1/* Functions related to building classes and their related objects.
2   Copyright (C) 1987-2015 Free Software Foundation, Inc.
3   Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21
22/* High-level class interface.  */
23
24#include "config.h"
25#include "system.h"
26#include "coretypes.h"
27#include "hash-set.h"
28#include "machmode.h"
29#include "vec.h"
30#include "double-int.h"
31#include "input.h"
32#include "alias.h"
33#include "symtab.h"
34#include "options.h"
35#include "wide-int.h"
36#include "inchash.h"
37#include "tm.h"
38#include "tree.h"
39#include "stringpool.h"
40#include "stor-layout.h"
41#include "attribs.h"
42#include "hash-table.h"
43#include "cp-tree.h"
44#include "flags.h"
45#include "toplev.h"
46#include "target.h"
47#include "convert.h"
48#include "hash-map.h"
49#include "is-a.h"
50#include "plugin-api.h"
51#include "hard-reg-set.h"
52#include "input.h"
53#include "function.h"
54#include "ipa-ref.h"
55#include "cgraph.h"
56#include "dumpfile.h"
57#include "splay-tree.h"
58#include "gimplify.h"
59#include "wide-int.h"
60
61/* The number of nested classes being processed.  If we are not in the
62   scope of any class, this is zero.  */
63
64int current_class_depth;
65
66/* In order to deal with nested classes, we keep a stack of classes.
67   The topmost entry is the innermost class, and is the entry at index
68   CURRENT_CLASS_DEPTH  */
69
70typedef struct class_stack_node {
71  /* The name of the class.  */
72  tree name;
73
74  /* The _TYPE node for the class.  */
75  tree type;
76
77  /* The access specifier pending for new declarations in the scope of
78     this class.  */
79  tree access;
80
81  /* If were defining TYPE, the names used in this class.  */
82  splay_tree names_used;
83
84  /* Nonzero if this class is no longer open, because of a call to
85     push_to_top_level.  */
86  size_t hidden;
87}* class_stack_node_t;
88
89typedef struct vtbl_init_data_s
90{
91  /* The base for which we're building initializers.  */
92  tree binfo;
93  /* The type of the most-derived type.  */
94  tree derived;
95  /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
96     unless ctor_vtbl_p is true.  */
97  tree rtti_binfo;
98  /* The negative-index vtable initializers built up so far.  These
99     are in order from least negative index to most negative index.  */
100  vec<constructor_elt, va_gc> *inits;
101  /* The binfo for the virtual base for which we're building
102     vcall offset initializers.  */
103  tree vbase;
104  /* The functions in vbase for which we have already provided vcall
105     offsets.  */
106  vec<tree, va_gc> *fns;
107  /* The vtable index of the next vcall or vbase offset.  */
108  tree index;
109  /* Nonzero if we are building the initializer for the primary
110     vtable.  */
111  int primary_vtbl_p;
112  /* Nonzero if we are building the initializer for a construction
113     vtable.  */
114  int ctor_vtbl_p;
115  /* True when adding vcall offset entries to the vtable.  False when
116     merely computing the indices.  */
117  bool generate_vcall_entries;
118} vtbl_init_data;
119
120/* The type of a function passed to walk_subobject_offsets.  */
121typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
122
123/* The stack itself.  This is a dynamically resized array.  The
124   number of elements allocated is CURRENT_CLASS_STACK_SIZE.  */
125static int current_class_stack_size;
126static class_stack_node_t current_class_stack;
127
128/* The size of the largest empty class seen in this translation unit.  */
129static GTY (()) tree sizeof_biggest_empty_class;
130
131/* An array of all local classes present in this translation unit, in
132   declaration order.  */
133vec<tree, va_gc> *local_classes;
134
135static tree get_vfield_name (tree);
136static void finish_struct_anon (tree);
137static tree get_vtable_name (tree);
138static void get_basefndecls (tree, tree, vec<tree> *);
139static int build_primary_vtable (tree, tree);
140static int build_secondary_vtable (tree);
141static void finish_vtbls (tree);
142static void modify_vtable_entry (tree, tree, tree, tree, tree *);
143static void finish_struct_bits (tree);
144static int alter_access (tree, tree, tree);
145static void handle_using_decl (tree, tree);
146static tree dfs_modify_vtables (tree, void *);
147static tree modify_all_vtables (tree, tree);
148static void determine_primary_bases (tree);
149static void finish_struct_methods (tree);
150static void maybe_warn_about_overly_private_class (tree);
151static int method_name_cmp (const void *, const void *);
152static int resort_method_name_cmp (const void *, const void *);
153static void add_implicitly_declared_members (tree, tree*, int, int);
154static tree fixed_type_or_null (tree, int *, int *);
155static tree build_simple_base_path (tree expr, tree binfo);
156static tree build_vtbl_ref_1 (tree, tree);
157static void build_vtbl_initializer (tree, tree, tree, tree, int *,
158				    vec<constructor_elt, va_gc> **);
159static int count_fields (tree);
160static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
161static void insert_into_classtype_sorted_fields (tree, tree, int);
162static bool check_bitfield_decl (tree);
163static void check_field_decl (tree, tree, int *, int *, int *);
164static void check_field_decls (tree, tree *, int *, int *);
165static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
166static void build_base_fields (record_layout_info, splay_tree, tree *);
167static void check_methods (tree);
168static void remove_zero_width_bit_fields (tree);
169static bool accessible_nvdtor_p (tree);
170static void check_bases (tree, int *, int *);
171static void check_bases_and_members (tree);
172static tree create_vtable_ptr (tree, tree *);
173static void include_empty_classes (record_layout_info);
174static void layout_class_type (tree, tree *);
175static void propagate_binfo_offsets (tree, tree);
176static void layout_virtual_bases (record_layout_info, splay_tree);
177static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
178static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
179static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
180static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
181static void add_vcall_offset (tree, tree, vtbl_init_data *);
182static void layout_vtable_decl (tree, int);
183static tree dfs_find_final_overrider_pre (tree, void *);
184static tree dfs_find_final_overrider_post (tree, void *);
185static tree find_final_overrider (tree, tree, tree);
186static int make_new_vtable (tree, tree);
187static tree get_primary_binfo (tree);
188static int maybe_indent_hierarchy (FILE *, int, int);
189static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
190static void dump_class_hierarchy (tree);
191static void dump_class_hierarchy_1 (FILE *, int, tree);
192static void dump_array (FILE *, tree);
193static void dump_vtable (tree, tree, tree);
194static void dump_vtt (tree, tree);
195static void dump_thunk (FILE *, int, tree);
196static tree build_vtable (tree, tree, tree);
197static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
198static void layout_nonempty_base_or_field (record_layout_info,
199					   tree, tree, splay_tree);
200static tree end_of_class (tree, int);
201static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
202static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
203				   vec<constructor_elt, va_gc> **);
204static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
205				       vec<constructor_elt, va_gc> **);
206static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
207static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
208static void clone_constructors_and_destructors (tree);
209static tree build_clone (tree, tree);
210static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
211static void build_ctor_vtbl_group (tree, tree);
212static void build_vtt (tree);
213static tree binfo_ctor_vtable (tree);
214static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
215			     tree *);
216static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
217static tree dfs_fixup_binfo_vtbls (tree, void *);
218static int record_subobject_offset (tree, tree, splay_tree);
219static int check_subobject_offset (tree, tree, splay_tree);
220static int walk_subobject_offsets (tree, subobject_offset_fn,
221				   tree, splay_tree, tree, int);
222static void record_subobject_offsets (tree, tree, splay_tree, bool);
223static int layout_conflict_p (tree, tree, splay_tree, int);
224static int splay_tree_compare_integer_csts (splay_tree_key k1,
225					    splay_tree_key k2);
226static void warn_about_ambiguous_bases (tree);
227static bool type_requires_array_cookie (tree);
228static bool base_derived_from (tree, tree);
229static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
230static tree end_of_base (tree);
231static tree get_vcall_index (tree, tree);
232
233/* Variables shared between class.c and call.c.  */
234
235int n_vtables = 0;
236int n_vtable_entries = 0;
237int n_vtable_searches = 0;
238int n_vtable_elems = 0;
239int n_convert_harshness = 0;
240int n_compute_conversion_costs = 0;
241int n_inner_fields_searched = 0;
242
243/* Convert to or from a base subobject.  EXPR is an expression of type
244   `A' or `A*', an expression of type `B' or `B*' is returned.  To
245   convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
246   the B base instance within A.  To convert base A to derived B, CODE
247   is MINUS_EXPR and BINFO is the binfo for the A instance within B.
248   In this latter case, A must not be a morally virtual base of B.
249   NONNULL is true if EXPR is known to be non-NULL (this is only
250   needed when EXPR is of pointer type).  CV qualifiers are preserved
251   from EXPR.  */
252
253tree
254build_base_path (enum tree_code code,
255		 tree expr,
256		 tree binfo,
257		 int nonnull,
258		 tsubst_flags_t complain)
259{
260  tree v_binfo = NULL_TREE;
261  tree d_binfo = NULL_TREE;
262  tree probe;
263  tree offset;
264  tree target_type;
265  tree null_test = NULL;
266  tree ptr_target_type;
267  int fixed_type_p;
268  int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
269  bool has_empty = false;
270  bool virtual_access;
271  bool rvalue = false;
272
273  if (expr == error_mark_node || binfo == error_mark_node || !binfo)
274    return error_mark_node;
275
276  for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
277    {
278      d_binfo = probe;
279      if (is_empty_class (BINFO_TYPE (probe)))
280	has_empty = true;
281      if (!v_binfo && BINFO_VIRTUAL_P (probe))
282	v_binfo = probe;
283    }
284
285  probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
286  if (want_pointer)
287    probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
288
289  if (code == PLUS_EXPR
290      && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
291    {
292      /* This can happen when adjust_result_of_qualified_name_lookup can't
293	 find a unique base binfo in a call to a member function.  We
294	 couldn't give the diagnostic then since we might have been calling
295	 a static member function, so we do it now.  */
296      if (complain & tf_error)
297	{
298	  tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
299				   ba_unique, NULL, complain);
300	  gcc_assert (base == error_mark_node);
301	}
302      return error_mark_node;
303    }
304
305  gcc_assert ((code == MINUS_EXPR
306	       && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
307	      || code == PLUS_EXPR);
308
309  if (binfo == d_binfo)
310    /* Nothing to do.  */
311    return expr;
312
313  if (code == MINUS_EXPR && v_binfo)
314    {
315      if (complain & tf_error)
316	{
317	  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
318	    {
319	      if (want_pointer)
320		error ("cannot convert from pointer to base class %qT to "
321		       "pointer to derived class %qT because the base is "
322		       "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
323	      else
324		error ("cannot convert from base class %qT to derived "
325		       "class %qT because the base is virtual",
326		       BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
327	    }
328	  else
329	    {
330	      if (want_pointer)
331		error ("cannot convert from pointer to base class %qT to "
332		       "pointer to derived class %qT via virtual base %qT",
333		       BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
334		       BINFO_TYPE (v_binfo));
335	      else
336		error ("cannot convert from base class %qT to derived "
337		       "class %qT via virtual base %qT", BINFO_TYPE (binfo),
338		       BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
339	    }
340	}
341      return error_mark_node;
342    }
343
344  if (!want_pointer)
345    {
346      rvalue = !real_lvalue_p (expr);
347      /* This must happen before the call to save_expr.  */
348      expr = cp_build_addr_expr (expr, complain);
349    }
350  else
351    expr = mark_rvalue_use (expr);
352
353  offset = BINFO_OFFSET (binfo);
354  fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
355  target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
356  /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
357     cv-unqualified.  Extract the cv-qualifiers from EXPR so that the
358     expression returned matches the input.  */
359  target_type = cp_build_qualified_type
360    (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
361  ptr_target_type = build_pointer_type (target_type);
362
363  /* Do we need to look in the vtable for the real offset?  */
364  virtual_access = (v_binfo && fixed_type_p <= 0);
365
366  /* Don't bother with the calculations inside sizeof; they'll ICE if the
367     source type is incomplete and the pointer value doesn't matter.  In a
368     template (even in instantiate_non_dependent_expr), we don't have vtables
369     set up properly yet, and the value doesn't matter there either; we're
370     just interested in the result of overload resolution.  */
371  if (cp_unevaluated_operand != 0
372      || in_template_function ())
373    {
374      expr = build_nop (ptr_target_type, expr);
375      goto indout;
376    }
377
378  /* If we're in an NSDMI, we don't have the full constructor context yet
379     that we need for converting to a virtual base, so just build a stub
380     CONVERT_EXPR and expand it later in bot_replace.  */
381  if (virtual_access && fixed_type_p < 0
382      && current_scope () != current_function_decl)
383    {
384      expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
385      CONVERT_EXPR_VBASE_PATH (expr) = true;
386      goto indout;
387    }
388
389  /* Do we need to check for a null pointer?  */
390  if (want_pointer && !nonnull)
391    {
392      /* If we know the conversion will not actually change the value
393	 of EXPR, then we can avoid testing the expression for NULL.
394	 We have to avoid generating a COMPONENT_REF for a base class
395	 field, because other parts of the compiler know that such
396	 expressions are always non-NULL.  */
397      if (!virtual_access && integer_zerop (offset))
398	return build_nop (ptr_target_type, expr);
399      null_test = error_mark_node;
400    }
401
402  /* Protect against multiple evaluation if necessary.  */
403  if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
404    expr = save_expr (expr);
405
406  /* Now that we've saved expr, build the real null test.  */
407  if (null_test)
408    {
409      tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
410      null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
411			       expr, zero);
412    }
413
414  /* If this is a simple base reference, express it as a COMPONENT_REF.  */
415  if (code == PLUS_EXPR && !virtual_access
416      /* We don't build base fields for empty bases, and they aren't very
417	 interesting to the optimizers anyway.  */
418      && !has_empty)
419    {
420      expr = cp_build_indirect_ref (expr, RO_NULL, complain);
421      expr = build_simple_base_path (expr, binfo);
422      if (rvalue)
423	expr = move (expr);
424      if (want_pointer)
425	expr = build_address (expr);
426      target_type = TREE_TYPE (expr);
427      goto out;
428    }
429
430  if (virtual_access)
431    {
432      /* Going via virtual base V_BINFO.  We need the static offset
433	 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
434	 V_BINFO.  That offset is an entry in D_BINFO's vtable.  */
435      tree v_offset;
436
437      if (fixed_type_p < 0 && in_base_initializer)
438	{
439	  /* In a base member initializer, we cannot rely on the
440	     vtable being set up.  We have to indirect via the
441	     vtt_parm.  */
442	  tree t;
443
444	  t = TREE_TYPE (TYPE_VFIELD (current_class_type));
445	  t = build_pointer_type (t);
446	  v_offset = convert (t, current_vtt_parm);
447	  v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
448	}
449      else
450	{
451	  tree t = expr;
452	  if ((flag_sanitize & SANITIZE_VPTR) && fixed_type_p == 0)
453	    {
454	      t = cp_ubsan_maybe_instrument_cast_to_vbase (input_location,
455							   probe, expr);
456	      if (t == NULL_TREE)
457		t = expr;
458	    }
459	  v_offset = build_vfield_ref (cp_build_indirect_ref (t, RO_NULL,
460							      complain),
461	  TREE_TYPE (TREE_TYPE (expr)));
462	}
463
464      if (v_offset == error_mark_node)
465	return error_mark_node;
466
467      v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
468      v_offset = build1 (NOP_EXPR,
469			 build_pointer_type (ptrdiff_type_node),
470			 v_offset);
471      v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
472      TREE_CONSTANT (v_offset) = 1;
473
474      offset = convert_to_integer (ptrdiff_type_node,
475				   size_diffop_loc (input_location, offset,
476						BINFO_OFFSET (v_binfo)));
477
478      if (!integer_zerop (offset))
479	v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
480
481      if (fixed_type_p < 0)
482	/* Negative fixed_type_p means this is a constructor or destructor;
483	   virtual base layout is fixed in in-charge [cd]tors, but not in
484	   base [cd]tors.  */
485	offset = build3 (COND_EXPR, ptrdiff_type_node,
486			 build2 (EQ_EXPR, boolean_type_node,
487				 current_in_charge_parm, integer_zero_node),
488			 v_offset,
489			 convert_to_integer (ptrdiff_type_node,
490					     BINFO_OFFSET (binfo)));
491      else
492	offset = v_offset;
493    }
494
495  if (want_pointer)
496    target_type = ptr_target_type;
497
498  expr = build1 (NOP_EXPR, ptr_target_type, expr);
499
500  if (!integer_zerop (offset))
501    {
502      offset = fold_convert (sizetype, offset);
503      if (code == MINUS_EXPR)
504	offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
505      expr = fold_build_pointer_plus (expr, offset);
506    }
507  else
508    null_test = NULL;
509
510 indout:
511  if (!want_pointer)
512    {
513      expr = cp_build_indirect_ref (expr, RO_NULL, complain);
514      if (rvalue)
515	expr = move (expr);
516    }
517
518 out:
519  if (null_test)
520    expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
521			    build_zero_cst (target_type));
522
523  return expr;
524}
525
526/* Subroutine of build_base_path; EXPR and BINFO are as in that function.
527   Perform a derived-to-base conversion by recursively building up a
528   sequence of COMPONENT_REFs to the appropriate base fields.  */
529
530static tree
531build_simple_base_path (tree expr, tree binfo)
532{
533  tree type = BINFO_TYPE (binfo);
534  tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
535  tree field;
536
537  if (d_binfo == NULL_TREE)
538    {
539      tree temp;
540
541      gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
542
543      /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
544	 into `(*(a ?  &b : &c)).x', and so on.  A COND_EXPR is only
545	 an lvalue in the front end; only _DECLs and _REFs are lvalues
546	 in the back end.  */
547      temp = unary_complex_lvalue (ADDR_EXPR, expr);
548      if (temp)
549	expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
550
551      return expr;
552    }
553
554  /* Recurse.  */
555  expr = build_simple_base_path (expr, d_binfo);
556
557  for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
558       field; field = DECL_CHAIN (field))
559    /* Is this the base field created by build_base_field?  */
560    if (TREE_CODE (field) == FIELD_DECL
561	&& DECL_FIELD_IS_BASE (field)
562	&& TREE_TYPE (field) == type
563	/* If we're looking for a field in the most-derived class,
564	   also check the field offset; we can have two base fields
565	   of the same type if one is an indirect virtual base and one
566	   is a direct non-virtual base.  */
567	&& (BINFO_INHERITANCE_CHAIN (d_binfo)
568	    || tree_int_cst_equal (byte_position (field),
569				   BINFO_OFFSET (binfo))))
570      {
571	/* We don't use build_class_member_access_expr here, as that
572	   has unnecessary checks, and more importantly results in
573	   recursive calls to dfs_walk_once.  */
574	int type_quals = cp_type_quals (TREE_TYPE (expr));
575
576	expr = build3 (COMPONENT_REF,
577		       cp_build_qualified_type (type, type_quals),
578		       expr, field, NULL_TREE);
579	expr = fold_if_not_in_template (expr);
580
581	/* Mark the expression const or volatile, as appropriate.
582	   Even though we've dealt with the type above, we still have
583	   to mark the expression itself.  */
584	if (type_quals & TYPE_QUAL_CONST)
585	  TREE_READONLY (expr) = 1;
586	if (type_quals & TYPE_QUAL_VOLATILE)
587	  TREE_THIS_VOLATILE (expr) = 1;
588
589	return expr;
590      }
591
592  /* Didn't find the base field?!?  */
593  gcc_unreachable ();
594}
595
596/* Convert OBJECT to the base TYPE.  OBJECT is an expression whose
597   type is a class type or a pointer to a class type.  In the former
598   case, TYPE is also a class type; in the latter it is another
599   pointer type.  If CHECK_ACCESS is true, an error message is emitted
600   if TYPE is inaccessible.  If OBJECT has pointer type, the value is
601   assumed to be non-NULL.  */
602
603tree
604convert_to_base (tree object, tree type, bool check_access, bool nonnull,
605		 tsubst_flags_t complain)
606{
607  tree binfo;
608  tree object_type;
609
610  if (TYPE_PTR_P (TREE_TYPE (object)))
611    {
612      object_type = TREE_TYPE (TREE_TYPE (object));
613      type = TREE_TYPE (type);
614    }
615  else
616    object_type = TREE_TYPE (object);
617
618  binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
619		       NULL, complain);
620  if (!binfo || binfo == error_mark_node)
621    return error_mark_node;
622
623  return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
624}
625
626/* EXPR is an expression with unqualified class type.  BASE is a base
627   binfo of that class type.  Returns EXPR, converted to the BASE
628   type.  This function assumes that EXPR is the most derived class;
629   therefore virtual bases can be found at their static offsets.  */
630
631tree
632convert_to_base_statically (tree expr, tree base)
633{
634  tree expr_type;
635
636  expr_type = TREE_TYPE (expr);
637  if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
638    {
639      /* If this is a non-empty base, use a COMPONENT_REF.  */
640      if (!is_empty_class (BINFO_TYPE (base)))
641	return build_simple_base_path (expr, base);
642
643      /* We use fold_build2 and fold_convert below to simplify the trees
644	 provided to the optimizers.  It is not safe to call these functions
645	 when processing a template because they do not handle C++-specific
646	 trees.  */
647      gcc_assert (!processing_template_decl);
648      expr = cp_build_addr_expr (expr, tf_warning_or_error);
649      if (!integer_zerop (BINFO_OFFSET (base)))
650        expr = fold_build_pointer_plus_loc (input_location,
651					    expr, BINFO_OFFSET (base));
652      expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
653      expr = build_fold_indirect_ref_loc (input_location, expr);
654    }
655
656  return expr;
657}
658
659
660tree
661build_vfield_ref (tree datum, tree type)
662{
663  tree vfield, vcontext;
664
665  if (datum == error_mark_node
666      /* Can happen in case of duplicate base types (c++/59082).  */
667      || !TYPE_VFIELD (type))
668    return error_mark_node;
669
670  /* First, convert to the requested type.  */
671  if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
672    datum = convert_to_base (datum, type, /*check_access=*/false,
673			     /*nonnull=*/true, tf_warning_or_error);
674
675  /* Second, the requested type may not be the owner of its own vptr.
676     If not, convert to the base class that owns it.  We cannot use
677     convert_to_base here, because VCONTEXT may appear more than once
678     in the inheritance hierarchy of TYPE, and thus direct conversion
679     between the types may be ambiguous.  Following the path back up
680     one step at a time via primary bases avoids the problem.  */
681  vfield = TYPE_VFIELD (type);
682  vcontext = DECL_CONTEXT (vfield);
683  while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
684    {
685      datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
686      type = TREE_TYPE (datum);
687    }
688
689  return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
690}
691
692/* Given an object INSTANCE, return an expression which yields the
693   vtable element corresponding to INDEX.  There are many special
694   cases for INSTANCE which we take care of here, mainly to avoid
695   creating extra tree nodes when we don't have to.  */
696
697static tree
698build_vtbl_ref_1 (tree instance, tree idx)
699{
700  tree aref;
701  tree vtbl = NULL_TREE;
702
703  /* Try to figure out what a reference refers to, and
704     access its virtual function table directly.  */
705
706  int cdtorp = 0;
707  tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
708
709  tree basetype = non_reference (TREE_TYPE (instance));
710
711  if (fixed_type && !cdtorp)
712    {
713      tree binfo = lookup_base (fixed_type, basetype,
714				ba_unique, NULL, tf_none);
715      if (binfo && binfo != error_mark_node)
716	vtbl = unshare_expr (BINFO_VTABLE (binfo));
717    }
718
719  if (!vtbl)
720    vtbl = build_vfield_ref (instance, basetype);
721
722  aref = build_array_ref (input_location, vtbl, idx);
723  TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
724
725  return aref;
726}
727
728tree
729build_vtbl_ref (tree instance, tree idx)
730{
731  tree aref = build_vtbl_ref_1 (instance, idx);
732
733  return aref;
734}
735
736/* Given a stable object pointer INSTANCE_PTR, return an expression which
737   yields a function pointer corresponding to vtable element INDEX.  */
738
739tree
740build_vfn_ref (tree instance_ptr, tree idx)
741{
742  tree aref;
743
744  aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
745                                                  tf_warning_or_error),
746                           idx);
747
748  /* When using function descriptors, the address of the
749     vtable entry is treated as a function pointer.  */
750  if (TARGET_VTABLE_USES_DESCRIPTORS)
751    aref = build1 (NOP_EXPR, TREE_TYPE (aref),
752		   cp_build_addr_expr (aref, tf_warning_or_error));
753
754  /* Remember this as a method reference, for later devirtualization.  */
755  aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
756
757  return aref;
758}
759
760/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
761   for the given TYPE.  */
762
763static tree
764get_vtable_name (tree type)
765{
766  return mangle_vtbl_for_type (type);
767}
768
769/* DECL is an entity associated with TYPE, like a virtual table or an
770   implicitly generated constructor.  Determine whether or not DECL
771   should have external or internal linkage at the object file
772   level.  This routine does not deal with COMDAT linkage and other
773   similar complexities; it simply sets TREE_PUBLIC if it possible for
774   entities in other translation units to contain copies of DECL, in
775   the abstract.  */
776
777void
778set_linkage_according_to_type (tree /*type*/, tree decl)
779{
780  TREE_PUBLIC (decl) = 1;
781  determine_visibility (decl);
782}
783
784/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
785   (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
786   Use NAME for the name of the vtable, and VTABLE_TYPE for its type.  */
787
788static tree
789build_vtable (tree class_type, tree name, tree vtable_type)
790{
791  tree decl;
792
793  decl = build_lang_decl (VAR_DECL, name, vtable_type);
794  /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
795     now to avoid confusion in mangle_decl.  */
796  SET_DECL_ASSEMBLER_NAME (decl, name);
797  DECL_CONTEXT (decl) = class_type;
798  DECL_ARTIFICIAL (decl) = 1;
799  TREE_STATIC (decl) = 1;
800  TREE_READONLY (decl) = 1;
801  DECL_VIRTUAL_P (decl) = 1;
802  DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
803  DECL_USER_ALIGN (decl) = true;
804  DECL_VTABLE_OR_VTT_P (decl) = 1;
805  set_linkage_according_to_type (class_type, decl);
806  /* The vtable has not been defined -- yet.  */
807  DECL_EXTERNAL (decl) = 1;
808  DECL_NOT_REALLY_EXTERN (decl) = 1;
809
810  /* Mark the VAR_DECL node representing the vtable itself as a
811     "gratuitous" one, thereby forcing dwarfout.c to ignore it.  It
812     is rather important that such things be ignored because any
813     effort to actually generate DWARF for them will run into
814     trouble when/if we encounter code like:
815
816     #pragma interface
817     struct S { virtual void member (); };
818
819     because the artificial declaration of the vtable itself (as
820     manufactured by the g++ front end) will say that the vtable is
821     a static member of `S' but only *after* the debug output for
822     the definition of `S' has already been output.  This causes
823     grief because the DWARF entry for the definition of the vtable
824     will try to refer back to an earlier *declaration* of the
825     vtable as a static member of `S' and there won't be one.  We
826     might be able to arrange to have the "vtable static member"
827     attached to the member list for `S' before the debug info for
828     `S' get written (which would solve the problem) but that would
829     require more intrusive changes to the g++ front end.  */
830  DECL_IGNORED_P (decl) = 1;
831
832  return decl;
833}
834
835/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
836   or even complete.  If this does not exist, create it.  If COMPLETE is
837   nonzero, then complete the definition of it -- that will render it
838   impossible to actually build the vtable, but is useful to get at those
839   which are known to exist in the runtime.  */
840
841tree
842get_vtable_decl (tree type, int complete)
843{
844  tree decl;
845
846  if (CLASSTYPE_VTABLES (type))
847    return CLASSTYPE_VTABLES (type);
848
849  decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
850  CLASSTYPE_VTABLES (type) = decl;
851
852  if (complete)
853    {
854      DECL_EXTERNAL (decl) = 1;
855      cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
856    }
857
858  return decl;
859}
860
861/* Build the primary virtual function table for TYPE.  If BINFO is
862   non-NULL, build the vtable starting with the initial approximation
863   that it is the same as the one which is the head of the association
864   list.  Returns a nonzero value if a new vtable is actually
865   created.  */
866
867static int
868build_primary_vtable (tree binfo, tree type)
869{
870  tree decl;
871  tree virtuals;
872
873  decl = get_vtable_decl (type, /*complete=*/0);
874
875  if (binfo)
876    {
877      if (BINFO_NEW_VTABLE_MARKED (binfo))
878	/* We have already created a vtable for this base, so there's
879	   no need to do it again.  */
880	return 0;
881
882      virtuals = copy_list (BINFO_VIRTUALS (binfo));
883      TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
884      DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
885      DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
886    }
887  else
888    {
889      gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
890      virtuals = NULL_TREE;
891    }
892
893  if (GATHER_STATISTICS)
894    {
895      n_vtables += 1;
896      n_vtable_elems += list_length (virtuals);
897    }
898
899  /* Initialize the association list for this type, based
900     on our first approximation.  */
901  BINFO_VTABLE (TYPE_BINFO (type)) = decl;
902  BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
903  SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
904  return 1;
905}
906
907/* Give BINFO a new virtual function table which is initialized
908   with a skeleton-copy of its original initialization.  The only
909   entry that changes is the `delta' entry, so we can really
910   share a lot of structure.
911
912   FOR_TYPE is the most derived type which caused this table to
913   be needed.
914
915   Returns nonzero if we haven't met BINFO before.
916
917   The order in which vtables are built (by calling this function) for
918   an object must remain the same, otherwise a binary incompatibility
919   can result.  */
920
921static int
922build_secondary_vtable (tree binfo)
923{
924  if (BINFO_NEW_VTABLE_MARKED (binfo))
925    /* We already created a vtable for this base.  There's no need to
926       do it again.  */
927    return 0;
928
929  /* Remember that we've created a vtable for this BINFO, so that we
930     don't try to do so again.  */
931  SET_BINFO_NEW_VTABLE_MARKED (binfo);
932
933  /* Make fresh virtual list, so we can smash it later.  */
934  BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
935
936  /* Secondary vtables are laid out as part of the same structure as
937     the primary vtable.  */
938  BINFO_VTABLE (binfo) = NULL_TREE;
939  return 1;
940}
941
942/* Create a new vtable for BINFO which is the hierarchy dominated by
943   T. Return nonzero if we actually created a new vtable.  */
944
945static int
946make_new_vtable (tree t, tree binfo)
947{
948  if (binfo == TYPE_BINFO (t))
949    /* In this case, it is *type*'s vtable we are modifying.  We start
950       with the approximation that its vtable is that of the
951       immediate base class.  */
952    return build_primary_vtable (binfo, t);
953  else
954    /* This is our very own copy of `basetype' to play with.  Later,
955       we will fill in all the virtual functions that override the
956       virtual functions in these base classes which are not defined
957       by the current type.  */
958    return build_secondary_vtable (binfo);
959}
960
961/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
962   (which is in the hierarchy dominated by T) list FNDECL as its
963   BV_FN.  DELTA is the required constant adjustment from the `this'
964   pointer where the vtable entry appears to the `this' required when
965   the function is actually called.  */
966
967static void
968modify_vtable_entry (tree t,
969		     tree binfo,
970		     tree fndecl,
971		     tree delta,
972		     tree *virtuals)
973{
974  tree v;
975
976  v = *virtuals;
977
978  if (fndecl != BV_FN (v)
979      || !tree_int_cst_equal (delta, BV_DELTA (v)))
980    {
981      /* We need a new vtable for BINFO.  */
982      if (make_new_vtable (t, binfo))
983	{
984	  /* If we really did make a new vtable, we also made a copy
985	     of the BINFO_VIRTUALS list.  Now, we have to find the
986	     corresponding entry in that list.  */
987	  *virtuals = BINFO_VIRTUALS (binfo);
988	  while (BV_FN (*virtuals) != BV_FN (v))
989	    *virtuals = TREE_CHAIN (*virtuals);
990	  v = *virtuals;
991	}
992
993      BV_DELTA (v) = delta;
994      BV_VCALL_INDEX (v) = NULL_TREE;
995      BV_FN (v) = fndecl;
996    }
997}
998
999
1000/* Add method METHOD to class TYPE.  If USING_DECL is non-null, it is
1001   the USING_DECL naming METHOD.  Returns true if the method could be
1002   added to the method vec.  */
1003
1004bool
1005add_method (tree type, tree method, tree using_decl)
1006{
1007  unsigned slot;
1008  tree overload;
1009  bool template_conv_p = false;
1010  bool conv_p;
1011  vec<tree, va_gc> *method_vec;
1012  bool complete_p;
1013  bool insert_p = false;
1014  tree current_fns;
1015  tree fns;
1016
1017  if (method == error_mark_node)
1018    return false;
1019
1020  complete_p = COMPLETE_TYPE_P (type);
1021  conv_p = DECL_CONV_FN_P (method);
1022  if (conv_p)
1023    template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
1024		       && DECL_TEMPLATE_CONV_FN_P (method));
1025
1026  method_vec = CLASSTYPE_METHOD_VEC (type);
1027  if (!method_vec)
1028    {
1029      /* Make a new method vector.  We start with 8 entries.  We must
1030	 allocate at least two (for constructors and destructors), and
1031	 we're going to end up with an assignment operator at some
1032	 point as well.  */
1033      vec_alloc (method_vec, 8);
1034      /* Create slots for constructors and destructors.  */
1035      method_vec->quick_push (NULL_TREE);
1036      method_vec->quick_push (NULL_TREE);
1037      CLASSTYPE_METHOD_VEC (type) = method_vec;
1038    }
1039
1040  /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc.  */
1041  grok_special_member_properties (method);
1042
1043  /* Constructors and destructors go in special slots.  */
1044  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1045    slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1046  else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1047    {
1048      slot = CLASSTYPE_DESTRUCTOR_SLOT;
1049
1050      if (TYPE_FOR_JAVA (type))
1051	{
1052	  if (!DECL_ARTIFICIAL (method))
1053	    error ("Java class %qT cannot have a destructor", type);
1054	  else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1055	    error ("Java class %qT cannot have an implicit non-trivial "
1056		   "destructor",
1057		   type);
1058	}
1059    }
1060  else
1061    {
1062      tree m;
1063
1064      insert_p = true;
1065      /* See if we already have an entry with this name.  */
1066      for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1067	   vec_safe_iterate (method_vec, slot, &m);
1068	   ++slot)
1069	{
1070	  m = OVL_CURRENT (m);
1071	  if (template_conv_p)
1072	    {
1073	      if (TREE_CODE (m) == TEMPLATE_DECL
1074		  && DECL_TEMPLATE_CONV_FN_P (m))
1075		insert_p = false;
1076	      break;
1077	    }
1078	  if (conv_p && !DECL_CONV_FN_P (m))
1079	    break;
1080	  if (DECL_NAME (m) == DECL_NAME (method))
1081	    {
1082	      insert_p = false;
1083	      break;
1084	    }
1085	  if (complete_p
1086	      && !DECL_CONV_FN_P (m)
1087	      && DECL_NAME (m) > DECL_NAME (method))
1088	    break;
1089	}
1090    }
1091  current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1092
1093  /* Check to see if we've already got this method.  */
1094  for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1095    {
1096      tree fn = OVL_CURRENT (fns);
1097      tree fn_type;
1098      tree method_type;
1099      tree parms1;
1100      tree parms2;
1101
1102      if (TREE_CODE (fn) != TREE_CODE (method))
1103	continue;
1104
1105      /* [over.load] Member function declarations with the
1106	 same name and the same parameter types cannot be
1107	 overloaded if any of them is a static member
1108	 function declaration.
1109
1110	 [over.load] Member function declarations with the same name and
1111	 the same parameter-type-list as well as member function template
1112	 declarations with the same name, the same parameter-type-list, and
1113	 the same template parameter lists cannot be overloaded if any of
1114	 them, but not all, have a ref-qualifier.
