1/* Medium-level subroutines: convert bit-field store and extract
2   and shifts, multiplies and divides to rtl instructions.
3   Copyright (C) 1987-2015 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "diagnostic-core.h"
27#include "rtl.h"
28#include "hash-set.h"
29#include "machmode.h"
30#include "vec.h"
31#include "double-int.h"
32#include "input.h"
33#include "alias.h"
34#include "symtab.h"
35#include "wide-int.h"
36#include "inchash.h"
37#include "tree.h"
38#include "fold-const.h"
39#include "stor-layout.h"
40#include "tm_p.h"
41#include "flags.h"
42#include "insn-config.h"
43#include "hashtab.h"
44#include "hard-reg-set.h"
45#include "function.h"
46#include "statistics.h"
47#include "real.h"
48#include "fixed-value.h"
49#include "expmed.h"
50#include "dojump.h"
51#include "explow.h"
52#include "calls.h"
53#include "emit-rtl.h"
54#include "varasm.h"
55#include "stmt.h"
56#include "expr.h"
57#include "insn-codes.h"
58#include "optabs.h"
59#include "recog.h"
60#include "langhooks.h"
61#include "predict.h"
62#include "basic-block.h"
63#include "df.h"
64#include "target.h"
65
66struct target_expmed default_target_expmed;
67#if SWITCHABLE_TARGET
68struct target_expmed *this_target_expmed = &default_target_expmed;
69#endif
70
71static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
72				   unsigned HOST_WIDE_INT,
73				   unsigned HOST_WIDE_INT,
74				   unsigned HOST_WIDE_INT,
75				   rtx);
76static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
77				     unsigned HOST_WIDE_INT,
78				     rtx);
79static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
80				   unsigned HOST_WIDE_INT,
81				   unsigned HOST_WIDE_INT,
82				   unsigned HOST_WIDE_INT,
83				   rtx);
84static rtx extract_fixed_bit_field (machine_mode, rtx,
85				    unsigned HOST_WIDE_INT,
86				    unsigned HOST_WIDE_INT, rtx, int);
87static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
88				      unsigned HOST_WIDE_INT,
89				      unsigned HOST_WIDE_INT, rtx, int);
90static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
91static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
92				    unsigned HOST_WIDE_INT, int);
93static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
94static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
95static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
96
97/* Return a constant integer mask value of mode MODE with BITSIZE ones
98   followed by BITPOS zeros, or the complement of that if COMPLEMENT.
99   The mask is truncated if necessary to the width of mode MODE.  The
100   mask is zero-extended if BITSIZE+BITPOS is too small for MODE.  */
101
102static inline rtx
103mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
104{
105  return immed_wide_int_const
106    (wi::shifted_mask (bitpos, bitsize, complement,
107		       GET_MODE_PRECISION (mode)), mode);
108}
109
110/* Test whether a value is zero of a power of two.  */
111#define EXACT_POWER_OF_2_OR_ZERO_P(x) \
112  (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
113
114struct init_expmed_rtl
115{
116  rtx reg;
117  rtx plus;
118  rtx neg;
119  rtx mult;
120  rtx sdiv;
121  rtx udiv;
122  rtx sdiv_32;
123  rtx smod_32;
124  rtx wide_mult;
125  rtx wide_lshr;
126  rtx wide_trunc;
127  rtx shift;
128  rtx shift_mult;
129  rtx shift_add;
130  rtx shift_sub0;
131  rtx shift_sub1;
132  rtx zext;
133  rtx trunc;
134
135  rtx pow2[MAX_BITS_PER_WORD];
136  rtx cint[MAX_BITS_PER_WORD];
137};
138
139static void
140init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
141		      machine_mode from_mode, bool speed)
142{
143  int to_size, from_size;
144  rtx which;
145
146  to_size = GET_MODE_PRECISION (to_mode);
147  from_size = GET_MODE_PRECISION (from_mode);
148
149  /* Most partial integers have a precision less than the "full"
150     integer it requires for storage.  In case one doesn't, for
151     comparison purposes here, reduce the bit size by one in that
152     case.  */
153  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
154      && exact_log2 (to_size) != -1)
155    to_size --;
156  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
157      && exact_log2 (from_size) != -1)
158    from_size --;
159
160  /* Assume cost of zero-extend and sign-extend is the same.  */
161  which = (to_size < from_size ? all->trunc : all->zext);
162
163  PUT_MODE (all->reg, from_mode);
164  set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
165}
166
167static void
168init_expmed_one_mode (struct init_expmed_rtl *all,
169		      machine_mode mode, int speed)
170{
171  int m, n, mode_bitsize;
172  machine_mode mode_from;
173
174  mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
175
176  PUT_MODE (all->reg, mode);
177  PUT_MODE (all->plus, mode);
178  PUT_MODE (all->neg, mode);
179  PUT_MODE (all->mult, mode);
180  PUT_MODE (all->sdiv, mode);
181  PUT_MODE (all->udiv, mode);
182  PUT_MODE (all->sdiv_32, mode);
183  PUT_MODE (all->smod_32, mode);
184  PUT_MODE (all->wide_trunc, mode);
185  PUT_MODE (all->shift, mode);
186  PUT_MODE (all->shift_mult, mode);
187  PUT_MODE (all->shift_add, mode);
188  PUT_MODE (all->shift_sub0, mode);
189  PUT_MODE (all->shift_sub1, mode);
190  PUT_MODE (all->zext, mode);
191  PUT_MODE (all->trunc, mode);
192
193  set_add_cost (speed, mode, set_src_cost (all->plus, speed));
194  set_neg_cost (speed, mode, set_src_cost (all->neg, speed));
195  set_mul_cost (speed, mode, set_src_cost (all->mult, speed));
196  set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, speed));
197  set_udiv_cost (speed, mode, set_src_cost (all->udiv, speed));
198
199  set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, speed)
200				     <= 2 * add_cost (speed, mode)));
201  set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, speed)
202				     <= 4 * add_cost (speed, mode)));
203
204  set_shift_cost (speed, mode, 0, 0);
205  {
206    int cost = add_cost (speed, mode);
207    set_shiftadd_cost (speed, mode, 0, cost);
208    set_shiftsub0_cost (speed, mode, 0, cost);
209    set_shiftsub1_cost (speed, mode, 0, cost);
210  }
211
212  n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
213  for (m = 1; m < n; m++)
214    {
215      XEXP (all->shift, 1) = all->cint[m];
216      XEXP (all->shift_mult, 1) = all->pow2[m];
217
218      set_shift_cost (speed, mode, m, set_src_cost (all->shift, speed));
219      set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, speed));
220      set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, speed));
221      set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, speed));
222    }
223
224  if (SCALAR_INT_MODE_P (mode))
225    {
226      for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
227	   mode_from = (machine_mode)(mode_from + 1))
228	init_expmed_one_conv (all, mode, mode_from, speed);
229    }
230  if (GET_MODE_CLASS (mode) == MODE_INT)
231    {
232      machine_mode  wider_mode = GET_MODE_WIDER_MODE (mode);
233      if (wider_mode != VOIDmode)
234	{
235	  PUT_MODE (all->zext, wider_mode);
236	  PUT_MODE (all->wide_mult, wider_mode);
237	  PUT_MODE (all->wide_lshr, wider_mode);
238	  XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
239
240	  set_mul_widen_cost (speed, wider_mode,
241			      set_src_cost (all->wide_mult, speed));
242	  set_mul_highpart_cost (speed, mode,
243				 set_src_cost (all->wide_trunc, speed));
244	}
245    }
246}
247
248void
249init_expmed (void)
250{
251  struct init_expmed_rtl all;
252  machine_mode mode = QImode;
253  int m, speed;
254
255  memset (&all, 0, sizeof all);
256  for (m = 1; m < MAX_BITS_PER_WORD; m++)
257    {
258      all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
259      all.cint[m] = GEN_INT (m);
260    }
261
262  /* Avoid using hard regs in ways which may be unsupported.  */
263  all.reg = gen_rtx_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
264  all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
265  all.neg = gen_rtx_NEG (mode, all.reg);
266  all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
267  all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
268  all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
269  all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
270  all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
271  all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
272  all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
273  all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
274  all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
275  all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
276  all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
277  all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
278  all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
279  all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
280  all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
281
282  for (speed = 0; speed < 2; speed++)
283    {
284      crtl->maybe_hot_insn_p = speed;
285      set_zero_cost (speed, set_src_cost (const0_rtx, speed));
286
287      for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
288	   mode = (machine_mode)(mode + 1))
289	init_expmed_one_mode (&all, mode, speed);
290
291      if (MIN_MODE_PARTIAL_INT != VOIDmode)
292	for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
293	     mode = (machine_mode)(mode + 1))
294	  init_expmed_one_mode (&all, mode, speed);
295
296      if (MIN_MODE_VECTOR_INT != VOIDmode)
297	for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
298	     mode = (machine_mode)(mode + 1))
299	  init_expmed_one_mode (&all, mode, speed);
300    }
301
302  if (alg_hash_used_p ())
303    {
304      struct alg_hash_entry *p = alg_hash_entry_ptr (0);
305      memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
306    }
307  else
308    set_alg_hash_used_p (true);
309  default_rtl_profile ();
310
311  ggc_free (all.trunc);
312  ggc_free (all.shift_sub1);
313  ggc_free (all.shift_sub0);
314  ggc_free (all.shift_add);
315  ggc_free (all.shift_mult);
316  ggc_free (all.shift);
317  ggc_free (all.wide_trunc);
318  ggc_free (all.wide_lshr);
319  ggc_free (all.wide_mult);
320  ggc_free (all.zext);
321  ggc_free (all.smod_32);
322  ggc_free (all.sdiv_32);
323  ggc_free (all.udiv);
324  ggc_free (all.sdiv);
325  ggc_free (all.mult);
326  ggc_free (all.neg);
327  ggc_free (all.plus);
328  ggc_free (all.reg);
329}
330
331/* Return an rtx representing minus the value of X.
332   MODE is the intended mode of the result,
333   useful if X is a CONST_INT.  */
334
335rtx
336negate_rtx (machine_mode mode, rtx x)
337{
338  rtx result = simplify_unary_operation (NEG, mode, x, mode);
339
340  if (result == 0)
341    result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
342
343  return result;
344}
345
346/* Adjust bitfield memory MEM so that it points to the first unit of mode
347   MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
348   If MODE is BLKmode, return a reference to every byte in the bitfield.
349   Set *NEW_BITNUM to the bit position of the field within the new memory.  */
350
351static rtx
352narrow_bit_field_mem (rtx mem, machine_mode mode,
353		      unsigned HOST_WIDE_INT bitsize,
354		      unsigned HOST_WIDE_INT bitnum,
355		      unsigned HOST_WIDE_INT *new_bitnum)
356{
357  if (mode == BLKmode)
358    {
359      *new_bitnum = bitnum % BITS_PER_UNIT;
360      HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
361      HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
362			    / BITS_PER_UNIT);
363      return adjust_bitfield_address_size (mem, mode, offset, size);
364    }
365  else
366    {
367      unsigned int unit = GET_MODE_BITSIZE (mode);
368      *new_bitnum = bitnum % unit;
369      HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
370      return adjust_bitfield_address (mem, mode, offset);
371    }
372}
373
374/* The caller wants to perform insertion or extraction PATTERN on a
375   bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
376   BITREGION_START and BITREGION_END are as for store_bit_field
377   and FIELDMODE is the natural mode of the field.
378
379   Search for a mode that is compatible with the memory access
380   restrictions and (where applicable) with a register insertion or
381   extraction.  Return the new memory on success, storing the adjusted
382   bit position in *NEW_BITNUM.  Return null otherwise.  */
383
384static rtx
385adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
386			      rtx op0, HOST_WIDE_INT bitsize,
387			      HOST_WIDE_INT bitnum,
388			      unsigned HOST_WIDE_INT bitregion_start,
389			      unsigned HOST_WIDE_INT bitregion_end,
390			      machine_mode fieldmode,
391			      unsigned HOST_WIDE_INT *new_bitnum)
392{
393  bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
394				bitregion_end, MEM_ALIGN (op0),
395				MEM_VOLATILE_P (op0));
396  machine_mode best_mode;
397  if (iter.next_mode (&best_mode))
398    {
399      /* We can use a memory in BEST_MODE.  See whether this is true for
400	 any wider modes.  All other things being equal, we prefer to
401	 use the widest mode possible because it tends to expose more
402	 CSE opportunities.  */
403      if (!iter.prefer_smaller_modes ())
404	{
405	  /* Limit the search to the mode required by the corresponding
406	     register insertion or extraction instruction, if any.  */
407	  machine_mode limit_mode = word_mode;
408	  extraction_insn insn;
409	  if (get_best_reg_extraction_insn (&insn, pattern,
410					    GET_MODE_BITSIZE (best_mode),
411					    fieldmode))
412	    limit_mode = insn.field_mode;
413
414	  machine_mode wider_mode;
415	  while (iter.next_mode (&wider_mode)
416		 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
417	    best_mode = wider_mode;
418	}
419      return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
420				   new_bitnum);
421    }
422  return NULL_RTX;
423}
424
425/* Return true if a bitfield of size BITSIZE at bit number BITNUM within
426   a structure of mode STRUCT_MODE represents a lowpart subreg.   The subreg
427   offset is then BITNUM / BITS_PER_UNIT.  */
428
429static bool
430lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
431		     unsigned HOST_WIDE_INT bitsize,
432		     machine_mode struct_mode)
433{
434  if (BYTES_BIG_ENDIAN)
435    return (bitnum % BITS_PER_UNIT == 0
436	    && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
437		|| (bitnum + bitsize) % BITS_PER_WORD == 0));
438  else
439    return bitnum % BITS_PER_WORD == 0;
440}
441
442/* Return true if -fstrict-volatile-bitfields applies to an access of OP0
443   containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
444   Return false if the access would touch memory outside the range
445   BITREGION_START to BITREGION_END for conformance to the C++ memory
446   model.  */
447
448static bool
449strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
450			    unsigned HOST_WIDE_INT bitnum,
451			    machine_mode fieldmode,
452			    unsigned HOST_WIDE_INT bitregion_start,
453			    unsigned HOST_WIDE_INT bitregion_end)
454{
455  unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
456
457  /* -fstrict-volatile-bitfields must be enabled and we must have a
458     volatile MEM.  */
459  if (!MEM_P (op0)
460      || !MEM_VOLATILE_P (op0)
461      || flag_strict_volatile_bitfields <= 0)
462    return false;
463
464  /* Non-integral modes likely only happen with packed structures.
465     Punt.  */
466  if (!SCALAR_INT_MODE_P (fieldmode))
467    return false;
468
469  /* The bit size must not be larger than the field mode, and
470     the field mode must not be larger than a word.  */
471  if (bitsize > modesize || modesize > BITS_PER_WORD)
472    return false;
473
474  /* Check for cases of unaligned fields that must be split.  */
475  if (bitnum % modesize + bitsize > modesize)
476    return false;
477
478  /* The memory must be sufficiently aligned for a MODESIZE access.
479     This condition guarantees, that the memory access will not
480     touch anything after the end of the structure.  */
481  if (MEM_ALIGN (op0) < modesize)
482    return false;
483
484  /* Check for cases where the C++ memory model applies.  */
485  if (bitregion_end != 0
486      && (bitnum - bitnum % modesize < bitregion_start
487	  || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
488    return false;
489
490  return true;
491}
492
493/* Return true if OP is a memory and if a bitfield of size BITSIZE at
494   bit number BITNUM can be treated as a simple value of mode MODE.  */
495
496static bool
497simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
498		       unsigned HOST_WIDE_INT bitnum, machine_mode mode)
499{
500  return (MEM_P (op0)
501	  && bitnum % BITS_PER_UNIT == 0
502	  && bitsize == GET_MODE_BITSIZE (mode)
503	  && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
504	      || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
505		  && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
506}
507
508/* Try to use instruction INSV to store VALUE into a field of OP0.
509   BITSIZE and BITNUM are as for store_bit_field.  */
510
511static bool
512store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
513			    unsigned HOST_WIDE_INT bitsize,
514			    unsigned HOST_WIDE_INT bitnum,
515			    rtx value)
516{
517  struct expand_operand ops[4];
518  rtx value1;
519  rtx xop0 = op0;
520  rtx_insn *last = get_last_insn ();
521  bool copy_back = false;
522
523  machine_mode op_mode = insv->field_mode;
524  unsigned int unit = GET_MODE_BITSIZE (op_mode);
525  if (bitsize == 0 || bitsize > unit)
526    return false;
527
528  if (MEM_P (xop0))
529    /* Get a reference to the first byte of the field.  */
530    xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
531				 &bitnum);
532  else
533    {
534      /* Convert from counting within OP0 to counting in OP_MODE.  */
535      if (BYTES_BIG_ENDIAN)
536	bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
537
538      /* If xop0 is a register, we need it in OP_MODE
539	 to make it acceptable to the format of insv.  */
540      if (GET_CODE (xop0) == SUBREG)
541	/* We can't just change the mode, because this might clobber op0,
542	   and we will need the original value of op0 if insv fails.  */
543	xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
544      if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
545	xop0 = gen_lowpart_SUBREG (op_mode, xop0);
546    }
547
548  /* If the destination is a paradoxical subreg such that we need a
549     truncate to the inner mode, perform the insertion on a temporary and
550     truncate the result to the original destination.  Note that we can't
551     just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
552     X) 0)) is (reg:N X).  */
553  if (GET_CODE (xop0) == SUBREG
554      && REG_P (SUBREG_REG (xop0))
555      && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
556					 op_mode))
557    {
558      rtx tem = gen_reg_rtx (op_mode);
559      emit_move_insn (tem, xop0);
560      xop0 = tem;
561      copy_back = true;
562    }
563
564  /* There are similar overflow check at the start of store_bit_field_1,
565     but that only check the situation where the field lies completely
566     outside the register, while there do have situation where the field
567     lies partialy in the register, we need to adjust bitsize for this
568     partial overflow situation.  Without this fix, pr48335-2.c on big-endian
569     will broken on those arch support bit insert instruction, like arm, aarch64
570     etc.  */
571  if (bitsize + bitnum > unit && bitnum < unit)
572    {
573      warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
574	       "destination object, data truncated into %wu-bit",
575	       bitsize, unit - bitnum);
576      bitsize = unit - bitnum;
577    }
578
579  /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
580     "backwards" from the size of the unit we are inserting into.
581     Otherwise, we count bits from the most significant on a
582     BYTES/BITS_BIG_ENDIAN machine.  */
583
584  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
585    bitnum = unit - bitsize - bitnum;
586
587  /* Convert VALUE to op_mode (which insv insn wants) in VALUE1.  */
588  value1 = value;
589  if (GET_MODE (value) != op_mode)
590    {
591      if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
592	{
593	  /* Optimization: Don't bother really extending VALUE
594	     if it has all the bits we will actually use.  However,
595	     if we must narrow it, be sure we do it correctly.  */
596
597	  if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
598	    {
599	      rtx tmp;
600
601	      tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
602	      if (! tmp)
603		tmp = simplify_gen_subreg (op_mode,
604					   force_reg (GET_MODE (value),
605						      value1),
606					   GET_MODE (value), 0);
607	      value1 = tmp;
608	    }
609	  else
610	    value1 = gen_lowpart (op_mode, value1);
611	}
612      else if (CONST_INT_P (value))
613	value1 = gen_int_mode (INTVAL (value), op_mode);
614      else
615	/* Parse phase is supposed to make VALUE's data type
616	   match that of the component reference, which is a type
617	   at least as wide as the field; so VALUE should have
618	   a mode that corresponds to that type.  */
619	gcc_assert (CONSTANT_P (value));
620    }
621
622  create_fixed_operand (&ops[0], xop0);
623  create_integer_operand (&ops[1], bitsize);
624  create_integer_operand (&ops[2], bitnum);
625  create_input_operand (&ops[3], value1, op_mode);
626  if (maybe_expand_insn (insv->icode, 4, ops))
627    {
628      if (copy_back)
629	convert_move (op0, xop0, true);
630      return true;
631    }
632  delete_insns_since (last);
633  return false;
634}
635
636/* A subroutine of store_bit_field, with the same arguments.  Return true
637   if the operation could be implemented.
638
639   If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
640   no other way of implementing the operation.  If FALLBACK_P is false,
641   return false instead.  */
642
643static bool
644store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
645		   unsigned HOST_WIDE_INT bitnum,
646		   unsigned HOST_WIDE_INT bitregion_start,
647		   unsigned HOST_WIDE_INT bitregion_end,
648		   machine_mode fieldmode,
649		   rtx value, bool fallback_p)
650{
651  rtx op0 = str_rtx;
652  rtx orig_value;
653
654  while (GET_CODE (op0) == SUBREG)
655    {
656      /* The following line once was done only if WORDS_BIG_ENDIAN,
657	 but I think that is a mistake.  WORDS_BIG_ENDIAN is
658	 meaningful at a much higher level; when structures are copied
659	 between memory and regs, the higher-numbered regs
660	 always get higher addresses.  */
661      int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
662      int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
663      int byte_offset = 0;
664
665      /* Paradoxical subregs need special handling on big endian machines.  */
666      if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
667	{
668	  int difference = inner_mode_size - outer_mode_size;
669
670	  if (WORDS_BIG_ENDIAN)
671	    byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
672	  if (BYTES_BIG_ENDIAN)
673	    byte_offset += difference % UNITS_PER_WORD;
674	}
675      else
676	byte_offset = SUBREG_BYTE (op0);
677
678      bitnum += byte_offset * BITS_PER_UNIT;
679      op0 = SUBREG_REG (op0);
680    }
681
682  /* No action is needed if the target is a register and if the field
683     lies completely outside that register.  This can occur if the source
684     code contains an out-of-bounds access to a small array.  */
685  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
686    return true;
687
688  /* Use vec_set patterns for inserting parts of vectors whenever
689     available.  */
690  if (VECTOR_MODE_P (GET_MODE (op0))
691      && !MEM_P (op0)
692      && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
693      && fieldmode == GET_MODE_INNER (GET_MODE (op0))
694      && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
695      && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
696    {
697      struct expand_operand ops[3];
698      machine_mode outermode = GET_MODE (op0);
699      machine_mode innermode = GET_MODE_INNER (outermode);
700      enum insn_code icode = optab_handler (vec_set_optab, outermode);
701      int pos = bitnum / GET_MODE_BITSIZE (innermode);
702
703      create_fixed_operand (&ops[0], op0);
704      create_input_operand (&ops[1], value, innermode);
705      create_integer_operand (&ops[2], pos);
706      if (maybe_expand_insn (icode, 3, ops))
707	return true;
708    }
709
710  /* If the target is a register, overwriting the entire object, or storing
711     a full-word or multi-word field can be done with just a SUBREG.  */
712  if (!MEM_P (op0)
713      && bitsize == GET_MODE_BITSIZE (fieldmode)
714      && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
715	  || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
716    {
717      /* Use the subreg machinery either to narrow OP0 to the required
718	 words or to cope with mode punning between equal-sized modes.
719	 In the latter case, use subreg on the rhs side, not lhs.  */
720      rtx sub;
721
722      if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
723	{
724	  sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
725	  if (sub)
726	    {
727	      emit_move_insn (op0, sub);
728	      return true;
729	    }
730	}
731      else
732	{
733	  sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
734				     bitnum / BITS_PER_UNIT);
735	  if (sub)
736	    {
737	      emit_move_insn (sub, value);
738	      return true;
739	    }
740	}
741    }
742
743  /* If the target is memory, storing any naturally aligned field can be
744     done with a simple store.  For targets that support fast unaligned
745     memory, any naturally sized, unit aligned field can be done directly.  */
746  if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
747    {
748      op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
749      emit_move_insn (op0, value);
750      return true;
751    }
752
753  /* Make sure we are playing with integral modes.  Pun with subregs
754     if we aren't.  This must come after the entire register case above,
755     since that case is valid for any mode.  The following cases are only
756     valid for integral modes.  */
757  {
758    machine_mode imode = int_mode_for_mode (GET_MODE (op0));
759    if (imode != GET_MODE (op0))
760      {
761	if (MEM_P (op0))
762	  op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
763	else
764	  {
765	    gcc_assert (imode != BLKmode);
766	    op0 = gen_lowpart (imode, op0);
767	  }
768      }
769  }
770
771  /* Storing an lsb-aligned field in a register
772     can be done with a movstrict instruction.  */
773
774  if (!MEM_P (op0)
775      && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
776      && bitsize == GET_MODE_BITSIZE (fieldmode)
777      && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
778    {
779      struct expand_operand ops[2];
780      enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
781      rtx arg0 = op0;
782      unsigned HOST_WIDE_INT subreg_off;
783
784      if (GET_CODE (arg0) == SUBREG)
785	{
786	  /* Else we've got some float mode source being extracted into
787	     a different float mode destination -- this combination of
788	     subregs results in Severe Tire Damage.  */
789	  gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
790		      || GET_MODE_CLASS (fieldmode) == MODE_INT
791		      || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
792	  arg0 = SUBREG_REG (arg0);
793	}
794
795      subreg_off = bitnum / BITS_PER_UNIT;
796      if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
797	{
798	  arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
799
800	  create_fixed_operand (&ops[0], arg0);
801	  /* Shrink the source operand to FIELDMODE.  */
802	  create_convert_operand_to (&ops[1], value, fieldmode, false);
803	  if (maybe_expand_insn (icode, 2, ops))
804	    return true;
805	}
806    }
807
808  /* Handle fields bigger than a word.  */
809
810  if (bitsize > BITS_PER_WORD)
811    {
812      /* Here we transfer the words of the field
813	 in the order least significant first.
