1205147Sedwin/* File format for coverage information
2205147Sedwin   Copyright (C) 1996-2015 Free Software Foundation, Inc.
3205147Sedwin   Contributed by Bob Manson <manson@cygnus.com>.
4205147Sedwin   Completely remangled by Nathan Sidwell <nathan@codesourcery.com>.
5205147Sedwin
6205147SedwinThis file is part of GCC.
7205147Sedwin
8205147SedwinGCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
25<http://www.gnu.org/licenses/>.  */
26
27/* Routines declared in gcov-io.h.  This file should be #included by
28   another source file, after having #included gcov-io.h.  */
29
30#if !IN_GCOV
31static void gcov_write_block (unsigned);
32static gcov_unsigned_t *gcov_write_words (unsigned);
33#endif
34static const gcov_unsigned_t *gcov_read_words (unsigned);
35#if !IN_LIBGCOV
36static void gcov_allocate (unsigned);
37#endif
38
39/* Optimum number of gcov_unsigned_t's read from or written to disk.  */
40#define GCOV_BLOCK_SIZE (1 << 10)
41
42struct gcov_var
43{
44  FILE *file;
45  gcov_position_t start;	/* Position of first byte of block */
46  unsigned offset;		/* Read/write position within the block.  */
47  unsigned length;		/* Read limit in the block.  */
48  unsigned overread;		/* Number of words overread.  */
49  int error;			/* < 0 overflow, > 0 disk error.  */
50  int mode;	                /* < 0 writing, > 0 reading */
51#if IN_LIBGCOV
52  /* Holds one block plus 4 bytes, thus all coverage reads & writes
53     fit within this buffer and we always can transfer GCOV_BLOCK_SIZE
54     to and from the disk. libgcov never backtracks and only writes 4
55     or 8 byte objects.  */
56  gcov_unsigned_t buffer[GCOV_BLOCK_SIZE + 1];
57#else
58  int endian;			/* Swap endianness.  */
59  /* Holds a variable length block, as the compiler can write
60     strings and needs to backtrack.  */
61  size_t alloc;
62  gcov_unsigned_t *buffer;
63#endif
64} gcov_var;
65
66/* Save the current position in the gcov file.  */
67/* We need to expose this function when compiling for gcov-tool.  */
68#ifndef IN_GCOV_TOOL
69static inline
70#endif
71gcov_position_t
72gcov_position (void)
73{
74  gcov_nonruntime_assert (gcov_var.mode > 0);
75  return gcov_var.start + gcov_var.offset;
76}
77
78/* Return nonzero if the error flag is set.  */
79/* We need to expose this function when compiling for gcov-tool.  */
80#ifndef IN_GCOV_TOOL
81static inline
82#endif
83int
84gcov_is_error (void)
85{
86  return gcov_var.file ? gcov_var.error : 1;
87}
88
89#if IN_LIBGCOV
90/* Move to beginning of file and initialize for writing.  */
91GCOV_LINKAGE inline void
92gcov_rewrite (void)
93{
94  gcov_var.mode = -1;
95  gcov_var.start = 0;
96  gcov_var.offset = 0;
97  fseek (gcov_var.file, 0L, SEEK_SET);
98}
99#endif
100
101static inline gcov_unsigned_t from_file (gcov_unsigned_t value)
102{
103#if !IN_LIBGCOV
104  if (gcov_var.endian)
105    {
106      value = (value >> 16) | (value << 16);
107      value = ((value & 0xff00ff) << 8) | ((value >> 8) & 0xff00ff);
108    }
109#endif
110  return value;
111}
112
113/* Open a gcov file. NAME is the name of the file to open and MODE
114   indicates whether a new file should be created, or an existing file
115   opened. If MODE is >= 0 an existing file will be opened, if
116   possible, and if MODE is <= 0, a new file will be created. Use
117   MODE=0 to attempt to reopen an existing file and then fall back on
118   creating a new one.  If MODE < 0, the file will be opened in
119   read-only mode.  Otherwise it will be opened for modification.
