1/* Fixed-point arithmetic support.
2   Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "hash-set.h"
25#include "machmode.h"
26#include "vec.h"
27#include "double-int.h"
28#include "input.h"
29#include "alias.h"
30#include "symtab.h"
31#include "wide-int.h"
32#include "inchash.h"
33#include "fixed-value.h"
34#include "tree.h"
35#include "diagnostic-core.h"
36#include "wide-int.h"
37
38/* Compare two fixed objects for bitwise identity.  */
39
40bool
41fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
42{
43  return (a->mode == b->mode
44	  && a->data.high == b->data.high
45	  && a->data.low == b->data.low);
46}
47
48/* Calculate a hash value.  */
49
50unsigned int
51fixed_hash (const FIXED_VALUE_TYPE *f)
52{
53  return (unsigned int) (f->data.low ^ f->data.high);
54}
55
56/* Define the enum code for the range of the fixed-point value.  */
57enum fixed_value_range_code {
58  FIXED_OK,		/* The value is within the range.  */
59  FIXED_UNDERFLOW,	/* The value is less than the minimum.  */
60  FIXED_GT_MAX_EPS,	/* The value is greater than the maximum, but not equal
61			   to the maximum plus the epsilon.  */
62  FIXED_MAX_EPS		/* The value equals the maximum plus the epsilon.  */
63};
64
65/* Check REAL_VALUE against the range of the fixed-point mode.
66   Return FIXED_OK, if it is within the range.
67          FIXED_UNDERFLOW, if it is less than the minimum.
68          FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
69	    the maximum plus the epsilon.
70          FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon.  */
71
72static enum fixed_value_range_code
73check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, machine_mode mode)
74{
75  REAL_VALUE_TYPE max_value, min_value, epsilon_value;
76
77  real_2expN (&max_value, GET_MODE_IBIT (mode), mode);
78  real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), mode);
79
80  if (SIGNED_FIXED_POINT_MODE_P (mode))
81    min_value = real_value_negate (&max_value);
82  else
83    real_from_string (&min_value, "0.0");
84
85  if (real_compare (LT_EXPR, real_value, &min_value))
86    return FIXED_UNDERFLOW;
87  if (real_compare (EQ_EXPR, real_value, &max_value))
88    return FIXED_MAX_EPS;
89  real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
90  if (real_compare (GT_EXPR, real_value, &max_value))
91    return FIXED_GT_MAX_EPS;
92  return FIXED_OK;
93}
94
95
96/* Construct a CONST_FIXED from a bit payload and machine mode MODE.
97   The bits in PAYLOAD are sign-extended/zero-extended according to MODE.  */
98
99FIXED_VALUE_TYPE
100fixed_from_double_int (double_int payload, machine_mode mode)
101{
102  FIXED_VALUE_TYPE value;
103
104  gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
105
106  if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
107    value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
108  else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
109    value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
110  else
111    gcc_unreachable ();
112
113  value.mode = mode;
114
115  return value;
116}
117
118
119/* Initialize from a decimal or hexadecimal string.  */
120
121void
122fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, machine_mode mode)
123{
124  REAL_VALUE_TYPE real_value, fixed_value, base_value;
125  unsigned int fbit;
126  enum fixed_value_range_code temp;
127  bool fail;
128
129  f->mode = mode;
130  fbit = GET_MODE_FBIT (mode);
131
132  real_from_string (&real_value, str);
133  temp = check_real_for_fixed_mode (&real_value, f->mode);
134  /* We don't want to warn the case when the _Fract value is 1.0.  */
135  if (temp == FIXED_UNDERFLOW
136      || temp == FIXED_GT_MAX_EPS
137      || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
138    warning (OPT_Woverflow,
139	     "large fixed-point constant implicitly truncated to fixed-point type");
140  real_2expN (&base_value, fbit, mode);
141  real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
142  wide_int w = real_to_integer (&fixed_value, &fail,
143				GET_MODE_PRECISION (mode));
144  f->data.low = w.elt (0);
145  f->data.high = w.elt (1);
146
147  if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
148    {
149      /* From the spec, we need to evaluate 1 to the maximal value.  */
150      f->data.low = -1;
151      f->data.high = -1;
152      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
153				+ GET_MODE_IBIT (f->mode));
154    }
155  else
156    f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
157			      + GET_MODE_FBIT (f->mode)
158			      + GET_MODE_IBIT (f->mode),
159			      UNSIGNED_FIXED_POINT_MODE_P (f->mode));
160}
161
162/* Render F as a decimal floating point constant.  */
163
164void
165fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
166		  size_t buf_size)
167{
168  REAL_VALUE_TYPE real_value, base_value, fixed_value;
169
170  signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode) ? UNSIGNED : SIGNED;
171  real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), f_orig->mode);
172  real_from_integer (&real_value, VOIDmode,
173		     wide_int::from (f_orig->data,
174				     GET_MODE_PRECISION (f_orig->mode), sgn),
175		     sgn);
176  real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
177  real_to_decimal (str, &fixed_value, buf_size, 0, 1);
178}
179
180/* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
181   the machine mode MODE.