814	 This is because the most significant word is the one which may
815	 be less than full.
816	 However, only do that if the value is not BLKmode.  */
817
818      unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
819      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
820      unsigned int i;
821      rtx_insn *last;
822
823      /* This is the mode we must force value to, so that there will be enough
824	 subwords to extract.  Note that fieldmode will often (always?) be
825	 VOIDmode, because that is what store_field uses to indicate that this
826	 is a bit field, but passing VOIDmode to operand_subword_force
827	 is not allowed.  */
828      fieldmode = GET_MODE (value);
829      if (fieldmode == VOIDmode)
830	fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
831
832      last = get_last_insn ();
833      for (i = 0; i < nwords; i++)
834	{
835	  /* If I is 0, use the low-order word in both field and target;
836	     if I is 1, use the next to lowest word; and so on.  */
837	  unsigned int wordnum = (backwards
838				  ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
839				  - i - 1
840				  : i);
841	  unsigned int bit_offset = (backwards
842				     ? MAX ((int) bitsize - ((int) i + 1)
843					    * BITS_PER_WORD,
844					    0)
845				     : (int) i * BITS_PER_WORD);
846	  rtx value_word = operand_subword_force (value, wordnum, fieldmode);
847	  unsigned HOST_WIDE_INT new_bitsize =
848	    MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
849
850	  /* If the remaining chunk doesn't have full wordsize we have
851	     to make sure that for big endian machines the higher order
852	     bits are used.  */
853	  if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
854	    value_word = simplify_expand_binop (word_mode, lshr_optab,
855						value_word,
856						GEN_INT (BITS_PER_WORD
857							 - new_bitsize),
858						NULL_RTX, true,
859						OPTAB_LIB_WIDEN);
860
861	  if (!store_bit_field_1 (op0, new_bitsize,
862				  bitnum + bit_offset,
863				  bitregion_start, bitregion_end,
864				  word_mode,
865				  value_word, fallback_p))
866	    {
867	      delete_insns_since (last);
868	      return false;
869	    }
870	}
871      return true;
872    }
873
874  /* If VALUE has a floating-point or complex mode, access it as an
875     integer of the corresponding size.  This can occur on a machine
876     with 64 bit registers that uses SFmode for float.  It can also
877     occur for unaligned float or complex fields.  */
878  orig_value = value;
879  if (GET_MODE (value) != VOIDmode
880      && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
881      && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
882    {
883      value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
884      emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
885    }
886
887  /* If OP0 is a multi-word register, narrow it to the affected word.
888     If the region spans two words, defer to store_split_bit_field.  */
889  if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
890    {
891      op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
892				 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
893      gcc_assert (op0);
894      bitnum %= BITS_PER_WORD;
895      if (bitnum + bitsize > BITS_PER_WORD)
896	{
897	  if (!fallback_p)
898	    return false;
899
900	  store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
901				 bitregion_end, value);
902	  return true;
903	}
904    }
905
906  /* From here on we can assume that the field to be stored in fits
907     within a word.  If the destination is a register, it too fits
908     in a word.  */
909
910  extraction_insn insv;
911  if (!MEM_P (op0)
912      && get_best_reg_extraction_insn (&insv, EP_insv,
913				       GET_MODE_BITSIZE (GET_MODE (op0)),
914				       fieldmode)
915      && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
916    return true;
917
918  /* If OP0 is a memory, try copying it to a register and seeing if a
919     cheap register alternative is available.  */
920  if (MEM_P (op0))
921    {
922      if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
923					fieldmode)
924	  && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
925	return true;
926
927      rtx_insn *last = get_last_insn ();
928
929      /* Try loading part of OP0 into a register, inserting the bitfield
930	 into that, and then copying the result back to OP0.  */
931      unsigned HOST_WIDE_INT bitpos;
932      rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
933					       bitregion_start, bitregion_end,
934					       fieldmode, &bitpos);
935      if (xop0)
936	{
937	  rtx tempreg = copy_to_reg (xop0);
938	  if (store_bit_field_1 (tempreg, bitsize, bitpos,
939				 bitregion_start, bitregion_end,
940				 fieldmode, orig_value, false))
941	    {
942	      emit_move_insn (xop0, tempreg);
943	      return true;
944	    }
945	  delete_insns_since (last);
946	}
947    }
948
949  if (!fallback_p)
950    return false;
951
952  store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
953			 bitregion_end, value);
954  return true;
955}
956
957/* Generate code to store value from rtx VALUE
958   into a bit-field within structure STR_RTX
959   containing BITSIZE bits starting at bit BITNUM.
960
961   BITREGION_START is bitpos of the first bitfield in this region.
962   BITREGION_END is the bitpos of the ending bitfield in this region.
963   These two fields are 0, if the C++ memory model does not apply,
964   or we are not interested in keeping track of bitfield regions.
965
966   FIELDMODE is the machine-mode of the FIELD_DECL node for this field.  */
967
968void
969store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
970		 unsigned HOST_WIDE_INT bitnum,
971		 unsigned HOST_WIDE_INT bitregion_start,
972		 unsigned HOST_WIDE_INT bitregion_end,
973		 machine_mode fieldmode,
974		 rtx value)
975{
976  /* Handle -fstrict-volatile-bitfields in the cases where it applies.  */
977  if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
978				  bitregion_start, bitregion_end))
979    {
980      /* Storing of a full word can be done with a simple store.
981	 We know here that the field can be accessed with one single
982	 instruction.  For targets that support unaligned memory,
983	 an unaligned access may be necessary.  */
984      if (bitsize == GET_MODE_BITSIZE (fieldmode))
985	{
986	  str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
987					     bitnum / BITS_PER_UNIT);
988	  gcc_assert (bitnum % BITS_PER_UNIT == 0);
989	  emit_move_insn (str_rtx, value);
990	}
991      else
992	{
993	  rtx temp;
994
995	  str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
996					  &bitnum);
997	  gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (fieldmode));
998	  temp = copy_to_reg (str_rtx);
999	  if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
1000				  fieldmode, value, true))
1001	    gcc_unreachable ();
1002
1003	  emit_move_insn (str_rtx, temp);
1004	}
1005
1006      return;
1007    }
1008
1009  /* Under the C++0x memory model, we must not touch bits outside the
1010     bit region.  Adjust the address to start at the beginning of the
1011     bit region.  */
1012  if (MEM_P (str_rtx) && bitregion_start > 0)
1013    {
1014      machine_mode bestmode;
1015      HOST_WIDE_INT offset, size;
1016
1017      gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1018
1019      offset = bitregion_start / BITS_PER_UNIT;
1020      bitnum -= bitregion_start;
1021      size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1022      bitregion_end -= bitregion_start;
1023      bitregion_start = 0;
1024      bestmode = get_best_mode (bitsize, bitnum,
1025				bitregion_start, bitregion_end,
1026				MEM_ALIGN (str_rtx), VOIDmode,
1027				MEM_VOLATILE_P (str_rtx));
1028      str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1029    }
1030
1031  if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1032			  bitregion_start, bitregion_end,
1033			  fieldmode, value, true))
1034    gcc_unreachable ();
1035}
1036
1037/* Use shifts and boolean operations to store VALUE into a bit field of
1038   width BITSIZE in OP0, starting at bit BITNUM.  */
1039
1040static void
1041store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1042		       unsigned HOST_WIDE_INT bitnum,
1043		       unsigned HOST_WIDE_INT bitregion_start,
1044		       unsigned HOST_WIDE_INT bitregion_end,
1045		       rtx value)
1046{
1047  /* There is a case not handled here:
1048     a structure with a known alignment of just a halfword
1049     and a field split across two aligned halfwords within the structure.
1050     Or likewise a structure with a known alignment of just a byte
1051     and a field split across two bytes.
1052     Such cases are not supposed to be able to occur.  */
1053
1054  if (MEM_P (op0))
1055    {
1056      machine_mode mode = GET_MODE (op0);
1057      if (GET_MODE_BITSIZE (mode) == 0
1058	  || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1059	mode = word_mode;
1060      mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1061			    MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1062
1063      if (mode == VOIDmode)
1064	{
1065	  /* The only way this should occur is if the field spans word
1066	     boundaries.  */
1067	  store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1068				 bitregion_end, value);
1069	  return;
1070	}
1071
1072      op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1073    }
1074
1075  store_fixed_bit_field_1 (op0, bitsize, bitnum, value);
1076}
1077
1078/* Helper function for store_fixed_bit_field, stores
1079   the bit field always using the MODE of OP0.  */
1080
1081static void
1082store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1083			 unsigned HOST_WIDE_INT bitnum,
1084			 rtx value)
1085{
1086  machine_mode mode;
1087  rtx temp;
1088  int all_zero = 0;
1089  int all_one = 0;
1090
1091  mode = GET_MODE (op0);
1092  gcc_assert (SCALAR_INT_MODE_P (mode));
1093
1094  /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1095     for invalid input, such as f5 from gcc.dg/pr48335-2.c.  */
1096
1097  if (BYTES_BIG_ENDIAN)
1098    /* BITNUM is the distance between our msb
1099       and that of the containing datum.
1100       Convert it to the distance from the lsb.  */
1101    bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1102
1103  /* Now BITNUM is always the distance between our lsb
1104     and that of OP0.  */
1105
1106  /* Shift VALUE left by BITNUM bits.  If VALUE is not constant,
1107     we must first convert its mode to MODE.  */
1108
1109  if (CONST_INT_P (value))
1110    {
1111      unsigned HOST_WIDE_INT v = UINTVAL (value);
1112
1113      if (bitsize < HOST_BITS_PER_WIDE_INT)
1114	v &= ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1;
1115
1116      if (v == 0)
1117	all_zero = 1;
1118      else if ((bitsize < HOST_BITS_PER_WIDE_INT
1119		&& v == ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1)
1120	       || (bitsize == HOST_BITS_PER_WIDE_INT
1121		   && v == (unsigned HOST_WIDE_INT) -1))
1122	all_one = 1;
1123
1124      value = lshift_value (mode, v, bitnum);
1125    }
1126  else
1127    {
1128      int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1129		      && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1130
1131      if (GET_MODE (value) != mode)
1132	value = convert_to_mode (mode, value, 1);
1133
1134      if (must_and)
1135	value = expand_binop (mode, and_optab, value,
1136			      mask_rtx (mode, 0, bitsize, 0),
1137			      NULL_RTX, 1, OPTAB_LIB_WIDEN);
1138      if (bitnum > 0)
1139	value = expand_shift (LSHIFT_EXPR, mode, value,
1140			      bitnum, NULL_RTX, 1);
1141    }
1142
1143  /* Now clear the chosen bits in OP0,
1144     except that if VALUE is -1 we need not bother.  */
1145  /* We keep the intermediates in registers to allow CSE to combine
1146     consecutive bitfield assignments.  */
1147
1148  temp = force_reg (mode, op0);
1149
1150  if (! all_one)
1151    {
1152      temp = expand_binop (mode, and_optab, temp,
1153			   mask_rtx (mode, bitnum, bitsize, 1),
1154			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
1155      temp = force_reg (mode, temp);
1156    }
1157
1158  /* Now logical-or VALUE into OP0, unless it is zero.  */
1159
1160  if (! all_zero)
1161    {
1162      temp = expand_binop (mode, ior_optab, temp, value,
1163			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
1164      temp = force_reg (mode, temp);
1165    }
1166
1167  if (op0 != temp)
1168    {
1169      op0 = copy_rtx (op0);
1170      emit_move_insn (op0, temp);
1171    }
1172}
1173
1174/* Store a bit field that is split across multiple accessible memory objects.
1175
1176   OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1177   BITSIZE is the field width; BITPOS the position of its first bit
1178   (within the word).
1179   VALUE is the value to store.
1180
1181   This does not yet handle fields wider than BITS_PER_WORD.  */
1182
1183static void
1184store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1185		       unsigned HOST_WIDE_INT bitpos,
1186		       unsigned HOST_WIDE_INT bitregion_start,
1187		       unsigned HOST_WIDE_INT bitregion_end,
1188		       rtx value)
1189{
1190  unsigned int unit;
1191  unsigned int bitsdone = 0;
1192
1193  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1194     much at a time.  */
1195  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1196    unit = BITS_PER_WORD;
1197  else
1198    unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1199
1200  /* If OP0 is a memory with a mode, then UNIT must not be larger than
1201     OP0's mode as well.  Otherwise, store_fixed_bit_field will call us
1202     again, and we will mutually recurse forever.  */
1203  if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1204    unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1205
1206  /* If VALUE is a constant other than a CONST_INT, get it into a register in
1207     WORD_MODE.  If we can do this using gen_lowpart_common, do so.  Note
1208     that VALUE might be a floating-point constant.  */
1209  if (CONSTANT_P (value) && !CONST_INT_P (value))
1210    {
1211      rtx word = gen_lowpart_common (word_mode, value);
1212
1213      if (word && (value != word))
1214	value = word;
1215      else
1216	value = gen_lowpart_common (word_mode,
1217				    force_reg (GET_MODE (value) != VOIDmode
1218					       ? GET_MODE (value)
1219					       : word_mode, value));
1220    }
1221
1222  while (bitsdone < bitsize)
1223    {
1224      unsigned HOST_WIDE_INT thissize;
1225      rtx part, word;
1226      unsigned HOST_WIDE_INT thispos;
1227      unsigned HOST_WIDE_INT offset;
1228
1229      offset = (bitpos + bitsdone) / unit;
1230      thispos = (bitpos + bitsdone) % unit;
1231
1232      /* When region of bytes we can touch is restricted, decrease
1233	 UNIT close to the end of the region as needed.  If op0 is a REG
1234	 or SUBREG of REG, don't do this, as there can't be data races
1235	 on a register and we can expand shorter code in some cases.  */
1236      if (bitregion_end
1237	  && unit > BITS_PER_UNIT
1238	  && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1239	  && !REG_P (op0)
1240	  && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1241	{
1242	  unit = unit / 2;
1243	  continue;
1244	}
1245
1246      /* THISSIZE must not overrun a word boundary.  Otherwise,
1247	 store_fixed_bit_field will call us again, and we will mutually
1248	 recurse forever.  */
1249      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1250      thissize = MIN (thissize, unit - thispos);
1251
1252      if (BYTES_BIG_ENDIAN)
1253	{
1254	  /* Fetch successively less significant portions.  */
1255	  if (CONST_INT_P (value))
1256	    part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1257			     >> (bitsize - bitsdone - thissize))
1258			    & (((HOST_WIDE_INT) 1 << thissize) - 1));
1259	  else
1260	    {
1261	      int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1262	      /* The args are chosen so that the last part includes the
1263		 lsb.  Give extract_bit_field the value it needs (with
1264		 endianness compensation) to fetch the piece we want.  */
1265	      part = extract_fixed_bit_field (word_mode, value, thissize,
1266					      total_bits - bitsize + bitsdone,
1267					      NULL_RTX, 1);
1268	    }
1269	}
1270      else
1271	{
1272	  /* Fetch successively more significant portions.  */
1273	  if (CONST_INT_P (value))
1274	    part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1275			     >> bitsdone)
1276			    & (((HOST_WIDE_INT) 1 << thissize) - 1));
1277	  else
1278	    part = extract_fixed_bit_field (word_mode, value, thissize,
1279					    bitsdone, NULL_RTX, 1);
1280	}
1281
1282      /* If OP0 is a register, then handle OFFSET here.
1283
1284	 When handling multiword bitfields, extract_bit_field may pass
1285	 down a word_mode SUBREG of a larger REG for a bitfield that actually
1286	 crosses a word boundary.  Thus, for a SUBREG, we must find
1287	 the current word starting from the base register.  */
1288      if (GET_CODE (op0) == SUBREG)
1289	{
1290	  int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1291			    + (offset * unit / BITS_PER_WORD);
1292	  machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1293	  if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1294	    word = word_offset ? const0_rtx : op0;
1295	  else
1296	    word = operand_subword_force (SUBREG_REG (op0), word_offset,
1297					  GET_MODE (SUBREG_REG (op0)));
1298	  offset &= BITS_PER_WORD / unit - 1;
1299	}
1300      else if (REG_P (op0))
1301	{
1302	  machine_mode op0_mode = GET_MODE (op0);
1303	  if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1304	    word = offset ? const0_rtx : op0;
1305	  else
1306	    word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1307					  GET_MODE (op0));
1308	  offset &= BITS_PER_WORD / unit - 1;
1309	}
1310      else
1311	word = op0;
1312
1313      /* OFFSET is in UNITs, and UNIT is in bits.  If WORD is const0_rtx,
1314	 it is just an out-of-bounds access.  Ignore it.  */
1315      if (word != const0_rtx)
1316	store_fixed_bit_field (word, thissize, offset * unit + thispos,
1317			       bitregion_start, bitregion_end, part);
1318      bitsdone += thissize;
1319    }
1320}
1321
1322/* A subroutine of extract_bit_field_1 that converts return value X
1323   to either MODE or TMODE.  MODE, TMODE and UNSIGNEDP are arguments
1324   to extract_bit_field.  */
1325
1326static rtx
1327convert_extracted_bit_field (rtx x, machine_mode mode,
1328			     machine_mode tmode, bool unsignedp)
1329{
1330  if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1331    return x;
1332
1333  /* If the x mode is not a scalar integral, first convert to the
1334     integer mode of that size and then access it as a floating-point
1335     value via a SUBREG.  */
1336  if (!SCALAR_INT_MODE_P (tmode))
1337    {
1338      machine_mode smode;
1339
1340      smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1341      x = convert_to_mode (smode, x, unsignedp);
1342      x = force_reg (smode, x);
1343      return gen_lowpart (tmode, x);
1344    }
1345
1346  return convert_to_mode (tmode, x, unsignedp);
1347}
1348
1349/* Try to use an ext(z)v pattern to extract a field from OP0.
1350   Return the extracted value on success, otherwise return null.
1351   EXT_MODE is the mode of the extraction and the other arguments
1352   are as for extract_bit_field.  */
1353
1354static rtx
1355extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1356			      unsigned HOST_WIDE_INT bitsize,
1357			      unsigned HOST_WIDE_INT bitnum,
1358			      int unsignedp, rtx target,
1359			      machine_mode mode, machine_mode tmode)
1360{
1361  struct expand_operand ops[4];
1362  rtx spec_target = target;
1363  rtx spec_target_subreg = 0;
1364  machine_mode ext_mode = extv->field_mode;
1365  unsigned unit = GET_MODE_BITSIZE (ext_mode);
1366
1367  if (bitsize == 0 || unit < bitsize)
1368    return NULL_RTX;
1369
1370  if (MEM_P (op0))
1371    /* Get a reference to the first byte of the field.  */
1372    op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1373				&bitnum);
1374  else
1375    {
1376      /* Convert from counting within OP0 to counting in EXT_MODE.  */
1377      if (BYTES_BIG_ENDIAN)
1378	bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1379
1380      /* If op0 is a register, we need it in EXT_MODE to make it
1381	 acceptable to the format of ext(z)v.  */
1382      if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1383	return NULL_RTX;
1384      if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1385	op0 = gen_lowpart_SUBREG (ext_mode, op0);
1386    }
1387
1388  /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1389     "backwards" from the size of the unit we are extracting from.
1390     Otherwise, we count bits from the most significant on a
1391     BYTES/BITS_BIG_ENDIAN machine.  */
1392
1393  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1394    bitnum = unit - bitsize - bitnum;
1395
1396  if (target == 0)
1397    target = spec_target = gen_reg_rtx (tmode);
1398
1399  if (GET_MODE (target) != ext_mode)
1400    {
1401      /* Don't use LHS paradoxical subreg if explicit truncation is needed
1402	 between the mode of the extraction (word_mode) and the target
1403	 mode.  Instead, create a temporary and use convert_move to set
1404	 the target.  */
1405      if (REG_P (target)
1406	  && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1407	{
1408	  target = gen_lowpart (ext_mode, target);
1409	  if (GET_MODE_PRECISION (ext_mode)
1410	      > GET_MODE_PRECISION (GET_MODE (spec_target)))
1411	    spec_target_subreg = target;
1412	}
1413      else
1414	target = gen_reg_rtx (ext_mode);
1415    }
1416
1417  create_output_operand (&ops[0], target, ext_mode);
1418  create_fixed_operand (&ops[1], op0);
1419  create_integer_operand (&ops[2], bitsize);
1420  create_integer_operand (&ops[3], bitnum);
1421  if (maybe_expand_insn (extv->icode, 4, ops))
1422    {
1423      target = ops[0].value;
1424      if (target == spec_target)
1425	return target;
1426      if (target == spec_target_subreg)
1427	return spec_target;
1428      return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1429    }
1430  return NULL_RTX;
1431}
1432
1433/* A subroutine of extract_bit_field, with the same arguments.
1434   If FALLBACK_P is true, fall back to extract_fixed_bit_field
1435   if we can find no other means of implementing the operation.
1436   if FALLBACK_P is false, return NULL instead.  */
1437
1438static rtx
1439extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1440		     unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1441		     machine_mode mode, machine_mode tmode,
1442		     bool fallback_p)
1443{
1444  rtx op0 = str_rtx;
1445  machine_mode int_mode;
1446  machine_mode mode1;
1447
1448  if (tmode == VOIDmode)
1449    tmode = mode;
1450
1451  while (GET_CODE (op0) == SUBREG)
1452    {
1453      bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1454      op0 = SUBREG_REG (op0);
1455    }
1456
1457  /* If we have an out-of-bounds access to a register, just return an
1458     uninitialized register of the required mode.  This can occur if the
1459     source code contains an out-of-bounds access to a small array.  */
1460  if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1461    return gen_reg_rtx (tmode);
1462
1463  if (REG_P (op0)
1464      && mode == GET_MODE (op0)
1465      && bitnum == 0
1466      && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1467    {
1468      /* We're trying to extract a full register from itself.  */
1469      return op0;
1470    }
1471
1472  /* See if we can get a better vector mode before extracting.  */
1473  if (VECTOR_MODE_P (GET_MODE (op0))
1474      && !MEM_P (op0)
1475      && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1476    {
1477      machine_mode new_mode;
1478
1479      if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1480	new_mode = MIN_MODE_VECTOR_FLOAT;
1481      else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1482	new_mode = MIN_MODE_VECTOR_FRACT;
1483      else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1484	new_mode = MIN_MODE_VECTOR_UFRACT;
1485      else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1486	new_mode = MIN_MODE_VECTOR_ACCUM;
1487      else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1488	new_mode = MIN_MODE_VECTOR_UACCUM;
1489      else
1490	new_mode = MIN_MODE_VECTOR_INT;
1491
1492      for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1493	if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1494	    && targetm.vector_mode_supported_p (new_mode))
1495	  break;
1496      if (new_mode != VOIDmode)
1497	op0 = gen_lowpart (new_mode, op0);
1498    }
1499
1500  /* Use vec_extract patterns for extracting parts of vectors whenever
1501     available.  */
1502  if (VECTOR_MODE_P (GET_MODE (op0))
1503      && !MEM_P (op0)
1504      && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1505      && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1506	  == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1507    {
1508      struct expand_operand ops[3];
1509      machine_mode outermode = GET_MODE (op0);
1510      machine_mode innermode = GET_MODE_INNER (outermode);
1511      enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1512      unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1513
1514      create_output_operand (&ops[0], target, innermode);
1515      create_input_operand (&ops[1], op0, outermode);
1516      create_integer_operand (&ops[2], pos);
1517      if (maybe_expand_insn (icode, 3, ops))
1518	{
1519	  target = ops[0].value;
1520      	  if (GET_MODE (target) != mode)
1521	    return gen_lowpart (tmode, target);
1522	  return target;
1523	}
1524    }
1525
1526  /* Make sure we are playing with integral modes.  Pun with subregs
1527     if we aren't.  */
1528  {
1529    machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1530    if (imode != GET_MODE (op0))
1531      {
1532	if (MEM_P (op0))
1533	  op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1534	else if (imode != BLKmode)
1535	  {
1536	    op0 = gen_lowpart (imode, op0);
1537
1538	    /* If we got a SUBREG, force it into a register since we
1539	       aren't going to be able to do another SUBREG on it.  */
1540	    if (GET_CODE (op0) == SUBREG)
1541	      op0 = force_reg (imode, op0);
1542	  }
1543	else if (REG_P (op0))
1544	  {
1545	    rtx reg, subreg;
1546	    imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1547					    MODE_INT);
1548	    reg = gen_reg_rtx (imode);
1549	    subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1550	    emit_move_insn (subreg, op0);
1551	    op0 = reg;
1552	    bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1553	  }
1554	else
1555	  {
1556	    HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1557	    rtx mem = assign_stack_temp (GET_MODE (op0), size);
1558	    emit_move_insn (mem, op0);
1559	    op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1560	  }
1561      }
1562  }
1563
1564  /* ??? We currently assume TARGET is at least as big as BITSIZE.