1115
1116	 [namespace.udecl] When a using-declaration brings names
1117	 from a base class into a derived class scope, member
1118	 functions in the derived class override and/or hide member
1119	 functions with the same name and parameter types in a base
1120	 class (rather than conflicting).  */
1121      fn_type = TREE_TYPE (fn);
1122      method_type = TREE_TYPE (method);
1123      parms1 = TYPE_ARG_TYPES (fn_type);
1124      parms2 = TYPE_ARG_TYPES (method_type);
1125
1126      /* Compare the quals on the 'this' parm.  Don't compare
1127	 the whole types, as used functions are treated as
1128	 coming from the using class in overload resolution.  */
1129      if (! DECL_STATIC_FUNCTION_P (fn)
1130	  && ! DECL_STATIC_FUNCTION_P (method)
1131	  /* Either both or neither need to be ref-qualified for
1132	     differing quals to allow overloading.  */
1133	  && (FUNCTION_REF_QUALIFIED (fn_type)
1134	      == FUNCTION_REF_QUALIFIED (method_type))
1135	  && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1136	      || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1137	  continue;
1138
1139      /* For templates, the return type and template parameters
1140	 must be identical.  */
1141      if (TREE_CODE (fn) == TEMPLATE_DECL
1142	  && (!same_type_p (TREE_TYPE (fn_type),
1143			    TREE_TYPE (method_type))
1144	      || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1145				       DECL_TEMPLATE_PARMS (method))))
1146	continue;
1147
1148      if (! DECL_STATIC_FUNCTION_P (fn))
1149	parms1 = TREE_CHAIN (parms1);
1150      if (! DECL_STATIC_FUNCTION_P (method))
1151	parms2 = TREE_CHAIN (parms2);
1152
1153      if (compparms (parms1, parms2)
1154	  && (!DECL_CONV_FN_P (fn)
1155	      || same_type_p (TREE_TYPE (fn_type),
1156			      TREE_TYPE (method_type))))
1157	{
1158	  /* For function versions, their parms and types match
1159	     but they are not duplicates.  Record function versions
1160	     as and when they are found.  extern "C" functions are
1161	     not treated as versions.  */
1162	  if (TREE_CODE (fn) == FUNCTION_DECL
1163	      && TREE_CODE (method) == FUNCTION_DECL
1164	      && !DECL_EXTERN_C_P (fn)
1165	      && !DECL_EXTERN_C_P (method)
1166	      && targetm.target_option.function_versions (fn, method))
1167 	    {
1168	      /* Mark functions as versions if necessary.  Modify the mangled
1169		 decl name if necessary.  */
1170	      if (!DECL_FUNCTION_VERSIONED (fn))
1171		{
1172		  DECL_FUNCTION_VERSIONED (fn) = 1;
1173		  if (DECL_ASSEMBLER_NAME_SET_P (fn))
1174		    mangle_decl (fn);
1175		}
1176	      if (!DECL_FUNCTION_VERSIONED (method))
1177		{
1178		  DECL_FUNCTION_VERSIONED (method) = 1;
1179		  if (DECL_ASSEMBLER_NAME_SET_P (method))
1180		    mangle_decl (method);
1181		}
1182	      cgraph_node::record_function_versions (fn, method);
1183	      continue;
1184	    }
1185	  if (DECL_INHERITED_CTOR_BASE (method))
1186	    {
1187	      if (DECL_INHERITED_CTOR_BASE (fn))
1188		{
1189		  error_at (DECL_SOURCE_LOCATION (method),
1190			    "%q#D inherited from %qT", method,
1191			    DECL_INHERITED_CTOR_BASE (method));
1192		  error_at (DECL_SOURCE_LOCATION (fn),
1193			    "conflicts with version inherited from %qT",
1194			    DECL_INHERITED_CTOR_BASE (fn));
1195		}
1196	      /* Otherwise defer to the other function.  */
1197	      return false;
1198	    }
1199	  if (using_decl)
1200	    {
1201	      if (DECL_CONTEXT (fn) == type)
1202		/* Defer to the local function.  */
1203		return false;
1204	    }
1205	  else
1206	    {
1207	      error ("%q+#D cannot be overloaded", method);
1208	      error ("with %q+#D", fn);
1209	    }
1210
1211	  /* We don't call duplicate_decls here to merge the
1212	     declarations because that will confuse things if the
1213	     methods have inline definitions.  In particular, we
1214	     will crash while processing the definitions.  */
1215	  return false;
1216	}
1217    }
1218
1219  /* A class should never have more than one destructor.  */
1220  if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1221    return false;
1222
1223  /* Add the new binding.  */
1224  if (using_decl)
1225    {
1226      overload = ovl_cons (method, current_fns);
1227      OVL_USED (overload) = true;
1228    }
1229  else
1230    overload = build_overload (method, current_fns);
1231
1232  if (conv_p)
1233    TYPE_HAS_CONVERSION (type) = 1;
1234  else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1235    push_class_level_binding (DECL_NAME (method), overload);
1236
1237  if (insert_p)
1238    {
1239      bool reallocated;
1240
1241      /* We only expect to add few methods in the COMPLETE_P case, so
1242	 just make room for one more method in that case.  */
1243      if (complete_p)
1244	reallocated = vec_safe_reserve_exact (method_vec, 1);
1245      else
1246	reallocated = vec_safe_reserve (method_vec, 1);
1247      if (reallocated)
1248	CLASSTYPE_METHOD_VEC (type) = method_vec;
1249      if (slot == method_vec->length ())
1250	method_vec->quick_push (overload);
1251      else
1252	method_vec->quick_insert (slot, overload);
1253    }
1254  else
1255    /* Replace the current slot.  */
1256    (*method_vec)[slot] = overload;
1257  return true;
1258}
1259
1260/* Subroutines of finish_struct.  */
1261
1262/* Change the access of FDECL to ACCESS in T.  Return 1 if change was
1263   legit, otherwise return 0.  */
1264
1265static int
1266alter_access (tree t, tree fdecl, tree access)
1267{
1268  tree elem;
1269
1270  if (!DECL_LANG_SPECIFIC (fdecl))
1271    retrofit_lang_decl (fdecl);
1272
1273  gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1274
1275  elem = purpose_member (t, DECL_ACCESS (fdecl));
1276  if (elem)
1277    {
1278      if (TREE_VALUE (elem) != access)
1279	{
1280	  if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1281	    error ("conflicting access specifications for method"
1282		   " %q+D, ignored", TREE_TYPE (fdecl));
1283	  else
1284	    error ("conflicting access specifications for field %qE, ignored",
1285		   DECL_NAME (fdecl));
1286	}
1287      else
1288	{
1289	  /* They're changing the access to the same thing they changed
1290	     it to before.  That's OK.  */
1291	  ;
1292	}
1293    }
1294  else
1295    {
1296      perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1297				     tf_warning_or_error);
1298      DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1299      return 1;
1300    }
1301  return 0;
1302}
1303
1304/* Process the USING_DECL, which is a member of T.  */
1305
1306static void
1307handle_using_decl (tree using_decl, tree t)
1308{
1309  tree decl = USING_DECL_DECLS (using_decl);
1310  tree name = DECL_NAME (using_decl);
1311  tree access
1312    = TREE_PRIVATE (using_decl) ? access_private_node
1313    : TREE_PROTECTED (using_decl) ? access_protected_node
1314    : access_public_node;
1315  tree flist = NULL_TREE;
1316  tree old_value;
1317
1318  gcc_assert (!processing_template_decl && decl);
1319
1320  old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1321			     tf_warning_or_error);
1322  if (old_value)
1323    {
1324      if (is_overloaded_fn (old_value))
1325	old_value = OVL_CURRENT (old_value);
1326
1327      if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1328	/* OK */;
1329      else
1330	old_value = NULL_TREE;
1331    }
1332
1333  cp_emit_debug_info_for_using (decl, t);
1334
1335  if (is_overloaded_fn (decl))
1336    flist = decl;
1337
1338  if (! old_value)
1339    ;
1340  else if (is_overloaded_fn (old_value))
1341    {
1342      if (flist)
1343	/* It's OK to use functions from a base when there are functions with
1344	   the same name already present in the current class.  */;
1345      else
1346	{
1347	  error ("%q+D invalid in %q#T", using_decl, t);
1348	  error ("  because of local method %q+#D with same name",
1349		 OVL_CURRENT (old_value));
1350	  return;
1351	}
1352    }
1353  else if (!DECL_ARTIFICIAL (old_value))
1354    {
1355      error ("%q+D invalid in %q#T", using_decl, t);
1356      error ("  because of local member %q+#D with same name", old_value);
1357      return;
1358    }
1359
1360  /* Make type T see field decl FDECL with access ACCESS.  */
1361  if (flist)
1362    for (; flist; flist = OVL_NEXT (flist))
1363      {
1364	add_method (t, OVL_CURRENT (flist), using_decl);
1365	alter_access (t, OVL_CURRENT (flist), access);
1366      }
1367  else
1368    alter_access (t, decl, access);
1369}
1370
1371/* Data structure for find_abi_tags_r, below.  */
1372
1373struct abi_tag_data
1374{
1375  tree t;		// The type that we're checking for missing tags.
1376  tree subob;		// The subobject of T that we're getting tags from.
1377  tree tags; // error_mark_node for diagnostics, or a list of missing tags.
1378};
1379
1380/* Subroutine of find_abi_tags_r. Handle a single TAG found on the class TP
1381   in the context of P.  TAG can be either an identifier (the DECL_NAME of
1382   a tag NAMESPACE_DECL) or a STRING_CST (a tag attribute).  */
1383
1384static void
1385check_tag (tree tag, tree id, tree *tp, abi_tag_data *p)
1386{
1387  if (!IDENTIFIER_MARKED (id))
1388    {
1389      if (p->tags != error_mark_node)
1390	{
1391	  /* We're collecting tags from template arguments or from
1392	     the type of a variable or function return type.  */
1393	  p->tags = tree_cons (NULL_TREE, tag, p->tags);
1394
1395	  /* Don't inherit this tag multiple times.  */
1396	  IDENTIFIER_MARKED (id) = true;
1397
1398	  if (TYPE_P (p->t))
1399	    {
1400	      /* Tags inherited from type template arguments are only used
1401		 to avoid warnings.  */
1402	      ABI_TAG_IMPLICIT (p->tags) = true;
1403	      return;
1404	    }
1405	  /* For functions and variables we want to warn, too.  */
1406	}
1407
1408      /* Otherwise we're diagnosing missing tags.  */
1409      if (TREE_CODE (p->t) == FUNCTION_DECL)
1410	{
1411	  if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
1412		       "that %qT (used in its return type) has",
1413		       p->t, tag, *tp))
1414	    inform (location_of (*tp), "%qT declared here", *tp);
1415	}
1416      else if (TREE_CODE (p->t) == VAR_DECL)
1417	{
1418	  if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
1419		       "that %qT (used in its type) has", p->t, tag, *tp))
1420	    inform (location_of (*tp), "%qT declared here", *tp);
1421	}
1422      else if (TYPE_P (p->subob))
1423	{
1424	  if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
1425		       "that base %qT has", p->t, tag, p->subob))
1426	    inform (location_of (p->subob), "%qT declared here",
1427		    p->subob);
1428	}
1429      else
1430	{
1431	  if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
1432		       "that %qT (used in the type of %qD) has",
1433		       p->t, tag, *tp, p->subob))
1434	    {
1435	      inform (location_of (p->subob), "%qD declared here",
1436		      p->subob);
1437	      inform (location_of (*tp), "%qT declared here", *tp);
1438	    }
1439	}
1440    }
1441}
1442
1443/* Find all the ABI tags in the attribute list ATTR and either call
1444   check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val.  */
1445
1446static void
1447mark_or_check_attr_tags (tree attr, tree *tp, abi_tag_data *p, bool val)
1448{
1449  if (!attr)
1450    return;
1451  for (; (attr = lookup_attribute ("abi_tag", attr));
1452       attr = TREE_CHAIN (attr))
1453    for (tree list = TREE_VALUE (attr); list;
1454	 list = TREE_CHAIN (list))
1455      {
1456	tree tag = TREE_VALUE (list);
1457	tree id = get_identifier (TREE_STRING_POINTER (tag));
1458	if (tp)
1459	  check_tag (tag, id, tp, p);
1460	else
1461	  IDENTIFIER_MARKED (id) = val;
1462      }
1463}
1464
1465/* Find all the ABI tags on T and its enclosing scopes and either call
1466   check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val.  */
1467
1468static void
1469mark_or_check_tags (tree t, tree *tp, abi_tag_data *p, bool val)
1470{
1471  while (t != global_namespace)
1472    {
1473      tree attr;
1474      if (TYPE_P (t))
1475	{
1476	  attr = TYPE_ATTRIBUTES (t);
1477	  t = CP_TYPE_CONTEXT (t);
1478	}
1479      else
1480	{
1481	  attr = DECL_ATTRIBUTES (t);
1482	  t = CP_DECL_CONTEXT (t);
1483	}
1484      mark_or_check_attr_tags (attr, tp, p, val);
1485    }
1486}
1487
1488/* walk_tree callback for check_abi_tags: if the type at *TP involves any
1489   types with ABI tags, add the corresponding identifiers to the VEC in
1490   *DATA and set IDENTIFIER_MARKED.  */
1491
1492static tree
1493find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1494{
1495  if (!OVERLOAD_TYPE_P (*tp))
1496    return NULL_TREE;
1497
1498  /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1499     anyway, but let's make sure of it.  */
1500  *walk_subtrees = false;
1501
1502  abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1503
1504  mark_or_check_tags (*tp, tp, p, false);
1505
1506  return NULL_TREE;
1507}
1508
1509/* walk_tree callback for mark_abi_tags: if *TP is a class, set
1510   IDENTIFIER_MARKED on its ABI tags.  */
1511
1512static tree
1513mark_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1514{
1515  if (!OVERLOAD_TYPE_P (*tp))
1516    return NULL_TREE;
1517
1518  /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1519     anyway, but let's make sure of it.  */
1520  *walk_subtrees = false;
1521
1522  bool *valp = static_cast<bool*>(data);
1523
1524  mark_or_check_tags (*tp, NULL, NULL, *valp);
1525
1526  return NULL_TREE;
1527}
1528
1529/* Set IDENTIFIER_MARKED on all the ABI tags on T and its enclosing
1530   scopes.  */
1531
1532static void
1533mark_abi_tags (tree t, bool val)
1534{
1535  mark_or_check_tags (t, NULL, NULL, val);
1536  if (DECL_P (t))
1537    {
1538      if (DECL_LANG_SPECIFIC (t) && DECL_USE_TEMPLATE (t)
1539	  && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (t)))
1540	{
1541	  /* Template arguments are part of the signature.  */
1542	  tree level = INNERMOST_TEMPLATE_ARGS (DECL_TI_ARGS (t));
1543	  for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1544	    {
1545	      tree arg = TREE_VEC_ELT (level, j);
1546	      cp_walk_tree_without_duplicates (&arg, mark_abi_tags_r, &val);
1547	    }
1548	}
1549      if (TREE_CODE (t) == FUNCTION_DECL)
1550	/* A function's parameter types are part of the signature, so
1551	   we don't need to inherit any tags that are also in them.  */
1552	for (tree arg = FUNCTION_FIRST_USER_PARMTYPE (t); arg;
1553	     arg = TREE_CHAIN (arg))
1554	  cp_walk_tree_without_duplicates (&TREE_VALUE (arg),
1555					   mark_abi_tags_r, &val);
1556    }
1557}
1558
1559/* Check that T has all the ABI tags that subobject SUBOB has, or
1560   warn if not.  If T is a (variable or function) declaration, also
1561   add any missing tags.  */
1562
1563static void
1564check_abi_tags (tree t, tree subob)
1565{
1566  bool inherit = DECL_P (t);
1567
1568  if (!inherit && !warn_abi_tag)
1569    return;
1570
1571  tree decl = TYPE_P (t) ? TYPE_NAME (t) : t;
1572  if (!TREE_PUBLIC (decl))
1573    /* No need to worry about things local to this TU.  */
1574    return;
1575
1576  mark_abi_tags (t, true);
1577
1578  tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1579  struct abi_tag_data data = { t, subob, error_mark_node };
1580  if (inherit)
1581    data.tags = NULL_TREE;
1582
1583  cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1584
1585  if (inherit && data.tags)
1586    {
1587      tree attr = lookup_attribute ("abi_tag", DECL_ATTRIBUTES (t));
1588      if (attr)
1589	TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1590      else
1591	DECL_ATTRIBUTES (t)
1592	  = tree_cons (get_identifier ("abi_tag"), data.tags,
1593		       DECL_ATTRIBUTES (t));
1594    }
1595
1596  mark_abi_tags (t, false);
1597}
1598
1599/* Check that DECL has all the ABI tags that are used in parts of its type
1600   that are not reflected in its mangled name.  */
1601
1602void
1603check_abi_tags (tree decl)
1604{
1605  if (TREE_CODE (decl) == VAR_DECL)
1606    check_abi_tags (decl, TREE_TYPE (decl));
1607  else if (TREE_CODE (decl) == FUNCTION_DECL
1608	   && !mangle_return_type_p (decl))
1609    check_abi_tags (decl, TREE_TYPE (TREE_TYPE (decl)));
1610}
1611
1612void
1613inherit_targ_abi_tags (tree t)
1614{
1615  if (!CLASS_TYPE_P (t)
1616      || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1617    return;
1618
1619  mark_abi_tags (t, true);
1620
1621  tree args = CLASSTYPE_TI_ARGS (t);
1622  struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1623  for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1624    {
1625      tree level = TMPL_ARGS_LEVEL (args, i+1);
1626      for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1627	{
1628	  tree arg = TREE_VEC_ELT (level, j);
1629	  data.subob = arg;
1630	  cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1631	}
1632    }
1633
1634  // If we found some tags on our template arguments, add them to our
1635  // abi_tag attribute.
1636  if (data.tags)
1637    {
1638      tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1639      if (attr)
1640	TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1641      else
1642	TYPE_ATTRIBUTES (t)
1643	  = tree_cons (get_identifier ("abi_tag"), data.tags,
1644		       TYPE_ATTRIBUTES (t));
1645    }
1646
1647  mark_abi_tags (t, false);
1648}
1649
1650/* Return true, iff class T has a non-virtual destructor that is
1651   accessible from outside the class heirarchy (i.e. is public, or
1652   there's a suitable friend.  */
1653
1654static bool
1655accessible_nvdtor_p (tree t)
1656{
1657  tree dtor = CLASSTYPE_DESTRUCTORS (t);
1658
1659  /* An implicitly declared destructor is always public.  And,
1660     if it were virtual, we would have created it by now.  */
1661  if (!dtor)
1662    return true;
1663
1664  if (DECL_VINDEX (dtor))
1665    return false; /* Virtual */
1666
1667  if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1668    return true;  /* Public */
1669
1670  if (CLASSTYPE_FRIEND_CLASSES (t)
1671      || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1672    return true;   /* Has friends */
1673
1674  return false;
1675}
1676
1677/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1678   and NO_CONST_ASN_REF_P.  Also set flag bits in T based on
1679   properties of the bases.  */
1680
1681static void
1682check_bases (tree t,
1683	     int* cant_have_const_ctor_p,
1684	     int* no_const_asn_ref_p)
1685{
1686  int i;
1687  bool seen_non_virtual_nearly_empty_base_p = 0;
1688  int seen_tm_mask = 0;
1689  tree base_binfo;
1690  tree binfo;
1691  tree field = NULL_TREE;
1692
1693  if (!CLASSTYPE_NON_STD_LAYOUT (t))
1694    for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1695      if (TREE_CODE (field) == FIELD_DECL)
1696	break;
1697
1698  for (binfo = TYPE_BINFO (t), i = 0;
1699       BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1700    {
1701      tree basetype = TREE_TYPE (base_binfo);
1702
1703      gcc_assert (COMPLETE_TYPE_P (basetype));
1704
1705      if (CLASSTYPE_FINAL (basetype))
1706        error ("cannot derive from %<final%> base %qT in derived type %qT",
1707               basetype, t);
1708
1709      /* If any base class is non-literal, so is the derived class.  */
1710      if (!CLASSTYPE_LITERAL_P (basetype))
1711        CLASSTYPE_LITERAL_P (t) = false;
1712
1713      /* If the base class doesn't have copy constructors or
1714	 assignment operators that take const references, then the
1715	 derived class cannot have such a member automatically
1716	 generated.  */
1717      if (TYPE_HAS_COPY_CTOR (basetype)
1718	  && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1719	*cant_have_const_ctor_p = 1;
1720      if (TYPE_HAS_COPY_ASSIGN (basetype)
1721	  && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1722	*no_const_asn_ref_p = 1;
1723
1724      if (BINFO_VIRTUAL_P (base_binfo))
1725	/* A virtual base does not effect nearly emptiness.  */
1726	;
1727      else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1728	{
1729	  if (seen_non_virtual_nearly_empty_base_p)
1730	    /* And if there is more than one nearly empty base, then the
1731	       derived class is not nearly empty either.  */
1732	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1733	  else
1734	    /* Remember we've seen one.  */
1735	    seen_non_virtual_nearly_empty_base_p = 1;
1736	}
1737      else if (!is_empty_class (basetype))
1738	/* If the base class is not empty or nearly empty, then this
1739	   class cannot be nearly empty.  */
1740	CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1741
1742      /* A lot of properties from the bases also apply to the derived
1743	 class.  */
1744      TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1745      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1746	|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1747      TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1748	|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1749	    || !TYPE_HAS_COPY_ASSIGN (basetype));
1750      TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1751					 || !TYPE_HAS_COPY_CTOR (basetype));
1752      TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1753	|= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1754      TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1755      TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1756      CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1757	|= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1758      TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1759				    || TYPE_HAS_COMPLEX_DFLT (basetype));
1760      SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1761	(t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1762	 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1763      SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1764	(t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1765	 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1766
1767      /*  A standard-layout class is a class that:
1768	  ...
1769	  * has no non-standard-layout base classes,  */
1770      CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1771      if (!CLASSTYPE_NON_STD_LAYOUT (t))
1772	{
1773	  tree basefield;
1774	  /* ...has no base classes of the same type as the first non-static
1775	     data member...  */
1776	  if (field && DECL_CONTEXT (field) == t
1777	      && (same_type_ignoring_top_level_qualifiers_p
1778		  (TREE_TYPE (field), basetype)))
1779	    CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1780	  else
1781	    /* ...either has no non-static data members in the most-derived
1782	       class and at most one base class with non-static data
1783	       members, or has no base classes with non-static data
1784	       members */
1785	    for (basefield = TYPE_FIELDS (basetype); basefield;
1786		 basefield = DECL_CHAIN (basefield))
1787	      if (TREE_CODE (basefield) == FIELD_DECL)
1788		{
1789		  if (field)
1790		    CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1791		  else
1792		    field = basefield;
1793		  break;
1794		}
1795	}
1796
1797      /* Don't bother collecting tm attributes if transactional memory
1798	 support is not enabled.  */
1799      if (flag_tm)
1800	{
1801	  tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1802	  if (tm_attr)
1803	    seen_tm_mask |= tm_attr_to_mask (tm_attr);
1804	}
1805
1806      check_abi_tags (t, basetype);
1807    }
1808
1809  /* If one of the base classes had TM attributes, and the current class
1810     doesn't define its own, then the current class inherits one.  */
1811  if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1812    {
1813      tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1814      TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1815    }
1816}
1817
1818/* Determine all the primary bases within T.  Sets BINFO_PRIMARY_BASE_P for
1819   those that are primaries.  Sets BINFO_LOST_PRIMARY_P for those
1820   that have had a nearly-empty virtual primary base stolen by some
1821   other base in the hierarchy.  Determines CLASSTYPE_PRIMARY_BASE for
1822   T.  */
1823
1824static void
1825determine_primary_bases (tree t)
1826{
1827  unsigned i;
1828  tree primary = NULL_TREE;
1829  tree type_binfo = TYPE_BINFO (t);
1830  tree base_binfo;
1831
1832  /* Determine the primary bases of our bases.  */
1833  for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1834       base_binfo = TREE_CHAIN (base_binfo))
1835    {
1836      tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1837
1838      /* See if we're the non-virtual primary of our inheritance
1839	 chain.  */
1840      if (!BINFO_VIRTUAL_P (base_binfo))
1841	{
1842	  tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1843	  tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1844
1845	  if (parent_primary
1846	      && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1847				    BINFO_TYPE (parent_primary)))
1848	    /* We are the primary binfo.  */
1849	    BINFO_PRIMARY_P (base_binfo) = 1;
1850	}
1851      /* Determine if we have a virtual primary base, and mark it so.
1852       */
1853      if (primary && BINFO_VIRTUAL_P (primary))
1854	{
1855	  tree this_primary = copied_binfo (primary, base_binfo);
1856
1857	  if (BINFO_PRIMARY_P (this_primary))
1858	    /* Someone already claimed this base.  */
1859	    BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1860	  else
1861	    {
1862	      tree delta;
1863
1864	      BINFO_PRIMARY_P (this_primary) = 1;
1865	      BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1866
1867	      /* A virtual binfo might have been copied from within
1868		 another hierarchy. As we're about to use it as a
1869		 primary base, make sure the offsets match.  */
1870	      delta = size_diffop_loc (input_location,
1871				   convert (ssizetype,
1872					    BINFO_OFFSET (base_binfo)),
1873				   convert (ssizetype,
1874					    BINFO_OFFSET (this_primary)));
1875
1876	      propagate_binfo_offsets (this_primary, delta);
1877	    }
1878	}
1879    }
1880
1881  /* First look for a dynamic direct non-virtual base.  */
1882  for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1883    {
1884      tree basetype = BINFO_TYPE (base_binfo);
1885
1886      if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1887	{
1888	  primary = base_binfo;
1889	  goto found;
1890	}
1891    }
1892
1893  /* A "nearly-empty" virtual base class can be the primary base
1894     class, if no non-virtual polymorphic base can be found.  Look for
1895     a nearly-empty virtual dynamic base that is not already a primary
1896     base of something in the hierarchy.  If there is no such base,
1897     just pick the first nearly-empty virtual base.  */
1898
1899  for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1900       base_binfo = TREE_CHAIN (base_binfo))
1901    if (BINFO_VIRTUAL_P (base_binfo)
1902	&& CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1903      {
1904	if (!BINFO_PRIMARY_P (base_binfo))
1905	  {
1906	    /* Found one that is not primary.  */
1907	    primary = base_binfo;
1908	    goto found;
1909	  }
1910	else if (!primary)
1911	  /* Remember the first candidate.  */
1912	  primary = base_binfo;
1913      }
1914
1915 found:
1916  /* If we've got a primary base, use it.  */
1917  if (primary)
1918    {
1919      tree basetype = BINFO_TYPE (primary);
1920
1921      CLASSTYPE_PRIMARY_BINFO (t) = primary;
1922      if (BINFO_PRIMARY_P (primary))
1923	/* We are stealing a primary base.  */
1924	BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1925      BINFO_PRIMARY_P (primary) = 1;
1926      if (BINFO_VIRTUAL_P (primary))
1927	{
1928	  tree delta;
1929
1930	  BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1931	  /* A virtual binfo might have been copied from within
1932	     another hierarchy. As we're about to use it as a primary
1933	     base, make sure the offsets match.  */
1934	  delta = size_diffop_loc (input_location, ssize_int (0),
1935			       convert (ssizetype, BINFO_OFFSET (primary)));
1936
1937	  propagate_binfo_offsets (primary, delta);
1938	}
1939
1940      primary = TYPE_BINFO (basetype);
1941
1942      TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1943      BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1944      BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1945    }
1946}
1947
1948/* Update the variant types of T.  */
1949
1950void
1951fixup_type_variants (tree t)
1952{
1953  tree variants;
1954
1955  if (!t)
1956    return;
1957
1958  for (variants = TYPE_NEXT_VARIANT (t);
1959       variants;
1960       variants = TYPE_NEXT_VARIANT (variants))
1961    {
1962      /* These fields are in the _TYPE part of the node, not in
1963	 the TYPE_LANG_SPECIFIC component, so they are not shared.  */
1964      TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1965      TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1966      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1967	= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1968
1969      TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1970
1971      TYPE_BINFO (variants) = TYPE_BINFO (t);
1972
1973      /* Copy whatever these are holding today.  */
1974      TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1975      TYPE_METHODS (variants) = TYPE_METHODS (t);
1976      TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1977    }
1978}
1979
1980/* Early variant fixups: we apply attributes at the beginning of the class
1981   definition, and we need to fix up any variants that have already been
1982   made via elaborated-type-specifier so that check_qualified_type works.  */
1983
1984void
1985fixup_attribute_variants (tree t)
1986{
1987  tree variants;
1988
1989  if (!t)
1990    return;
1991
1992  tree attrs = TYPE_ATTRIBUTES (t);
1993  unsigned align = TYPE_ALIGN (t);
1994  bool user_align = TYPE_USER_ALIGN (t);
1995
1996  for (variants = TYPE_NEXT_VARIANT (t);
1997       variants;
1998       variants = TYPE_NEXT_VARIANT (variants))
1999    {
2000      /* These are the two fields that check_qualified_type looks at and
2001	 are affected by attributes.  */
2002      TYPE_ATTRIBUTES (variants) = attrs;
2003      unsigned valign = align;
2004      if (TYPE_USER_ALIGN (variants))
2005	valign = MAX (valign, TYPE_ALIGN (variants));
2006      else
2007	TYPE_USER_ALIGN (variants) = user_align;
2008      TYPE_ALIGN (variants) = valign;
2009    }
2010}
2011
2012/* Set memoizing fields and bits of T (and its variants) for later
2013   use.  */
2014
2015static void
2016finish_struct_bits (tree t)
2017{
2018  /* Fix up variants (if any).  */
2019  fixup_type_variants (t);
2020
2021  if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
2022    /* For a class w/o baseclasses, 'finish_struct' has set
2023       CLASSTYPE_PURE_VIRTUALS correctly (by definition).
2024       Similarly for a class whose base classes do not have vtables.
2025       When neither of these is true, we might have removed abstract
2026       virtuals (by providing a definition), added some (by declaring
2027       new ones), or redeclared ones from a base class.  We need to
2028       recalculate what's really an abstract virtual at this point (by
2029       looking in the vtables).  */
2030    get_pure_virtuals (t);
2031
2032  /* If this type has a copy constructor or a destructor, force its
2033     mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
2034     nonzero.  This will cause it to be passed by invisible reference
2035     and prevent it from being returned in a register.  */
2036  if (type_has_nontrivial_copy_init (t)
2037      || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2038    {
2039      tree variants;
2040      DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
2041      for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
2042	{
2043	  SET_TYPE_MODE (variants, BLKmode);
2044	  TREE_ADDRESSABLE (variants) = 1;
2045	}
2046    }
2047}
2048
2049/* Issue warnings about T having private constructors, but no friends,
2050   and so forth.
2051
2052   HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
2053   static members.  HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
2054   non-private static member functions.  */
2055
2056static void
2057maybe_warn_about_overly_private_class (tree t)
2058{
2059  int has_member_fn = 0;
2060  int has_nonprivate_method = 0;
2061  tree fn;
2062
2063  if (!warn_ctor_dtor_privacy
2064      /* If the class has friends, those entities might create and
2065	 access instances, so we should not warn.  */
2066      || (CLASSTYPE_FRIEND_CLASSES (t)
2067	  || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
2068      /* We will have warned when the template was declared; there's
2069	 no need to warn on every instantiation.  */
2070      || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2071    /* There's no reason to even consider warning about this
2072       class.  */
2073    return;
2074
2075  /* We only issue one warning, if more than one applies, because
2076     otherwise, on code like:
2077
2078     class A {
2079       // Oops - forgot `public:'
2080       A();
2081       A(const A&);
2082       ~A();
2083     };
2084
2085     we warn several times about essentially the same problem.  */
2086
2087  /* Check to see if all (non-constructor, non-destructor) member
2088     functions are private.  (Since there are no friends or
2089     non-private statics, we can't ever call any of the private member
2090     functions.)  */
2091  for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
2092    /* We're not interested in compiler-generated methods; they don't
2093       provide any way to call private members.  */
2094    if (!DECL_ARTIFICIAL (fn))
2095      {
2096	if (!TREE_PRIVATE (fn))
2097	  {
2098	    if (DECL_STATIC_FUNCTION_P (fn))
2099	      /* A non-private static member function is just like a
2100		 friend; it can create and invoke private member
2101		 functions, and be accessed without a class
2102		 instance.  */
2103	      return;
2104
2105	    has_nonprivate_method = 1;
2106	    /* Keep searching for a static member function.  */
2107	  }
2108	else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
2109	  has_member_fn = 1;
2110      }
2111
2112  if (!has_nonprivate_method && has_member_fn)
2113    {
2114      /* There are no non-private methods, and there's at least one
2115	 private member function that isn't a constructor or
2116	 destructor.  (If all the private members are
2117	 constructors/destructors we want to use the code below that
2118	 issues error messages specifically referring to
2119	 constructors/destructors.)  */
2120      unsigned i;
2121      tree binfo = TYPE_BINFO (t);
2122
2123      for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
2124	if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
2125	  {
2126	    has_nonprivate_method = 1;
2127	    break;
2128	  }
2129      if (!has_nonprivate_method)
2130	{
2131	  warning (OPT_Wctor_dtor_privacy,
2132		   "all member functions in class %qT are private", t);
2133	  return;
2134	}
2135    }
2136
2137  /* Even if some of the member functions are non-private, the class
2138     won't be useful for much if all the constructors or destructors
2139     are private: such an object can never be created or destroyed.  */
2140  fn = CLASSTYPE_DESTRUCTORS (t);
2141  if (fn && TREE_PRIVATE (fn))
2142    {
2143      warning (OPT_Wctor_dtor_privacy,
2144	       "%q#T only defines a private destructor and has no friends",
2145	       t);
2146      return;
2147    }
2148
2149  /* Warn about classes that have private constructors and no friends.  */
2150  if (TYPE_HAS_USER_CONSTRUCTOR (t)
2151      /* Implicitly generated constructors are always public.  */
2152      && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
2153	  || !CLASSTYPE_LAZY_COPY_CTOR (t)))
2154    {
2155      int nonprivate_ctor = 0;
2156
2157      /* If a non-template class does not define a copy
2158	 constructor, one is defined for it, enabling it to avoid
2159	 this warning.  For a template class, this does not
2160	 happen, and so we would normally get a warning on:
2161
2162	   template <class T> class C { private: C(); };
2163
2164	 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR.  All
2165	 complete non-template or fully instantiated classes have this
2166	 flag set.  */
2167      if (!TYPE_HAS_COPY_CTOR (t))
2168	nonprivate_ctor = 1;
2169      else
2170	for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
2171	  {
2172	    tree ctor = OVL_CURRENT (fn);
2173	    /* Ideally, we wouldn't count copy constructors (or, in
2174	       fact, any constructor that takes an argument of the
2175	       class type as a parameter) because such things cannot
2176	       be used to construct an instance of the class unless
2177	       you already have one.  But, for now at least, we're
2178	       more generous.  */
2179	    if (! TREE_PRIVATE (ctor))
2180	      {
2181		nonprivate_ctor = 1;
2182		break;
2183	      }
2184	  }
2185
2186      if (nonprivate_ctor == 0)
2187	{
2188	  warning (OPT_Wctor_dtor_privacy,
2189		   "%q#T only defines private constructors and has no friends",
2190		   t);
2191	  return;
2192	}
2193    }
2194}
2195
2196static struct {
2197  gt_pointer_operator new_value;
2198  void *cookie;
2199} resort_data;
2200
2201/* Comparison function to compare two TYPE_METHOD_VEC entries by name.  */
2202
2203static int
2204method_name_cmp (const void* m1_p, const void* m2_p)
2205{
2206  const tree *const m1 = (const tree *) m1_p;
2207  const tree *const m2 = (const tree *) m2_p;
2208
2209  if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2210    return 0;
2211  if (*m1 == NULL_TREE)
2212    return -1;
2213  if (*m2 == NULL_TREE)
2214    return 1;
2215  if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2216    return -1;
2217  return 1;
2218}
2219
2220/* This routine compares two fields like method_name_cmp but using the
2221   pointer operator in resort_field_decl_data.  */
2222
2223static int
2224resort_method_name_cmp (const void* m1_p, const void* m2_p)
2225{
2226  const tree *const m1 = (const tree *) m1_p;
2227  const tree *const m2 = (const tree *) m2_p;
2228  if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2229    return 0;
2230  if (*m1 == NULL_TREE)
2231    return -1;
2232  if (*m2 == NULL_TREE)
2233    return 1;
2234  {
2235    tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2236    tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2237    resort_data.new_value (&d1, resort_data.cookie);
2238    resort_data.new_value (&d2, resort_data.cookie);
2239    if (d1 < d2)
2240      return -1;
2241  }
2242  return 1;
2243}
2244
2245/* Resort TYPE_METHOD_VEC because pointers have been reordered.  */
2246
2247void
2248resort_type_method_vec (void* obj,
2249			void* /*orig_obj*/,
2250			gt_pointer_operator new_value,
2251			void* cookie)
2252{
2253  vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2254  int len = vec_safe_length (method_vec);
2255  size_t slot;
2256  tree fn;
2257
2258  /* The type conversion ops have to live at the front of the vec, so we
2259     can't sort them.  */
2260  for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2261       vec_safe_iterate (method_vec, slot, &fn);
2262       ++slot)
2263    if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2264      break;
2265
2266  if (len - slot > 1)
2267    {
2268      resort_data.new_value = new_value;
2269      resort_data.cookie = cookie;
2270      qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2271	     resort_method_name_cmp);
2272    }
2273}
2274
2275/* Warn about duplicate methods in fn_fields.
2276
2277   Sort methods that are not special (i.e., constructors, destructors,
2278   and type conversion operators) so that we can find them faster in
2279   search.  */
2280
2281static void
2282finish_struct_methods (tree t)
2283{
2284  tree fn_fields;
2285  vec<tree, va_gc> *method_vec;
2286  int slot, len;
2287
2288  method_vec = CLASSTYPE_METHOD_VEC (t);
2289  if (!method_vec)
2290    return;
2291
2292  len = method_vec->length ();
2293
2294  /* Clear DECL_IN_AGGR_P for all functions.  */
2295  for (fn_fields = TYPE_METHODS (t); fn_fields;
2296       fn_fields = DECL_CHAIN (fn_fields))
2297    DECL_IN_AGGR_P (fn_fields) = 0;
2298
2299  /* Issue warnings about private constructors and such.  If there are
2300     no methods, then some public defaults are generated.  */
2301  maybe_warn_about_overly_private_class (t);
2302
2303  /* The type conversion ops have to live at the front of the vec, so we
2304     can't sort them.  */
2305  for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2306       method_vec->iterate (slot, &fn_fields);
2307       ++slot)
2308    if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2309      break;
2310  if (len - slot > 1)
2311    qsort (method_vec->address () + slot,
2312	   len-slot, sizeof (tree), method_name_cmp);
2313}
2314
2315/* Make BINFO's vtable have N entries, including RTTI entries,
2316   vbase and vcall offsets, etc.  Set its type and call the back end
2317   to lay it out.  */
2318
2319static void
2320layout_vtable_decl (tree binfo, int n)
2321{
2322  tree atype;
2323  tree vtable;
2324
2325  atype = build_array_of_n_type (vtable_entry_type, n);
2326  layout_type (atype);
2327
2328  /* We may have to grow the vtable.  */
2329  vtable = get_vtbl_decl_for_binfo (binfo);
2330  if (!same_type_p (TREE_TYPE (vtable), atype))
2331    {
2332      TREE_TYPE (vtable) = atype;
2333      DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2334      layout_decl (vtable, 0);
2335    }
2336}
2337
2338/* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2339   have the same signature.  */
2340
2341int
2342same_signature_p (const_tree fndecl, const_tree base_fndecl)
2343{
2344  /* One destructor overrides another if they are the same kind of
2345     destructor.  */
2346  if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2347      && special_function_p (base_fndecl) == special_function_p (fndecl))
2348    return 1;
2349  /* But a non-destructor never overrides a destructor, nor vice
2350     versa, nor do different kinds of destructors override
2351     one-another.  For example, a complete object destructor does not
2352     override a deleting destructor.  */
2353  if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2354    return 0;
2355
2356  if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2357      || (DECL_CONV_FN_P (fndecl)
2358	  && DECL_CONV_FN_P (base_fndecl)
2359	  && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2360			  DECL_CONV_FN_TYPE (base_fndecl))))
2361    {
2362      tree fntype = TREE_TYPE (fndecl);
2363      tree base_fntype = TREE_TYPE (base_fndecl);
2364      if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2365	  && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2366	  && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2367			FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2368	return 1;
2369    }
2370  return 0;
2371}
2372
2373/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2374   subobject.  */
2375
2376static bool
2377base_derived_from (tree derived, tree base)
2378{
2379  tree probe;
2380
2381  for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2382    {
2383      if (probe == derived)
2384	return true;
2385      else if (BINFO_VIRTUAL_P (probe))
2386	/* If we meet a virtual base, we can't follow the inheritance
2387	   any more.  See if the complete type of DERIVED contains
2388	   such a virtual base.  */
2389	return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2390		!= NULL_TREE);
2391    }
2392  return false;
2393}
2394
2395typedef struct find_final_overrider_data_s {
2396  /* The function for which we are trying to find a final overrider.  */
2397  tree fn;
2398  /* The base class in which the function was declared.  */
2399  tree declaring_base;
2400  /* The candidate overriders.  */
2401  tree candidates;
2402  /* Path to most derived.  */
2403  vec<tree> path;
2404} find_final_overrider_data;
2405
2406/* Add the overrider along the current path to FFOD->CANDIDATES.