182   Do not modify *F otherwise.
183   This function assumes the width of double_int is greater than the width
184   of the fixed-point value (the sum of a possible sign bit, possible ibits,
185   and fbits).
186   Return true, if !SAT_P and overflow.  */
187
188static bool
189fixed_saturate1 (machine_mode mode, double_int a, double_int *f,
190		 bool sat_p)
191{
192  bool overflow_p = false;
193  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
194  int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
195
196  if (unsigned_p) /* Unsigned type.  */
197    {
198      double_int max;
199      max.low = -1;
200      max.high = -1;
201      max = max.zext (i_f_bits);
202      if (a.ugt (max))
203	{
204	  if (sat_p)
205	    *f = max;
206	  else
207	    overflow_p = true;
208	}
209    }
210  else /* Signed type.  */
211    {
212      double_int max, min;
213      max.high = -1;
214      max.low = -1;
215      max = max.zext (i_f_bits);
216      min.high = 0;
217      min.low = 1;
218      min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
219      min = min.sext (1 + i_f_bits);
220      if (a.sgt (max))
221	{
222	  if (sat_p)
223	    *f = max;
224	  else
225	    overflow_p = true;
226	}
227      else if (a.slt (min))
228	{
229	  if (sat_p)
230	    *f = min;
231	  else
232	    overflow_p = true;
233	}
234    }
235  return overflow_p;
236}
237
238/* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
239   save to *F based on the machine mode MODE.
240   Do not modify *F otherwise.
241   This function assumes the width of two double_int is greater than the width
242   of the fixed-point value (the sum of a possible sign bit, possible ibits,
243   and fbits).
244   Return true, if !SAT_P and overflow.  */
245
246static bool
247fixed_saturate2 (machine_mode mode, double_int a_high, double_int a_low,
248		 double_int *f, bool sat_p)
249{
250  bool overflow_p = false;
251  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
252  int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
253
254  if (unsigned_p) /* Unsigned type.  */
255    {
256      double_int max_r, max_s;
257      max_r.high = 0;
258      max_r.low = 0;
259      max_s.high = -1;
260      max_s.low = -1;
261      max_s = max_s.zext (i_f_bits);
262      if (a_high.ugt (max_r)
263	  || (a_high == max_r &&
264	      a_low.ugt (max_s)))
265	{
266	  if (sat_p)
267	    *f = max_s;
268	  else
269	    overflow_p = true;
270	}
271    }
272  else /* Signed type.  */
273    {
274      double_int max_r, max_s, min_r, min_s;
275      max_r.high = 0;
276      max_r.low = 0;
277      max_s.high = -1;
278      max_s.low = -1;
279      max_s = max_s.zext (i_f_bits);
280      min_r.high = -1;
281      min_r.low = -1;
282      min_s.high = 0;
283      min_s.low = 1;
284      min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
285      min_s = min_s.sext (1 + i_f_bits);
286      if (a_high.sgt (max_r)
287	  || (a_high == max_r &&
288	      a_low.ugt (max_s)))
289	{
290	  if (sat_p)
291	    *f = max_s;
292	  else
293	    overflow_p = true;
294	}
295      else if (a_high.slt (min_r)
296	       || (a_high == min_r &&
297		   a_low.ult (min_s)))
298	{
299	  if (sat_p)
300	    *f = min_s;
301	  else
302	    overflow_p = true;
303	}
304    }
305  return overflow_p;
306}
307
308/* Return the sign bit based on I_F_BITS.  */
309
310static inline int
311get_fixed_sign_bit (double_int a, int i_f_bits)
312{
313  if (i_f_bits < HOST_BITS_PER_WIDE_INT)
314    return (a.low >> i_f_bits) & 1;
315  else
316    return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
317}
318
319/* Calculate F = A + (SUBTRACT_P ? -B : B).