1565     If that's wrong, the solution is to test for it and set TARGET to 0
1566     if needed.  */
1567
1568  /* Get the mode of the field to use for atomic access or subreg
1569     conversion.  */
1570  mode1 = mode;
1571  if (SCALAR_INT_MODE_P (tmode))
1572    {
1573      machine_mode try_mode = mode_for_size (bitsize,
1574						  GET_MODE_CLASS (tmode), 0);
1575      if (try_mode != BLKmode)
1576	mode1 = try_mode;
1577    }
1578  gcc_assert (mode1 != BLKmode);
1579
1580  /* Extraction of a full MODE1 value can be done with a subreg as long
1581     as the least significant bit of the value is the least significant
1582     bit of either OP0 or a word of OP0.  */
1583  if (!MEM_P (op0)
1584      && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1585      && bitsize == GET_MODE_BITSIZE (mode1)
1586      && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1587    {
1588      rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1589				     bitnum / BITS_PER_UNIT);
1590      if (sub)
1591	return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1592    }
1593
1594  /* Extraction of a full MODE1 value can be done with a load as long as
1595     the field is on a byte boundary and is sufficiently aligned.  */
1596  if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1597    {
1598      op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1599      return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1600    }
1601
1602  /* Handle fields bigger than a word.  */
1603
1604  if (bitsize > BITS_PER_WORD)
1605    {
1606      /* Here we transfer the words of the field
1607	 in the order least significant first.
1608	 This is because the most significant word is the one which may
1609	 be less than full.  */
1610
1611      unsigned int backwards = WORDS_BIG_ENDIAN;
1612      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1613      unsigned int i;
1614      rtx_insn *last;
1615
1616      if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1617	target = gen_reg_rtx (mode);
1618
1619      /* Indicate for flow that the entire target reg is being set.  */
1620      emit_clobber (target);
1621
1622      last = get_last_insn ();
1623      for (i = 0; i < nwords; i++)
1624	{
1625	  /* If I is 0, use the low-order word in both field and target;
1626	     if I is 1, use the next to lowest word; and so on.  */
1627	  /* Word number in TARGET to use.  */
1628	  unsigned int wordnum
1629	    = (backwards
1630	       ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1631	       : i);
1632	  /* Offset from start of field in OP0.  */
1633	  unsigned int bit_offset = (backwards
1634				     ? MAX ((int) bitsize - ((int) i + 1)
1635					    * BITS_PER_WORD,
1636					    0)
1637				     : (int) i * BITS_PER_WORD);
1638	  rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1639	  rtx result_part
1640	    = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1641					     bitsize - i * BITS_PER_WORD),
1642				   bitnum + bit_offset, 1, target_part,
1643				   mode, word_mode, fallback_p);
1644
1645	  gcc_assert (target_part);
1646	  if (!result_part)
1647	    {
1648	      delete_insns_since (last);
1649	      return NULL;
1650	    }
1651
1652	  if (result_part != target_part)
1653	    emit_move_insn (target_part, result_part);
1654	}
1655
1656      if (unsignedp)
1657	{
1658	  /* Unless we've filled TARGET, the upper regs in a multi-reg value
1659	     need to be zero'd out.  */
1660	  if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1661	    {
1662	      unsigned int i, total_words;
1663
1664	      total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1665	      for (i = nwords; i < total_words; i++)
1666		emit_move_insn
1667		  (operand_subword (target,
1668				    backwards ? total_words - i - 1 : i,
1669				    1, VOIDmode),
1670		   const0_rtx);
1671	    }
1672	  return target;
1673	}
1674
1675      /* Signed bit field: sign-extend with two arithmetic shifts.  */
1676      target = expand_shift (LSHIFT_EXPR, mode, target,
1677			     GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1678      return expand_shift (RSHIFT_EXPR, mode, target,
1679			   GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1680    }
1681
1682  /* If OP0 is a multi-word register, narrow it to the affected word.
1683     If the region spans two words, defer to extract_split_bit_field.  */
1684  if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1685    {
1686      op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1687				 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1688      bitnum %= BITS_PER_WORD;
1689      if (bitnum + bitsize > BITS_PER_WORD)
1690	{
1691	  if (!fallback_p)
1692	    return NULL_RTX;
1693	  target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1694	  return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1695	}
1696    }
1697
1698  /* From here on we know the desired field is smaller than a word.
1699     If OP0 is a register, it too fits within a word.  */
1700  enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1701  extraction_insn extv;
1702  if (!MEM_P (op0)
1703      /* ??? We could limit the structure size to the part of OP0 that
1704	 contains the field, with appropriate checks for endianness
1705	 and TRULY_NOOP_TRUNCATION.  */
1706      && get_best_reg_extraction_insn (&extv, pattern,
1707				       GET_MODE_BITSIZE (GET_MODE (op0)),
1708				       tmode))
1709    {
1710      rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1711						 unsignedp, target, mode,
1712						 tmode);
1713      if (result)
1714	return result;
1715    }
1716
1717  /* If OP0 is a memory, try copying it to a register and seeing if a
1718     cheap register alternative is available.  */
1719  if (MEM_P (op0))
1720    {
1721      if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1722					tmode))
1723	{
1724	  rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1725						     bitnum, unsignedp,
1726						     target, mode,
1727						     tmode);
1728	  if (result)
1729	    return result;
1730	}
1731
1732      rtx_insn *last = get_last_insn ();
1733
1734      /* Try loading part of OP0 into a register and extracting the
1735	 bitfield from that.  */
1736      unsigned HOST_WIDE_INT bitpos;
1737      rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1738					       0, 0, tmode, &bitpos);
1739      if (xop0)
1740	{
1741	  xop0 = copy_to_reg (xop0);
1742	  rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1743					    unsignedp, target,
1744					    mode, tmode, false);
1745	  if (result)
1746	    return result;
1747	  delete_insns_since (last);
1748	}
1749    }
1750
1751  if (!fallback_p)
1752    return NULL;
1753
1754  /* Find a correspondingly-sized integer field, so we can apply
1755     shifts and masks to it.  */
1756  int_mode = int_mode_for_mode (tmode);
1757  if (int_mode == BLKmode)
1758    int_mode = int_mode_for_mode (mode);
1759  /* Should probably push op0 out to memory and then do a load.  */
1760  gcc_assert (int_mode != BLKmode);
1761
1762  target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1763				    target, unsignedp);
1764  return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1765}
1766
1767/* Generate code to extract a byte-field from STR_RTX
1768   containing BITSIZE bits, starting at BITNUM,
1769   and put it in TARGET if possible (if TARGET is nonzero).
1770   Regardless of TARGET, we return the rtx for where the value is placed.
1771
1772   STR_RTX is the structure containing the byte (a REG or MEM).
1773   UNSIGNEDP is nonzero if this is an unsigned bit field.
1774   MODE is the natural mode of the field value once extracted.
1775   TMODE is the mode the caller would like the value to have;
1776   but the value may be returned with type MODE instead.
1777
1778   If a TARGET is specified and we can store in it at no extra cost,
1779   we do so, and return TARGET.
1780   Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1781   if they are equally easy.  */
1782
1783rtx
1784extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1785		   unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1786		   machine_mode mode, machine_mode tmode)
1787{
1788  machine_mode mode1;
1789
1790  /* Handle -fstrict-volatile-bitfields in the cases where it applies.  */
1791  if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1792    mode1 = GET_MODE (str_rtx);
1793  else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1794    mode1 = GET_MODE (target);
1795  else
1796    mode1 = tmode;
1797
1798  if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1799    {
1800      /* Extraction of a full MODE1 value can be done with a simple load.
1801	 We know here that the field can be accessed with one single
1802	 instruction.  For targets that support unaligned memory,
1803	 an unaligned access may be necessary.  */
1804      if (bitsize == GET_MODE_BITSIZE (mode1))
1805	{
1806	  rtx result = adjust_bitfield_address (str_rtx, mode1,
1807						bitnum / BITS_PER_UNIT);
1808	  gcc_assert (bitnum % BITS_PER_UNIT == 0);
1809	  return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1810	}
1811
1812      str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1813				      &bitnum);
1814      gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (mode1));
1815      str_rtx = copy_to_reg (str_rtx);
1816    }
1817
1818  return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1819			      target, mode, tmode, true);
1820}
1821
1822/* Use shifts and boolean operations to extract a field of BITSIZE bits
1823   from bit BITNUM of OP0.
1824
1825   UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1826   If TARGET is nonzero, attempts to store the value there
1827   and return TARGET, but this is not guaranteed.
1828   If TARGET is not used, create a pseudo-reg of mode TMODE for the value.  */
1829
1830static rtx
1831extract_fixed_bit_field (machine_mode tmode, rtx op0,
1832			 unsigned HOST_WIDE_INT bitsize,
1833			 unsigned HOST_WIDE_INT bitnum, rtx target,
1834			 int unsignedp)
1835{
1836  if (MEM_P (op0))
1837    {
1838      machine_mode mode
1839	= get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
1840			 MEM_VOLATILE_P (op0));
1841
1842      if (mode == VOIDmode)
1843	/* The only way this should occur is if the field spans word
1844	   boundaries.  */
1845	return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1846
1847      op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1848    }
1849
1850  return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
1851				    target, unsignedp);
1852}
1853
1854/* Helper function for extract_fixed_bit_field, extracts
1855   the bit field always using the MODE of OP0.  */
1856
1857static rtx
1858extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
1859			   unsigned HOST_WIDE_INT bitsize,
1860			   unsigned HOST_WIDE_INT bitnum, rtx target,
1861			   int unsignedp)
1862{
1863  machine_mode mode = GET_MODE (op0);
1864  gcc_assert (SCALAR_INT_MODE_P (mode));
1865
1866  /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1867     for invalid input, such as extract equivalent of f5 from
1868     gcc.dg/pr48335-2.c.  */
1869
1870  if (BYTES_BIG_ENDIAN)
1871    /* BITNUM is the distance between our msb and that of OP0.
1872       Convert it to the distance from the lsb.  */
1873    bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1874
1875  /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1876     We have reduced the big-endian case to the little-endian case.  */
1877
1878  if (unsignedp)
1879    {
1880      if (bitnum)
1881	{
1882	  /* If the field does not already start at the lsb,
1883	     shift it so it does.  */
1884	  /* Maybe propagate the target for the shift.  */
1885	  rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1886	  if (tmode != mode)
1887	    subtarget = 0;
1888	  op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1889	}
1890      /* Convert the value to the desired mode.  */
1891      if (mode != tmode)
1892	op0 = convert_to_mode (tmode, op0, 1);
1893
1894      /* Unless the msb of the field used to be the msb when we shifted,
1895	 mask out the upper bits.  */
1896
1897      if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1898	return expand_binop (GET_MODE (op0), and_optab, op0,
1899			     mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1900			     target, 1, OPTAB_LIB_WIDEN);
1901      return op0;
1902    }
1903
1904  /* To extract a signed bit-field, first shift its msb to the msb of the word,
1905     then arithmetic-shift its lsb to the lsb of the word.  */
1906  op0 = force_reg (mode, op0);
1907
1908  /* Find the narrowest integer mode that contains the field.  */
1909
1910  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1911       mode = GET_MODE_WIDER_MODE (mode))
1912    if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1913      {
1914	op0 = convert_to_mode (mode, op0, 0);
1915	break;
1916      }
1917
1918  if (mode != tmode)
1919    target = 0;
1920
1921  if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1922    {
1923      int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1924      /* Maybe propagate the target for the shift.  */
1925      rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1926      op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1927    }
1928
1929  return expand_shift (RSHIFT_EXPR, mode, op0,
1930		       GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1931}
1932
1933/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1934   VALUE << BITPOS.  */
1935
1936static rtx
1937lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
1938	      int bitpos)
1939{
1940  return immed_wide_int_const (wi::lshift (value, bitpos), mode);
1941}
1942
1943/* Extract a bit field that is split across two words
1944   and return an RTX for the result.
1945
1946   OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1947   BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1948   UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.  */
1949
1950static rtx
1951extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1952			 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1953{
1954  unsigned int unit;
1955  unsigned int bitsdone = 0;
1956  rtx result = NULL_RTX;
1957  int first = 1;
1958
1959  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1960     much at a time.  */
1961  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1962    unit = BITS_PER_WORD;
1963  else
1964    unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1965
1966  while (bitsdone < bitsize)
1967    {
1968      unsigned HOST_WIDE_INT thissize;
1969      rtx part, word;
1970      unsigned HOST_WIDE_INT thispos;
1971      unsigned HOST_WIDE_INT offset;
1972
1973      offset = (bitpos + bitsdone) / unit;
1974      thispos = (bitpos + bitsdone) % unit;
1975
1976      /* THISSIZE must not overrun a word boundary.  Otherwise,
1977	 extract_fixed_bit_field will call us again, and we will mutually
1978	 recurse forever.  */
1979      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1980      thissize = MIN (thissize, unit - thispos);
1981
1982      /* If OP0 is a register, then handle OFFSET here.
1983
1984	 When handling multiword bitfields, extract_bit_field may pass
1985	 down a word_mode SUBREG of a larger REG for a bitfield that actually
1986	 crosses a word boundary.  Thus, for a SUBREG, we must find
1987	 the current word starting from the base register.  */
1988      if (GET_CODE (op0) == SUBREG)
1989	{
1990	  int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1991	  word = operand_subword_force (SUBREG_REG (op0), word_offset,
1992					GET_MODE (SUBREG_REG (op0)));
1993	  offset = 0;
1994	}
1995      else if (REG_P (op0))
1996	{
1997	  word = operand_subword_force (op0, offset, GET_MODE (op0));
1998	  offset = 0;
1999	}
2000      else
2001	word = op0;
2002
2003      /* Extract the parts in bit-counting order,
2004	 whose meaning is determined by BYTES_PER_UNIT.
2005	 OFFSET is in UNITs, and UNIT is in bits.  */
2006      part = extract_fixed_bit_field (word_mode, word, thissize,
2007				      offset * unit + thispos, 0, 1);
2008      bitsdone += thissize;
2009
2010      /* Shift this part into place for the result.  */
2011      if (BYTES_BIG_ENDIAN)
2012	{
2013	  if (bitsize != bitsdone)
2014	    part = expand_shift (LSHIFT_EXPR, word_mode, part,
2015				 bitsize - bitsdone, 0, 1);
2016	}
2017      else
2018	{
2019	  if (bitsdone != thissize)
2020	    part = expand_shift (LSHIFT_EXPR, word_mode, part,
2021				 bitsdone - thissize, 0, 1);
2022	}
2023
2024      if (first)
2025	result = part;
2026      else
2027	/* Combine the parts with bitwise or.  This works
2028	   because we extracted each part as an unsigned bit field.  */
2029	result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2030			       OPTAB_LIB_WIDEN);
2031
2032      first = 0;
2033    }
2034
2035  /* Unsigned bit field: we are done.  */
2036  if (unsignedp)
2037    return result;
2038  /* Signed bit field: sign-extend with two arithmetic shifts.  */
2039  result = expand_shift (LSHIFT_EXPR, word_mode, result,
2040			 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2041  return expand_shift (RSHIFT_EXPR, word_mode, result,
2042		       BITS_PER_WORD - bitsize, NULL_RTX, 0);
2043}
2044
2045/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2046   the bit pattern.  SRC_MODE is the mode of SRC; if this is smaller than
2047   MODE, fill the upper bits with zeros.  Fail if the layout of either
2048   mode is unknown (as for CC modes) or if the extraction would involve
2049   unprofitable mode punning.  Return the value on success, otherwise
2050   return null.
2051
2052   This is different from gen_lowpart* in these respects:
2053
2054     - the returned value must always be considered an rvalue
2055
2056     - when MODE is wider than SRC_MODE, the extraction involves
2057       a zero extension
2058
2059     - when MODE is smaller than SRC_MODE, the extraction involves
2060       a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2061
2062   In other words, this routine performs a computation, whereas the
2063   gen_lowpart* routines are conceptually lvalue or rvalue subreg
2064   operations.  */
2065
2066rtx
2067extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2068{
2069  machine_mode int_mode, src_int_mode;
2070
2071  if (mode == src_mode)
2072    return src;
2073
2074  if (CONSTANT_P (src))
2075    {
2076      /* simplify_gen_subreg can't be used here, as if simplify_subreg
2077	 fails, it will happily create (subreg (symbol_ref)) or similar
2078	 invalid SUBREGs.  */
2079      unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2080      rtx ret = simplify_subreg (mode, src, src_mode, byte);
2081      if (ret)
2082	return ret;
2083
2084      if (GET_MODE (src) == VOIDmode
2085	  || !validate_subreg (mode, src_mode, src, byte))
2086	return NULL_RTX;
2087
2088      src = force_reg (GET_MODE (src), src);
2089      return gen_rtx_SUBREG (mode, src, byte);
2090    }
2091
2092  if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2093    return NULL_RTX;
2094
2095  if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2096      && MODES_TIEABLE_P (mode, src_mode))
2097    {
2098      rtx x = gen_lowpart_common (mode, src);
2099      if (x)
2100        return x;
2101    }
2102
2103  src_int_mode = int_mode_for_mode (src_mode);
2104  int_mode = int_mode_for_mode (mode);
2105  if (src_int_mode == BLKmode || int_mode == BLKmode)
2106    return NULL_RTX;
2107
2108  if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2109    return NULL_RTX;
2110  if (!MODES_TIEABLE_P (int_mode, mode))
2111    return NULL_RTX;
2112
2113  src = gen_lowpart (src_int_mode, src);
2114  src = convert_modes (int_mode, src_int_mode, src, true);
2115  src = gen_lowpart (mode, src);
2116  return src;
2117}
2118
2119/* Add INC into TARGET.  */
2120
2121void
2122expand_inc (rtx target, rtx inc)
2123{
2124  rtx value = expand_binop (GET_MODE (target), add_optab,
2125			    target, inc,
2126			    target, 0, OPTAB_LIB_WIDEN);
2127  if (value != target)
2128    emit_move_insn (target, value);
2129}
2130
2131/* Subtract DEC from TARGET.  */
2132
2133void
2134expand_dec (rtx target, rtx dec)
2135{
2136  rtx value = expand_binop (GET_MODE (target), sub_optab,
2137			    target, dec,
2138			    target, 0, OPTAB_LIB_WIDEN);
2139  if (value != target)
2140    emit_move_insn (target, value);
2141}
2142
2143/* Output a shift instruction for expression code CODE,
2144   with SHIFTED being the rtx for the value to shift,
2145   and AMOUNT the rtx for the amount to shift by.
2146   Store the result in the rtx TARGET, if that is convenient.
2147   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2148   Return the rtx for where the value is.  */
2149
2150static rtx
2151expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2152		rtx amount, rtx target, int unsignedp)
2153{
2154  rtx op1, temp = 0;
2155  int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2156  int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2157  optab lshift_optab = ashl_optab;
2158  optab rshift_arith_optab = ashr_optab;
2159  optab rshift_uns_optab = lshr_optab;
2160  optab lrotate_optab = rotl_optab;
2161  optab rrotate_optab = rotr_optab;
2162  machine_mode op1_mode;
2163  machine_mode scalar_mode = mode;
2164  int attempt;
2165  bool speed = optimize_insn_for_speed_p ();
2166
2167  if (VECTOR_MODE_P (mode))
2168    scalar_mode = GET_MODE_INNER (mode);
2169  op1 = amount;
2170  op1_mode = GET_MODE (op1);
2171
2172  /* Determine whether the shift/rotate amount is a vector, or scalar.  If the
2173     shift amount is a vector, use the vector/vector shift patterns.  */
2174  if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2175    {
2176      lshift_optab = vashl_optab;
2177      rshift_arith_optab = vashr_optab;
2178      rshift_uns_optab = vlshr_optab;
2179      lrotate_optab = vrotl_optab;
2180      rrotate_optab = vrotr_optab;
2181    }
2182
2183  /* Previously detected shift-counts computed by NEGATE_EXPR
2184     and shifted in the other direction; but that does not work
2185     on all machines.  */
2186
2187  if (SHIFT_COUNT_TRUNCATED)
2188    {
2189      if (CONST_INT_P (op1)
2190	  && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2191	      (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2192	op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2193		       % GET_MODE_BITSIZE (scalar_mode));
2194      else if (GET_CODE (op1) == SUBREG
2195	       && subreg_lowpart_p (op1)
2196	       && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2197	       && SCALAR_INT_MODE_P (GET_MODE (op1)))
2198	op1 = SUBREG_REG (op1);
2199    }
2200
2201  /* Canonicalize rotates by constant amount.  If op1 is bitsize / 2,
2202     prefer left rotation, if op1 is from bitsize / 2 + 1 to
2203     bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2204     amount instead.  */
2205  if (rotate
2206      && CONST_INT_P (op1)
2207      && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2208		   GET_MODE_BITSIZE (scalar_mode) - 1))
2209    {
2210      op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2211      left = !left;
2212      code = left ? LROTATE_EXPR : RROTATE_EXPR;
2213    }
2214
2215  /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2216     Note that this is not the case for bigger values.  For instance a rotation
2217     of 0x01020304 by 16 bits gives 0x03040102 which is different from
2218     0x04030201 (bswapsi).  */
2219  if (rotate
2220      && CONST_INT_P (op1)
2221      && INTVAL (op1) == BITS_PER_UNIT
2222      && GET_MODE_SIZE (scalar_mode) == 2
2223      && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2224    return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2225				  unsignedp);
2226
2227  if (op1 == const0_rtx)
2228    return shifted;
2229
2230  /* Check whether its cheaper to implement a left shift by a constant
2231     bit count by a sequence of additions.  */
2232  if (code == LSHIFT_EXPR
2233      && CONST_INT_P (op1)
2234      && INTVAL (op1) > 0
2235      && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2236      && INTVAL (op1) < MAX_BITS_PER_WORD
2237      && (shift_cost (speed, mode, INTVAL (op1))
2238	  > INTVAL (op1) * add_cost (speed, mode))
2239      && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2240    {
2241      int i;
2242      for (i = 0; i < INTVAL (op1); i++)
2243	{
2244	  temp = force_reg (mode, shifted);
2245	  shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2246				  unsignedp, OPTAB_LIB_WIDEN);
2247	}
2248      return shifted;
2249    }
2250
2251  for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2252    {
2253      enum optab_methods methods;
2254
2255      if (attempt == 0)
2256	methods = OPTAB_DIRECT;
2257      else if (attempt == 1)
2258	methods = OPTAB_WIDEN;
2259      else
2260	methods = OPTAB_LIB_WIDEN;
2261
2262      if (rotate)
2263	{
2264	  /* Widening does not work for rotation.  */
2265	  if (methods == OPTAB_WIDEN)
2266	    continue;
2267	  else if (methods == OPTAB_LIB_WIDEN)
2268	    {
2269	      /* If we have been unable to open-code this by a rotation,
2270		 do it as the IOR of two shifts.  I.e., to rotate A
2271		 by N bits, compute
2272		 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2273		 where C is the bitsize of A.