120   Return zero on failure, >0 on opening an existing file and <0 on
121   creating a new one.  */
122
123GCOV_LINKAGE int
124#if IN_LIBGCOV
125gcov_open (const char *name)
126#else
127gcov_open (const char *name, int mode)
128#endif
129{
130#if IN_LIBGCOV
131  const int mode = 0;
132#endif
133#if GCOV_LOCKED
134  struct flock s_flock;
135  int fd;
136
137  s_flock.l_whence = SEEK_SET;
138  s_flock.l_start = 0;
139  s_flock.l_len = 0; /* Until EOF.  */
140  s_flock.l_pid = getpid ();
141#endif
142
143  gcov_nonruntime_assert (!gcov_var.file);
144  gcov_var.start = 0;
145  gcov_var.offset = gcov_var.length = 0;
146  gcov_var.overread = -1u;
147  gcov_var.error = 0;
148#if !IN_LIBGCOV
149  gcov_var.endian = 0;
150#endif
151#if GCOV_LOCKED
152  if (mode > 0)
153    {
154      /* Read-only mode - acquire a read-lock.  */
155      s_flock.l_type = F_RDLCK;
156      /* pass mode (ignored) for compatibility */
157      fd = open (name, O_RDONLY, S_IRUSR | S_IWUSR);
158    }
159  else if (mode < 0)
160     {
161       /* Write mode - acquire a write-lock.  */
162       s_flock.l_type = F_WRLCK;
163      fd = open (name, O_RDWR | O_CREAT | O_TRUNC, 0666);
164    }
165  else /* mode == 0 */
166    {
167      /* Read-Write mode - acquire a write-lock.  */
168      s_flock.l_type = F_WRLCK;
169      fd = open (name, O_RDWR | O_CREAT, 0666);
170    }
171  if (fd < 0)
172    return 0;
173
174  while (fcntl (fd, F_SETLKW, &s_flock) && errno == EINTR)
175    continue;
176
177  gcov_var.file = fdopen (fd, (mode > 0) ? "rb" : "r+b");
178
179  if (!gcov_var.file)
180    {
181      close (fd);
182      return 0;
183    }
184
185  if (mode > 0)
186    gcov_var.mode = 1;
187  else if (mode == 0)
188    {
189      struct stat st;
190
191      if (fstat (fd, &st) < 0)
192	{
193	  fclose (gcov_var.file);
194	  gcov_var.file = 0;
195	  return 0;
196	}
197      if (st.st_size != 0)
198	gcov_var.mode = 1;
199      else
200	gcov_var.mode = mode * 2 + 1;
201    }
202  else
203    gcov_var.mode = mode * 2 + 1;
204#else
205  if (mode >= 0)
206    gcov_var.file = fopen (name, (mode > 0) ? "rb" : "r+b");
207
208  if (gcov_var.file)
209    gcov_var.mode = 1;
210  else if (mode <= 0)
211    {
212      gcov_var.file = fopen (name, "w+b");
213      if (gcov_var.file)
214	gcov_var.mode = mode * 2 + 1;
215    }
216  if (!gcov_var.file)
217    return 0;
218#endif
219
220  setbuf (gcov_var.file, (char *)0);
221
222  return 1;
223}
224
225/* Close the current gcov file. Flushes data to disk. Returns nonzero
226   on failure or error flag set.  */
227
228GCOV_LINKAGE int
229gcov_close (void)
230{
231  if (gcov_var.file)
232    {
233#if !IN_GCOV
234      if (gcov_var.offset && gcov_var.mode < 0)
235	gcov_write_block (gcov_var.offset);
236#endif
237      fclose (gcov_var.file);
238      gcov_var.file = 0;
239      gcov_var.length = 0;
240    }
241#if !IN_LIBGCOV
242  free (gcov_var.buffer);
243  gcov_var.alloc = 0;
244  gcov_var.buffer = 0;
245#endif
246  gcov_var.mode = 0;
247  return gcov_var.error;
248}
249
250#if !IN_LIBGCOV
251/* Check if MAGIC is EXPECTED. Use it to determine endianness of the
252   file. Returns +1 for same endian, -1 for other endian and zero for
253   not EXPECTED.  */
254
255GCOV_LINKAGE int
256gcov_magic (gcov_unsigned_t magic, gcov_unsigned_t expected)
257{
258  if (magic == expected)
259    return 1;
260  magic = (magic >> 16) | (magic << 16);
261  magic = ((magic & 0xff00ff) << 8) | ((magic >> 8) & 0xff00ff);
262  if (magic == expected)
263    {
264      gcov_var.endian = 1;
265      return -1;
266    }
267  return 0;
268}
269#endif
270
271#if !IN_LIBGCOV
272static void
273gcov_allocate (unsigned length)
274{
275  size_t new_size = gcov_var.alloc;
276
277  if (!new_size)
278    new_size = GCOV_BLOCK_SIZE;
279  new_size += length;
280  new_size *= 2;
281
282  gcov_var.alloc = new_size;
283  gcov_var.buffer = XRESIZEVAR (gcov_unsigned_t, gcov_var.buffer, new_size << 2);
284}
285#endif
286
287#if !IN_GCOV
288/* Write out the current block, if needs be.  */
289
290static void
291gcov_write_block (unsigned size)
292{
293  if (fwrite (gcov_var.buffer, size << 2, 1, gcov_var.file) != 1)
294    gcov_var.error = 1;
295  gcov_var.start += size;
296  gcov_var.offset -= size;
297}
298
299/* Allocate space to write BYTES bytes to the gcov file. Return a
300   pointer to those bytes, or NULL on failure.  */
301
302static gcov_unsigned_t *
303gcov_write_words (unsigned words)
304{