320   If SAT_P, saturate the result to the max or the min.
321   Return true, if !SAT_P and overflow.  */
322
323static bool
324do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
325	      const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
326{
327  bool overflow_p = false;
328  bool unsigned_p;
329  double_int temp;
330  int i_f_bits;
331
332  /* This was a conditional expression but it triggered a bug in
333     Sun C 5.5.  */
334  if (subtract_p)
335    temp = -b->data;
336  else
337    temp = b->data;
338
339  unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
340  i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
341  f->mode = a->mode;
342  f->data = a->data + temp;
343  if (unsigned_p) /* Unsigned type.  */
344    {
345      if (subtract_p) /* Unsigned subtraction.  */
346	{
347	  if (a->data.ult (b->data))
348	    {
349	      if (sat_p)
350		{
351		  f->data.high = 0;
352		  f->data.low = 0;
353		 }
354	      else
355		overflow_p = true;
356	    }
357	}
358      else /* Unsigned addition.  */
359	{
360	  f->data = f->data.zext (i_f_bits);
361	  if (f->data.ult (a->data)
362	      || f->data.ult (b->data))
363	    {
364	      if (sat_p)
365		{
366		  f->data.high = -1;
367		  f->data.low = -1;
368		}
369	      else
370		overflow_p = true;
371	    }
372	}
373    }
374  else /* Signed type.  */
375    {
376      if ((!subtract_p
377	   && (get_fixed_sign_bit (a->data, i_f_bits)
378	       == get_fixed_sign_bit (b->data, i_f_bits))
379	   && (get_fixed_sign_bit (a->data, i_f_bits)
380	       != get_fixed_sign_bit (f->data, i_f_bits)))
381	  || (subtract_p
382	      && (get_fixed_sign_bit (a->data, i_f_bits)
383		  != get_fixed_sign_bit (b->data, i_f_bits))
384	      && (get_fixed_sign_bit (a->data, i_f_bits)
385		  != get_fixed_sign_bit (f->data, i_f_bits))))
386	{
387	  if (sat_p)
388	    {
389	      f->data.low = 1;
390	      f->data.high = 0;
391	      f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
392	      if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
393		{
394		  --f->data;
395		}
396	    }
397	  else
398	    overflow_p = true;
399	}
400    }
401  f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
402  return overflow_p;
403}
404
405/* Calculate F = A * B.