2274
2275		 It is theoretically possible that the target machine might
2276		 not be able to perform either shift and hence we would
2277		 be making two libcalls rather than just the one for the
2278		 shift (similarly if IOR could not be done).  We will allow
2279		 this extremely unlikely lossage to avoid complicating the
2280		 code below.  */
2281
2282	      rtx subtarget = target == shifted ? 0 : target;
2283	      rtx new_amount, other_amount;
2284	      rtx temp1;
2285
2286	      new_amount = op1;
2287	      if (op1 == const0_rtx)
2288		return shifted;
2289	      else if (CONST_INT_P (op1))
2290		other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2291					- INTVAL (op1));
2292	      else
2293		{
2294		  other_amount
2295		    = simplify_gen_unary (NEG, GET_MODE (op1),
2296					  op1, GET_MODE (op1));
2297		  HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2298		  other_amount
2299		    = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2300					   gen_int_mode (mask, GET_MODE (op1)));
2301		}
2302
2303	      shifted = force_reg (mode, shifted);
2304
2305	      temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2306				     mode, shifted, new_amount, 0, 1);
2307	      temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2308				      mode, shifted, other_amount,
2309				      subtarget, 1);
2310	      return expand_binop (mode, ior_optab, temp, temp1, target,
2311				   unsignedp, methods);
2312	    }
2313
2314	  temp = expand_binop (mode,
2315			       left ? lrotate_optab : rrotate_optab,
2316			       shifted, op1, target, unsignedp, methods);
2317	}
2318      else if (unsignedp)
2319	temp = expand_binop (mode,
2320			     left ? lshift_optab : rshift_uns_optab,
2321			     shifted, op1, target, unsignedp, methods);
2322
2323      /* Do arithmetic shifts.
2324	 Also, if we are going to widen the operand, we can just as well
2325	 use an arithmetic right-shift instead of a logical one.  */
2326      if (temp == 0 && ! rotate
2327	  && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2328	{
2329	  enum optab_methods methods1 = methods;
2330
2331	  /* If trying to widen a log shift to an arithmetic shift,
2332	     don't accept an arithmetic shift of the same size.  */
2333	  if (unsignedp)
2334	    methods1 = OPTAB_MUST_WIDEN;
2335
2336	  /* Arithmetic shift */
2337
2338	  temp = expand_binop (mode,
2339			       left ? lshift_optab : rshift_arith_optab,
2340			       shifted, op1, target, unsignedp, methods1);
2341	}
2342
2343      /* We used to try extzv here for logical right shifts, but that was
2344	 only useful for one machine, the VAX, and caused poor code
2345	 generation there for lshrdi3, so the code was deleted and a
2346	 define_expand for lshrsi3 was added to vax.md.  */
2347    }
2348
2349  gcc_assert (temp);
2350  return temp;
2351}
2352
2353/* Output a shift instruction for expression code CODE,
2354   with SHIFTED being the rtx for the value to shift,
2355   and AMOUNT the amount to shift by.
2356   Store the result in the rtx TARGET, if that is convenient.
2357   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2358   Return the rtx for where the value is.  */
2359
2360rtx
2361expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2362	      int amount, rtx target, int unsignedp)
2363{
2364  return expand_shift_1 (code, mode,
2365			 shifted, GEN_INT (amount), target, unsignedp);
2366}
2367
2368/* Output a shift instruction for expression code CODE,
2369   with SHIFTED being the rtx for the value to shift,
2370   and AMOUNT the tree for the amount to shift by.
2371   Store the result in the rtx TARGET, if that is convenient.
2372   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2373   Return the rtx for where the value is.  */
2374
2375rtx
2376expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2377		       tree amount, rtx target, int unsignedp)
2378{
2379  return expand_shift_1 (code, mode,
2380			 shifted, expand_normal (amount), target, unsignedp);
2381}
2382
2383
2384/* Indicates the type of fixup needed after a constant multiplication.
2385   BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2386   the result should be negated, and ADD_VARIANT means that the
2387   multiplicand should be added to the result.  */
2388enum mult_variant {basic_variant, negate_variant, add_variant};
2389
2390static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2391			const struct mult_cost *, machine_mode mode);
2392static bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
2393				 struct algorithm *, enum mult_variant *, int);
2394static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2395			      const struct algorithm *, enum mult_variant);
2396static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2397static rtx extract_high_half (machine_mode, rtx);
2398static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2399static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2400				       int, int);
2401/* Compute and return the best algorithm for multiplying by T.
2402   The algorithm must cost less than cost_limit
2403   If retval.cost >= COST_LIMIT, no algorithm was found and all
2404   other field of the returned struct are undefined.
2405   MODE is the machine mode of the multiplication.  */
2406
2407static void
2408synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2409	    const struct mult_cost *cost_limit, machine_mode mode)
2410{
2411  int m;
2412  struct algorithm *alg_in, *best_alg;
2413  struct mult_cost best_cost;
2414  struct mult_cost new_limit;
2415  int op_cost, op_latency;
2416  unsigned HOST_WIDE_INT orig_t = t;
2417  unsigned HOST_WIDE_INT q;
2418  int maxm, hash_index;
2419  bool cache_hit = false;
2420  enum alg_code cache_alg = alg_zero;
2421  bool speed = optimize_insn_for_speed_p ();
2422  machine_mode imode;
2423  struct alg_hash_entry *entry_ptr;
2424
2425  /* Indicate that no algorithm is yet found.  If no algorithm
2426     is found, this value will be returned and indicate failure.  */
2427  alg_out->cost.cost = cost_limit->cost + 1;
2428  alg_out->cost.latency = cost_limit->latency + 1;
2429
2430  if (cost_limit->cost < 0
2431      || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2432    return;
2433
2434  /* Be prepared for vector modes.  */
2435  imode = GET_MODE_INNER (mode);
2436  if (imode == VOIDmode)
2437    imode = mode;
2438
2439  maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2440
2441  /* Restrict the bits of "t" to the multiplication's mode.  */
2442  t &= GET_MODE_MASK (imode);
2443
2444  /* t == 1 can be done in zero cost.  */
2445  if (t == 1)
2446    {
2447      alg_out->ops = 1;
2448      alg_out->cost.cost = 0;
2449      alg_out->cost.latency = 0;
2450      alg_out->op[0] = alg_m;
2451      return;
2452    }
2453
2454  /* t == 0 sometimes has a cost.  If it does and it exceeds our limit,
2455     fail now.  */
2456  if (t == 0)
2457    {
2458      if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2459	return;
2460      else
2461	{
2462	  alg_out->ops = 1;
2463	  alg_out->cost.cost = zero_cost (speed);
2464	  alg_out->cost.latency = zero_cost (speed);
2465	  alg_out->op[0] = alg_zero;
2466	  return;
2467	}
2468    }
2469
2470  /* We'll be needing a couple extra algorithm structures now.  */
2471
2472  alg_in = XALLOCA (struct algorithm);
2473  best_alg = XALLOCA (struct algorithm);
2474  best_cost = *cost_limit;
2475
2476  /* Compute the hash index.  */
2477  hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2478
2479  /* See if we already know what to do for T.  */
2480  entry_ptr = alg_hash_entry_ptr (hash_index);
2481  if (entry_ptr->t == t
2482      && entry_ptr->mode == mode
2483      && entry_ptr->mode == mode
2484      && entry_ptr->speed == speed
2485      && entry_ptr->alg != alg_unknown)
2486    {
2487      cache_alg = entry_ptr->alg;
2488
2489      if (cache_alg == alg_impossible)
2490	{
2491	  /* The cache tells us that it's impossible to synthesize
2492	     multiplication by T within entry_ptr->cost.  */
2493	  if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2494	    /* COST_LIMIT is at least as restrictive as the one
2495	       recorded in the hash table, in which case we have no
2496	       hope of synthesizing a multiplication.  Just
2497	       return.  */
2498	    return;
2499
2500	  /* If we get here, COST_LIMIT is less restrictive than the
2501	     one recorded in the hash table, so we may be able to
2502	     synthesize a multiplication.  Proceed as if we didn't
2503	     have the cache entry.  */
2504	}
2505      else
2506	{
2507	  if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2508	    /* The cached algorithm shows that this multiplication
2509	       requires more cost than COST_LIMIT.  Just return.  This
2510	       way, we don't clobber this cache entry with
2511	       alg_impossible but retain useful information.  */
2512	    return;
2513
2514	  cache_hit = true;
2515
2516	  switch (cache_alg)
2517	    {
2518	    case alg_shift:
2519	      goto do_alg_shift;
2520
2521	    case alg_add_t_m2:
2522	    case alg_sub_t_m2:
2523	      goto do_alg_addsub_t_m2;
2524
2525	    case alg_add_factor:
2526	    case alg_sub_factor:
2527	      goto do_alg_addsub_factor;
2528
2529	    case alg_add_t2_m:
2530	      goto do_alg_add_t2_m;
2531
2532	    case alg_sub_t2_m:
2533	      goto do_alg_sub_t2_m;
2534
2535	    default:
2536	      gcc_unreachable ();
2537	    }
2538	}
2539    }
2540
2541  /* If we have a group of zero bits at the low-order part of T, try
2542     multiplying by the remaining bits and then doing a shift.  */
2543
2544  if ((t & 1) == 0)
2545    {
2546    do_alg_shift:
2547      m = floor_log2 (t & -t);	/* m = number of low zero bits */
2548      if (m < maxm)
2549	{
2550	  q = t >> m;
2551	  /* The function expand_shift will choose between a shift and
2552	     a sequence of additions, so the observed cost is given as
2553	     MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)).  */
2554	  op_cost = m * add_cost (speed, mode);
2555	  if (shift_cost (speed, mode, m) < op_cost)
2556	    op_cost = shift_cost (speed, mode, m);
2557	  new_limit.cost = best_cost.cost - op_cost;
2558	  new_limit.latency = best_cost.latency - op_cost;
2559	  synth_mult (alg_in, q, &new_limit, mode);
2560
2561	  alg_in->cost.cost += op_cost;
2562	  alg_in->cost.latency += op_cost;
2563	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2564	    {
2565	      best_cost = alg_in->cost;
2566	      std::swap (alg_in, best_alg);
2567	      best_alg->log[best_alg->ops] = m;
2568	      best_alg->op[best_alg->ops] = alg_shift;
2569	    }
2570
2571	  /* See if treating ORIG_T as a signed number yields a better
2572	     sequence.  Try this sequence only for a negative ORIG_T
2573	     as it would be useless for a non-negative ORIG_T.  */
2574	  if ((HOST_WIDE_INT) orig_t < 0)
2575	    {
2576	      /* Shift ORIG_T as follows because a right shift of a
2577		 negative-valued signed type is implementation
2578		 defined.  */
2579	      q = ~(~orig_t >> m);
2580	      /* The function expand_shift will choose between a shift
2581		 and a sequence of additions, so the observed cost is
2582		 given as MIN (m * add_cost(speed, mode),
2583		 shift_cost(speed, mode, m)).  */
2584	      op_cost = m * add_cost (speed, mode);
2585	      if (shift_cost (speed, mode, m) < op_cost)
2586		op_cost = shift_cost (speed, mode, m);
2587	      new_limit.cost = best_cost.cost - op_cost;
2588	      new_limit.latency = best_cost.latency - op_cost;
2589	      synth_mult (alg_in, q, &new_limit, mode);
2590
2591	      alg_in->cost.cost += op_cost;
2592	      alg_in->cost.latency += op_cost;
2593	      if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2594		{
2595		  best_cost = alg_in->cost;
2596		  std::swap (alg_in, best_alg);
2597		  best_alg->log[best_alg->ops] = m;
2598		  best_alg->op[best_alg->ops] = alg_shift;
2599		}
2600	    }
2601	}
2602      if (cache_hit)
2603	goto done;
2604    }
2605
2606  /* If we have an odd number, add or subtract one.  */
2607  if ((t & 1) != 0)
2608    {
2609      unsigned HOST_WIDE_INT w;
2610
2611    do_alg_addsub_t_m2:
2612      for (w = 1; (w & t) != 0; w <<= 1)
2613	;
2614      /* If T was -1, then W will be zero after the loop.  This is another
2615	 case where T ends with ...111.  Handling this with (T + 1) and
2616	 subtract 1 produces slightly better code and results in algorithm
2617	 selection much faster than treating it like the ...0111 case
2618	 below.  */
2619      if (w == 0
2620	  || (w > 2
2621	      /* Reject the case where t is 3.
2622		 Thus we prefer addition in that case.  */
2623	      && t != 3))
2624	{
2625	  /* T ends with ...111.  Multiply by (T + 1) and subtract T.  */
2626
2627	  op_cost = add_cost (speed, mode);
2628	  new_limit.cost = best_cost.cost - op_cost;
2629	  new_limit.latency = best_cost.latency - op_cost;
2630	  synth_mult (alg_in, t + 1, &new_limit, mode);
2631
2632	  alg_in->cost.cost += op_cost;
2633	  alg_in->cost.latency += op_cost;
2634	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2635	    {
2636	      best_cost = alg_in->cost;
2637	      std::swap (alg_in, best_alg);
2638	      best_alg->log[best_alg->ops] = 0;
2639	      best_alg->op[best_alg->ops] = alg_sub_t_m2;
2640	    }
2641	}
2642      else
2643	{
2644	  /* T ends with ...01 or ...011.  Multiply by (T - 1) and add T.  */
2645
2646	  op_cost = add_cost (speed, mode);
2647	  new_limit.cost = best_cost.cost - op_cost;
2648	  new_limit.latency = best_cost.latency - op_cost;
2649	  synth_mult (alg_in, t - 1, &new_limit, mode);
2650
2651	  alg_in->cost.cost += op_cost;
2652	  alg_in->cost.latency += op_cost;
2653	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2654	    {
2655	      best_cost = alg_in->cost;
2656	      std::swap (alg_in, best_alg);
2657	      best_alg->log[best_alg->ops] = 0;
2658	      best_alg->op[best_alg->ops] = alg_add_t_m2;
2659	    }
2660	}
2661
2662      /* We may be able to calculate a * -7, a * -15, a * -31, etc
2663	 quickly with a - a * n for some appropriate constant n.  */
2664      m = exact_log2 (-orig_t + 1);
2665      if (m >= 0 && m < maxm)
2666	{
2667	  op_cost = shiftsub1_cost (speed, mode, m);
2668	  new_limit.cost = best_cost.cost - op_cost;
2669	  new_limit.latency = best_cost.latency - op_cost;
2670	  synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2671		      &new_limit, mode);
2672
2673	  alg_in->cost.cost += op_cost;
2674	  alg_in->cost.latency += op_cost;
2675	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2676	    {
2677	      best_cost = alg_in->cost;
2678	      std::swap (alg_in, best_alg);
2679	      best_alg->log[best_alg->ops] = m;
2680	      best_alg->op[best_alg->ops] = alg_sub_t_m2;
2681	    }
2682	}
2683
2684      if (cache_hit)
2685	goto done;
2686    }
2687
2688  /* Look for factors of t of the form
2689     t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2690     If we find such a factor, we can multiply by t using an algorithm that
2691     multiplies by q, shift the result by m and add/subtract it to itself.
2692
2693     We search for large factors first and loop down, even if large factors
2694     are less probable than small; if we find a large factor we will find a
2695     good sequence quickly, and therefore be able to prune (by decreasing
2696     COST_LIMIT) the search.  */
2697
2698 do_alg_addsub_factor:
2699  for (m = floor_log2 (t - 1); m >= 2; m--)
2700    {
2701      unsigned HOST_WIDE_INT d;
2702
2703      d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2704      if (t % d == 0 && t > d && m < maxm
2705	  && (!cache_hit || cache_alg == alg_add_factor))
2706	{
2707	  /* If the target has a cheap shift-and-add instruction use
2708	     that in preference to a shift insn followed by an add insn.
2709	     Assume that the shift-and-add is "atomic" with a latency
2710	     equal to its cost, otherwise assume that on superscalar
2711	     hardware the shift may be executed concurrently with the
2712	     earlier steps in the algorithm.  */
2713	  op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2714	  if (shiftadd_cost (speed, mode, m) < op_cost)
2715	    {
2716	      op_cost = shiftadd_cost (speed, mode, m);
2717	      op_latency = op_cost;
2718	    }
2719	  else
2720	    op_latency = add_cost (speed, mode);
2721
2722	  new_limit.cost = best_cost.cost - op_cost;
2723	  new_limit.latency = best_cost.latency - op_latency;
2724	  synth_mult (alg_in, t / d, &new_limit, mode);
2725
2726	  alg_in->cost.cost += op_cost;
2727	  alg_in->cost.latency += op_latency;
2728	  if (alg_in->cost.latency < op_cost)
2729	    alg_in->cost.latency = op_cost;
2730	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2731	    {
2732	      best_cost = alg_in->cost;
2733	      std::swap (alg_in, best_alg);
2734	      best_alg->log[best_alg->ops] = m;
2735	      best_alg->op[best_alg->ops] = alg_add_factor;
2736	    }
2737	  /* Other factors will have been taken care of in the recursion.  */
2738	  break;
2739	}
2740
2741      d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2742      if (t % d == 0 && t > d && m < maxm
2743	  && (!cache_hit || cache_alg == alg_sub_factor))
2744	{
2745	  /* If the target has a cheap shift-and-subtract insn use
2746	     that in preference to a shift insn followed by a sub insn.
2747	     Assume that the shift-and-sub is "atomic" with a latency
2748	     equal to it's cost, otherwise assume that on superscalar
2749	     hardware the shift may be executed concurrently with the
2750	     earlier steps in the algorithm.  */
2751	  op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2752	  if (shiftsub0_cost (speed, mode, m) < op_cost)
2753	    {
2754	      op_cost = shiftsub0_cost (speed, mode, m);
2755	      op_latency = op_cost;
2756	    }
2757	  else
2758	    op_latency = add_cost (speed, mode);
2759
2760	  new_limit.cost = best_cost.cost - op_cost;
2761	  new_limit.latency = best_cost.latency - op_latency;
2762	  synth_mult (alg_in, t / d, &new_limit, mode);
2763
2764	  alg_in->cost.cost += op_cost;
2765	  alg_in->cost.latency += op_latency;
2766	  if (alg_in->cost.latency < op_cost)
2767	    alg_in->cost.latency = op_cost;
2768	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2769	    {
2770	      best_cost = alg_in->cost;
2771	      std::swap (alg_in, best_alg);
2772	      best_alg->log[best_alg->ops] = m;
2773	      best_alg->op[best_alg->ops] = alg_sub_factor;
2774	    }
2775	  break;
2776	}
2777    }
2778  if (cache_hit)
2779    goto done;
2780
2781  /* Try shift-and-add (load effective address) instructions,
2782     i.e. do a*3, a*5, a*9.  */
2783  if ((t & 1) != 0)
2784    {
2785    do_alg_add_t2_m:
2786      q = t - 1;
2787      q = q & -q;
2788      m = exact_log2 (q);
2789      if (m >= 0 && m < maxm)
2790	{
2791	  op_cost = shiftadd_cost (speed, mode, m);
2792	  new_limit.cost = best_cost.cost - op_cost;
2793	  new_limit.latency = best_cost.latency - op_cost;
2794	  synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2795
2796	  alg_in->cost.cost += op_cost;
2797	  alg_in->cost.latency += op_cost;
2798	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2799	    {
2800	      best_cost = alg_in->cost;
2801	      std::swap (alg_in, best_alg);
2802	      best_alg->log[best_alg->ops] = m;
2803	      best_alg->op[best_alg->ops] = alg_add_t2_m;
2804	    }
2805	}
2806      if (cache_hit)
2807	goto done;
2808
2809    do_alg_sub_t2_m:
2810      q = t + 1;
2811      q = q & -q;
2812      m = exact_log2 (q);
2813      if (m >= 0 && m < maxm)
2814	{
2815	  op_cost = shiftsub0_cost (speed, mode, m);
2816	  new_limit.cost = best_cost.cost - op_cost;
2817	  new_limit.latency = best_cost.latency - op_cost;
2818	  synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2819
2820	  alg_in->cost.cost += op_cost;
2821	  alg_in->cost.latency += op_cost;
2822	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2823	    {
2824	      best_cost = alg_in->cost;
2825	      std::swap (alg_in, best_alg);
2826	      best_alg->log[best_alg->ops] = m;
2827	      best_alg->op[best_alg->ops] = alg_sub_t2_m;
2828	    }
2829	}
2830      if (cache_hit)
2831	goto done;
2832    }
2833
2834 done:
2835  /* If best_cost has not decreased, we have not found any algorithm.  */
2836  if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2837    {
2838      /* We failed to find an algorithm.  Record alg_impossible for
2839	 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2840	 we are asked to find an algorithm for T within the same or
2841	 lower COST_LIMIT, we can immediately return to the
2842	 caller.  */
2843      entry_ptr->t = t;
2844      entry_ptr->mode = mode;
2845      entry_ptr->speed = speed;
2846      entry_ptr->alg = alg_impossible;
2847      entry_ptr->cost = *cost_limit;
2848      return;
2849    }
2850
2851  /* Cache the result.  */
2852  if (!cache_hit)
2853    {
2854      entry_ptr->t = t;
2855      entry_ptr->mode = mode;
2856      entry_ptr->speed = speed;
2857      entry_ptr->alg = best_alg->op[best_alg->ops];
2858      entry_ptr->cost.cost = best_cost.cost;
2859      entry_ptr->cost.latency = best_cost.latency;
2860    }
2861
2862  /* If we are getting a too long sequence for `struct algorithm'
2863     to record, make this search fail.  */
2864  if (best_alg->ops == MAX_BITS_PER_WORD)
2865    return;
2866
2867  /* Copy the algorithm from temporary space to the space at alg_out.
2868     We avoid using structure assignment because the majority of
2869     best_alg is normally undefined, and this is a critical function.  */
2870  alg_out->ops = best_alg->ops + 1;
2871  alg_out->cost = best_cost;
2872  memcpy (alg_out->op, best_alg->op,
2873	  alg_out->ops * sizeof *alg_out->op);
2874  memcpy (alg_out->log, best_alg->log,
2875	  alg_out->ops * sizeof *alg_out->log);
2876}
2877
2878/* Find the cheapest way of multiplying a value of mode MODE by VAL.
2879   Try three variations:
2880
2881       - a shift/add sequence based on VAL itself
2882       - a shift/add sequence based on -VAL, followed by a negation
2883       - a shift/add sequence based on VAL - 1, followed by an addition.
2884
2885   Return true if the cheapest of these cost less than MULT_COST,
2886   describing the algorithm in *ALG and final fixup in *VARIANT.  */
2887
2888static bool
2889choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
2890		     struct algorithm *alg, enum mult_variant *variant,
2891		     int mult_cost)
2892{
2893  struct algorithm alg2;
2894  struct mult_cost limit;
2895  int op_cost;
2896  bool speed = optimize_insn_for_speed_p ();
2897
2898  /* Fail quickly for impossible bounds.  */
2899  if (mult_cost < 0)
2900    return false;
2901
2902  /* Ensure that mult_cost provides a reasonable upper bound.
2903     Any constant multiplication can be performed with less
2904     than 2 * bits additions.  */
2905  op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2906  if (mult_cost > op_cost)
2907    mult_cost = op_cost;
2908
2909  *variant = basic_variant;
2910  limit.cost = mult_cost;
2911  limit.latency = mult_cost;
2912  synth_mult (alg, val, &limit, mode);
2913
2914  /* This works only if the inverted value actually fits in an
2915     `unsigned int' */
2916  if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2917    {
2918      op_cost = neg_cost (speed, mode);
2919      if (MULT_COST_LESS (&alg->cost, mult_cost))
2920	{
2921	  limit.cost = alg->cost.cost - op_cost;
2922	  limit.latency = alg->cost.latency - op_cost;
2923	}
2924      else
2925	{
2926	  limit.cost = mult_cost - op_cost;
2927	  limit.latency = mult_cost - op_cost;
2928	}
2929
2930      synth_mult (&alg2, -val, &limit, mode);
2931      alg2.cost.cost += op_cost;
2932      alg2.cost.latency += op_cost;
2933      if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2934	*alg = alg2, *variant = negate_variant;
2935    }
2936
2937  /* This proves very useful for division-by-constant.  */
2938  op_cost = add_cost (speed, mode);
2939  if (MULT_COST_LESS (&alg->cost, mult_cost))
2940    {
2941      limit.cost = alg->cost.cost - op_cost;
2942      limit.latency = alg->cost.latency - op_cost;
2943    }
2944  else
2945    {
2946      limit.cost = mult_cost - op_cost;
2947      limit.latency = mult_cost - op_cost;
2948    }
2949
2950  synth_mult (&alg2, val - 1, &limit, mode);
2951  alg2.cost.cost += op_cost;
2952  alg2.cost.latency += op_cost;
2953  if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2954    *alg = alg2, *variant = add_variant;
2955
2956  return MULT_COST_LESS (&alg->cost, mult_cost);
2957}
2958
2959/* A subroutine of expand_mult, used for constant multiplications.