2407   Returns true if an overrider was found; false otherwise.  */
2408
2409static bool
2410dfs_find_final_overrider_1 (tree binfo,
2411			    find_final_overrider_data *ffod,
2412			    unsigned depth)
2413{
2414  tree method;
2415
2416  /* If BINFO is not the most derived type, try a more derived class.
2417     A definition there will overrider a definition here.  */
2418  if (depth)
2419    {
2420      depth--;
2421      if (dfs_find_final_overrider_1
2422	  (ffod->path[depth], ffod, depth))
2423	return true;
2424    }
2425
2426  method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2427  if (method)
2428    {
2429      tree *candidate = &ffod->candidates;
2430
2431      /* Remove any candidates overridden by this new function.  */
2432      while (*candidate)
2433	{
2434	  /* If *CANDIDATE overrides METHOD, then METHOD
2435	     cannot override anything else on the list.  */
2436	  if (base_derived_from (TREE_VALUE (*candidate), binfo))
2437	    return true;
2438	  /* If METHOD overrides *CANDIDATE, remove *CANDIDATE.  */
2439	  if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2440	    *candidate = TREE_CHAIN (*candidate);
2441	  else
2442	    candidate = &TREE_CHAIN (*candidate);
2443	}
2444
2445      /* Add the new function.  */
2446      ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2447      return true;
2448    }
2449
2450  return false;
2451}
2452
2453/* Called from find_final_overrider via dfs_walk.  */
2454
2455static tree
2456dfs_find_final_overrider_pre (tree binfo, void *data)
2457{
2458  find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2459
2460  if (binfo == ffod->declaring_base)
2461    dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2462  ffod->path.safe_push (binfo);
2463
2464  return NULL_TREE;
2465}
2466
2467static tree
2468dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2469{
2470  find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2471  ffod->path.pop ();
2472
2473  return NULL_TREE;
2474}
2475
2476/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2477   FN and whose TREE_VALUE is the binfo for the base where the
2478   overriding occurs.  BINFO (in the hierarchy dominated by the binfo
2479   DERIVED) is the base object in which FN is declared.  */
2480
2481static tree
2482find_final_overrider (tree derived, tree binfo, tree fn)
2483{
2484  find_final_overrider_data ffod;
2485
2486  /* Getting this right is a little tricky.  This is valid:
2487
2488       struct S { virtual void f (); };
2489       struct T { virtual void f (); };
2490       struct U : public S, public T { };
2491
2492     even though calling `f' in `U' is ambiguous.  But,
2493
2494       struct R { virtual void f(); };
2495       struct S : virtual public R { virtual void f (); };
2496       struct T : virtual public R { virtual void f (); };
2497       struct U : public S, public T { };
2498
2499     is not -- there's no way to decide whether to put `S::f' or
2500     `T::f' in the vtable for `R'.
2501
2502     The solution is to look at all paths to BINFO.  If we find
2503     different overriders along any two, then there is a problem.  */
2504  if (DECL_THUNK_P (fn))
2505    fn = THUNK_TARGET (fn);
2506
2507  /* Determine the depth of the hierarchy.  */
2508  ffod.fn = fn;
2509  ffod.declaring_base = binfo;
2510  ffod.candidates = NULL_TREE;
2511  ffod.path.create (30);
2512
2513  dfs_walk_all (derived, dfs_find_final_overrider_pre,
2514		dfs_find_final_overrider_post, &ffod);
2515
2516  ffod.path.release ();
2517
2518  /* If there was no winner, issue an error message.  */
2519  if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2520    return error_mark_node;
2521
2522  return ffod.candidates;
2523}
2524
2525/* Return the index of the vcall offset for FN when TYPE is used as a
2526   virtual base.  */
2527
2528static tree
2529get_vcall_index (tree fn, tree type)
2530{
2531  vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2532  tree_pair_p p;
2533  unsigned ix;
2534
2535  FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2536    if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2537	|| same_signature_p (fn, p->purpose))
2538      return p->value;
2539
2540  /* There should always be an appropriate index.  */
2541  gcc_unreachable ();
2542}
2543
2544/* Update an entry in the vtable for BINFO, which is in the hierarchy
2545   dominated by T.  FN is the old function; VIRTUALS points to the
2546   corresponding position in the new BINFO_VIRTUALS list.  IX is the index
2547   of that entry in the list.  */
2548
2549static void
2550update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2551			    unsigned ix)
2552{
2553  tree b;
2554  tree overrider;
2555  tree delta;
2556  tree virtual_base;
2557  tree first_defn;
2558  tree overrider_fn, overrider_target;
2559  tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2560  tree over_return, base_return;
2561  bool lost = false;
2562
2563  /* Find the nearest primary base (possibly binfo itself) which defines
2564     this function; this is the class the caller will convert to when
2565     calling FN through BINFO.  */
2566  for (b = binfo; ; b = get_primary_binfo (b))
2567    {
2568      gcc_assert (b);
2569      if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2570	break;
2571
2572      /* The nearest definition is from a lost primary.  */
2573      if (BINFO_LOST_PRIMARY_P (b))
2574	lost = true;
2575    }
2576  first_defn = b;
2577
2578  /* Find the final overrider.  */
2579  overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2580  if (overrider == error_mark_node)
2581    {
2582      error ("no unique final overrider for %qD in %qT", target_fn, t);
2583      return;
2584    }
2585  overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2586
2587  /* Check for adjusting covariant return types.  */
2588  over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2589  base_return = TREE_TYPE (TREE_TYPE (target_fn));
2590
2591  if (POINTER_TYPE_P (over_return)
2592      && TREE_CODE (over_return) == TREE_CODE (base_return)
2593      && CLASS_TYPE_P (TREE_TYPE (over_return))
2594      && CLASS_TYPE_P (TREE_TYPE (base_return))
2595      /* If the overrider is invalid, don't even try.  */
2596      && !DECL_INVALID_OVERRIDER_P (overrider_target))
2597    {
2598      /* If FN is a covariant thunk, we must figure out the adjustment
2599	 to the final base FN was converting to. As OVERRIDER_TARGET might
2600	 also be converting to the return type of FN, we have to
2601	 combine the two conversions here.  */
2602      tree fixed_offset, virtual_offset;
2603
2604      over_return = TREE_TYPE (over_return);
2605      base_return = TREE_TYPE (base_return);
2606
2607      if (DECL_THUNK_P (fn))
2608	{
2609	  gcc_assert (DECL_RESULT_THUNK_P (fn));
2610	  fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2611	  virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2612	}
2613      else
2614	fixed_offset = virtual_offset = NULL_TREE;
2615
2616      if (virtual_offset)
2617	/* Find the equivalent binfo within the return type of the
2618	   overriding function. We will want the vbase offset from
2619	   there.  */
2620	virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2621					  over_return);
2622      else if (!same_type_ignoring_top_level_qualifiers_p
2623	       (over_return, base_return))
2624	{
2625	  /* There was no existing virtual thunk (which takes
2626	     precedence).  So find the binfo of the base function's
2627	     return type within the overriding function's return type.
2628	     We cannot call lookup base here, because we're inside a
2629	     dfs_walk, and will therefore clobber the BINFO_MARKED
2630	     flags.  Fortunately we know the covariancy is valid (it
2631	     has already been checked), so we can just iterate along
2632	     the binfos, which have been chained in inheritance graph
2633	     order.  Of course it is lame that we have to repeat the
2634	     search here anyway -- we should really be caching pieces
2635	     of the vtable and avoiding this repeated work.  */
2636	  tree thunk_binfo, base_binfo;
2637
2638	  /* Find the base binfo within the overriding function's
2639	     return type.  We will always find a thunk_binfo, except
2640	     when the covariancy is invalid (which we will have
2641	     already diagnosed).  */
2642	  for (base_binfo = TYPE_BINFO (base_return),
2643	       thunk_binfo = TYPE_BINFO (over_return);
2644	       thunk_binfo;
2645	       thunk_binfo = TREE_CHAIN (thunk_binfo))
2646	    if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2647				   BINFO_TYPE (base_binfo)))
2648	      break;
2649
2650	  /* See if virtual inheritance is involved.  */
2651	  for (virtual_offset = thunk_binfo;
2652	       virtual_offset;
2653	       virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2654	    if (BINFO_VIRTUAL_P (virtual_offset))
2655	      break;
2656
2657	  if (virtual_offset
2658	      || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2659	    {
2660	      tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2661
2662	      if (virtual_offset)
2663		{
2664		  /* We convert via virtual base.  Adjust the fixed
2665		     offset to be from there.  */
2666		  offset =
2667		    size_diffop (offset,
2668				 convert (ssizetype,
2669					  BINFO_OFFSET (virtual_offset)));
2670		}
2671	      if (fixed_offset)
2672		/* There was an existing fixed offset, this must be
2673		   from the base just converted to, and the base the
2674		   FN was thunking to.  */
2675		fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2676	      else
2677		fixed_offset = offset;
2678	    }
2679	}
2680
2681      if (fixed_offset || virtual_offset)
2682	/* Replace the overriding function with a covariant thunk.  We
2683	   will emit the overriding function in its own slot as
2684	   well.  */
2685	overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2686				   fixed_offset, virtual_offset);
2687    }
2688  else
2689    gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2690		!DECL_THUNK_P (fn));
2691
2692  /* If we need a covariant thunk, then we may need to adjust first_defn.
2693     The ABI specifies that the thunks emitted with a function are
2694     determined by which bases the function overrides, so we need to be
2695     sure that we're using a thunk for some overridden base; even if we
2696     know that the necessary this adjustment is zero, there may not be an
2697     appropriate zero-this-adjusment thunk for us to use since thunks for
2698     overriding virtual bases always use the vcall offset.
2699
2700     Furthermore, just choosing any base that overrides this function isn't
2701     quite right, as this slot won't be used for calls through a type that
2702     puts a covariant thunk here.  Calling the function through such a type
2703     will use a different slot, and that slot is the one that determines
2704     the thunk emitted for that base.
2705
2706     So, keep looking until we find the base that we're really overriding
2707     in this slot: the nearest primary base that doesn't use a covariant
2708     thunk in this slot.  */
2709  if (overrider_target != overrider_fn)
2710    {
2711      if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2712	/* We already know that the overrider needs a covariant thunk.  */
2713	b = get_primary_binfo (b);
2714      for (; ; b = get_primary_binfo (b))
2715	{
2716	  tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2717	  tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2718	  if (!DECL_THUNK_P (TREE_VALUE (bv)))
2719	    break;
2720	  if (BINFO_LOST_PRIMARY_P (b))
2721	    lost = true;
2722	}
2723      first_defn = b;
2724    }
2725
2726  /* Assume that we will produce a thunk that convert all the way to
2727     the final overrider, and not to an intermediate virtual base.  */
2728  virtual_base = NULL_TREE;
2729
2730  /* See if we can convert to an intermediate virtual base first, and then
2731     use the vcall offset located there to finish the conversion.  */
2732  for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2733    {
2734      /* If we find the final overrider, then we can stop
2735	 walking.  */
2736      if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2737			     BINFO_TYPE (TREE_VALUE (overrider))))
2738	break;
2739
2740      /* If we find a virtual base, and we haven't yet found the
2741	 overrider, then there is a virtual base between the
2742	 declaring base (first_defn) and the final overrider.  */
2743      if (BINFO_VIRTUAL_P (b))
2744	{
2745	  virtual_base = b;
2746	  break;
2747	}
2748    }
2749
2750  /* Compute the constant adjustment to the `this' pointer.  The
2751     `this' pointer, when this function is called, will point at BINFO
2752     (or one of its primary bases, which are at the same offset).  */
2753  if (virtual_base)
2754    /* The `this' pointer needs to be adjusted from the declaration to
2755       the nearest virtual base.  */
2756    delta = size_diffop_loc (input_location,
2757			 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2758			 convert (ssizetype, BINFO_OFFSET (first_defn)));
2759  else if (lost)
2760    /* If the nearest definition is in a lost primary, we don't need an
2761       entry in our vtable.  Except possibly in a constructor vtable,
2762       if we happen to get our primary back.  In that case, the offset
2763       will be zero, as it will be a primary base.  */
2764    delta = size_zero_node;
2765  else
2766    /* The `this' pointer needs to be adjusted from pointing to
2767       BINFO to pointing at the base where the final overrider
2768       appears.  */
2769    delta = size_diffop_loc (input_location,
2770			 convert (ssizetype,
2771				  BINFO_OFFSET (TREE_VALUE (overrider))),
2772			 convert (ssizetype, BINFO_OFFSET (binfo)));
2773
2774  modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2775
2776  if (virtual_base)
2777    BV_VCALL_INDEX (*virtuals)
2778      = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2779  else
2780    BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2781
2782  BV_LOST_PRIMARY (*virtuals) = lost;
2783}
2784
2785/* Called from modify_all_vtables via dfs_walk.  */
2786
2787static tree
2788dfs_modify_vtables (tree binfo, void* data)
2789{
2790  tree t = (tree) data;
2791  tree virtuals;
2792  tree old_virtuals;
2793  unsigned ix;
2794
2795  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2796    /* A base without a vtable needs no modification, and its bases
2797       are uninteresting.  */
2798    return dfs_skip_bases;
2799
2800  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2801      && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2802    /* Don't do the primary vtable, if it's new.  */
2803    return NULL_TREE;
2804
2805  if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2806    /* There's no need to modify the vtable for a non-virtual primary
2807       base; we're not going to use that vtable anyhow.  We do still
2808       need to do this for virtual primary bases, as they could become
2809       non-primary in a construction vtable.  */
2810    return NULL_TREE;
2811
2812  make_new_vtable (t, binfo);
2813
2814  /* Now, go through each of the virtual functions in the virtual
2815     function table for BINFO.  Find the final overrider, and update
2816     the BINFO_VIRTUALS list appropriately.  */
2817  for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2818	 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2819       virtuals;
2820       ix++, virtuals = TREE_CHAIN (virtuals),
2821	 old_virtuals = TREE_CHAIN (old_virtuals))
2822    update_vtable_entry_for_fn (t,
2823				binfo,
2824				BV_FN (old_virtuals),
2825				&virtuals, ix);
2826
2827  return NULL_TREE;
2828}
2829
2830/* Update all of the primary and secondary vtables for T.  Create new
2831   vtables as required, and initialize their RTTI information.  Each
2832   of the functions in VIRTUALS is declared in T and may override a
2833   virtual function from a base class; find and modify the appropriate
2834   entries to point to the overriding functions.  Returns a list, in
2835   declaration order, of the virtual functions that are declared in T,
2836   but do not appear in the primary base class vtable, and which
2837   should therefore be appended to the end of the vtable for T.  */
2838
2839static tree
2840modify_all_vtables (tree t, tree virtuals)
2841{
2842  tree binfo = TYPE_BINFO (t);
2843  tree *fnsp;
2844
2845  /* Mangle the vtable name before entering dfs_walk (c++/51884).  */
2846  if (TYPE_CONTAINS_VPTR_P (t))
2847    get_vtable_decl (t, false);
2848
2849  /* Update all of the vtables.  */
2850  dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2851
2852  /* Add virtual functions not already in our primary vtable. These
2853     will be both those introduced by this class, and those overridden
2854     from secondary bases.  It does not include virtuals merely
2855     inherited from secondary bases.  */
2856  for (fnsp = &virtuals; *fnsp; )
2857    {
2858      tree fn = TREE_VALUE (*fnsp);
2859
2860      if (!value_member (fn, BINFO_VIRTUALS (binfo))
2861	  || DECL_VINDEX (fn) == error_mark_node)
2862	{
2863	  /* We don't need to adjust the `this' pointer when
2864	     calling this function.  */
2865	  BV_DELTA (*fnsp) = integer_zero_node;
2866	  BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2867
2868	  /* This is a function not already in our vtable.  Keep it.  */
2869	  fnsp = &TREE_CHAIN (*fnsp);
2870	}
2871      else
2872	/* We've already got an entry for this function.  Skip it.  */
2873	*fnsp = TREE_CHAIN (*fnsp);
2874    }
2875
2876  return virtuals;
2877}
2878
2879/* Get the base virtual function declarations in T that have the
2880   indicated NAME.  */
2881
2882static void
2883get_basefndecls (tree name, tree t, vec<tree> *base_fndecls)
2884{
2885  tree methods;
2886  int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2887  int i;
2888
2889  /* Find virtual functions in T with the indicated NAME.  */
2890  i = lookup_fnfields_1 (t, name);
2891  bool found_decls = false;
2892  if (i != -1)
2893    for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2894	 methods;
2895	 methods = OVL_NEXT (methods))
2896      {
2897	tree method = OVL_CURRENT (methods);
2898
2899	if (TREE_CODE (method) == FUNCTION_DECL
2900	    && DECL_VINDEX (method))
2901	  {
2902	    base_fndecls->safe_push (method);
2903	    found_decls = true;
2904	  }
2905      }
2906
2907  if (found_decls)
2908    return;
2909
2910  for (i = 0; i < n_baseclasses; i++)
2911    {
2912      tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2913      get_basefndecls (name, basetype, base_fndecls);
2914    }
2915}
2916
2917/* If this declaration supersedes the declaration of
2918   a method declared virtual in the base class, then
2919   mark this field as being virtual as well.  */
2920
2921void
2922check_for_override (tree decl, tree ctype)
2923{
2924  bool overrides_found = false;
2925  if (TREE_CODE (decl) == TEMPLATE_DECL)
2926    /* In [temp.mem] we have:
2927
2928	 A specialization of a member function template does not
2929	 override a virtual function from a base class.  */
2930    return;
2931  if ((DECL_DESTRUCTOR_P (decl)
2932       || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2933       || DECL_CONV_FN_P (decl))
2934      && look_for_overrides (ctype, decl)
2935      && !DECL_STATIC_FUNCTION_P (decl))
2936    /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2937       the error_mark_node so that we know it is an overriding
2938       function.  */
2939    {
2940      DECL_VINDEX (decl) = decl;
2941      overrides_found = true;
2942      if (warn_override && !DECL_OVERRIDE_P (decl)
2943	  && !DECL_DESTRUCTOR_P (decl))
2944	warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wsuggest_override,
2945		    "%q+D can be marked override", decl);
2946    }
2947
2948  if (DECL_VIRTUAL_P (decl))
2949    {
2950      if (!DECL_VINDEX (decl))
2951	DECL_VINDEX (decl) = error_mark_node;
2952      IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2953      if (DECL_DESTRUCTOR_P (decl))
2954	TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2955    }
2956  else if (DECL_FINAL_P (decl))
2957    error ("%q+#D marked %<final%>, but is not virtual", decl);
2958  if (DECL_OVERRIDE_P (decl) && !overrides_found)
2959    error ("%q+#D marked %<override%>, but does not override", decl);
2960}
2961
2962/* Warn about hidden virtual functions that are not overridden in t.
2963   We know that constructors and destructors don't apply.  */
2964
2965static void
2966warn_hidden (tree t)
2967{
2968  vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2969  tree fns;
2970  size_t i;
2971
2972  /* We go through each separately named virtual function.  */
2973  for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2974       vec_safe_iterate (method_vec, i, &fns);
2975       ++i)
2976    {
2977      tree fn;
2978      tree name;
2979      tree fndecl;
2980      tree base_binfo;
2981      tree binfo;
2982      int j;
2983
2984      /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2985	 have the same name.  Figure out what name that is.  */
2986      name = DECL_NAME (OVL_CURRENT (fns));
2987      /* There are no possibly hidden functions yet.  */
2988      auto_vec<tree, 20> base_fndecls;
2989      /* Iterate through all of the base classes looking for possibly
2990	 hidden functions.  */
2991      for (binfo = TYPE_BINFO (t), j = 0;
2992	   BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2993	{
2994	  tree basetype = BINFO_TYPE (base_binfo);
2995	  get_basefndecls (name, basetype, &base_fndecls);
2996	}
2997
2998      /* If there are no functions to hide, continue.  */
2999      if (base_fndecls.is_empty ())
3000	continue;
3001
3002      /* Remove any overridden functions.  */
3003      for (fn = fns; fn; fn = OVL_NEXT (fn))
3004	{
3005	  fndecl = OVL_CURRENT (fn);
3006	  if (TREE_CODE (fndecl) == FUNCTION_DECL
3007	      && DECL_VINDEX (fndecl))
3008	    {
3009		/* If the method from the base class has the same
3010		   signature as the method from the derived class, it
3011		   has been overridden.  */
3012		for (size_t k = 0; k < base_fndecls.length (); k++)
3013		if (base_fndecls[k]
3014		    && same_signature_p (fndecl, base_fndecls[k]))
3015		  base_fndecls[k] = NULL_TREE;
3016	    }
3017	}
3018
3019      /* Now give a warning for all base functions without overriders,
3020	 as they are hidden.  */
3021      size_t k;
3022      tree base_fndecl;
3023      FOR_EACH_VEC_ELT (base_fndecls, k, base_fndecl)
3024	if (base_fndecl)
3025	  {
3026	      /* Here we know it is a hider, and no overrider exists.  */
3027	      warning (OPT_Woverloaded_virtual, "%q+D was hidden", base_fndecl);
3028	      warning (OPT_Woverloaded_virtual, "  by %q+D", fns);
3029	  }
3030    }
3031}
3032
3033/* Recursive helper for finish_struct_anon.  */
3034
3035static void
3036finish_struct_anon_r (tree field, bool complain)
3037{
3038  bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
3039  tree elt = TYPE_FIELDS (TREE_TYPE (field));
3040  for (; elt; elt = DECL_CHAIN (elt))
3041    {
3042      /* We're generally only interested in entities the user
3043	 declared, but we also find nested classes by noticing
3044	 the TYPE_DECL that we create implicitly.  You're
3045	 allowed to put one anonymous union inside another,
3046	 though, so we explicitly tolerate that.  We use
3047	 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
3048	 we also allow unnamed types used for defining fields.  */
3049      if (DECL_ARTIFICIAL (elt)
3050	  && (!DECL_IMPLICIT_TYPEDEF_P (elt)
3051	      || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
3052	continue;
3053
3054      if (TREE_CODE (elt) != FIELD_DECL)
3055	{
3056	  /* We already complained about static data members in
3057	     finish_static_data_member_decl.  */
3058	  if (complain && TREE_CODE (elt) != VAR_DECL)
3059	    {
3060	      if (is_union)
3061		permerror (input_location,
3062			   "%q+#D invalid; an anonymous union can "
3063			   "only have non-static data members", elt);
3064	      else
3065		permerror (input_location,
3066			   "%q+#D invalid; an anonymous struct can "
3067			   "only have non-static data members", elt);
3068	    }
3069	  continue;
3070	}
3071
3072      if (complain)
3073	{
3074	  if (TREE_PRIVATE (elt))
3075	    {
3076	      if (is_union)
3077		permerror (input_location,
3078			   "private member %q+#D in anonymous union", elt);
3079	      else
3080		permerror (input_location,
3081			   "private member %q+#D in anonymous struct", elt);
3082	    }
3083	  else if (TREE_PROTECTED (elt))
3084	    {
3085	      if (is_union)
3086		permerror (input_location,
3087			   "protected member %q+#D in anonymous union", elt);
3088	      else
3089		permerror (input_location,
3090			   "protected member %q+#D in anonymous struct", elt);
3091	    }
3092	}
3093
3094      TREE_PRIVATE (elt) = TREE_PRIVATE (field);
3095      TREE_PROTECTED (elt) = TREE_PROTECTED (field);
3096
3097      /* Recurse into the anonymous aggregates to handle correctly
3098	 access control (c++/24926):
3099
3100	 class A {
3101	   union {
3102	     union {
3103	       int i;
3104	     };
3105	   };
3106	 };
3107
3108	 int j=A().i;  */
3109      if (DECL_NAME (elt) == NULL_TREE
3110	  && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
3111	finish_struct_anon_r (elt, /*complain=*/false);
3112    }
3113}
3114
3115/* Check for things that are invalid.  There are probably plenty of other
3116   things we should check for also.  */
3117
3118static void
3119finish_struct_anon (tree t)
3120{
3121  for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
3122    {
3123      if (TREE_STATIC (field))
3124	continue;
3125      if (TREE_CODE (field) != FIELD_DECL)
3126	continue;
3127
3128      if (DECL_NAME (field) == NULL_TREE
3129	  && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
3130	finish_struct_anon_r (field, /*complain=*/true);
3131    }
3132}
3133
3134/* Add T to CLASSTYPE_DECL_LIST of current_class_type which
3135   will be used later during class template instantiation.
3136   When FRIEND_P is zero, T can be a static member data (VAR_DECL),
3137   a non-static member data (FIELD_DECL), a member function
3138   (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
3139   a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
3140   When FRIEND_P is nonzero, T is either a friend class
3141   (RECORD_TYPE, TEMPLATE_DECL) or a friend function
3142   (FUNCTION_DECL, TEMPLATE_DECL).  */
3143
3144void
3145maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
3146{
3147  /* Save some memory by not creating TREE_LIST if TYPE is not template.  */
3148  if (CLASSTYPE_TEMPLATE_INFO (type))
3149    CLASSTYPE_DECL_LIST (type)
3150      = tree_cons (friend_p ? NULL_TREE : type,
3151		   t, CLASSTYPE_DECL_LIST (type));
3152}
3153
3154/* This function is called from declare_virt_assop_and_dtor via
3155   dfs_walk_all.
3156
3157   DATA is a type that direcly or indirectly inherits the base
3158   represented by BINFO.  If BINFO contains a virtual assignment [copy
3159   assignment or move assigment] operator or a virtual constructor,
3160   declare that function in DATA if it hasn't been already declared.  */
3161
3162static tree
3163dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
3164{
3165  tree bv, fn, t = (tree)data;
3166  tree opname = ansi_assopname (NOP_EXPR);
3167
3168  gcc_assert (t && CLASS_TYPE_P (t));
3169  gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
3170
3171  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
3172    /* A base without a vtable needs no modification, and its bases
3173       are uninteresting.  */
3174    return dfs_skip_bases;
3175
3176  if (BINFO_PRIMARY_P (binfo))
3177    /* If this is a primary base, then we have already looked at the
3178       virtual functions of its vtable.  */
3179    return NULL_TREE;
3180
3181  for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3182    {
3183      fn = BV_FN (bv);
3184
3185      if (DECL_NAME (fn) == opname)
3186	{
3187	  if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3188	    lazily_declare_fn (sfk_copy_assignment, t);
3189	  if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3190	    lazily_declare_fn (sfk_move_assignment, t);
3191	}
3192      else if (DECL_DESTRUCTOR_P (fn)
3193	       && CLASSTYPE_LAZY_DESTRUCTOR (t))
3194	lazily_declare_fn (sfk_destructor, t);
3195    }
3196
3197  return NULL_TREE;
3198}
3199
3200/* If the class type T has a direct or indirect base that contains a
3201   virtual assignment operator or a virtual destructor, declare that
3202   function in T if it hasn't been already declared.  */
3203
3204static void
3205declare_virt_assop_and_dtor (tree t)
3206{
3207  if (!(TYPE_POLYMORPHIC_P (t)
3208	&& (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3209	    || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3210	    || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3211    return;
3212
3213  dfs_walk_all (TYPE_BINFO (t),
3214		dfs_declare_virt_assop_and_dtor,
3215		NULL, t);
3216}
3217
3218/* Declare the inheriting constructor for class T inherited from base
3219   constructor CTOR with the parameter array PARMS of size NPARMS.  */
3220
3221static void
3222one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3223{
3224  /* We don't declare an inheriting ctor that would be a default,
3225     copy or move ctor for derived or base.  */
3226  if (nparms == 0)
3227    return;
3228  if (nparms == 1
3229      && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3230    {
3231      tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3232      if (parm == t || parm == DECL_CONTEXT (ctor))
3233	return;
3234    }
3235
3236  tree parmlist = void_list_node;
3237  for (int i = nparms - 1; i >= 0; i--)
3238    parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3239  tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3240				   t, false, ctor, parmlist);
3241  if (add_method (t, fn, NULL_TREE))
3242    {
3243      DECL_CHAIN (fn) = TYPE_METHODS (t);
3244      TYPE_METHODS (t) = fn;
3245    }
3246}
3247
3248/* Declare all the inheriting constructors for class T inherited from base
3249   constructor CTOR.  */
3250
3251static void
3252one_inherited_ctor (tree ctor, tree t)
3253{
3254  tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3255
3256  tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3257  int i = 0;
3258  for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3259    {
3260      if (TREE_PURPOSE (parms))
3261	one_inheriting_sig (t, ctor, new_parms, i);
3262      new_parms[i++] = TREE_VALUE (parms);
3263    }
3264  one_inheriting_sig (t, ctor, new_parms, i);
3265  if (parms == NULL_TREE)
3266    {
3267      if (warning (OPT_Winherited_variadic_ctor,
3268		   "the ellipsis in %qD is not inherited", ctor))
3269	inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3270    }
3271}
3272
3273/* Create default constructors, assignment operators, and so forth for
3274   the type indicated by T, if they are needed.  CANT_HAVE_CONST_CTOR,
3275   and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3276   the class cannot have a default constructor, copy constructor
3277   taking a const reference argument, or an assignment operator taking
3278   a const reference, respectively.  */
3279
3280static void
3281add_implicitly_declared_members (tree t, tree* access_decls,
3282				 int cant_have_const_cctor,
3283				 int cant_have_const_assignment)
3284{
3285  bool move_ok = false;
3286
3287  if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3288      && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3289      && !type_has_move_constructor (t) && !type_has_move_assign (t))
3290    move_ok = true;
3291
3292  /* Destructor.  */
3293  if (!CLASSTYPE_DESTRUCTORS (t))
3294    {
3295      /* In general, we create destructors lazily.  */
3296      CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3297
3298      if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3299	  && TYPE_FOR_JAVA (t))
3300	/* But if this is a Java class, any non-trivial destructor is
3301	   invalid, even if compiler-generated.  Therefore, if the
3302	   destructor is non-trivial we create it now.  */
3303	lazily_declare_fn (sfk_destructor, t);
3304    }
3305
3306  /* [class.ctor]
3307
3308     If there is no user-declared constructor for a class, a default
3309     constructor is implicitly declared.  */
3310  if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3311    {
3312      TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3313      CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3314      if (cxx_dialect >= cxx11)
3315	TYPE_HAS_CONSTEXPR_CTOR (t)
3316	  /* This might force the declaration.  */
3317	  = type_has_constexpr_default_constructor (t);
3318    }
3319
3320  /* [class.ctor]
3321
3322     If a class definition does not explicitly declare a copy
3323     constructor, one is declared implicitly.  */
3324  if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3325    {
3326      TYPE_HAS_COPY_CTOR (t) = 1;
3327      TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3328      CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3329      if (move_ok)
3330	CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3331    }
3332
3333  /* If there is no assignment operator, one will be created if and
3334     when it is needed.  For now, just record whether or not the type
3335     of the parameter to the assignment operator will be a const or
3336     non-const reference.  */
3337  if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3338    {
3339      TYPE_HAS_COPY_ASSIGN (t) = 1;
3340      TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3341      CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3342      if (move_ok && !LAMBDA_TYPE_P (t))
3343	CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3344    }
3345
3346  /* We can't be lazy about declaring functions that might override
3347     a virtual function from a base class.  */
3348  declare_virt_assop_and_dtor (t);
3349
3350  while (*access_decls)
3351    {
3352      tree using_decl = TREE_VALUE (*access_decls);
3353      tree decl = USING_DECL_DECLS (using_decl);
3354      if (DECL_NAME (using_decl) == ctor_identifier)
3355	{
3356	  /* declare, then remove the decl */
3357	  tree ctor_list = decl;
3358	  location_t loc = input_location;
3359	  input_location = DECL_SOURCE_LOCATION (using_decl);
3360	  if (ctor_list)
3361	    for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3362	      one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3363	  *access_decls = TREE_CHAIN (*access_decls);
3364	  input_location = loc;
3365	}
3366      else
3367	access_decls = &TREE_CHAIN (*access_decls);
3368    }
3369}
3370
3371/* Subroutine of insert_into_classtype_sorted_fields.  Recursively
3372   count the number of fields in TYPE, including anonymous union
3373   members.  */
3374
3375static int
3376count_fields (tree fields)
3377{
3378  tree x;
3379  int n_fields = 0;
3380  for (x = fields; x; x = DECL_CHAIN (x))
3381    {
3382      if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3383	n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3384      else
3385	n_fields += 1;
3386    }
3387  return n_fields;
3388}
3389
3390/* Subroutine of insert_into_classtype_sorted_fields.  Recursively add
3391   all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3392   elts, starting at offset IDX.  */
3393
3394static int
3395add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3396{
3397  tree x;
3398  for (x = fields; x; x = DECL_CHAIN (x))
3399    {
3400      if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3401	idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3402      else
3403	field_vec->elts[idx++] = x;
3404    }
3405  return idx;
3406}
3407
3408/* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3409   starting at offset IDX.  */
3410
3411static int
3412add_enum_fields_to_record_type (tree enumtype,
3413				struct sorted_fields_type *field_vec,
3414				int idx)
3415{
3416  tree values;
3417  for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3418      field_vec->elts[idx++] = TREE_VALUE (values);
3419  return idx;
3420}
3421
3422/* FIELD is a bit-field.  We are finishing the processing for its
3423   enclosing type.  Issue any appropriate messages and set appropriate
3424   flags.  Returns false if an error has been diagnosed.  */
3425
3426static bool
3427check_bitfield_decl (tree field)
3428{
3429  tree type = TREE_TYPE (field);
3430  tree w;
3431
3432  /* Extract the declared width of the bitfield, which has been
3433     temporarily stashed in DECL_INITIAL.  */
3434  w = DECL_INITIAL (field);
3435  gcc_assert (w != NULL_TREE);
3436  /* Remove the bit-field width indicator so that the rest of the
3437     compiler does not treat that value as an initializer.  */
3438  DECL_INITIAL (field) = NULL_TREE;
3439
3440  /* Detect invalid bit-field type.  */
3441  if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3442    {
3443      error ("bit-field %q+#D with non-integral type", field);
3444      w = error_mark_node;
3445    }
3446  else
3447    {
3448      location_t loc = input_location;
3449      /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs.  */
3450      STRIP_NOPS (w);
3451
3452      /* detect invalid field size.  */
3453      input_location = DECL_SOURCE_LOCATION (field);
3454      w = cxx_constant_value (w);
3455      input_location = loc;
3456
3457      if (TREE_CODE (w) != INTEGER_CST)
3458	{
3459	  error ("bit-field %q+D width not an integer constant", field);
3460	  w = error_mark_node;
3461	}
3462      else if (tree_int_cst_sgn (w) < 0)
3463	{
3464	  error ("negative width in bit-field %q+D", field);
3465	  w = error_mark_node;
3466	}
3467      else if (integer_zerop (w) && DECL_NAME (field) != 0)
3468	{
3469	  error ("zero width for bit-field %q+D", field);
3470	  w = error_mark_node;
3471	}
3472      else if ((TREE_CODE (type) != ENUMERAL_TYPE
3473		&& TREE_CODE (type) != BOOLEAN_TYPE
3474		&& compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3475	       || ((TREE_CODE (type) == ENUMERAL_TYPE
3476		    || TREE_CODE (type) == BOOLEAN_TYPE)
3477		   && tree_int_cst_lt (TYPE_SIZE (type), w)))
3478	warning (0, "width of %q+D exceeds its type", field);
3479      else if (TREE_CODE (type) == ENUMERAL_TYPE
3480	       && (0 > (compare_tree_int
3481			(w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3482	warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3483    }
3484
3485  if (w != error_mark_node)
3486    {
3487      DECL_SIZE (field) = convert (bitsizetype, w);
3488      DECL_BIT_FIELD (field) = 1;
3489      return true;
3490    }
3491  else
3492    {
3493      /* Non-bit-fields are aligned for their type.  */
3494      DECL_BIT_FIELD (field) = 0;
3495      CLEAR_DECL_C_BIT_FIELD (field);
3496      return false;
3497    }
3498}
3499
3500/* FIELD is a non bit-field.  We are finishing the processing for its
3501   enclosing type T.  Issue any appropriate messages and set appropriate
3502   flags.  */
3503
3504static void
3505check_field_decl (tree field,
3506		  tree t,
3507		  int* cant_have_const_ctor,
3508		  int* no_const_asn_ref,
3509		  int* any_default_members)
3510{
3511  tree type = strip_array_types (TREE_TYPE (field));
3512
3513  /* In C++98 an anonymous union cannot contain any fields which would change
3514     the settings of CANT_HAVE_CONST_CTOR and friends.  */
3515  if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3516    ;
3517  /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3518     structs.  So, we recurse through their fields here.  */
3519  else if (ANON_AGGR_TYPE_P (type))
3520    {
3521      tree fields;
3522
3523      for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3524	if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3525	  check_field_decl (fields, t, cant_have_const_ctor,
3526			    no_const_asn_ref, any_default_members);
3527    }
3528  /* Check members with class type for constructors, destructors,
3529     etc.  */
3530  else if (CLASS_TYPE_P (type))
3531    {
3532      /* Never let anything with uninheritable virtuals
3533	 make it through without complaint.  */
3534      abstract_virtuals_error (field, type);
3535
3536      if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3537	{
3538	  static bool warned;
3539	  int oldcount = errorcount;
3540	  if (TYPE_NEEDS_CONSTRUCTING (type))
3541	    error ("member %q+#D with constructor not allowed in union",
3542		   field);
3543	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3544	    error ("member %q+#D with destructor not allowed in union", field);
3545	  if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3546	    error ("member %q+#D with copy assignment operator not allowed in union",
3547		   field);
3548	  if (!warned && errorcount > oldcount)
3549	    {
3550	      inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3551		      "only available with -std=c++11 or -std=gnu++11");
3552	      warned = true;
3553	    }
3554	}
3555      else
3556	{
3557	  TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3558	  TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3559	    |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3560	  TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3561	    |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3562		|| !TYPE_HAS_COPY_ASSIGN (type));
3563	  TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3564					     || !TYPE_HAS_COPY_CTOR (type));
3565	  TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3566	  TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3567	  TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3568					|| TYPE_HAS_COMPLEX_DFLT (type));
3569	}
3570
3571      if (TYPE_HAS_COPY_CTOR (type)
3572	  && !TYPE_HAS_CONST_COPY_CTOR (type))
3573	*cant_have_const_ctor = 1;
3574
3575      if (TYPE_HAS_COPY_ASSIGN (type)
3576	  && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3577	*no_const_asn_ref = 1;
3578    }
3579
3580  check_abi_tags (t, field);
3581
3582  if (DECL_INITIAL (field) != NULL_TREE)
3583    {
3584      /* `build_class_init_list' does not recognize
3585	 non-FIELD_DECLs.  */
3586      if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3587	error ("multiple fields in union %qT initialized", t);
3588      *any_default_members = 1;
3589    }
3590}
3591
3592/* Check the data members (both static and non-static), class-scoped
3593   typedefs, etc., appearing in the declaration of T.  Issue
3594   appropriate diagnostics.  Sets ACCESS_DECLS to a list (in
3595   declaration order) of access declarations; each TREE_VALUE in this
3596   list is a USING_DECL.