406   If SAT_P, saturate the result to the max or the min.
407   Return true, if !SAT_P and overflow.  */
408
409static bool
410do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
411		   const FIXED_VALUE_TYPE *b, bool sat_p)
412{
413  bool overflow_p = false;
414  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
415  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
416  f->mode = a->mode;
417  if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
418    {
419      f->data = a->data * b->data;
420      f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
421				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
422      overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
423    }
424  else
425    {
426      /* The result of multiplication expands to two double_int.  */
427      double_int a_high, a_low, b_high, b_low;
428      double_int high_high, high_low, low_high, low_low;
429      double_int r, s, temp1, temp2;
430      int carry = 0;
431
432      /* Decompose a and b to four double_int.  */
433      a_high.low = a->data.high;
434      a_high.high = 0;
435      a_low.low = a->data.low;
436      a_low.high = 0;
437      b_high.low = b->data.high;
438      b_high.high = 0;
439      b_low.low = b->data.low;
440      b_low.high = 0;
441
442      /* Perform four multiplications.  */
443      low_low = a_low * b_low;
444      low_high = a_low * b_high;
445      high_low = a_high * b_low;
446      high_high = a_high * b_high;
447
448      /* Accumulate four results to {r, s}.  */
449      temp1.high = high_low.low;
450      temp1.low = 0;
451      s = low_low + temp1;
452      if (s.ult (low_low)
453	  || s.ult (temp1))
454	carry ++; /* Carry */
455      temp1.high = s.high;
456      temp1.low = s.low;
457      temp2.high = low_high.low;
458      temp2.low = 0;
459      s = temp1 + temp2;
460      if (s.ult (temp1)
461	  || s.ult (temp2))
462	carry ++; /* Carry */
463
464      temp1.low = high_low.high;
465      temp1.high = 0;
466      r = high_high + temp1;
467      temp1.low = low_high.high;
468      temp1.high = 0;
469      r += temp1;
470      temp1.low = carry;
471      temp1.high = 0;
472      r += temp1;
473
474      /* We need to subtract b from r, if a < 0.  */
475      if (!unsigned_p && a->data.high < 0)
476	r -= b->data;
477      /* We need to subtract a from r, if b < 0.  */
478      if (!unsigned_p && b->data.high < 0)
479	r -= a->data;
480
481      /* Shift right the result by FBIT.  */
482      if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
483	{
484	  s.low = r.low;
485	  s.high = r.high;
486	  if (unsigned_p)
487	    {
488	      r.low = 0;
489	      r.high = 0;
490	    }
491	  else
492	    {
493	      r.low = -1;
494	      r.high = -1;
495	    }
496	  f->data.low = s.low;
497	  f->data.high = s.high;
498	}
499      else
500	{
501	  s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT);
502	  f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT
503			  - GET_MODE_FBIT (f->mode)),
504			 HOST_BITS_PER_DOUBLE_INT);
505	  f->data.low = f->data.low | s.low;
506	  f->data.high = f->data.high | s.high;
507	  s.low = f->data.low;
508	  s.high = f->data.high;
509	  r = r.lshift (-GET_MODE_FBIT (f->mode),
510			HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
511	}
512
513      overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
514    }
515
516  f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
517  return overflow_p;
518}
519
520/* Calculate F = A / B.
521   If SAT_P, saturate the result to the max or the min.
522   Return true, if !SAT_P and overflow.  */
523
524static bool
525do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
526		 const FIXED_VALUE_TYPE *b, bool sat_p)
527{
528  bool overflow_p = false;
529  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
530  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
531  f->mode = a->mode;
532  if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
533    {
534      f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
535				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
536      f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
537      overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
538    }
539  else
540    {
541      double_int pos_a, pos_b, r, s;
542      double_int quo_r, quo_s, mod, temp;
543      int num_of_neg = 0;
544      int i;
545
546      /* If a < 0, negate a.  */
547      if (!unsigned_p && a->data.high < 0)
548	{
549	  pos_a = -a->data;
550	  num_of_neg ++;
551	}
552      else
553	pos_a = a->data;
554
555      /* If b < 0, negate b.  */
556      if (!unsigned_p && b->data.high < 0)
557	{
558	  pos_b = -b->data;
559	  num_of_neg ++;
560	}
561      else
562	pos_b = b->data;
563
564      /* Left shift pos_a to {r, s} by FBIT.  */