305  gcov_unsigned_t *result;
306
307  gcov_nonruntime_assert (gcov_var.mode < 0);
308#if IN_LIBGCOV
309  if (gcov_var.offset >= GCOV_BLOCK_SIZE)
310    {
311      gcov_write_block (GCOV_BLOCK_SIZE);
312      if (gcov_var.offset)
313	{
314	  memcpy (gcov_var.buffer, gcov_var.buffer + GCOV_BLOCK_SIZE, 4);
315	}
316    }
317#else
318  if (gcov_var.offset + words > gcov_var.alloc)
319    gcov_allocate (gcov_var.offset + words);
320#endif
321  result = &gcov_var.buffer[gcov_var.offset];
322  gcov_var.offset += words;
323
324  return result;
325}
326
327/* Write unsigned VALUE to coverage file.  Sets error flag
328   appropriately.  */
329
330GCOV_LINKAGE void
331gcov_write_unsigned (gcov_unsigned_t value)
332{
333  gcov_unsigned_t *buffer = gcov_write_words (1);
334
335  buffer[0] = value;
336}
337
338/* Write counter VALUE to coverage file.  Sets error flag
339   appropriately.  */
340
341#if IN_LIBGCOV
342GCOV_LINKAGE void
343gcov_write_counter (gcov_type value)
344{
345  gcov_unsigned_t *buffer = gcov_write_words (2);
346
347  buffer[0] = (gcov_unsigned_t) value;
348  if (sizeof (value) > sizeof (gcov_unsigned_t))
349    buffer[1] = (gcov_unsigned_t) (value >> 32);
350  else
351    buffer[1] = 0;
352}
353#endif /* IN_LIBGCOV */
354
355#if !IN_LIBGCOV
356/* Write STRING to coverage file.  Sets error flag on file
357   error, overflow flag on overflow */
358
359GCOV_LINKAGE void
360gcov_write_string (const char *string)
361{
362  unsigned length = 0;
363  unsigned alloc = 0;
364  gcov_unsigned_t *buffer;
365
366  if (string)
367    {
368      length = strlen (string);
369      alloc = (length + 4) >> 2;
370    }
371
372  buffer = gcov_write_words (1 + alloc);
373
374  buffer[0] = alloc;
375  buffer[alloc] = 0;
376  memcpy (&buffer[1], string, length);
377}
378#endif
379
380#if !IN_LIBGCOV
381/* Write a tag TAG and reserve space for the record length. Return a
382   value to be used for gcov_write_length.  */
383
384GCOV_LINKAGE gcov_position_t
385gcov_write_tag (gcov_unsigned_t tag)
386{
387  gcov_position_t result = gcov_var.start + gcov_var.offset;
388  gcov_unsigned_t *buffer = gcov_write_words (2);
389
390  buffer[0] = tag;
391  buffer[1] = 0;
392
393  return result;
394}
395
396/* Write a record length using POSITION, which was returned by
397   gcov_write_tag.  The current file position is the end of the
398   record, and is restored before returning.  Returns nonzero on
399   overflow.  */
400
401GCOV_LINKAGE void
402gcov_write_length (gcov_position_t position)
403{
404  unsigned offset;
405  gcov_unsigned_t length;
406  gcov_unsigned_t *buffer;
407
408  gcov_nonruntime_assert (gcov_var.mode < 0);
409  gcov_nonruntime_assert (position + 2 <= gcov_var.start + gcov_var.offset);
410  gcov_nonruntime_assert (position >= gcov_var.start);
411  offset = position - gcov_var.start;
412  length = gcov_var.offset - offset - 2;
413  buffer = (gcov_unsigned_t *) &gcov_var.buffer[offset];
414  buffer[1] = length;
415  if (gcov_var.offset >= GCOV_BLOCK_SIZE)
416    gcov_write_block (gcov_var.offset);
417}
418
419#else /* IN_LIBGCOV */
420
421/* Write a tag TAG and length LENGTH.  */
422
423GCOV_LINKAGE void
424gcov_write_tag_length (gcov_unsigned_t tag, gcov_unsigned_t length)
425{
426  gcov_unsigned_t *buffer = gcov_write_words (2);
427
428  buffer[0] = tag;
429  buffer[1] = length;
430}
431
432/* Write a summary structure to the gcov file.  Return nonzero on
433   overflow.  */
434
435GCOV_LINKAGE void
436gcov_write_summary (gcov_unsigned_t tag, const struct gcov_summary *summary)
437{
438  unsigned ix, h_ix, bv_ix, h_cnt = 0;
439  const struct gcov_ctr_summary *csum;
440  unsigned histo_bitvector[GCOV_HISTOGRAM_BITVECTOR_SIZE];
441
442  /* Count number of non-zero histogram entries, and fill in a bit vector
443     of non-zero indices. The histogram is only currently computed for arc
444     counters.  */
445  for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
446    histo_bitvector[bv_ix] = 0;
447  csum = &summary->ctrs[GCOV_COUNTER_ARCS];
448  for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++)
449    {
450      if (csum->histogram[h_ix].num_counters > 0)
451        {
452          histo_bitvector[h_ix / 32] |= 1 << (h_ix % 32);
453          h_cnt++;
454        }
455    }
456  gcov_write_tag_length (tag, GCOV_TAG_SUMMARY_LENGTH (h_cnt));
457  gcov_write_unsigned (summary->checksum);
458  for (csum = summary->ctrs, ix = GCOV_COUNTERS_SUMMABLE; ix--; csum++)