3597
3598   In addition, set the following flags:
3599
3600     EMPTY_P
3601       The class is empty, i.e., contains no non-static data members.
3602
3603     CANT_HAVE_CONST_CTOR_P
3604       This class cannot have an implicitly generated copy constructor
3605       taking a const reference.
3606
3607     CANT_HAVE_CONST_ASN_REF
3608       This class cannot have an implicitly generated assignment
3609       operator taking a const reference.
3610
3611   All of these flags should be initialized before calling this
3612   function.
3613
3614   Returns a pointer to the end of the TYPE_FIELDs chain; additional
3615   fields can be added by adding to this chain.  */
3616
3617static void
3618check_field_decls (tree t, tree *access_decls,
3619		   int *cant_have_const_ctor_p,
3620		   int *no_const_asn_ref_p)
3621{
3622  tree *field;
3623  tree *next;
3624  bool has_pointers;
3625  int any_default_members;
3626  int cant_pack = 0;
3627  int field_access = -1;
3628
3629  /* Assume there are no access declarations.  */
3630  *access_decls = NULL_TREE;
3631  /* Assume this class has no pointer members.  */
3632  has_pointers = false;
3633  /* Assume none of the members of this class have default
3634     initializations.  */
3635  any_default_members = 0;
3636
3637  for (field = &TYPE_FIELDS (t); *field; field = next)
3638    {
3639      tree x = *field;
3640      tree type = TREE_TYPE (x);
3641      int this_field_access;
3642
3643      next = &DECL_CHAIN (x);
3644
3645      if (TREE_CODE (x) == USING_DECL)
3646	{
3647	  /* Save the access declarations for our caller.  */
3648	  *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3649	  continue;
3650	}
3651
3652      if (TREE_CODE (x) == TYPE_DECL
3653	  || TREE_CODE (x) == TEMPLATE_DECL)
3654	continue;
3655
3656      /* If we've gotten this far, it's a data member, possibly static,
3657	 or an enumerator.  */
3658      if (TREE_CODE (x) != CONST_DECL)
3659	DECL_CONTEXT (x) = t;
3660
3661      /* When this goes into scope, it will be a non-local reference.  */
3662      DECL_NONLOCAL (x) = 1;
3663
3664      if (TREE_CODE (t) == UNION_TYPE
3665	  && cxx_dialect < cxx11)
3666	{
3667	  /* [class.union] (C++98)
3668
3669	     If a union contains a static data member, or a member of
3670	     reference type, the program is ill-formed.
3671
3672	     In C++11 this limitation doesn't exist anymore.  */
3673	  if (VAR_P (x))
3674	    {
3675	      error ("in C++98 %q+D may not be static because it is "
3676		     "a member of a union", x);
3677	      continue;
3678	    }
3679	  if (TREE_CODE (type) == REFERENCE_TYPE)
3680	    {
3681	      error ("in C++98 %q+D may not have reference type %qT "
3682		     "because it is a member of a union", x, type);
3683	      continue;
3684	    }
3685	}
3686
3687      /* Perform error checking that did not get done in
3688	 grokdeclarator.  */
3689      if (TREE_CODE (type) == FUNCTION_TYPE)
3690	{
3691	  error ("field %q+D invalidly declared function type", x);
3692	  type = build_pointer_type (type);
3693	  TREE_TYPE (x) = type;
3694	}
3695      else if (TREE_CODE (type) == METHOD_TYPE)
3696	{
3697	  error ("field %q+D invalidly declared method type", x);
3698	  type = build_pointer_type (type);
3699	  TREE_TYPE (x) = type;
3700	}
3701
3702      if (type == error_mark_node)
3703	continue;
3704
3705      if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3706	continue;
3707
3708      /* Now it can only be a FIELD_DECL.  */
3709
3710      if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3711	CLASSTYPE_NON_AGGREGATE (t) = 1;
3712
3713      /* If at least one non-static data member is non-literal, the whole
3714         class becomes non-literal.  Per Core/1453, volatile non-static
3715	 data members and base classes are also not allowed.
3716	 Note: if the type is incomplete we will complain later on.  */
3717      if (COMPLETE_TYPE_P (type)
3718	  && (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type)))
3719        CLASSTYPE_LITERAL_P (t) = false;
3720
3721      /* A standard-layout class is a class that:
3722	 ...
3723	 has the same access control (Clause 11) for all non-static data members,
3724         ...  */
3725      this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3726      if (field_access == -1)
3727	field_access = this_field_access;
3728      else if (this_field_access != field_access)
3729	CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3730
3731      /* If this is of reference type, check if it needs an init.  */
3732      if (TREE_CODE (type) == REFERENCE_TYPE)
3733	{
3734	  CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3735	  CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3736	  if (DECL_INITIAL (x) == NULL_TREE)
3737	    SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3738	  if (cxx_dialect < cxx11)
3739	    {
3740	      /* ARM $12.6.2: [A member initializer list] (or, for an
3741		 aggregate, initialization by a brace-enclosed list) is the
3742		 only way to initialize nonstatic const and reference
3743		 members.  */
3744	      TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3745	      TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3746	    }
3747	}
3748
3749      type = strip_array_types (type);
3750
3751      if (TYPE_PACKED (t))
3752	{
3753	  if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3754	    {
3755	      warning
3756		(0,
3757		 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3758		 x);
3759	      cant_pack = 1;
3760	    }
3761	  else if (DECL_C_BIT_FIELD (x)
3762		   || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3763	    DECL_PACKED (x) = 1;
3764	}
3765
3766      if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3767	/* We don't treat zero-width bitfields as making a class
3768	   non-empty.  */
3769	;
3770      else
3771	{
3772	  /* The class is non-empty.  */
3773	  CLASSTYPE_EMPTY_P (t) = 0;
3774	  /* The class is not even nearly empty.  */
3775	  CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3776	  /* If one of the data members contains an empty class,
3777	     so does T.  */
3778	  if (CLASS_TYPE_P (type)
3779	      && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3780	    CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3781	}
3782
3783      /* This is used by -Weffc++ (see below). Warn only for pointers
3784	 to members which might hold dynamic memory. So do not warn
3785	 for pointers to functions or pointers to members.  */
3786      if (TYPE_PTR_P (type)
3787	  && !TYPE_PTRFN_P (type))
3788	has_pointers = true;
3789
3790      if (CLASS_TYPE_P (type))
3791	{
3792	  if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3793	    SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3794	  if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3795	    SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3796	}
3797
3798      if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3799	CLASSTYPE_HAS_MUTABLE (t) = 1;
3800
3801      if (DECL_MUTABLE_P (x))
3802	{
3803	  if (CP_TYPE_CONST_P (type))
3804	    {
3805	      error ("member %q+D cannot be declared both %<const%> "
3806		     "and %<mutable%>", x);
3807	      continue;
3808	    }
3809	  if (TREE_CODE (type) == REFERENCE_TYPE)
3810	    {
3811	      error ("member %q+D cannot be declared as a %<mutable%> "
3812		     "reference", x);
3813	      continue;
3814	    }
3815	}
3816
3817      if (! layout_pod_type_p (type))
3818	/* DR 148 now allows pointers to members (which are POD themselves),
3819	   to be allowed in POD structs.  */
3820	CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3821
3822      if (!std_layout_type_p (type))
3823	CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3824
3825      if (! zero_init_p (type))
3826	CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3827
3828      /* We set DECL_C_BIT_FIELD in grokbitfield.
3829	 If the type and width are valid, we'll also set DECL_BIT_FIELD.  */
3830      if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3831	check_field_decl (x, t,
3832			  cant_have_const_ctor_p,
3833			  no_const_asn_ref_p,
3834			  &any_default_members);
3835
3836      /* Now that we've removed bit-field widths from DECL_INITIAL,
3837	 anything left in DECL_INITIAL is an NSDMI that makes the class
3838	 non-aggregate in C++11.  */
3839      if (DECL_INITIAL (x) && cxx_dialect < cxx14)
3840	CLASSTYPE_NON_AGGREGATE (t) = true;
3841
3842      /* If any field is const, the structure type is pseudo-const.  */
3843      if (CP_TYPE_CONST_P (type))
3844	{
3845	  C_TYPE_FIELDS_READONLY (t) = 1;
3846	  if (DECL_INITIAL (x) == NULL_TREE)
3847	    SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3848	  if (cxx_dialect < cxx11)
3849	    {
3850	      /* ARM $12.6.2: [A member initializer list] (or, for an
3851		 aggregate, initialization by a brace-enclosed list) is the
3852		 only way to initialize nonstatic const and reference
3853		 members.  */
3854	      TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3855	      TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3856	    }
3857	}
3858      /* A field that is pseudo-const makes the structure likewise.  */
3859      else if (CLASS_TYPE_P (type))
3860	{
3861	  C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3862	  SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3863	    CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3864	    | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3865	}
3866
3867      /* Core issue 80: A nonstatic data member is required to have a
3868	 different name from the class iff the class has a
3869	 user-declared constructor.  */
3870      if (constructor_name_p (DECL_NAME (x), t)
3871	  && TYPE_HAS_USER_CONSTRUCTOR (t))
3872	permerror (input_location, "field %q+#D with same name as class", x);
3873    }
3874
3875  /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3876     it should also define a copy constructor and an assignment operator to
3877     implement the correct copy semantic (deep vs shallow, etc.). As it is
3878     not feasible to check whether the constructors do allocate dynamic memory
3879     and store it within members, we approximate the warning like this:
3880
3881     -- Warn only if there are members which are pointers
3882     -- Warn only if there is a non-trivial constructor (otherwise,
3883	there cannot be memory allocated).
3884     -- Warn only if there is a non-trivial destructor. We assume that the
3885	user at least implemented the cleanup correctly, and a destructor
3886	is needed to free dynamic memory.
3887
3888     This seems enough for practical purposes.  */
3889  if (warn_ecpp
3890      && has_pointers
3891      && TYPE_HAS_USER_CONSTRUCTOR (t)
3892      && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3893      && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3894    {
3895      warning (OPT_Weffc__, "%q#T has pointer data members", t);
3896
3897      if (! TYPE_HAS_COPY_CTOR (t))
3898	{
3899	  warning (OPT_Weffc__,
3900		   "  but does not override %<%T(const %T&)%>", t, t);
3901	  if (!TYPE_HAS_COPY_ASSIGN (t))
3902	    warning (OPT_Weffc__, "  or %<operator=(const %T&)%>", t);
3903	}
3904      else if (! TYPE_HAS_COPY_ASSIGN (t))
3905	warning (OPT_Weffc__,
3906		 "  but does not override %<operator=(const %T&)%>", t);
3907    }
3908
3909  /* Non-static data member initializers make the default constructor
3910     non-trivial.  */
3911  if (any_default_members)
3912    {
3913      TYPE_NEEDS_CONSTRUCTING (t) = true;
3914      TYPE_HAS_COMPLEX_DFLT (t) = true;
3915    }
3916
3917  /* If any of the fields couldn't be packed, unset TYPE_PACKED.  */
3918  if (cant_pack)
3919    TYPE_PACKED (t) = 0;
3920
3921  /* Check anonymous struct/anonymous union fields.  */
3922  finish_struct_anon (t);
3923
3924  /* We've built up the list of access declarations in reverse order.
3925     Fix that now.  */
3926  *access_decls = nreverse (*access_decls);
3927}
3928
3929/* If TYPE is an empty class type, records its OFFSET in the table of
3930   OFFSETS.  */
3931
3932static int
3933record_subobject_offset (tree type, tree offset, splay_tree offsets)
3934{
3935  splay_tree_node n;
3936
3937  if (!is_empty_class (type))
3938    return 0;
3939
3940  /* Record the location of this empty object in OFFSETS.  */
3941  n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3942  if (!n)
3943    n = splay_tree_insert (offsets,
3944			   (splay_tree_key) offset,
3945			   (splay_tree_value) NULL_TREE);
3946  n->value = ((splay_tree_value)
3947	      tree_cons (NULL_TREE,
3948			 type,
3949			 (tree) n->value));
3950
3951  return 0;
3952}
3953
3954/* Returns nonzero if TYPE is an empty class type and there is
3955   already an entry in OFFSETS for the same TYPE as the same OFFSET.  */
3956
3957static int
3958check_subobject_offset (tree type, tree offset, splay_tree offsets)
3959{
3960  splay_tree_node n;
3961  tree t;
3962
3963  if (!is_empty_class (type))
3964    return 0;
3965
3966  /* Record the location of this empty object in OFFSETS.  */
3967  n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3968  if (!n)
3969    return 0;
3970
3971  for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3972    if (same_type_p (TREE_VALUE (t), type))
3973      return 1;
3974
3975  return 0;
3976}
3977
3978/* Walk through all the subobjects of TYPE (located at OFFSET).  Call
3979   F for every subobject, passing it the type, offset, and table of
3980   OFFSETS.  If VBASES_P is one, then virtual non-primary bases should
3981   be traversed.
3982
3983   If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3984   than MAX_OFFSET will not be walked.
3985
3986   If F returns a nonzero value, the traversal ceases, and that value
3987   is returned.  Otherwise, returns zero.  */
3988
3989static int
3990walk_subobject_offsets (tree type,
3991			subobject_offset_fn f,
3992			tree offset,
3993			splay_tree offsets,
3994			tree max_offset,
3995			int vbases_p)
3996{
3997  int r = 0;
3998  tree type_binfo = NULL_TREE;
3999
4000  /* If this OFFSET is bigger than the MAX_OFFSET, then we should
4001     stop.  */
4002  if (max_offset && tree_int_cst_lt (max_offset, offset))
4003    return 0;
4004
4005  if (type == error_mark_node)
4006    return 0;
4007
4008  if (!TYPE_P (type))
4009    {
4010      type_binfo = type;
4011      type = BINFO_TYPE (type);
4012    }
4013
4014  if (CLASS_TYPE_P (type))
4015    {
4016      tree field;
4017      tree binfo;
4018      int i;
4019
4020      /* Avoid recursing into objects that are not interesting.  */
4021      if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
4022	return 0;
4023
4024      /* Record the location of TYPE.  */
4025      r = (*f) (type, offset, offsets);
4026      if (r)
4027	return r;
4028
4029      /* Iterate through the direct base classes of TYPE.  */
4030      if (!type_binfo)
4031	type_binfo = TYPE_BINFO (type);
4032      for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
4033	{
4034	  tree binfo_offset;
4035
4036	  if (BINFO_VIRTUAL_P (binfo))
4037	    continue;
4038
4039	  tree orig_binfo;
4040	  /* We cannot rely on BINFO_OFFSET being set for the base
4041	     class yet, but the offsets for direct non-virtual
4042	     bases can be calculated by going back to the TYPE.  */
4043	  orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
4044	  binfo_offset = size_binop (PLUS_EXPR,
4045				     offset,
4046				     BINFO_OFFSET (orig_binfo));
4047
4048	  r = walk_subobject_offsets (binfo,
4049				      f,
4050				      binfo_offset,
4051				      offsets,
4052				      max_offset,
4053				      /*vbases_p=*/0);
4054	  if (r)
4055	    return r;
4056	}
4057
4058      if (CLASSTYPE_VBASECLASSES (type))
4059	{
4060	  unsigned ix;
4061	  vec<tree, va_gc> *vbases;
4062
4063	  /* Iterate through the virtual base classes of TYPE.  In G++
4064	     3.2, we included virtual bases in the direct base class
4065	     loop above, which results in incorrect results; the
4066	     correct offsets for virtual bases are only known when
4067	     working with the most derived type.  */
4068	  if (vbases_p)
4069	    for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
4070		 vec_safe_iterate (vbases, ix, &binfo); ix++)
4071	      {
4072		r = walk_subobject_offsets (binfo,
4073					    f,
4074					    size_binop (PLUS_EXPR,
4075							offset,
4076							BINFO_OFFSET (binfo)),
4077					    offsets,
4078					    max_offset,
4079					    /*vbases_p=*/0);
4080		if (r)
4081		  return r;
4082	      }
4083	  else
4084	    {
4085	      /* We still have to walk the primary base, if it is
4086		 virtual.  (If it is non-virtual, then it was walked
4087		 above.)  */
4088	      tree vbase = get_primary_binfo (type_binfo);
4089
4090	      if (vbase && BINFO_VIRTUAL_P (vbase)
4091		  && BINFO_PRIMARY_P (vbase)
4092		  && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
4093		{
4094		  r = (walk_subobject_offsets
4095		       (vbase, f, offset,
4096			offsets, max_offset, /*vbases_p=*/0));
4097		  if (r)
4098		    return r;
4099		}
4100	    }
4101	}
4102
4103      /* Iterate through the fields of TYPE.  */
4104      for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4105	if (TREE_CODE (field) == FIELD_DECL
4106	    && TREE_TYPE (field) != error_mark_node
4107	    && !DECL_ARTIFICIAL (field))
4108	  {
4109	    tree field_offset;
4110
4111	    field_offset = byte_position (field);
4112
4113	    r = walk_subobject_offsets (TREE_TYPE (field),
4114					f,
4115					size_binop (PLUS_EXPR,
4116						    offset,
4117						    field_offset),
4118					offsets,
4119					max_offset,
4120					/*vbases_p=*/1);
4121	    if (r)
4122	      return r;
4123	  }
4124    }
4125  else if (TREE_CODE (type) == ARRAY_TYPE)
4126    {
4127      tree element_type = strip_array_types (type);
4128      tree domain = TYPE_DOMAIN (type);
4129      tree index;
4130
4131      /* Avoid recursing into objects that are not interesting.  */
4132      if (!CLASS_TYPE_P (element_type)
4133	  || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
4134	return 0;
4135
4136      /* Step through each of the elements in the array.  */
4137      for (index = size_zero_node;
4138	   !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
4139	   index = size_binop (PLUS_EXPR, index, size_one_node))
4140	{
4141	  r = walk_subobject_offsets (TREE_TYPE (type),
4142				      f,
4143				      offset,
4144				      offsets,
4145				      max_offset,
4146				      /*vbases_p=*/1);
4147	  if (r)
4148	    return r;
4149	  offset = size_binop (PLUS_EXPR, offset,
4150			       TYPE_SIZE_UNIT (TREE_TYPE (type)));
4151	  /* If this new OFFSET is bigger than the MAX_OFFSET, then
4152	     there's no point in iterating through the remaining
4153	     elements of the array.  */
4154	  if (max_offset && tree_int_cst_lt (max_offset, offset))
4155	    break;
4156	}
4157    }
4158
4159  return 0;
4160}
4161
4162/* Record all of the empty subobjects of TYPE (either a type or a
4163   binfo).  If IS_DATA_MEMBER is true, then a non-static data member
4164   is being placed at OFFSET; otherwise, it is a base class that is
4165   being placed at OFFSET.  */
4166
4167static void
4168record_subobject_offsets (tree type,
4169			  tree offset,
4170			  splay_tree offsets,
4171			  bool is_data_member)
4172{
4173  tree max_offset;
4174  /* If recording subobjects for a non-static data member or a
4175     non-empty base class , we do not need to record offsets beyond
4176     the size of the biggest empty class.  Additional data members
4177     will go at the end of the class.  Additional base classes will go
4178     either at offset zero (if empty, in which case they cannot
4179     overlap with offsets past the size of the biggest empty class) or
4180     at the end of the class.
4181
4182     However, if we are placing an empty base class, then we must record
4183     all offsets, as either the empty class is at offset zero (where
4184     other empty classes might later be placed) or at the end of the
4185     class (where other objects might then be placed, so other empty
4186     subobjects might later overlap).  */
4187  if (is_data_member
4188      || !is_empty_class (BINFO_TYPE (type)))
4189    max_offset = sizeof_biggest_empty_class;
4190  else
4191    max_offset = NULL_TREE;
4192  walk_subobject_offsets (type, record_subobject_offset, offset,
4193			  offsets, max_offset, is_data_member);
4194}
4195
4196/* Returns nonzero if any of the empty subobjects of TYPE (located at
4197   OFFSET) conflict with entries in OFFSETS.  If VBASES_P is nonzero,
4198   virtual bases of TYPE are examined.  */
4199
4200static int
4201layout_conflict_p (tree type,
4202		   tree offset,
4203		   splay_tree offsets,
4204		   int vbases_p)
4205{
4206  splay_tree_node max_node;
4207
4208  /* Get the node in OFFSETS that indicates the maximum offset where
4209     an empty subobject is located.  */
4210  max_node = splay_tree_max (offsets);
4211  /* If there aren't any empty subobjects, then there's no point in
4212     performing this check.  */
4213  if (!max_node)
4214    return 0;
4215
4216  return walk_subobject_offsets (type, check_subobject_offset, offset,
4217				 offsets, (tree) (max_node->key),
4218				 vbases_p);
4219}
4220
4221/* DECL is a FIELD_DECL corresponding either to a base subobject of a
4222   non-static data member of the type indicated by RLI.  BINFO is the
4223   binfo corresponding to the base subobject, OFFSETS maps offsets to
4224   types already located at those offsets.  This function determines
4225   the position of the DECL.  */
4226
4227static void
4228layout_nonempty_base_or_field (record_layout_info rli,
4229			       tree decl,
4230			       tree binfo,
4231			       splay_tree offsets)
4232{
4233  tree offset = NULL_TREE;
4234  bool field_p;
4235  tree type;
4236
4237  if (binfo)
4238    {
4239      /* For the purposes of determining layout conflicts, we want to
4240	 use the class type of BINFO; TREE_TYPE (DECL) will be the
4241	 CLASSTYPE_AS_BASE version, which does not contain entries for
4242	 zero-sized bases.  */
4243      type = TREE_TYPE (binfo);
4244      field_p = false;
4245    }
4246  else
4247    {
4248      type = TREE_TYPE (decl);
4249      field_p = true;
4250    }
4251
4252  /* Try to place the field.  It may take more than one try if we have
4253     a hard time placing the field without putting two objects of the
4254     same type at the same address.  */
4255  while (1)
4256    {
4257      struct record_layout_info_s old_rli = *rli;
4258
4259      /* Place this field.  */
4260      place_field (rli, decl);
4261      offset = byte_position (decl);
4262
4263      /* We have to check to see whether or not there is already
4264	 something of the same type at the offset we're about to use.
4265	 For example, consider:
4266
4267	   struct S {};
4268	   struct T : public S { int i; };
4269	   struct U : public S, public T {};
4270
4271	 Here, we put S at offset zero in U.  Then, we can't put T at
4272	 offset zero -- its S component would be at the same address
4273	 as the S we already allocated.  So, we have to skip ahead.
4274	 Since all data members, including those whose type is an
4275	 empty class, have nonzero size, any overlap can happen only
4276	 with a direct or indirect base-class -- it can't happen with
4277	 a data member.  */
4278      /* In a union, overlap is permitted; all members are placed at
4279	 offset zero.  */
4280      if (TREE_CODE (rli->t) == UNION_TYPE)
4281	break;
4282      if (layout_conflict_p (field_p ? type : binfo, offset,
4283			     offsets, field_p))
4284	{
4285	  /* Strip off the size allocated to this field.  That puts us
4286	     at the first place we could have put the field with
4287	     proper alignment.  */
4288	  *rli = old_rli;
4289
4290	  /* Bump up by the alignment required for the type.  */
4291	  rli->bitpos
4292	    = size_binop (PLUS_EXPR, rli->bitpos,
4293			  bitsize_int (binfo
4294				       ? CLASSTYPE_ALIGN (type)
4295				       : TYPE_ALIGN (type)));
4296	  normalize_rli (rli);
4297	}
4298      else if (TREE_CODE (type) == NULLPTR_TYPE
4299	       && warn_abi && abi_version_crosses (9))
4300	{
4301	  /* Before ABI v9, we were giving nullptr_t alignment of 1; if
4302	     the offset wasn't aligned like a pointer when we started to
4303	     layout this field, that affects its position.  */
4304	  tree pos = rli_size_unit_so_far (&old_rli);
4305	  if (int_cst_value (pos) % TYPE_ALIGN_UNIT (ptr_type_node) != 0)
4306	    {
4307	      if (abi_version_at_least (9))
4308		warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi,
4309			    "alignment of %qD increased in -fabi-version=9 "
4310			    "(GCC 5.2)", decl);
4311	      else
4312		warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi, "alignment "
4313			    "of %qD will increase in -fabi-version=9", decl);
4314	    }
4315	  break;
4316	}
4317      else
4318	/* There was no conflict.  We're done laying out this field.  */
4319	break;
4320    }
4321
4322  /* Now that we know where it will be placed, update its
4323     BINFO_OFFSET.  */
4324  if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4325    /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4326       this point because their BINFO_OFFSET is copied from another
4327       hierarchy.  Therefore, we may not need to add the entire
4328       OFFSET.  */
4329    propagate_binfo_offsets (binfo,
4330			     size_diffop_loc (input_location,
4331					  convert (ssizetype, offset),
4332					  convert (ssizetype,
4333						   BINFO_OFFSET (binfo))));
4334}
4335
4336/* Returns true if TYPE is empty and OFFSET is nonzero.  */
4337
4338static int
4339empty_base_at_nonzero_offset_p (tree type,
4340				tree offset,
4341				splay_tree /*offsets*/)
4342{
4343  return is_empty_class (type) && !integer_zerop (offset);
4344}
4345
4346/* Layout the empty base BINFO.  EOC indicates the byte currently just
4347   past the end of the class, and should be correctly aligned for a
4348   class of the type indicated by BINFO; OFFSETS gives the offsets of
4349   the empty bases allocated so far. T is the most derived
4350   type.  Return nonzero iff we added it at the end.  */
4351
4352static bool
4353layout_empty_base (record_layout_info rli, tree binfo,
4354		   tree eoc, splay_tree offsets)
4355{
4356  tree alignment;
4357  tree basetype = BINFO_TYPE (binfo);
4358  bool atend = false;
4359
4360  /* This routine should only be used for empty classes.  */
4361  gcc_assert (is_empty_class (basetype));
4362  alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4363
4364  if (!integer_zerop (BINFO_OFFSET (binfo)))
4365    propagate_binfo_offsets
4366      (binfo, size_diffop_loc (input_location,
4367			       size_zero_node, BINFO_OFFSET (binfo)));
4368
4369  /* This is an empty base class.  We first try to put it at offset
4370     zero.  */
4371  if (layout_conflict_p (binfo,
4372			 BINFO_OFFSET (binfo),
4373			 offsets,
4374			 /*vbases_p=*/0))
4375    {
4376      /* That didn't work.  Now, we move forward from the next
4377	 available spot in the class.  */
4378      atend = true;
4379      propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4380      while (1)
4381	{
4382	  if (!layout_conflict_p (binfo,
4383				  BINFO_OFFSET (binfo),
4384				  offsets,
4385				  /*vbases_p=*/0))
4386	    /* We finally found a spot where there's no overlap.  */
4387	    break;
4388
4389	  /* There's overlap here, too.  Bump along to the next spot.  */
4390	  propagate_binfo_offsets (binfo, alignment);
4391	}
4392    }
4393
4394  if (CLASSTYPE_USER_ALIGN (basetype))
4395    {
4396      rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4397      if (warn_packed)
4398	rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4399      TYPE_USER_ALIGN (rli->t) = 1;
4400    }
4401
4402  return atend;
4403}
4404
4405/* Layout the base given by BINFO in the class indicated by RLI.
4406   *BASE_ALIGN is a running maximum of the alignments of
4407   any base class.  OFFSETS gives the location of empty base
4408   subobjects.  T is the most derived type.  Return nonzero if the new
4409   object cannot be nearly-empty.  A new FIELD_DECL is inserted at
4410   *NEXT_FIELD, unless BINFO is for an empty base class.
4411
4412   Returns the location at which the next field should be inserted.  */
4413
4414static tree *
4415build_base_field (record_layout_info rli, tree binfo,
4416		  splay_tree offsets, tree *next_field)
4417{
4418  tree t = rli->t;
4419  tree basetype = BINFO_TYPE (binfo);
4420
4421  if (!COMPLETE_TYPE_P (basetype))
4422    /* This error is now reported in xref_tag, thus giving better
4423       location information.  */
4424    return next_field;
4425
4426  /* Place the base class.  */
4427  if (!is_empty_class (basetype))
4428    {
4429      tree decl;
4430
4431      /* The containing class is non-empty because it has a non-empty
4432	 base class.  */
4433      CLASSTYPE_EMPTY_P (t) = 0;
4434
4435      /* Create the FIELD_DECL.  */
4436      decl = build_decl (input_location,
4437			 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4438      DECL_ARTIFICIAL (decl) = 1;
4439      DECL_IGNORED_P (decl) = 1;
4440      DECL_FIELD_CONTEXT (decl) = t;
4441      if (CLASSTYPE_AS_BASE (basetype))
4442	{
4443	  DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4444	  DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4445	  DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4446	  DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4447	  DECL_MODE (decl) = TYPE_MODE (basetype);
4448	  DECL_FIELD_IS_BASE (decl) = 1;
4449
4450	  /* Try to place the field.  It may take more than one try if we
4451	     have a hard time placing the field without putting two
4452	     objects of the same type at the same address.  */
4453	  layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4454	  /* Add the new FIELD_DECL to the list of fields for T.  */
4455	  DECL_CHAIN (decl) = *next_field;
4456	  *next_field = decl;
4457	  next_field = &DECL_CHAIN (decl);
4458	}
4459    }
4460  else
4461    {
4462      tree eoc;
4463      bool atend;
4464
4465      /* On some platforms (ARM), even empty classes will not be
4466	 byte-aligned.  */
4467      eoc = round_up_loc (input_location,
4468		      rli_size_unit_so_far (rli),
4469		      CLASSTYPE_ALIGN_UNIT (basetype));
4470      atend = layout_empty_base (rli, binfo, eoc, offsets);
4471      /* A nearly-empty class "has no proper base class that is empty,
4472	 not morally virtual, and at an offset other than zero."  */
4473      if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4474	{
4475	  if (atend)
4476	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4477	  /* The check above (used in G++ 3.2) is insufficient because
4478	     an empty class placed at offset zero might itself have an
4479	     empty base at a nonzero offset.  */
4480	  else if (walk_subobject_offsets (basetype,
4481					   empty_base_at_nonzero_offset_p,
4482					   size_zero_node,
4483					   /*offsets=*/NULL,
4484					   /*max_offset=*/NULL_TREE,
4485					   /*vbases_p=*/true))
4486	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4487	}
4488
4489      /* We do not create a FIELD_DECL for empty base classes because
4490	 it might overlap some other field.  We want to be able to
4491	 create CONSTRUCTORs for the class by iterating over the
4492	 FIELD_DECLs, and the back end does not handle overlapping
4493	 FIELD_DECLs.  */
4494
4495      /* An empty virtual base causes a class to be non-empty
4496	 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4497	 here because that was already done when the virtual table
4498	 pointer was created.  */
4499    }
4500
4501  /* Record the offsets of BINFO and its base subobjects.  */
4502  record_subobject_offsets (binfo,
4503			    BINFO_OFFSET (binfo),
4504			    offsets,
4505			    /*is_data_member=*/false);
4506
4507  return next_field;
4508}
4509
4510/* Layout all of the non-virtual base classes.  Record empty
4511   subobjects in OFFSETS.  T is the most derived type.  Return nonzero
4512   if the type cannot be nearly empty.  The fields created
4513   corresponding to the base classes will be inserted at
4514   *NEXT_FIELD.  */
4515
4516static void
4517build_base_fields (record_layout_info rli,
4518		   splay_tree offsets, tree *next_field)
4519{
4520  /* Chain to hold all the new FIELD_DECLs which stand in for base class
4521     subobjects.  */
4522  tree t = rli->t;
4523  int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4524  int i;
4525
4526  /* The primary base class is always allocated first.  */
4527  if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4528    next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4529				   offsets, next_field);
4530
4531  /* Now allocate the rest of the bases.  */
4532  for (i = 0; i < n_baseclasses; ++i)
4533    {
4534      tree base_binfo;
4535
4536      base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4537
4538      /* The primary base was already allocated above, so we don't
4539	 need to allocate it again here.  */
4540      if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4541	continue;
4542
4543      /* Virtual bases are added at the end (a primary virtual base
4544	 will have already been added).  */
4545      if (BINFO_VIRTUAL_P (base_binfo))
4546	continue;
4547
4548      next_field = build_base_field (rli, base_binfo,
4549				     offsets, next_field);
4550    }
4551}
4552
4553/* Go through the TYPE_METHODS of T issuing any appropriate
4554   diagnostics, figuring out which methods override which other
4555   methods, and so forth.  */
4556
4557static void
4558check_methods (tree t)
4559{
4560  tree x;
4561
4562  for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4563    {
4564      check_for_override (x, t);
4565      if (DECL_PURE_VIRTUAL_P (x) && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4566	error ("initializer specified for non-virtual method %q+D", x);
4567      /* The name of the field is the original field name
4568	 Save this in auxiliary field for later overloading.  */
4569      if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4570	{
4571	  TYPE_POLYMORPHIC_P (t) = 1;
4572	  if (DECL_PURE_VIRTUAL_P (x))
4573	    vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4574	}
4575      /* All user-provided destructors are non-trivial.
4576         Constructors and assignment ops are handled in
4577	 grok_special_member_properties.  */
4578      if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4579	TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4580    }
4581}
4582
4583/* FN is a constructor or destructor.  Clone the declaration to create
4584   a specialized in-charge or not-in-charge version, as indicated by
4585   NAME.  */
4586
4587static tree
4588build_clone (tree fn, tree name)
4589{
4590  tree parms;
4591  tree clone;
4592
4593  /* Copy the function.  */
4594  clone = copy_decl (fn);
4595  /* Reset the function name.  */
4596  DECL_NAME (clone) = name;
4597  /* Remember where this function came from.  */
4598  DECL_ABSTRACT_ORIGIN (clone) = fn;
4599  /* Make it easy to find the CLONE given the FN.  */
4600  DECL_CHAIN (clone) = DECL_CHAIN (fn);
4601  DECL_CHAIN (fn) = clone;
4602
4603  /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT.  */
4604  if (TREE_CODE (clone) == TEMPLATE_DECL)
4605    {
4606      tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4607      DECL_TEMPLATE_RESULT (clone) = result;
4608      DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4609      DECL_TI_TEMPLATE (result) = clone;
4610      TREE_TYPE (clone) = TREE_TYPE (result);
4611      return clone;
4612    }
4613
4614  SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4615  DECL_CLONED_FUNCTION (clone) = fn;
4616  /* There's no pending inline data for this function.  */
4617  DECL_PENDING_INLINE_INFO (clone) = NULL;
4618  DECL_PENDING_INLINE_P (clone) = 0;
4619
4620  /* The base-class destructor is not virtual.  */
4621  if (name == base_dtor_identifier)
4622    {
4623      DECL_VIRTUAL_P (clone) = 0;
4624      if (TREE_CODE (clone) != TEMPLATE_DECL)
4625	DECL_VINDEX (clone) = NULL_TREE;
4626    }
4627
4628  /* If there was an in-charge parameter, drop it from the function
4629     type.  */
4630  if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4631    {
4632      tree basetype;
4633      tree parmtypes;
4634      tree exceptions;
4635
4636      exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4637      basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4638      parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4639      /* Skip the `this' parameter.  */
4640      parmtypes = TREE_CHAIN (parmtypes);
4641      /* Skip the in-charge parameter.  */
4642      parmtypes = TREE_CHAIN (parmtypes);
4643      /* And the VTT parm, in a complete [cd]tor.  */
4644      if (DECL_HAS_VTT_PARM_P (fn)
4645	  && ! DECL_NEEDS_VTT_PARM_P (clone))
4646	parmtypes = TREE_CHAIN (parmtypes);
4647       /* If this is subobject constructor or destructor, add the vtt
4648	 parameter.  */
4649      TREE_TYPE (clone)
4650	= build_method_type_directly (basetype,
4651				      TREE_TYPE (TREE_TYPE (clone)),
4652				      parmtypes);
4653      if (exceptions)
4654	TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4655						     exceptions);
4656      TREE_TYPE (clone)
4657	= cp_build_type_attribute_variant (TREE_TYPE (clone),
4658					   TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4659    }
4660
4661  /* Copy the function parameters.  */
4662  DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4663  /* Remove the in-charge parameter.  */
4664  if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4665    {
4666      DECL_CHAIN (DECL_ARGUMENTS (clone))
4667	= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4668      DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4669    }
4670  /* And the VTT parm, in a complete [cd]tor.  */
4671  if (DECL_HAS_VTT_PARM_P (fn))
4672    {
4673      if (DECL_NEEDS_VTT_PARM_P (clone))
4674	DECL_HAS_VTT_PARM_P (clone) = 1;
4675      else
4676	{
4677	  DECL_CHAIN (DECL_ARGUMENTS (clone))
4678	    = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4679	  DECL_HAS_VTT_PARM_P (clone) = 0;
4680	}
4681    }
4682
4683  for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4684    {
4685      DECL_CONTEXT (parms) = clone;
4686      cxx_dup_lang_specific_decl (parms);
4687    }
4688
4689  /* Create the RTL for this function.  */
4690  SET_DECL_RTL (clone, NULL);
4691  rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4692
4693  if (pch_file)
4694    note_decl_for_pch (clone);
4695
4696  return clone;
4697}
4698
4699/* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4700   not invoke this function directly.
4701
4702   For a non-thunk function, returns the address of the slot for storing
4703   the function it is a clone of.  Otherwise returns NULL_TREE.
4704
4705   If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4706   cloned_function is unset.  This is to support the separate
4707   DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4708   on a template makes sense, but not the former.  */
4709
4710tree *
4711decl_cloned_function_p (const_tree decl, bool just_testing)
4712{
4713  tree *ptr;
4714  if (just_testing)
4715    decl = STRIP_TEMPLATE (decl);
4716
4717  if (TREE_CODE (decl) != FUNCTION_DECL
4718      || !DECL_LANG_SPECIFIC (decl)
4719      || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4720    {
4721#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4722      if (!just_testing)
4723	lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4724      else
4725#endif
4726	return NULL;
4727    }
4728
4729  ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4730  if (just_testing && *ptr == NULL_TREE)
4731    return NULL;
4732  else
4733    return ptr;
4734}
4735
4736/* Produce declarations for all appropriate clones of FN.  If
4737   UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4738   CLASTYPE_METHOD_VEC as well.  */
4739
4740void
4741clone_function_decl (tree fn, int update_method_vec_p)
4742{
4743  tree clone;
4744
4745  /* Avoid inappropriate cloning.  */
4746  if (DECL_CHAIN (fn)
4747      && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4748    return;
4749
4750  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4751    {
4752      /* For each constructor, we need two variants: an in-charge version
4753	 and a not-in-charge version.  */
4754      clone = build_clone (fn, complete_ctor_identifier);
4755      if (update_method_vec_p)
4756	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4757      clone = build_clone (fn, base_ctor_identifier);
4758      if (update_method_vec_p)
4759	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4760    }
4761  else
4762    {
4763      gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4764
4765      /* For each destructor, we need three variants: an in-charge
4766	 version, a not-in-charge version, and an in-charge deleting
4767	 version.  We clone the deleting version first because that
4768	 means it will go second on the TYPE_METHODS list -- and that
4769	 corresponds to the correct layout order in the virtual
4770	 function table.
