
3420  if (! incr_p)
3421    curr_reg_pressure[pressure_class] -= nregs;
3422  else
3423    {
3424      curr_reg_pressure[pressure_class] += nregs;
3425      if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3426	  < curr_reg_pressure[pressure_class])
3427	BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3428	  = curr_reg_pressure[pressure_class];
3429    }
3430}
3431
3432/* Calculate register pressure for each basic block by walking insns
3433   from last to first.  */
3434static void
3435calculate_bb_reg_pressure (void)
3436{
3437  int i;
3438  unsigned int j;
3439  rtx_insn *insn;
3440  basic_block bb;
3441  bitmap curr_regs_live;
3442  bitmap_iterator bi;
3443
3444
3445  ira_setup_eliminable_regset ();
3446  curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3447  FOR_EACH_BB_FN (bb, cfun)
3448    {
3449      curr_bb = bb;
3450      BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3451      BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3452      bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3453      bitmap_copy (curr_regs_live, df_get_live_out (bb));
3454      for (i = 0; i < ira_pressure_classes_num; i++)
3455	curr_reg_pressure[ira_pressure_classes[i]] = 0;
3456      EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3457	change_pressure (j, true);
3458
3459      FOR_BB_INSNS_REVERSE (bb, insn)
3460	{
3461	  rtx dreg;
3462	  int regno;
3463	  df_ref def, use;
3464
3465	  if (! NONDEBUG_INSN_P (insn))
3466	    continue;
3467
3468	  FOR_EACH_INSN_DEF (def, insn)
3469	    {
3470	      dreg = DF_REF_REAL_REG (def);
3471	      gcc_assert (REG_P (dreg));
3472	      regno = REGNO (dreg);
3473	      if (!(DF_REF_FLAGS (def)
3474		    & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3475		{
3476		  if (bitmap_clear_bit (curr_regs_live, regno))
3477		    change_pressure (regno, false);
3478		}
3479	    }
3480
3481	  FOR_EACH_INSN_USE (use, insn)
3482	    {
3483	      dreg = DF_REF_REAL_REG (use);
3484	      gcc_assert (REG_P (dreg));
3485	      regno = REGNO (dreg);
3486	      if (bitmap_set_bit (curr_regs_live, regno))
3487		change_pressure (regno, true);
3488	    }
3489	}
3490    }
3491  BITMAP_FREE (curr_regs_live);
3492
3493  if (dump_file == NULL)
3494    return;
3495
3496  fprintf (dump_file, "\nRegister Pressure: \n");
3497  FOR_EACH_BB_FN (bb, cfun)
3498    {
3499      fprintf (dump_file, "  Basic block %d: \n", bb->index);
3500      for (i = 0; (int) i < ira_pressure_classes_num; i++)
3501	{
3502	  enum reg_class pressure_class;
3503
3504	  pressure_class = ira_pressure_classes[i];
3505	  if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3506	    continue;
3507
3508	  fprintf (dump_file, "    %s=%d\n", reg_class_names[pressure_class],
3509		   BB_DATA (bb)->max_reg_pressure[pressure_class]);
3510	}
3511    }
3512  fprintf (dump_file, "\n");
3513}
3514
3515/* Top level routine to perform one code hoisting (aka unification) pass
3516
3517   Return nonzero if a change was made.  */
3518
3519static int
3520one_code_hoisting_pass (void)
3521{
3522  int changed = 0;
3523
3524  gcse_subst_count = 0;
3525  gcse_create_count = 0;
3526
3527  /* Return if there's nothing to do, or it is too expensive.  */
3528  if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3529      || is_too_expensive (_("GCSE disabled")))
3530    return 0;
3531
3532  doing_code_hoisting_p = true;
3533
3534  /* Calculate register pressure for each basic block.  */
3535  if (flag_ira_hoist_pressure)
3536    {
3537      regstat_init_n_sets_and_refs ();