2960   Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2961   convenient.  Use the shift/add sequence described by ALG and apply
2962   the final fixup specified by VARIANT.  */
2963
2964static rtx
2965expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
2966		   rtx target, const struct algorithm *alg,
2967		   enum mult_variant variant)
2968{
2969  HOST_WIDE_INT val_so_far;
2970  rtx_insn *insn;
2971  rtx accum, tem;
2972  int opno;
2973  machine_mode nmode;
2974
2975  /* Avoid referencing memory over and over and invalid sharing
2976     on SUBREGs.  */
2977  op0 = force_reg (mode, op0);
2978
2979  /* ACCUM starts out either as OP0 or as a zero, depending on
2980     the first operation.  */
2981
2982  if (alg->op[0] == alg_zero)
2983    {
2984      accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2985      val_so_far = 0;
2986    }
2987  else if (alg->op[0] == alg_m)
2988    {
2989      accum = copy_to_mode_reg (mode, op0);
2990      val_so_far = 1;
2991    }
2992  else
2993    gcc_unreachable ();
2994
2995  for (opno = 1; opno < alg->ops; opno++)
2996    {
2997      int log = alg->log[opno];
2998      rtx shift_subtarget = optimize ? 0 : accum;
2999      rtx add_target
3000	= (opno == alg->ops - 1 && target != 0 && variant != add_variant
3001	   && !optimize)
3002	  ? target : 0;
3003      rtx accum_target = optimize ? 0 : accum;
3004      rtx accum_inner;
3005
3006      switch (alg->op[opno])
3007	{
3008	case alg_shift:
3009	  tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3010	  /* REG_EQUAL note will be attached to the following insn.  */
3011	  emit_move_insn (accum, tem);
3012	  val_so_far <<= log;
3013	  break;
3014
3015	case alg_add_t_m2:
3016	  tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3017	  accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3018				 add_target ? add_target : accum_target);
3019	  val_so_far += (HOST_WIDE_INT) 1 << log;
3020	  break;
3021
3022	case alg_sub_t_m2:
3023	  tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3024	  accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3025				 add_target ? add_target : accum_target);
3026	  val_so_far -= (HOST_WIDE_INT) 1 << log;
3027	  break;
3028
3029	case alg_add_t2_m:
3030	  accum = expand_shift (LSHIFT_EXPR, mode, accum,
3031				log, shift_subtarget, 0);
3032	  accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3033				 add_target ? add_target : accum_target);
3034	  val_so_far = (val_so_far << log) + 1;
3035	  break;
3036
3037	case alg_sub_t2_m:
3038	  accum = expand_shift (LSHIFT_EXPR, mode, accum,
3039				log, shift_subtarget, 0);
3040	  accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3041				 add_target ? add_target : accum_target);
3042	  val_so_far = (val_so_far << log) - 1;
3043	  break;
3044
3045	case alg_add_factor:
3046	  tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3047	  accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3048				 add_target ? add_target : accum_target);
3049	  val_so_far += val_so_far << log;
3050	  break;
3051
3052	case alg_sub_factor:
3053	  tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3054	  accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3055				 (add_target
3056				  ? add_target : (optimize ? 0 : tem)));
3057	  val_so_far = (val_so_far << log) - val_so_far;
3058	  break;
3059
3060	default:
3061	  gcc_unreachable ();
3062	}
3063
3064      if (SCALAR_INT_MODE_P (mode))
3065	{
3066	  /* Write a REG_EQUAL note on the last insn so that we can cse
3067	     multiplication sequences.  Note that if ACCUM is a SUBREG,
3068	     we've set the inner register and must properly indicate that.  */
3069          tem = op0, nmode = mode;
3070          accum_inner = accum;
3071          if (GET_CODE (accum) == SUBREG)
3072	    {
3073	      accum_inner = SUBREG_REG (accum);
3074	      nmode = GET_MODE (accum_inner);
3075	      tem = gen_lowpart (nmode, op0);
3076	    }
3077
3078          insn = get_last_insn ();
3079          set_dst_reg_note (insn, REG_EQUAL,
3080			    gen_rtx_MULT (nmode, tem,
3081					  gen_int_mode (val_so_far, nmode)),
3082			    accum_inner);
3083	}
3084    }
3085
3086  if (variant == negate_variant)
3087    {
3088      val_so_far = -val_so_far;
3089      accum = expand_unop (mode, neg_optab, accum, target, 0);
3090    }
3091  else if (variant == add_variant)
3092    {
3093      val_so_far = val_so_far + 1;
3094      accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3095    }
3096
3097  /* Compare only the bits of val and val_so_far that are significant
3098     in the result mode, to avoid sign-/zero-extension confusion.  */
3099  nmode = GET_MODE_INNER (mode);
3100  if (nmode == VOIDmode)
3101    nmode = mode;
3102  val &= GET_MODE_MASK (nmode);
3103  val_so_far &= GET_MODE_MASK (nmode);
3104  gcc_assert (val == val_so_far);
3105
3106  return accum;
3107}
3108
3109/* Perform a multiplication and return an rtx for the result.
3110   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3111   TARGET is a suggestion for where to store the result (an rtx).
3112
3113   We check specially for a constant integer as OP1.
3114   If you want this check for OP0 as well, then before calling
3115   you should swap the two operands if OP0 would be constant.  */
3116
3117rtx
3118expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3119	     int unsignedp)
3120{
3121  enum mult_variant variant;
3122  struct algorithm algorithm;
3123  rtx scalar_op1;
3124  int max_cost;
3125  bool speed = optimize_insn_for_speed_p ();
3126  bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3127
3128  if (CONSTANT_P (op0))
3129    std::swap (op0, op1);
3130
3131  /* For vectors, there are several simplifications that can be made if
3132     all elements of the vector constant are identical.  */
3133  scalar_op1 = op1;
3134  if (GET_CODE (op1) == CONST_VECTOR)
3135    {
3136      int i, n = CONST_VECTOR_NUNITS (op1);
3137      scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3138      for (i = 1; i < n; ++i)
3139	if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3140	  goto skip_scalar;
3141    }
3142
3143  if (INTEGRAL_MODE_P (mode))
3144    {
3145      rtx fake_reg;
3146      HOST_WIDE_INT coeff;
3147      bool is_neg;
3148      int mode_bitsize;
3149
3150      if (op1 == CONST0_RTX (mode))
3151	return op1;
3152      if (op1 == CONST1_RTX (mode))
3153	return op0;
3154      if (op1 == CONSTM1_RTX (mode))
3155	return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3156			    op0, target, 0);
3157
3158      if (do_trapv)
3159	goto skip_synth;
3160
3161      /* If mode is integer vector mode, check if the backend supports
3162	 vector lshift (by scalar or vector) at all.  If not, we can't use
3163	 synthetized multiply.  */
3164      if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3165	  && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3166	  && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3167	goto skip_synth;
3168
3169      /* These are the operations that are potentially turned into
3170	 a sequence of shifts and additions.  */
3171      mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3172
3173      /* synth_mult does an `unsigned int' multiply.  As long as the mode is
3174	 less than or equal in size to `unsigned int' this doesn't matter.
3175	 If the mode is larger than `unsigned int', then synth_mult works
3176	 only if the constant value exactly fits in an `unsigned int' without
3177	 any truncation.  This means that multiplying by negative values does
3178	 not work; results are off by 2^32 on a 32 bit machine.  */
3179      if (CONST_INT_P (scalar_op1))
3180	{
3181	  coeff = INTVAL (scalar_op1);
3182	  is_neg = coeff < 0;
3183	}
3184#if TARGET_SUPPORTS_WIDE_INT
3185      else if (CONST_WIDE_INT_P (scalar_op1))
3186#else
3187      else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3188#endif
3189	{
3190	  int shift = wi::exact_log2 (std::make_pair (scalar_op1, mode));
3191	  /* Perfect power of 2 (other than 1, which is handled above).  */
3192	  if (shift > 0)
3193	    return expand_shift (LSHIFT_EXPR, mode, op0,
3194				 shift, target, unsignedp);
3195	  else
3196	    goto skip_synth;
3197	}
3198      else
3199	goto skip_synth;
3200
3201      /* We used to test optimize here, on the grounds that it's better to
3202	 produce a smaller program when -O is not used.  But this causes
3203	 such a terrible slowdown sometimes that it seems better to always
3204	 use synth_mult.  */
3205
3206      /* Special case powers of two.  */
3207      if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3208	  && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3209	return expand_shift (LSHIFT_EXPR, mode, op0,
3210			     floor_log2 (coeff), target, unsignedp);
3211
3212      fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3213
3214      /* Attempt to handle multiplication of DImode values by negative
3215	 coefficients, by performing the multiplication by a positive
3216	 multiplier and then inverting the result.  */
3217      if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3218	{
3219	  /* Its safe to use -coeff even for INT_MIN, as the
3220	     result is interpreted as an unsigned coefficient.
3221	     Exclude cost of op0 from max_cost to match the cost
3222	     calculation of the synth_mult.  */
3223	  coeff = -(unsigned HOST_WIDE_INT) coeff;
3224	  max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
3225		      - neg_cost (speed, mode));
3226	  if (max_cost <= 0)
3227	    goto skip_synth;
3228
3229	  /* Special case powers of two.  */
3230	  if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3231	    {
3232	      rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3233				       floor_log2 (coeff), target, unsignedp);
3234	      return expand_unop (mode, neg_optab, temp, target, 0);
3235	    }
3236
3237	  if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3238				   max_cost))
3239	    {
3240	      rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3241					    &algorithm, variant);
3242	      return expand_unop (mode, neg_optab, temp, target, 0);
3243	    }
3244	  goto skip_synth;
3245	}
3246
3247      /* Exclude cost of op0 from max_cost to match the cost
3248	 calculation of the synth_mult.  */
3249      max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
3250      if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3251	return expand_mult_const (mode, op0, coeff, target,
3252				  &algorithm, variant);
3253    }
3254 skip_synth:
3255
3256  /* Expand x*2.0 as x+x.  */
3257  if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3258    {
3259      REAL_VALUE_TYPE d;
3260      REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3261
3262      if (REAL_VALUES_EQUAL (d, dconst2))
3263	{
3264	  op0 = force_reg (GET_MODE (op0), op0);
3265	  return expand_binop (mode, add_optab, op0, op0,
3266			       target, unsignedp, OPTAB_LIB_WIDEN);
3267	}
3268    }
3269 skip_scalar:
3270
3271  /* This used to use umul_optab if unsigned, but for non-widening multiply
3272     there is no difference between signed and unsigned.  */
3273  op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3274		      op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3275  gcc_assert (op0);
3276  return op0;
3277}
3278
3279/* Return a cost estimate for multiplying a register by the given
3280   COEFFicient in the given MODE and SPEED.  */
3281
3282int
3283mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3284{
3285  int max_cost;
3286  struct algorithm algorithm;
3287  enum mult_variant variant;
3288
3289  rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3290  max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
3291  if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3292    return algorithm.cost.cost;
3293  else
3294    return max_cost;
3295}
3296
3297/* Perform a widening multiplication and return an rtx for the result.
3298   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3299   TARGET is a suggestion for where to store the result (an rtx).
3300   THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3301   or smul_widen_optab.
3302
3303   We check specially for a constant integer as OP1, comparing the
3304   cost of a widening multiply against the cost of a sequence of shifts
3305   and adds.  */
3306
3307rtx
3308expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3309		      int unsignedp, optab this_optab)
3310{
3311  bool speed = optimize_insn_for_speed_p ();
3312  rtx cop1;
3313
3314  if (CONST_INT_P (op1)
3315      && GET_MODE (op0) != VOIDmode
3316      && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3317				this_optab == umul_widen_optab))
3318      && CONST_INT_P (cop1)
3319      && (INTVAL (cop1) >= 0
3320	  || HWI_COMPUTABLE_MODE_P (mode)))
3321    {
3322      HOST_WIDE_INT coeff = INTVAL (cop1);
3323      int max_cost;
3324      enum mult_variant variant;
3325      struct algorithm algorithm;
3326
3327      if (coeff == 0)
3328	return CONST0_RTX (mode);
3329
3330      /* Special case powers of two.  */
3331      if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3332	{
3333	  op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3334	  return expand_shift (LSHIFT_EXPR, mode, op0,
3335			       floor_log2 (coeff), target, unsignedp);
3336	}
3337
3338      /* Exclude cost of op0 from max_cost to match the cost
3339	 calculation of the synth_mult.  */
3340      max_cost = mul_widen_cost (speed, mode);
3341      if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3342			       max_cost))
3343	{
3344	  op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3345	  return expand_mult_const (mode, op0, coeff, target,
3346				    &algorithm, variant);
3347	}
3348    }
3349  return expand_binop (mode, this_optab, op0, op1, target,
3350		       unsignedp, OPTAB_LIB_WIDEN);
3351}
3352
3353/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3354   replace division by D, and put the least significant N bits of the result
3355   in *MULTIPLIER_PTR and return the most significant bit.
3356
3357   The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3358   needed precision is in PRECISION (should be <= N).
3359
3360   PRECISION should be as small as possible so this function can choose
3361   multiplier more freely.
3362
3363   The rounded-up logarithm of D is placed in *lgup_ptr.  A shift count that
3364   is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3365
3366   Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3367   where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier.  */
3368
3369unsigned HOST_WIDE_INT
3370choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3371		   unsigned HOST_WIDE_INT *multiplier_ptr,
3372		   int *post_shift_ptr, int *lgup_ptr)
3373{
3374  int lgup, post_shift;
3375  int pow, pow2;
3376
3377  /* lgup = ceil(log2(divisor)); */
3378  lgup = ceil_log2 (d);
3379
3380  gcc_assert (lgup <= n);
3381
3382  pow = n + lgup;
3383  pow2 = n + lgup - precision;
3384
3385  /* mlow = 2^(N + lgup)/d */
3386  wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3387  wide_int mlow = wi::udiv_trunc (val, d);
3388
3389  /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3390  val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3391  wide_int mhigh = wi::udiv_trunc (val, d);
3392
3393  /* If precision == N, then mlow, mhigh exceed 2^N
3394     (but they do not exceed 2^(N+1)).  */
3395
3396  /* Reduce to lowest terms.  */
3397  for (post_shift = lgup; post_shift > 0; post_shift--)
3398    {
3399      unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3400						       HOST_BITS_PER_WIDE_INT);
3401      unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3402						       HOST_BITS_PER_WIDE_INT);
3403      if (ml_lo >= mh_lo)
3404	break;
3405
3406      mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3407      mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3408    }
3409
3410  *post_shift_ptr = post_shift;
3411  *lgup_ptr = lgup;
3412  if (n < HOST_BITS_PER_WIDE_INT)
3413    {
3414      unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3415      *multiplier_ptr = mhigh.to_uhwi () & mask;
3416      return mhigh.to_uhwi () >= mask;
3417    }
3418  else
3419    {
3420      *multiplier_ptr = mhigh.to_uhwi ();
3421      return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3422    }
3423}
3424
3425/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3426   congruent to 1 (mod 2**N).  */
3427
3428static unsigned HOST_WIDE_INT
3429invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3430{
3431  /* Solve x*y == 1 (mod 2^n), where x is odd.  Return y.  */
3432
3433  /* The algorithm notes that the choice y = x satisfies
3434     x*y == 1 mod 2^3, since x is assumed odd.
3435     Each iteration doubles the number of bits of significance in y.  */
3436
3437  unsigned HOST_WIDE_INT mask;
3438  unsigned HOST_WIDE_INT y = x;
3439  int nbit = 3;
3440
3441  mask = (n == HOST_BITS_PER_WIDE_INT
3442	  ? ~(unsigned HOST_WIDE_INT) 0
3443	  : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3444
3445  while (nbit < n)
3446    {
3447      y = y * (2 - x*y) & mask;		/* Modulo 2^N */
3448      nbit *= 2;
3449    }
3450  return y;
3451}
3452
3453/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3454   flavor of OP0 and OP1.  ADJ_OPERAND is already the high half of the
3455   product OP0 x OP1.  If UNSIGNEDP is nonzero, adjust the signed product
3456   to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3457   become signed.
3458
3459   The result is put in TARGET if that is convenient.
3460
3461   MODE is the mode of operation.  */
3462
3463rtx
3464expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3465			     rtx op1, rtx target, int unsignedp)
3466{
3467  rtx tem;
3468  enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3469
3470  tem = expand_shift (RSHIFT_EXPR, mode, op0,
3471		      GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3472  tem = expand_and (mode, tem, op1, NULL_RTX);
3473  adj_operand
3474    = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3475		     adj_operand);
3476
3477  tem = expand_shift (RSHIFT_EXPR, mode, op1,
3478		      GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3479  tem = expand_and (mode, tem, op0, NULL_RTX);
3480  target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3481			  target);
3482
3483  return target;
3484}
3485
3486/* Subroutine of expmed_mult_highpart.  Return the MODE high part of OP.  */
3487
3488static rtx
3489extract_high_half (machine_mode mode, rtx op)
3490{
3491  machine_mode wider_mode;
3492
3493  if (mode == word_mode)
3494    return gen_highpart (mode, op);
3495
3496  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3497
3498  wider_mode = GET_MODE_WIDER_MODE (mode);
3499  op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3500		     GET_MODE_BITSIZE (mode), 0, 1);
3501  return convert_modes (mode, wider_mode, op, 0);
3502}
3503
3504/* Like expmed_mult_highpart, but only consider using a multiplication
3505   optab.  OP1 is an rtx for the constant operand.  */
3506
3507static rtx
3508expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3509			    rtx target, int unsignedp, int max_cost)
3510{
3511  rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3512  machine_mode wider_mode;
3513  optab moptab;
3514  rtx tem;
3515  int size;
3516  bool speed = optimize_insn_for_speed_p ();
3517
3518  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3519
3520  wider_mode = GET_MODE_WIDER_MODE (mode);
3521  size = GET_MODE_BITSIZE (mode);
3522
3523  /* Firstly, try using a multiplication insn that only generates the needed
3524     high part of the product, and in the sign flavor of unsignedp.  */
3525  if (mul_highpart_cost (speed, mode) < max_cost)
3526    {
3527      moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3528      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3529			  unsignedp, OPTAB_DIRECT);
3530      if (tem)
3531	return tem;
3532    }
3533
3534  /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3535     Need to adjust the result after the multiplication.  */
3536  if (size - 1 < BITS_PER_WORD
3537      && (mul_highpart_cost (speed, mode)
3538	  + 2 * shift_cost (speed, mode, size-1)
3539	  + 4 * add_cost (speed, mode) < max_cost))
3540    {
3541      moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3542      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3543			  unsignedp, OPTAB_DIRECT);
3544      if (tem)
3545	/* We used the wrong signedness.  Adjust the result.  */
3546	return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3547					    tem, unsignedp);
3548    }
3549
3550  /* Try widening multiplication.  */
3551  moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3552  if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3553      && mul_widen_cost (speed, wider_mode) < max_cost)
3554    {
3555      tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3556			  unsignedp, OPTAB_WIDEN);
3557      if (tem)
3558	return extract_high_half (mode, tem);
3559    }
3560
3561  /* Try widening the mode and perform a non-widening multiplication.  */
3562  if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3563      && size - 1 < BITS_PER_WORD
3564      && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3565	  < max_cost))
3566    {
3567      rtx_insn *insns;
3568      rtx wop0, wop1;
3569
3570      /* We need to widen the operands, for example to ensure the
3571	 constant multiplier is correctly sign or zero extended.
3572	 Use a sequence to clean-up any instructions emitted by
3573	 the conversions if things don't work out.  */
3574      start_sequence ();
3575      wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3576      wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3577      tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3578			  unsignedp, OPTAB_WIDEN);
3579      insns = get_insns ();
3580      end_sequence ();
3581
3582      if (tem)
3583	{
3584	  emit_insn (insns);
3585	  return extract_high_half (mode, tem);
3586	}
3587    }
3588
3589  /* Try widening multiplication of opposite signedness, and adjust.  */
3590  moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3591  if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3592      && size - 1 < BITS_PER_WORD
3593      && (mul_widen_cost (speed, wider_mode)
3594	  + 2 * shift_cost (speed, mode, size-1)
3595	  + 4 * add_cost (speed, mode) < max_cost))
3596    {
3597      tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3598			  NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3599      if (tem != 0)
3600	{
3601	  tem = extract_high_half (mode, tem);
3602	  /* We used the wrong signedness.  Adjust the result.  */
3603	  return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3604					      target, unsignedp);
3605	}
3606    }
3607
3608  return 0;
3609}
3610
3611/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3612   putting the high half of the result in TARGET if that is convenient,
3613   and return where the result is.  If the operation can not be performed,
3614   0 is returned.
3615
3616   MODE is the mode of operation and result.
3617
3618   UNSIGNEDP nonzero means unsigned multiply.
3619
3620   MAX_COST is the total allowed cost for the expanded RTL.  */
3621
3622static rtx
3623expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3624		      rtx target, int unsignedp, int max_cost)
3625{
3626  machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3627  unsigned HOST_WIDE_INT cnst1;
3628  int extra_cost;
3629  bool sign_adjust = false;
3630  enum mult_variant variant;
3631  struct algorithm alg;
3632  rtx tem;
3633  bool speed = optimize_insn_for_speed_p ();
3634
3635  gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3636  /* We can't support modes wider than HOST_BITS_PER_INT.  */
3637  gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3638
3639  cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3640
3641  /* We can't optimize modes wider than BITS_PER_WORD.
3642     ??? We might be able to perform double-word arithmetic if
3643     mode == word_mode, however all the cost calculations in
3644     synth_mult etc. assume single-word operations.  */
3645  if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3646    return expmed_mult_highpart_optab (mode, op0, op1, target,
3647				       unsignedp, max_cost);
3648
3649  extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3650
3651  /* Check whether we try to multiply by a negative constant.  */
3652  if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3653    {
3654      sign_adjust = true;
3655      extra_cost += add_cost (speed, mode);
3656    }
3657
3658  /* See whether shift/add multiplication is cheap enough.  */
3659  if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3660			   max_cost - extra_cost))
3661    {
3662      /* See whether the specialized multiplication optabs are
3663	 cheaper than the shift/add version.  */
3664      tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3665					alg.cost.cost + extra_cost);
3666      if (tem)
3667	return tem;
3668
3669      tem = convert_to_mode (wider_mode, op0, unsignedp);
3670      tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3671      tem = extract_high_half (mode, tem);
3672
3673      /* Adjust result for signedness.  */
3674      if (sign_adjust)
3675	tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3676
3677      return tem;
3678    }
3679  return expmed_mult_highpart_optab (mode, op0, op1, target,
3680				     unsignedp, max_cost);
3681}
3682
3683
3684/* Expand signed modulus of OP0 by a power of two D in mode MODE.  */
3685
3686static rtx
3687expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3688{
3689  rtx result, temp, shift;
3690  rtx_code_label *label;
3691  int logd;
3692  int prec = GET_MODE_PRECISION (mode);
3693
3694  logd = floor_log2 (d);
3695  result = gen_reg_rtx (mode);
3696
3697  /* Avoid conditional branches when they're expensive.  */
3698  if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3699      && optimize_insn_for_speed_p ())
3700    {
3701      rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3702				      mode, 0, -1);
3703      if (signmask)
3704	{
3705	  HOST_WIDE_INT masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3706	  signmask = force_reg (mode, signmask);
3707	  shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3708
3709	  /* Use the rtx_cost of a LSHIFTRT instruction to determine
3710	     which instruction sequence to use.  If logical right shifts
3711	     are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3712	     use a LSHIFTRT, 1 ADD, 1 SUB and an AND.  */
3713
3714	  temp = gen_rtx_LSHIFTRT (mode, result, shift);
3715	  if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3716	      || (set_src_cost (temp, optimize_insn_for_speed_p ())
3717		  > COSTS_N_INSNS (2)))
3718	    {
3719	      temp = expand_binop (mode, xor_optab, op0, signmask,
3720				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3721	      temp = expand_binop (mode, sub_optab, temp, signmask,
3722				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3723	      temp = expand_binop (mode, and_optab, temp,
3724				   gen_int_mode (masklow, mode),
3725				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3726	      temp = expand_binop (mode, xor_optab, temp, signmask,
3727				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3728	      temp = expand_binop (mode, sub_optab, temp, signmask,
3729				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3730	    }
3731	  else
3732	    {
3733	      signmask = expand_binop (mode, lshr_optab, signmask, shift,
3734				       NULL_RTX, 1, OPTAB_LIB_WIDEN);
3735	      signmask = force_reg (mode, signmask);
3736
3737	      temp = expand_binop (mode, add_optab, op0, signmask,
3738				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3739	      temp = expand_binop (mode, and_optab, temp,
3740				   gen_int_mode (masklow, mode),
3741				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3742	      temp = expand_binop (mode, sub_optab, temp, signmask,
3743				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
3744	    }
3745	  return temp;
3746	}
3747    }
3748
3749  /* Mask contains the mode's signbit and the significant bits of the
3750     modulus.  By including the signbit in the operation, many targets
3751     can avoid an explicit compare operation in the following comparison
3752     against zero.  */
3753  wide_int mask = wi::mask (logd, false, prec);
3754  mask = wi::set_bit (mask, prec - 1);
3755
3756  temp = expand_binop (mode, and_optab, op0,
3757		       immed_wide_int_const (mask, mode),
3758		       result, 1, OPTAB_LIB_WIDEN);
3759  if (temp != result)
3760    emit_move_insn (result, temp);
3761
3762  label = gen_label_rtx ();
3763  do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3764
3765  temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3766		       0, OPTAB_LIB_WIDEN);
3767
3768  mask = wi::mask (logd, true, prec);
3769  temp = expand_binop (mode, ior_optab, temp,
3770		       immed_wide_int_const (mask, mode),
3771		       result, 1, OPTAB_LIB_WIDEN);
3772  temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3773		       0, OPTAB_LIB_WIDEN);
3774  if (temp != result)
3775    emit_move_insn (result, temp);
3776  emit_label (label);
3777  return result;
3778}
3779
3780/* Expand signed division of OP0 by a power of two D in mode MODE.