4771
4772	 For a non-virtual destructor, we do not build a deleting
4773	 destructor.  */
4774      if (DECL_VIRTUAL_P (fn))
4775	{
4776	  clone = build_clone (fn, deleting_dtor_identifier);
4777	  if (update_method_vec_p)
4778	    add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4779	}
4780      clone = build_clone (fn, complete_dtor_identifier);
4781      if (update_method_vec_p)
4782	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4783      clone = build_clone (fn, base_dtor_identifier);
4784      if (update_method_vec_p)
4785	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4786    }
4787
4788  /* Note that this is an abstract function that is never emitted.  */
4789  DECL_ABSTRACT_P (fn) = true;
4790}
4791
4792/* DECL is an in charge constructor, which is being defined. This will
4793   have had an in class declaration, from whence clones were
4794   declared. An out-of-class definition can specify additional default
4795   arguments. As it is the clones that are involved in overload
4796   resolution, we must propagate the information from the DECL to its
4797   clones.  */
4798
4799void
4800adjust_clone_args (tree decl)
4801{
4802  tree clone;
4803
4804  for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4805       clone = DECL_CHAIN (clone))
4806    {
4807      tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4808      tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4809      tree decl_parms, clone_parms;
4810
4811      clone_parms = orig_clone_parms;
4812
4813      /* Skip the 'this' parameter.  */
4814      orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4815      orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4816
4817      if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4818	orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4819      if (DECL_HAS_VTT_PARM_P (decl))
4820	orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4821
4822      clone_parms = orig_clone_parms;
4823      if (DECL_HAS_VTT_PARM_P (clone))
4824	clone_parms = TREE_CHAIN (clone_parms);
4825
4826      for (decl_parms = orig_decl_parms; decl_parms;
4827	   decl_parms = TREE_CHAIN (decl_parms),
4828	     clone_parms = TREE_CHAIN (clone_parms))
4829	{
4830	  gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4831				   TREE_TYPE (clone_parms)));
4832
4833	  if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4834	    {
4835	      /* A default parameter has been added. Adjust the
4836		 clone's parameters.  */
4837	      tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4838	      tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4839	      tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4840	      tree type;
4841
4842	      clone_parms = orig_decl_parms;
4843
4844	      if (DECL_HAS_VTT_PARM_P (clone))
4845		{
4846		  clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4847					   TREE_VALUE (orig_clone_parms),
4848					   clone_parms);
4849		  TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4850		}
4851	      type = build_method_type_directly (basetype,
4852						 TREE_TYPE (TREE_TYPE (clone)),
4853						 clone_parms);
4854	      if (exceptions)
4855		type = build_exception_variant (type, exceptions);
4856	      if (attrs)
4857		type = cp_build_type_attribute_variant (type, attrs);
4858	      TREE_TYPE (clone) = type;
4859
4860	      clone_parms = NULL_TREE;
4861	      break;
4862	    }
4863	}
4864      gcc_assert (!clone_parms);
4865    }
4866}
4867
4868/* For each of the constructors and destructors in T, create an
4869   in-charge and not-in-charge variant.  */
4870
4871static void
4872clone_constructors_and_destructors (tree t)
4873{
4874  tree fns;
4875
4876  /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4877     out now.  */
4878  if (!CLASSTYPE_METHOD_VEC (t))
4879    return;
4880
4881  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4882    clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4883  for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4884    clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4885}
4886
4887/* Deduce noexcept for a destructor DTOR.  */
4888
4889void
4890deduce_noexcept_on_destructor (tree dtor)
4891{
4892  if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4893    {
4894      tree eh_spec = unevaluated_noexcept_spec ();
4895      TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4896    }
4897}
4898
4899/* For each destructor in T, deduce noexcept:
4900
4901   12.4/3: A declaration of a destructor that does not have an
4902   exception-specification is implicitly considered to have the
4903   same exception-specification as an implicit declaration (15.4).  */
4904
4905static void
4906deduce_noexcept_on_destructors (tree t)
4907{
4908  /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4909     out now.  */
4910  if (!CLASSTYPE_METHOD_VEC (t))
4911    return;
4912
4913  for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4914    deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4915}
4916
4917/* Subroutine of set_one_vmethod_tm_attributes.  Search base classes
4918   of TYPE for virtual functions which FNDECL overrides.  Return a
4919   mask of the tm attributes found therein.  */
4920
4921static int
4922look_for_tm_attr_overrides (tree type, tree fndecl)
4923{
4924  tree binfo = TYPE_BINFO (type);
4925  tree base_binfo;
4926  int ix, found = 0;
4927
4928  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4929    {
4930      tree o, basetype = BINFO_TYPE (base_binfo);
4931
4932      if (!TYPE_POLYMORPHIC_P (basetype))
4933	continue;
4934
4935      o = look_for_overrides_here (basetype, fndecl);
4936      if (o)
4937	found |= tm_attr_to_mask (find_tm_attribute
4938				  (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4939      else
4940	found |= look_for_tm_attr_overrides (basetype, fndecl);
4941    }
4942
4943  return found;
4944}
4945
4946/* Subroutine of set_method_tm_attributes.  Handle the checks and
4947   inheritance for one virtual method FNDECL.  */
4948
4949static void
4950set_one_vmethod_tm_attributes (tree type, tree fndecl)
4951{
4952  tree tm_attr;
4953  int found, have;
4954
4955  found = look_for_tm_attr_overrides (type, fndecl);
4956
4957  /* If FNDECL doesn't actually override anything (i.e. T is the
4958     class that first declares FNDECL virtual), then we're done.  */
4959  if (found == 0)
4960    return;
4961
4962  tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4963  have = tm_attr_to_mask (tm_attr);
4964
4965  /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4966     tm_pure must match exactly, otherwise no weakening of
4967     tm_safe > tm_callable > nothing.  */
4968  /* ??? The tm_pure attribute didn't make the transition to the
4969     multivendor language spec.  */
4970  if (have == TM_ATTR_PURE)
4971    {
4972      if (found != TM_ATTR_PURE)
4973	{
4974	  found &= -found;
4975	  goto err_override;
4976	}
4977    }
4978  /* If the overridden function is tm_pure, then FNDECL must be.  */
4979  else if (found == TM_ATTR_PURE && tm_attr)
4980    goto err_override;
4981  /* Look for base class combinations that cannot be satisfied.  */
4982  else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4983    {
4984      found &= ~TM_ATTR_PURE;
4985      found &= -found;
4986      error_at (DECL_SOURCE_LOCATION (fndecl),
4987		"method overrides both %<transaction_pure%> and %qE methods",
4988		tm_mask_to_attr (found));
4989    }
4990  /* If FNDECL did not declare an attribute, then inherit the most
4991     restrictive one.  */
4992  else if (tm_attr == NULL)
4993    {
4994      apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4995    }
4996  /* Otherwise validate that we're not weaker than a function
4997     that is being overridden.  */
4998  else
4999    {
5000      found &= -found;
5001      if (found <= TM_ATTR_CALLABLE && have > found)
5002	goto err_override;
5003    }
5004  return;
5005
5006 err_override:
5007  error_at (DECL_SOURCE_LOCATION (fndecl),
5008	    "method declared %qE overriding %qE method",
5009	    tm_attr, tm_mask_to_attr (found));
5010}
5011
5012/* For each of the methods in T, propagate a class-level tm attribute.  */
5013
5014static void
5015set_method_tm_attributes (tree t)
5016{
5017  tree class_tm_attr, fndecl;
5018
5019  /* Don't bother collecting tm attributes if transactional memory
5020     support is not enabled.  */
5021  if (!flag_tm)
5022    return;
5023
5024  /* Process virtual methods first, as they inherit directly from the
5025     base virtual function and also require validation of new attributes.  */
5026  if (TYPE_CONTAINS_VPTR_P (t))
5027    {
5028      tree vchain;
5029      for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
5030	   vchain = TREE_CHAIN (vchain))
5031	{
5032	  fndecl = BV_FN (vchain);
5033	  if (DECL_THUNK_P (fndecl))
5034	    fndecl = THUNK_TARGET (fndecl);
5035	  set_one_vmethod_tm_attributes (t, fndecl);
5036	}
5037    }
5038
5039  /* If the class doesn't have an attribute, nothing more to do.  */
5040  class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
5041  if (class_tm_attr == NULL)
5042    return;
5043
5044  /* Any method that does not yet have a tm attribute inherits
5045     the one from the class.  */
5046  for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
5047    {
5048      if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
5049	apply_tm_attr (fndecl, class_tm_attr);
5050    }
5051}
5052
5053/* Returns true iff class T has a user-defined constructor other than
5054   the default constructor.  */
5055
5056bool
5057type_has_user_nondefault_constructor (tree t)
5058{
5059  tree fns;
5060
5061  if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5062    return false;
5063
5064  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5065    {
5066      tree fn = OVL_CURRENT (fns);
5067      if (!DECL_ARTIFICIAL (fn)
5068	  && (TREE_CODE (fn) == TEMPLATE_DECL
5069	      || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
5070		  != NULL_TREE)))
5071	return true;
5072    }
5073
5074  return false;
5075}
5076
5077/* Returns the defaulted constructor if T has one. Otherwise, returns
5078   NULL_TREE.  */
5079
5080tree
5081in_class_defaulted_default_constructor (tree t)
5082{
5083  tree fns, args;
5084
5085  if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5086    return NULL_TREE;
5087
5088  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5089    {
5090      tree fn = OVL_CURRENT (fns);
5091
5092      if (DECL_DEFAULTED_IN_CLASS_P (fn))
5093	{
5094	  args = FUNCTION_FIRST_USER_PARMTYPE (fn);
5095	  while (args && TREE_PURPOSE (args))
5096	    args = TREE_CHAIN (args);
5097	  if (!args || args == void_list_node)
5098	    return fn;
5099	}
5100    }
5101
5102  return NULL_TREE;
5103}
5104
5105/* Returns true iff FN is a user-provided function, i.e. user-declared
5106   and not defaulted at its first declaration; or explicit, private,
5107   protected, or non-const.  */
5108
5109bool
5110user_provided_p (tree fn)
5111{
5112  if (TREE_CODE (fn) == TEMPLATE_DECL)
5113    return true;
5114  else
5115    return (!DECL_ARTIFICIAL (fn)
5116	    && !(DECL_INITIALIZED_IN_CLASS_P (fn)
5117		 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
5118}
5119
5120/* Returns true iff class T has a user-provided constructor.  */
5121
5122bool
5123type_has_user_provided_constructor (tree t)
5124{
5125  tree fns;
5126
5127  if (!CLASS_TYPE_P (t))
5128    return false;
5129
5130  if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5131    return false;
5132
5133  /* This can happen in error cases; avoid crashing.  */
5134  if (!CLASSTYPE_METHOD_VEC (t))
5135    return false;
5136
5137  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5138    if (user_provided_p (OVL_CURRENT (fns)))
5139      return true;
5140
5141  return false;
5142}
5143
5144/* Returns true iff class T has a non-user-provided (i.e. implicitly
5145   declared or explicitly defaulted in the class body) default
5146   constructor.  */
5147
5148bool
5149type_has_non_user_provided_default_constructor (tree t)
5150{
5151  tree fns;
5152
5153  if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (t))
5154    return false;
5155  if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5156    return true;
5157
5158  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5159    {
5160      tree fn = OVL_CURRENT (fns);
5161      if (TREE_CODE (fn) == FUNCTION_DECL
5162	  && !user_provided_p (fn)
5163	  && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
5164	return true;
5165    }
5166
5167  return false;
5168}
5169
5170/* TYPE is being used as a virtual base, and has a non-trivial move
5171   assignment.  Return true if this is due to there being a user-provided
5172   move assignment in TYPE or one of its subobjects; if there isn't, then
5173   multiple move assignment can't cause any harm.  */
5174
5175bool
5176vbase_has_user_provided_move_assign (tree type)
5177{
5178  /* Does the type itself have a user-provided move assignment operator?  */
5179  for (tree fns
5180	 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
5181       fns; fns = OVL_NEXT (fns))
5182    {
5183      tree fn = OVL_CURRENT (fns);
5184      if (move_fn_p (fn) && user_provided_p (fn))
5185	return true;
5186    }
5187
5188  /* Do any of its bases?  */
5189  tree binfo = TYPE_BINFO (type);
5190  tree base_binfo;
5191  for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5192    if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
5193      return true;
5194
5195  /* Or non-static data members?  */
5196  for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5197    {
5198      if (TREE_CODE (field) == FIELD_DECL
5199	  && CLASS_TYPE_P (TREE_TYPE (field))
5200	  && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
5201	return true;
5202    }
5203
5204  /* Seems not.  */
5205  return false;
5206}
5207
5208/* If default-initialization leaves part of TYPE uninitialized, returns
5209   a DECL for the field or TYPE itself (DR 253).  */
5210
5211tree
5212default_init_uninitialized_part (tree type)
5213{
5214  tree t, r, binfo;
5215  int i;
5216
5217  type = strip_array_types (type);
5218  if (!CLASS_TYPE_P (type))
5219    return type;
5220  if (!type_has_non_user_provided_default_constructor (type))
5221    return NULL_TREE;
5222  for (binfo = TYPE_BINFO (type), i = 0;
5223       BINFO_BASE_ITERATE (binfo, i, t); ++i)
5224    {
5225      r = default_init_uninitialized_part (BINFO_TYPE (t));
5226      if (r)
5227	return r;
5228    }
5229  for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5230    if (TREE_CODE (t) == FIELD_DECL
5231	&& !DECL_ARTIFICIAL (t)
5232	&& !DECL_INITIAL (t))
5233      {
5234	r = default_init_uninitialized_part (TREE_TYPE (t));
5235	if (r)
5236	  return DECL_P (r) ? r : t;
5237      }
5238
5239  return NULL_TREE;
5240}
5241
5242/* Returns true iff for class T, a trivial synthesized default constructor
5243   would be constexpr.  */
5244
5245bool
5246trivial_default_constructor_is_constexpr (tree t)
5247{
5248  /* A defaulted trivial default constructor is constexpr
5249     if there is nothing to initialize.  */
5250  gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5251  return is_really_empty_class (t);
5252}
5253
5254/* Returns true iff class T has a constexpr default constructor.  */
5255
5256bool
5257type_has_constexpr_default_constructor (tree t)
5258{
5259  tree fns;
5260
5261  if (!CLASS_TYPE_P (t))
5262    {
5263      /* The caller should have stripped an enclosing array.  */
5264      gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5265      return false;
5266    }
5267  if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5268    {
5269      if (!TYPE_HAS_COMPLEX_DFLT (t))
5270	return trivial_default_constructor_is_constexpr (t);
5271      /* Non-trivial, we need to check subobject constructors.  */
5272      lazily_declare_fn (sfk_constructor, t);
5273    }
5274  fns = locate_ctor (t);
5275  return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5276}
5277
5278/* Returns true iff class TYPE has a virtual destructor.  */
5279
5280bool
5281type_has_virtual_destructor (tree type)
5282{
5283  tree dtor;
5284
5285  if (!CLASS_TYPE_P (type))
5286    return false;
5287
5288  gcc_assert (COMPLETE_TYPE_P (type));
5289  dtor = CLASSTYPE_DESTRUCTORS (type);
5290  return (dtor && DECL_VIRTUAL_P (dtor));
5291}
5292
5293/* Returns true iff class T has a move constructor.  */
5294
5295bool
5296type_has_move_constructor (tree t)
5297{
5298  tree fns;
5299
5300  if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5301    {
5302      gcc_assert (COMPLETE_TYPE_P (t));
5303      lazily_declare_fn (sfk_move_constructor, t);
5304    }
5305
5306  if (!CLASSTYPE_METHOD_VEC (t))
5307    return false;
5308
5309  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5310    if (move_fn_p (OVL_CURRENT (fns)))
5311      return true;
5312
5313  return false;
5314}
5315
5316/* Returns true iff class T has a move assignment operator.  */
5317
5318bool
5319type_has_move_assign (tree t)
5320{
5321  tree fns;
5322
5323  if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5324    {
5325      gcc_assert (COMPLETE_TYPE_P (t));
5326      lazily_declare_fn (sfk_move_assignment, t);
5327    }
5328
5329  for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5330       fns; fns = OVL_NEXT (fns))
5331    if (move_fn_p (OVL_CURRENT (fns)))
5332      return true;
5333
5334  return false;
5335}
5336
5337/* Returns true iff class T has a move constructor that was explicitly
5338   declared in the class body.  Note that this is different from
5339   "user-provided", which doesn't include functions that are defaulted in
5340   the class.  */
5341
5342bool
5343type_has_user_declared_move_constructor (tree t)
5344{
5345  tree fns;
5346
5347  if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5348    return false;
5349
5350  if (!CLASSTYPE_METHOD_VEC (t))
5351    return false;
5352
5353  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5354    {
5355      tree fn = OVL_CURRENT (fns);
5356      if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5357	return true;
5358    }
5359
5360  return false;
5361}
5362
5363/* Returns true iff class T has a move assignment operator that was
5364   explicitly declared in the class body.  */
5365
5366bool
5367type_has_user_declared_move_assign (tree t)
5368{
5369  tree fns;
5370
5371  if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5372    return false;
5373
5374  for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5375       fns; fns = OVL_NEXT (fns))
5376    {
5377      tree fn = OVL_CURRENT (fns);
5378      if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5379	return true;
5380    }
5381
5382  return false;
5383}
5384
5385/* Nonzero if we need to build up a constructor call when initializing an
5386   object of this class, either because it has a user-declared constructor
5387   or because it doesn't have a default constructor (so we need to give an
5388   error if no initializer is provided).  Use TYPE_NEEDS_CONSTRUCTING when
5389   what you care about is whether or not an object can be produced by a
5390   constructor (e.g. so we don't set TREE_READONLY on const variables of
5391   such type); use this function when what you care about is whether or not
5392   to try to call a constructor to create an object.  The latter case is
5393   the former plus some cases of constructors that cannot be called.  */
5394
5395bool
5396type_build_ctor_call (tree t)
5397{
5398  tree inner;
5399  if (TYPE_NEEDS_CONSTRUCTING (t))
5400    return true;
5401  inner = strip_array_types (t);
5402  if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5403    return false;
5404  if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5405    return true;
5406  if (cxx_dialect < cxx11)
5407    return false;
5408  /* A user-declared constructor might be private, and a constructor might
5409     be trivial but deleted.  */
5410  for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5411       fns; fns = OVL_NEXT (fns))
5412    {
5413      tree fn = OVL_CURRENT (fns);
5414      if (!DECL_ARTIFICIAL (fn)
5415	  || DECL_DELETED_FN (fn))
5416	return true;
5417    }
5418  return false;
5419}
5420
5421/* Like type_build_ctor_call, but for destructors.  */
5422
5423bool
5424type_build_dtor_call (tree t)
5425{
5426  tree inner;
5427  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5428    return true;
5429  inner = strip_array_types (t);
5430  if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5431      || !COMPLETE_TYPE_P (inner))
5432    return false;
5433  if (cxx_dialect < cxx11)
5434    return false;
5435  /* A user-declared destructor might be private, and a destructor might
5436     be trivial but deleted.  */
5437  for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5438       fns; fns = OVL_NEXT (fns))
5439    {
5440      tree fn = OVL_CURRENT (fns);
5441      if (!DECL_ARTIFICIAL (fn)
5442	  || DECL_DELETED_FN (fn))
5443	return true;
5444    }
5445  return false;
5446}
5447
5448/* Remove all zero-width bit-fields from T.  */
5449
5450static void
5451remove_zero_width_bit_fields (tree t)
5452{
5453  tree *fieldsp;
5454
5455  fieldsp = &TYPE_FIELDS (t);
5456  while (*fieldsp)
5457    {
5458      if (TREE_CODE (*fieldsp) == FIELD_DECL
5459	  && DECL_C_BIT_FIELD (*fieldsp)
5460          /* We should not be confused by the fact that grokbitfield
5461	     temporarily sets the width of the bit field into
5462	     DECL_INITIAL (*fieldsp).
5463	     check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5464	     to that width.  */
5465	  && (DECL_SIZE (*fieldsp) == NULL_TREE
5466	      || integer_zerop (DECL_SIZE (*fieldsp))))
5467	*fieldsp = DECL_CHAIN (*fieldsp);
5468      else
5469	fieldsp = &DECL_CHAIN (*fieldsp);
5470    }
5471}
5472
5473/* Returns TRUE iff we need a cookie when dynamically allocating an
5474   array whose elements have the indicated class TYPE.  */
5475
5476static bool
5477type_requires_array_cookie (tree type)
5478{
5479  tree fns;
5480  bool has_two_argument_delete_p = false;
5481
5482  gcc_assert (CLASS_TYPE_P (type));
5483
5484  /* If there's a non-trivial destructor, we need a cookie.  In order
5485     to iterate through the array calling the destructor for each
5486     element, we'll have to know how many elements there are.  */
5487  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5488    return true;
5489
5490  /* If the usual deallocation function is a two-argument whose second
5491     argument is of type `size_t', then we have to pass the size of
5492     the array to the deallocation function, so we will need to store
5493     a cookie.  */
5494  fns = lookup_fnfields (TYPE_BINFO (type),
5495			 ansi_opname (VEC_DELETE_EXPR),
5496			 /*protect=*/0);
5497  /* If there are no `operator []' members, or the lookup is
5498     ambiguous, then we don't need a cookie.  */
5499  if (!fns || fns == error_mark_node)
5500    return false;
5501  /* Loop through all of the functions.  */
5502  for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5503    {
5504      tree fn;
5505      tree second_parm;
5506
5507      /* Select the current function.  */
5508      fn = OVL_CURRENT (fns);
5509      /* See if this function is a one-argument delete function.  If
5510	 it is, then it will be the usual deallocation function.  */
5511      second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5512      if (second_parm == void_list_node)
5513	return false;
5514      /* Do not consider this function if its second argument is an
5515	 ellipsis.  */
5516      if (!second_parm)
5517	continue;
5518      /* Otherwise, if we have a two-argument function and the second
5519	 argument is `size_t', it will be the usual deallocation
5520	 function -- unless there is one-argument function, too.  */
5521      if (TREE_CHAIN (second_parm) == void_list_node
5522	  && same_type_p (TREE_VALUE (second_parm), size_type_node))
5523	has_two_argument_delete_p = true;
5524    }
5525
5526  return has_two_argument_delete_p;
5527}
5528
5529/* Finish computing the `literal type' property of class type T.
5530
5531   At this point, we have already processed base classes and
5532   non-static data members.  We need to check whether the copy
5533   constructor is trivial, the destructor is trivial, and there
5534   is a trivial default constructor or at least one constexpr
5535   constructor other than the copy constructor.  */
5536
5537static void
5538finalize_literal_type_property (tree t)
5539{
5540  tree fn;
5541
5542  if (cxx_dialect < cxx11
5543      || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5544    CLASSTYPE_LITERAL_P (t) = false;
5545  else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5546	   && CLASSTYPE_NON_AGGREGATE (t)
5547	   && !TYPE_HAS_CONSTEXPR_CTOR (t))
5548    CLASSTYPE_LITERAL_P (t) = false;
5549
5550  if (!CLASSTYPE_LITERAL_P (t))
5551    for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5552      if (DECL_DECLARED_CONSTEXPR_P (fn)
5553	  && TREE_CODE (fn) != TEMPLATE_DECL
5554	  && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5555	  && !DECL_CONSTRUCTOR_P (fn))
5556	{
5557	  DECL_DECLARED_CONSTEXPR_P (fn) = false;
5558	  if (!DECL_GENERATED_P (fn))
5559	    {
5560	      error ("enclosing class of constexpr non-static member "
5561		     "function %q+#D is not a literal type", fn);
5562	      explain_non_literal_class (t);
5563	    }
5564	}
5565}
5566
5567/* T is a non-literal type used in a context which requires a constant
5568   expression.  Explain why it isn't literal.  */
5569
5570void
5571explain_non_literal_class (tree t)
5572{
5573  static hash_set<tree> *diagnosed;
5574
5575  if (!CLASS_TYPE_P (t))
5576    return;
5577  t = TYPE_MAIN_VARIANT (t);
5578
5579  if (diagnosed == NULL)
5580    diagnosed = new hash_set<tree>;
5581  if (diagnosed->add (t))
5582    /* Already explained.  */
5583    return;
5584
5585  inform (0, "%q+T is not literal because:", t);
5586  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5587    inform (0, "  %q+T has a non-trivial destructor", t);
5588  else if (CLASSTYPE_NON_AGGREGATE (t)
5589	   && !TYPE_HAS_TRIVIAL_DFLT (t)
5590	   && !TYPE_HAS_CONSTEXPR_CTOR (t))
5591    {
5592      inform (0, "  %q+T is not an aggregate, does not have a trivial "
5593	      "default constructor, and has no constexpr constructor that "
5594	      "is not a copy or move constructor", t);
5595      if (type_has_non_user_provided_default_constructor (t))
5596	{
5597	  /* Note that we can't simply call locate_ctor because when the
5598	     constructor is deleted it just returns NULL_TREE.  */
5599	  tree fns;
5600	  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5601	    {
5602	      tree fn = OVL_CURRENT (fns);
5603	      tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5604
5605	      parms = skip_artificial_parms_for (fn, parms);
5606
5607	      if (sufficient_parms_p (parms))
5608		{
5609		  if (DECL_DELETED_FN (fn))
5610		    maybe_explain_implicit_delete (fn);
5611		  else
5612		    explain_invalid_constexpr_fn (fn);
5613		  break;
5614		}
5615	    }
5616	}
5617    }
5618  else
5619    {
5620      tree binfo, base_binfo, field; int i;
5621      for (binfo = TYPE_BINFO (t), i = 0;
5622	   BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5623	{
5624	  tree basetype = TREE_TYPE (base_binfo);
5625	  if (!CLASSTYPE_LITERAL_P (basetype))
5626	    {
5627	      inform (0, "  base class %qT of %q+T is non-literal",
5628		      basetype, t);
5629	      explain_non_literal_class (basetype);
5630	      return;
5631	    }
5632	}
5633      for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5634	{
5635	  tree ftype;
5636	  if (TREE_CODE (field) != FIELD_DECL)
5637	    continue;
5638	  ftype = TREE_TYPE (field);
5639	  if (!literal_type_p (ftype))
5640	    {
5641	      inform (0, "  non-static data member %q+D has "
5642		      "non-literal type", field);
5643	      if (CLASS_TYPE_P (ftype))
5644		explain_non_literal_class (ftype);
5645	    }
5646	  if (CP_TYPE_VOLATILE_P (ftype))
5647	    inform (0, "  non-static data member %q+D has "
5648		    "volatile type", field);
5649	}
5650    }
5651}
5652
5653/* Check the validity of the bases and members declared in T.  Add any
5654   implicitly-generated functions (like copy-constructors and
5655   assignment operators).  Compute various flag bits (like
5656   CLASSTYPE_NON_LAYOUT_POD_T) for T.  This routine works purely at the C++
5657   level: i.e., independently of the ABI in use.  */
5658
5659static void
5660check_bases_and_members (tree t)
5661{
5662  /* Nonzero if the implicitly generated copy constructor should take
5663     a non-const reference argument.  */
5664  int cant_have_const_ctor;
5665  /* Nonzero if the implicitly generated assignment operator
5666     should take a non-const reference argument.  */
5667  int no_const_asn_ref;
5668  tree access_decls;
5669  bool saved_complex_asn_ref;
5670  bool saved_nontrivial_dtor;
5671  tree fn;
5672
5673  /* By default, we use const reference arguments and generate default
5674     constructors.  */
5675  cant_have_const_ctor = 0;
5676  no_const_asn_ref = 0;
5677
5678  /* Check all the base-classes.  */
5679  check_bases (t, &cant_have_const_ctor,
5680	       &no_const_asn_ref);
5681
5682  /* Deduce noexcept on destructors.  This needs to happen after we've set
5683     triviality flags appropriately for our bases.  */
5684  if (cxx_dialect >= cxx11)
5685    deduce_noexcept_on_destructors (t);
5686
5687  /* Check all the method declarations.  */
5688  check_methods (t);
5689
5690  /* Save the initial values of these flags which only indicate whether
5691     or not the class has user-provided functions.  As we analyze the
5692     bases and members we can set these flags for other reasons.  */
5693  saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5694  saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5695
5696  /* Check all the data member declarations.  We cannot call
5697     check_field_decls until we have called check_bases check_methods,
5698     as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5699     being set appropriately.  */
5700  check_field_decls (t, &access_decls,
5701		     &cant_have_const_ctor,
5702		     &no_const_asn_ref);
5703
5704  /* A nearly-empty class has to be vptr-containing; a nearly empty
5705     class contains just a vptr.  */
5706  if (!TYPE_CONTAINS_VPTR_P (t))
5707    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5708
5709  /* Do some bookkeeping that will guide the generation of implicitly
5710     declared member functions.  */
5711  TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5712  TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5713  /* We need to call a constructor for this class if it has a
5714     user-provided constructor, or if the default constructor is going
5715     to initialize the vptr.  (This is not an if-and-only-if;
5716     TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5717     themselves need constructing.)  */
5718  TYPE_NEEDS_CONSTRUCTING (t)
5719    |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5720  /* [dcl.init.aggr]
5721
5722     An aggregate is an array or a class with no user-provided
5723     constructors ... and no virtual functions.
5724
5725     Again, other conditions for being an aggregate are checked
5726     elsewhere.  */
5727  CLASSTYPE_NON_AGGREGATE (t)
5728    |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5729  /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5730     retain the old definition internally for ABI reasons.  */
5731  CLASSTYPE_NON_LAYOUT_POD_P (t)
5732    |= (CLASSTYPE_NON_AGGREGATE (t)
5733	|| saved_nontrivial_dtor || saved_complex_asn_ref);
5734  CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5735  TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5736  TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5737  TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5738
5739  /* If the only explicitly declared default constructor is user-provided,
5740     set TYPE_HAS_COMPLEX_DFLT.  */
5741  if (!TYPE_HAS_COMPLEX_DFLT (t)
5742      && TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5743      && !type_has_non_user_provided_default_constructor (t))
5744    TYPE_HAS_COMPLEX_DFLT (t) = true;
5745
5746  /* Warn if a public base of a polymorphic type has an accessible
5747     non-virtual destructor.  It is only now that we know the class is
5748     polymorphic.  Although a polymorphic base will have a already
5749     been diagnosed during its definition, we warn on use too.  */
5750  if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5751    {
5752      tree binfo = TYPE_BINFO (t);
5753      vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5754      tree base_binfo;
5755      unsigned i;
5756
5757      for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5758	{
5759	  tree basetype = TREE_TYPE (base_binfo);
5760
5761	  if ((*accesses)[i] == access_public_node
5762	      && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5763	      && accessible_nvdtor_p (basetype))
5764	    warning (OPT_Wnon_virtual_dtor,
5765		     "base class %q#T has accessible non-virtual destructor",
5766		     basetype);
5767	}
5768    }
5769
5770  /* If the class has no user-declared constructor, but does have
5771     non-static const or reference data members that can never be
5772     initialized, issue a warning.  */
5773  if (warn_uninitialized
5774      /* Classes with user-declared constructors are presumed to
5775	 initialize these members.  */
5776      && !TYPE_HAS_USER_CONSTRUCTOR (t)
5777      /* Aggregates can be initialized with brace-enclosed
5778	 initializers.  */
5779      && CLASSTYPE_NON_AGGREGATE (t))
5780    {
5781      tree field;
5782
5783      for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5784	{
5785	  tree type;
5786
5787	  if (TREE_CODE (field) != FIELD_DECL
5788	      || DECL_INITIAL (field) != NULL_TREE)
5789	    continue;
5790
5791	  type = TREE_TYPE (field);
5792	  if (TREE_CODE (type) == REFERENCE_TYPE)
5793	    warning (OPT_Wuninitialized, "non-static reference %q+#D "
5794		     "in class without a constructor", field);
5795	  else if (CP_TYPE_CONST_P (type)
5796		   && (!CLASS_TYPE_P (type)
5797		       || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5798	    warning (OPT_Wuninitialized, "non-static const member %q+#D "
5799		     "in class without a constructor", field);
5800	}
5801    }
5802
5803  /* Synthesize any needed methods.  */
5804  add_implicitly_declared_members (t, &access_decls,
5805				   cant_have_const_ctor,
5806				   no_const_asn_ref);
5807
5808  /* Check defaulted declarations here so we have cant_have_const_ctor
5809     and don't need to worry about clones.  */
5810  for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5811    if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5812      {
5813	int copy = copy_fn_p (fn);
5814	if (copy > 0)
5815	  {
5816	    bool imp_const_p
5817	      = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5818		 : !no_const_asn_ref);
5819	    bool fn_const_p = (copy == 2);
5820
5821	    if (fn_const_p && !imp_const_p)
5822	      /* If the function is defaulted outside the class, we just
5823		 give the synthesis error.  */
5824	      error ("%q+D declared to take const reference, but implicit "
5825		     "declaration would take non-const", fn);
5826	  }
5827	defaulted_late_check (fn);
5828      }
5829
5830  if (LAMBDA_TYPE_P (t))
5831    {
5832      /* "This class type is not an aggregate."  */
5833      CLASSTYPE_NON_AGGREGATE (t) = 1;
5834    }
5835
5836  /* Compute the 'literal type' property before we
5837     do anything with non-static member functions.  */
5838  finalize_literal_type_property (t);
5839
5840  /* Create the in-charge and not-in-charge variants of constructors
5841     and destructors.  */
5842  clone_constructors_and_destructors (t);
5843
5844  /* Process the using-declarations.  */
5845  for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5846    handle_using_decl (TREE_VALUE (access_decls), t);
5847
5848  /* Build and sort the CLASSTYPE_METHOD_VEC.  */
5849  finish_struct_methods (t);
5850
5851  /* Figure out whether or not we will need a cookie when dynamically
5852     allocating an array of this type.  */
5853  TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5854    = type_requires_array_cookie (t);
5855}
5856
5857/* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5858   accordingly.  If a new vfield was created (because T doesn't have a
5859   primary base class), then the newly created field is returned.  It
5860   is not added to the TYPE_FIELDS list; it is the caller's
5861   responsibility to do that.  Accumulate declared virtual functions
5862   on VIRTUALS_P.  */
5863
5864static tree
5865create_vtable_ptr (tree t, tree* virtuals_p)
5866{
5867  tree fn;
5868
5869  /* Collect the virtual functions declared in T.  */
5870  for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5871    if (TREE_CODE (fn) == FUNCTION_DECL
5872	&& DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5873	&& TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5874      {
5875	tree new_virtual = make_node (TREE_LIST);
5876
5877	BV_FN (new_virtual) = fn;
5878	BV_DELTA (new_virtual) = integer_zero_node;
5879	BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5880
5881	TREE_CHAIN (new_virtual) = *virtuals_p;
5882	*virtuals_p = new_virtual;
5883      }
5884
5885  /* If we couldn't find an appropriate base class, create a new field
5886     here.  Even if there weren't any new virtual functions, we might need a
5887     new virtual function table if we're supposed to include vptrs in
5888     all classes that need them.  */
5889  if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5890    {
5891      /* We build this decl with vtbl_ptr_type_node, which is a
5892	 `vtable_entry_type*'.  It might seem more precise to use
5893	 `vtable_entry_type (*)[N]' where N is the number of virtual
5894	 functions.  However, that would require the vtable pointer in
5895	 base classes to have a different type than the vtable pointer
5896	 in derived classes.  We could make that happen, but that
5897	 still wouldn't solve all the problems.  In particular, the
5898	 type-based alias analysis code would decide that assignments
5899	 to the base class vtable pointer can't alias assignments to
5900	 the derived class vtable pointer, since they have different
5901	 types.  Thus, in a derived class destructor, where the base
5902	 class constructor was inlined, we could generate bad code for
5903	 setting up the vtable pointer.
5904
5905	 Therefore, we use one type for all vtable pointers.  We still
5906	 use a type-correct type; it's just doesn't indicate the array
5907	 bounds.  That's better than using `void*' or some such; it's
5908	 cleaner, and it let's the alias analysis code know that these
5909	 stores cannot alias stores to void*!  */
5910      tree field;
5911
5912      field = build_decl (input_location,
5913			  FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5914      DECL_VIRTUAL_P (field) = 1;
5915      DECL_ARTIFICIAL (field) = 1;
5916      DECL_FIELD_CONTEXT (field) = t;
5917      DECL_FCONTEXT (field) = t;
5918      if (TYPE_PACKED (t))
5919	DECL_PACKED (field) = 1;
5920
5921      TYPE_VFIELD (t) = field;
5922
5923      /* This class is non-empty.  */
5924      CLASSTYPE_EMPTY_P (t) = 0;
5925
5926      return field;
5927    }
5928
5929  return NULL_TREE;
5930}
5931
5932/* Add OFFSET to all base types of BINFO which is a base in the
5933   hierarchy dominated by T.