459    {
460      gcov_write_unsigned (csum->num);
461      gcov_write_unsigned (csum->runs);
462      gcov_write_counter (csum->sum_all);
463      gcov_write_counter (csum->run_max);
464      gcov_write_counter (csum->sum_max);
465      if (ix != GCOV_COUNTER_ARCS)
466        {
467          for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
468            gcov_write_unsigned (0);
469          continue;
470        }
471      for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
472        gcov_write_unsigned (histo_bitvector[bv_ix]);
473      for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++)
474        {
475          if (!csum->histogram[h_ix].num_counters)
476            continue;
477          gcov_write_unsigned (csum->histogram[h_ix].num_counters);
478          gcov_write_counter (csum->histogram[h_ix].min_value);
479          gcov_write_counter (csum->histogram[h_ix].cum_value);
480        }
481    }
482}
483#endif /* IN_LIBGCOV */
484
485#endif /*!IN_GCOV */
486
487/* Return a pointer to read BYTES bytes from the gcov file. Returns
488   NULL on failure (read past EOF).  */
489
490static const gcov_unsigned_t *
491gcov_read_words (unsigned words)
492{
493  const gcov_unsigned_t *result;
494  unsigned excess = gcov_var.length - gcov_var.offset;
495
496  gcov_nonruntime_assert (gcov_var.mode > 0);
497  if (excess < words)
498    {
499      gcov_var.start += gcov_var.offset;
500      if (excess)
501	{
502#if IN_LIBGCOV
503	  memcpy (gcov_var.buffer, gcov_var.buffer + gcov_var.offset, 4);
504#else
505	  memmove (gcov_var.buffer, gcov_var.buffer + gcov_var.offset,
506		   excess * 4);
507#endif
508	}
509      gcov_var.offset = 0;
510      gcov_var.length = excess;
511#if IN_LIBGCOV
512      excess = GCOV_BLOCK_SIZE;
513#else
514      if (gcov_var.length + words > gcov_var.alloc)
515	gcov_allocate (gcov_var.length + words);
516      excess = gcov_var.alloc - gcov_var.length;
517#endif
518      excess = fread (gcov_var.buffer + gcov_var.length,
519		      1, excess << 2, gcov_var.file) >> 2;
520      gcov_var.length += excess;
521      if (gcov_var.length < words)
522	{
523	  gcov_var.overread += words - gcov_var.length;
524	  gcov_var.length = 0;
525	  return 0;
526	}
527    }
528  result = &gcov_var.buffer[gcov_var.offset];
529  gcov_var.offset += words;
530  return result;
531}
532
533/* Read unsigned value from a coverage file. Sets error flag on file
534   error, overflow flag on overflow */
535
536GCOV_LINKAGE gcov_unsigned_t
537gcov_read_unsigned (void)
538{
539  gcov_unsigned_t value;
540  const gcov_unsigned_t *buffer = gcov_read_words (1);
541
542  if (!buffer)
543    return 0;
544  value = from_file (buffer[0]);
545  return value;
546}
547
548/* Read counter value from a coverage file. Sets error flag on file
549   error, overflow flag on overflow */
550
551GCOV_LINKAGE gcov_type
552gcov_read_counter (void)
553{
554  gcov_type value;
555  const gcov_unsigned_t *buffer = gcov_read_words (2);
556
557  if (!buffer)
558    return 0;
559  value = from_file (buffer[0]);
560  if (sizeof (value) > sizeof (gcov_unsigned_t))
561    value |= ((gcov_type) from_file (buffer[1])) << 32;
562  else if (buffer[1])
563    gcov_var.error = -1;
564
565  return value;
566}
567
568/* We need to expose the below function when compiling for gcov-tool.  */
569
570#if !IN_LIBGCOV || defined (IN_GCOV_TOOL)
571/* Read string from coverage file. Returns a pointer to a static
572   buffer, or NULL on empty string. You must copy the string before
573   calling another gcov function.  */
574
575GCOV_LINKAGE const char *
576gcov_read_string (void)
577{
578  unsigned length = gcov_read_unsigned ();
579
580  if (!length)
581    return 0;
582
583  return (const char *) gcov_read_words (length);
584}
585#endif
586
587GCOV_LINKAGE void
588gcov_read_summary (struct gcov_summary *summary)
589{
590  unsigned ix, h_ix, bv_ix, h_cnt = 0;
591  struct gcov_ctr_summary *csum;
592  unsigned histo_bitvector[GCOV_HISTOGRAM_BITVECTOR_SIZE];
593  unsigned cur_bitvector;
594
595  summary->checksum = gcov_read_unsigned ();
596  for (csum = summary->ctrs, ix = GCOV_COUNTERS_SUMMABLE; ix--; csum++)
597    {
598      csum->num = gcov_read_unsigned ();
599      csum->runs = gcov_read_unsigned ();
600      csum->sum_all = gcov_read_counter ();
601      csum->run_max = gcov_read_counter ();
602      csum->sum_max = gcov_read_counter ();
603      memset (csum->histogram, 0,