3538      ira_set_pseudo_classes (false, dump_file);
3539      alloc_aux_for_blocks (sizeof (struct bb_data));
3540      calculate_bb_reg_pressure ();
3541      regstat_free_n_sets_and_refs ();
3542    }
3543
3544  /* We need alias.  */
3545  init_alias_analysis ();
3546
3547  bytes_used = 0;
3548  gcc_obstack_init (&gcse_obstack);
3549  alloc_gcse_mem ();
3550
3551  alloc_hash_table (&expr_hash_table);
3552  compute_hash_table (&expr_hash_table);
3553  if (dump_file)
3554    dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3555
3556  if (expr_hash_table.n_elems > 0)
3557    {
3558      alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3559			    expr_hash_table.n_elems);
3560      compute_code_hoist_data ();
3561      changed = hoist_code ();
3562      free_code_hoist_mem ();
3563    }
3564
3565  if (flag_ira_hoist_pressure)
3566    {
3567      free_aux_for_blocks ();
3568      free_reg_info ();
3569    }
3570  free_hash_table (&expr_hash_table);
3571  free_gcse_mem ();
3572  obstack_free (&gcse_obstack, NULL);
3573
3574  /* We are finished with alias.  */
3575  end_alias_analysis ();
3576
3577  if (dump_file)
3578    {
3579      fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3580	       current_function_name (), n_basic_blocks_for_fn (cfun),
3581	       bytes_used);
3582      fprintf (dump_file, "%d substs, %d insns created\n",
3583	       gcse_subst_count, gcse_create_count);
3584    }
3585
3586  doing_code_hoisting_p = false;
3587
3588  return changed;
3589}
3590
3591/*  Here we provide the things required to do store motion towards the exit.
3592    In order for this to be effective, gcse also needed to be taught how to
3593    move a load when it is killed only by a store to itself.
3594
3595	    int i;
3596	    float a[10];
3597
3598	    void foo(float scale)
3599	    {
3600	      for (i=0; i<10; i++)
3601		a[i] *= scale;
3602	    }
3603
3604    'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3605    the load out since its live around the loop, and stored at the bottom
3606    of the loop.
3607
3608      The 'Load Motion' referred to and implemented in this file is
3609    an enhancement to gcse which when using edge based LCM, recognizes
3610    this situation and allows gcse to move the load out of the loop.
3611
3612      Once gcse has hoisted the load, store motion can then push this
3613    load towards the exit, and we end up with no loads or stores of 'i'
3614    in the loop.  */
3615
3616/* This will search the ldst list for a matching expression. If it
3617   doesn't find one, we create one and initialize it.  */
3618
3619static struct ls_expr *
3620ldst_entry (rtx x)
3621{
3622  int do_not_record_p = 0;
3623  struct ls_expr * ptr;
3624  unsigned int hash;
3625  ls_expr **slot;
3626  struct ls_expr e;
3627
3628  hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3629		   NULL,  /*have_reg_qty=*/false);
3630
3631  e.pattern = x;
3632  slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3633  if (*slot)
3634    return *slot;
3635
3636  ptr = XNEW (struct ls_expr);
3637
3638  ptr->next         = pre_ldst_mems;
3639  ptr->expr         = NULL;
3640  ptr->pattern      = x;
3641  ptr->pattern_regs = NULL_RTX;
3642  ptr->loads        = NULL;
3643  ptr->stores       = NULL;
3644  ptr->reaching_reg = NULL_RTX;
3645  ptr->invalid      = 0;
3646  ptr->index        = 0;
3647  ptr->hash_index   = hash;
3648  pre_ldst_mems     = ptr;
3649  *slot = ptr;
3650
3651  return ptr;
3652}
3653
3654/* Free up an individual ldst entry.  */
3655
3656static void