565      if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
566	{
567	  r = pos_a;
568	  s.high = 0;
569	  s.low = 0;
570	}
571      else
572 	{
573	  s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT);
574	  r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT
575			    - GET_MODE_FBIT (f->mode)),
576			 HOST_BITS_PER_DOUBLE_INT);
577 	}
578
579      /* Divide r by pos_b to quo_r.  The remainder is in mod.  */
580      quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod);
581      quo_s = double_int_zero;
582
583      for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++)
584	{
585	  /* Record the leftmost bit of mod.  */
586	  int leftmost_mod = (mod.high < 0);
587
588	  /* Shift left mod by 1 bit.  */
589	  mod = mod.lshift (1);
590
591	  /* Test the leftmost bit of s to add to mod.  */
592	  if (s.high < 0)
593	    mod.low += 1;
594
595	  /* Shift left quo_s by 1 bit.  */
596	  quo_s = quo_s.lshift (1);
597
598	  /* Try to calculate (mod - pos_b).  */
599	  temp = mod - pos_b;
600
601	  if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1)
602	    {
603	      quo_s.low += 1;
604	      mod = temp;
605	    }
606
607	  /* Shift left s by 1 bit.  */
608	  s = s.lshift (1);
609
610	}
611
612      if (num_of_neg == 1)
613	{
614	  quo_s = -quo_s;
615	  if (quo_s.high == 0 && quo_s.low == 0)
616	    quo_r = -quo_r;
617	  else
618	    {
619	      quo_r.low = ~quo_r.low;
620	      quo_r.high = ~quo_r.high;
621	    }
622	}
623
624      f->data = quo_s;
625      overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
626    }
627
628  f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
629  return overflow_p;
630}
631
632/* Calculate F = A << B if LEFT_P.  Otherwise, F = A >> B.
633   If SAT_P, saturate the result to the max or the min.
634   Return true, if !SAT_P and overflow.  */
635
636static bool
637do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
638	      const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
639{
640  bool overflow_p = false;
641  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
642  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
643  f->mode = a->mode;
644
645  if (b->data.low == 0)
646    {
647      f->data = a->data;
648      return overflow_p;
649    }
650
651  if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
652    {
653      f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
654				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
655      if (left_p) /* Only left shift saturates.  */
656	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
657    }
658  else /* We need two double_int to store the left-shift result.  */
659    {
660      double_int temp_high, temp_low;
661      if (b->data.low == HOST_BITS_PER_DOUBLE_INT)
662	{
663	  temp_high = a->data;
664	  temp_low.high = 0;
665	  temp_low.low = 0;
666	}
667      else
668	{
669	  temp_low = a->data.lshift (b->data.low,
670				     HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
671	  /* Logical shift right to temp_high.  */
672	  temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
673			 HOST_BITS_PER_DOUBLE_INT);
674	}
675      if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high.  */
676	temp_high = temp_high.ext (b->data.low, unsigned_p);
677      f->data = temp_low;
678      overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
679				    sat_p);
680    }
681  f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
682  return overflow_p;
683}
684
685/* Calculate F = -A.
686   If SAT_P, saturate the result to the max or the min.
687   Return true, if !SAT_P and overflow.  */
688
689static bool
690do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
691{
692  bool overflow_p = false;
693  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
694  int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
695  f->mode = a->mode;
696  f->data = -a->data;
697  f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
698
699  if (unsigned_p) /* Unsigned type.  */
700    {
701      if (f->data.low != 0 || f->data.high != 0)
702	{
703	  if (sat_p)
704	    {
705	      f->data.low = 0;
706	      f->data.high = 0;
707	    }
708	  else
709	    overflow_p = true;
710	}
711    }
712  else /* Signed type.  */
713    {
714      if (!(f->data.high == 0 && f->data.low == 0)
715	  && f->data.high == a->data.high && f->data.low == a->data.low )
716	{
717	  if (sat_p)
718	    {
719	      /* Saturate to the maximum by subtracting f->data by one.  */
720	      f->data.low = -1;
721	      f->data.high = -1;
722	      f->data = f->data.zext (i_f_bits);
723	    }
724	  else
725	    overflow_p = true;
726	}
727    }
728  return overflow_p;
729}
730
731/* Perform the binary or unary operation described by CODE.