604              sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE);
605      for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
606        {
607          histo_bitvector[bv_ix] = gcov_read_unsigned ();
608#if IN_LIBGCOV
609          /* When building libgcov we don't include system.h, which includes
610             hwint.h (where popcount_hwi is declared). However, libgcov.a
611             is built by the bootstrapped compiler and therefore the builtins
612             are always available.  */
613          h_cnt += __builtin_popcount (histo_bitvector[bv_ix]);
614#else
615          h_cnt += popcount_hwi (histo_bitvector[bv_ix]);
616#endif
617        }
618      bv_ix = 0;
619      h_ix = 0;
620      cur_bitvector = 0;
621      while (h_cnt--)
622        {
623          /* Find the index corresponding to the next entry we will read in.
624             First find the next non-zero bitvector and re-initialize
625             the histogram index accordingly, then right shift and increment
626             the index until we find a set bit.  */
627          while (!cur_bitvector)
628            {
629              h_ix = bv_ix * 32;
630              if (bv_ix >= GCOV_HISTOGRAM_BITVECTOR_SIZE)
631                gcov_error ("corrupted profile info: summary histogram "
632                            "bitvector is corrupt");
633              cur_bitvector = histo_bitvector[bv_ix++];
634            }
635          while (!(cur_bitvector & 0x1))
636            {
637              h_ix++;
638              cur_bitvector >>= 1;
639            }
640          if (h_ix >= GCOV_HISTOGRAM_SIZE)
641            gcov_error ("corrupted profile info: summary histogram "
642                        "index is corrupt");
643
644          csum->histogram[h_ix].num_counters = gcov_read_unsigned ();
645          csum->histogram[h_ix].min_value = gcov_read_counter ();
646          csum->histogram[h_ix].cum_value = gcov_read_counter ();
647          /* Shift off the index we are done with and increment to the
648             corresponding next histogram entry.  */
649          cur_bitvector >>= 1;
650          h_ix++;
651        }
652    }
653}
654
655/* We need to expose the below function when compiling for gcov-tool.  */
656
657#if !IN_LIBGCOV || defined (IN_GCOV_TOOL)
658/* Reset to a known position.  BASE should have been obtained from
659   gcov_position, LENGTH should be a record length.  */
660
661GCOV_LINKAGE void
662gcov_sync (gcov_position_t base, gcov_unsigned_t length)
663{
664  gcov_nonruntime_assert (gcov_var.mode > 0);
665  base += length;
666  if (base - gcov_var.start <= gcov_var.length)
667    gcov_var.offset = base - gcov_var.start;
668  else
669    {
670      gcov_var.offset = gcov_var.length = 0;
671      fseek (gcov_var.file, base << 2, SEEK_SET);
672      gcov_var.start = ftell (gcov_var.file) >> 2;
673    }
674}
675#endif
676
677#if IN_LIBGCOV
678/* Move to a given position in a gcov file.  */
679
680GCOV_LINKAGE void
681gcov_seek (gcov_position_t base)
682{
683  if (gcov_var.offset)
684    gcov_write_block (gcov_var.offset);
685  fseek (gcov_var.file, base << 2, SEEK_SET);
686  gcov_var.start = ftell (gcov_var.file) >> 2;
687}
688#endif
689
690#if IN_GCOV > 0
691/* Return the modification time of the current gcov file.  */
692
693GCOV_LINKAGE time_t
694gcov_time (void)
695{
696  struct stat status;
697
698  if (fstat (fileno (gcov_var.file), &status))
699    return 0;
700  else
701    return status.st_mtime;
702}
703#endif /* IN_GCOV */
704
705#if !IN_GCOV
706/* Determine the index into histogram for VALUE. */
707
708#if IN_LIBGCOV
709static unsigned
710#else
711GCOV_LINKAGE unsigned
712#endif
713gcov_histo_index (gcov_type value)
714{
715  gcov_type_unsigned v = (gcov_type_unsigned)value;
716  unsigned r = 0;
717  unsigned prev2bits = 0;
718
719  /* Find index into log2 scale histogram, where each of the log2
720     sized buckets is divided into 4 linear sub-buckets for better
721     focus in the higher buckets.  */
722
723  /* Find the place of the most-significant bit set.  */
724  if (v > 0)
725    {
726#if IN_LIBGCOV
727      /* When building libgcov we don't include system.h, which includes
728         hwint.h (where floor_log2 is declared). However, libgcov.a
729         is built by the bootstrapped compiler and therefore the builtins
730         are always available.  */
731      r = sizeof (long long) * __CHAR_BIT__ - 1 - __builtin_clzll (v);