3657free_ldst_entry (struct ls_expr * ptr)
3658{
3659  free_INSN_LIST_list (& ptr->loads);
3660  free_INSN_LIST_list (& ptr->stores);
3661
3662  free (ptr);
3663}
3664
3665/* Free up all memory associated with the ldst list.  */
3666
3667static void
3668free_ld_motion_mems (void)
3669{
3670  delete pre_ldst_table;
3671  pre_ldst_table = NULL;
3672
3673  while (pre_ldst_mems)
3674    {
3675      struct ls_expr * tmp = pre_ldst_mems;
3676
3677      pre_ldst_mems = pre_ldst_mems->next;
3678
3679      free_ldst_entry (tmp);
3680    }
3681
3682  pre_ldst_mems = NULL;
3683}
3684
3685/* Dump debugging info about the ldst list.  */
3686
3687static void
3688print_ldst_list (FILE * file)
3689{
3690  struct ls_expr * ptr;
3691
3692  fprintf (file, "LDST list: \n");
3693
3694  for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3695    {
3696      fprintf (file, "  Pattern (%3d): ", ptr->index);
3697
3698      print_rtl (file, ptr->pattern);
3699
3700      fprintf (file, "\n	 Loads : ");
3701
3702      if (ptr->loads)
3703	print_rtl (file, ptr->loads);
3704      else
3705	fprintf (file, "(nil)");
3706
3707      fprintf (file, "\n	Stores : ");
3708
3709      if (ptr->stores)
3710	print_rtl (file, ptr->stores);
3711      else
3712	fprintf (file, "(nil)");
3713
3714      fprintf (file, "\n\n");
3715    }
3716
3717  fprintf (file, "\n");
3718}
3719
3720/* Returns 1 if X is in the list of ldst only expressions.  */
3721
3722static struct ls_expr *
3723find_rtx_in_ldst (rtx x)
3724{
3725  struct ls_expr e;
3726  ls_expr **slot;
3727  if (!pre_ldst_table)
3728    return NULL;
3729  e.pattern = x;
3730  slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3731  if (!slot || (*slot)->invalid)
3732    return NULL;
3733  return *slot;
3734}
3735
3736/* Load Motion for loads which only kill themselves.  */
3737
3738/* Return true if x, a MEM, is a simple access with no side effects.
3739   These are the types of loads we consider for the ld_motion list,
3740   otherwise we let the usual aliasing take care of it.  */
3741
3742static int
3743simple_mem (const_rtx x)
3744{
3745  if (MEM_VOLATILE_P (x))
3746    return 0;
3747
3748  if (GET_MODE (x) == BLKmode)
3749    return 0;
3750
3751  /* If we are handling exceptions, we must be careful with memory references
3752     that may trap.  If we are not, the behavior is undefined, so we may just
3753     continue.  */
3754  if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3755    return 0;
3756
3757  if (side_effects_p (x))
3758    return 0;
3759
3760  /* Do not consider function arguments passed on stack.  */
3761  if (reg_mentioned_p (stack_pointer_rtx, x))
3762    return 0;
3763
3764  if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3765    return 0;
3766
3767  return 1;
3768}
3769
3770/* Make sure there isn't a buried reference in this pattern anywhere.
3771   If there is, invalidate the entry for it since we're not capable
3772   of fixing it up just yet.. We have to be sure we know about ALL
3773   loads since the aliasing code will allow all entries in the
3774   ld_motion list to not-alias itself.  If we miss a load, we will get
3775   the wrong value since gcse might common it and we won't know to
3776   fix it up.  */
3777
3778static void
3779invalidate_any_buried_refs (rtx x)
3780{
3781  const char * fmt;
3782  int i, j;
3783  struct ls_expr * ptr;
3784
3785  /* Invalidate it in the list.  */
3786  if (MEM_P (x) && simple_mem (x))
3787    {
3788      ptr = ldst_entry (x);
3789      ptr->invalid = 1;
3790    }
3791