5934
5935   OFFSET, which is a type offset, is number of bytes.  */
5936
5937static void
5938propagate_binfo_offsets (tree binfo, tree offset)
5939{
5940  int i;
5941  tree primary_binfo;
5942  tree base_binfo;
5943
5944  /* Update BINFO's offset.  */
5945  BINFO_OFFSET (binfo)
5946    = convert (sizetype,
5947	       size_binop (PLUS_EXPR,
5948			   convert (ssizetype, BINFO_OFFSET (binfo)),
5949			   offset));
5950
5951  /* Find the primary base class.  */
5952  primary_binfo = get_primary_binfo (binfo);
5953
5954  if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5955    propagate_binfo_offsets (primary_binfo, offset);
5956
5957  /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5958     downwards.  */
5959  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5960    {
5961      /* Don't do the primary base twice.  */
5962      if (base_binfo == primary_binfo)
5963	continue;
5964
5965      if (BINFO_VIRTUAL_P (base_binfo))
5966	continue;
5967
5968      propagate_binfo_offsets (base_binfo, offset);
5969    }
5970}
5971
5972/* Set BINFO_OFFSET for all of the virtual bases for RLI->T.  Update
5973   TYPE_ALIGN and TYPE_SIZE for T.  OFFSETS gives the location of
5974   empty subobjects of T.  */
5975
5976static void
5977layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5978{
5979  tree vbase;
5980  tree t = rli->t;
5981  tree *next_field;
5982
5983  if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5984    return;
5985
5986  /* Find the last field.  The artificial fields created for virtual
5987     bases will go after the last extant field to date.  */
5988  next_field = &TYPE_FIELDS (t);
5989  while (*next_field)
5990    next_field = &DECL_CHAIN (*next_field);
5991
5992  /* Go through the virtual bases, allocating space for each virtual
5993     base that is not already a primary base class.  These are
5994     allocated in inheritance graph order.  */
5995  for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5996    {
5997      if (!BINFO_VIRTUAL_P (vbase))
5998	continue;
5999
6000      if (!BINFO_PRIMARY_P (vbase))
6001	{
6002	  /* This virtual base is not a primary base of any class in the
6003	     hierarchy, so we have to add space for it.  */
6004	  next_field = build_base_field (rli, vbase,
6005					 offsets, next_field);
6006	}
6007    }
6008}
6009
6010/* Returns the offset of the byte just past the end of the base class
6011   BINFO.  */
6012
6013static tree
6014end_of_base (tree binfo)
6015{
6016  tree size;
6017
6018  if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
6019    size = TYPE_SIZE_UNIT (char_type_node);
6020  else if (is_empty_class (BINFO_TYPE (binfo)))
6021    /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
6022       allocate some space for it. It cannot have virtual bases, so
6023       TYPE_SIZE_UNIT is fine.  */
6024    size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
6025  else
6026    size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
6027
6028  return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
6029}
6030
6031/* Returns the offset of the byte just past the end of the base class
6032   with the highest offset in T.  If INCLUDE_VIRTUALS_P is zero, then
6033   only non-virtual bases are included.  */
6034
6035static tree
6036end_of_class (tree t, int include_virtuals_p)
6037{
6038  tree result = size_zero_node;
6039  vec<tree, va_gc> *vbases;
6040  tree binfo;
6041  tree base_binfo;
6042  tree offset;
6043  int i;
6044
6045  for (binfo = TYPE_BINFO (t), i = 0;
6046       BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6047    {
6048      if (!include_virtuals_p
6049	  && BINFO_VIRTUAL_P (base_binfo)
6050	  && (!BINFO_PRIMARY_P (base_binfo)
6051	      || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
6052	continue;
6053
6054      offset = end_of_base (base_binfo);
6055      if (tree_int_cst_lt (result, offset))
6056	result = offset;
6057    }
6058
6059  if (include_virtuals_p)
6060    for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
6061	 vec_safe_iterate (vbases, i, &base_binfo); i++)
6062      {
6063	offset = end_of_base (base_binfo);
6064	if (tree_int_cst_lt (result, offset))
6065	  result = offset;
6066      }
6067
6068  return result;
6069}
6070
6071/* Warn about bases of T that are inaccessible because they are
6072   ambiguous.  For example:
6073
6074     struct S {};
6075     struct T : public S {};
6076     struct U : public S, public T {};
6077
6078   Here, `(S*) new U' is not allowed because there are two `S'
6079   subobjects of U.  */
6080
6081static void
6082warn_about_ambiguous_bases (tree t)
6083{
6084  int i;
6085  vec<tree, va_gc> *vbases;
6086  tree basetype;
6087  tree binfo;
6088  tree base_binfo;
6089
6090  /* If there are no repeated bases, nothing can be ambiguous.  */
6091  if (!CLASSTYPE_REPEATED_BASE_P (t))
6092    return;
6093
6094  /* Check direct bases.  */
6095  for (binfo = TYPE_BINFO (t), i = 0;
6096       BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6097    {
6098      basetype = BINFO_TYPE (base_binfo);
6099
6100      if (!uniquely_derived_from_p (basetype, t))
6101	warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
6102		 basetype, t);
6103    }
6104
6105  /* Check for ambiguous virtual bases.  */
6106  if (extra_warnings)
6107    for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
6108	 vec_safe_iterate (vbases, i, &binfo); i++)
6109      {
6110	basetype = BINFO_TYPE (binfo);
6111
6112	if (!uniquely_derived_from_p (basetype, t))
6113	  warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
6114		   "to ambiguity", basetype, t);
6115      }
6116}
6117
6118/* Compare two INTEGER_CSTs K1 and K2.  */
6119
6120static int
6121splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
6122{
6123  return tree_int_cst_compare ((tree) k1, (tree) k2);
6124}
6125
6126/* Increase the size indicated in RLI to account for empty classes
6127   that are "off the end" of the class.  */
6128
6129static void
6130include_empty_classes (record_layout_info rli)
6131{
6132  tree eoc;
6133  tree rli_size;
6134
6135  /* It might be the case that we grew the class to allocate a
6136     zero-sized base class.  That won't be reflected in RLI, yet,
6137     because we are willing to overlay multiple bases at the same
6138     offset.  However, now we need to make sure that RLI is big enough
6139     to reflect the entire class.  */
6140  eoc = end_of_class (rli->t,
6141		      CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
6142  rli_size = rli_size_unit_so_far (rli);
6143  if (TREE_CODE (rli_size) == INTEGER_CST
6144      && tree_int_cst_lt (rli_size, eoc))
6145    {
6146      /* The size should have been rounded to a whole byte.  */
6147      gcc_assert (tree_int_cst_equal
6148		  (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
6149      rli->bitpos
6150	= size_binop (PLUS_EXPR,
6151		      rli->bitpos,
6152		      size_binop (MULT_EXPR,
6153				  convert (bitsizetype,
6154					   size_binop (MINUS_EXPR,
6155						       eoc, rli_size)),
6156				  bitsize_int (BITS_PER_UNIT)));
6157      normalize_rli (rli);
6158    }
6159}
6160
6161/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T.  Calculate
6162   BINFO_OFFSETs for all of the base-classes.  Position the vtable
6163   pointer.  Accumulate declared virtual functions on VIRTUALS_P.  */
6164
6165static void
6166layout_class_type (tree t, tree *virtuals_p)
6167{
6168  tree non_static_data_members;
6169  tree field;
6170  tree vptr;
6171  record_layout_info rli;
6172  /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
6173     types that appear at that offset.  */
6174  splay_tree empty_base_offsets;
6175  /* True if the last field laid out was a bit-field.  */
6176  bool last_field_was_bitfield = false;
6177  /* The location at which the next field should be inserted.  */
6178  tree *next_field;
6179  /* T, as a base class.  */
6180  tree base_t;
6181
6182  /* Keep track of the first non-static data member.  */
6183  non_static_data_members = TYPE_FIELDS (t);
6184
6185  /* Start laying out the record.  */
6186  rli = start_record_layout (t);
6187
6188  /* Mark all the primary bases in the hierarchy.  */
6189  determine_primary_bases (t);
6190
6191  /* Create a pointer to our virtual function table.  */
6192  vptr = create_vtable_ptr (t, virtuals_p);
6193
6194  /* The vptr is always the first thing in the class.  */
6195  if (vptr)
6196    {
6197      DECL_CHAIN (vptr) = TYPE_FIELDS (t);
6198      TYPE_FIELDS (t) = vptr;
6199      next_field = &DECL_CHAIN (vptr);
6200      place_field (rli, vptr);
6201    }
6202  else
6203    next_field = &TYPE_FIELDS (t);
6204
6205  /* Build FIELD_DECLs for all of the non-virtual base-types.  */
6206  empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
6207				       NULL, NULL);
6208  build_base_fields (rli, empty_base_offsets, next_field);
6209
6210  /* Layout the non-static data members.  */
6211  for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6212    {
6213      tree type;
6214      tree padding;
6215
6216      /* We still pass things that aren't non-static data members to
6217	 the back end, in case it wants to do something with them.  */
6218      if (TREE_CODE (field) != FIELD_DECL)
6219	{
6220	  place_field (rli, field);
6221	  /* If the static data member has incomplete type, keep track
6222	     of it so that it can be completed later.  (The handling
6223	     of pending statics in finish_record_layout is
6224	     insufficient; consider:
6225
6226	       struct S1;
6227	       struct S2 { static S1 s1; };
6228
6229	     At this point, finish_record_layout will be called, but
6230	     S1 is still incomplete.)  */
6231	  if (VAR_P (field))
6232	    {
6233	      maybe_register_incomplete_var (field);
6234	      /* The visibility of static data members is determined
6235		 at their point of declaration, not their point of
6236		 definition.  */
6237	      determine_visibility (field);
6238	    }
6239	  continue;
6240	}
6241
6242      type = TREE_TYPE (field);
6243      if (type == error_mark_node)
6244	continue;
6245
6246      padding = NULL_TREE;
6247
6248      /* If this field is a bit-field whose width is greater than its
6249	 type, then there are some special rules for allocating
6250	 it.  */
6251      if (DECL_C_BIT_FIELD (field)
6252	  && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6253	{
6254	  unsigned int itk;
6255	  tree integer_type;
6256	  bool was_unnamed_p = false;
6257	  /* We must allocate the bits as if suitably aligned for the
6258	     longest integer type that fits in this many bits.  type
6259	     of the field.  Then, we are supposed to use the left over
6260	     bits as additional padding.  */
6261	  for (itk = itk_char; itk != itk_none; ++itk)
6262	    if (integer_types[itk] != NULL_TREE
6263		&& (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6264				     TYPE_SIZE (integer_types[itk]))
6265		    || tree_int_cst_lt (DECL_SIZE (field),
6266					TYPE_SIZE (integer_types[itk]))))
6267	      break;
6268
6269	  /* ITK now indicates a type that is too large for the
6270	     field.  We have to back up by one to find the largest
6271	     type that fits.  */
6272	  do
6273	  {
6274            --itk;
6275	    integer_type = integer_types[itk];
6276	  } while (itk > 0 && integer_type == NULL_TREE);
6277
6278	  /* Figure out how much additional padding is required.  */
6279	  if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6280	    {
6281	      if (TREE_CODE (t) == UNION_TYPE)
6282		/* In a union, the padding field must have the full width
6283		   of the bit-field; all fields start at offset zero.  */
6284		padding = DECL_SIZE (field);
6285	      else
6286		padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6287				      TYPE_SIZE (integer_type));
6288	    }
6289#ifdef PCC_BITFIELD_TYPE_MATTERS
6290	  /* An unnamed bitfield does not normally affect the
6291	     alignment of the containing class on a target where
6292	     PCC_BITFIELD_TYPE_MATTERS.  But, the C++ ABI does not
6293	     make any exceptions for unnamed bitfields when the
6294	     bitfields are longer than their types.  Therefore, we
6295	     temporarily give the field a name.  */
6296	  if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6297	    {
6298	      was_unnamed_p = true;
6299	      DECL_NAME (field) = make_anon_name ();
6300	    }
6301#endif
6302	  DECL_SIZE (field) = TYPE_SIZE (integer_type);
6303	  DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6304	  DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6305	  layout_nonempty_base_or_field (rli, field, NULL_TREE,
6306					 empty_base_offsets);
6307	  if (was_unnamed_p)
6308	    DECL_NAME (field) = NULL_TREE;
6309	  /* Now that layout has been performed, set the size of the
6310	     field to the size of its declared type; the rest of the
6311	     field is effectively invisible.  */
6312	  DECL_SIZE (field) = TYPE_SIZE (type);
6313	  /* We must also reset the DECL_MODE of the field.  */
6314	  DECL_MODE (field) = TYPE_MODE (type);
6315	}
6316      else
6317	layout_nonempty_base_or_field (rli, field, NULL_TREE,
6318				       empty_base_offsets);
6319
6320      /* Remember the location of any empty classes in FIELD.  */
6321      record_subobject_offsets (TREE_TYPE (field),
6322				byte_position(field),
6323				empty_base_offsets,
6324				/*is_data_member=*/true);
6325
6326      /* If a bit-field does not immediately follow another bit-field,
6327	 and yet it starts in the middle of a byte, we have failed to
6328	 comply with the ABI.  */
6329      if (warn_abi
6330	  && DECL_C_BIT_FIELD (field)
6331	  /* The TREE_NO_WARNING flag gets set by Objective-C when
6332	     laying out an Objective-C class.  The ObjC ABI differs
6333	     from the C++ ABI, and so we do not want a warning
6334	     here.  */
6335	  && !TREE_NO_WARNING (field)
6336	  && !last_field_was_bitfield
6337	  && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6338					 DECL_FIELD_BIT_OFFSET (field),
6339					 bitsize_unit_node)))
6340	warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6341		 "change in a future version of GCC", field);
6342
6343      /* The middle end uses the type of expressions to determine the
6344	 possible range of expression values.  In order to optimize
6345	 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6346	 must be made aware of the width of "i", via its type.
6347
6348	 Because C++ does not have integer types of arbitrary width,
6349	 we must (for the purposes of the front end) convert from the
6350	 type assigned here to the declared type of the bitfield
6351	 whenever a bitfield expression is used as an rvalue.
6352	 Similarly, when assigning a value to a bitfield, the value
6353	 must be converted to the type given the bitfield here.  */
6354      if (DECL_C_BIT_FIELD (field))
6355	{
6356	  unsigned HOST_WIDE_INT width;
6357	  tree ftype = TREE_TYPE (field);
6358	  width = tree_to_uhwi (DECL_SIZE (field));
6359	  if (width != TYPE_PRECISION (ftype))
6360	    {
6361	      TREE_TYPE (field)
6362		= c_build_bitfield_integer_type (width,
6363						 TYPE_UNSIGNED (ftype));
6364	      TREE_TYPE (field)
6365		= cp_build_qualified_type (TREE_TYPE (field),
6366					   cp_type_quals (ftype));
6367	    }
6368	}
6369
6370      /* If we needed additional padding after this field, add it
6371	 now.  */
6372      if (padding)
6373	{
6374	  tree padding_field;
6375
6376	  padding_field = build_decl (input_location,
6377				      FIELD_DECL,
6378				      NULL_TREE,
6379				      char_type_node);
6380	  DECL_BIT_FIELD (padding_field) = 1;
6381	  DECL_SIZE (padding_field) = padding;
6382	  DECL_CONTEXT (padding_field) = t;
6383	  DECL_ARTIFICIAL (padding_field) = 1;
6384	  DECL_IGNORED_P (padding_field) = 1;
6385	  layout_nonempty_base_or_field (rli, padding_field,
6386					 NULL_TREE,
6387					 empty_base_offsets);
6388	}
6389
6390      last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6391    }
6392
6393  if (!integer_zerop (rli->bitpos))
6394    {
6395      /* Make sure that we are on a byte boundary so that the size of
6396	 the class without virtual bases will always be a round number
6397	 of bytes.  */
6398      rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6399      normalize_rli (rli);
6400    }
6401
6402  /* Delete all zero-width bit-fields from the list of fields.  Now
6403     that the type is laid out they are no longer important.  */
6404  remove_zero_width_bit_fields (t);
6405
6406  /* Create the version of T used for virtual bases.  We do not use
6407     make_class_type for this version; this is an artificial type.  For
6408     a POD type, we just reuse T.  */
6409  if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6410    {
6411      base_t = make_node (TREE_CODE (t));
6412
6413      /* Set the size and alignment for the new type.  */
6414      tree eoc;
6415
6416      /* If the ABI version is not at least two, and the last
6417	 field was a bit-field, RLI may not be on a byte
6418	 boundary.  In particular, rli_size_unit_so_far might
6419	 indicate the last complete byte, while rli_size_so_far
6420	 indicates the total number of bits used.  Therefore,
6421	 rli_size_so_far, rather than rli_size_unit_so_far, is
6422	 used to compute TYPE_SIZE_UNIT.  */
6423      eoc = end_of_class (t, /*include_virtuals_p=*/0);
6424      TYPE_SIZE_UNIT (base_t)
6425	= size_binop (MAX_EXPR,
6426		      convert (sizetype,
6427			       size_binop (CEIL_DIV_EXPR,
6428					   rli_size_so_far (rli),
6429					   bitsize_int (BITS_PER_UNIT))),
6430		      eoc);
6431      TYPE_SIZE (base_t)
6432	= size_binop (MAX_EXPR,
6433		      rli_size_so_far (rli),
6434		      size_binop (MULT_EXPR,
6435				  convert (bitsizetype, eoc),
6436				  bitsize_int (BITS_PER_UNIT)));
6437      TYPE_ALIGN (base_t) = rli->record_align;
6438      TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6439
6440      /* Copy the fields from T.  */
6441      next_field = &TYPE_FIELDS (base_t);
6442      for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6443	if (TREE_CODE (field) == FIELD_DECL)
6444	  {
6445	    *next_field = build_decl (input_location,
6446				      FIELD_DECL,
6447				      DECL_NAME (field),
6448				      TREE_TYPE (field));
6449	    DECL_CONTEXT (*next_field) = base_t;
6450	    DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6451	    DECL_FIELD_BIT_OFFSET (*next_field)
6452	      = DECL_FIELD_BIT_OFFSET (field);
6453	    DECL_SIZE (*next_field) = DECL_SIZE (field);
6454	    DECL_MODE (*next_field) = DECL_MODE (field);
6455	    next_field = &DECL_CHAIN (*next_field);
6456	  }
6457
6458      /* Record the base version of the type.  */
6459      CLASSTYPE_AS_BASE (t) = base_t;
6460      TYPE_CONTEXT (base_t) = t;
6461    }
6462  else
6463    CLASSTYPE_AS_BASE (t) = t;
6464
6465  /* Every empty class contains an empty class.  */
6466  if (CLASSTYPE_EMPTY_P (t))
6467    CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6468
6469  /* Set the TYPE_DECL for this type to contain the right
6470     value for DECL_OFFSET, so that we can use it as part
6471     of a COMPONENT_REF for multiple inheritance.  */
6472  layout_decl (TYPE_MAIN_DECL (t), 0);
6473
6474  /* Now fix up any virtual base class types that we left lying
6475     around.  We must get these done before we try to lay out the
6476     virtual function table.  As a side-effect, this will remove the
6477     base subobject fields.  */
6478  layout_virtual_bases (rli, empty_base_offsets);
6479
6480  /* Make sure that empty classes are reflected in RLI at this
6481     point.  */
6482  include_empty_classes(rli);
6483
6484  /* Make sure not to create any structures with zero size.  */
6485  if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6486    place_field (rli,
6487		 build_decl (input_location,
6488			     FIELD_DECL, NULL_TREE, char_type_node));
6489
6490  /* If this is a non-POD, declaring it packed makes a difference to how it
6491     can be used as a field; don't let finalize_record_size undo it.  */
6492  if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6493    rli->packed_maybe_necessary = true;
6494
6495  /* Let the back end lay out the type.  */
6496  finish_record_layout (rli, /*free_p=*/true);
6497
6498  if (TYPE_SIZE_UNIT (t)
6499      && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6500      && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6501      && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6502    error ("type %qT is too large", t);
6503
6504  /* Warn about bases that can't be talked about due to ambiguity.  */
6505  warn_about_ambiguous_bases (t);
6506
6507  /* Now that we're done with layout, give the base fields the real types.  */
6508  for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6509    if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6510      TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6511
6512  /* Clean up.  */
6513  splay_tree_delete (empty_base_offsets);
6514
6515  if (CLASSTYPE_EMPTY_P (t)
6516      && tree_int_cst_lt (sizeof_biggest_empty_class,
6517			  TYPE_SIZE_UNIT (t)))
6518    sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6519}
6520
6521/* Determine the "key method" for the class type indicated by TYPE,
6522   and set CLASSTYPE_KEY_METHOD accordingly.  */
6523
6524void
6525determine_key_method (tree type)
6526{
6527  tree method;
6528
6529  if (TYPE_FOR_JAVA (type)
6530      || processing_template_decl
6531      || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6532      || CLASSTYPE_INTERFACE_KNOWN (type))
6533    return;
6534
6535  /* The key method is the first non-pure virtual function that is not
6536     inline at the point of class definition.  On some targets the
6537     key function may not be inline; those targets should not call
6538     this function until the end of the translation unit.  */
6539  for (method = TYPE_METHODS (type); method != NULL_TREE;
6540       method = DECL_CHAIN (method))
6541    if (TREE_CODE (method) == FUNCTION_DECL
6542	&& DECL_VINDEX (method) != NULL_TREE
6543	&& ! DECL_DECLARED_INLINE_P (method)
6544	&& ! DECL_PURE_VIRTUAL_P (method))
6545      {
6546	CLASSTYPE_KEY_METHOD (type) = method;
6547	break;
6548      }
6549
6550  return;
6551}
6552
6553
6554/* Allocate and return an instance of struct sorted_fields_type with
6555   N fields.  */
6556
6557static struct sorted_fields_type *
6558sorted_fields_type_new (int n)
6559{
6560  struct sorted_fields_type *sft;
6561  sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6562				      + n * sizeof (tree));
6563  sft->len = n;
6564
6565  return sft;
6566}
6567
6568
6569/* Perform processing required when the definition of T (a class type)
6570   is complete.  */
6571
6572void
6573finish_struct_1 (tree t)
6574{
6575  tree x;
6576  /* A TREE_LIST.  The TREE_VALUE of each node is a FUNCTION_DECL.  */
6577  tree virtuals = NULL_TREE;
6578
6579  if (COMPLETE_TYPE_P (t))
6580    {
6581      gcc_assert (MAYBE_CLASS_TYPE_P (t));
6582      error ("redefinition of %q#T", t);
6583      popclass ();
6584      return;
6585    }
6586
6587  /* If this type was previously laid out as a forward reference,
6588     make sure we lay it out again.  */
6589  TYPE_SIZE (t) = NULL_TREE;
6590  CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6591
6592  /* Make assumptions about the class; we'll reset the flags if
6593     necessary.  */
6594  CLASSTYPE_EMPTY_P (t) = 1;
6595  CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6596  CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6597  CLASSTYPE_LITERAL_P (t) = true;
6598
6599  /* Do end-of-class semantic processing: checking the validity of the
6600     bases and members and add implicitly generated methods.  */
6601  check_bases_and_members (t);
6602
6603  /* Find the key method.  */
6604  if (TYPE_CONTAINS_VPTR_P (t))
6605    {
6606      /* The Itanium C++ ABI permits the key method to be chosen when
6607	 the class is defined -- even though the key method so
6608	 selected may later turn out to be an inline function.  On
6609	 some systems (such as ARM Symbian OS) the key method cannot
6610	 be determined until the end of the translation unit.  On such
6611	 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6612	 will cause the class to be added to KEYED_CLASSES.  Then, in
6613	 finish_file we will determine the key method.  */
6614      if (targetm.cxx.key_method_may_be_inline ())
6615	determine_key_method (t);
6616
6617      /* If a polymorphic class has no key method, we may emit the vtable
6618	 in every translation unit where the class definition appears.  If
6619	 we're devirtualizing, we can look into the vtable even if we
6620	 aren't emitting it.  */
6621      if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6622	keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6623    }
6624
6625  /* Layout the class itself.  */
6626  layout_class_type (t, &virtuals);
6627  if (CLASSTYPE_AS_BASE (t) != t)
6628    /* We use the base type for trivial assignments, and hence it
6629       needs a mode.  */
6630    compute_record_mode (CLASSTYPE_AS_BASE (t));
6631
6632  virtuals = modify_all_vtables (t, nreverse (virtuals));
6633
6634  /* If necessary, create the primary vtable for this class.  */
6635  if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6636    {
6637      /* We must enter these virtuals into the table.  */
6638      if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6639	build_primary_vtable (NULL_TREE, t);
6640      else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6641	/* Here we know enough to change the type of our virtual
6642	   function table, but we will wait until later this function.  */
6643	build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6644
6645      /* If we're warning about ABI tags, check the types of the new
6646	 virtual functions.  */
6647      if (warn_abi_tag)
6648	for (tree v = virtuals; v; v = TREE_CHAIN (v))
6649	  check_abi_tags (t, TREE_VALUE (v));
6650    }
6651
6652  if (TYPE_CONTAINS_VPTR_P (t))
6653    {
6654      int vindex;
6655      tree fn;
6656
6657      if (BINFO_VTABLE (TYPE_BINFO (t)))
6658	gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6659      if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6660	gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6661
6662      /* Add entries for virtual functions introduced by this class.  */
6663      BINFO_VIRTUALS (TYPE_BINFO (t))
6664	= chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6665
6666      /* Set DECL_VINDEX for all functions declared in this class.  */
6667      for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6668	   fn;
6669	   fn = TREE_CHAIN (fn),
6670	     vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6671			? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6672	{
6673	  tree fndecl = BV_FN (fn);
6674
6675	  if (DECL_THUNK_P (fndecl))
6676	    /* A thunk. We should never be calling this entry directly
6677	       from this vtable -- we'd use the entry for the non
6678	       thunk base function.  */
6679	    DECL_VINDEX (fndecl) = NULL_TREE;
6680	  else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6681	    DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6682	}
6683    }
6684
6685  finish_struct_bits (t);
6686  set_method_tm_attributes (t);
6687
6688  /* Complete the rtl for any static member objects of the type we're
6689     working on.  */
6690  for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6691    if (VAR_P (x) && TREE_STATIC (x)
6692        && TREE_TYPE (x) != error_mark_node
6693	&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6694      DECL_MODE (x) = TYPE_MODE (t);
6695
6696  /* Done with FIELDS...now decide whether to sort these for
6697     faster lookups later.
6698
6699     We use a small number because most searches fail (succeeding
6700     ultimately as the search bores through the inheritance
6701     hierarchy), and we want this failure to occur quickly.  */
6702
6703  insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6704
6705  /* Complain if one of the field types requires lower visibility.  */
6706  constrain_class_visibility (t);
6707
6708  /* Make the rtl for any new vtables we have created, and unmark
6709     the base types we marked.  */
6710  finish_vtbls (t);
6711
6712  /* Build the VTT for T.  */
6713  build_vtt (t);
6714
6715  /* This warning does not make sense for Java classes, since they
6716     cannot have destructors.  */
6717  if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
6718      && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t)
6719      && !CLASSTYPE_FINAL (t))
6720    warning (OPT_Wnon_virtual_dtor,
6721	     "%q#T has virtual functions and accessible"
6722	     " non-virtual destructor", t);
6723
6724  complete_vars (t);
6725
6726  if (warn_overloaded_virtual)
6727    warn_hidden (t);
6728
6729  /* Class layout, assignment of virtual table slots, etc., is now
6730     complete.  Give the back end a chance to tweak the visibility of
6731     the class or perform any other required target modifications.  */
6732  targetm.cxx.adjust_class_at_definition (t);
6733
6734  maybe_suppress_debug_info (t);
6735
6736  if (flag_vtable_verify)
6737    vtv_save_class_info (t);
6738
6739  dump_class_hierarchy (t);
6740
6741  /* Finish debugging output for this type.  */
6742  rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6743
6744  if (TYPE_TRANSPARENT_AGGR (t))
6745    {
6746      tree field = first_field (t);
6747      if (field == NULL_TREE || error_operand_p (field))
6748	{
6749	  error ("type transparent %q#T does not have any fields", t);
6750	  TYPE_TRANSPARENT_AGGR (t) = 0;
6751	}
6752      else if (DECL_ARTIFICIAL (field))
6753	{
6754	  if (DECL_FIELD_IS_BASE (field))
6755	    error ("type transparent class %qT has base classes", t);
6756	  else
6757	    {
6758	      gcc_checking_assert (DECL_VIRTUAL_P (field));
6759	      error ("type transparent class %qT has virtual functions", t);
6760	    }
6761	  TYPE_TRANSPARENT_AGGR (t) = 0;
6762	}
6763      else if (TYPE_MODE (t) != DECL_MODE (field))
6764	{
6765	  error ("type transparent %q#T cannot be made transparent because "
6766		 "the type of the first field has a different ABI from the "
6767		 "class overall", t);
6768	  TYPE_TRANSPARENT_AGGR (t) = 0;
6769	}
6770    }
6771}
6772
6773/* Insert FIELDS into T for the sorted case if the FIELDS count is
6774   equal to THRESHOLD or greater than THRESHOLD.  */
6775
6776static void
6777insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6778{
6779  int n_fields = count_fields (fields);
6780  if (n_fields >= threshold)
6781    {
6782      struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6783      add_fields_to_record_type (fields, field_vec, 0);
6784      qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6785      CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6786    }
6787}
6788
6789/* Insert lately defined enum ENUMTYPE into T for the sorted case.  */
6790
6791void
6792insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6793{
6794  struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6795  if (sorted_fields)
6796    {
6797      int i;
6798      int n_fields
6799	= list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6800      struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6801
6802      for (i = 0; i < sorted_fields->len; ++i)
6803	field_vec->elts[i] = sorted_fields->elts[i];
6804
6805      add_enum_fields_to_record_type (enumtype, field_vec,
6806				      sorted_fields->len);
6807      qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6808      CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6809    }
6810}
6811
6812/* When T was built up, the member declarations were added in reverse
6813   order.  Rearrange them to declaration order.  */
6814
6815void
6816unreverse_member_declarations (tree t)
6817{
6818  tree next;
6819  tree prev;
6820  tree x;
6821
6822  /* The following lists are all in reverse order.  Put them in
6823     declaration order now.  */
6824  TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6825  CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6826
6827  /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6828     reverse order, so we can't just use nreverse.  */
6829  prev = NULL_TREE;
6830  for (x = TYPE_FIELDS (t);
6831       x && TREE_CODE (x) != TYPE_DECL;
6832       x = next)
6833    {
6834      next = DECL_CHAIN (x);
6835      DECL_CHAIN (x) = prev;
6836      prev = x;
6837    }
6838  if (prev)
6839    {
6840      DECL_CHAIN (TYPE_FIELDS (t)) = x;
6841      if (prev)
6842	TYPE_FIELDS (t) = prev;
6843    }
6844}
6845
6846tree
6847finish_struct (tree t, tree attributes)
6848{
6849  location_t saved_loc = input_location;
6850
6851  /* Now that we've got all the field declarations, reverse everything
6852     as necessary.  */
6853  unreverse_member_declarations (t);
6854
6855  cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6856  fixup_attribute_variants (t);
6857
6858  /* Nadger the current location so that diagnostics point to the start of
6859     the struct, not the end.  */
6860  input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6861
6862  if (processing_template_decl)
6863    {
6864      tree x;
6865
6866      finish_struct_methods (t);
6867      TYPE_SIZE (t) = bitsize_zero_node;
6868      TYPE_SIZE_UNIT (t) = size_zero_node;
6869
6870      /* We need to emit an error message if this type was used as a parameter
6871	 and it is an abstract type, even if it is a template. We construct
6872	 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6873	 account and we call complete_vars with this type, which will check
6874	 the PARM_DECLS. Note that while the type is being defined,
6875	 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6876	 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it.  */
6877      CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6878      for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6879	if (DECL_PURE_VIRTUAL_P (x))
6880	  vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6881      complete_vars (t);
6882      /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6883	 an enclosing scope is a template class, so that this function be
6884	 found by lookup_fnfields_1 when the using declaration is not
6885	 instantiated yet.  */
6886      for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6887	if (TREE_CODE (x) == USING_DECL)
6888	  {
6889	    tree fn = strip_using_decl (x);
6890	    if (is_overloaded_fn (fn))
6891	      for (; fn; fn = OVL_NEXT (fn))
6892		add_method (t, OVL_CURRENT (fn), x);
6893	  }
6894
6895      /* Remember current #pragma pack value.  */
6896      TYPE_PRECISION (t) = maximum_field_alignment;
6897
6898      /* Fix up any variants we've already built.  */
6899      for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6900	{
6901	  TYPE_SIZE (x) = TYPE_SIZE (t);
6902	  TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6903	  TYPE_FIELDS (x) = TYPE_FIELDS (t);
6904	  TYPE_METHODS (x) = TYPE_METHODS (t);
6905	}
6906    }
6907  else
6908    finish_struct_1 (t);
6909
6910  if (is_std_init_list (t))
6911    {
6912      /* People keep complaining that the compiler crashes on an invalid
6913	 definition of initializer_list, so I guess we should explicitly
6914	 reject it.  What the compiler internals care about is that it's a
6915	 template and has a pointer field followed by an integer field.  */
6916      bool ok = false;
6917      if (processing_template_decl)
6918	{
6919	  tree f = next_initializable_field (TYPE_FIELDS (t));
6920	  if (f && TREE_CODE (TREE_TYPE (f)) == POINTER_TYPE)
6921	    {
6922	      f = next_initializable_field (DECL_CHAIN (f));
6923	      if (f && same_type_p (TREE_TYPE (f), size_type_node))
6924		ok = true;
6925	    }
6926	}
6927      if (!ok)
6928	fatal_error (input_location,
6929		     "definition of std::initializer_list does not match "
6930		     "#include <initializer_list>");
6931    }
6932
6933  input_location = saved_loc;
6934
6935  TYPE_BEING_DEFINED (t) = 0;
6936
6937  if (current_class_type)
6938    popclass ();
6939  else
6940    error ("trying to finish struct, but kicked out due to previous parse errors");
6941
6942  if (processing_template_decl && at_function_scope_p ()
6943      /* Lambdas are defined by the LAMBDA_EXPR.  */
6944      && !LAMBDA_TYPE_P (t))
6945    add_stmt (build_min (TAG_DEFN, t));
6946
6947  return t;
6948}
6949
6950/* Hash table to avoid endless recursion when handling references.  */
6951static hash_table<pointer_hash<tree_node> > *fixed_type_or_null_ref_ht;
6952
6953/* Return the dynamic type of INSTANCE, if known.
6954   Used to determine whether the virtual function table is needed
6955   or not.
6956
6957   *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6958   of our knowledge of its type.  *NONNULL should be initialized
6959   before this function is called.  */
6960
6961static tree
6962fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6963{
6964#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6965
6966  switch (TREE_CODE (instance))
6967    {
6968    case INDIRECT_REF:
6969      if (POINTER_TYPE_P (TREE_TYPE (instance)))
6970	return NULL_TREE;
6971      else
6972	return RECUR (TREE_OPERAND (instance, 0));
6973
6974    case CALL_EXPR:
6975      /* This is a call to a constructor, hence it's never zero.  */
6976      if (TREE_HAS_CONSTRUCTOR (instance))
6977	{
6978	  if (nonnull)
6979	    *nonnull = 1;
6980	  return TREE_TYPE (instance);
6981	}
6982      return NULL_TREE;
6983
6984    case SAVE_EXPR:
6985      /* This is a call to a constructor, hence it's never zero.  */
6986      if (TREE_HAS_CONSTRUCTOR (instance))
6987	{
6988	  if (nonnull)
6989	    *nonnull = 1;
6990	  return TREE_TYPE (instance);
6991	}
6992      return RECUR (TREE_OPERAND (instance, 0));
6993
6994    case POINTER_PLUS_EXPR:
6995    case PLUS_EXPR:
6996    case MINUS_EXPR:
6997      if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6998	return RECUR (TREE_OPERAND (instance, 0));
6999      if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
7000	/* Propagate nonnull.  */
7001	return RECUR (TREE_OPERAND (instance, 0));
7002
7003      return NULL_TREE;
7004
7005    CASE_CONVERT:
7006      return RECUR (TREE_OPERAND (instance, 0));
7007
7008    case ADDR_EXPR:
7009      instance = TREE_OPERAND (instance, 0);
7010      if (nonnull)
7011	{
7012	  /* Just because we see an ADDR_EXPR doesn't mean we're dealing
7013	     with a real object -- given &p->f, p can still be null.  */
7014	  tree t = get_base_address (instance);
7015	  /* ??? Probably should check DECL_WEAK here.  */
7016	  if (t && DECL_P (t))
7017	    *nonnull = 1;
7018	}
7019      return RECUR (instance);
7020
7021    case COMPONENT_REF:
7022      /* If this component is really a base class reference, then the field
7023	 itself isn't definitive.  */
7024      if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
7025	return RECUR (TREE_OPERAND (instance, 0));
7026      return RECUR (TREE_OPERAND (instance, 1));
7027
7028    case VAR_DECL:
7029    case FIELD_DECL:
7030      if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
7031	  && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
7032	{
7033	  if (nonnull)
7034	    *nonnull = 1;
7035	  return TREE_TYPE (TREE_TYPE (instance));
7036	}
7037      /* fall through...  */
7038    case TARGET_EXPR:
7039    case PARM_DECL:
7040    case RESULT_DECL:
7041      if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
7042	{
7043	  if (nonnull)
7044	    *nonnull = 1;
7045	  return TREE_TYPE (instance);
7046	}
7047      else if (instance == current_class_ptr)
7048	{
7049	  if (nonnull)
7050	    *nonnull = 1;
7051
7052	  /* if we're in a ctor or dtor, we know our type.  If
7053	     current_class_ptr is set but we aren't in a function, we're in
7054	     an NSDMI (and therefore a constructor).  */
7055	  if (current_scope () != current_function_decl
7056	      || (DECL_LANG_SPECIFIC (current_function_decl)
7057		  && (DECL_CONSTRUCTOR_P (current_function_decl)
7058		      || DECL_DESTRUCTOR_P (current_function_decl))))
7059	    {
7060	      if (cdtorp)
7061		*cdtorp = 1;
7062	      return TREE_TYPE (TREE_TYPE (instance));
7063	    }
7064	}
7065      else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
7066	{
7067	  /* We only need one hash table because it is always left empty.  */
7068	  if (!fixed_type_or_null_ref_ht)
7069	    fixed_type_or_null_ref_ht
7070	      = new hash_table<pointer_hash<tree_node> > (37);
7071
7072	  /* Reference variables should be references to objects.  */
7073	  if (nonnull)
7074	    *nonnull = 1;
7075
7076	  /* Enter the INSTANCE in a table to prevent recursion; a
7077	     variable's initializer may refer to the variable
7078	     itself.  */
7079	  if (VAR_P (instance)
7080	      && DECL_INITIAL (instance)
7081	      && !type_dependent_expression_p_push (DECL_INITIAL (instance))
7082	      && !fixed_type_or_null_ref_ht->find (instance))
7083	    {
7084	      tree type;
7085	      tree_node **slot;
7086
7087	      slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
7088	      *slot = instance;
7089	      type = RECUR (DECL_INITIAL (instance));
7090	      fixed_type_or_null_ref_ht->remove_elt (instance);
7091
7092	      return type;
7093	    }
7094	}
7095      return NULL_TREE;
7096
7097    default:
7098      return NULL_TREE;
7099    }
7100#undef RECUR
7101}
7102
7103/* Return nonzero if the dynamic type of INSTANCE is known, and
7104   equivalent to the static type.  We also handle the case where
7105   INSTANCE is really a pointer. Return negative if this is a
7106   ctor/dtor. There the dynamic type is known, but this might not be
7107   the most derived base of the original object, and hence virtual
7108   bases may not be laid out according to this type.