732   Note that OP0 and OP1 must have the same mode for binary operators.
733   For a unary operation, leave OP1 NULL.
734   Return true, if !SAT_P and overflow.  */
735
736bool
737fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
738		  const FIXED_VALUE_TYPE *op1, bool sat_p)
739{
740  switch (icode)
741    {
742    case NEGATE_EXPR:
743      return do_fixed_neg (f, op0, sat_p);
744      break;
745
746    case PLUS_EXPR:
747      gcc_assert (op0->mode == op1->mode);
748      return do_fixed_add (f, op0, op1, false, sat_p);
749      break;
750
751    case MINUS_EXPR:
752      gcc_assert (op0->mode == op1->mode);
753      return do_fixed_add (f, op0, op1, true, sat_p);
754      break;
755
756    case MULT_EXPR:
757      gcc_assert (op0->mode == op1->mode);
758      return do_fixed_multiply (f, op0, op1, sat_p);
759      break;
760
761    case TRUNC_DIV_EXPR:
762      gcc_assert (op0->mode == op1->mode);
763      return do_fixed_divide (f, op0, op1, sat_p);
764      break;
765
766    case LSHIFT_EXPR:
767      return do_fixed_shift (f, op0, op1, true, sat_p);
768      break;
769
770    case RSHIFT_EXPR:
771      return do_fixed_shift (f, op0, op1, false, sat_p);
772      break;
773
774    default:
775      gcc_unreachable ();
776    }
777  return false;
778}
779
780/* Compare fixed-point values by tree_code.
781   Note that OP0 and OP1 must have the same mode.  */
782
783bool
784fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
785	       const FIXED_VALUE_TYPE *op1)
786{
787  enum tree_code code = (enum tree_code) icode;
788  gcc_assert (op0->mode == op1->mode);
789
790  switch (code)
791    {
792    case NE_EXPR:
793      return op0->data != op1->data;
794
795    case EQ_EXPR:
796      return op0->data == op1->data;
797
798    case LT_EXPR:
799      return op0->data.cmp (op1->data,
800			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
801
802    case LE_EXPR:
803      return op0->data.cmp (op1->data,
804			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
805
806    case GT_EXPR:
807      return op0->data.cmp (op1->data,
808			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
809
810    case GE_EXPR:
811      return op0->data.cmp (op1->data,
812			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
813
814    default:
815      gcc_unreachable ();
816    }
817}
818
819/* Extend or truncate to a new mode.
820   If SAT_P, saturate the result to the max or the min.
821   Return true, if !SAT_P and overflow.  */
822
823bool
824fixed_convert (FIXED_VALUE_TYPE *f, machine_mode mode,
825               const FIXED_VALUE_TYPE *a, bool sat_p)
826{
827  bool overflow_p = false;
828  if (mode == a->mode)
829    {
830      *f = *a;
831      return overflow_p;
832    }
833
834  if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
835    {
836      /* Left shift a to temp_high, temp_low based on a->mode.  */
837      double_int temp_high, temp_low;
838      int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
839      temp_low = a->data.lshift (amount,
840				 HOST_BITS_PER_DOUBLE_INT,
841				 SIGNED_FIXED_POINT_MODE_P (a->mode));
842      /* Logical shift right to temp_high.  */
843      temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
844		     HOST_BITS_PER_DOUBLE_INT);
845      if (SIGNED_FIXED_POINT_MODE_P (a->mode)
846	  && a->data.high < 0) /* Signed-extend temp_high.  */
847	temp_high = temp_high.sext (amount);
848      f->mode = mode;
849      f->data = temp_low;
850      if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
851	  SIGNED_FIXED_POINT_MODE_P (f->mode))
852	overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
853				      sat_p);
854      else
855	{
856	  /* Take care of the cases when converting between signed and
857	     unsigned.  */
858	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
859	    {
860	      /* Signed -> Unsigned.  */
861	      if (a->data.high < 0)
862		{
863		  if (sat_p)
864		    {
865		      f->data.low = 0;  /* Set to zero.  */
866		      f->data.high = 0;  /* Set to zero.  */
867		    }
868		  else
869		    overflow_p = true;
870		}
871	      else
872		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
873					      &f->data, sat_p);
874	    }
875	  else
876	    {
877	      /* Unsigned -> Signed.  */
878	      if (temp_high.high < 0)
879		{
880		  if (sat_p)
881		    {
882		      /* Set to maximum.  */
883		      f->data.low = -1;  /* Set to all ones.  */
884		      f->data.high = -1;  /* Set to all ones.  */
885		      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
886						+ GET_MODE_IBIT (f->mode));