3792  /* Recursively process the insn.  */
3793  fmt = GET_RTX_FORMAT (GET_CODE (x));
3794
3795  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3796    {
3797      if (fmt[i] == 'e')
3798	invalidate_any_buried_refs (XEXP (x, i));
3799      else if (fmt[i] == 'E')
3800	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3801	  invalidate_any_buried_refs (XVECEXP (x, i, j));
3802    }
3803}
3804
3805/* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
3806   being defined as MEM loads and stores to symbols, with no side effects
3807   and no registers in the expression.  For a MEM destination, we also
3808   check that the insn is still valid if we replace the destination with a
3809   REG, as is done in update_ld_motion_stores.  If there are any uses/defs
3810   which don't match this criteria, they are invalidated and trimmed out
3811   later.  */
3812
3813static void
3814compute_ld_motion_mems (void)
3815{
3816  struct ls_expr * ptr;
3817  basic_block bb;
3818  rtx_insn *insn;
3819
3820  pre_ldst_mems = NULL;
3821  pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3822
3823  FOR_EACH_BB_FN (bb, cfun)
3824    {
3825      FOR_BB_INSNS (bb, insn)
3826	{
3827	  if (NONDEBUG_INSN_P (insn))
3828	    {
3829	      if (GET_CODE (PATTERN (insn)) == SET)
3830		{
3831		  rtx src = SET_SRC (PATTERN (insn));
3832		  rtx dest = SET_DEST (PATTERN (insn));
3833
3834		  /* Check for a simple load.  */
3835		  if (MEM_P (src) && simple_mem (src))
3836		    {
3837		      ptr = ldst_entry (src);
3838		      if (REG_P (dest))
3839			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3840		      else
3841			ptr->invalid = 1;
3842		    }
3843		  else
3844		    {
3845		      /* Make sure there isn't a buried load somewhere.  */
3846		      invalidate_any_buried_refs (src);
3847		    }
3848
3849		  /* Check for a simple load through a REG_EQUAL note.  */
3850		  rtx note = find_reg_equal_equiv_note (insn), src_eq;
3851		  if (note
3852		      && REG_NOTE_KIND (note) == REG_EQUAL
3853		      && (src_eq = XEXP (note, 0))
3854		      && !(MEM_P (src_eq) && simple_mem (src_eq)))
3855		    invalidate_any_buried_refs (src_eq);
3856
3857		  /* Check for stores. Don't worry about aliased ones, they
3858		     will block any movement we might do later. We only care
3859		     about this exact pattern since those are the only
3860		     circumstance that we will ignore the aliasing info.  */
3861		  if (MEM_P (dest) && simple_mem (dest))
3862		    {
3863		      ptr = ldst_entry (dest);
3864
3865		      if (! MEM_P (src)
3866			  && GET_CODE (src) != ASM_OPERANDS
3867			  /* Check for REG manually since want_to_gcse_p
3868			     returns 0 for all REGs.  */
3869			  && can_assign_to_reg_without_clobbers_p (src))
3870			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3871		      else
3872			ptr->invalid = 1;
3873		    }
3874		}
3875	      else
3876		{
3877		  /* Invalidate all MEMs in the pattern and...  */
3878		  invalidate_any_buried_refs (PATTERN (insn));
3879
3880		  /* ...in REG_EQUAL notes for PARALLELs with single SET.  */
3881		  rtx note = find_reg_equal_equiv_note (insn), src_eq;
3882		  if (note
3883		      && REG_NOTE_KIND (note) == REG_EQUAL
3884		      && (src_eq = XEXP (note, 0)))
3885		    invalidate_any_buried_refs (src_eq);
3886		}
3887	    }
3888	}
3889    }
3890}
3891
3892/* Remove any references that have been either invalidated or are not in the
3893   expression list for pre gcse.  */
3894
3895static void
3896trim_ld_motion_mems (void)
3897{
3898  struct ls_expr * * last = & pre_ldst_mems;