732#else
733      /* We use floor_log2 from hwint.c, which takes a HOST_WIDE_INT
734         that is 64 bits and gcov_type_unsigned is 64 bits.  */
735      r = floor_log2 (v);
736#endif
737    }
738
739  /* If at most the 2 least significant bits are set (value is
740     0 - 3) then that value is our index into the lowest set of
741     four buckets.  */
742  if (r < 2)
743    return (unsigned)value;
744
745  gcov_nonruntime_assert (r < 64);
746
747  /* Find the two next most significant bits to determine which
748     of the four linear sub-buckets to select.  */
749  prev2bits = (v >> (r - 2)) & 0x3;
750  /* Finally, compose the final bucket index from the log2 index and
751     the next 2 bits. The minimum r value at this point is 2 since we
752     returned above if r was 2 or more, so the minimum bucket at this
753     point is 4.  */
754  return (r - 1) * 4 + prev2bits;
755}
756
757/* Merge SRC_HISTO into TGT_HISTO. The counters are assumed to be in
758   the same relative order in both histograms, and are matched up
759   and merged in reverse order. Each counter is assigned an equal portion of
760   its entry's original cumulative counter value when computing the
761   new merged cum_value.  */
762
763static void gcov_histogram_merge (gcov_bucket_type *tgt_histo,
764                                  gcov_bucket_type *src_histo)
765{
766  int src_i, tgt_i, tmp_i = 0;
767  unsigned src_num, tgt_num, merge_num;
768  gcov_type src_cum, tgt_cum, merge_src_cum, merge_tgt_cum, merge_cum;
769  gcov_type merge_min;
770  gcov_bucket_type tmp_histo[GCOV_HISTOGRAM_SIZE];
771  int src_done = 0;
772
773  memset (tmp_histo, 0, sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE);
774
775  /* Assume that the counters are in the same relative order in both
776     histograms. Walk the histograms from largest to smallest entry,
777     matching up and combining counters in order.  */
778  src_num = 0;
779  src_cum = 0;
780  src_i = GCOV_HISTOGRAM_SIZE - 1;
781  for (tgt_i = GCOV_HISTOGRAM_SIZE - 1; tgt_i >= 0 && !src_done; tgt_i--)
782    {
783      tgt_num = tgt_histo[tgt_i].num_counters;
784      tgt_cum = tgt_histo[tgt_i].cum_value;
785      /* Keep going until all of the target histogram's counters at this
786         position have been matched and merged with counters from the
787         source histogram.  */
788      while (tgt_num > 0 && !src_done)
789        {
790          /* If this is either the first time through this loop or we just
791             exhausted the previous non-zero source histogram entry, look
792             for the next non-zero source histogram entry.  */
793          if (!src_num)
794            {
795              /* Locate the next non-zero entry.  */
796              while (src_i >= 0 && !src_histo[src_i].num_counters)
797                src_i--;
798              /* If source histogram has fewer counters, then just copy over the
799                 remaining target counters and quit.  */
800              if (src_i < 0)
801                {
802                  tmp_histo[tgt_i].num_counters += tgt_num;
803                  tmp_histo[tgt_i].cum_value += tgt_cum;
804                  if (!tmp_histo[tgt_i].min_value ||
805                      tgt_histo[tgt_i].min_value < tmp_histo[tgt_i].min_value)
806                    tmp_histo[tgt_i].min_value = tgt_histo[tgt_i].min_value;
807                  while (--tgt_i >= 0)
808                    {
809                      tmp_histo[tgt_i].num_counters
810                          += tgt_histo[tgt_i].num_counters;
811                      tmp_histo[tgt_i].cum_value += tgt_histo[tgt_i].cum_value;
812                      if (!tmp_histo[tgt_i].min_value ||
813                          tgt_histo[tgt_i].min_value
814                          < tmp_histo[tgt_i].min_value)
815                        tmp_histo[tgt_i].min_value = tgt_histo[tgt_i].min_value;
816                    }
817
818                  src_done = 1;
819                  break;
820                }
821
822              src_num = src_histo[src_i].num_counters;
823              src_cum = src_histo[src_i].cum_value;
824            }
825
826          /* The number of counters to merge on this pass is the minimum
827             of the remaining counters from the current target and source
828             histogram entries.  */
829          merge_num = tgt_num;
830          if (src_num < merge_num)
831            merge_num = src_num;