887						/* Clear the sign.  */
888		    }
889		  else
890		    overflow_p = true;
891		}
892	      else
893		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
894					      &f->data, sat_p);
895	    }
896	}
897    }
898  else
899    {
900      /* Right shift a to temp based on a->mode.  */
901      double_int temp;
902      temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
903			     HOST_BITS_PER_DOUBLE_INT,
904			     SIGNED_FIXED_POINT_MODE_P (a->mode));
905      f->mode = mode;
906      f->data = temp;
907      if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
908	  SIGNED_FIXED_POINT_MODE_P (f->mode))
909	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
910      else
911	{
912	  /* Take care of the cases when converting between signed and
913	     unsigned.  */
914	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
915	    {
916	      /* Signed -> Unsigned.  */
917	      if (a->data.high < 0)
918		{
919		  if (sat_p)
920		    {
921		      f->data.low = 0;  /* Set to zero.  */
922		      f->data.high = 0;  /* Set to zero.  */
923		    }
924		  else
925		    overflow_p = true;
926		}
927	      else
928		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
929					      sat_p);
930	    }
931	  else
932	    {
933	      /* Unsigned -> Signed.  */
934	      if (temp.high < 0)
935		{
936		  if (sat_p)
937		    {
938		      /* Set to maximum.  */
939		      f->data.low = -1;  /* Set to all ones.  */
940		      f->data.high = -1;  /* Set to all ones.  */
941		      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
942						+ GET_MODE_IBIT (f->mode));
943						/* Clear the sign.  */
944		    }
945		  else
946		    overflow_p = true;
947		}
948	      else
949		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
950					      sat_p);
951	    }
952	}
953    }
954
955  f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
956			    + GET_MODE_FBIT (f->mode)
957			    + GET_MODE_IBIT (f->mode),
958			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
959  return overflow_p;
960}
961
962/* Convert to a new fixed-point mode from an integer.
963   If UNSIGNED_P, this integer is unsigned.
964   If SAT_P, saturate the result to the max or the min.
965   Return true, if !SAT_P and overflow.  */
966
967bool
968fixed_convert_from_int (FIXED_VALUE_TYPE *f, machine_mode mode,
969			double_int a, bool unsigned_p, bool sat_p)
970{
971  bool overflow_p = false;
972  /* Left shift a to temp_high, temp_low.  */
973  double_int temp_high, temp_low;
974  int amount = GET_MODE_FBIT (mode);
975  if (amount == HOST_BITS_PER_DOUBLE_INT)
976    {
977       temp_high = a;
978       temp_low.low = 0;
979       temp_low.high = 0;
980    }
981  else
982    {
983      temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT);
984
985      /* Logical shift right to temp_high.  */
986      temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
987		     HOST_BITS_PER_DOUBLE_INT);
988    }
989  if (!unsigned_p && a.high < 0) /* Signed-extend temp_high.  */
990    temp_high = temp_high.sext (amount);
991
992  f->mode = mode;
993  f->data = temp_low;
994
995  if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
996    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
997				  sat_p);
998  else
999    {
1000      /* Take care of the cases when converting between signed and unsigned.  */
1001      if (!unsigned_p)
1002	{
1003	  /* Signed -> Unsigned.  */
1004	  if (a.high < 0)
1005	    {
1006	      if (sat_p)
1007		{
1008		  f->data.low = 0;  /* Set to zero.  */
1009		  f->data.high = 0;  /* Set to zero.  */
1010		}
1011	      else
1012		overflow_p = true;
1013	    }
1014	  else
1015	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1016					  &f->data, sat_p);
1017	}
1018      else
1019	{
1020	  /* Unsigned -> Signed.  */
1021	  if (temp_high.high < 0)
1022	    {
1023	      if (sat_p)
1024		{
1025		  /* Set to maximum.  */
1026		  f->data.low = -1;  /* Set to all ones.  */
1027		  f->data.high = -1;  /* Set to all ones.  */
1028		  f->data = f->data.zext (GET_MODE_FBIT (f->mode)
1029					    + GET_MODE_IBIT (f->mode));
1030					    /* Clear the sign.  */
1031		}
1032	      else
1033		overflow_p = true;
1034	    }
1035	  else
1036	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1037					  &f->data, sat_p);
1038	}
1039    }
1040  f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
1041			    + GET_MODE_FBIT (f->mode)
1042			    + GET_MODE_IBIT (f->mode),
1043			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1044  return overflow_p;
1045}
1046
1047/* Convert to a new fixed-point mode from a real.