7109
7110   Used to determine whether the virtual function table is needed
7111   or not.
7112
7113   *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
7114   of our knowledge of its type.  *NONNULL should be initialized
7115   before this function is called.  */
7116
7117int
7118resolves_to_fixed_type_p (tree instance, int* nonnull)
7119{
7120  tree t = TREE_TYPE (instance);
7121  int cdtorp = 0;
7122  tree fixed;
7123
7124  /* processing_template_decl can be false in a template if we're in
7125     instantiate_non_dependent_expr, but we still want to suppress
7126     this check.  */
7127  if (in_template_function ())
7128    {
7129      /* In a template we only care about the type of the result.  */
7130      if (nonnull)
7131	*nonnull = true;
7132      return true;
7133    }
7134
7135  fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
7136  if (fixed == NULL_TREE)
7137    return 0;
7138  if (POINTER_TYPE_P (t))
7139    t = TREE_TYPE (t);
7140  if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
7141    return 0;
7142  return cdtorp ? -1 : 1;
7143}
7144
7145
7146void
7147init_class_processing (void)
7148{
7149  current_class_depth = 0;
7150  current_class_stack_size = 10;
7151  current_class_stack
7152    = XNEWVEC (struct class_stack_node, current_class_stack_size);
7153  vec_alloc (local_classes, 8);
7154  sizeof_biggest_empty_class = size_zero_node;
7155
7156  ridpointers[(int) RID_PUBLIC] = access_public_node;
7157  ridpointers[(int) RID_PRIVATE] = access_private_node;
7158  ridpointers[(int) RID_PROTECTED] = access_protected_node;
7159}
7160
7161/* Restore the cached PREVIOUS_CLASS_LEVEL.  */
7162
7163static void
7164restore_class_cache (void)
7165{
7166  tree type;
7167
7168  /* We are re-entering the same class we just left, so we don't
7169     have to search the whole inheritance matrix to find all the
7170     decls to bind again.  Instead, we install the cached
7171     class_shadowed list and walk through it binding names.  */
7172  push_binding_level (previous_class_level);
7173  class_binding_level = previous_class_level;
7174  /* Restore IDENTIFIER_TYPE_VALUE.  */
7175  for (type = class_binding_level->type_shadowed;
7176       type;
7177       type = TREE_CHAIN (type))
7178    SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
7179}
7180
7181/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
7182   appropriate for TYPE.
7183
7184   So that we may avoid calls to lookup_name, we cache the _TYPE
7185   nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7186
7187   For multiple inheritance, we perform a two-pass depth-first search
7188   of the type lattice.  */
7189
7190void
7191pushclass (tree type)
7192{
7193  class_stack_node_t csn;
7194
7195  type = TYPE_MAIN_VARIANT (type);
7196
7197  /* Make sure there is enough room for the new entry on the stack.  */
7198  if (current_class_depth + 1 >= current_class_stack_size)
7199    {
7200      current_class_stack_size *= 2;
7201      current_class_stack
7202	= XRESIZEVEC (struct class_stack_node, current_class_stack,
7203		      current_class_stack_size);
7204    }
7205
7206  /* Insert a new entry on the class stack.  */
7207  csn = current_class_stack + current_class_depth;
7208  csn->name = current_class_name;
7209  csn->type = current_class_type;
7210  csn->access = current_access_specifier;
7211  csn->names_used = 0;
7212  csn->hidden = 0;
7213  current_class_depth++;
7214
7215  /* Now set up the new type.  */
7216  current_class_name = TYPE_NAME (type);
7217  if (TREE_CODE (current_class_name) == TYPE_DECL)
7218    current_class_name = DECL_NAME (current_class_name);
7219  current_class_type = type;
7220
7221  /* By default, things in classes are private, while things in
7222     structures or unions are public.  */
7223  current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7224			      ? access_private_node
7225			      : access_public_node);
7226
7227  if (previous_class_level
7228      && type != previous_class_level->this_entity
7229      && current_class_depth == 1)
7230    {
7231      /* Forcibly remove any old class remnants.  */
7232      invalidate_class_lookup_cache ();
7233    }
7234
7235  if (!previous_class_level
7236      || type != previous_class_level->this_entity
7237      || current_class_depth > 1)
7238    pushlevel_class ();
7239  else
7240    restore_class_cache ();
7241}
7242
7243/* When we exit a toplevel class scope, we save its binding level so
7244   that we can restore it quickly.  Here, we've entered some other
7245   class, so we must invalidate our cache.  */
7246
7247void
7248invalidate_class_lookup_cache (void)
7249{
7250  previous_class_level = NULL;
7251}
7252
7253/* Get out of the current class scope. If we were in a class scope
7254   previously, that is the one popped to.  */
7255
7256void
7257popclass (void)
7258{
7259  poplevel_class ();
7260
7261  current_class_depth--;
7262  current_class_name = current_class_stack[current_class_depth].name;
7263  current_class_type = current_class_stack[current_class_depth].type;
7264  current_access_specifier = current_class_stack[current_class_depth].access;
7265  if (current_class_stack[current_class_depth].names_used)
7266    splay_tree_delete (current_class_stack[current_class_depth].names_used);
7267}
7268
7269/* Mark the top of the class stack as hidden.  */
7270
7271void
7272push_class_stack (void)
7273{
7274  if (current_class_depth)
7275    ++current_class_stack[current_class_depth - 1].hidden;
7276}
7277
7278/* Mark the top of the class stack as un-hidden.  */
7279
7280void
7281pop_class_stack (void)
7282{
7283  if (current_class_depth)
7284    --current_class_stack[current_class_depth - 1].hidden;
7285}
7286
7287/* Returns 1 if the class type currently being defined is either T or
7288   a nested type of T.  */
7289
7290bool
7291currently_open_class (tree t)
7292{
7293  int i;
7294
7295  if (!CLASS_TYPE_P (t))
7296    return false;
7297
7298  t = TYPE_MAIN_VARIANT (t);
7299
7300  /* We start looking from 1 because entry 0 is from global scope,
7301     and has no type.  */
7302  for (i = current_class_depth; i > 0; --i)
7303    {
7304      tree c;
7305      if (i == current_class_depth)
7306	c = current_class_type;
7307      else
7308	{
7309	  if (current_class_stack[i].hidden)
7310	    break;
7311	  c = current_class_stack[i].type;
7312	}
7313      if (!c)
7314	continue;
7315      if (same_type_p (c, t))
7316	return true;
7317    }
7318  return false;
7319}
7320
7321/* If either current_class_type or one of its enclosing classes are derived
7322   from T, return the appropriate type.  Used to determine how we found
7323   something via unqualified lookup.  */
7324
7325tree
7326currently_open_derived_class (tree t)
7327{
7328  int i;
7329
7330  /* The bases of a dependent type are unknown.  */
7331  if (dependent_type_p (t))
7332    return NULL_TREE;
7333
7334  if (!current_class_type)
7335    return NULL_TREE;
7336
7337  if (DERIVED_FROM_P (t, current_class_type))
7338    return current_class_type;
7339
7340  for (i = current_class_depth - 1; i > 0; --i)
7341    {
7342      if (current_class_stack[i].hidden)
7343	break;
7344      if (DERIVED_FROM_P (t, current_class_stack[i].type))
7345	return current_class_stack[i].type;
7346    }
7347
7348  return NULL_TREE;
7349}
7350
7351/* Return the outermost enclosing class type that is still open, or
7352   NULL_TREE.  */
7353
7354tree
7355outermost_open_class (void)
7356{
7357  if (!current_class_type)
7358    return NULL_TREE;
7359  tree r = NULL_TREE;
7360  if (TYPE_BEING_DEFINED (current_class_type))
7361    r = current_class_type;
7362  for (int i = current_class_depth - 1; i > 0; --i)
7363    {
7364      if (current_class_stack[i].hidden)
7365	break;
7366      tree t = current_class_stack[i].type;
7367      if (!TYPE_BEING_DEFINED (t))
7368	break;
7369      r = t;
7370    }
7371  return r;
7372}
7373
7374/* Returns the innermost class type which is not a lambda closure type.  */
7375
7376tree
7377current_nonlambda_class_type (void)
7378{
7379  int i;
7380
7381  /* We start looking from 1 because entry 0 is from global scope,
7382     and has no type.  */
7383  for (i = current_class_depth; i > 0; --i)
7384    {
7385      tree c;
7386      if (i == current_class_depth)
7387	c = current_class_type;
7388      else
7389	{
7390	  if (current_class_stack[i].hidden)
7391	    break;
7392	  c = current_class_stack[i].type;
7393	}
7394      if (!c)
7395	continue;
7396      if (!LAMBDA_TYPE_P (c))
7397	return c;
7398    }
7399  return NULL_TREE;
7400}
7401
7402/* When entering a class scope, all enclosing class scopes' names with
7403   static meaning (static variables, static functions, types and
7404   enumerators) have to be visible.  This recursive function calls
7405   pushclass for all enclosing class contexts until global or a local
7406   scope is reached.  TYPE is the enclosed class.  */
7407
7408void
7409push_nested_class (tree type)
7410{
7411  /* A namespace might be passed in error cases, like A::B:C.  */
7412  if (type == NULL_TREE
7413      || !CLASS_TYPE_P (type))
7414    return;
7415
7416  push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7417
7418  pushclass (type);
7419}
7420
7421/* Undoes a push_nested_class call.  */
7422
7423void
7424pop_nested_class (void)
7425{
7426  tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7427
7428  popclass ();
7429  if (context && CLASS_TYPE_P (context))
7430    pop_nested_class ();
7431}
7432
7433/* Returns the number of extern "LANG" blocks we are nested within.  */
7434
7435int
7436current_lang_depth (void)
7437{
7438  return vec_safe_length (current_lang_base);
7439}
7440
7441/* Set global variables CURRENT_LANG_NAME to appropriate value
7442   so that behavior of name-mangling machinery is correct.  */
7443
7444void
7445push_lang_context (tree name)
7446{
7447  vec_safe_push (current_lang_base, current_lang_name);
7448
7449  if (name == lang_name_cplusplus)
7450    {
7451      current_lang_name = name;
7452    }
7453  else if (name == lang_name_java)
7454    {
7455      current_lang_name = name;
7456      /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7457	 (See record_builtin_java_type in decl.c.)  However, that causes
7458	 incorrect debug entries if these types are actually used.
7459	 So we re-enable debug output after extern "Java".  */
7460      DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7461      DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7462      DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7463      DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7464      DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7465      DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7466      DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7467      DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7468    }
7469  else if (name == lang_name_c)
7470    {
7471      current_lang_name = name;
7472    }
7473  else
7474    error ("language string %<\"%E\"%> not recognized", name);
7475}
7476
7477/* Get out of the current language scope.  */
7478
7479void
7480pop_lang_context (void)
7481{
7482  current_lang_name = current_lang_base->pop ();
7483}
7484
7485/* Type instantiation routines.  */
7486
7487/* Given an OVERLOAD and a TARGET_TYPE, return the function that
7488   matches the TARGET_TYPE.  If there is no satisfactory match, return
7489   error_mark_node, and issue an error & warning messages under
7490   control of FLAGS.  Permit pointers to member function if FLAGS
7491   permits.  If TEMPLATE_ONLY, the name of the overloaded function was
7492   a template-id, and EXPLICIT_TARGS are the explicitly provided
7493   template arguments.
7494
7495   If OVERLOAD is for one or more member functions, then ACCESS_PATH
7496   is the base path used to reference those member functions.  If
7497   the address is resolved to a member function, access checks will be
7498   performed and errors issued if appropriate.  */
7499
7500static tree
7501resolve_address_of_overloaded_function (tree target_type,
7502					tree overload,
7503					tsubst_flags_t flags,
7504					bool template_only,
7505					tree explicit_targs,
7506					tree access_path)
7507{
7508  /* Here's what the standard says:
7509
7510       [over.over]
7511
7512       If the name is a function template, template argument deduction
7513       is done, and if the argument deduction succeeds, the deduced
7514       arguments are used to generate a single template function, which
7515       is added to the set of overloaded functions considered.
7516
7517       Non-member functions and static member functions match targets of
7518       type "pointer-to-function" or "reference-to-function."  Nonstatic
7519       member functions match targets of type "pointer-to-member
7520       function;" the function type of the pointer to member is used to
7521       select the member function from the set of overloaded member
7522       functions.  If a nonstatic member function is selected, the
7523       reference to the overloaded function name is required to have the
7524       form of a pointer to member as described in 5.3.1.
7525
7526       If more than one function is selected, any template functions in
7527       the set are eliminated if the set also contains a non-template
7528       function, and any given template function is eliminated if the
7529       set contains a second template function that is more specialized
7530       than the first according to the partial ordering rules 14.5.5.2.
7531       After such eliminations, if any, there shall remain exactly one
7532       selected function.  */
7533
7534  int is_ptrmem = 0;
7535  /* We store the matches in a TREE_LIST rooted here.  The functions
7536     are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7537     interoperability with most_specialized_instantiation.  */
7538  tree matches = NULL_TREE;
7539  tree fn;
7540  tree target_fn_type;
7541
7542  /* By the time we get here, we should be seeing only real
7543     pointer-to-member types, not the internal POINTER_TYPE to
7544     METHOD_TYPE representation.  */
7545  gcc_assert (!TYPE_PTR_P (target_type)
7546	      || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7547
7548  gcc_assert (is_overloaded_fn (overload));
7549
7550  /* Check that the TARGET_TYPE is reasonable.  */
7551  if (TYPE_PTRFN_P (target_type)
7552      || TYPE_REFFN_P (target_type))
7553    /* This is OK.  */;
7554  else if (TYPE_PTRMEMFUNC_P (target_type))
7555    /* This is OK, too.  */
7556    is_ptrmem = 1;
7557  else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7558    /* This is OK, too.  This comes from a conversion to reference
7559       type.  */
7560    target_type = build_reference_type (target_type);
7561  else
7562    {
7563      if (flags & tf_error)
7564	error ("cannot resolve overloaded function %qD based on"
7565	       " conversion to type %qT",
7566	       DECL_NAME (OVL_FUNCTION (overload)), target_type);
7567      return error_mark_node;
7568    }
7569
7570  /* Non-member functions and static member functions match targets of type
7571     "pointer-to-function" or "reference-to-function."  Nonstatic member
7572     functions match targets of type "pointer-to-member-function;" the
7573     function type of the pointer to member is used to select the member
7574     function from the set of overloaded member functions.
7575
7576     So figure out the FUNCTION_TYPE that we want to match against.  */
7577  target_fn_type = static_fn_type (target_type);
7578
7579  /* If we can find a non-template function that matches, we can just
7580     use it.  There's no point in generating template instantiations
7581     if we're just going to throw them out anyhow.  But, of course, we
7582     can only do this when we don't *need* a template function.  */
7583  if (!template_only)
7584    {
7585      tree fns;
7586
7587      for (fns = overload; fns; fns = OVL_NEXT (fns))
7588	{
7589	  tree fn = OVL_CURRENT (fns);
7590
7591	  if (TREE_CODE (fn) == TEMPLATE_DECL)
7592	    /* We're not looking for templates just yet.  */
7593	    continue;
7594
7595	  if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7596	      != is_ptrmem)
7597	    /* We're looking for a non-static member, and this isn't
7598	       one, or vice versa.  */
7599	    continue;
7600
7601	  /* Ignore functions which haven't been explicitly
7602	     declared.  */
7603	  if (DECL_ANTICIPATED (fn))
7604	    continue;
7605
7606	  /* See if there's a match.  */
7607	  if (same_type_p (target_fn_type, static_fn_type (fn)))
7608	    matches = tree_cons (fn, NULL_TREE, matches);
7609	}
7610    }
7611
7612  /* Now, if we've already got a match (or matches), there's no need
7613     to proceed to the template functions.  But, if we don't have a
7614     match we need to look at them, too.  */
7615  if (!matches)
7616    {
7617      tree target_arg_types;
7618      tree target_ret_type;
7619      tree fns;
7620      tree *args;
7621      unsigned int nargs, ia;
7622      tree arg;
7623
7624      target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7625      target_ret_type = TREE_TYPE (target_fn_type);
7626
7627      nargs = list_length (target_arg_types);
7628      args = XALLOCAVEC (tree, nargs);
7629      for (arg = target_arg_types, ia = 0;
7630	   arg != NULL_TREE && arg != void_list_node;
7631	   arg = TREE_CHAIN (arg), ++ia)
7632	args[ia] = TREE_VALUE (arg);
7633      nargs = ia;
7634
7635      for (fns = overload; fns; fns = OVL_NEXT (fns))
7636	{
7637	  tree fn = OVL_CURRENT (fns);
7638	  tree instantiation;
7639	  tree targs;
7640
7641	  if (TREE_CODE (fn) != TEMPLATE_DECL)
7642	    /* We're only looking for templates.  */
7643	    continue;
7644
7645	  if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7646	      != is_ptrmem)
7647	    /* We're not looking for a non-static member, and this is
7648	       one, or vice versa.  */
7649	    continue;
7650
7651	  tree ret = target_ret_type;
7652
7653	  /* If the template has a deduced return type, don't expose it to
7654	     template argument deduction.  */
7655	  if (undeduced_auto_decl (fn))
7656	    ret = NULL_TREE;
7657
7658	  /* Try to do argument deduction.  */
7659	  targs = make_tree_vec (DECL_NTPARMS (fn));
7660	  instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7661					       nargs, ret,
7662					      DEDUCE_EXACT, LOOKUP_NORMAL,
7663					       false, false);
7664	  if (instantiation == error_mark_node)
7665	    /* Instantiation failed.  */
7666	    continue;
7667
7668	  /* And now force instantiation to do return type deduction.  */
7669	  if (undeduced_auto_decl (instantiation))
7670	    {
7671	      ++function_depth;
7672	      instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7673	      --function_depth;
7674
7675	      require_deduced_type (instantiation);
7676	    }
7677
7678	  /* See if there's a match.  */
7679	  if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7680	    matches = tree_cons (instantiation, fn, matches);
7681	}
7682
7683      /* Now, remove all but the most specialized of the matches.  */
7684      if (matches)
7685	{
7686	  tree match = most_specialized_instantiation (matches);
7687
7688	  if (match != error_mark_node)
7689	    matches = tree_cons (TREE_PURPOSE (match),
7690				 NULL_TREE,
7691				 NULL_TREE);
7692	}
7693    }
7694
7695  /* Now we should have exactly one function in MATCHES.  */
7696  if (matches == NULL_TREE)
7697    {
7698      /* There were *no* matches.  */
7699      if (flags & tf_error)
7700	{
7701	  error ("no matches converting function %qD to type %q#T",
7702		 DECL_NAME (OVL_CURRENT (overload)),
7703		 target_type);
7704
7705	  print_candidates (overload);
7706	}
7707      return error_mark_node;
7708    }
7709  else if (TREE_CHAIN (matches))
7710    {
7711      /* There were too many matches.  First check if they're all
7712	 the same function.  */
7713      tree match = NULL_TREE;
7714
7715      fn = TREE_PURPOSE (matches);
7716
7717      /* For multi-versioned functions, more than one match is just fine and
7718	 decls_match will return false as they are different.  */
7719      for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7720	if (!decls_match (fn, TREE_PURPOSE (match))
7721	    && !targetm.target_option.function_versions
7722	       (fn, TREE_PURPOSE (match)))
7723          break;
7724
7725      if (match)
7726	{
7727	  if (flags & tf_error)
7728	    {
7729	      error ("converting overloaded function %qD to type %q#T is ambiguous",
7730		     DECL_NAME (OVL_FUNCTION (overload)),
7731		     target_type);
7732
7733	      /* Since print_candidates expects the functions in the
7734		 TREE_VALUE slot, we flip them here.  */
7735	      for (match = matches; match; match = TREE_CHAIN (match))
7736		TREE_VALUE (match) = TREE_PURPOSE (match);
7737
7738	      print_candidates (matches);
7739	    }
7740
7741	  return error_mark_node;
7742	}
7743    }
7744
7745  /* Good, exactly one match.  Now, convert it to the correct type.  */
7746  fn = TREE_PURPOSE (matches);
7747
7748  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7749      && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7750    {
7751      static int explained;
7752
7753      if (!(flags & tf_error))
7754	return error_mark_node;
7755
7756      permerror (input_location, "assuming pointer to member %qD", fn);
7757      if (!explained)
7758	{
7759	  inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7760	  explained = 1;
7761	}
7762    }
7763
7764  /* If a pointer to a function that is multi-versioned is requested, the
7765     pointer to the dispatcher function is returned instead.  This works
7766     well because indirectly calling the function will dispatch the right
7767     function version at run-time.  */
7768  if (DECL_FUNCTION_VERSIONED (fn))
7769    {
7770      fn = get_function_version_dispatcher (fn);
7771      if (fn == NULL)
7772	return error_mark_node;
7773      /* Mark all the versions corresponding to the dispatcher as used.  */
7774      if (!(flags & tf_conv))
7775	mark_versions_used (fn);
7776    }
7777
7778  /* If we're doing overload resolution purely for the purpose of
7779     determining conversion sequences, we should not consider the
7780     function used.  If this conversion sequence is selected, the
7781     function will be marked as used at this point.  */
7782  if (!(flags & tf_conv))
7783    {
7784      /* Make =delete work with SFINAE.  */
7785      if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7786	return error_mark_node;
7787      if (!mark_used (fn, flags) && !(flags & tf_error))
7788	return error_mark_node;
7789    }
7790
7791  /* We could not check access to member functions when this
7792     expression was originally created since we did not know at that
7793     time to which function the expression referred.  */
7794  if (DECL_FUNCTION_MEMBER_P (fn))
7795    {
7796      gcc_assert (access_path);
7797      perform_or_defer_access_check (access_path, fn, fn, flags);
7798    }
7799
7800  if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7801    return cp_build_addr_expr (fn, flags);
7802  else
7803    {
7804      /* The target must be a REFERENCE_TYPE.  Above, cp_build_unary_op
7805	 will mark the function as addressed, but here we must do it
7806	 explicitly.  */
7807      cxx_mark_addressable (fn);
7808
7809      return fn;
7810    }
7811}
7812
7813/* This function will instantiate the type of the expression given in
7814   RHS to match the type of LHSTYPE.  If errors exist, then return
7815   error_mark_node. FLAGS is a bit mask.  If TF_ERROR is set, then
7816   we complain on errors.  If we are not complaining, never modify rhs,
7817   as overload resolution wants to try many possible instantiations, in
7818   the hope that at least one will work.
7819
7820   For non-recursive calls, LHSTYPE should be a function, pointer to
7821   function, or a pointer to member function.  */
7822
7823tree
7824instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7825{
7826  tsubst_flags_t flags_in = flags;
7827  tree access_path = NULL_TREE;
7828
7829  flags &= ~tf_ptrmem_ok;
7830
7831  if (lhstype == unknown_type_node)
7832    {
7833      if (flags & tf_error)
7834	error ("not enough type information");
7835      return error_mark_node;
7836    }
7837
7838  if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7839    {
7840      tree fntype = non_reference (lhstype);
7841      if (same_type_p (fntype, TREE_TYPE (rhs)))
7842	return rhs;
7843      if (flag_ms_extensions
7844	  && TYPE_PTRMEMFUNC_P (fntype)
7845	  && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7846	/* Microsoft allows `A::f' to be resolved to a
7847	   pointer-to-member.  */
7848	;
7849      else
7850	{
7851	  if (flags & tf_error)
7852	    error ("cannot convert %qE from type %qT to type %qT",
7853		   rhs, TREE_TYPE (rhs), fntype);
7854	  return error_mark_node;
7855	}
7856    }
7857
7858  if (BASELINK_P (rhs))
7859    {
7860      access_path = BASELINK_ACCESS_BINFO (rhs);
7861      rhs = BASELINK_FUNCTIONS (rhs);
7862    }
7863
7864  /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7865     deduce any type information.  */
7866  if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7867    {
7868      if (flags & tf_error)
7869	error ("not enough type information");
7870      return error_mark_node;
7871    }
7872
7873  /* There only a few kinds of expressions that may have a type
7874     dependent on overload resolution.  */
7875  gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7876	      || TREE_CODE (rhs) == COMPONENT_REF
7877	      || is_overloaded_fn (rhs)
7878	      || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7879
7880  /* This should really only be used when attempting to distinguish
7881     what sort of a pointer to function we have.  For now, any
7882     arithmetic operation which is not supported on pointers
7883     is rejected as an error.  */
7884
7885  switch (TREE_CODE (rhs))
7886    {
7887    case COMPONENT_REF:
7888      {
7889	tree member = TREE_OPERAND (rhs, 1);
7890
7891	member = instantiate_type (lhstype, member, flags);
7892	if (member != error_mark_node
7893	    && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7894	  /* Do not lose object's side effects.  */
7895	  return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7896			 TREE_OPERAND (rhs, 0), member);
7897	return member;
7898      }
7899
7900    case OFFSET_REF:
7901      rhs = TREE_OPERAND (rhs, 1);
7902      if (BASELINK_P (rhs))
7903	return instantiate_type (lhstype, rhs, flags_in);
7904
7905      /* This can happen if we are forming a pointer-to-member for a
7906	 member template.  */
7907      gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7908
7909      /* Fall through.  */
7910
7911    case TEMPLATE_ID_EXPR:
7912      {
7913	tree fns = TREE_OPERAND (rhs, 0);
7914	tree args = TREE_OPERAND (rhs, 1);
7915
7916	return
7917	  resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7918						  /*template_only=*/true,
7919						  args, access_path);
7920      }
7921
7922    case OVERLOAD:
7923    case FUNCTION_DECL:
7924      return
7925	resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7926						/*template_only=*/false,
7927						/*explicit_targs=*/NULL_TREE,
7928						access_path);
7929
7930    case ADDR_EXPR:
7931    {
7932      if (PTRMEM_OK_P (rhs))
7933	flags |= tf_ptrmem_ok;
7934
7935      return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7936    }
7937
7938    case ERROR_MARK:
7939      return error_mark_node;
7940
7941    default:
7942      gcc_unreachable ();
7943    }
7944  return error_mark_node;
7945}
7946
7947/* Return the name of the virtual function pointer field
7948   (as an IDENTIFIER_NODE) for the given TYPE.  Note that
7949   this may have to look back through base types to find the
7950   ultimate field name.  (For single inheritance, these could
7951   all be the same name.  Who knows for multiple inheritance).  */
7952
7953static tree
7954get_vfield_name (tree type)
7955{
7956  tree binfo, base_binfo;
7957  char *buf;
7958
7959  for (binfo = TYPE_BINFO (type);
7960       BINFO_N_BASE_BINFOS (binfo);
7961       binfo = base_binfo)
7962    {
7963      base_binfo = BINFO_BASE_BINFO (binfo, 0);
7964
7965      if (BINFO_VIRTUAL_P (base_binfo)
7966	  || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7967	break;
7968    }
7969
7970  type = BINFO_TYPE (binfo);
7971  buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7972			 + TYPE_NAME_LENGTH (type) + 2);
7973  sprintf (buf, VFIELD_NAME_FORMAT,
7974	   IDENTIFIER_POINTER (constructor_name (type)));
7975  return get_identifier (buf);
7976}
7977
7978void
7979print_class_statistics (void)
7980{
7981  if (! GATHER_STATISTICS)
7982    return;
7983
7984  fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7985  fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7986  if (n_vtables)
7987    {
7988      fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7989	       n_vtables, n_vtable_searches);
7990      fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7991	       n_vtable_entries, n_vtable_elems);
7992    }
7993}
7994
7995/* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7996   according to [class]:
7997					  The class-name is also inserted
7998   into  the scope of the class itself.  For purposes of access checking,
7999   the inserted class name is treated as if it were a public member name.  */
8000
8001void
8002build_self_reference (void)
8003{
8004  tree name = constructor_name (current_class_type);
8005  tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
8006  tree saved_cas;
8007
8008  DECL_NONLOCAL (value) = 1;
8009  DECL_CONTEXT (value) = current_class_type;
8010  DECL_ARTIFICIAL (value) = 1;
8011  SET_DECL_SELF_REFERENCE_P (value);
8012  set_underlying_type (value);
8013
8014  if (processing_template_decl)
8015    value = push_template_decl (value);
8016
8017  saved_cas = current_access_specifier;
8018  current_access_specifier = access_public_node;
8019  finish_member_declaration (value);
8020  current_access_specifier = saved_cas;
8021}
8022
8023/* Returns 1 if TYPE contains only padding bytes.  */
8024
8025int
8026is_empty_class (tree type)
8027{
8028  if (type == error_mark_node)
8029    return 0;
8030
8031  if (! CLASS_TYPE_P (type))
8032    return 0;
8033
8034  return CLASSTYPE_EMPTY_P (type);
8035}
8036
8037/* Returns true if TYPE contains no actual data, just various
8038   possible combinations of empty classes and possibly a vptr.  */
8039
8040bool
8041is_really_empty_class (tree type)
8042{
8043  if (CLASS_TYPE_P (type))
8044    {
8045      tree field;
8046      tree binfo;
8047      tree base_binfo;
8048      int i;
8049
8050      /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
8051	 out, but we'd like to be able to check this before then.  */
8052      if (COMPLETE_TYPE_P (type) && is_empty_class (type))
8053	return true;
8054
8055      for (binfo = TYPE_BINFO (type), i = 0;
8056	   BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8057	if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
8058	  return false;
8059      for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
8060	if (TREE_CODE (field) == FIELD_DECL
8061	    && !DECL_ARTIFICIAL (field)
8062	    && !is_really_empty_class (TREE_TYPE (field)))
8063	  return false;
8064      return true;
8065    }
8066  else if (TREE_CODE (type) == ARRAY_TYPE)
8067    return is_really_empty_class (TREE_TYPE (type));
8068  return false;
8069}
8070
8071/* Note that NAME was looked up while the current class was being
8072   defined and that the result of that lookup was DECL.  */
8073
8074void
8075maybe_note_name_used_in_class (tree name, tree decl)
8076{
8077  splay_tree names_used;
8078
8079  /* If we're not defining a class, there's nothing to do.  */
8080  if (!(innermost_scope_kind() == sk_class
8081	&& TYPE_BEING_DEFINED (current_class_type)
8082	&& !LAMBDA_TYPE_P (current_class_type)))
8083    return;
8084
8085  /* If there's already a binding for this NAME, then we don't have
8086     anything to worry about.  */
8087  if (lookup_member (current_class_type, name,
8088		     /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
8089    return;
8090
8091  if (!current_class_stack[current_class_depth - 1].names_used)
8092    current_class_stack[current_class_depth - 1].names_used
8093      = splay_tree_new (splay_tree_compare_pointers, 0, 0);
8094  names_used = current_class_stack[current_class_depth - 1].names_used;
8095
8096  splay_tree_insert (names_used,
8097		     (splay_tree_key) name,
8098		     (splay_tree_value) decl);
8099}
8100
8101/* Note that NAME was declared (as DECL) in the current class.  Check
8102   to see that the declaration is valid.  */
8103
8104void
8105note_name_declared_in_class (tree name, tree decl)
8106{
8107  splay_tree names_used;
8108  splay_tree_node n;
8109
8110  /* Look to see if we ever used this name.  */
8111  names_used
8112    = current_class_stack[current_class_depth - 1].names_used;
8113  if (!names_used)
8114    return;
8115  /* The C language allows members to be declared with a type of the same
8116     name, and the C++ standard says this diagnostic is not required.  So
8117     allow it in extern "C" blocks unless predantic is specified.
8118     Allow it in all cases if -ms-extensions is specified.  */
8119  if ((!pedantic && current_lang_name == lang_name_c)
8120      || flag_ms_extensions)
8121    return;
8122  n = splay_tree_lookup (names_used, (splay_tree_key) name);
8123  if (n)
8124    {
8125      /* [basic.scope.class]
8126
8127	 A name N used in a class S shall refer to the same declaration
8128	 in its context and when re-evaluated in the completed scope of
8129	 S.  */
8130      permerror (input_location, "declaration of %q#D", decl);
8131      permerror (input_location, "changes meaning of %qD from %q+#D",
8132	       DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
8133    }
8134}
8135
8136/* Returns the VAR_DECL for the complete vtable associated with BINFO.
8137   Secondary vtables are merged with primary vtables; this function
8138   will return the VAR_DECL for the primary vtable.  */
8139
8140tree
8141get_vtbl_decl_for_binfo (tree binfo)
8142{
8143  tree decl;
8144
8145  decl = BINFO_VTABLE (binfo);
8146  if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
8147    {
8148      gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
8149      decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
8150    }
8151  if (decl)
8152    gcc_assert (VAR_P (decl));
8153  return decl;
8154}
8155
8156
8157/* Returns the binfo for the primary base of BINFO.  If the resulting
8158   BINFO is a virtual base, and it is inherited elsewhere in the
8159   hierarchy, then the returned binfo might not be the primary base of
8160   BINFO in the complete object.  Check BINFO_PRIMARY_P or
8161   BINFO_LOST_PRIMARY_P to be sure.  */
8162
8163static tree
8164get_primary_binfo (tree binfo)
8165{
8166  tree primary_base;
8167
8168  primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
8169  if (!primary_base)
8170    return NULL_TREE;
8171
8172  return copied_binfo (primary_base, binfo);
8173}
8174
8175/* If INDENTED_P is zero, indent to INDENT. Return nonzero.  */
8176
8177static int
8178maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
8179{
8180  if (!indented_p)
8181    fprintf (stream, "%*s", indent, "");
8182  return 1;
8183}
8184
8185/* Dump the offsets of all the bases rooted at BINFO to STREAM.
8186   INDENT should be zero when called from the top level; it is
8187   incremented recursively.  IGO indicates the next expected BINFO in
8188   inheritance graph ordering.  */
8189
8190static tree
8191dump_class_hierarchy_r (FILE *stream,
8192			int flags,
8193			tree binfo,
8194			tree igo,
8195			int indent)
8196{
8197  int indented = 0;
8198  tree base_binfo;
8199  int i;
8200
8201  indented = maybe_indent_hierarchy (stream, indent, 0);
8202  fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
8203	   type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
8204	   (HOST_WIDE_INT) (uintptr_t) binfo);
8205  if (binfo != igo)
8206    {
8207      fprintf (stream, "alternative-path\n");
8208      return igo;
8209    }
8210  igo = TREE_CHAIN (binfo);
8211
8212  fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8213	   tree_to_shwi (BINFO_OFFSET (binfo)));
8214  if (is_empty_class (BINFO_TYPE (binfo)))
8215    fprintf (stream, " empty");
8216  else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8217    fprintf (stream, " nearly-empty");
8218  if (BINFO_VIRTUAL_P (binfo))
8219    fprintf (stream, " virtual");
8220  fprintf (stream, "\n");
8221
8222  indented = 0;
8223  if (BINFO_PRIMARY_P (binfo))
8224    {
8225      indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8226      fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8227	       type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8228			       TFF_PLAIN_IDENTIFIER),
8229	       (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8230    }
8231  if (BINFO_LOST_PRIMARY_P (binfo))
8232    {
8233      indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8234      fprintf (stream, " lost-primary");
8235    }
8236  if (indented)
8237    fprintf (stream, "\n");
8238
8239  if (!(flags & TDF_SLIM))
8240    {
8241      int indented = 0;
8242
8243      if (BINFO_SUBVTT_INDEX (binfo))
8244	{
8245	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8246	  fprintf (stream, " subvttidx=%s",
8247		   expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8248				   TFF_PLAIN_IDENTIFIER));
8249	}
8250      if (BINFO_VPTR_INDEX (binfo))
8251	{
8252	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8253	  fprintf (stream, " vptridx=%s",
8254		   expr_as_string (BINFO_VPTR_INDEX (binfo),
8255				   TFF_PLAIN_IDENTIFIER));
8256	}
8257      if (BINFO_VPTR_FIELD (binfo))
8258	{
8259	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8260	  fprintf (stream, " vbaseoffset=%s",
8261		   expr_as_string (BINFO_VPTR_FIELD (binfo),
8262				   TFF_PLAIN_IDENTIFIER));
8263	}
8264      if (BINFO_VTABLE (binfo))
8265	{
8266	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8267	  fprintf (stream, " vptr=%s",
8268		   expr_as_string (BINFO_VTABLE (binfo),
8269				   TFF_PLAIN_IDENTIFIER));
8270	}
8271
8272      if (indented)
8273	fprintf (stream, "\n");
8274    }
8275
8276  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8277    igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8278
8279  return igo;
8280}
8281
8282/* Dump the BINFO hierarchy for T.  */
8283
8284static void
8285dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8286{
8287  fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8288  fprintf (stream, "   size=%lu align=%lu\n",
8289	   (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8290	   (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8291  fprintf (stream, "   base size=%lu base align=%lu\n",
8292	   (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8293			   / BITS_PER_UNIT),
8294	   (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8295			   / BITS_PER_UNIT));
8296  dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8297  fprintf (stream, "\n");
8298}
8299
8300/* Debug interface to hierarchy dumping.  */
8301
8302void
8303debug_class (tree t)
8304{
8305  dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8306}
8307
8308static void
8309dump_class_hierarchy (tree t)
8310{
8311  int flags;
8312  FILE *stream = get_dump_info (TDI_class, &flags);
8313
8314  if (stream)
8315    {
8316      dump_class_hierarchy_1 (stream, flags, t);
8317    }
8318}
8319
8320static void
8321dump_array (FILE * stream, tree decl)
8322{
8323  tree value;
8324  unsigned HOST_WIDE_INT ix;
8325  HOST_WIDE_INT elt;
8326  tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8327
8328  elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8329	 / BITS_PER_UNIT);
8330  fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8331  fprintf (stream, " %s entries",
8332	   expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8333			   TFF_PLAIN_IDENTIFIER));
8334  fprintf (stream, "\n");
8335
8336  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8337			      ix, value)
8338    fprintf (stream, "%-4ld  %s\n", (long)(ix * elt),
8339	     expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8340}
8341
8342static void
8343dump_vtable (tree t, tree binfo, tree vtable)
8344{
8345  int flags;
8346  FILE *stream = get_dump_info (TDI_class, &flags);
8347
8348  if (!stream)
8349    return;
8350
8351  if (!(flags & TDF_SLIM))
8352    {
8353      int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8354
8355      fprintf (stream, "%s for %s",
8356	       ctor_vtbl_p ? "Construction vtable" : "Vtable",
8357	       type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8358      if (ctor_vtbl_p)
8359	{
8360	  if (!BINFO_VIRTUAL_P (binfo))
8361	    fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8362		     (HOST_WIDE_INT) (uintptr_t) binfo);
8363	  fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8364	}
8365      fprintf (stream, "\n");
8366      dump_array (stream, vtable);
8367      fprintf (stream, "\n");
8368    }
8369}
8370
8371static void
8372dump_vtt (tree t, tree vtt)
8373{
8374  int flags;
8375  FILE *stream = get_dump_info (TDI_class, &flags);
8376
8377  if (!stream)
8378    return;
8379
8380  if (!(flags & TDF_SLIM))
8381    {
8382      fprintf (stream, "VTT for %s\n",
8383	       type_as_string (t, TFF_PLAIN_IDENTIFIER));
8384      dump_array (stream, vtt);
8385      fprintf (stream, "\n");
8386    }
8387}
8388
8389/* Dump a function or thunk and its thunkees.  */
8390
8391static void
8392dump_thunk (FILE *stream, int indent, tree thunk)
8393{
8394  static const char spaces[] = "        ";
8395  tree name = DECL_NAME (thunk);
8396  tree thunks;
8397
8398  fprintf (stream, "%.*s%p %s %s", indent, spaces,
8399	   (void *)thunk,
8400	   !DECL_THUNK_P (thunk) ? "function"
8401	   : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8402	   name ? IDENTIFIER_POINTER (name) : "<unset>");
8403  if (DECL_THUNK_P (thunk))
8404    {
8405      HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8406      tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8407
8408      fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8409      if (!virtual_adjust)
8410	/*NOP*/;
8411      else if (DECL_THIS_THUNK_P (thunk))
8412	fprintf (stream, " vcall="  HOST_WIDE_INT_PRINT_DEC,
8413		 tree_to_shwi (virtual_adjust));
8414      else
8415	fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8416		 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8417		 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8418      if (THUNK_ALIAS (thunk))
8419	fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8420    }
8421  fprintf (stream, "\n");
8422  for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8423    dump_thunk (stream, indent + 2, thunks);
8424}
8425
8426/* Dump the thunks for FN.  */
8427
8428void
8429debug_thunks (tree fn)
8430{
8431  dump_thunk (stderr, 0, fn);
8432}
8433
8434/* Virtual function table initialization.  */
8435
8436/* Create all the necessary vtables for T and its base classes.  */
8437
8438static void
8439finish_vtbls (tree t)
8440{
8441  tree vbase;
8442  vec<constructor_elt, va_gc> *v = NULL;
8443  tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8444
8445  /* We lay out the primary and secondary vtables in one contiguous
8446     vtable.  The primary vtable is first, followed by the non-virtual
8447     secondary vtables in inheritance graph order.  */
8448  accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8449			 vtable, t, &v);
8450
8451  /* Then come the virtual bases, also in inheritance graph order.  */
8452  for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8453    {
8454      if (!BINFO_VIRTUAL_P (vbase))
8455	continue;
8456      accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8457    }
8458
8459  if (BINFO_VTABLE (TYPE_BINFO (t)))
8460    initialize_vtable (TYPE_BINFO (t), v);
8461}
8462
8463/* Initialize the vtable for BINFO with the INITS.  */
8464
8465static void
8466initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8467{
8468  tree decl;
8469
8470  layout_vtable_decl (binfo, vec_safe_length (inits));
8471  decl = get_vtbl_decl_for_binfo (binfo);
8472  initialize_artificial_var (decl, inits);
8473  dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8474}
8475
8476/* Build the VTT (virtual table table) for T.