832
833          /* The merged min_value is the sum of the min_values from target
834             and source.  */
835          merge_min = tgt_histo[tgt_i].min_value + src_histo[src_i].min_value;
836
837          /* Compute the portion of source and target entries' cum_value
838             that will be apportioned to the counters being merged.
839             The total remaining cum_value from each entry is divided
840             equally among the counters from that histogram entry if we
841             are not merging all of them.  */
842          merge_src_cum = src_cum;
843          if (merge_num < src_num)
844            merge_src_cum = merge_num * src_cum / src_num;
845          merge_tgt_cum = tgt_cum;
846          if (merge_num < tgt_num)
847            merge_tgt_cum = merge_num * tgt_cum / tgt_num;
848          /* The merged cum_value is the sum of the source and target
849             components.  */
850          merge_cum = merge_src_cum + merge_tgt_cum;
851
852          /* Update the remaining number of counters and cum_value left
853             to be merged from this source and target entry.  */
854          src_cum -= merge_src_cum;
855          tgt_cum -= merge_tgt_cum;
856          src_num -= merge_num;
857          tgt_num -= merge_num;
858
859          /* The merged counters get placed in the new merged histogram
860             at the entry for the merged min_value.  */
861          tmp_i = gcov_histo_index (merge_min);
862          gcov_nonruntime_assert (tmp_i < GCOV_HISTOGRAM_SIZE);
863          tmp_histo[tmp_i].num_counters += merge_num;
864          tmp_histo[tmp_i].cum_value += merge_cum;
865          if (!tmp_histo[tmp_i].min_value ||
866              merge_min < tmp_histo[tmp_i].min_value)
867            tmp_histo[tmp_i].min_value = merge_min;
868
869          /* Ensure the search for the next non-zero src_histo entry starts
870             at the next smallest histogram bucket.  */
871          if (!src_num)
872            src_i--;
873        }
874    }
875
876  gcov_nonruntime_assert (tgt_i < 0);
877
878  /* In the case where there were more counters in the source histogram,
879     accumulate the remaining unmerged cumulative counter values. Add
880     those to the smallest non-zero target histogram entry. Otherwise,
881     the total cumulative counter values in the histogram will be smaller
882     than the sum_all stored in the summary, which will complicate
883     computing the working set information from the histogram later on.  */
884  if (src_num)
885    src_i--;
886  while (src_i >= 0)
887    {
888      src_cum += src_histo[src_i].cum_value;
889      src_i--;
890    }
891  /* At this point, tmp_i should be the smallest non-zero entry in the
892     tmp_histo.  */
893  gcov_nonruntime_assert (tmp_i >= 0 && tmp_i < GCOV_HISTOGRAM_SIZE
894                          && tmp_histo[tmp_i].num_counters > 0);
895  tmp_histo[tmp_i].cum_value += src_cum;
896
897  /* Finally, copy the merged histogram into tgt_histo.  */
898  memcpy (tgt_histo, tmp_histo,
899	  sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE);
900}
901#endif /* !IN_GCOV */
902
903/* This is used by gcov-dump (IN_GCOV == -1) and in the compiler
904   (!IN_GCOV && !IN_LIBGCOV).  */
905#if IN_GCOV <= 0 && !IN_LIBGCOV
906/* Compute the working set information from the counter histogram in
907   the profile summary. This is an array of information corresponding to a
908   range of percentages of the total execution count (sum_all), and includes
909   the number of counters required to cover that working set percentage and
910   the minimum counter value in that working set.  */
911
912GCOV_LINKAGE void
913compute_working_sets (const struct gcov_ctr_summary *summary,
914                      gcov_working_set_t *gcov_working_sets)
915{
916  gcov_type working_set_cum_values[NUM_GCOV_WORKING_SETS];
917  gcov_type ws_cum_hotness_incr;
918  gcov_type cum, tmp_cum;
919  const gcov_bucket_type *histo_bucket;
920  unsigned ws_ix, c_num, count;
921  int h_ix;
922
923  /* Compute the amount of sum_all that the cumulative hotness grows
924     by in each successive working set entry, which depends on the
925     number of working set entries.  */
926  ws_cum_hotness_incr = summary->sum_all / NUM_GCOV_WORKING_SETS;
927
928  /* Next fill in an array of the cumulative hotness values corresponding
929     to each working set summary entry we are going to compute below.