3899  struct ls_expr * ptr = pre_ldst_mems;
3900
3901  while (ptr != NULL)
3902    {
3903      struct gcse_expr * expr;
3904
3905      /* Delete if entry has been made invalid.  */
3906      if (! ptr->invalid)
3907	{
3908	  /* Delete if we cannot find this mem in the expression list.  */
3909	  unsigned int hash = ptr->hash_index % expr_hash_table.size;
3910
3911	  for (expr = expr_hash_table.table[hash];
3912	       expr != NULL;
3913	       expr = expr->next_same_hash)
3914	    if (expr_equiv_p (expr->expr, ptr->pattern))
3915	      break;
3916	}
3917      else
3918	expr = (struct gcse_expr *) 0;
3919
3920      if (expr)
3921	{
3922	  /* Set the expression field if we are keeping it.  */
3923	  ptr->expr = expr;
3924	  last = & ptr->next;
3925	  ptr = ptr->next;
3926	}
3927      else
3928	{
3929	  *last = ptr->next;
3930	  pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3931	  free_ldst_entry (ptr);
3932	  ptr = * last;
3933	}
3934    }
3935
3936  /* Show the world what we've found.  */
3937  if (dump_file && pre_ldst_mems != NULL)
3938    print_ldst_list (dump_file);
3939}
3940
3941/* This routine will take an expression which we are replacing with
3942   a reaching register, and update any stores that are needed if
3943   that expression is in the ld_motion list.  Stores are updated by
3944   copying their SRC to the reaching register, and then storing
3945   the reaching register into the store location. These keeps the
3946   correct value in the reaching register for the loads.  */
3947
3948static void
3949update_ld_motion_stores (struct gcse_expr * expr)
3950{
3951  struct ls_expr * mem_ptr;
3952
3953  if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3954    {
3955      /* We can try to find just the REACHED stores, but is shouldn't
3956	 matter to set the reaching reg everywhere...  some might be
3957	 dead and should be eliminated later.  */
3958
3959      /* We replace (set mem expr) with (set reg expr) (set mem reg)
3960	 where reg is the reaching reg used in the load.  We checked in
3961	 compute_ld_motion_mems that we can replace (set mem expr) with
3962	 (set reg expr) in that insn.  */
3963      rtx list = mem_ptr->stores;
3964
3965      for ( ; list != NULL_RTX; list = XEXP (list, 1))
3966	{
3967	  rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3968	  rtx pat = PATTERN (insn);
3969	  rtx src = SET_SRC (pat);
3970	  rtx reg = expr->reaching_reg;
3971	  rtx copy;
3972
3973	  /* If we've already copied it, continue.  */
3974	  if (expr->reaching_reg == src)
3975	    continue;
3976
3977	  if (dump_file)
3978	    {
3979	      fprintf (dump_file, "PRE:  store updated with reaching reg ");
3980	      print_rtl (dump_file, reg);
3981	      fprintf (dump_file, ":\n	");
3982	      print_inline_rtx (dump_file, insn, 8);
3983	      fprintf (dump_file, "\n");
3984	    }
3985
3986	  copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3987	  emit_insn_before (copy, insn);
3988	  SET_SRC (pat) = reg;
3989	  df_insn_rescan (insn);
3990
3991	  /* un-recognize this pattern since it's probably different now.  */
3992	  INSN_CODE (insn) = -1;
3993	  gcse_create_count++;
3994	}
3995    }
3996}
3997
3998/* Return true if the graph is too expensive to optimize. PASS is the
3999   optimization about to be performed.  */
4000
4001static bool
4002is_too_expensive (const char *pass)
4003{
4004  /* Trying to perform global optimizations on flow graphs which have
4005     a high connectivity will take a long time and is unlikely to be
4006     particularly useful.