8477   A class requires a VTT if it has virtual bases.
8478
8479   This holds
8480   1 - primary virtual pointer for complete object T
8481   2 - secondary VTTs for each direct non-virtual base of T which requires a
8482       VTT
8483   3 - secondary virtual pointers for each direct or indirect base of T which
8484       has virtual bases or is reachable via a virtual path from T.
8485   4 - secondary VTTs for each direct or indirect virtual base of T.
8486
8487   Secondary VTTs look like complete object VTTs without part 4.  */
8488
8489static void
8490build_vtt (tree t)
8491{
8492  tree type;
8493  tree vtt;
8494  tree index;
8495  vec<constructor_elt, va_gc> *inits;
8496
8497  /* Build up the initializers for the VTT.  */
8498  inits = NULL;
8499  index = size_zero_node;
8500  build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8501
8502  /* If we didn't need a VTT, we're done.  */
8503  if (!inits)
8504    return;
8505
8506  /* Figure out the type of the VTT.  */
8507  type = build_array_of_n_type (const_ptr_type_node,
8508                                inits->length ());
8509
8510  /* Now, build the VTT object itself.  */
8511  vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8512  initialize_artificial_var (vtt, inits);
8513  /* Add the VTT to the vtables list.  */
8514  DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8515  DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8516
8517  dump_vtt (t, vtt);
8518}
8519
8520/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8521   PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8522   and CHAIN the vtable pointer for this binfo after construction is
8523   complete.  VALUE can also be another BINFO, in which case we recurse.  */
8524
8525static tree
8526binfo_ctor_vtable (tree binfo)
8527{
8528  tree vt;
8529
8530  while (1)
8531    {
8532      vt = BINFO_VTABLE (binfo);
8533      if (TREE_CODE (vt) == TREE_LIST)
8534	vt = TREE_VALUE (vt);
8535      if (TREE_CODE (vt) == TREE_BINFO)
8536	binfo = vt;
8537      else
8538	break;
8539    }
8540
8541  return vt;
8542}
8543
8544/* Data for secondary VTT initialization.  */
8545typedef struct secondary_vptr_vtt_init_data_s
8546{
8547  /* Is this the primary VTT? */
8548  bool top_level_p;
8549
8550  /* Current index into the VTT.  */
8551  tree index;
8552
8553  /* Vector of initializers built up.  */
8554  vec<constructor_elt, va_gc> *inits;
8555
8556  /* The type being constructed by this secondary VTT.  */
8557  tree type_being_constructed;
8558} secondary_vptr_vtt_init_data;
8559
8560/* Recursively build the VTT-initializer for BINFO (which is in the
8561   hierarchy dominated by T).  INITS points to the end of the initializer
8562   list to date.  INDEX is the VTT index where the next element will be
8563   replaced.  Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8564   not a subvtt for some base of T).  When that is so, we emit the sub-VTTs
8565   for virtual bases of T. When it is not so, we build the constructor
8566   vtables for the BINFO-in-T variant.  */
8567
8568static void
8569build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8570		 tree *index)
8571{
8572  int i;
8573  tree b;
8574  tree init;
8575  secondary_vptr_vtt_init_data data;
8576  int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8577
8578  /* We only need VTTs for subobjects with virtual bases.  */
8579  if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8580    return;
8581
8582  /* We need to use a construction vtable if this is not the primary
8583     VTT.  */
8584  if (!top_level_p)
8585    {
8586      build_ctor_vtbl_group (binfo, t);
8587
8588      /* Record the offset in the VTT where this sub-VTT can be found.  */
8589      BINFO_SUBVTT_INDEX (binfo) = *index;
8590    }
8591
8592  /* Add the address of the primary vtable for the complete object.  */
8593  init = binfo_ctor_vtable (binfo);
8594  CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8595  if (top_level_p)
8596    {
8597      gcc_assert (!BINFO_VPTR_INDEX (binfo));
8598      BINFO_VPTR_INDEX (binfo) = *index;
8599    }
8600  *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8601
8602  /* Recursively add the secondary VTTs for non-virtual bases.  */
8603  for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8604    if (!BINFO_VIRTUAL_P (b))
8605      build_vtt_inits (b, t, inits, index);
8606
8607  /* Add secondary virtual pointers for all subobjects of BINFO with
8608     either virtual bases or reachable along a virtual path, except
8609     subobjects that are non-virtual primary bases.  */
8610  data.top_level_p = top_level_p;
8611  data.index = *index;
8612  data.inits = *inits;
8613  data.type_being_constructed = BINFO_TYPE (binfo);
8614
8615  dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8616
8617  *index = data.index;
8618
8619  /* data.inits might have grown as we added secondary virtual pointers.
8620     Make sure our caller knows about the new vector.  */
8621  *inits = data.inits;
8622
8623  if (top_level_p)
8624    /* Add the secondary VTTs for virtual bases in inheritance graph
8625       order.  */
8626    for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8627      {
8628	if (!BINFO_VIRTUAL_P (b))
8629	  continue;
8630
8631	build_vtt_inits (b, t, inits, index);
8632      }
8633  else
8634    /* Remove the ctor vtables we created.  */
8635    dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8636}
8637
8638/* Called from build_vtt_inits via dfs_walk.  BINFO is the binfo for the base
8639   in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure.  */
8640
8641static tree
8642dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8643{
8644  secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8645
8646  /* We don't care about bases that don't have vtables.  */
8647  if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8648    return dfs_skip_bases;
8649
8650  /* We're only interested in proper subobjects of the type being
8651     constructed.  */
8652  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8653    return NULL_TREE;
8654
8655  /* We're only interested in bases with virtual bases or reachable
8656     via a virtual path from the type being constructed.  */
8657  if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8658	|| binfo_via_virtual (binfo, data->type_being_constructed)))
8659    return dfs_skip_bases;
8660
8661  /* We're not interested in non-virtual primary bases.  */
8662  if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8663    return NULL_TREE;
8664
8665  /* Record the index where this secondary vptr can be found.  */
8666  if (data->top_level_p)
8667    {
8668      gcc_assert (!BINFO_VPTR_INDEX (binfo));
8669      BINFO_VPTR_INDEX (binfo) = data->index;
8670
8671      if (BINFO_VIRTUAL_P (binfo))
8672	{
8673	  /* It's a primary virtual base, and this is not a
8674	     construction vtable.  Find the base this is primary of in
8675	     the inheritance graph, and use that base's vtable
8676	     now.  */
8677	  while (BINFO_PRIMARY_P (binfo))
8678	    binfo = BINFO_INHERITANCE_CHAIN (binfo);
8679	}
8680    }
8681
8682  /* Add the initializer for the secondary vptr itself.  */
8683  CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8684
8685  /* Advance the vtt index.  */
8686  data->index = size_binop (PLUS_EXPR, data->index,
8687			    TYPE_SIZE_UNIT (ptr_type_node));
8688
8689  return NULL_TREE;
8690}
8691
8692/* Called from build_vtt_inits via dfs_walk. After building
8693   constructor vtables and generating the sub-vtt from them, we need
8694   to restore the BINFO_VTABLES that were scribbled on.  DATA is the
8695   binfo of the base whose sub vtt was generated.  */
8696
8697static tree
8698dfs_fixup_binfo_vtbls (tree binfo, void* data)
8699{
8700  tree vtable = BINFO_VTABLE (binfo);
8701
8702  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8703    /* If this class has no vtable, none of its bases do.  */
8704    return dfs_skip_bases;
8705
8706  if (!vtable)
8707    /* This might be a primary base, so have no vtable in this
8708       hierarchy.  */
8709    return NULL_TREE;
8710
8711  /* If we scribbled the construction vtable vptr into BINFO, clear it
8712     out now.  */
8713  if (TREE_CODE (vtable) == TREE_LIST
8714      && (TREE_PURPOSE (vtable) == (tree) data))
8715    BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8716
8717  return NULL_TREE;
8718}
8719
8720/* Build the construction vtable group for BINFO which is in the
8721   hierarchy dominated by T.  */
8722
8723static void
8724build_ctor_vtbl_group (tree binfo, tree t)
8725{
8726  tree type;
8727  tree vtbl;
8728  tree id;
8729  tree vbase;
8730  vec<constructor_elt, va_gc> *v;
8731
8732  /* See if we've already created this construction vtable group.  */
8733  id = mangle_ctor_vtbl_for_type (t, binfo);
8734  if (IDENTIFIER_GLOBAL_VALUE (id))
8735    return;
8736
8737  gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8738  /* Build a version of VTBL (with the wrong type) for use in
8739     constructing the addresses of secondary vtables in the
8740     construction vtable group.  */
8741  vtbl = build_vtable (t, id, ptr_type_node);
8742  DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8743  /* Don't export construction vtables from shared libraries.  Even on
8744     targets that don't support hidden visibility, this tells
8745     can_refer_decl_in_current_unit_p not to assume that it's safe to
8746     access from a different compilation unit (bz 54314).  */
8747  DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8748  DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8749
8750  v = NULL;
8751  accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8752			 binfo, vtbl, t, &v);
8753
8754  /* Add the vtables for each of our virtual bases using the vbase in T
8755     binfo.  */
8756  for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8757       vbase;
8758       vbase = TREE_CHAIN (vbase))
8759    {
8760      tree b;
8761
8762      if (!BINFO_VIRTUAL_P (vbase))
8763	continue;
8764      b = copied_binfo (vbase, binfo);
8765
8766      accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8767    }
8768
8769  /* Figure out the type of the construction vtable.  */
8770  type = build_array_of_n_type (vtable_entry_type, v->length ());
8771  layout_type (type);
8772  TREE_TYPE (vtbl) = type;
8773  DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8774  layout_decl (vtbl, 0);
8775
8776  /* Initialize the construction vtable.  */
8777  CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8778  initialize_artificial_var (vtbl, v);
8779  dump_vtable (t, binfo, vtbl);
8780}
8781
8782/* Add the vtbl initializers for BINFO (and its bases other than
8783   non-virtual primaries) to the list of INITS.  BINFO is in the
8784   hierarchy dominated by T.  RTTI_BINFO is the binfo within T of
8785   the constructor the vtbl inits should be accumulated for. (If this
8786   is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8787   ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8788   BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8789   graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8790   but are not necessarily the same in terms of layout.  */
8791
8792static void
8793accumulate_vtbl_inits (tree binfo,
8794		       tree orig_binfo,
8795		       tree rtti_binfo,
8796		       tree vtbl,
8797		       tree t,
8798		       vec<constructor_elt, va_gc> **inits)
8799{
8800  int i;
8801  tree base_binfo;
8802  int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8803
8804  gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8805
8806  /* If it doesn't have a vptr, we don't do anything.  */
8807  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8808    return;
8809
8810  /* If we're building a construction vtable, we're not interested in
8811     subobjects that don't require construction vtables.  */
8812  if (ctor_vtbl_p
8813      && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8814      && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8815    return;
8816
8817  /* Build the initializers for the BINFO-in-T vtable.  */
8818  dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8819
8820  /* Walk the BINFO and its bases.  We walk in preorder so that as we
8821     initialize each vtable we can figure out at what offset the
8822     secondary vtable lies from the primary vtable.  We can't use
8823     dfs_walk here because we need to iterate through bases of BINFO
8824     and RTTI_BINFO simultaneously.  */
8825  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8826    {
8827      /* Skip virtual bases.  */
8828      if (BINFO_VIRTUAL_P (base_binfo))
8829	continue;
8830      accumulate_vtbl_inits (base_binfo,
8831			     BINFO_BASE_BINFO (orig_binfo, i),
8832			     rtti_binfo, vtbl, t,
8833			     inits);
8834    }
8835}
8836
8837/* Called from accumulate_vtbl_inits.  Adds the initializers for the
8838   BINFO vtable to L.  */
8839
8840static void
8841dfs_accumulate_vtbl_inits (tree binfo,
8842			   tree orig_binfo,
8843			   tree rtti_binfo,
8844			   tree orig_vtbl,
8845			   tree t,
8846			   vec<constructor_elt, va_gc> **l)
8847{
8848  tree vtbl = NULL_TREE;
8849  int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8850  int n_inits;
8851
8852  if (ctor_vtbl_p
8853      && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8854    {
8855      /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8856	 primary virtual base.  If it is not the same primary in
8857	 the hierarchy of T, we'll need to generate a ctor vtable
8858	 for it, to place at its location in T.  If it is the same
8859	 primary, we still need a VTT entry for the vtable, but it
8860	 should point to the ctor vtable for the base it is a
8861	 primary for within the sub-hierarchy of RTTI_BINFO.
8862
8863	 There are three possible cases:
8864
8865	 1) We are in the same place.
8866	 2) We are a primary base within a lost primary virtual base of
8867	 RTTI_BINFO.
8868	 3) We are primary to something not a base of RTTI_BINFO.  */
8869
8870      tree b;
8871      tree last = NULL_TREE;
8872
8873      /* First, look through the bases we are primary to for RTTI_BINFO
8874	 or a virtual base.  */
8875      b = binfo;
8876      while (BINFO_PRIMARY_P (b))
8877	{
8878	  b = BINFO_INHERITANCE_CHAIN (b);
8879	  last = b;
8880	  if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8881	    goto found;
8882	}
8883      /* If we run out of primary links, keep looking down our
8884	 inheritance chain; we might be an indirect primary.  */
8885      for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8886	if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8887	  break;
8888    found:
8889
8890      /* If we found RTTI_BINFO, this is case 1.  If we found a virtual
8891	 base B and it is a base of RTTI_BINFO, this is case 2.  In
8892	 either case, we share our vtable with LAST, i.e. the
8893	 derived-most base within B of which we are a primary.  */
8894      if (b == rtti_binfo
8895	  || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8896	/* Just set our BINFO_VTABLE to point to LAST, as we may not have
8897	   set LAST's BINFO_VTABLE yet.  We'll extract the actual vptr in
8898	   binfo_ctor_vtable after everything's been set up.  */
8899	vtbl = last;
8900
8901      /* Otherwise, this is case 3 and we get our own.  */
8902    }
8903  else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8904    return;
8905
8906  n_inits = vec_safe_length (*l);
8907
8908  if (!vtbl)
8909    {
8910      tree index;
8911      int non_fn_entries;
8912
8913      /* Add the initializer for this vtable.  */
8914      build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8915                              &non_fn_entries, l);
8916
8917      /* Figure out the position to which the VPTR should point.  */
8918      vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8919      index = size_binop (MULT_EXPR,
8920			  TYPE_SIZE_UNIT (vtable_entry_type),
8921			  size_int (non_fn_entries + n_inits));
8922      vtbl = fold_build_pointer_plus (vtbl, index);
8923    }
8924
8925  if (ctor_vtbl_p)
8926    /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8927       So, we make a TREE_LIST.  Later, dfs_fixup_binfo_vtbls will
8928       straighten this out.  */
8929    BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8930  else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8931    /* Throw away any unneeded intializers.  */
8932    (*l)->truncate (n_inits);
8933  else
8934     /* For an ordinary vtable, set BINFO_VTABLE.  */
8935    BINFO_VTABLE (binfo) = vtbl;
8936}
8937
8938static GTY(()) tree abort_fndecl_addr;
8939
8940/* Construct the initializer for BINFO's virtual function table.  BINFO
8941   is part of the hierarchy dominated by T.  If we're building a
8942   construction vtable, the ORIG_BINFO is the binfo we should use to
8943   find the actual function pointers to put in the vtable - but they
8944   can be overridden on the path to most-derived in the graph that
8945   ORIG_BINFO belongs.  Otherwise,
8946   ORIG_BINFO should be the same as BINFO.  The RTTI_BINFO is the
8947   BINFO that should be indicated by the RTTI information in the
8948   vtable; it will be a base class of T, rather than T itself, if we
8949   are building a construction vtable.
8950
8951   The value returned is a TREE_LIST suitable for wrapping in a
8952   CONSTRUCTOR to use as the DECL_INITIAL for a vtable.  If
8953   NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8954   number of non-function entries in the vtable.
8955
8956   It might seem that this function should never be called with a
8957   BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8958   base is always subsumed by a derived class vtable.  However, when
8959   we are building construction vtables, we do build vtables for
8960   primary bases; we need these while the primary base is being
8961   constructed.  */
8962
8963static void
8964build_vtbl_initializer (tree binfo,
8965			tree orig_binfo,
8966			tree t,
8967			tree rtti_binfo,
8968			int* non_fn_entries_p,
8969			vec<constructor_elt, va_gc> **inits)
8970{
8971  tree v;
8972  vtbl_init_data vid;
8973  unsigned ix, jx;
8974  tree vbinfo;
8975  vec<tree, va_gc> *vbases;
8976  constructor_elt *e;
8977
8978  /* Initialize VID.  */
8979  memset (&vid, 0, sizeof (vid));
8980  vid.binfo = binfo;
8981  vid.derived = t;
8982  vid.rtti_binfo = rtti_binfo;
8983  vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8984  vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8985  vid.generate_vcall_entries = true;
8986  /* The first vbase or vcall offset is at index -3 in the vtable.  */
8987  vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8988
8989  /* Add entries to the vtable for RTTI.  */
8990  build_rtti_vtbl_entries (binfo, &vid);
8991
8992  /* Create an array for keeping track of the functions we've
8993     processed.  When we see multiple functions with the same
8994     signature, we share the vcall offsets.  */
8995  vec_alloc (vid.fns, 32);
8996  /* Add the vcall and vbase offset entries.  */
8997  build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8998
8999  /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
9000     build_vbase_offset_vtbl_entries.  */
9001  for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
9002       vec_safe_iterate (vbases, ix, &vbinfo); ix++)
9003    BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
9004
9005  /* If the target requires padding between data entries, add that now.  */
9006  if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
9007    {
9008      int n_entries = vec_safe_length (vid.inits);
9009
9010      vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
9011
9012      /* Move data entries into their new positions and add padding
9013	 after the new positions.  Iterate backwards so we don't
9014	 overwrite entries that we would need to process later.  */
9015      for (ix = n_entries - 1;
9016	   vid.inits->iterate (ix, &e);
9017	   ix--)
9018	{
9019	  int j;
9020	  int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
9021			      + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
9022
9023	  (*vid.inits)[new_position] = *e;
9024
9025	  for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
9026	    {
9027	      constructor_elt *f = &(*vid.inits)[new_position - j];
9028	      f->index = NULL_TREE;
9029	      f->value = build1 (NOP_EXPR, vtable_entry_type,
9030				 null_pointer_node);
9031	    }
9032	}
9033    }
9034
9035  if (non_fn_entries_p)
9036    *non_fn_entries_p = vec_safe_length (vid.inits);
9037
9038  /* The initializers for virtual functions were built up in reverse
9039     order.  Straighten them out and add them to the running list in one
9040     step.  */
9041  jx = vec_safe_length (*inits);
9042  vec_safe_grow (*inits, jx + vid.inits->length ());
9043
9044  for (ix = vid.inits->length () - 1;
9045       vid.inits->iterate (ix, &e);
9046       ix--, jx++)
9047    (**inits)[jx] = *e;
9048
9049  /* Go through all the ordinary virtual functions, building up
9050     initializers.  */
9051  for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
9052    {
9053      tree delta;
9054      tree vcall_index;
9055      tree fn, fn_original;
9056      tree init = NULL_TREE;
9057
9058      fn = BV_FN (v);
9059      fn_original = fn;
9060      if (DECL_THUNK_P (fn))
9061	{
9062	  if (!DECL_NAME (fn))
9063	    finish_thunk (fn);
9064	  if (THUNK_ALIAS (fn))
9065	    {
9066	      fn = THUNK_ALIAS (fn);
9067	      BV_FN (v) = fn;
9068	    }
9069	  fn_original = THUNK_TARGET (fn);
9070	}
9071
9072      /* If the only definition of this function signature along our
9073	 primary base chain is from a lost primary, this vtable slot will
9074	 never be used, so just zero it out.  This is important to avoid
9075	 requiring extra thunks which cannot be generated with the function.
9076
9077	 We first check this in update_vtable_entry_for_fn, so we handle
9078	 restored primary bases properly; we also need to do it here so we
9079	 zero out unused slots in ctor vtables, rather than filling them
9080	 with erroneous values (though harmless, apart from relocation
9081	 costs).  */
9082      if (BV_LOST_PRIMARY (v))
9083	init = size_zero_node;
9084
9085      if (! init)
9086	{
9087	  /* Pull the offset for `this', and the function to call, out of
9088	     the list.  */
9089	  delta = BV_DELTA (v);
9090	  vcall_index = BV_VCALL_INDEX (v);
9091
9092	  gcc_assert (TREE_CODE (delta) == INTEGER_CST);
9093	  gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
9094
9095	  /* You can't call an abstract virtual function; it's abstract.
9096	     So, we replace these functions with __pure_virtual.  */
9097	  if (DECL_PURE_VIRTUAL_P (fn_original))
9098	    {
9099	      fn = abort_fndecl;
9100	      if (!TARGET_VTABLE_USES_DESCRIPTORS)
9101		{
9102		  if (abort_fndecl_addr == NULL)
9103		    abort_fndecl_addr
9104		      = fold_convert (vfunc_ptr_type_node,
9105				      build_fold_addr_expr (fn));
9106		  init = abort_fndecl_addr;
9107		}
9108	    }
9109	  /* Likewise for deleted virtuals.  */
9110	  else if (DECL_DELETED_FN (fn_original))
9111	    {
9112	      fn = get_identifier ("__cxa_deleted_virtual");
9113	      if (!get_global_value_if_present (fn, &fn))
9114		fn = push_library_fn (fn, (build_function_type_list
9115					   (void_type_node, NULL_TREE)),
9116				      NULL_TREE, ECF_NORETURN);
9117	      if (!TARGET_VTABLE_USES_DESCRIPTORS)
9118		init = fold_convert (vfunc_ptr_type_node,
9119				     build_fold_addr_expr (fn));
9120	    }
9121	  else
9122	    {
9123	      if (!integer_zerop (delta) || vcall_index)
9124		{
9125		  fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
9126		  if (!DECL_NAME (fn))
9127		    finish_thunk (fn);
9128		}
9129	      /* Take the address of the function, considering it to be of an
9130		 appropriate generic type.  */
9131	      if (!TARGET_VTABLE_USES_DESCRIPTORS)
9132		init = fold_convert (vfunc_ptr_type_node,
9133				     build_fold_addr_expr (fn));
9134	      /* Don't refer to a virtual destructor from a constructor
9135		 vtable or a vtable for an abstract class, since destroying
9136		 an object under construction is undefined behavior and we
9137		 don't want it to be considered a candidate for speculative
9138		 devirtualization.  But do create the thunk for ABI
9139		 compliance.  */
9140	      if (DECL_DESTRUCTOR_P (fn_original)
9141		  && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
9142		      || orig_binfo != binfo))
9143		init = size_zero_node;
9144	    }
9145	}
9146
9147      /* And add it to the chain of initializers.  */
9148      if (TARGET_VTABLE_USES_DESCRIPTORS)
9149	{
9150	  int i;
9151	  if (init == size_zero_node)
9152	    for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9153	      CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9154	  else
9155	    for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9156	      {
9157		tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
9158				     fn, build_int_cst (NULL_TREE, i));
9159		TREE_CONSTANT (fdesc) = 1;
9160
9161		CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
9162	      }
9163	}
9164      else
9165	CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9166    }
9167}
9168
9169/* Adds to vid->inits the initializers for the vbase and vcall
9170   offsets in BINFO, which is in the hierarchy dominated by T.  */
9171
9172static void
9173build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
9174{
9175  tree b;
9176
9177  /* If this is a derived class, we must first create entries
9178     corresponding to the primary base class.  */
9179  b = get_primary_binfo (binfo);
9180  if (b)
9181    build_vcall_and_vbase_vtbl_entries (b, vid);
9182
9183  /* Add the vbase entries for this base.  */
9184  build_vbase_offset_vtbl_entries (binfo, vid);
9185  /* Add the vcall entries for this base.  */
9186  build_vcall_offset_vtbl_entries (binfo, vid);
9187}
9188
9189/* Returns the initializers for the vbase offset entries in the vtable
9190   for BINFO (which is part of the class hierarchy dominated by T), in
9191   reverse order.  VBASE_OFFSET_INDEX gives the vtable index
9192   where the next vbase offset will go.  */
9193
9194static void
9195build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9196{
9197  tree vbase;
9198  tree t;
9199  tree non_primary_binfo;
9200
9201  /* If there are no virtual baseclasses, then there is nothing to
9202     do.  */
9203  if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
9204    return;
9205
9206  t = vid->derived;
9207
9208  /* We might be a primary base class.  Go up the inheritance hierarchy
9209     until we find the most derived class of which we are a primary base:
9210     it is the offset of that which we need to use.  */
9211  non_primary_binfo = binfo;
9212  while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9213    {
9214      tree b;
9215
9216      /* If we have reached a virtual base, then it must be a primary
9217	 base (possibly multi-level) of vid->binfo, or we wouldn't
9218	 have called build_vcall_and_vbase_vtbl_entries for it.  But it
9219	 might be a lost primary, so just skip down to vid->binfo.  */
9220      if (BINFO_VIRTUAL_P (non_primary_binfo))
9221	{
9222	  non_primary_binfo = vid->binfo;
9223	  break;
9224	}
9225
9226      b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9227      if (get_primary_binfo (b) != non_primary_binfo)
9228	break;
9229      non_primary_binfo = b;
9230    }
9231
9232  /* Go through the virtual bases, adding the offsets.  */
9233  for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9234       vbase;
9235       vbase = TREE_CHAIN (vbase))
9236    {
9237      tree b;
9238      tree delta;
9239
9240      if (!BINFO_VIRTUAL_P (vbase))
9241	continue;
9242
9243      /* Find the instance of this virtual base in the complete
9244	 object.  */
9245      b = copied_binfo (vbase, binfo);
9246
9247      /* If we've already got an offset for this virtual base, we
9248	 don't need another one.  */
9249      if (BINFO_VTABLE_PATH_MARKED (b))
9250	continue;
9251      BINFO_VTABLE_PATH_MARKED (b) = 1;
9252
9253      /* Figure out where we can find this vbase offset.  */
9254      delta = size_binop (MULT_EXPR,
9255			  vid->index,
9256			  convert (ssizetype,
9257				   TYPE_SIZE_UNIT (vtable_entry_type)));
9258      if (vid->primary_vtbl_p)
9259	BINFO_VPTR_FIELD (b) = delta;
9260
9261      if (binfo != TYPE_BINFO (t))
9262	/* The vbase offset had better be the same.  */
9263	gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9264
9265      /* The next vbase will come at a more negative offset.  */
9266      vid->index = size_binop (MINUS_EXPR, vid->index,
9267			       ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9268
9269      /* The initializer is the delta from BINFO to this virtual base.
9270	 The vbase offsets go in reverse inheritance-graph order, and
9271	 we are walking in inheritance graph order so these end up in
9272	 the right order.  */
9273      delta = size_diffop_loc (input_location,
9274			   BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9275
9276      CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9277			      fold_build1_loc (input_location, NOP_EXPR,
9278					       vtable_entry_type, delta));
9279    }
9280}
9281
9282/* Adds the initializers for the vcall offset entries in the vtable
9283   for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9284   to VID->INITS.  */
9285
9286static void
9287build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9288{
9289  /* We only need these entries if this base is a virtual base.  We
9290     compute the indices -- but do not add to the vtable -- when
9291     building the main vtable for a class.  */
9292  if (binfo == TYPE_BINFO (vid->derived)
9293      || (BINFO_VIRTUAL_P (binfo)
9294	  /* If BINFO is RTTI_BINFO, then (since BINFO does not
9295	     correspond to VID->DERIVED), we are building a primary
9296	     construction virtual table.  Since this is a primary
9297	     virtual table, we do not need the vcall offsets for
9298	     BINFO.  */
9299	  && binfo != vid->rtti_binfo))
9300    {
9301      /* We need a vcall offset for each of the virtual functions in this
9302	 vtable.  For example:
9303
9304	   class A { virtual void f (); };
9305	   class B1 : virtual public A { virtual void f (); };
9306	   class B2 : virtual public A { virtual void f (); };
9307	   class C: public B1, public B2 { virtual void f (); };
9308
9309	 A C object has a primary base of B1, which has a primary base of A.  A
9310	 C also has a secondary base of B2, which no longer has a primary base
9311	 of A.  So the B2-in-C construction vtable needs a secondary vtable for
9312	 A, which will adjust the A* to a B2* to call f.  We have no way of
9313	 knowing what (or even whether) this offset will be when we define B2,
9314	 so we store this "vcall offset" in the A sub-vtable and look it up in
9315	 a "virtual thunk" for B2::f.
9316
9317	 We need entries for all the functions in our primary vtable and
9318	 in our non-virtual bases' secondary vtables.  */
9319      vid->vbase = binfo;
9320      /* If we are just computing the vcall indices -- but do not need
9321	 the actual entries -- not that.  */
9322      if (!BINFO_VIRTUAL_P (binfo))
9323	vid->generate_vcall_entries = false;
9324      /* Now, walk through the non-virtual bases, adding vcall offsets.  */
9325      add_vcall_offset_vtbl_entries_r (binfo, vid);
9326    }
9327}
9328
9329/* Build vcall offsets, starting with those for BINFO.  */
9330
9331static void
9332add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9333{
9334  int i;
9335  tree primary_binfo;
9336  tree base_binfo;
9337
9338  /* Don't walk into virtual bases -- except, of course, for the
9339     virtual base for which we are building vcall offsets.  Any
9340     primary virtual base will have already had its offsets generated
9341     through the recursion in build_vcall_and_vbase_vtbl_entries.  */
9342  if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9343    return;
9344
9345  /* If BINFO has a primary base, process it first.  */
9346  primary_binfo = get_primary_binfo (binfo);
9347  if (primary_binfo)
9348    add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9349
9350  /* Add BINFO itself to the list.  */
9351  add_vcall_offset_vtbl_entries_1 (binfo, vid);
9352
9353  /* Scan the non-primary bases of BINFO.  */
9354  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9355    if (base_binfo != primary_binfo)
9356      add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9357}
9358
9359/* Called from build_vcall_offset_vtbl_entries_r.  */
9360
9361static void
9362add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9363{
9364  /* Make entries for the rest of the virtuals.  */
9365  tree orig_fn;
9366
9367  /* The ABI requires that the methods be processed in declaration
9368     order.  */
9369  for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9370       orig_fn;
9371       orig_fn = DECL_CHAIN (orig_fn))
9372    if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9373      add_vcall_offset (orig_fn, binfo, vid);
9374}
9375
9376/* Add a vcall offset entry for ORIG_FN to the vtable.  */
9377
9378static void
9379add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9380{
9381  size_t i;
9382  tree vcall_offset;
9383  tree derived_entry;
9384
9385  /* If there is already an entry for a function with the same
9386     signature as FN, then we do not need a second vcall offset.
9387     Check the list of functions already present in the derived
9388     class vtable.  */
9389  FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9390    {
9391      if (same_signature_p (derived_entry, orig_fn)
9392	  /* We only use one vcall offset for virtual destructors,
9393	     even though there are two virtual table entries.  */
9394	  || (DECL_DESTRUCTOR_P (derived_entry)
9395	      && DECL_DESTRUCTOR_P (orig_fn)))
9396	return;
9397    }
9398
9399  /* If we are building these vcall offsets as part of building
9400     the vtable for the most derived class, remember the vcall
9401     offset.  */
9402  if (vid->binfo == TYPE_BINFO (vid->derived))
9403    {
9404      tree_pair_s elt = {orig_fn, vid->index};
9405      vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9406    }
9407
9408  /* The next vcall offset will be found at a more negative
9409     offset.  */
9410  vid->index = size_binop (MINUS_EXPR, vid->index,
9411			   ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9412
9413  /* Keep track of this function.  */
9414  vec_safe_push (vid->fns, orig_fn);
9415
9416  if (vid->generate_vcall_entries)
9417    {
9418      tree base;
9419      tree fn;
9420
9421      /* Find the overriding function.  */
9422      fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9423      if (fn == error_mark_node)
9424	vcall_offset = build_zero_cst (vtable_entry_type);
9425      else
9426	{
9427	  base = TREE_VALUE (fn);
9428
9429	  /* The vbase we're working on is a primary base of
9430	     vid->binfo.  But it might be a lost primary, so its
9431	     BINFO_OFFSET might be wrong, so we just use the
9432	     BINFO_OFFSET from vid->binfo.  */
9433	  vcall_offset = size_diffop_loc (input_location,
9434				      BINFO_OFFSET (base),
9435				      BINFO_OFFSET (vid->binfo));
9436	  vcall_offset = fold_build1_loc (input_location,
9437				      NOP_EXPR, vtable_entry_type,
9438				      vcall_offset);
9439	}
9440      /* Add the initializer to the vtable.  */
9441      CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9442    }
9443}
9444
9445/* Return vtbl initializers for the RTTI entries corresponding to the
9446   BINFO's vtable.  The RTTI entries should indicate the object given
9447   by VID->rtti_binfo.  */
9448
9449static void
9450build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9451{
9452  tree b;
9453  tree t;
9454  tree offset;
9455  tree decl;
9456  tree init;
9457
9458  t = BINFO_TYPE (vid->rtti_binfo);
9459
9460  /* To find the complete object, we will first convert to our most
9461     primary base, and then add the offset in the vtbl to that value.  */
9462  b = binfo;
9463  while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9464	 && !BINFO_LOST_PRIMARY_P (b))
9465    {
9466      tree primary_base;
9467
9468      primary_base = get_primary_binfo (b);
9469      gcc_assert (BINFO_PRIMARY_P (primary_base)
9470		  && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9471      b = primary_base;
9472    }
9473  offset = size_diffop_loc (input_location,
9474			BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9475
9476  /* The second entry is the address of the typeinfo object.  */
9477  if (flag_rtti)
9478    decl = build_address (get_tinfo_decl (t));
9479  else
9480    decl = integer_zero_node;
9481
9482  /* Convert the declaration to a type that can be stored in the
9483     vtable.  */
9484  init = build_nop (vfunc_ptr_type_node, decl);
9485  CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9486
9487  /* Add the offset-to-top entry.  It comes earlier in the vtable than
9488     the typeinfo entry.  Convert the offset to look like a
9489     function pointer, so that we can put it in the vtable.  */
9490  init = build_nop (vfunc_ptr_type_node, offset);
9491  CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9492}
9493
9494/* TRUE iff TYPE is uniquely derived from PARENT.  Ignores
9495   accessibility.  */
9496
9497bool
9498uniquely_derived_from_p (tree parent, tree type)
9499{
9500  tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9501  return base && base != error_mark_node;
9502}
9503
9504/* TRUE iff TYPE is publicly & uniquely derived from PARENT.  */
9505
9506bool
9507publicly_uniquely_derived_p (tree parent, tree type)
9508{
9509  tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9510			   NULL, tf_none);
9511  return base && base != error_mark_node;
9512}
9513
9514/* CTX1 and CTX2 are declaration contexts.  Return the innermost common
9515   class between them, if any.  */
9516
9517tree
9518common_enclosing_class (tree ctx1, tree ctx2)
9519{
9520  if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9521    return NULL_TREE;
9522  gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9523	      && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9524  if (ctx1 == ctx2)
9525    return ctx1;
9526  for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9527    TYPE_MARKED_P (t) = true;
9528  tree found = NULL_TREE;
9529  for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9530    if (TYPE_MARKED_P (t))
9531      {
9532	found = t;
9533	break;
9534      }
9535  for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9536    TYPE_MARKED_P (t) = false;
9537  return found;
9538}
9539
9540#include "gt-cp-class.h"
9541