3781   This routine is only called for positive values of D.  */
3782
3783static rtx
3784expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3785{
3786  rtx temp;
3787  rtx_code_label *label;
3788  int logd;
3789
3790  logd = floor_log2 (d);
3791
3792  if (d == 2
3793      && BRANCH_COST (optimize_insn_for_speed_p (),
3794		      false) >= 1)
3795    {
3796      temp = gen_reg_rtx (mode);
3797      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3798      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3799			   0, OPTAB_LIB_WIDEN);
3800      return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3801    }
3802
3803#ifdef HAVE_conditional_move
3804  if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3805      >= 2)
3806    {
3807      rtx temp2;
3808
3809      start_sequence ();
3810      temp2 = copy_to_mode_reg (mode, op0);
3811      temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3812			   NULL_RTX, 0, OPTAB_LIB_WIDEN);
3813      temp = force_reg (mode, temp);
3814
3815      /* Construct "temp2 = (temp2 < 0) ? temp : temp2".  */
3816      temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3817				     mode, temp, temp2, mode, 0);
3818      if (temp2)
3819	{
3820	  rtx_insn *seq = get_insns ();
3821	  end_sequence ();
3822	  emit_insn (seq);
3823	  return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3824	}
3825      end_sequence ();
3826    }
3827#endif
3828
3829  if (BRANCH_COST (optimize_insn_for_speed_p (),
3830		   false) >= 2)
3831    {
3832      int ushift = GET_MODE_BITSIZE (mode) - logd;
3833
3834      temp = gen_reg_rtx (mode);
3835      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3836      if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3837	  || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3838	     > COSTS_N_INSNS (1))
3839	temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3840			     NULL_RTX, 0, OPTAB_LIB_WIDEN);
3841      else
3842	temp = expand_shift (RSHIFT_EXPR, mode, temp,
3843			     ushift, NULL_RTX, 1);
3844      temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3845			   0, OPTAB_LIB_WIDEN);
3846      return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3847    }
3848
3849  label = gen_label_rtx ();
3850  temp = copy_to_mode_reg (mode, op0);
3851  do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3852  expand_inc (temp, gen_int_mode (d - 1, mode));
3853  emit_label (label);
3854  return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3855}
3856
3857/* Emit the code to divide OP0 by OP1, putting the result in TARGET
3858   if that is convenient, and returning where the result is.
3859   You may request either the quotient or the remainder as the result;
3860   specify REM_FLAG nonzero to get the remainder.
3861
3862   CODE is the expression code for which kind of division this is;
3863   it controls how rounding is done.  MODE is the machine mode to use.
3864   UNSIGNEDP nonzero means do unsigned division.  */
3865
3866/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3867   and then correct it by or'ing in missing high bits
3868   if result of ANDI is nonzero.
3869   For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3870   This could optimize to a bfexts instruction.
3871   But C doesn't use these operations, so their optimizations are
3872   left for later.  */
3873/* ??? For modulo, we don't actually need the highpart of the first product,
3874   the low part will do nicely.  And for small divisors, the second multiply
3875   can also be a low-part only multiply or even be completely left out.
3876   E.g. to calculate the remainder of a division by 3 with a 32 bit
3877   multiply, multiply with 0x55555556 and extract the upper two bits;
3878   the result is exact for inputs up to 0x1fffffff.
3879   The input range can be reduced by using cross-sum rules.
3880   For odd divisors >= 3, the following table gives right shift counts
3881   so that if a number is shifted by an integer multiple of the given
3882   amount, the remainder stays the same:
3883   2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3884   14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3885   0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3886   20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3887   0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3888
3889   Cross-sum rules for even numbers can be derived by leaving as many bits
3890   to the right alone as the divisor has zeros to the right.
3891   E.g. if x is an unsigned 32 bit number:
3892   (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3893   */
3894
3895rtx
3896expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
3897	       rtx op0, rtx op1, rtx target, int unsignedp)
3898{
3899  machine_mode compute_mode;
3900  rtx tquotient;
3901  rtx quotient = 0, remainder = 0;
3902  rtx_insn *last;
3903  int size;
3904  rtx_insn *insn;
3905  optab optab1, optab2;
3906  int op1_is_constant, op1_is_pow2 = 0;
3907  int max_cost, extra_cost;
3908  static HOST_WIDE_INT last_div_const = 0;
3909  bool speed = optimize_insn_for_speed_p ();
3910
3911  op1_is_constant = CONST_INT_P (op1);
3912  if (op1_is_constant)
3913    {
3914      unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3915      if (unsignedp)
3916	ext_op1 &= GET_MODE_MASK (mode);
3917      op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3918		     || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3919    }
3920
3921  /*
3922     This is the structure of expand_divmod:
3923
3924     First comes code to fix up the operands so we can perform the operations
3925     correctly and efficiently.
3926
3927     Second comes a switch statement with code specific for each rounding mode.
3928     For some special operands this code emits all RTL for the desired
3929     operation, for other cases, it generates only a quotient and stores it in
3930     QUOTIENT.  The case for trunc division/remainder might leave quotient = 0,
3931     to indicate that it has not done anything.
3932
3933     Last comes code that finishes the operation.  If QUOTIENT is set and
3934     REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1.  If
3935     QUOTIENT is not set, it is computed using trunc rounding.
3936
3937     We try to generate special code for division and remainder when OP1 is a
3938     constant.  If |OP1| = 2**n we can use shifts and some other fast
3939     operations.  For other values of OP1, we compute a carefully selected
3940     fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3941     by m.
3942
3943     In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3944     half of the product.  Different strategies for generating the product are
3945     implemented in expmed_mult_highpart.
3946
3947     If what we actually want is the remainder, we generate that by another
3948     by-constant multiplication and a subtraction.  */
3949
3950  /* We shouldn't be called with OP1 == const1_rtx, but some of the
3951     code below will malfunction if we are, so check here and handle
3952     the special case if so.  */
3953  if (op1 == const1_rtx)
3954    return rem_flag ? const0_rtx : op0;
3955
3956    /* When dividing by -1, we could get an overflow.
3957     negv_optab can handle overflows.  */
3958  if (! unsignedp && op1 == constm1_rtx)
3959    {
3960      if (rem_flag)
3961	return const0_rtx;
3962      return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
3963			  ? negv_optab : neg_optab, op0, target, 0);
3964    }
3965
3966  if (target
3967      /* Don't use the function value register as a target
3968	 since we have to read it as well as write it,
3969	 and function-inlining gets confused by this.  */
3970      && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3971	  /* Don't clobber an operand while doing a multi-step calculation.  */
3972	  || ((rem_flag || op1_is_constant)
3973	      && (reg_mentioned_p (target, op0)
3974		  || (MEM_P (op0) && MEM_P (target))))
3975	  || reg_mentioned_p (target, op1)
3976	  || (MEM_P (op1) && MEM_P (target))))
3977    target = 0;
3978
3979  /* Get the mode in which to perform this computation.  Normally it will
3980     be MODE, but sometimes we can't do the desired operation in MODE.
3981     If so, pick a wider mode in which we can do the operation.  Convert
3982     to that mode at the start to avoid repeated conversions.
3983
3984     First see what operations we need.  These depend on the expression
3985     we are evaluating.  (We assume that divxx3 insns exist under the
3986     same conditions that modxx3 insns and that these insns don't normally
3987     fail.  If these assumptions are not correct, we may generate less
3988     efficient code in some cases.)
3989
3990     Then see if we find a mode in which we can open-code that operation
3991     (either a division, modulus, or shift).  Finally, check for the smallest
3992     mode for which we can do the operation with a library call.  */
3993
3994  /* We might want to refine this now that we have division-by-constant
3995     optimization.  Since expmed_mult_highpart tries so many variants, it is
3996     not straightforward to generalize this.  Maybe we should make an array
3997     of possible modes in init_expmed?  Save this for GCC 2.7.  */
3998
3999  optab1 = ((op1_is_pow2 && op1 != const0_rtx)
4000	    ? (unsignedp ? lshr_optab : ashr_optab)
4001	    : (unsignedp ? udiv_optab : sdiv_optab));
4002  optab2 = ((op1_is_pow2 && op1 != const0_rtx)
4003	    ? optab1
4004	    : (unsignedp ? udivmod_optab : sdivmod_optab));
4005
4006  for (compute_mode = mode; compute_mode != VOIDmode;
4007       compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4008    if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4009	|| optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4010      break;
4011
4012  if (compute_mode == VOIDmode)
4013    for (compute_mode = mode; compute_mode != VOIDmode;
4014	 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4015      if (optab_libfunc (optab1, compute_mode)
4016	  || optab_libfunc (optab2, compute_mode))
4017	break;
4018
4019  /* If we still couldn't find a mode, use MODE, but expand_binop will
4020     probably die.  */
4021  if (compute_mode == VOIDmode)
4022    compute_mode = mode;
4023
4024  if (target && GET_MODE (target) == compute_mode)
4025    tquotient = target;
4026  else
4027    tquotient = gen_reg_rtx (compute_mode);
4028
4029  size = GET_MODE_BITSIZE (compute_mode);
4030#if 0
4031  /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4032     (mode), and thereby get better code when OP1 is a constant.  Do that
4033     later.  It will require going over all usages of SIZE below.  */
4034  size = GET_MODE_BITSIZE (mode);
4035#endif
4036
4037  /* Only deduct something for a REM if the last divide done was
4038     for a different constant.   Then set the constant of the last
4039     divide.  */
4040  max_cost = (unsignedp
4041	      ? udiv_cost (speed, compute_mode)
4042	      : sdiv_cost (speed, compute_mode));
4043  if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4044		     && INTVAL (op1) == last_div_const))
4045    max_cost -= (mul_cost (speed, compute_mode)
4046		 + add_cost (speed, compute_mode));
4047
4048  last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4049
4050  /* Now convert to the best mode to use.  */
4051  if (compute_mode != mode)
4052    {
4053      op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4054      op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4055
4056      /* convert_modes may have placed op1 into a register, so we
4057	 must recompute the following.  */
4058      op1_is_constant = CONST_INT_P (op1);
4059      op1_is_pow2 = (op1_is_constant
4060		     && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4061			  || (! unsignedp
4062			      && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4063    }
4064
4065  /* If one of the operands is a volatile MEM, copy it into a register.  */
4066
4067  if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4068    op0 = force_reg (compute_mode, op0);
4069  if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4070    op1 = force_reg (compute_mode, op1);
4071
4072  /* If we need the remainder or if OP1 is constant, we need to
4073     put OP0 in a register in case it has any queued subexpressions.  */
4074  if (rem_flag || op1_is_constant)
4075    op0 = force_reg (compute_mode, op0);
4076
4077  last = get_last_insn ();
4078
4079  /* Promote floor rounding to trunc rounding for unsigned operations.  */
4080  if (unsignedp)
4081    {
4082      if (code == FLOOR_DIV_EXPR)
4083	code = TRUNC_DIV_EXPR;
4084      if (code == FLOOR_MOD_EXPR)
4085	code = TRUNC_MOD_EXPR;
4086      if (code == EXACT_DIV_EXPR && op1_is_pow2)
4087	code = TRUNC_DIV_EXPR;
4088    }
4089
4090  if (op1 != const0_rtx)
4091    switch (code)
4092      {
4093      case TRUNC_MOD_EXPR:
4094      case TRUNC_DIV_EXPR:
4095	if (op1_is_constant)
4096	  {
4097	    if (unsignedp)
4098	      {
4099		unsigned HOST_WIDE_INT mh, ml;
4100		int pre_shift, post_shift;
4101		int dummy;
4102		unsigned HOST_WIDE_INT d = (INTVAL (op1)
4103					    & GET_MODE_MASK (compute_mode));
4104
4105		if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4106		  {
4107		    pre_shift = floor_log2 (d);
4108		    if (rem_flag)
4109		      {
4110			unsigned HOST_WIDE_INT mask
4111			  = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4112			remainder
4113			  = expand_binop (compute_mode, and_optab, op0,
4114					  gen_int_mode (mask, compute_mode),
4115					  remainder, 1,
4116					  OPTAB_LIB_WIDEN);
4117			if (remainder)
4118			  return gen_lowpart (mode, remainder);
4119		      }
4120		    quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4121					     pre_shift, tquotient, 1);
4122		  }
4123		else if (size <= HOST_BITS_PER_WIDE_INT)
4124		  {
4125		    if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4126		      {
4127			/* Most significant bit of divisor is set; emit an scc
4128			   insn.  */
4129			quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4130							  compute_mode, 1, 1);
4131		      }
4132		    else
4133		      {
4134			/* Find a suitable multiplier and right shift count
4135			   instead of multiplying with D.  */
4136
4137			mh = choose_multiplier (d, size, size,
4138						&ml, &post_shift, &dummy);
4139
4140			/* If the suggested multiplier is more than SIZE bits,
4141			   we can do better for even divisors, using an
4142			   initial right shift.  */
4143			if (mh != 0 && (d & 1) == 0)
4144			  {
4145			    pre_shift = floor_log2 (d & -d);
4146			    mh = choose_multiplier (d >> pre_shift, size,
4147						    size - pre_shift,
4148						    &ml, &post_shift, &dummy);
4149			    gcc_assert (!mh);
4150			  }
4151			else
4152			  pre_shift = 0;
4153
4154			if (mh != 0)
4155			  {
4156			    rtx t1, t2, t3, t4;
4157
4158			    if (post_shift - 1 >= BITS_PER_WORD)
4159			      goto fail1;
4160
4161			    extra_cost
4162			      = (shift_cost (speed, compute_mode, post_shift - 1)
4163				 + shift_cost (speed, compute_mode, 1)
4164				 + 2 * add_cost (speed, compute_mode));
4165			    t1 = expmed_mult_highpart
4166			      (compute_mode, op0,
4167			       gen_int_mode (ml, compute_mode),
4168			       NULL_RTX, 1, max_cost - extra_cost);
4169			    if (t1 == 0)
4170			      goto fail1;
4171			    t2 = force_operand (gen_rtx_MINUS (compute_mode,
4172							       op0, t1),
4173						NULL_RTX);
4174			    t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4175					       t2, 1, NULL_RTX, 1);
4176			    t4 = force_operand (gen_rtx_PLUS (compute_mode,
4177							      t1, t3),
4178						NULL_RTX);
4179			    quotient = expand_shift
4180			      (RSHIFT_EXPR, compute_mode, t4,
4181			       post_shift - 1, tquotient, 1);
4182			  }
4183			else
4184			  {
4185			    rtx t1, t2;
4186
4187			    if (pre_shift >= BITS_PER_WORD
4188				|| post_shift >= BITS_PER_WORD)
4189			      goto fail1;
4190
4191			    t1 = expand_shift
4192			      (RSHIFT_EXPR, compute_mode, op0,
4193			       pre_shift, NULL_RTX, 1);
4194			    extra_cost
4195			      = (shift_cost (speed, compute_mode, pre_shift)
4196				 + shift_cost (speed, compute_mode, post_shift));
4197			    t2 = expmed_mult_highpart
4198			      (compute_mode, t1,
4199			       gen_int_mode (ml, compute_mode),
4200			       NULL_RTX, 1, max_cost - extra_cost);
4201			    if (t2 == 0)
4202			      goto fail1;
4203			    quotient = expand_shift
4204			      (RSHIFT_EXPR, compute_mode, t2,
4205			       post_shift, tquotient, 1);
4206			  }
4207		      }
4208		  }
4209		else		/* Too wide mode to use tricky code */
4210		  break;
4211
4212		insn = get_last_insn ();
4213		if (insn != last)
4214		  set_dst_reg_note (insn, REG_EQUAL,
4215				    gen_rtx_UDIV (compute_mode, op0, op1),
4216				    quotient);
4217	      }
4218	    else		/* TRUNC_DIV, signed */
4219	      {
4220		unsigned HOST_WIDE_INT ml;
4221		int lgup, post_shift;
4222		rtx mlr;
4223		HOST_WIDE_INT d = INTVAL (op1);
4224		unsigned HOST_WIDE_INT abs_d;
4225
4226		/* Since d might be INT_MIN, we have to cast to
4227		   unsigned HOST_WIDE_INT before negating to avoid
4228		   undefined signed overflow.  */
4229		abs_d = (d >= 0
4230			 ? (unsigned HOST_WIDE_INT) d
4231			 : - (unsigned HOST_WIDE_INT) d);
4232
4233		/* n rem d = n rem -d */
4234		if (rem_flag && d < 0)
4235		  {
4236		    d = abs_d;
4237		    op1 = gen_int_mode (abs_d, compute_mode);
4238		  }
4239
4240		if (d == 1)
4241		  quotient = op0;
4242		else if (d == -1)
4243		  quotient = expand_unop (compute_mode, neg_optab, op0,
4244					  tquotient, 0);
4245		else if (HOST_BITS_PER_WIDE_INT >= size
4246			 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4247		  {
4248		    /* This case is not handled correctly below.  */
4249		    quotient = emit_store_flag (tquotient, EQ, op0, op1,
4250						compute_mode, 1, 1);
4251		    if (quotient == 0)
4252		      goto fail1;
4253		  }
4254		else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4255			 && (rem_flag
4256			     ? smod_pow2_cheap (speed, compute_mode)
4257			     : sdiv_pow2_cheap (speed, compute_mode))
4258			 /* We assume that cheap metric is true if the
4259			    optab has an expander for this mode.  */
4260			 && ((optab_handler ((rem_flag ? smod_optab
4261					      : sdiv_optab),
4262					     compute_mode)
4263			      != CODE_FOR_nothing)
4264			     || (optab_handler (sdivmod_optab,
4265						compute_mode)
4266				 != CODE_FOR_nothing)))
4267		  ;
4268		else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4269		  {
4270		    if (rem_flag)
4271		      {
4272			remainder = expand_smod_pow2 (compute_mode, op0, d);
4273			if (remainder)
4274			  return gen_lowpart (mode, remainder);
4275		      }
4276
4277		    if (sdiv_pow2_cheap (speed, compute_mode)
4278			&& ((optab_handler (sdiv_optab, compute_mode)
4279			     != CODE_FOR_nothing)
4280			    || (optab_handler (sdivmod_optab, compute_mode)
4281				!= CODE_FOR_nothing)))
4282		      quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4283						compute_mode, op0,
4284						gen_int_mode (abs_d,
4285							      compute_mode),
4286						NULL_RTX, 0);
4287		    else
4288		      quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4289
4290		    /* We have computed OP0 / abs(OP1).  If OP1 is negative,
4291		       negate the quotient.  */
4292		    if (d < 0)
4293		      {
4294			insn = get_last_insn ();
4295			if (insn != last
4296			    && abs_d < ((unsigned HOST_WIDE_INT) 1
4297					<< (HOST_BITS_PER_WIDE_INT - 1)))
4298			  set_dst_reg_note (insn, REG_EQUAL,
4299					    gen_rtx_DIV (compute_mode, op0,
4300							 gen_int_mode
4301							   (abs_d,
4302							    compute_mode)),
4303					    quotient);
4304
4305			quotient = expand_unop (compute_mode, neg_optab,
4306						quotient, quotient, 0);
4307		      }
4308		  }
4309		else if (size <= HOST_BITS_PER_WIDE_INT)
4310		  {
4311		    choose_multiplier (abs_d, size, size - 1,
4312				       &ml, &post_shift, &lgup);
4313		    if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4314		      {
4315			rtx t1, t2, t3;
4316
4317			if (post_shift >= BITS_PER_WORD
4318			    || size - 1 >= BITS_PER_WORD)
4319			  goto fail1;
4320
4321			extra_cost = (shift_cost (speed, compute_mode, post_shift)
4322				      + shift_cost (speed, compute_mode, size - 1)
4323				      + add_cost (speed, compute_mode));
4324			t1 = expmed_mult_highpart
4325			  (compute_mode, op0, gen_int_mode (ml, compute_mode),
4326			   NULL_RTX, 0, max_cost - extra_cost);
4327			if (t1 == 0)
4328			  goto fail1;
4329			t2 = expand_shift
4330			  (RSHIFT_EXPR, compute_mode, t1,
4331			   post_shift, NULL_RTX, 0);
4332			t3 = expand_shift
4333			  (RSHIFT_EXPR, compute_mode, op0,
4334			   size - 1, NULL_RTX, 0);
4335			if (d < 0)
4336			  quotient
4337			    = force_operand (gen_rtx_MINUS (compute_mode,
4338							    t3, t2),
4339					     tquotient);
4340			else
4341			  quotient
4342			    = force_operand (gen_rtx_MINUS (compute_mode,
4343							    t2, t3),
4344					     tquotient);
4345		      }
4346		    else
4347		      {
4348			rtx t1, t2, t3, t4;
4349
4350			if (post_shift >= BITS_PER_WORD
4351			    || size - 1 >= BITS_PER_WORD)
4352			  goto fail1;
4353
4354			ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4355			mlr = gen_int_mode (ml, compute_mode);
4356			extra_cost = (shift_cost (speed, compute_mode, post_shift)
4357				      + shift_cost (speed, compute_mode, size - 1)
4358				      + 2 * add_cost (speed, compute_mode));
4359			t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4360						   NULL_RTX, 0,
4361						   max_cost - extra_cost);
4362			if (t1 == 0)
4363			  goto fail1;
4364			t2 = force_operand (gen_rtx_PLUS (compute_mode,
4365							  t1, op0),
4366					    NULL_RTX);
4367			t3 = expand_shift
4368			  (RSHIFT_EXPR, compute_mode, t2,
4369			   post_shift, NULL_RTX, 0);
4370			t4 = expand_shift
4371			  (RSHIFT_EXPR, compute_mode, op0,
4372			   size - 1, NULL_RTX, 0);
4373			if (d < 0)
4374			  quotient
4375			    = force_operand (gen_rtx_MINUS (compute_mode,
4376							    t4, t3),
4377					     tquotient);
4378			else
4379			  quotient
4380			    = force_operand (gen_rtx_MINUS (compute_mode,
4381							    t3, t4),
4382					     tquotient);
4383		      }
4384		  }
4385		else		/* Too wide mode to use tricky code */
4386		  break;
4387
4388		insn = get_last_insn ();
4389		if (insn != last)
4390		  set_dst_reg_note (insn, REG_EQUAL,
4391				    gen_rtx_DIV (compute_mode, op0, op1),
4392				    quotient);
4393	      }
4394	    break;
4395	  }
4396      fail1:
4397	delete_insns_since (last);
4398	break;
4399
4400      case FLOOR_DIV_EXPR:
4401      case FLOOR_MOD_EXPR:
4402      /* We will come here only for signed operations.  */
4403	if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4404	  {
4405	    unsigned HOST_WIDE_INT mh, ml;
4406	    int pre_shift, lgup, post_shift;
4407	    HOST_WIDE_INT d = INTVAL (op1);
4408
4409	    if (d > 0)
4410	      {
4411		/* We could just as easily deal with negative constants here,
4412		   but it does not seem worth the trouble for GCC 2.6.  */
4413		if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4414		  {
4415		    pre_shift = floor_log2 (d);
4416		    if (rem_flag)
4417		      {
4418			unsigned HOST_WIDE_INT mask
4419			  = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4420			remainder = expand_binop
4421			  (compute_mode, and_optab, op0,
4422			   gen_int_mode (mask, compute_mode),
4423			   remainder, 0, OPTAB_LIB_WIDEN);
4424			if (remainder)
4425			  return gen_lowpart (mode, remainder);
4426		      }
4427		    quotient = expand_shift
4428		      (RSHIFT_EXPR, compute_mode, op0,
4429		       pre_shift, tquotient, 0);
4430		  }
4431		else
4432		  {
4433		    rtx t1, t2, t3, t4;
4434
4435		    mh = choose_multiplier (d, size, size - 1,
4436					    &ml, &post_shift, &lgup);
4437		    gcc_assert (!mh);
4438
4439		    if (post_shift < BITS_PER_WORD
4440			&& size - 1 < BITS_PER_WORD)
4441		      {
4442			t1 = expand_shift
4443			  (RSHIFT_EXPR, compute_mode, op0,
4444			   size - 1, NULL_RTX, 0);
4445			t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4446					   NULL_RTX, 0, OPTAB_WIDEN);
4447			extra_cost = (shift_cost (speed, compute_mode, post_shift)
4448				      + shift_cost (speed, compute_mode, size - 1)
4449				      + 2 * add_cost (speed, compute_mode));
4450			t3 = expmed_mult_highpart
4451			  (compute_mode, t2, gen_int_mode (ml, compute_mode),
4452			   NULL_RTX, 1, max_cost - extra_cost);
4453			if (t3 != 0)
4454			  {
4455			    t4 = expand_shift
4456			      (RSHIFT_EXPR, compute_mode, t3,
4457			       post_shift, NULL_RTX, 1);
4458			    quotient = expand_binop (compute_mode, xor_optab,
4459						     t4, t1, tquotient, 0,
4460						     OPTAB_WIDEN);
4461			  }
4462		      }
4463		  }
4464	      }
4465	    else
4466	      {
4467		rtx nsign, t1, t2, t3, t4;
4468		t1 = force_operand (gen_rtx_PLUS (compute_mode,
4469						  op0, constm1_rtx), NULL_RTX);
4470		t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4471				   0, OPTAB_WIDEN);
4472		nsign = expand_shift
4473		  (RSHIFT_EXPR, compute_mode, t2,
4474		   size - 1, NULL_RTX, 0);
4475		t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4476				    NULL_RTX);
4477		t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4478				    NULL_RTX, 0);
4479		if (t4)
4480		  {
4481		    rtx t5;
4482		    t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4483				      NULL_RTX, 0);
4484		    quotient = force_operand (gen_rtx_PLUS (compute_mode,
4485							    t4, t5),
4486					      tquotient);
4487		  }
4488	      }
4489	  }
4490
4491	if (quotient != 0)
4492	  break;
4493	delete_insns_since (last);
4494
4495	/* Try using an instruction that produces both the quotient and
4496	   remainder, using truncation.  We can easily compensate the quotient
4497	   or remainder to get floor rounding, once we have the remainder.