1048   If SAT_P, saturate the result to the max or the min.
1049   Return true, if !SAT_P and overflow.  */
1050
1051bool
1052fixed_convert_from_real (FIXED_VALUE_TYPE *f, machine_mode mode,
1053			 const REAL_VALUE_TYPE *a, bool sat_p)
1054{
1055  bool overflow_p = false;
1056  REAL_VALUE_TYPE real_value, fixed_value, base_value;
1057  bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
1058  int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
1059  unsigned int fbit = GET_MODE_FBIT (mode);
1060  enum fixed_value_range_code temp;
1061  bool fail;
1062
1063  real_value = *a;
1064  f->mode = mode;
1065  real_2expN (&base_value, fbit, mode);
1066  real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
1067
1068  wide_int w = real_to_integer (&fixed_value, &fail,
1069				GET_MODE_PRECISION (mode));
1070  f->data.low = w.elt (0);
1071  f->data.high = w.elt (1);
1072  temp = check_real_for_fixed_mode (&real_value, mode);
1073  if (temp == FIXED_UNDERFLOW) /* Minimum.  */
1074    {
1075      if (sat_p)
1076	{
1077	  if (unsigned_p)
1078	    {
1079	      f->data.low = 0;
1080	      f->data.high = 0;
1081	    }
1082	  else
1083	    {
1084	      f->data.low = 1;
1085	      f->data.high = 0;
1086	      f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
1087	      f->data = f->data.sext (1 + i_f_bits);
1088	    }
1089	}
1090      else
1091	overflow_p = true;
1092    }
1093  else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum.  */
1094    {
1095      if (sat_p)
1096	{
1097	  f->data.low = -1;
1098	  f->data.high = -1;
1099	  f->data = f->data.zext (i_f_bits);
1100	}
1101      else
1102	overflow_p = true;
1103    }
1104  f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1105  return overflow_p;
1106}
1107
1108/* Convert to a new real mode from a fixed-point.  */
1109
1110void
1111real_convert_from_fixed (REAL_VALUE_TYPE *r, machine_mode mode,
1112			 const FIXED_VALUE_TYPE *f)
1113{
1114  REAL_VALUE_TYPE base_value, fixed_value, real_value;
1115
1116  signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f->mode) ? UNSIGNED : SIGNED;
1117  real_2expN (&base_value, GET_MODE_FBIT (f->mode), f->mode);
1118  real_from_integer (&fixed_value, VOIDmode,
1119		     wide_int::from (f->data, GET_MODE_PRECISION (f->mode),
1120				     sgn), sgn);
1121  real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
1122  real_convert (r, mode, &real_value);
1123}
1124
1125/* Determine whether a fixed-point value F is negative.  */
1126
1127bool
1128fixed_isneg (const FIXED_VALUE_TYPE *f)
1129{
1130  if (SIGNED_FIXED_POINT_MODE_P (f->mode))
1131    {
1132      int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
1133      int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
1134      if (sign_bit == 1)
1135	return true;
1136    }
1137
1138  return false;
1139}
1140