930     Skip 0% statistics, which can be extrapolated from the
931     rest of the summary data.  */
932  cum = ws_cum_hotness_incr;
933  for (ws_ix = 0; ws_ix < NUM_GCOV_WORKING_SETS;
934       ws_ix++, cum += ws_cum_hotness_incr)
935    working_set_cum_values[ws_ix] = cum;
936  /* The last summary entry is reserved for (roughly) 99.9% of the
937     working set. Divide by 1024 so it becomes a shift, which gives
938     almost exactly 99.9%.  */
939  working_set_cum_values[NUM_GCOV_WORKING_SETS-1]
940      = summary->sum_all - summary->sum_all/1024;
941
942  /* Next, walk through the histogram in decending order of hotness
943     and compute the statistics for the working set summary array.
944     As histogram entries are accumulated, we check to see which
945     working set entries have had their expected cum_value reached
946     and fill them in, walking the working set entries in increasing
947     size of cum_value.  */
948  ws_ix = 0; /* The current entry into the working set array.  */
949  cum = 0; /* The current accumulated counter sum.  */
950  count = 0; /* The current accumulated count of block counters.  */
951  for (h_ix = GCOV_HISTOGRAM_SIZE - 1;
952       h_ix >= 0 && ws_ix < NUM_GCOV_WORKING_SETS; h_ix--)
953    {
954      histo_bucket = &summary->histogram[h_ix];
955
956      /* If we haven't reached the required cumulative counter value for
957         the current working set percentage, simply accumulate this histogram
958         entry into the running sums and continue to the next histogram
959         entry.  */
960      if (cum + histo_bucket->cum_value < working_set_cum_values[ws_ix])
961        {
962          cum += histo_bucket->cum_value;
963          count += histo_bucket->num_counters;
964          continue;
965        }
966
967      /* If adding the current histogram entry's cumulative counter value
968         causes us to exceed the current working set size, then estimate
969         how many of this histogram entry's counter values are required to
970         reach the working set size, and fill in working set entries
971         as we reach their expected cumulative value.  */
972      for (c_num = 0, tmp_cum = cum;
973           c_num < histo_bucket->num_counters && ws_ix < NUM_GCOV_WORKING_SETS;
974           c_num++)
975        {
976          count++;
977          /* If we haven't reached the last histogram entry counter, add
978             in the minimum value again. This will underestimate the
979             cumulative sum so far, because many of the counter values in this
980             entry may have been larger than the minimum. We could add in the
981             average value every time, but that would require an expensive
982             divide operation.  */
983          if (c_num + 1 < histo_bucket->num_counters)
984            tmp_cum += histo_bucket->min_value;
985          /* If we have reached the last histogram entry counter, then add
986             in the entire cumulative value.  */
987          else
988            tmp_cum = cum + histo_bucket->cum_value;
989
990	  /* Next walk through successive working set entries and fill in
991	     the statistics for any whose size we have reached by accumulating
992	     this histogram counter.  */
993	  while (ws_ix < NUM_GCOV_WORKING_SETS
994		 && tmp_cum >= working_set_cum_values[ws_ix])
995            {
996              gcov_working_sets[ws_ix].num_counters = count;
997              gcov_working_sets[ws_ix].min_counter
998                  = histo_bucket->min_value;
999              ws_ix++;
1000            }
1001        }
1002      /* Finally, update the running cumulative value since we were
1003         using a temporary above.  */
1004      cum += histo_bucket->cum_value;
1005    }
1006  gcov_nonruntime_assert (ws_ix == NUM_GCOV_WORKING_SETS);
1007}
1008#endif /* IN_GCOV <= 0 && !IN_LIBGCOV */
1009