4498	   Notice that we compute also the final remainder value here,
4499	   and return the result right away.  */
4500	if (target == 0 || GET_MODE (target) != compute_mode)
4501	  target = gen_reg_rtx (compute_mode);
4502
4503	if (rem_flag)
4504	  {
4505	    remainder
4506	      = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4507	    quotient = gen_reg_rtx (compute_mode);
4508	  }
4509	else
4510	  {
4511	    quotient
4512	      = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4513	    remainder = gen_reg_rtx (compute_mode);
4514	  }
4515
4516	if (expand_twoval_binop (sdivmod_optab, op0, op1,
4517				 quotient, remainder, 0))
4518	  {
4519	    /* This could be computed with a branch-less sequence.
4520	       Save that for later.  */
4521	    rtx tem;
4522	    rtx_code_label *label = gen_label_rtx ();
4523	    do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4524	    tem = expand_binop (compute_mode, xor_optab, op0, op1,
4525				NULL_RTX, 0, OPTAB_WIDEN);
4526	    do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4527	    expand_dec (quotient, const1_rtx);
4528	    expand_inc (remainder, op1);
4529	    emit_label (label);
4530	    return gen_lowpart (mode, rem_flag ? remainder : quotient);
4531	  }
4532
4533	/* No luck with division elimination or divmod.  Have to do it
4534	   by conditionally adjusting op0 *and* the result.  */
4535	{
4536	  rtx_code_label *label1, *label2, *label3, *label4, *label5;
4537	  rtx adjusted_op0;
4538	  rtx tem;
4539
4540	  quotient = gen_reg_rtx (compute_mode);
4541	  adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4542	  label1 = gen_label_rtx ();
4543	  label2 = gen_label_rtx ();
4544	  label3 = gen_label_rtx ();
4545	  label4 = gen_label_rtx ();
4546	  label5 = gen_label_rtx ();
4547	  do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4548	  do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4549	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4550			      quotient, 0, OPTAB_LIB_WIDEN);
4551	  if (tem != quotient)
4552	    emit_move_insn (quotient, tem);
4553	  emit_jump_insn (gen_jump (label5));
4554	  emit_barrier ();
4555	  emit_label (label1);
4556	  expand_inc (adjusted_op0, const1_rtx);
4557	  emit_jump_insn (gen_jump (label4));
4558	  emit_barrier ();
4559	  emit_label (label2);
4560	  do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4561	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4562			      quotient, 0, OPTAB_LIB_WIDEN);
4563	  if (tem != quotient)
4564	    emit_move_insn (quotient, tem);
4565	  emit_jump_insn (gen_jump (label5));
4566	  emit_barrier ();
4567	  emit_label (label3);
4568	  expand_dec (adjusted_op0, const1_rtx);
4569	  emit_label (label4);
4570	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4571			      quotient, 0, OPTAB_LIB_WIDEN);
4572	  if (tem != quotient)
4573	    emit_move_insn (quotient, tem);
4574	  expand_dec (quotient, const1_rtx);
4575	  emit_label (label5);
4576	}
4577	break;
4578
4579      case CEIL_DIV_EXPR:
4580      case CEIL_MOD_EXPR:
4581	if (unsignedp)
4582	  {
4583	    if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4584	      {
4585		rtx t1, t2, t3;
4586		unsigned HOST_WIDE_INT d = INTVAL (op1);
4587		t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4588				   floor_log2 (d), tquotient, 1);
4589		t2 = expand_binop (compute_mode, and_optab, op0,
4590				   gen_int_mode (d - 1, compute_mode),
4591				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
4592		t3 = gen_reg_rtx (compute_mode);
4593		t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4594				      compute_mode, 1, 1);
4595		if (t3 == 0)
4596		  {
4597		    rtx_code_label *lab;
4598		    lab = gen_label_rtx ();
4599		    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4600		    expand_inc (t1, const1_rtx);
4601		    emit_label (lab);
4602		    quotient = t1;
4603		  }
4604		else
4605		  quotient = force_operand (gen_rtx_PLUS (compute_mode,
4606							  t1, t3),
4607					    tquotient);
4608		break;
4609	      }
4610
4611	    /* Try using an instruction that produces both the quotient and
4612	       remainder, using truncation.  We can easily compensate the
4613	       quotient or remainder to get ceiling rounding, once we have the
4614	       remainder.  Notice that we compute also the final remainder
4615	       value here, and return the result right away.  */
4616	    if (target == 0 || GET_MODE (target) != compute_mode)
4617	      target = gen_reg_rtx (compute_mode);
4618
4619	    if (rem_flag)
4620	      {
4621		remainder = (REG_P (target)
4622			     ? target : gen_reg_rtx (compute_mode));
4623		quotient = gen_reg_rtx (compute_mode);
4624	      }
4625	    else
4626	      {
4627		quotient = (REG_P (target)
4628			    ? target : gen_reg_rtx (compute_mode));
4629		remainder = gen_reg_rtx (compute_mode);
4630	      }
4631
4632	    if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4633				     remainder, 1))
4634	      {
4635		/* This could be computed with a branch-less sequence.
4636		   Save that for later.  */
4637		rtx_code_label *label = gen_label_rtx ();
4638		do_cmp_and_jump (remainder, const0_rtx, EQ,
4639				 compute_mode, label);
4640		expand_inc (quotient, const1_rtx);
4641		expand_dec (remainder, op1);
4642		emit_label (label);
4643		return gen_lowpart (mode, rem_flag ? remainder : quotient);
4644	      }
4645
4646	    /* No luck with division elimination or divmod.  Have to do it
4647	       by conditionally adjusting op0 *and* the result.  */
4648	    {
4649	      rtx_code_label *label1, *label2;
4650	      rtx adjusted_op0, tem;
4651
4652	      quotient = gen_reg_rtx (compute_mode);
4653	      adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4654	      label1 = gen_label_rtx ();
4655	      label2 = gen_label_rtx ();
4656	      do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4657			       compute_mode, label1);
4658	      emit_move_insn  (quotient, const0_rtx);
4659	      emit_jump_insn (gen_jump (label2));
4660	      emit_barrier ();
4661	      emit_label (label1);
4662	      expand_dec (adjusted_op0, const1_rtx);
4663	      tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4664				  quotient, 1, OPTAB_LIB_WIDEN);
4665	      if (tem != quotient)
4666		emit_move_insn (quotient, tem);
4667	      expand_inc (quotient, const1_rtx);
4668	      emit_label (label2);
4669	    }
4670	  }
4671	else /* signed */
4672	  {
4673	    if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4674		&& INTVAL (op1) >= 0)
4675	      {
4676		/* This is extremely similar to the code for the unsigned case
4677		   above.  For 2.7 we should merge these variants, but for
4678		   2.6.1 I don't want to touch the code for unsigned since that
4679		   get used in C.  The signed case will only be used by other
4680		   languages (Ada).  */
4681
4682		rtx t1, t2, t3;
4683		unsigned HOST_WIDE_INT d = INTVAL (op1);
4684		t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4685				   floor_log2 (d), tquotient, 0);
4686		t2 = expand_binop (compute_mode, and_optab, op0,
4687				   gen_int_mode (d - 1, compute_mode),
4688				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
4689		t3 = gen_reg_rtx (compute_mode);
4690		t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4691				      compute_mode, 1, 1);
4692		if (t3 == 0)
4693		  {
4694		    rtx_code_label *lab;
4695		    lab = gen_label_rtx ();
4696		    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4697		    expand_inc (t1, const1_rtx);
4698		    emit_label (lab);
4699		    quotient = t1;
4700		  }
4701		else
4702		  quotient = force_operand (gen_rtx_PLUS (compute_mode,
4703							  t1, t3),
4704					    tquotient);
4705		break;
4706	      }
4707
4708	    /* Try using an instruction that produces both the quotient and
4709	       remainder, using truncation.  We can easily compensate the
4710	       quotient or remainder to get ceiling rounding, once we have the
4711	       remainder.  Notice that we compute also the final remainder
4712	       value here, and return the result right away.  */
4713	    if (target == 0 || GET_MODE (target) != compute_mode)
4714	      target = gen_reg_rtx (compute_mode);
4715	    if (rem_flag)
4716	      {
4717		remainder= (REG_P (target)
4718			    ? target : gen_reg_rtx (compute_mode));
4719		quotient = gen_reg_rtx (compute_mode);
4720	      }
4721	    else
4722	      {
4723		quotient = (REG_P (target)
4724			    ? target : gen_reg_rtx (compute_mode));
4725		remainder = gen_reg_rtx (compute_mode);
4726	      }
4727
4728	    if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4729				     remainder, 0))
4730	      {
4731		/* This could be computed with a branch-less sequence.
4732		   Save that for later.  */
4733		rtx tem;
4734		rtx_code_label *label = gen_label_rtx ();
4735		do_cmp_and_jump (remainder, const0_rtx, EQ,
4736				 compute_mode, label);
4737		tem = expand_binop (compute_mode, xor_optab, op0, op1,
4738				    NULL_RTX, 0, OPTAB_WIDEN);
4739		do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4740		expand_inc (quotient, const1_rtx);
4741		expand_dec (remainder, op1);
4742		emit_label (label);
4743		return gen_lowpart (mode, rem_flag ? remainder : quotient);
4744	      }
4745
4746	    /* No luck with division elimination or divmod.  Have to do it
4747	       by conditionally adjusting op0 *and* the result.  */
4748	    {
4749	      rtx_code_label *label1, *label2, *label3, *label4, *label5;
4750	      rtx adjusted_op0;
4751	      rtx tem;
4752
4753	      quotient = gen_reg_rtx (compute_mode);
4754	      adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4755	      label1 = gen_label_rtx ();
4756	      label2 = gen_label_rtx ();
4757	      label3 = gen_label_rtx ();
4758	      label4 = gen_label_rtx ();
4759	      label5 = gen_label_rtx ();
4760	      do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4761	      do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4762			       compute_mode, label1);
4763	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4764				  quotient, 0, OPTAB_LIB_WIDEN);
4765	      if (tem != quotient)
4766		emit_move_insn (quotient, tem);
4767	      emit_jump_insn (gen_jump (label5));
4768	      emit_barrier ();
4769	      emit_label (label1);
4770	      expand_dec (adjusted_op0, const1_rtx);
4771	      emit_jump_insn (gen_jump (label4));
4772	      emit_barrier ();
4773	      emit_label (label2);
4774	      do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4775			       compute_mode, label3);
4776	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4777				  quotient, 0, OPTAB_LIB_WIDEN);
4778	      if (tem != quotient)
4779		emit_move_insn (quotient, tem);
4780	      emit_jump_insn (gen_jump (label5));
4781	      emit_barrier ();
4782	      emit_label (label3);
4783	      expand_inc (adjusted_op0, const1_rtx);
4784	      emit_label (label4);
4785	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4786				  quotient, 0, OPTAB_LIB_WIDEN);
4787	      if (tem != quotient)
4788		emit_move_insn (quotient, tem);
4789	      expand_inc (quotient, const1_rtx);
4790	      emit_label (label5);
4791	    }
4792	  }
4793	break;
4794
4795      case EXACT_DIV_EXPR:
4796	if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4797	  {
4798	    HOST_WIDE_INT d = INTVAL (op1);
4799	    unsigned HOST_WIDE_INT ml;
4800	    int pre_shift;
4801	    rtx t1;
4802
4803	    pre_shift = floor_log2 (d & -d);
4804	    ml = invert_mod2n (d >> pre_shift, size);
4805	    t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4806			       pre_shift, NULL_RTX, unsignedp);
4807	    quotient = expand_mult (compute_mode, t1,
4808				    gen_int_mode (ml, compute_mode),
4809				    NULL_RTX, 1);
4810
4811	    insn = get_last_insn ();
4812	    set_dst_reg_note (insn, REG_EQUAL,
4813			      gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4814					      compute_mode, op0, op1),
4815			      quotient);
4816	  }
4817	break;
4818
4819      case ROUND_DIV_EXPR:
4820      case ROUND_MOD_EXPR:
4821	if (unsignedp)
4822	  {
4823	    rtx tem;
4824	    rtx_code_label *label;
4825	    label = gen_label_rtx ();
4826	    quotient = gen_reg_rtx (compute_mode);
4827	    remainder = gen_reg_rtx (compute_mode);
4828	    if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4829	      {
4830		rtx tem;
4831		quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4832					 quotient, 1, OPTAB_LIB_WIDEN);
4833		tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4834		remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4835					  remainder, 1, OPTAB_LIB_WIDEN);
4836	      }
4837	    tem = plus_constant (compute_mode, op1, -1);
4838	    tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4839	    do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4840	    expand_inc (quotient, const1_rtx);
4841	    expand_dec (remainder, op1);
4842	    emit_label (label);
4843	  }
4844	else
4845	  {
4846	    rtx abs_rem, abs_op1, tem, mask;
4847	    rtx_code_label *label;
4848	    label = gen_label_rtx ();
4849	    quotient = gen_reg_rtx (compute_mode);
4850	    remainder = gen_reg_rtx (compute_mode);
4851	    if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4852	      {
4853		rtx tem;
4854		quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4855					 quotient, 0, OPTAB_LIB_WIDEN);
4856		tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4857		remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4858					  remainder, 0, OPTAB_LIB_WIDEN);
4859	      }
4860	    abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4861	    abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4862	    tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4863				1, NULL_RTX, 1);
4864	    do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4865	    tem = expand_binop (compute_mode, xor_optab, op0, op1,
4866				NULL_RTX, 0, OPTAB_WIDEN);
4867	    mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4868				 size - 1, NULL_RTX, 0);
4869	    tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4870				NULL_RTX, 0, OPTAB_WIDEN);
4871	    tem = expand_binop (compute_mode, sub_optab, tem, mask,
4872				NULL_RTX, 0, OPTAB_WIDEN);
4873	    expand_inc (quotient, tem);
4874	    tem = expand_binop (compute_mode, xor_optab, mask, op1,
4875				NULL_RTX, 0, OPTAB_WIDEN);
4876	    tem = expand_binop (compute_mode, sub_optab, tem, mask,
4877				NULL_RTX, 0, OPTAB_WIDEN);
4878	    expand_dec (remainder, tem);
4879	    emit_label (label);
4880	  }
4881	return gen_lowpart (mode, rem_flag ? remainder : quotient);
4882
4883      default:
4884	gcc_unreachable ();
4885      }
4886
4887  if (quotient == 0)
4888    {
4889      if (target && GET_MODE (target) != compute_mode)
4890	target = 0;
4891
4892      if (rem_flag)
4893	{
4894	  /* Try to produce the remainder without producing the quotient.
4895	     If we seem to have a divmod pattern that does not require widening,
4896	     don't try widening here.  We should really have a WIDEN argument
4897	     to expand_twoval_binop, since what we'd really like to do here is
4898	     1) try a mod insn in compute_mode
4899	     2) try a divmod insn in compute_mode
4900	     3) try a div insn in compute_mode and multiply-subtract to get
4901	        remainder
4902	     4) try the same things with widening allowed.  */
4903	  remainder
4904	    = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4905				 op0, op1, target,
4906				 unsignedp,
4907				 ((optab_handler (optab2, compute_mode)
4908				   != CODE_FOR_nothing)
4909				  ? OPTAB_DIRECT : OPTAB_WIDEN));
4910	  if (remainder == 0)
4911	    {
4912	      /* No luck there.  Can we do remainder and divide at once
4913		 without a library call?  */
4914	      remainder = gen_reg_rtx (compute_mode);
4915	      if (! expand_twoval_binop ((unsignedp
4916					  ? udivmod_optab
4917					  : sdivmod_optab),
4918					 op0, op1,
4919					 NULL_RTX, remainder, unsignedp))
4920		remainder = 0;
4921	    }
4922
4923	  if (remainder)
4924	    return gen_lowpart (mode, remainder);
4925	}
4926
4927      /* Produce the quotient.  Try a quotient insn, but not a library call.
4928	 If we have a divmod in this mode, use it in preference to widening
4929	 the div (for this test we assume it will not fail). Note that optab2
4930	 is set to the one of the two optabs that the call below will use.  */
4931      quotient
4932	= sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4933			     op0, op1, rem_flag ? NULL_RTX : target,
4934			     unsignedp,
4935			     ((optab_handler (optab2, compute_mode)
4936			       != CODE_FOR_nothing)
4937			      ? OPTAB_DIRECT : OPTAB_WIDEN));
4938
4939      if (quotient == 0)
4940	{
4941	  /* No luck there.  Try a quotient-and-remainder insn,
4942	     keeping the quotient alone.  */
4943	  quotient = gen_reg_rtx (compute_mode);
4944	  if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4945				     op0, op1,
4946				     quotient, NULL_RTX, unsignedp))
4947	    {
4948	      quotient = 0;
4949	      if (! rem_flag)
4950		/* Still no luck.  If we are not computing the remainder,
4951		   use a library call for the quotient.  */
4952		quotient = sign_expand_binop (compute_mode,
4953					      udiv_optab, sdiv_optab,
4954					      op0, op1, target,
4955					      unsignedp, OPTAB_LIB_WIDEN);
4956	    }
4957	}
4958    }
4959
4960  if (rem_flag)
4961    {
4962      if (target && GET_MODE (target) != compute_mode)
4963	target = 0;
4964
4965      if (quotient == 0)
4966	{
4967	  /* No divide instruction either.  Use library for remainder.  */
4968	  remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4969					 op0, op1, target,
4970					 unsignedp, OPTAB_LIB_WIDEN);
4971	  /* No remainder function.  Try a quotient-and-remainder
4972	     function, keeping the remainder.  */
4973	  if (!remainder)
4974	    {
4975	      remainder = gen_reg_rtx (compute_mode);
4976	      if (!expand_twoval_binop_libfunc
4977		  (unsignedp ? udivmod_optab : sdivmod_optab,
4978		   op0, op1,
4979		   NULL_RTX, remainder,
4980		   unsignedp ? UMOD : MOD))
4981		remainder = NULL_RTX;
4982	    }
4983	}
4984      else
4985	{
4986	  /* We divided.  Now finish doing X - Y * (X / Y).  */
4987	  remainder = expand_mult (compute_mode, quotient, op1,
4988				   NULL_RTX, unsignedp);
4989	  remainder = expand_binop (compute_mode, sub_optab, op0,
4990				    remainder, target, unsignedp,
4991				    OPTAB_LIB_WIDEN);
4992	}
4993    }
4994
4995  return gen_lowpart (mode, rem_flag ? remainder : quotient);
4996}
4997
4998/* Return a tree node with data type TYPE, describing the value of X.
4999   Usually this is an VAR_DECL, if there is no obvious better choice.
5000   X may be an expression, however we only support those expressions
5001   generated by loop.c.  */
5002
5003tree
5004make_tree (tree type, rtx x)
5005{
5006  tree t;
5007
5008  switch (GET_CODE (x))
5009    {
5010    case CONST_INT:
5011    case CONST_WIDE_INT:
5012      t = wide_int_to_tree (type, std::make_pair (x, TYPE_MODE (type)));
5013      return t;
5014
5015    case CONST_DOUBLE:
5016      STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5017      if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5018	t = wide_int_to_tree (type,
5019			      wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5020						    HOST_BITS_PER_WIDE_INT * 2));
5021      else
5022	{
5023	  REAL_VALUE_TYPE d;
5024
5025	  REAL_VALUE_FROM_CONST_DOUBLE (d, x);
5026	  t = build_real (type, d);
5027	}
5028
5029      return t;
5030
5031    case CONST_VECTOR:
5032      {
5033	int units = CONST_VECTOR_NUNITS (x);
5034	tree itype = TREE_TYPE (type);
5035	tree *elts;
5036	int i;
5037
5038	/* Build a tree with vector elements.  */
5039	elts = XALLOCAVEC (tree, units);
5040	for (i = units - 1; i >= 0; --i)
5041	  {
5042	    rtx elt = CONST_VECTOR_ELT (x, i);
5043	    elts[i] = make_tree (itype, elt);
5044	  }
5045
5046	return build_vector (type, elts);
5047      }
5048
5049    case PLUS:
5050      return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5051			  make_tree (type, XEXP (x, 1)));
5052
5053    case MINUS:
5054      return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5055			  make_tree (type, XEXP (x, 1)));
5056
5057    case NEG:
5058      return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5059
5060    case MULT:
5061      return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5062			  make_tree (type, XEXP (x, 1)));
5063
5064    case ASHIFT:
5065      return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5066			  make_tree (type, XEXP (x, 1)));
5067
5068    case LSHIFTRT:
5069      t = unsigned_type_for (type);
5070      return fold_convert (type, build2 (RSHIFT_EXPR, t,
5071			    		 make_tree (t, XEXP (x, 0)),
5072				    	 make_tree (type, XEXP (x, 1))));
5073
5074    case ASHIFTRT:
5075      t = signed_type_for (type);
5076      return fold_convert (type, build2 (RSHIFT_EXPR, t,
5077					 make_tree (t, XEXP (x, 0)),
5078				    	 make_tree (type, XEXP (x, 1))));
5079
5080    case DIV:
5081      if (TREE_CODE (type) != REAL_TYPE)
5082	t = signed_type_for (type);
5083      else
5084	t = type;
5085
5086      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5087				    	 make_tree (t, XEXP (x, 0)),
5088				    	 make_tree (t, XEXP (x, 1))));
5089    case UDIV:
5090      t = unsigned_type_for (type);
5091      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5092				    	 make_tree (t, XEXP (x, 0)),
5093				    	 make_tree (t, XEXP (x, 1))));
5094
5095    case SIGN_EXTEND:
5096    case ZERO_EXTEND:
5097      t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5098					  GET_CODE (x) == ZERO_EXTEND);
5099      return fold_convert (type, make_tree (t, XEXP (x, 0)));
5100
5101    case CONST:
5102      return make_tree (type, XEXP (x, 0));
5103
5104    case SYMBOL_REF:
5105      t = SYMBOL_REF_DECL (x);
5106      if (t)
5107	return fold_convert (type, build_fold_addr_expr (t));
5108      /* else fall through.  */
5109
5110    default:
5111      t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5112
5113      /* If TYPE is a POINTER_TYPE, we might need to convert X from
5114	 address mode to pointer mode.  */
5115      if (POINTER_TYPE_P (type))
5116	x = convert_memory_address_addr_space
5117	      (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5118
5119      /* Note that we do *not* use SET_DECL_RTL here, because we do not
5120	 want set_decl_rtl to go adjusting REG_ATTRS for this temporary.  */
5121      t->decl_with_rtl.rtl = x;
5122
5123      return t;
5124    }
5125}
5126
5127/* Compute the logical-and of OP0 and OP1, storing it in TARGET
5128   and returning TARGET.