4007
4008     In normal circumstances a cfg should have about twice as many
4009     edges as blocks.  But we do not want to punish small functions
4010     which have a couple switch statements.  Rather than simply
4011     threshold the number of blocks, uses something with a more
4012     graceful degradation.  */
4013  if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4014    {
4015      warning (OPT_Wdisabled_optimization,
4016	       "%s: %d basic blocks and %d edges/basic block",
4017	       pass, n_basic_blocks_for_fn (cfun),
4018	       n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4019
4020      return true;
4021    }
4022
4023  /* If allocating memory for the dataflow bitmaps would take up too much
4024     storage it's better just to disable the optimization.  */
4025  if ((n_basic_blocks_for_fn (cfun)
4026       * SBITMAP_SET_SIZE (max_reg_num ())
4027       * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4028    {
4029      warning (OPT_Wdisabled_optimization,
4030	       "%s: %d basic blocks and %d registers",
4031	       pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4032
4033      return true;
4034    }
4035
4036  return false;
4037}
4038
4039static unsigned int
4040execute_rtl_pre (void)
4041{
4042  int changed;
4043  delete_unreachable_blocks ();
4044  df_analyze ();
4045  changed = one_pre_gcse_pass ();
4046  flag_rerun_cse_after_global_opts |= changed;
4047  if (changed)
4048    cleanup_cfg (0);
4049  return 0;
4050}
4051
4052static unsigned int
4053execute_rtl_hoist (void)
4054{
4055  int changed;
4056  delete_unreachable_blocks ();
4057  df_analyze ();
4058  changed = one_code_hoisting_pass ();
4059  flag_rerun_cse_after_global_opts |= changed;
4060  if (changed)
4061    cleanup_cfg (0);
4062  return 0;
4063}
4064
4065namespace {
4066
4067const pass_data pass_data_rtl_pre =
4068{
4069  RTL_PASS, /* type */
4070  "rtl pre", /* name */
4071  OPTGROUP_NONE, /* optinfo_flags */
4072  TV_PRE, /* tv_id */
4073  PROP_cfglayout, /* properties_required */
4074  0, /* properties_provided */
4075  0, /* properties_destroyed */
4076  0, /* todo_flags_start */
4077  TODO_df_finish, /* todo_flags_finish */
4078};
4079
4080class pass_rtl_pre : public rtl_opt_pass
4081{
4082public:
4083  pass_rtl_pre (gcc::context *ctxt)
4084    : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4085  {}
4086
4087  /* opt_pass methods: */
4088  virtual bool gate (function *);
4089  virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4090
4091}; // class pass_rtl_pre
4092
4093/* We do not construct an accurate cfg in functions which call
4094   setjmp, so none of these passes runs if the function calls
4095   setjmp.
4096   FIXME: Should just handle setjmp via REG_SETJMP notes.  */
4097
4098bool
4099pass_rtl_pre::gate (function *fun)
4100{
4101  return optimize > 0 && flag_gcse
4102    && !fun->calls_setjmp
4103    && optimize_function_for_speed_p (fun)
4104    && dbg_cnt (pre);
4105}
4106
4107} // anon namespace
4108
4109rtl_opt_pass *
4110make_pass_rtl_pre (gcc::context *ctxt)
4111{
4112  return new pass_rtl_pre (ctxt);
4113}
4114
4115namespace {
4116
4117const pass_data pass_data_rtl_hoist =
4118{
4119  RTL_PASS, /* type */
4120  "hoist", /* name */
4121  OPTGROUP_NONE, /* optinfo_flags */
4122  TV_HOIST, /* tv_id */
4123  PROP_cfglayout, /* properties_required */
4124  0, /* properties_provided */
4125  0, /* properties_destroyed */
4126  0, /* todo_flags_start */
4127  TODO_df_finish, /* todo_flags_finish */
4128};
4129
4130class pass_rtl_hoist : public rtl_opt_pass
4131{
4132public:
4133  pass_rtl_hoist (gcc::context *ctxt)
4134    : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4135  {}
4136
4137  /* opt_pass methods: */
4138  virtual bool gate (function *);
4139  virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4140
4141}; // class pass_rtl_hoist
4142
4143bool
4144pass_rtl_hoist::gate (function *)
4145{
4146  return optimize > 0 && flag_gcse
4147    && !cfun->calls_setjmp
4148    /* It does not make sense to run code hoisting unless we are optimizing
4149       for code size -- it rarely makes programs faster, and can make then
4150       bigger if we did PRE (when optimizing for space, we don't run PRE).  */
4151    && optimize_function_for_size_p (cfun)
4152    && dbg_cnt (hoist);
4153}
4154
4155} // anon namespace
4156
4157rtl_opt_pass *
4158make_pass_rtl_hoist (gcc::context *ctxt)
4159{
4160  return new pass_rtl_hoist (ctxt);
4161}
4162
4163/* Reset all state within gcse.c so that we can rerun the compiler
4164   within the same process.  For use by toplev::finalize.  */
4165
4166void
4167gcse_c_finalize (void)
4168{
4169  test_insn = NULL;
4170}
4171
4172#include "gt-gcse.h"
4173