5129
5130   If TARGET is 0, a pseudo-register or constant is returned.  */
5131
5132rtx
5133expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5134{
5135  rtx tem = 0;
5136
5137  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5138    tem = simplify_binary_operation (AND, mode, op0, op1);
5139  if (tem == 0)
5140    tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5141
5142  if (target == 0)
5143    target = tem;
5144  else if (tem != target)
5145    emit_move_insn (target, tem);
5146  return target;
5147}
5148
5149/* Helper function for emit_store_flag.  */
5150rtx
5151emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5152	     machine_mode mode, machine_mode compare_mode,
5153	     int unsignedp, rtx x, rtx y, int normalizep,
5154	     machine_mode target_mode)
5155{
5156  struct expand_operand ops[4];
5157  rtx op0, comparison, subtarget;
5158  rtx_insn *last;
5159  machine_mode result_mode = targetm.cstore_mode (icode);
5160
5161  last = get_last_insn ();
5162  x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5163  y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5164  if (!x || !y)
5165    {
5166      delete_insns_since (last);
5167      return NULL_RTX;
5168    }
5169
5170  if (target_mode == VOIDmode)
5171    target_mode = result_mode;
5172  if (!target)
5173    target = gen_reg_rtx (target_mode);
5174
5175  comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5176
5177  create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5178  create_fixed_operand (&ops[1], comparison);
5179  create_fixed_operand (&ops[2], x);
5180  create_fixed_operand (&ops[3], y);
5181  if (!maybe_expand_insn (icode, 4, ops))
5182    {
5183      delete_insns_since (last);
5184      return NULL_RTX;
5185    }
5186  subtarget = ops[0].value;
5187
5188  /* If we are converting to a wider mode, first convert to
5189     TARGET_MODE, then normalize.  This produces better combining
5190     opportunities on machines that have a SIGN_EXTRACT when we are
5191     testing a single bit.  This mostly benefits the 68k.
5192
5193     If STORE_FLAG_VALUE does not have the sign bit set when
5194     interpreted in MODE, we can do this conversion as unsigned, which
5195     is usually more efficient.  */
5196  if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5197    {
5198      convert_move (target, subtarget,
5199		    val_signbit_known_clear_p (result_mode,
5200					       STORE_FLAG_VALUE));
5201      op0 = target;
5202      result_mode = target_mode;
5203    }
5204  else
5205    op0 = subtarget;
5206
5207  /* If we want to keep subexpressions around, don't reuse our last
5208     target.  */
5209  if (optimize)
5210    subtarget = 0;
5211
5212  /* Now normalize to the proper value in MODE.  Sometimes we don't
5213     have to do anything.  */
5214  if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5215    ;
5216  /* STORE_FLAG_VALUE might be the most negative number, so write
5217     the comparison this way to avoid a compiler-time warning.  */
5218  else if (- normalizep == STORE_FLAG_VALUE)
5219    op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5220
5221  /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5222     it hard to use a value of just the sign bit due to ANSI integer
5223     constant typing rules.  */
5224  else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5225    op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5226			GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5227			normalizep == 1);
5228  else
5229    {
5230      gcc_assert (STORE_FLAG_VALUE & 1);
5231
5232      op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5233      if (normalizep == -1)
5234	op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5235    }
5236
5237  /* If we were converting to a smaller mode, do the conversion now.  */
5238  if (target_mode != result_mode)
5239    {
5240      convert_move (target, op0, 0);
5241      return target;
5242    }
5243  else
5244    return op0;
5245}
5246
5247
5248/* A subroutine of emit_store_flag only including "tricks" that do not
5249   need a recursive call.  These are kept separate to avoid infinite
5250   loops.  */
5251
5252static rtx
5253emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5254		   machine_mode mode, int unsignedp, int normalizep,
5255		   machine_mode target_mode)
5256{
5257  rtx subtarget;
5258  enum insn_code icode;
5259  machine_mode compare_mode;
5260  enum mode_class mclass;
5261  enum rtx_code scode;
5262  rtx tem;
5263
5264  if (unsignedp)
5265    code = unsigned_condition (code);
5266  scode = swap_condition (code);
5267
5268  /* If one operand is constant, make it the second one.  Only do this
5269     if the other operand is not constant as well.  */
5270
5271  if (swap_commutative_operands_p (op0, op1))
5272    {
5273      tem = op0;
5274      op0 = op1;
5275      op1 = tem;
5276      code = swap_condition (code);
5277    }
5278
5279  if (mode == VOIDmode)
5280    mode = GET_MODE (op0);
5281
5282  /* For some comparisons with 1 and -1, we can convert this to
5283     comparisons with zero.  This will often produce more opportunities for
5284     store-flag insns.  */
5285
5286  switch (code)
5287    {
5288    case LT:
5289      if (op1 == const1_rtx)
5290	op1 = const0_rtx, code = LE;
5291      break;
5292    case LE:
5293      if (op1 == constm1_rtx)
5294	op1 = const0_rtx, code = LT;
5295      break;
5296    case GE:
5297      if (op1 == const1_rtx)
5298	op1 = const0_rtx, code = GT;
5299      break;
5300    case GT:
5301      if (op1 == constm1_rtx)
5302	op1 = const0_rtx, code = GE;
5303      break;
5304    case GEU:
5305      if (op1 == const1_rtx)
5306	op1 = const0_rtx, code = NE;
5307      break;
5308    case LTU:
5309      if (op1 == const1_rtx)
5310	op1 = const0_rtx, code = EQ;
5311      break;
5312    default:
5313      break;
5314    }
5315
5316  /* If we are comparing a double-word integer with zero or -1, we can
5317     convert the comparison into one involving a single word.  */
5318  if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5319      && GET_MODE_CLASS (mode) == MODE_INT
5320      && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5321    {
5322      if ((code == EQ || code == NE)
5323	  && (op1 == const0_rtx || op1 == constm1_rtx))
5324	{
5325	  rtx op00, op01;
5326
5327	  /* Do a logical OR or AND of the two words and compare the
5328	     result.  */
5329	  op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5330	  op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5331	  tem = expand_binop (word_mode,
5332			      op1 == const0_rtx ? ior_optab : and_optab,
5333			      op00, op01, NULL_RTX, unsignedp,
5334			      OPTAB_DIRECT);
5335
5336	  if (tem != 0)
5337	    tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5338				   unsignedp, normalizep);
5339	}
5340      else if ((code == LT || code == GE) && op1 == const0_rtx)
5341	{
5342	  rtx op0h;
5343
5344	  /* If testing the sign bit, can just test on high word.  */
5345	  op0h = simplify_gen_subreg (word_mode, op0, mode,
5346				      subreg_highpart_offset (word_mode,
5347							      mode));
5348	  tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5349				 unsignedp, normalizep);
5350	}
5351      else
5352	tem = NULL_RTX;
5353
5354      if (tem)
5355	{
5356	  if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5357	    return tem;
5358	  if (!target)
5359	    target = gen_reg_rtx (target_mode);
5360
5361	  convert_move (target, tem,
5362			!val_signbit_known_set_p (word_mode,
5363						  (normalizep ? normalizep
5364						   : STORE_FLAG_VALUE)));
5365	  return target;
5366	}
5367    }
5368
5369  /* If this is A < 0 or A >= 0, we can do this by taking the ones
5370     complement of A (for GE) and shifting the sign bit to the low bit.  */
5371  if (op1 == const0_rtx && (code == LT || code == GE)
5372      && GET_MODE_CLASS (mode) == MODE_INT
5373      && (normalizep || STORE_FLAG_VALUE == 1
5374	  || val_signbit_p (mode, STORE_FLAG_VALUE)))
5375    {
5376      subtarget = target;
5377
5378      if (!target)
5379	target_mode = mode;
5380
5381      /* If the result is to be wider than OP0, it is best to convert it
5382	 first.  If it is to be narrower, it is *incorrect* to convert it
5383	 first.  */
5384      else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5385	{
5386	  op0 = convert_modes (target_mode, mode, op0, 0);
5387	  mode = target_mode;
5388	}
5389
5390      if (target_mode != mode)
5391	subtarget = 0;
5392
5393      if (code == GE)
5394	op0 = expand_unop (mode, one_cmpl_optab, op0,
5395			   ((STORE_FLAG_VALUE == 1 || normalizep)
5396			    ? 0 : subtarget), 0);
5397
5398      if (STORE_FLAG_VALUE == 1 || normalizep)
5399	/* If we are supposed to produce a 0/1 value, we want to do
5400	   a logical shift from the sign bit to the low-order bit; for
5401	   a -1/0 value, we do an arithmetic shift.  */
5402	op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5403			    GET_MODE_BITSIZE (mode) - 1,
5404			    subtarget, normalizep != -1);
5405
5406      if (mode != target_mode)
5407	op0 = convert_modes (target_mode, mode, op0, 0);
5408
5409      return op0;
5410    }
5411
5412  mclass = GET_MODE_CLASS (mode);
5413  for (compare_mode = mode; compare_mode != VOIDmode;
5414       compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5415    {
5416     machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5417     icode = optab_handler (cstore_optab, optab_mode);
5418     if (icode != CODE_FOR_nothing)
5419	{
5420	  do_pending_stack_adjust ();
5421	  tem = emit_cstore (target, icode, code, mode, compare_mode,
5422			     unsignedp, op0, op1, normalizep, target_mode);
5423	  if (tem)
5424	    return tem;
5425
5426	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5427	    {
5428	      tem = emit_cstore (target, icode, scode, mode, compare_mode,
5429				 unsignedp, op1, op0, normalizep, target_mode);
5430	      if (tem)
5431	        return tem;
5432	    }
5433	  break;
5434	}
5435    }
5436
5437  return 0;
5438}
5439
5440/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5441   and storing in TARGET.  Normally return TARGET.
5442   Return 0 if that cannot be done.
5443
5444   MODE is the mode to use for OP0 and OP1 should they be CONST_INTs.  If
5445   it is VOIDmode, they cannot both be CONST_INT.
5446
5447   UNSIGNEDP is for the case where we have to widen the operands
5448   to perform the operation.  It says to use zero-extension.
5449
5450   NORMALIZEP is 1 if we should convert the result to be either zero
5451   or one.  Normalize is -1 if we should convert the result to be
5452   either zero or -1.  If NORMALIZEP is zero, the result will be left
5453   "raw" out of the scc insn.  */
5454
5455rtx
5456emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5457		 machine_mode mode, int unsignedp, int normalizep)
5458{
5459  machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5460  enum rtx_code rcode;
5461  rtx subtarget;
5462  rtx tem, trueval;
5463  rtx_insn *last;
5464
5465  /* If we compare constants, we shouldn't use a store-flag operation,
5466     but a constant load.  We can get there via the vanilla route that
5467     usually generates a compare-branch sequence, but will in this case
5468     fold the comparison to a constant, and thus elide the branch.  */
5469  if (CONSTANT_P (op0) && CONSTANT_P (op1))
5470    return NULL_RTX;
5471
5472  tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5473			   target_mode);
5474  if (tem)
5475    return tem;
5476
5477  /* If we reached here, we can't do this with a scc insn, however there
5478     are some comparisons that can be done in other ways.  Don't do any
5479     of these cases if branches are very cheap.  */
5480  if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5481    return 0;
5482
5483  /* See what we need to return.  We can only return a 1, -1, or the
5484     sign bit.  */
5485
5486  if (normalizep == 0)
5487    {
5488      if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5489	normalizep = STORE_FLAG_VALUE;
5490
5491      else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5492	;
5493      else
5494	return 0;
5495    }
5496
5497  last = get_last_insn ();
5498
5499  /* If optimizing, use different pseudo registers for each insn, instead
5500     of reusing the same pseudo.  This leads to better CSE, but slows
5501     down the compiler, since there are more pseudos */
5502  subtarget = (!optimize
5503	       && (target_mode == mode)) ? target : NULL_RTX;
5504  trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5505
5506  /* For floating-point comparisons, try the reverse comparison or try
5507     changing the "orderedness" of the comparison.  */
5508  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5509    {
5510      enum rtx_code first_code;
5511      bool and_them;
5512
5513      rcode = reverse_condition_maybe_unordered (code);
5514      if (can_compare_p (rcode, mode, ccp_store_flag)
5515          && (code == ORDERED || code == UNORDERED
5516	      || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5517	      || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5518	{
5519          int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5520		          || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5521
5522	  /* For the reverse comparison, use either an addition or a XOR.  */
5523          if (want_add
5524	      && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5525			   optimize_insn_for_speed_p ()) == 0)
5526	    {
5527	      tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5528				       STORE_FLAG_VALUE, target_mode);
5529	      if (tem)
5530                return expand_binop (target_mode, add_optab, tem,
5531				     gen_int_mode (normalizep, target_mode),
5532				     target, 0, OPTAB_WIDEN);
5533	    }
5534          else if (!want_add
5535	           && rtx_cost (trueval, XOR, 1,
5536			        optimize_insn_for_speed_p ()) == 0)
5537	    {
5538	      tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5539				       normalizep, target_mode);
5540	      if (tem)
5541                return expand_binop (target_mode, xor_optab, tem, trueval,
5542				     target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5543	    }
5544	}
5545
5546      delete_insns_since (last);
5547
5548      /* Cannot split ORDERED and UNORDERED, only try the above trick.   */
5549      if (code == ORDERED || code == UNORDERED)
5550	return 0;
5551
5552      and_them = split_comparison (code, mode, &first_code, &code);
5553
5554      /* If there are no NaNs, the first comparison should always fall through.
5555         Effectively change the comparison to the other one.  */
5556      if (!HONOR_NANS (mode))
5557	{
5558          gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5559	  return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5560				    target_mode);
5561	}
5562
5563#ifdef HAVE_conditional_move
5564      /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5565	 conditional move.  */
5566      tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5567			       normalizep, target_mode);
5568      if (tem == 0)
5569	return 0;
5570
5571      if (and_them)
5572        tem = emit_conditional_move (target, code, op0, op1, mode,
5573				     tem, const0_rtx, GET_MODE (tem), 0);
5574      else
5575        tem = emit_conditional_move (target, code, op0, op1, mode,
5576				     trueval, tem, GET_MODE (tem), 0);
5577
5578      if (tem == 0)
5579        delete_insns_since (last);
5580      return tem;
5581#else
5582      return 0;
5583#endif
5584    }
5585
5586  /* The remaining tricks only apply to integer comparisons.  */
5587
5588  if (GET_MODE_CLASS (mode) != MODE_INT)
5589    return 0;
5590
5591  /* If this is an equality comparison of integers, we can try to exclusive-or
5592     (or subtract) the two operands and use a recursive call to try the
5593     comparison with zero.  Don't do any of these cases if branches are
5594     very cheap.  */
5595
5596  if ((code == EQ || code == NE) && op1 != const0_rtx)
5597    {
5598      tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5599			  OPTAB_WIDEN);
5600
5601      if (tem == 0)
5602	tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5603			    OPTAB_WIDEN);
5604      if (tem != 0)
5605	tem = emit_store_flag (target, code, tem, const0_rtx,
5606			       mode, unsignedp, normalizep);
5607      if (tem != 0)
5608	return tem;
5609
5610      delete_insns_since (last);
5611    }
5612
5613  /* For integer comparisons, try the reverse comparison.  However, for
5614     small X and if we'd have anyway to extend, implementing "X != 0"
5615     as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0".  */
5616  rcode = reverse_condition (code);
5617  if (can_compare_p (rcode, mode, ccp_store_flag)
5618      && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5619	    && code == NE
5620	    && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5621	    && op1 == const0_rtx))
5622    {
5623      int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5624		      || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5625
5626      /* Again, for the reverse comparison, use either an addition or a XOR.  */
5627      if (want_add
5628	  && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5629		       optimize_insn_for_speed_p ()) == 0)
5630	{
5631	  tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5632				   STORE_FLAG_VALUE, target_mode);
5633	  if (tem != 0)
5634            tem = expand_binop (target_mode, add_optab, tem,
5635				gen_int_mode (normalizep, target_mode),
5636				target, 0, OPTAB_WIDEN);
5637	}
5638      else if (!want_add
5639	       && rtx_cost (trueval, XOR, 1,
5640			    optimize_insn_for_speed_p ()) == 0)
5641	{
5642	  tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5643				   normalizep, target_mode);
5644	  if (tem != 0)
5645            tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5646				INTVAL (trueval) >= 0, OPTAB_WIDEN);
5647	}
5648
5649      if (tem != 0)
5650	return tem;
5651      delete_insns_since (last);
5652    }
5653
5654  /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5655     the constant zero.  Reject all other comparisons at this point.  Only
5656     do LE and GT if branches are expensive since they are expensive on
5657     2-operand machines.  */
5658
5659  if (op1 != const0_rtx
5660      || (code != EQ && code != NE
5661	  && (BRANCH_COST (optimize_insn_for_speed_p (),
5662			   false) <= 1 || (code != LE && code != GT))))
5663    return 0;
5664
5665  /* Try to put the result of the comparison in the sign bit.  Assume we can't
5666     do the necessary operation below.  */
5667
5668  tem = 0;
5669
5670  /* To see if A <= 0, compute (A | (A - 1)).  A <= 0 iff that result has
5671     the sign bit set.  */
5672
5673  if (code == LE)
5674    {
5675      /* This is destructive, so SUBTARGET can't be OP0.  */
5676      if (rtx_equal_p (subtarget, op0))
5677	subtarget = 0;
5678
5679      tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5680			  OPTAB_WIDEN);
5681      if (tem)
5682	tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5683			    OPTAB_WIDEN);
5684    }
5685
5686  /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5687     number of bits in the mode of OP0, minus one.  */
5688
5689  if (code == GT)
5690    {
5691      if (rtx_equal_p (subtarget, op0))
5692	subtarget = 0;
5693
5694      tem = expand_shift (RSHIFT_EXPR, mode, op0,
5695			  GET_MODE_BITSIZE (mode) - 1,
5696			  subtarget, 0);
5697      tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5698			  OPTAB_WIDEN);
5699    }
5700
5701  if (code == EQ || code == NE)
5702    {
5703      /* For EQ or NE, one way to do the comparison is to apply an operation
5704	 that converts the operand into a positive number if it is nonzero
5705	 or zero if it was originally zero.  Then, for EQ, we subtract 1 and
5706	 for NE we negate.  This puts the result in the sign bit.  Then we
5707	 normalize with a shift, if needed.
5708
5709	 Two operations that can do the above actions are ABS and FFS, so try
5710	 them.  If that doesn't work, and MODE is smaller than a full word,
5711	 we can use zero-extension to the wider mode (an unsigned conversion)
5712	 as the operation.  */
5713
5714      /* Note that ABS doesn't yield a positive number for INT_MIN, but
5715	 that is compensated by the subsequent overflow when subtracting
5716	 one / negating.  */
5717
5718      if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5719	tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5720      else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5721	tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5722      else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5723	{
5724	  tem = convert_modes (word_mode, mode, op0, 1);
5725	  mode = word_mode;
5726	}
5727
5728      if (tem != 0)
5729	{
5730	  if (code == EQ)
5731	    tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5732				0, OPTAB_WIDEN);
5733	  else
5734	    tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5735	}
5736
5737      /* If we couldn't do it that way, for NE we can "or" the two's complement
5738	 of the value with itself.  For EQ, we take the one's complement of
5739	 that "or", which is an extra insn, so we only handle EQ if branches
5740	 are expensive.  */
5741
5742      if (tem == 0
5743	  && (code == NE
5744	      || BRANCH_COST (optimize_insn_for_speed_p (),
5745		      	      false) > 1))
5746	{
5747	  if (rtx_equal_p (subtarget, op0))
5748	    subtarget = 0;
5749
5750	  tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5751	  tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5752			      OPTAB_WIDEN);
5753
5754	  if (tem && code == EQ)
5755	    tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5756	}
5757    }
5758
5759  if (tem && normalizep)
5760    tem = expand_shift (RSHIFT_EXPR, mode, tem,
5761			GET_MODE_BITSIZE (mode) - 1,
5762			subtarget, normalizep == 1);
5763
5764  if (tem)
5765    {
5766      if (!target)
5767        ;
5768      else if (GET_MODE (tem) != target_mode)
5769	{
5770	  convert_move (target, tem, 0);
5771	  tem = target;
5772	}
5773      else if (!subtarget)
5774	{
5775	  emit_move_insn (target, tem);
5776	  tem = target;
5777	}
5778    }
5779  else
5780    delete_insns_since (last);
5781
5782  return tem;
5783}
5784
5785/* Like emit_store_flag, but always succeeds.  */
5786
5787rtx
5788emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5789		       machine_mode mode, int unsignedp, int normalizep)
5790{
5791  rtx tem;
5792  rtx_code_label *label;
5793  rtx trueval, falseval;
5794
5795  /* First see if emit_store_flag can do the job.  */
5796  tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5797  if (tem != 0)
5798    return tem;
5799
5800  if (!target)
5801    target = gen_reg_rtx (word_mode);
5802
5803  /* If this failed, we have to do this with set/compare/jump/set code.
5804     For foo != 0, if foo is in OP0, just replace it with 1 if nonzero.  */
5805  trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5806  if (code == NE
5807      && GET_MODE_CLASS (mode) == MODE_INT
5808      && REG_P (target)
5809      && op0 == target
5810      && op1 == const0_rtx)
5811    {
5812      label = gen_label_rtx ();
5813      do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5814			       mode, NULL_RTX, NULL_RTX, label, -1);
5815      emit_move_insn (target, trueval);
5816      emit_label (label);
5817      return target;
5818    }
5819
5820  if (!REG_P (target)
5821      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5822    target = gen_reg_rtx (GET_MODE (target));
5823
5824  /* Jump in the right direction if the target cannot implement CODE
5825     but can jump on its reverse condition.  */
5826  falseval = const0_rtx;
5827  if (! can_compare_p (code, mode, ccp_jump)
5828      && (! FLOAT_MODE_P (mode)
5829          || code == ORDERED || code == UNORDERED
5830          || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5831          || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5832    {
5833      enum rtx_code rcode;
5834      if (FLOAT_MODE_P (mode))
5835        rcode = reverse_condition_maybe_unordered (code);
5836      else
5837        rcode = reverse_condition (code);
5838
5839      /* Canonicalize to UNORDERED for the libcall.  */
5840      if (can_compare_p (rcode, mode, ccp_jump)
5841          || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5842	{
5843	  falseval = trueval;
5844	  trueval = const0_rtx;
5845	  code = rcode;
5846	}
5847    }
5848
5849  emit_move_insn (target, trueval);
5850  label = gen_label_rtx ();
5851  do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5852			   NULL_RTX, label, -1);
5853
5854  emit_move_insn (target, falseval);
5855  emit_label (label);
5856
5857  return target;
5858}
5859
5860/* Perform possibly multi-word comparison and conditional jump to LABEL
5861   if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE.  This is
5862   now a thin wrapper around do_compare_rtx_and_jump.  */
5863
5864static void
5865do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
5866		 rtx_code_label *label)
5867{
5868  int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5869  do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5870			   NULL_RTX, NULL_RTX, label, -1);
5871}
5872